AD-777 842

GAMMA RADIATION FROM FISSION PRODUCTS

Ronald B. Drinkwater

Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio

March 1974

MARKEN.

Burght and the sta

10000

言葉ない

ø

ECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)		
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM	
GNE/PH/74-3	IO. 3. RECIPIENT'S CATALOG NUMBER 日本 ファフタチョン	
. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVEREN	
GAMMA RADIATION FROM FISSION PRODUCTS	MS Thesis	
	6. PERFORMING ORG. REPORT NUMBER	
· AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(a)	
Ronald B. Drinkwater Captain, USAF	,	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio		
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Air Force Weapons Laboratory	March 1974	
Kirtland Air Force Base, N. M. 87117	56	
4. MONITORING AGE: (CY NAME & ADDRESS(If different from Controlling Office	UNCLASS IFIED	
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE	
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Rilease; Distribution Unli 7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different	mited	
Approved for Public Release; Distribution Unli	mited	
Approved for Public Rilease; Distribution Unli 7. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different	mited	
Approved for Public R'alease; Distribution Unli 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 8. SUPPLEMENTARY NOTES Approved for j	mited from Report) Dublic release; IAW AFR 190-17 Captain, USAF	
Approved for Public R'slease; Distribution Unli 7. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different 8. SUPPLEMENTARY NOTES Approved for p JETTY C. His Director of Li 9. KEY WORDS (Continue on reverse side if necessary and identify by black numb Fission-Product Gamma Radiation Gamma Radiation Reproduced by NATIONAL TECHNIC INFORMATION SERV U S Department of Comm	mited from Report) Dublic release; IAW AFR 190-17 Captain, USAF aformation er) CAL //CE	
Approved for Public R'Alease; Distribution Unli 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 8. SUPPLEMENTARY NOTES Approved for public R'Alease; Distribution Unli 8. SUPPLEMENTARY NOTES Approved for public Reproduced for public for public for public Reproduced by block number Fission-Product Gamma Radiation Gamma Radiation Keproduced by NATIONAL TECHNIC INFORMATION SERV	mited from Report) public release; IAW AFR 190-17 Captain, USAF aformation *** CAL //CE erce *** gamma radiation produced by on during times from .10 sec Fission yield data were 38, and Fu ²³⁹ ; and 14 MeV ered for the fission products on to process the data. ified yield and fuel comp-	

UNCLASSIFIED

Z

SECUR TY CLASSIFICATION OF THIS PAGE(When Date Entered)

sec after fission because gamma decay information was not available for many short lived products. However an approximation based on the long time program results is presented for use in obtaining short time total gamma energy rates.

J

ia

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

GAMMA RADIATION FROM

T

1

2

0

FISSION PRODUCTS

THESIS

GNE/PH/74-3 Ronald B. Drinkwater Captain USAF

q

Approved for public release, distribution unlimited.

Ъ

GAMMA RADIATION FROM

4

FISSION PRODUCTS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science

by

Ronald B. Drinkwater, B. S. Captain USAF Graduate Nuclear Engineering

March 1974

Approved for public release, distribution unlimited.

ic

Preface

This study was made to determine quantitative gamma radiation rates from the products of a specified fission device. The .1 sec to 2 min time after fission period was of special interest. This period is of the most interest in weapon fireball radiation calculations.

I would like to thank Dr. Charles J. Bridgman for his guidance and interest in this study and Mrs. Audrey L. Crosby of the Vallecitos Nuclear Center for her assistance in obtaining needed data references.

Ronald B. Drinkwater

Contents

4

Pa	age
Preface	ii
List of Figures	iv
List of Tables	v
Abstract	vi
I. Introduction	1
Purpose	1
Overview	2 4
Data References	8
II. Calculation Method	10
III. Program Results	14
	14 14 17
IV. Early Time Approximations	20
Independent Approximation	20 23 28
V. Conclusions	33
Bibliography	34
Appendix A: Computer Program	35
Vita	46

2

T

List of Figures

Y

Figu	re	Page
1	Total Gamma Energy Rate	. 15
2	Normalized Gamma-Energy-Group Energy Rates	. 16
3	Total Activity	. 18
4	"T ^{-1.2} Law" Approximation Compared with Program Results	. 22
5	Average Energy per Decay - Program Results Compared with Straight Line Approximation	. 24
6	Total Gamma Energy Rate per Fission - Program Results Compared with Independent Approximation	. 26
7	Total Gamma Energy Rate per Fission - Independent Approximation Compared with Experimental Values	. 27
8	Total Gamma Energy Rate per Fission - Independent Approximation Compared with "Firefly" Approximation	. 29
9	Accumulated Gamma Energy per Fission - Independent Approximation Compared with "Firefly" Approximation	. 31
10	"Firefly" Spectrum Comparison	. 32

1

List of Tables

4

٦

Table		Page
I	Program Output Rates	. 3
II	Fuels Covered by This Study	. 4
III	Fission Products Accounted For	. 5
IV	Gamma Radiation Data	. 6
v	Typical Mass Chain	. 8
VI	Average Gamma Energies	. 17

V

2

P

ļ

Г

Abstract

An analytical study was made to determine the gamma radiation produced by the products of a fission device. The radiation during times from .10 sec to 2 min after fission was of special interest. Fission yield data were gathered for 5 fuels (fission spectra U^{235} , U^{238} , and Pu^{239} ; and 14 MeV spectra U^{235} and U^{238}). Decay data were gathered for the fission products of these fuels. A computer program was written to process the data which produced quantitative energy and number rates of interest in fission product gamma radiation analysis. Results could be obtained for a device of specified yield and fuel composition. The program results were not valid at times shorter than 1000 sec after fission because gamma decay information w s not available for many short lived products. However an approximation based on the long time results is presented for use in obtaining short time total gamma energy rates.

GNE/PH/74-3

GAMMA RADIATION FROM FISSION PRODUCTS

I. Introduction

Purpose

This study was made to determine the gamma radiation given off by the fission products of a specified device as a function of time after the fission process occurred. The study was primarily designed to produce results for use in the study of delayed nuclear weapon effects. The results could be used in reactor product radiation studies, especially for severe excursion analysis.

