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ABSTRACT

The scattering of electromagnetic waves from the

ocean surface when a current is present is studied. The

electromagnetic waves are singly scattered by two-dimensional

linear surface gravity waves interacting with a surface

current. The surface is described in terms of a Wigner

fuiction, i.e., the spectral density, which has finite

spatial gradients. The effect of two dimensions on the

spectral perturbation is explored in a preliminary calcu-

lation for a Phillips' ambient spectrum.
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1. Introduction

In a previous paper we have reviewed the effect of

surface currents in modulating the ocean surface wave

spectrumI . In this work we have restricted ourselves to

the linear approximation for the surface waves. The role

of nonlinear surface wave-surface wave interactions has
2

been studied in a preliminary way elsewhere , and a code

has been developed to make a more thorough study of non-

linear interaction.

In this paper we use the rather simple results of

III to survey qualitative features of electromagnetic wave

scattering from the surface. A simple version of

scattering theory will be used in which the electro-

magnetic wave is scattered only once. The more quanti-

tative aspects of the scattering will be addressed in a

later paper.



2. Description of the Scattering

Following Callen and Dashen3 we consider the

scattering of a scalar wave field * by ocean surface waves.

They separated the ocean surface into a long and short

wavelength part; the long wavelength part having a small

curvature at the ocean surface. The scattering is per-

formed by the short wavelength surface gravity waves

riding on the longer waves. In the present analysis, the

long wavelength waves become the surface current. This

will be discussed in the next section. For scattering an

incident plane wave of wavenumber k to a final wavenumber

k' we have the scattered field in a simple single scattering

approximation
3

4 sc = Ro d2 x e (xt) (2.1)

Ab

Here Ak k - k' is the change of wavenumber vector, Ro is

an amplitude factor, and the integral is taken over the

illuminated area Ao of the ocean. The vector x lies in the

horizoutal plane of the ocean surface when no waves 
are

present and (xt) is the vertical displacment of the

surface at x and time t due to wave motion.

*We use the notation of III and write
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t)= [ Xt) - Z t)]/2

S- [(x, t)] (2.2)

where

ik -x
Z(X, =  ei a k (2.3)

k

Equation (2.3) provides a Fourier representation of Z in an

assumed large area A of the ocean and the Fourier coefficientso

a(k) are functions of time.

As is customary in changing from "box" or discrete

to "continuum" normalization, we may replace the sum over

discrete k by an i-r.tegral over continuous k with the sub-

stituiion

d . fd k . (2.4)Lk (2)-f

The power spectrum of (x,t) at a position x is

given by the Wignei4 transformation

F~ ~ ip' zik +2) a$( -PF (x,k) = JA' (a k+ - >( j :

P

-ir-k Z+x - >, (2.5)
= 1 r e x "(

where <...> represents an ensemble average over many

observations of the sea state.

3

t - -~ -~--- . -
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Now,

- 6(-y) (2.6)

the Dirac 6-function, and

f i(k-)-r

d2r e = k,p (2.7)

the Kronecker 6-function. Thus, from (2.5) we obtain

F(x,k) = !z(2) >=<2 x)> (2.8)
k

since we anticipate that

<a(%) a(p)> =<Zx) Z(y)> = 0 (2.9)

i.e., the phase of the complex amplitude varies so rapidly

in time that its net contribution to the statistical

average vanishes.

If we wish to use continuum wavenumber variables,

we refer to (2.4) and define the spectral function

A
=(,k) - (x,k) ,(2.10)

(2nr)2

with the normalization

d2k T < 2)> (2.11)

4



Now, we return to Eq. (2.1) and obtain for the :ean

scattered power the expression

P = 1 sc 2

r ~ -2 tk xy) A.y )>
= %R12  2xd y e <i(Xt) ,

A0

- o 12 r ~-(XY
d2xd2y e Z(x)Z (y)>+<Z (x)Z(Y))J

4 1 I

-A0

IRO °2 C- 'r r

S r

A0

= (27r 2 E.2fd 2x[Y (xA) + ' (x, - Ak) (2.12)

When the illuminated area Ao is sufficiently small 
that

Y is nearly constant over that. area, we have

P (2r) 2 Ao IR2 [yo ,Ak) + Yo, - Ak)] (2.13)

5



where x, lies within the illuminated area. To observe

, or o,- W) individually, it is necessary to

measure the Doppler shift. For backscatter, for example,

a downshift in frequency will be associated with T A

and a shift up for T(o, - A k).

It is seen from Eqs. (2.12) and (2.13) that the

basic requirement for evaluating the scattered energy from

the ocean surface requires the expressions for Z obtained

in III to calculate T.

