AD-777 627

SCATTERING OF ELECTROMAGNETIC WAVES FROM THE TWO-DIMENSIONAL OCEAN SURFACE. I. LINEAR WAVES IN THE PRESENCE OF CURRENT

Kenneth M. Watson, et al

Physical Dynamics, Incorporated

Prepared for:

Advanced Research Projects Agency Rome Air Development Center

January 1974

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Man Date En	 lered)	
REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS
A REPORT NUMBER	GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
RADC-TR-74-42		AD 777 627
. TITLE (and Sublitie)		5. TYPE OF REPORT & PERIOD COVERED
SCATTERING OF ELECTROMAGNETIC WAVES TWO-DIMENSIONAL OCEAN SURFACE: I. I IN THE PRESENCE OF CURRENT	5 FROM THE LINEAR WAVES	6. PERFORMING ORG. REPORT NUMBER PD 73-050
Kenneth M. Watson Bruce J. West		B. CONTRACT OR GRANT NUMBER(S)
		13-JO JZ-72-C-5434
Physical Dynamics, Inc. P.O. Box 1069 Parkolov CA 94701		AREA & WORK UNIT NUMBERS
SETRETEY, CA STICE		12. REPORT DATE
ARPA/STO		Jan 1374
1400 Wilson Blvd		13. NUMBER OF PAGES
Arlington, VA 22209		26
14. MONITORING AGENCY NAME & ADDRESS(II dillerent fr RADC/OCSE	rom Controlling Office)	15. SECURITY CLASS. (of this seport)
ATTN: Leonard Strauss Griffiss AFB, NY 13441		Unclassified 154. DECLASSIFICATION DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; 7. DISTRIBUTION STATEMENT (of the obsiracy entered in the	distribution Block 20, 11 different from	unlimited.
Approved for public release; 7. DISTRIBUTION STATEMENT (of the ebetracy entered in the See 16.	distribution Block 20, 11 different fro	unlimited.
 ISTRIBUTION STATEMENT (of this Report) Approved for public release; DISTRIBUTION STATEMENT (of the obstract entered in the See 16. SUPPLEMENTARY NOTES Reproduced by NATION/ INFORMAU S Depart Spring 	distribution Block 20, 11 different fro AL TECHNICAL ATION SERVICE tment of Commerce theid VA 22151	unlimited.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; DISTRIBUTION STATEMENT (of the ebstract entered in a See 16. Supplementary notes Reproduced by NATION/ INFORMA U \$ Depart Spring KEY WORDS (Continue on reverse elde if necessary and in 	distribution Block 20, 11 different from AL TECHNICAL ATION SERVICE tment of Commerce field VA 22151 dentify by block number)	unlimited.
 Approved for public release; Approved for public release; DISTRIBUTION STATEMENT (of the obstract entered in the See 16. Supplementary notes Reproduced by NATION/ INFORMAU & Depart Spring KEY WORDS (Continue on reverse elde if necessary end to Scattering theory Wigner distribution function 	distribution Block 20, 11 different from AL TECHNICAL ATION SERVICE tment of Commerce (field VA 22151 dentify by block number)	unlimited.
 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; 7. DISTRIBUTION STATEMENT (of the ebstract entered in the See 16. d. SUPPLEMENTARY NOTES Reproduced by NATIONAL INFORMAL US Depart Spring 9. KEY WORDS (Continue on reverse elde if necessary and its Scattering theory Wigner distribution function 	distribution Block 20, 11 different from AL TECHNICAL ATION SERVICE tment of Commerce field VA 22151 dentify by block number)	unlimited.
 DISTRIBUTION STATEMENT (of this Report) Approved for public release; DISTRIBUTION STATEMENT (of the obstract entered in a See 16. Supplementary notes Reproduced by NATION/ INFORMA U S Depart Spring KEY WORDS (Continue on reverse elde if necessary and id Scattering theory Wigner distribution function ABSTRACT (Continue on reverse elde if necessary and id The scattering of electromagnet a current is present is studied. The tered by two-dimensional linear surf surface current. The surface is desci i.e., the spectral density, which ha of two dimensions on the spectral pecalculation for a Phillip's ambient 	distribution Block 20, If different from AL TECHNICAL ATION SERVICE timent of Commerce (field VA 22151 dentify by block number) tic waves from ne electromagne face gravity wa cribed in terms as finite spati erturbation is spectrum.	unlimited. m Report) the ocean surface when tic waves are singly scat- ves interacting with a of a Wigner function, al gradients. The effect explorei in a preliminary
 Approved for public release; Approved for public release; DISTRIBUTION STATEMENT (of the ebstrace entered in a See 16. SUPPLEMENTARY NOTES Reproduced by NATION/ INFORMA U S Depart Spring KEY WORDS (Continue on reverse elde II necessary and to Scattering theory Wigner distribution function ABSTRACT (Continue on reverse elde II necessary and Id The scattering of electromagnet a current is present is studied. The tered by two-dimensional linear surf surface current. The surface is descioned in the spectral density, which has of two dimensions on the spectral period calculation for a Phillip's ambient 	distribution Block 20, II different from AL TECHNICAL ATION SERVICE tment of Commerce field VA 22151 dentify by block number) tic waves from ne electromagne face gravity was cribed in terms as finite spati erturbation is spectrum.	unlimited. m Report) the ocean surface when tic waves are singly scat- ves interacting with a of a Wigner function, al gradients. The effect explorei in a preliminary