Aircraft flying in the vicinity of a nuclear weapon detonation may not be harmed by prompt weapon effects, however their flight paths may pass through the radioactive weapon products. The gamma radiation from these products may cause damage to the aircraft and its crew. Elementary buoyant body calculations indicate a weapon fireball would rise to the tropopause (above typical aircraft altitudes) in approximately 2 min. If the aircraft were to enter the fireball in less than 0.1 sec after weapon detonation, prompt weapon effects would most surely have destroyed it. Thus, the time period of 0.1 sec to 2 min after fission was of special interest.

Terms Defined

Two terms used frequently in this report must be clearly defined; "Fission Fragment" and "Fission Product".

For the purposes of this report, a fission fragment is an atom that is formed directly by the fission process. A fission product is an atom that is either formed by the fission process or present as the result of fission fragment decays.

Overview

i

S

Fission yield data and decay data on fission products were gathered and compiled for computer processing. A computer program was written to process the data. The program output included both energy and number rates (see Table I). The 17 gamma energy rates (rates 2-18) are the same as 17 of the 18 gamma groups used in an AFIT prompt effects code (SV Code). Group I (8.00-10.00 MeV) was not included because no gammas of this energy were encountered in this study.

	Table I
	Program Output Rates
ace Index	Definition
1	Total Activity (Decays/sec)
2	6.50-8.00 MeV Gamma Rate (MeV/sec)
3	5.00-6.50 MeV Gamma Rate (MeV/sec)
4	4.00-5.00 MeV Gamma Rate (MeV/sec)
5	3.00-4.00 MeV Gamma Rate (MeV/sec)
6	2.50-3.00 MeV Gamma Rate (MeV/sec)
7	2.00-2.50 MeV Gamma Rate (MeV/sec)
8	1.66-2.00 MeV Gamma Rate (MeV/sec)
9	1.33-1.66 MeV Gamma Rate (MeV/sec)
10	1.00-1.33 MeV Gamma Rate (MeV/sec)
11	.80-1.00 MeV Gamma kate (MeV/sec)
12	.6080 MeV Gamma Rate (MeV/sec)
13	.4060 MeV Gamma Rate (MeV/sec)
14	.2040 MeV Gamma Rate (MeV/sec)
15	.20- 30 MeV Gamma Rate (MeV/sec)
16	.1020 MeV Gamma Rate (MeV/sec)
17	.0510 MeV Gamma Rate (MeV/sec)
18	.0205 MeV Gamma R. : (MeV/sec)
19	Total Gamma Number Rate (Gammas/sec)
20	Total Gamma Energy Rate (MeV/sec)

Ð

3

. • •

This report deals mainly with the analysis of the fission of U^{235} (fission spectra fission). The other 4 fuels covered by the study were analyzed and the results were generally the same as those for U^{235} (see Table II).

Table II		
Fuels	Covered by This Study	
U ²³⁵	(Fission Spectra)	
U ²³⁸	(Fission Spectra)	
Pu ²³⁹	(Fission Spectra)	
υ ²³⁵	(14 MeV)	
ບ ²³⁸	(14 MeV)	

Assumptions and Limitations

A large amount of fission yield and decay data was needed for this study. To cover all the possible fission products, one would have to include data on approximately 107 mass chains. This would involve roughly 400 fission fragments and 500-600 radioactive fission products. Collection and compilation of data on all possible fission products would have taken more time than was allotted for this study. The data used was limited to those fission products of U^{235} (fission spectra fission) which are members of mass chains with a fission yield of 1%, or higher. This amounted to mass chains, which involve 123 fission fragments and 178 radioactive fission products. Specifically, data for fission products in mass chains 84 through 105 and 129 through

149 were collected and used in the program. As a result, the program accounted for the following percentages of fission products from the respective fuels (see Table III).

Table III		
	Fission Products	Accounted For
	Fuel	Program Product Yield
υ ²³⁵	(Fission Spectra)	98.88
υ ²³⁸	(Fission Spectra)	95.5%
Pu ²³⁹	(Fission Spectra)	88.7%
υ ²³⁵	(14 MeV)	82.9%
υ ²³⁸	(14 MeV)	83.4%

The program will compute results for any specified amount and mixture of these fuels. A fraction of fission products accounted for from the specified device is computed. The rate results are adjusted by multiplication by the inverse of this fraction so they will reflect an "adjusted" 100% fission product coverage. This assumes the gamma radiation from the missing products is the same as that from the included products.

The most serious limitation in this study is a result of the fact that gamma radiation data was not available for many of the short lived products. Of the 178 products considered, gamma radiation data was not available for 84 products. Of these 84 products, 19 had half lives over 1 minute, 6 had half lives over 10 minutes, and 2 had half

lives over 1 hour. Using the fact that relatively all activity dies out after 10 half lives as a basis, it is considered that 1000 sec after fission is a conservative minimum for valid program energy rate results. Thus, program energy rate results are not valid for the time period of most interest, .1 sec to 2 min after fission, however, an approximation developed in Chapter IV allows total gamma energy rate calculations for this time region.

Relative gamma intensities were available for 16 of the 34 radioactive products with unknown absolute gamma intensities.

Table IV lists gamma radiation data for 2 fission products to illustrate what is meant by absolute and relative gamma intensities (Ref 8:224).

	Т	able IV	
Kr	89	R	b ⁹⁰
Gamma (MeV)	Relative Intensity	Gamma (MeV)	Absolute Intensity
0.23	85.0	0.53	48
0.36	28.0	0.72	48
0.51	42.0	0.83	56%
0.60	100.0	0.86	6%
others	< 100.0	others	< 56%

For the decay of Kr⁸⁹, only relative gamma intensities are known, i.e. the 0.60 MeV gamma is the most frequent gamma, and for every 100 0.60 MeV gammas there would be 42 0.51 MeV gammas. The number of any gamma produced per decay of

ĺ

 Kr^{89} is unknown. For the decay of Rb⁹⁰, absolute gamma intensities are known, for 100 Rb⁹⁰ decays, 56 0.83 MeV gammas would be produced. It was observed that the absolute intensities of the most frequent gammas from all the products considered generally varied from 100% to 1.0%, with a few exceptions lower than 1.0%. Based on this range of absolute intensity values, the absolute intensities of the most frequent gammas, from the 16 products for which only relative intensities were known, were set at 1.0%. With the absolute intensity of the most frequent gamma known, absolute intensities of the remaining gammas are easily calculated. The absolute intensity of 1.0% was considered to be generally low, and was chosen so that the chances that estimated gamma radiation would not dominate over known gamma radiation in the results would be minimized. The gamma decay data for the remaining products with unknown absolute gamma decay data were set at zero. This dictates that the short time (less than 1000 sec after fission) energy rates and gamma number rates will be low.