6



3. The Wigner Power Spectrum of Z(x,t) in the Resonance

Region

In III we assumed the interaction of the surface

gravity waves with the prescribed surface current to be

"turned on" at time t = 0. The expression obtained for

z was of the form

' ik-x
z ,t) = e A(k) Gk (x,t) , (3.1)

k

where Gk(x,o) = 1. The quantities A(k) thus correspond to

the a(k) of Eq. (2.3) when there is no surface current.

The "ambient" power spectrum, corresponding to the absence

of a surface current, is then• )-
Fa , k ) = e Atk-4  A k-:> , (3.2)

p

or

A
T( (x,k) = F (xk) (3.3)
a-- (270 2)

When the ambient wave spectrum has a negligible spatial

variation, we have

<A ) A (Z)> <IA(k)I2>6> k,k

and

7
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F a(x,k) Fa (-k) = IA(k) 2 ) . (3.4)

Continuing to follow III, we suppose the surface

current to be sinusoidal, with wavenumber K and phase

velocity cI , and to have the form

U Mc i U(M) = U Uo cos(K) (3.5)

where

X cI t . (3.6)

The modulation function Gk was modelled for the

"resonance region" in III as follows. First, the resonance

wavenumber kr is determined by the condition

cI  c (kr ) cose r = 0 , (3.7)

where c (k (g/k /2 and cOr= krO /k. The resonance

region was described as extending over a range

Ak K S

S02 0 (3.8)
k I (3 cos2 0-2)

about kr

8
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In this region we use Eq,, (4.42) of III to write

Gk = exp [-ikIU()t G

F 0.2
G 1 11+ ( + cos 0) sin (K)

+ (Uokt/2)2 cos(KE) (1 - t/- ) 2/S

4 sin[2SI / 8 sin(K )] 1
+ ( )4 sin(K ) Jt < T (3.9)

and

Tp = S S /Uok r  (3.10)

If we substitute (3.9) into (3.1) we obtain in a

straightforward way

r Z*  I r> ipx iP-r

P P

2 ~

'r1
xexp 2it PU o sin(K ) sin •

2

xexp (-ip.Ut) IGI2  (3.111

9
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where K = Ki andU = U i. The relation

-eiZ sinB =Z7 eViO Jv (z) •

where (z) is a Bessel function of the first kind of

order v, in ccnjunction with Eq. (2.5) allows us to write

the spectral density as

CO

x t K sin(K G (3.12)

10



4. The Wigner Power Spectrum of ZL,t) Outside the

Resonance ReJion

We use the expressions (3.8) to specify the non-

resonant region by the condition that

u o

c-Cg cos<) « (4.1)

g/k) c ^(1 I,

where now c (k) = (g/k) /2 and cosO = k.i/k. Here we may
g .

use the WKB approximation to evaluate Gk in Eq. (3.1). From

Eqs. (5.4), (5.7), and (5.9) of III we obtain

[ik.go sin(K)

2c cosO 2 G 2

coO(c 1 -2 g 9in 0)i'4 (.- ose)]G=1I+ U cosO (-2g cosO+2Cg s iL8~ g

(4.2)

Evaluation of F(,k) now leads to the expression

OD

FFx,k) Fa  + h sin(K), kV.- ]

~ v _I GI 2  (4.3)
K c 0 k 1 cos]

ICI - 11



Here we have evaluated G at the wavenumber J, a seemingly

adequate approximation. The quantity h in Eq. (4.3) is

K(c1 - C cos9)2  (4.4)

For wavelengths 2ir/k much less than the wavelength

at which resonance can occur, there is another contribution

to (4.3) due to interaction with waves of wavenumber L near

resonance. In this case, Eq. (4.3) can be used, but with

G given by Eq. (5.15) of III:

L U o 2 (44

IGI= 1 + 2ucs 2T T Re(GL-l) , k > L.. (4.5)

2~ c 9CSO

II

Fere we avelsuedgthat tw h alenstha sp eaenct

aa(L) is independent of c, as was done in III.c b

I

11 +U oO 212J

2 c Ir a %- 2-~. --



5. Simplification for Small Arplitude Current Effects

At this point it is convenient to iiMake the trans-

formation (2.12) to the continuum power spectra Tk

in Eqs. (3.. 2) and (4.3). We shall also assume that the

ambient spectrum is independent of position, so

a ak) Ta  
(5.1)

Whea Y LI << Ikj and the current is sufficiently weak, we

can expand both the ambient spectra and Bessel functions in

power of (2). On keeping only the lowest order and linear

term, we can carry out the sum over v in closed form with

the relations
5

J (a) = 1

'J (a) = a

2or the case corresponding to Eq. (3.12) we obtain

13



a= a(k)(1 + UKt) cos 2 esin(K )

+ (UoJ~kt) cos (K ) 1- 2S

+ 2 ~4 s2 /8 sin (Kg)]-

dt-sinKt,

- [k 'aBk )] [tu sin (K)] (5.2)

For waves far from resonance, we make the corres-

ponding approximation in Eq. (4.3) to obtain

a(x'k = Ta(k) fl+ 2(cICOU se) 2 [cI(cosO2)

+ 2 Cg cose (l-cose) + Cg Cos3oJ }
I k .T k x  c Cc ase (5 .3 )

Here cg (g/k)/2 and cose = i.), as before.