F

و الله الم يعلم المالية المحمد المعلم المحمد الم

2

ì

PD-73-050

2

25

SCATTERING OF ELECTROMAGNETIC WAVES FROM THE TWO-DIMENSIONAL OCEAN SURFACE: I. LINEAR WAVES IN THE PRESENCE OF CURRENT

Kenneth M. Watson Bruce J. West

Contractor: Physical Dynamics Incorporated Contract Number: F30602-72-C-0494 Effective Date of Contract: 1 May 1972 Contract Expiration Date: 31 December 1974 Amount of Contract: \$91,818.00 Program Code Number: 2E20

Principal Investigator: J. Alex Thomson Phone: 415 848-3062

- Project Engineer: Joseph J. Simons Phone: 315 330-3055
- Contract Engineer: Leonard Strauss Phone: 315 330-3055

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by Leonard Strauss RADC (OCSE), GAFB, NY 13441 under contract F30602-72-C-0494.

وبد هو به بنو

PUBLICATION REVIEW

.. R

i,

This technical report has been reviewed and is approved.

hauss

RADC Project Engineer

ABSTRACT

The scattering of electromagnetic waves from the ocean surface when a current is present is studied. The electromagnetic waves are singly scattered by two-dimensional linear surface gravity waves interacting with a surface current. The surface is described in terms of a Wigner function, i.e., the spectral density, which has finite spatial gradients. The effect of two dimensions on the spectral perturbation is explored in a preliminary calculation for a Phillips' ambient spectrum.

TABLE OF CONTENTS

		Page
ABS	STRACT	iii
1.	INTRODUCTION	1
2.	DESCRIPTION OF THE SCATTERING	2
3.	THE WIGNER POWER SPECTRUM OF $Z(\underline{x}, t)$ IN THE RESONANCE REGION	7
4.	THE WIGNER POWER SPECTRUM OF $Z(\mathbf{x}, t)$ OUTSIDE THE RESONANCE REGION	11
5.	SIMPLIFICATION FOR SMALL AMPLITUDE CURRENT EFFECTS	13
6.	APPLICATION TO PHILLIPS' SPECTRUM	15
ਜਤਸ	ERENCES	21

Preceding page blank

1

v

1. Introduction

In a previous paper we have reviewed the effect of surface currents in modulating the ocean surface wave spectrum¹. In this work we have restricted ourselves to the linear approximation for the surface waves. The role of nonlinear surface wave-surface wave interactions has been studied in a preliminary way elsewhere², and a code has been developed to make a more thorough study of non-linear interaction.

In this paper we use the rather simple results of III to survey qualitative features of electromagnetic wave scattering from the surface. A simple version of scattering theory will be used in which the electromagnetic wave is scattered only once. The more quantitative aspects of the scattering will be addressed in a later paper.

2. Description of the Scattering

Following Callen and Dashen³ we consider the scattering of a scalar wave field ψ by ocean surface waves. They separated the ocean surface into a long and short wavelength part; the long wavelength part having a small curvature at the ocean surface. The scattering is performed by the short wavelength surface gravity waves riding on the longer waves. In the present analysis, the long wavelength waves become the surface current. This will be discussed in the next section. For scattering an incident plane wave of wavenumber \underline{k} to a final wavenumber \underline{k}' , we have the scattered field in a simple single scattering approximation³

$$\psi_{sc} = R_0 \int_{A_0} d^2 x \ e^{i x \cdot \Delta k} \zeta(x,t) \qquad (2.1)$$

2

Here $\Delta \underline{k} \equiv \underline{k} - \underline{k}'$ is the change of wavenumber vector, R_0 is an amplitude factor, and the integral is taken over the illuminated area A_0 of the ocean. The vector \underline{x} lies in the horizontal plane of the ocean surface when no waves are present and $\zeta(\underline{x},t)$ is the vertical displacment of the surface at \underline{x} and time t due to wave motion.