The program activity results (Rate 1, see Table I) do not have the limitation previously described. The half lives of all products used in the program were known. However, most mass chains have some members for which half lives are unknown. This study used the first member of the mass chain with a known half life as the first member of that chain. Table V shows an example of the mass chain information used to compile data for the program (Ref 9:24).

Table V			
	Typical Mass Chain		
Nuclide	Half Life	Cumulative Fission Yield (for Fission Spectra U ²³⁵)	
34 Se ⁹⁶	Unknown	Not Listed	
35 Br ⁹⁶	Unknown	7.56×10^{-9} %	
36 Kr ⁹⁶	Unknown	9.08 x 10 ⁻⁵ %	
37 Rb ⁹⁶	.23 sec	.0519%	
38 Sr ⁹⁶	4.0 sec	1.69%	
39 Y ⁹⁶	2.3 min	5.48%	
40 Zr ⁹⁶	Stable	6.22%	

Thus, 37 Rb^{96} was used as the first member of the chain with a fission yield of .0519% for fission spectra U²³⁵. The second member was 38 Sr⁹⁶, with an individual yield of 1.64% (1.69% - .0519%), etc. The first members of the mass chains with known half lives generally had half lives of .1 sec to 1 min. It is probable that the members with unknown half lives have very short half lives (less than 1 sec) since they are farther from stability than the members with known half lives. Thus some activity before 1 sec after fission is not accounted for and therefore program activity results are considered low for times less than 1 sec after fission.

Data References

K

The references used to gather fission yield and decay data are critical to the validity of this study. They are

listed here in the text to give the reader an idea of the scope of the basic data used in this study.

Fission yield data was gathered exclusively from the 1972 General Electric Company report, "Compilation of Fission Product Yields" by Meek and Rider (Ref 7). This report presents a consolidated, current listing of this data.

Half life and decay branching data was gathered mainly from the same report, with occasional reference to other sources for confirmation purposes.

Gamma radiation data was gathered from four sources; "Handbook of Chemistry and Physics" (Ref 10), "Table of Isotopes" (Ref 8), "Gamma-Ray Energies and Intensities" (Ref 6), and applicable editions of the periodical, <u>Nuclear</u> <u>Data</u>.

II. Calculation Method

The basic inputs used in this study are device yield, device composition and time after fission. The outputs are various energy and number rates as described in Table I.

First, the number of atoms of each fission fragment produced by the device is calculated. The device yield and device composition figures are used to compute the number of fissions of each type fuel that occurred. The number of fissions of each fuel is then multiplied by appropriate fission yield data to compute the number of atoms of each fission fragment produced by that fuel. The total number of atoms of each fission fragment produced by the device is then calculated by adding up the amounts of that fission fragment produced by the component fuels.

Next, the initial number of atoms of particular fission fragment and the specified time after fission are used to calculate the components of the various rates described in Table I caused by the decay of this particular fission fragment and its daughters. A two step procedure is used to compute the various rates for each fission fragment decay chain. Running totals of these rates are kept and will reflect output rates for the entire device after the procedure has been applied to all fission fragments.

The first step in the procedure computes the number of atoms of the fission fragment and its daughters present at the specified time after fission. Although the various isotopes here may be the same as those present in the

decay chains of other fission fragments, this step only accounts for those particular atoms present as a direct result of the initial quantity of the particular fission fragment being processed. Thus after the initial quantities of all fission fragments have been processed, rates reflecting the effects of the entire device will have been calcu-The basic radioactive transformation equations, lated. "Bateman Equations" (Ref 7:243) were used in this step.

Given a simple decay chain for fission fragment A₁:

$$A_{1} + A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{5} \rightarrow \text{etc.}$$

$$A_{1}(t) = A_{1}(0) e^{-\lambda_{1}t}$$
(1)

$$A_{2}(t) = A_{1}(0) \left(\frac{\lambda_{1}}{\lambda_{2}^{-\lambda_{1}}} e^{-\lambda_{1}t} + \frac{\lambda_{1}}{\lambda_{1}^{-\lambda_{2}}} e^{-\lambda_{2}t} \right)$$
(2)

Or Generally:

$$A_{n}(t) = C_{1} e^{-\lambda_{1}t} + C_{2} e^{-\lambda_{2}t} + \dots$$
 (3)

Where:
$$C_1 = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{(\lambda_2 - \lambda_1) (\lambda_3 - \lambda_1) \cdots (\lambda_n - \lambda_1)} \lambda_1(0)$$
 (4)

$$C_{2} = \frac{\lambda_{1}\lambda_{2}\cdots\lambda_{n-1}}{(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{1})\cdots(\lambda_{n}-\lambda_{2})} A_{1}(0)$$
(5)

$$c_{n} = \frac{\lambda_{1}\lambda_{2}\cdots\lambda_{n-1}}{(\lambda_{1}-\lambda_{n})(\lambda_{2}-\lambda_{n})\cdots(\lambda_{n-1}-\lambda_{n})}$$
(6)

ſ

Where: t is the specified time after fission.

 $A_1(0)$ is the initial number of atoms of fission fragment A1.

A₁(t) is the number of atoms of the nth member of the chain present at time t.

 $\boldsymbol{\lambda}_n$ is the decay constant of the nth member of the chain.

These equations are easily adapted to computer processing with proper indexing of the particular variables.

Decay chain branching occurs in many of the fission fragment decay chains. For the simple branching decay chains:

the decay is split into indexed chains as indicated. The branching fractions are readily available in the references; i.e. the fraction of A_2 that decays to $A_{1,3}$ (BF₁) and the fraction of A_2 that decays to $A_{2,3}$ (BF₂).