Finally, for wavelengths very short compared to

wavelengths near resonance, we use Eq. (4.5) to obtain

[UT'(x,k) = ' a (k) 1 + (cose-2)

a-. 2c I

+ d 2L2 (A A

+ 2L Ta(L) _ k.L) Re(GL-1)

- k ''a U case] (5.4)
- kx  c I

14



6. Application to Phillips' Spectrum

As an application, we choose for 7 a W the

spectrum from Phillips
6

a(k) = Ik -4, k within 900 of wind direction,

B = 0.4x10- 2 . (6.1)

Thus

k akx  -4 cosO T )  (6.2)

Our parameters are chosen to correspond to typical

oceanographic conditions:

-2
Uo = 10 m/sec

K = 10 - 2 m-1

k= 8.66mr

cI = 0.50 m/sec

o = 200 (6.2)

Here kr is the resonant wavenumber defined by cI = C cosO.

The strength parameter S is

15



rV

S = 4.609xi04 (6.3)

and
Tr 2 Uo -23.09 sec . (6.4)

res o

Rosenbluth's "pile up time" is then

Tp= 3894 sec (6.5)

and the extent of the resonance region [Eq. (3.8)] is

Ak = KS = 2.147 m-  . (6.6)

For the spectrum (6.1) the term involving an integral

over L in Eq. (5.4) is negligible compared with the other

two. in Eqs. (5.2), (5.3) and (5.4) the term involving

k -a appears to dominate except for t >> T in Eq. (5.2)].

This was pointed out by Milder in his discussion of spectral

perturbations. For a spectrum of the form kP the relative

contribution of the first and last terms in Eq. (5.4) is

approximately T , which in two dimensions is .125.

For the parameters given by Eqs. (6.2) - (6.6),

Eq. (5.7) becomes, for an adverse current,

=(xk Ta ~ 1 - .01 QT sinK - 4.4x 5_(_)2(1__)2cosKJ
a (,k T rr Tp

(6.7)

16



The term linear in t above results primarily from the

spectral gradient term, i.e., 90% of its value.

To illustrate the spectral perturbation in the

regions away from resonance, we graph Eq. (5.3) in

Figure 1 excluding the interval Ak about k . It isr

evident that above the maxima of the surface current

(E = 0), the longer waves are enhanced and the shorter

waves suppressed. The magnitude of the perturbation is

found to increase as one goes to smaller angles. At

o = 00, the perturbation extremes are in substantial
8,9

agreement with previous calculations

The width of the resonant region in Figure 1 is

given by

Ak = KS

so that using Eq. (3.8) with the parameters we have been

discussing,

Ak .1155-- = " (6 .9)
kr2

krcos2 -.666

which is plotted in Figure 2. We see from the slow rise

of Eq. (6.9) from its minimum at 8 = 00 that the resonance

width is proportional to the resonance wavenumber for

17
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lel 300 to within a factor of 2. In fact, it is only

within a relatively narrow angular range about

6 = ± 35.260 that the two-dimensional effects become 
very

strong.

Finally we assume k >> kres and write Eq. (5.4) as

T [ - 0.06 cos(K)6.)

Here also, the a/3 x term provides the dominant contri-

bution to the modulation. The coefficient (.065) in

Eq. (6.10) is seen to be the asymptote of the relative 
per-

turbation for the short waves as seen in Figure 1.

in Figure 1, we see the effect of the dependence of

the resonant wavenumber (kr) on angle, and from Eq. (6.9)

the dependence of the spectral interval on angle. The

solid line is the spectral perturbation for 9 = 200 and

the dashed for 0 = 0° . The resonance interval (kr ± Ak/2)

is indicated for the e = 200 case. The 00 perturbation

is seen to be shifted to a higher wavenumber and the

maximum perturbation exceeds the 200 case, although for

k ! (kr - Ak/2)8200 the 200 perturbation exceeds the 00

perturbation. The suppression of the shorter waves, how-

0
ever, is greater for all wavenumbers in the 0 case.

19
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