We use the notation of III and write

$$\zeta(\underline{x},t) = i \left[Z(\underline{x},t) - Z^{*}(\underline{x},t) \right] / 2$$
$$= -Im \left[Z(\underline{x},t) \right]$$
(2.2)

where

$$z(\mathbf{x},t) = \sum_{\underline{k}} e^{i\underline{k}\cdot\mathbf{x}} a(\underline{k}) . \qquad (2.3)$$

Equation (2.3) provides a Fourier representation of Z in an assumed large area A_0 of the ocean and the Fourier coefficients $a(\underline{k})$ are functions of time.

As is customary in changing from "box" or discrete to "continuum" normalization, we may replace the sum over discrete \underline{k} by an integral over continuous \underline{k} with the substitution

$$\sum_{\underline{k}} \rightarrow \frac{A_0}{(2\pi)^2} \int d^2 k \qquad (2.4)$$

The power spectrum of $\zeta(\underline{x},t)$ at a position \underline{x} is given by the Wigner⁴ transformation

$$F(\underline{x},\underline{k}) = \frac{1}{2} \sum_{\substack{\rho \\ r}} \frac{i\rho \cdot \underline{x}}{2} \langle a \left| \underline{k} + \frac{\rho}{2} \right\rangle a^{*} \left| \underline{k} - \frac{\rho}{2} \right\rangle \rangle$$
$$= \frac{1}{2A_{0}} \int d^{2}r e^{-i\underline{r} \cdot \underline{k}} \langle z \left| \underline{x} + \frac{r}{2} \right\rangle z^{*} \left| \underline{x} - \frac{r}{2} \right\rangle \rangle, \quad (2.5)$$

where $\langle \cdots \rangle$ represents an ensemble average over many observations of the sea state.

Now,

$$\frac{1}{A_{o}}\sum_{k} e^{i\underline{k}\cdot(\underline{x}-\underline{y})} = \delta(\underline{x}-\underline{y}) , \qquad (2.6)$$

the Dirac $\hat{\circ}$ -function, and

$$\frac{1}{A_0} \int d^2 r \ e^{i (\underline{k}-\underline{p}) \cdot \underline{r}} = \delta_{\underline{k},\underline{p}} , \qquad (2.7)$$

the Kronecker $\,\delta\text{-function}$. Thus, from (2.5) we obtain

$$\sum_{\mathbf{k}} \mathbf{F}(\underline{\mathbf{x}},\underline{\mathbf{k}}) = \frac{1}{2} \langle |\mathbf{Z}(\underline{\mathbf{x}})|^2 \rangle = \langle \zeta^2(\underline{\mathbf{x}}) \rangle , \qquad (2.8)$$

since we anticipate that

$$\langle a(\underline{k}) | a(\underline{p}) \rangle = \langle Z(\underline{x}) | Z(\underline{y}) \rangle = 0$$
, (2.9)

i.e., the phase of the complex amplitude varies so rapidly in time that its net contribution to the statistical average vanishes.

If we wish to use continuum wavenumber variables, we refer to (2.4) and define the spectral function

$$\Psi(\mathbf{x},\mathbf{k}) = \frac{\mathbf{A}_{\mathbf{0}}}{(2\pi)^2} \mathbf{F}(\mathbf{x},\mathbf{k}) \qquad (2.10)$$

:

with the normalization

$$\int d^{2}k \ \Psi(\underline{x},\underline{k}) = \langle \zeta^{2}(\underline{x}) \rangle \qquad (2.11)$$

Now, we return to Eq. (2.1) and obtain for the mean scattered power the expression

$$P = |\Psi_{sc}|^{2}$$

$$= |R_{0}|^{2} \int_{A_{0}} d^{2}x d^{2}y e^{i\Delta\underline{k}\cdot(\underline{x}-\underline{y})} \langle \zeta(\underline{x},t) \zeta^{*}(\underline{y},t) \rangle$$

$$= \frac{|R_{0}|^{2}}{4} \int_{A_{0}} d^{2}x d^{2}y e^{i\Delta\underline{k}\cdot(\underline{x}-\underline{y})} [\langle Z(\underline{x}) Z^{*}(\underline{y}) \rangle + \langle Z^{*}(\underline{x}) Z(\underline{y}) \rangle]$$

$$= \frac{|R_{0}|^{2}}{4} \int_{A_{0}} d^{2}v d^{2}r e^{-i\underline{r}\cdot\Delta\underline{k}} [\langle Z(\underline{x}+\underline{r}) Z^{*}(\underline{y}-\underline{r}) \rangle]$$