The following equations account for all atoms present at time t for the simple branching decay chain shown above.

$$A_{1}(t) = A_{1}(0) e^{-\lambda_{1}t}$$
 (7)

$$A_{2}(t) = A_{1}(0) \left(\frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} e^{-\lambda_{1}t} + \frac{\lambda_{1}}{(\lambda_{1} - \lambda_{2})} e^{-\lambda_{2}t} \right)$$
(8)

$$A_{1,3}(t) = A_{1}(0) BF_{1} \left(\frac{\lambda_{1}\lambda_{2}}{(\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1})} + \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2})} e^{-\lambda_{2}t} + \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1} - \lambda_{3})(\lambda_{2} - \lambda_{3})} \right)$$
(9)

$$A_{2,3}(t) = A_{1}(0)BF_{2}\left(\frac{\lambda_{1}\lambda_{2}}{(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{1})} + \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1}-\lambda_{2})(\lambda_{3}-\lambda_{2})} + \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1}-\lambda_{3})(\lambda_{2}-\lambda_{3})}\right)$$
(10)

These equations are, again, easily adapted to computer routines with proper indexing of the particular variables, even in quite complicated __anching situations.

The second step in the procedure multiplies the number of atoms of each radioactive isotope by its respective decay constant to yield activity (decay/sec) of that isotope in the chain. This activity is then multiplied by decay factors for the particular isotope to give the rates contributed by this isotope, eg activity times total gamma energy per decay of this isotope would yield total gamma energy per second contributed by the number of atoms of this particular isotope present in the chain being processed. The rates from all isotopes in the chain are then summed to reflect the rates produced by the entire chain.

Appendix A gives a listing of the Computer Program used to perform the calculations.

III. Program Results

The results produced by the program consist of various energy and number rates as described in Table I. These rates are quantitative and represent the output from the products of a device of specified yield and composition. The results presented in this chapter are scaled to units of rate per fission of U^{235} (fission spectra fission). These units compare more readily to other studies and eliminate the need to specify the device yield. As previously mentioned in Chapter I, the results for the other fuels are generally the same as those computed for U^{235} .

Total Gamma Energy Rate

Figure 1 shows the total gamma energy rate as a function of time after fission as calculated by the computer program. The energy rate values are considered low for time of less than 1000 sec because of the unknown gamma decay factors on many short-lived products which were arbitrarily set at zero in the program data.

Spectrum

ł

ş

r

The computer code produces 17 gamma-emorgy-group energy rates as shown in Table I. These results are subject to the same limitations as the total gamma energy rate. In Figure 2, the group emorgy rates are consolidated into 3 energy groups and normalized so that total energy rate equals one. Figure 2 indicates very erratic spectral behavior over the times covered, however a general "softening"

trend (the tendency for the total gamma energy to be composed of mostly lower energy gammas) is noted as times progress beyond 1000 sec.

4

Perhaps a better look at the gamma radiation spectrum is given by Table VI which lists average energy per gamma as a function of time after fission. The limitations below 1000 sec still apply.

Table VI Average Gamma Energies		
Time After Fission (sec)	Average Gamma Energy (MeV/gamma)	
1×10^{-3}	. 529	
1×10^{-2}	.528	
1×10^{-1}	.530	
1×10^{0}	.553	
1×10^{1}	.867	
1×10^{2}	1.068	
1×10^{3}	1.054	
1×10^4	.873	
8.64 x 10^4 (1 day)	.674	
6.05 x 10 ⁵ (1 week)	.626	

Total Activity

Figure 3 shows the total product activity as a function of time after fission. These results are considered accurate for times greater than 1 sec after fission. The activity results for times below 1 sec are considered low because

:

ĺ

k

1

r

products with unknown half lives (very short lived products) were not included in the computer code.

Y

IV. Early Time Approximations

Although the program results presented in Chapter III are considered good for late times, these results do not cover the time period of most interest; .1 sec to 2 min after fission. Two methods were used in an attempt to find a procedure that would produce good total gamma energy rate values for the .1 sec to 2 min time period; use of the *iamiliar* "T^{-1.2} Law" and an independent approach developed by the author. As in Chapter III, the results presented in this chapter are in units of rate per fission of U²³⁵ (fission spectra fission).

"T^{-1.2} Law" Approximation

The familiar "T^{-1.2}" type approximation is cited as a method of obtaining product radiation rate values for times less than 1000 hours after fission (Ref 4:421) or 6 months after fission (Ref 1:323). It is stated that this approximation is good only for times in excess of 10 sec after fission (Ref 11: 10.27-1029). This method involves the use of the equation:

$$A(t) = A_0 t^{-1.2}$$
 (11)

where: A is the radiation rate at unit time after fission.

t is the time after fission of interest in units compatible with A.

A(t) is the approximated radiation rate at time t.

Thus, if the radiation rate at any time after fission is known, an approximation of the rate for any other time can

be made (within the specified time _imits).

Using the program total gamma energy rate at 1000 sec after fission as A_0 , this approximation was used to compute rate values for the other times after fission. Figure 4 shows the approximation results compared with the program results.

Both the approximation results and the program results were integrated by trapezoidal numerical methods to determine total product gamma energy released per fission. The time span covered by the integration was from 10^{-6} sec through 10¹² sec after fission. The integration time period starts after nuclear weapon burn times (considered less than 10⁻⁷ sec). Negligible gamma energy per fission is contributed by times greater than 10^5 sec in both cases. The results were 308 MeV/fission for the approximation and 5.03 MeV/fission for the program results. It appears the approximation allows far too much product gamma radiation when one compares the integration results to generally accepted values of around 6 MeV/Fission (Ref 4:13). Even if only the time span of interest, .1 sec through 2 min, is used as the integration period, the approximation results yield a product gamma energy of more than 40 MeV/fission. Clearly the "T^{-1.2} Law" approximation produces total gamma energy rates that are too large over the .1 sec to 2 min time after fission region. This would be expected, since the use of the "T^{-1.2} Law" at times below 10 sec is not considered valid (Ref 10: 1029) and because numerous experimental and theoretical total

gamma rate curves show "flattening" tendencies at times
less than 1 to 100 sec after fission (Ref 11:1328, 2:2-19,
3:B811, 5:B822).

¥

Independent Approximation

The various program result rates were analyzed in an attempt to find trends that could extend the long time total gamma energy rates into the short time region. The program total gamma energy rates and total activity rates were used to compute average gamma energy per decay values. A straight line approximation fits the average gamma energy per decay calues very well at times of 1000 sec to 10,000 sec after fission as shown in Figure 5. This time regime was selected because 1000 sec is the minimum time at which the program total energy rate results are considered valid. The straight line approximation for average gamma energy per decay is given by the following equation:

$$R(t) = R_0 t^{-.104}$$
 (12)

where: R is the average gamme energy per decay at unit time after fission.

t is the time after fission of interest in units compatible with R_{o} .