$$= \frac{|R_{0}|^{2}}{4} \int_{A_{0}} d^{2}v d^{2}r e^{-i\underline{r}\cdot\Delta\underline{k}} [\langle Z(\underline{x}+\underline{r}) \rangle]$$

$$= \frac{A|R_{0}|^{2}}{2} \int_{A_{0}} d^{2}x [F(\underline{x},\Delta\underline{k}) + F(\underline{x}, -\Delta\underline{k})]$$

$$= (2\pi)^{2} \frac{|R_{0}|^{2}}{2} \int_{A_{0}} d^{2}x [\Psi(\underline{x},\Delta\underline{k}) + \Psi(\underline{x}, -\Delta\underline{k})] \cdot (2.12)$$

1

i.

When the illuminated area A_0 is sufficiently small that Ψ is nearly constant over that area, we have

$$P \cong (2\pi)^2 A_0 |R_0|^2 \left[\Psi(\underline{x}_0, \Delta \underline{k}) + \Psi(\underline{x}_0, -\Delta \underline{k}) \right]$$
(2.13)

5

· · · · · .

where \underline{x}_{0} lies within the illuminated area. To observe $\Psi(\underline{x}_{0}, \Delta \underline{k})$ or $\Psi(\underline{x}_{0}, -\Delta \underline{k})$ individually, it is necessary to measure the Doppler shift. For backscatter, for example, a downshift in frequency will be associated with $\Psi(\underline{x}_{0}, \Delta \underline{k})$ and a shift up for $\Psi(\underline{x}_{0}, -\Delta \underline{k})$.

It is seen from Eqs. (2.12) and (2.13) that the [.] basic requirement for evaluating the scattered energy from the ocean surface requires the expressions for 2 obtained in III to calculate Y.

3. The Wigner Power Spectrum of Z(x,t) in the Resonance Region

In III we assumed the interaction of the surface gravity waves with the prescribed surface current to be "turned on" at time t = 0. The expression obtained for z was of the form

$$Z(\underline{x},t) = \sum_{\underline{k}} e^{\underline{i}\underline{k}\cdot\underline{x}} A(\underline{k}) G_{\underline{k}} (\underline{x},t) , \qquad (3.1)$$

where $G_k(x, 0) = 1$. The quantities A(k) thus correspond to the a(k) of Eq. (2.3) when there is no surface current. The "ambient" power spectrum, corresponding to the absence of a surface current, is then

or

$$\Psi_{a}(\underline{x},\underline{k}) = \frac{A_{o}}{(2\pi)^{2}} F_{a}(\underline{x},\underline{k}) \qquad (3.3)$$

Ņ

1

í,

When the ambient wave spectrum has a negligible spatial variation, we have

$$\langle A(\underline{k}) A^{*}(\underline{\ell}) \rangle = \langle |A(\underline{k})|^{2} \rangle \delta_{\underline{k},\underline{\ell}}$$

and

$$F_{a}(\underline{x},\underline{k}) \equiv F_{a}(\underline{k}) = \frac{1}{2} \langle |A(\underline{k})|^{2} \rangle \qquad (3.4)$$

Continuing to follow III, we suppose the surface current to be sinusoidal, with wavenumber K and phase velocity c_I , and to have the form

$$\underline{U}(\xi) = \hat{\underline{i}} U(\xi) = \hat{\underline{i}} U_0 \cos(K\xi) , \qquad (3.5)$$

where

$$\xi = x - c_{T} t$$
 (2.6)

The modulation function G_k was modelled for the "resonance region" in III as follows. First, the resonance wavenumber k_r is determined by the condition

$$c_{I} - c_{q}(k_{r}) \cos\theta_{r} = 0 , \qquad (3.7)$$

where $c_{g}(k_{r}) = (g/k_{r})^{\frac{1}{2}}/2$ and $\cos\theta_{r} = k_{r} \cdot \hat{i}/k$. The resonance region was described as extending over a range

$$\Delta k = K S^{\frac{1}{2}} ,$$

$$S = 2 \left(\frac{k_r}{K}\right)^2 \frac{U_o}{c_1 (3 \cos^2 \theta - 2)} , \qquad (3.8)$$

about k_r.