R(t) is the approximation of average gamma energy per decay for time t.

Figure 5 shows the program average gamma energy per decay values and approximation values based on the program value of 1.44 MeV/decay at 1000 sec. As would be expected, the approximated values are larger than program values as time goes below 1000 sec since program total gamma energy

Y

Figure 5. Average Energy per Decay - Program Results Compared with Straight Line Approximation

rates do not include gamma energy from some short lived product decays. As previously stated, program total activity rates are considered good for times down to 1 sec.

ער

The approximated average gamma energy per decay values (MeV/decay) were then multiplied by program total activity rate values (decays/sec) to produce approximated total gamma energy rate values (MeV/sec) for times under 1000 sec. These results are compared to program results in Figure 6.

It should be noted that at times below 1 sec, the times when program total activity values are considered low, the approximated average gamma energy per decay values are increasing above 2.5 MeV/decay. Although actual cases where more than 2.5 MeV of gamma energy is released in a decay can be cited, such decays are rare. Thus while average gamma energy per decay values are probably high, for times less than 1 sec, and the total activity rate is considered low, these errors will tend to compensate each other, to some extent.

In Figure 7, some experimental values for total gamma energy rates from U^{235} as measured by Fisher and Engle in 1964 (Ref 2:B811) are compared with the independent approximation results. It should be noted that the 5 experimental values fall within, and pretty much cover, the .1 sec to 2 min after fission period of interest in this study. The experimental values fit the approximation results very well.

Integration of the approximation results over the time period 10^{-6} through 10^{12} sec results in a total gamma energy

Figure 6. Total Gamma Energy Rate per Fission-Program Results Compared with Independent Approximation

Figure 7.

Total Gamma Energy Rate per Fission -Independent Approximation Compared with Experimental Values.

per fission value of 8.75 MeV/fission. This is close to the generally accepted value of 6 \pm 1 MeV per fission (Ref 4:13).

y

Independent Approximation Compared with "Firefly" Approximation

The Air Force Weapons Lab, Kirtland AFB, N. M., is developing a code, "Firefly", to calculate weapon product radiation dose to aircraft. A memo (Ref 12) was supplied to the author describing the product gamma dose calculations proposed for use in the code.

The AFWL approximation uses a modification of the following equation (Ref 2:2-6) as a source of energy rate values.

$$A(t) = c(1 + t)^{-1 \cdot 2}$$
(13)

where: C = 1.9

t is the time after fission in seconds.,

A(t) is the total gamma energy rate (MeV/sec-fission) at time t.

This equation yields a total gamma energy per fission value of 9.5 MeV when integrated over the period t = 0 to ∞ . For use in the Firefly code, equation 13 was scaled so that its integral would equal 7.7 MeV, the arithmetic mean of 9.5 MeV and the generally accepted value of 6.0 MeV (Ref 4:13). Thus equation 3, with C equal to 1.55, was used to compute total gamma energy rate values for the Firefly code. A comparison of the results of Firefly total gamma energy rate values with the author's independent approximation results is shown in Figure 8.

To evaluate the effects these two approximations would

y

have on dose calculations, both were integrated over increasing time periods. Accumulated total gamma energy vs. time was plotted for both methods (see Figure 9). The independent approximation integration values differ by as much as 29% at 20 sec from the "Firefly" integration values.

The Firefly calculations use a fixed gamma spectrum based on the following equation (Ref 12:1):

$$\frac{dN(E)}{dE} = 1.1 e^{-1.1E}$$
(14)

where: N(E) is the number of gammas with energy E.

E is the gamma energy in MeV.

Although Firefly calculations used different gamma energy groups than this study, integration of equation 14 over appropriate energy ranges easily illustrates the Firefly spectrum in terms of the 17 energy groups used in this study (see Table I). Figure 10 compares the Firefly fixed spectrum with the spectrum calculated in this study at 1000 sec after fission. The gamma number values used are scaled so that total number of gammas over all groups equals .978, the integral of equation 4 over the energy range .02 to 8.9 MeV (the range of energy values covered in the 17 groups used in this study). It should be noted that the average gamma energy over this range of energies is .848 MeV for the "Firefly" spectrum and 1.054 MeV for the results of this study at 1000 sec after fission. 1 (

Figure 9.

Accumulated Gamma Energy per Fission -Independent Approximation Compared with "Firefly" Approximation.

SCALED NUMBER OF GAMMAS

Ł

١

I

V. Conclusions

For a device using only U^{235} (fission spectra) as a fuel, some of the results of this study can be used with confidence. Total activity values can be used for times after fission greater than 1 sec. Gamma group energy rates can be used for times greater than 1000 sec after fission. The program results can be used for total gamma energy rates for times down to 1000 sec after fission. The independent approximation results can be used for total gamma energy rates at times less than 1000 sec after fission.

Although, as previously mentioned, the results for devices composed of fuels other than U^{235} (fission spectra) were generally the same, it is felt the lower fraction of products included in the program for these fuels (see Table III) makes their results subject to more question than for the case of U^{235} . The results for other fuels might be slightly different if the missing fission products were accounted for in the program data.

If complete data could be obtained for the short lived fission products and added to the program data, the program could produce very accurate results for short times after fission. The calculation methods used in this study are simple and analytical. The results produced by this method are only limited by the accuracy and completeness of the fission yield and decay data used in the calculations.