In this region we use Eq. (4.42) of III to write

Y

file and the state

٤,

-7

1.11.2

, elserts to

4

という いいい

$$\begin{split} \mathbf{G}_{\underline{k}} &= \exp\left[-i\underline{k}\cdot\underline{y}\left(\xi\right)t\right]\hat{\mathbf{G}} \quad , \\ \hat{\mathbf{G}} &\cong \left[1 + \left(\frac{\mathbf{U}_{0}Kt}{2}\right)\left(1 + \frac{1}{2}\cos^{2}\theta\right)\sin\left(K\xi\right)\right. \\ &+ \left(\mathbf{U}_{0}kt/2\right)^{2}\cos\left(K\xi\right)\left(1 - t/\tau_{p}\right)^{2}/S \\ &+ \left(\frac{t}{\tau_{p}}\right)^{4}\cdot\frac{\sin\left[2s^{1/8}\sin\left(K\xi\right)\right]}{\sin\left(K\xi\right)}\right] \quad , \quad t < \tau_{p} \quad . \quad (3.9) \end{split}$$

and

F

$$\tau_{\rm p} = \frac{\pi}{2} \, {\rm s}^{\frac{1}{2}} / {\rm U_0 k_{\rm r}} \qquad (3.10)$$

If we substitute (3.9) into (3.1) we obtain in a straightforward way

$$\langle z \left(\underline{x} + \frac{r}{2} \right) z^{*} \left(\underline{x} - \frac{r}{2} \right) \rangle \cong \sum_{\underline{P}} \sum_{\underline{P}} e^{i\underline{\rho} \cdot \underline{x}} e^{i\underline{P} \cdot \underline{r}}$$

$$\times \langle A \left(\underline{P} + \frac{\rho}{2} \right) A^{*} \left(\underline{P} - \frac{\rho}{2} \right) \rangle$$

$$\times \exp \left[2it \underline{P} \cdot \underline{U}_{0} \sin (K\xi) \sin \left(\underline{K} \cdot \frac{r}{2} \right) \right]$$

$$\times \exp \left(-i\underline{\rho} \cdot \underline{U}t \right) |\hat{G}|^{2} , \qquad (3.11)$$

where $\underline{K} = K\hat{\underline{i}}$ and $\underline{U}_{0} = U_{0}\hat{\underline{i}}$. The relation

$$e^{iz \sin\theta} = \sum_{\nu=-\infty}^{\infty} e^{\nu i\theta} J_{\nu}(z)$$

where $J_{v}(z)$ is a Bessel function of the first kind of order v, in conjunction with Eq. (2.5) allows us to write the spectral density as

$$F(\underline{x},\underline{k}) = \sum_{\nu=-\infty}^{\infty} F_{a}\left((\underline{x}-\underline{v}t), \underline{k}-\frac{\nu}{2}\underline{x}\right)$$
$$\times J_{\nu}\left[2t\left(\underline{k}-\frac{\nu}{2}\underline{x}\right)\cdot\underline{v}_{O}\sin(K\xi)\right] |\hat{G}|^{2} \qquad (3.12)$$

Ķ

F

4. The Wigner Power Spectrum of Z(x,t) Outside the Resonance Region

We use the expressions (3.8) to specify the nonresonant region by the condition that

$$\frac{U_{o}}{(c_{I} - c_{g} \cos \theta)} << \left(\frac{U_{o}}{c_{I}}\right)^{\frac{1}{2}} , \qquad (4.1)$$

where now $c_g(k) = (g/k)^{\frac{1}{2}}/2$ and $\cos\theta = k \cdot i/k$. Here we may use the WKB approximation to evaluate G_k in Eq. (3.1). From Eqs. (5.4), (5.7), and (5.9) of III we obtain

$$G_{\underline{k}} = \exp\left[\frac{i\underline{k}\cdot\underline{U}_{O}\sin(K\xi)}{K(c_{I}-c_{g}\cos\theta)}\right]\hat{G} ,$$

$$\hat{G} = 1 + U \cos\theta \left(c_{I}^{-2}c_{g} \cos\theta + 2c_{g} \sin^{2}\theta\right) / \left[4 \left(c_{I}^{-}c_{g} \cos\theta\right)^{2}\right]$$

$$(4.2)$$

S,

Ņ

Evaluation of $F(\underline{x},\underline{k})$ now leads to the expression

F

$$F(\mathbf{x}, \underline{k}) \cong \sum_{\mathcal{V}=-\infty}^{\infty} F_{a} \left[\underbrace{\mathbf{x}}_{\mathcal{L}} + \underbrace{\mathbf{h}}_{\mathcal{L}} \sin(\mathbf{K}\xi), \underbrace{\mathbf{k}}_{\mathcal{L}} - \underbrace{\mathbf{v}}_{\mathcal{L}} \underbrace{\mathbf{K}}_{\mathcal{L}} \right]$$