Bibliography

- 1. Eisenbud, Merril. Environmental Radioactivity. New York: Academic Press, 1973.
- Fischer, P. G. and W. S. Knapp. <u>Aids for the Study</u> of <u>Electromagnetic Blackout</u>. DASA-1923. Santa Barbara, Calif.: General Electric, TEMPO, March, 1967.
- 3. Fisher, P. C. and L. B. Engle. "Delayed Gammas from Fast-Neutron Fission of Th²³², U²³³, U²³⁵, U²³⁸ and Pu²³⁹." <u>Physical Review</u>, <u>134</u>:B796-B816 (May 25, 1964).
- 4. Glasstone, Samuel. The Effects of Nuclear Weapons. Washington D. C.: US Atomic Energy Commission, 1962.
- 5. Griffin, James L. "Beta Decays and Delayed Gammas from Fission Fragments." <u>Physical Review</u>, <u>134</u>:B817-B823 (May 25, 1964).
- 6. Gunnink, Ray, et al. Gamma-Ray Energies and Intensities. UCID-15439. Livermore, Calif.: Lawrence Radiation Laboratory, January 14, 1969.
- 7. Kaplan, Irving. <u>Nuclear Physics</u>. Reading, Mass.: Addison-Wesley Press, Inc., 1964.
- 8. Lederer, J. M., et al. Table of Isotopes. New York: John Wiley and Sons, Inc., 1968.
- 9. Meek, M. E. and B. F. Rider. Compilation of Fission Product Yields. NEDO-12154. Pleasanton, Calif.: General Electric Vallecitos Nuclear Center, January 1972.
- Weast, Robert C., editor-in-chief. <u>Handbook of Chem-istry and Physics</u>, <u>54th edition</u>. Cleveland: <u>CRC Press</u>, 1973.
- 11. Way, K. and Wigner, E. P. "The Rate of Decay of Fission Products." <u>Physical Review</u>, 73:1318-1330 (June 1, 1948).
- 12. Yingling, Maj. W. and H. Murphy. "FIREFLY Fission -Product Gamma Calculations." AFWL, Kirtland AFB, N. M.: a Dec 13, 1973 Memo to the author.
- 13. Zysin, Yu. A., et al. Fission Product Yields and Their Mass Distribution. New York: Consultants Bureau., 1964.

Appendix A

Computer Program

The computer program used in this study was written in FORTRAN IV language for use on the AFIT CDC-6600 computer. The main program (GAMA) and the subroutine (BATMN) listings are included in this report. The two data files containing fission yield and decay data are not included. They are considered too lengthy and to be of little interest to the majority of those who will read this report. A copy of the entire code is on file at the Physics Department (AFIT-ENP), Wright-Patterson AFB, Ohio.

**************** PROSPAM GAPA PAGE 1 *****************

i.

C* PROGRAM GAMMA COMPUTES AND FRINTS OUT VARIOUS EMERGY C* C*: AND NUMBER RATES AS DESCRIBED IN TABLE I FOR A FISSION * C* DEVICE OF SPECIFICD YIFLE AND COMPOSITION. THE PROGRAMM C* IS DIMENSIONED SO THAT CUTPUT FOR UP TO 50 TIMES AFTER * C+ FISSION WILL DE PRODUCED. C+ C* TAPE 5 MUST BE ATTACHED. THIS FILE IS COMPOSED OF DECAY DATA (NC, N, ND, NFC, NBO, FF, GG, AND DC) FOR C* FISSION FRAGMENTS. THE FILE USER FOR THIS STUDY C* INCLUDED DATA FOR 123 FISSION FRAGMENTS. ALL FISSION C* FRAGMENTS ARE INDEXED AND FISSION FRAGMENT DECAY DATA C* C* MUST BE ARRANGED IN NUMERICAL ORDER ACCORDING TO THE C# INDEX NUMBERS. C* C* PROGRAM CONTROL PARAMETERS (NTIME, TA, YIELD, AND YCOMP) 4 C* ARE ATTACHED AS A DATA DECK AND READ IN FROM THE FILE C* "INFUT". C* C* SUBROUTINE BLOCK DATA MUST PE ATTACHED. IT SETS VALUES* C* FOR (YFF, NID, AND FPKT). C* C* SUPROUTINE BATHN MUST BE ATTACHED. IT CALCULATES THE C* RATE CONTRIBUTIONS OF EACH FISSION FRAGMENT AS C* DESCRIBED IN CHAPTER II. C* C+ PROGRAM EXECUTION REQUIRES 37K AND 120 SEC TO COMPUTE C# OUTPUT RATES FOR 20 TIMES AFTER FISSION. C+

PROGRAM GAMA(INPUT, OUTPUT, TAPE5, PL OT)

DOUBLE PRECISION GGTT (20,50),GGT (20) DIMENSION TA (52),YCOMP(7),FPKT (7),YFF (123,7),FF0(123), 2NID (123),GGTF(52),N(3),NP(3),NPC(3),NPO(3),NBP(3,3), 3EF(3,3),DC(10,3),GG(20,3,3) COMMON FF01,T,NC,N,NP,NFC,NPO,NBF,BF,DC,GG,GGT COMMON/FFD/WFF,NID,FPKT

******************** PROGRAM GAMA FORMAT (15) 10 FORMAT (8510.3) 11 FORMAT (8E19.4) 20 70 FORMAT (#1*, *TOTAL GAMMA PATE*) FORMAT (+-+,+TIME AFTER BLAST+, 5X,+GAMMAS PER SEC+, 71 213X, *MEV PER SEC*, 16X, *ACTIVITY (DECAYS PER SEC) *) 72 FORMAT (+ +) FORMAT (1X, 1PE14.7, 7X, 1PD23.15, 5X, 1PD23.15, 5X, 1PD23.15) 74 FORMAT (+++,53(+++), +FISSICN FRAGMENT YIELDS+, 53(+++)) 80 FORMAT (+-+,+TOTAL NUMBER OF FISSIONS +,1PE14.7,5X, 31 2*RATIO= *,1FE14.7) FORMAT (+-+,+FF ID+,10X,+YIELD OF FF (NUMBER)+,5X, 82 2*YIELD OF FF (FRACTION CF TOTAL FISSIONS)*) FORMAT (# #) 83 FORMAT (1X, 14, 4-+, 16, +G+, 5X, 1PE14.7, 11X, F13.8) 85 FORMAT (1X, I4, +-+, 16, +++, 5X, 1FE14.7, 11X, F13.8) 87 30 FORMAT (#1+,57(+-+), +WEAFON DATA+,57(+-+)) .91 FORMAT (+-+,+TOTAL YIELD: +,1PE10.3,+ KILO TONS*) 92 FORMAT (+-+, +FUEL FRACTIONS+) FORMAT (+-+,+U235(FS)+,7X,+U238(FS)+,7X,+PU239(FS)+, 93 26X, +U235(14MEV)+, 4X, +U238(14MEV)+, 4X, +PU239(14MEV)+, 34X, + OTHER+, 8X) 94 FORMAT (1X,7(1PE10.3,5X)) FORMAT (811') 150 FORMAT (8F10.7) 151 FORMAT (4(20.13) 152 FORMAT (*1GROUP GAMMA RATES*) 200 FORMAT (+-TIME AFTER BLAST+, 3X, + +,12X,+5POUP 2+, 201 212X,*GPOUP 3*,12X,*GRCLP 4*,12X,*GRULP 5*,12X,*GPOUP 6*) FORMAT (1X, 1PE14,7,24X,5(1PD14,7,5X)) 203 FORMAT (+-TIML AFTER BLAST+,3Y,+GROUP 7+,12X,+SROUP 8+, 294 212X, *GROUP 9*, 12X, *GROUP 10*, 11X, *GROUP 11*, 11X, 3+GROUP 12+) 206 FORMAT (#-TIME AFTEP PLAST#, 3X, #5 POUP 13#, 11X, 2*GROUP 14*,11X,*GROUP 1% -,11X,*GROUP 16*,11X, 3*GROUP 17*,11X,*GPOUP 18*) 208 FORMAT (1X, 1PE14.7, 5X, 6(1F014.7, 5X)) C* C# READ IN FROGRAM CONTROL FARAMETERS. C* READ 10,NTIME