$$\times J_{\mathcal{V}} \left(\frac{2\left[\underbrace{\mathbf{k}}_{\mathcal{L}} - \underbrace{\mathbf{v}}_{\mathcal{L}} \underbrace{\mathbf{K}}_{\mathcal{L}} \right] \cdot \underbrace{\mathbf{U}}_{\mathcal{L}}}{\mathbf{K} \left[c_{\mathbf{I}} - c_{\mathbf{g}} \left(|\underbrace{\mathbf{k}}_{\mathcal{L}} - \underbrace{\mathbf{v}}_{\mathcal{L}} \underbrace{\mathbf{K}}_{\mathcal{L}} \right) \cos \theta \right]} \right) |\widehat{\mathbf{G}}|^{2} \quad (4.3)$$

Here we have evaluated G at the wavenumber \underline{k} , a seemingly adequate approximation. The quantity <u>h</u> in Eq. (4.3) is

$$\underline{h} = \overline{V_{\underline{k}}} \left[\frac{\underbrace{k \cdot \underline{U}_{0}}}{K(c_{\underline{I}} - c_{\underline{g}} \cos \theta)} \right]$$
$$= \frac{U_{0}}{K(c_{\underline{I}} - c_{\underline{g}} \cos \theta)^{2}} \left[c_{\underline{i}} - \frac{3}{2} \left(\frac{\underline{k}}{\underline{k}} \right) c_{\underline{g}} \cos^{2} \theta \right] \quad . \quad (4.4)$$

For wavelengths $2\pi/k$ much less than the wavelength at which resonance can occur, there is another contribution to (4.3) due to interaction with waves of wavenumber <u>L</u> near resonance. In this case, Eq. (4.3) can be used, but with \hat{G} given by Eq. (5.15) of III:

$$|\hat{\mathbf{G}}|^{2} \cong 1 + \frac{U\cos\theta}{2c_{I}} + \int d^{2}\mathbf{L} \Psi_{a}(\underline{\mathbf{L}}) \frac{\mathbf{L}^{2}}{2} (\hat{\underline{\mathbf{k}}} \cdot \hat{\underline{\mathbf{L}}}) \operatorname{Re}(\mathbf{G}_{\underline{\mathbf{L}}} - 1) , \quad \mathbf{k} >> \mathbf{L}. \quad (4.5)$$

Ņ

Here we have assumed that the ambient spectral function $\Psi_a(L)$ is independent of χ , as was done in III.

5. Simplification for Small Amplitude Current Effects

At this point it is convenient to make the transformation (2.12) to the continuum power spectra $\Psi(\mathbf{x}, \mathbf{k})$ in Eqs. (3.12) and (4.3). We shall also assume that the ambient spectrum is independent of position, so

 $\Psi_{a}(\mathbf{x},\mathbf{k}) \equiv \Psi_{a}(\mathbf{k}) \quad . \tag{5.1}$

When $\frac{v}{2} |\underline{K}| \ll |\underline{k}|$ and the current is sufficiently weak, we can expand both the ambient spectra and Bessel functions in power of $\left(\frac{vK}{2}\right)$. On keeping only the lowest order and linear term, we can carry out the sum over v in closed form with the relations⁵

$$\sum_{v=-\infty}^{\infty} J_v(a) = 1$$
$$\sum_{v=-\infty}^{\infty} v J_v(a) = a$$

8

for the case corresponding to Eq. (3.12) we obtain

読

Ĩ.

$$\Psi(\underline{x},\underline{k}) = \Psi_{a}(\underline{k}) \left\{ 1 + \left(\frac{U_{o}Kt}{2}\right) \cos^{2}\theta \sin(K\xi) + \frac{1}{2} \left(U_{o}k^{\frac{1}{2}}\right)^{2} \cos(K\xi) \left(1 - \frac{t}{\tau_{p}}\right)^{2}/S + 2\left(\frac{t}{\tau_{p}}\right)^{4} \frac{\sin\left[2s^{1/8} \sin(K\xi)\right]}{\sin K\xi} \right\} - \left[k \frac{\partial \Psi_{a}(\underline{k})}{\partial k_{x}}\right] \left[tKU_{o} \sin(K\xi)\right] .$$
(5.2)

y

÷,

2

For waves far from resonance, we make the corresponding approximation in Eq. (4.3) to obtain

$$\Psi(\mathbf{x}, \mathbf{k}) = \Psi_{\mathbf{a}}(\mathbf{k}) \left\{ 1 + \frac{U}{2(c_{\mathbf{I}} - c_{\mathbf{g}} \cos\theta)^{2}} \left[c_{\mathbf{I}}(\cos\theta - 2) + 2c_{\mathbf{g}} \cos\theta (1 - \cos\theta) + c_{\mathbf{g}} \cos^{3}\theta \right] \right\} - \left[k \frac{\partial \Psi_{\mathbf{a}}(\mathbf{k})}{\partial k_{\mathbf{x}}} \right] \left[\frac{U \cos\theta}{c_{\mathbf{I}} - c_{\mathbf{g}} \cos\theta} \right] .$$
(5.3)

Here $c_g = (g/k)^{\frac{k}{2}}/2$ and $\cos\theta = \hat{\underline{i}}\cdot\hat{\underline{k}}$, as before.

Finally, for wavelengths very short compared to wavelengths near resonance, we use Eq. (4.5) to obtain

$$\Psi(\underline{\mathbf{x}},\underline{\mathbf{k}}) = \Psi_{\mathbf{a}}(\underline{\mathbf{k}}) \left[1 + \frac{U}{2c_{\mathbf{I}}} (\cos\theta - 2) + \int d^{2}L \Psi_{\mathbf{a}}(\underline{\mathbf{L}}) \frac{L^{2}}{2} (\hat{\underline{\mathbf{k}}} \cdot \hat{\underline{\mathbf{L}}}) \operatorname{Re}(G_{\mathbf{L}} - 1) \right] - \left[\mathbf{k} \frac{\partial \Psi_{\mathbf{a}}(\underline{\mathbf{k}})}{\partial \mathbf{k}_{\mathbf{x}}} \right] \left[\frac{U \cos\theta}{c_{\mathbf{I}}} \right] .$$
(5.4)

6. Application to Phillips' Spectrum

As an application, we choose for ${\tt Y}_a(\underline{k})$ the spectrum from Phillips 6

 $\Psi_{a}(\underline{k}) = \frac{B}{\pi} |\underline{k}|^{-4}, \underline{k}$ within 90° of wind direction,

$$B = 0.4 \times 10^{-2}$$
 (6.1)

У

Thus

$$k \frac{\partial \Psi_{a}(\underline{k})}{\partial k_{x}} = -4 \cos \theta \Psi_{a}(\underline{k}) \qquad (6.2)$$

Our parameters are chosen to correspond to typical oceanographic conditions:

$$U_{0} = 10^{-2} \text{ m/sec}$$

$$K = 10^{-2} \text{ m}^{-1}$$

$$k_{r} = 8.66 \text{ m}^{-1}$$

$$c_{I} = 0.50 \text{ m/sec}$$

$$\theta = 20^{0}$$
(6.2)

Here k_r is the resonant wavenumber defined by $c_I = c_g \cos\theta$. The strength parameter S is

$$S = 4.609 \times 10^4$$
 (6.3)

and

$$r = \frac{2}{k_{res} U_o} = 23.09 \text{ sec}$$
 (6.4)

Rosenbluth's "pile up time" is then

$$\tau_{\rm n} = 3894 \, \, {\rm sec}$$
 (6.5)

and the extent of the resonance region [Eq. (3.8)] is

$$\Delta k = KS^{\frac{1}{2}} = 2.147 \text{ m}^{-1} \qquad (6.6)$$

For the spectrum (6.1) the term involving an integral over L in Eq. (5.4) is negligible compared with the other two. In Eqs. (5.2), (5.3) and (5.4) the term involving $k \frac{\partial \Psi_a}{\partial k_x}$ appears to dominate [except for t >> τ_r in Eq. (5.2)]. This was pointed out by Milder⁷ in his discussion of spectral perturbations. For a spectrum of the form k^p the relative contribution of the first and last terms in Eq. (5.4) is approximately $\frac{1}{2p}$, which in two dimensions is .125.

For the parameters given by Eqs. (6.2) - (6.6), Eq. (5.7) becomes, for an adverse current,

$$\Psi(\underline{\mathbf{x}},\underline{\mathbf{k}}) = \Psi_{a}(\underline{\mathbf{k}}) \left\{ 1 - .01 \left(\frac{t}{\tau_{r}}\right) \operatorname{sinK}\xi - 4.34 \times 10^{-5} \left(\frac{t}{\tau_{r}}\right)^{2} \left(1 - \frac{t}{\tau_{p}}\right)^{2} \operatorname{cosK}\xi \right\}$$

(6.7)

Я

The term linear in t above results primarily from the spectral gradient term, i.e., 90% of its value.