37

READ 11, (TA(I), I=1, NTIME)

PEAD 20, YIELD, (YCOMP(I), I=1,7)

```
GNE/PH/74-3
```

Ę

```
++++++++++++++ PROGRAM GAMA
                         - FAGE 3 +++++++++++++++
C+
C*
  COMPUTE THE YIELD (NUMBER OF ATOMS) OF EACH FISSION
                                           ¥
C*
  FRAGMENT PRODUCEC.
C*
                                           *
DO 25 J=1,123
    FF0(J) = 0.
    DD 25 I=1,7
    FF0(J) = FF0(J) + YFF(J, I) + YCOMP(I) + YIELD + FPKT(I)
25
C+
C*
  COMPUTE THE RATIO OF THE ACTUAL TOTAL NUMBER OF FISSION*
  FRAGMENTS (2. TIMES THE TOTAL NUMBER OF FISSIONS) TO THE*
C*
C*
  COMPUTED TCTAL NUMBER OF FISSION FRAGMENTS.
C+
FFOTOT=0.
    00 30 J=1,123
30
    FFOTOT=FFOTCT+FFO(J)
    FTOT=0.
    00 35 J=1,7
    FT OT = FTOT+YIELD*YCOMF(J) *FFKT(J)
35
    PATTO= (2.*FTOT)/FF0TOT
*****
C*
                                           *
C*
  PRINT OUT PARAMETERS DESCRIBING THE DEVICE.
                                           86
C*
•
    PPINT 90
    PRINT 91, YIELD
    PRINT 92
    PRINT 93
    PRINT 94, YCCMP(1), YCCMP(2), YCCMP(3), YCCMP(4), YCCMP(5),
   2YCOMP(b) \cdot YCOMP(7)
50
    PRINT 81, FTOT, PATIO
```

1

*************** PROGRAM GAMA PAGE 4 +++++++++++ C* A LIST INCLUDING FACH FISSION FRAGMENT INDEX NUMBER, C# FISSION FRAGMENT IDENTIFICATION (ATOMIC NUMBER, MASS C+ NUMPER, AND STATE), DEVICE YIELD OF THAT FRAGMENT C# C+ (NUMBER OF ATOMS) AND FRACTIONAL YIELD IS PRINTED OUT. C* PRINT 80 PRINT 82 PRINT 83 **DO** 84 I=1,123 PC = (FF0(I)/FT0T) + 1IF (I .EQ. 33) GO TO 86 IF (I .EQ. 37) GO TO 86 IF (I .EQ. 40) GO TO 86 IF (I .EG. 46) GO TO 86 IF (I .EQ. >3) GO TO 86 IF (I .EQ. 57) GO TO 8E IF (I .EC. 90) GO TO 86 IF (I .EC. 95) GO TO 86 IF (I .EC. 109) GO TC 86 IF (I .EC. 112) GO TO 86 IF (I .EQ. 115) GO TO 86 PRINT 85, I, NID(I), FF0(I), PC GO TO 84 96 PRINT 87, I, NID(I), FF0(I), FC 84 CONTINUE C+++++ C* C# READ FISSION FRAGMENT DECAY FARAMETERS FOR A FISSION C+ FPAGMENT, COMPUTE RATE CONTFIBUTIONS OF THE FRAGMENT C# AND ADD THEM TO RUNNING TOTALS. PEPEAT FOR EACH C* FISSION FRAGMENT. REPEAT THE PROCESS FOR EACH TIME C* AFTER FISSION. NOTE---ALL INITIAL FISSION FRAGMENT C* NUMBERS APE MULTIPLIED BY RATIO SC AN ADJUSTED 100% C* FISSION YIELD COVERAGE WILL BE REFLECTED IN THE OUTPUT.* C* C*

1

******* PRCGRAM GAMA PAGE 5 ****** -**X** X

.

	D0 65 K=1,NTIME
	Τ=ΤΑ (Κ)
	D0 55 J=1,20
55	GGT(J) = 0.
	00 160 KK=1.130
	FF01=FFG(KK)*RATIO
	READ (5,150) NC, (N(I), I=1,3), (NE(I), I=1,3)
	IF (EOF(5) .NE. 0) GO TO 170
	PEAD (5,150) (N°C(I),I=1,3),(N8O(I),I=1,3)
	DO 140 J=1,NC
140	READ (5,150) (NEP(I,J),I=1,3)
	DO 141 J=1,NC
141	READ (5,151) (8F(I,J),I=1,3)
	DO 142 J=1, NC
	NN = N (J)
	DO 142 JJ=1,NN
1.42	
	DO 143 J=1,NC
	NN = N (J)
1 43	READ (5,152) (DC(I,J),I=1,NN)
	CALL BATMN
160	
170	
	D0 = 64 = 1,20
	GGTT(J,K) = GGT(J)
65	CONTINUE
	* *** ** ** ** *** *** *** *** ** ******
-	***************************************
C*	
-	PRINT THE COMPUTED RATES FOR EACH TIME AFTER FISSION.
C+	• • • • • • • • • • • • • • • • • • • •
C+++	* * * * * * * * * * * * * * * * * * * *
	- PPINT 70
	PRINT 71
	PRINT 72
	DO 73 I=1,NTIME
73	PRINT 74,TA(I),GGTT (19,I),GGTT(20,I),GGTT(1,I)
	PRINT 200
	PRINT 201

**** GAMA PAGE 6

PAGE 6 **********

	PRINT 72
	DO 202 I=1,NTIME
202	PRINT 203, TA(I), (GGTT(J,I), J=2, 6)
	PRINT 200
	PRINT 204
	PRINT 72
	DO 295 I=1,NTIME
205	PRINT 208, TA(I), (GGTT(J,I), J=7, 12)
	PRINT 200
	PRINT 206
	PRINT 72
•	DO 207 I=1, NTIHE
207	PRINT 208, TA(I), (GGTT(J,I), J=13,13)
	STOP
	END

ł.

1

(

Program GAMA Variable Definitions:

NTIME	- The number of times after fission for which results are desired.
TA(I)	- The times after fission in sec.
Yield	- Total fission yield of the device in kilo-tons TNT.
YCOMP(I)	 The fraction of the total yield from the Ith fuel. Table II lists the fuels in order, eg fission spectra U²³⁵ is fuel 1.
YFF(I,J)	- The fission yield of fragment I for the fission of fuel J.
NID(I)	- The identification (atomic number and weight) of fission fragment I.
FPKT (J)	- The number of fissions of fuel J needed for one kilo-ton of yield.
GGTT(I,J)	- The output, ie the rate I for time J after fission.

1

C* SUBROUTINE BATHN COMPUTES THE RATE CONTRIBUTIONS OF A C+ FISSION FRAGMENT AND ADDS THEM TO RUNNING TOTALS FOR C* C* THE TIME AFTEP FISSION BEING PROCESSED. C* C* THE INTIAL NUMBER OF ATOMS OF THE FRAGMENT, THE TIME AFTER FISSION, AND FRAGMENT DECAY PARAMETERS ARE THE C* INPUTS TO SUPPCUTINE BATHN. C# C* ***

SUBROUTINE BATMN

DOUBLE PRECISION GGT(20),GGS(20),GGSS(20) DIMENSION N(3),NB(3),NPC(3),DC(10,3),GG(20,10,3), 2NBO(3),NBP(3,3),FF(3,3),EX(10),C(10) COMMON FF0,T.NC.N,NB,NFC,NE0,NPF,BF,DC,GG,GGT

 CO 1 I=1,20

 1
 GGS(I)=0.

C* C* THE INPUTS ARE USED TO SET UP DECAY EQUATIONS (AS C* ILLUSTRATED BY EQUATIONS 7-10) FOR THE PARTICULAR FRAGMENT AND ITS DAUGHTERS. THE CALCULATIONS ARE THEN # C* MADE AS DESCRIPED IN CHAFTER II TO COMPUTE THE RATE C* C* CONTRIBUTIONS FOR THIS FRAGMENT. C¥ DO 200 II=1,NC N1=N(II)

N2=NP(II) N3=NPO(II) D0 4 I=1,N1 4 EX(I)=EXP(-DC(I,II)*T) D0 3 I=1,20

************************** SUBROUTINE BATMN

PAGE 2 **********

÷.

¥.

1

```
3
     GGSS(I)=0.
      00 3 K=N2,N1
      DO 9 I=1.K
     C(I)=DC(K,II) *FF0
     DO 17 M=1.N3
     N4=NBP(M,II)
      IF (K GT N4) C(I)=C(I)+FF(M,II)
      IF (K .ZQ. N4) C(I)=C(I)+FF(M,II)
 17
     CONTINUE
     IF (K .EQ. 1) GO TO 9
      00 5 J=1.K
     IF (J .EG. K) GO TO 25
     IF (J .EQ. I) GC TO 20
     C(I) = C(I) + DC(J, II) / (DC(J, II) - DC(I, II))
     GO TO 5
20
     C(I) = C(I) + DC(J,II)
      GO TO 5
25
     IF (I .EQ. K) GU TO 5
     C(I) = C(I) / (UC(J,II) - DC(I,II))
     CONTINUE
   5
9
     CONTINUE
      A= 0.
     D0 6 J=1.K
      A=A+C(J)+EX(J)
 6
      DO 7 J=1,20
7
      GGSS(J) = GGSS(J) + GG(J,K,II) + A
     CONTINUE
d.
     00 121 I=1,20
121
     GGS(I) = GGS(I) + GGSS(I)
200
     CONTINUE
C*
C#
   THE FRAGMENT PATE CONTRIEUTIONS AFE ADDED TO RUNNING
                                                        #
CF TOTALS FOR THE TIME AFTER FISSION BEING PROCESSED.
                                                        Ŧ
C*
DO 122 I=1,29
122
     GGT(I) = GGT(I) + GGS(I)
     RETURN
```

END

i

Ĺ

-

{

Subroutine BATMN Variable Definitions:

FFO	-	The initial number of atoms of the fission fragment created by the device.
Т	-	The specified time after fission (sec).
GGT(I)	-	A running total of rate I: eg GGT(I) is the total activity rate (decays/sec).
GGS(I),GGSS(I)	-	Internal subroutine summations of rate I.
NC	-	The number of chains in the decay of this fission fragment (See Appendix A).
N(I)	-	The number of radioactive members along the Ith chain.
NB(I)	-	The first member of chain I that branches.
NPC(I)	-	The chain that chain I branches off of.
NBO (I)	-	The number of branching members along chain I.
NBP(J,I)	-	The Jth member of chain I that branches.
BF(J,I)	-	The branching fraction of the Jth member of chain I that branches.
DC(J,I)		The decay constant of the Jth member of chain I (sec).
GG(K,J,I)	-	The Kth decay factor of the Jth member of chain I: eg GG $(20, 3, 2)$ would be the total gamma energy produced by one decay of the 3rd member of the 2nd chain.

i

4

..:

GNE	/PH/	174	-3
-----	------	-----	----

Vita

	Ronald B. Drinkwater was born on
[PII Redacted]	. He graduated from
	in 1960, and attended the
	USAF Academy, receiving his Bachelor of Science degree
	upon graduation in 1964. He received a commission in the
	US Air Force in 1964, attended pilot training, and spent
	8 years in various flying assignments. In 1972 he entered
	the Air Force Institute of Technology where he received a
	Master of Science degree in Nuclear Engineering.
	Permanent Mailing Address:
1	
	This thesis was typed by PII Redacted
	(<u>Fil Redacted</u>)
	46

.