To illustrate the spectral perturbation in the regions away from resonance, we graph Eq. (5.3) in Figure 1 excluding the interval Δk about k_r . It is evident that above the maxima of the surface current $(\xi = 0)$, the longer waves are enhanced and the shorter waves suppressed. The magnitude of the perturbation is found to increase as one goes to smaller angles. At $\theta = 0^{\circ}$, the perturbation extremes are in substantial agreement with previous calculations^{8,9}.

The width of the resonant region in Figure 1 is given by

$$\Delta k = KS^{\frac{1}{2}}$$

so that using Eq. (3.8) with the parameters we have been discussing,

$$\frac{\Delta k}{k_r} = \frac{.1155}{\sqrt{\cos^2 \theta - .666}}$$
(6.9)

which is plotted in Figure 2. We see from the slow rise of Eq. (6.9) from its minimum at $\theta = 0^{\circ}$ that the resonance width is proportional to the resonance wavenumber for

Figure 1.

 $|\theta| \leq 30^{\circ}$ to within a factor of 2. In fact, it is only within a relatively narrow angular range about $\theta = \pm 35.26^{\circ}$ that the two-dimensional effects become very strong.

Finally we assume $k >> k_{res}$ and write Eq. (5.4) as

$$\Psi(\underline{\mathbf{x}},\underline{\mathbf{k}}) \cong \Psi_{a}(\underline{\mathbf{k}}) \left[1 - 0.06 \cos(\mathbf{K}\xi)\right] . \quad (6.10)$$

Here also, the $\partial \Psi_a / \partial k_x$ term provides the dominant contribution to the modulation. The coefficient (.065) in Eq. (6.10) is seen to be the asymptote of the relative perturbation for the short waves as seen in Figure 1.

In Figure 1, we see the effect of the dependence of the resonant wavenumber (k_r) on angle, and from Eq. (6.9) the dependence of the spectral interval on angle. The solid line is the spectral perturbation for $\theta = 20^{\circ}$ and the dashed for $\theta = 0^{\circ}$. The resonance interval $(k_r \pm \Delta k/2)$ is indicated for the $\theta = 20^{\circ}$ case. The 0° perturbation is seen to be shifted to a higher wavenumber and the maximum perturbation exceeds the 20° case, although for $k \leq (k_r - \Delta k/2)_{\theta=20}^{\circ}$ the 20° perturbation exceeds the 0° perturbation. The suppression of the shorter waves, however, is greater for all wavenumbers in the 0° case.

19

•

References

- K.M. Case, K. M. Watson, and B.J. West, "Energy Spectra of the Ocean Surface: III. Modulation by a Surface Current", PD 73-047. This paper will henceforth be referred to as "III".
- K.M. Watson, B.J. West and B.I. Cohen, "Energy Spectra of the Ocean Surface: II. Interaction with Surface Current", PD 73-037.
- 3. C. Callen and R. Dashen, "Generation and Airborne Detection of Internal Waves from an Object Moving Through a Stratified Ocean, Vol. II: Supporting Analyses", Study S-334, Institute for Defense Analyses, April 1969.
- 4. E.P. Wigner, Phys. Rev. 40, 749 (1932).
- 5. A.D. Wheelon, <u>Tables of Summable Series and Integrals</u> <u>Involving Bessel Functions</u>, p. 49, Halden-Day, Inc., San Francisco, Ca. (1968).

5.

i,

- O.M. Phillips, <u>The Dynamics of the Upper Ocean</u>, p. 111 Cambridge University Press (1969).
- 7. INTENTIONALLY DELETED,

- J.A.L. Thomson and B.J. West, "interaction of Non-Saturated Surface Gravity Waves with Internal Waves", PD 72-023 (1972).
- B.J. West, J.A.L. Thomson and K.M. Watson, "Statistical Mechanics of Ocean Waves", AIAA Paper No. 74-65, to be published.

17

[୰]૯ઝ*૨*૯૪૨૬ૹઽૡૹઽૡૹઽૡૹ૱ૡૹ૱ૡૹ૱ૡૹ૱

MISSION

°¢€¢€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€

of

Rome Air Development Center

RADC is the principal AFSC organization charged with planning and executing the USAF exploratory and advanced development programs for electromagnetic intelligence techniques, reliability and compatibility techniques for electronic systems, electromagnetic transmission and reception, ground based surveillance, ground communications, information displays and information processing. This Center provides technical or management assistance in support of studies, analyses, development planning activities, acquisition, test, evaluation, modification, and operation of aerospace systems and related equipment.

 \mathcal{O}

ଡ଼ୢ୶ଡ଼ଡ଼ୄ୶ଡ଼ୄ୶ଡ଼ୄ୴ଡ଼ୄ୴ଡ଼ୄ୴ଡ଼ୄଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼

ند (،) . ند (،) .