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ABSTRACT 

This note presents a tutorial survey of the mathematics that is used in the 
study of linear predictive filtering as applied to the analysis and synthesis of 
speech.   Speech is modelled as the output of an all-pole filter that is driven bv 
either a periodic pulse train or white noise.   A minimum-mean-squared-error 
technique for estimating the coefficients of this filter from speech data is 
presented.   This technique leads to a set of equations for the coefficient 
estimates which can be solved by a computationally efficient recursive technique 
known as Levinson's method. 

The filter derived by the above mentioned technique can be realized by 
any standard technique; however, a particularly interesting realization is in 
terms of a digital simulation of a non-uniform acoustic tube.   It is shown 
tha: any stable all-pole filter can be realized as an acoustic tube and, moreover, 
that the Levlnson recursion produces as a by-product exactly the reflection 
coefficients needed for such a realization. 

The report concludes by showing how the classical theory of orthogonal 
polynomials can be applied to the speech analysis/synthesis problem and used 
to derive many of the results obtained above by other means. 

Accepted for the Air Force 
Eugene C. Raahe. Lt. Col.. USAF 
Chief, BSD Lincoln Laboratory Project Office 
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INTRODUCTION 

The puqx)se of this note is to present a tutorial   discussion of the mathematical 

theory underlying the analysis and synthesis of spf .:ch by means of linear 

predictive filtering.   None of the results presented here are nev; all having 

appeared either in the literature or in research reports.   The main reason 

for the present note is to present these scattered results from a unified stand- 

point and, in some cases, to provide more detail than is available in the 

literature. 

The basic speech problem under consideration can be formulated as 

follows.   Samples of a speech waveform are modelled as being the output of 

a digital filter that has been excited by either a series of equally spaced pulses 

or white noise depending whether the speech is voiced or unvoiced.   Thi; filter 

is described by the difference equation 

This section is based on references 1, 2, ft, 8, 9. 

s     =    X   as 4-  u m 
n       ,   ,    k   n-k n yx' k=l 

where u    denotes the n    sample of the excitation and ■   denotes the n     sample of 

speech.   The filter order p is assumed to be known on the basis of other 

considerations.   The transfer function of this filter is easily seen to be H (zn 

where 
p       -k H (z)   =   1 -   I a z  K (2) 

p k=l  K 

from which it is apparent that [H (z)        is an all-pole filter.   The problem at hand 

is to use samples of real speech to arrive at an estimate of the filter coefficients 

a   and then to use these coefficients to synthesize a filter that could be 

used to regenerate the original speech. The latter operation requires a knowledge 

of whether the original speech was voiced or unvoiced but the problem of how 

to obtain this information is not the concern of the present work. 

There are many ways one could go about estimating the filter coefficients 

from the speech samples.   The particular method that will be considered in this 

ii tfc   i 
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note is a minimum-mean-squared error technique that now will be 

described. 

Select a group of N+l speech samples which, for convenience, will 

be numbered from n = 0 to n = N.   Define a sequence s   by 

speech sample 

0 

and define the mean-squared prediction error by 

2 

0<jn SN 

n <0, n >N 
(3) 

00 

e  -    Z 
n=- K k=l       k      "^ (4) 

The quantity e is a function of the assumed values for the a 's.   The 

desired estimate for the ak's is obtained by choosing those values that yield 

a minimum value of e. 

This problem can be solved by first expanding equation (4) as follows* : 

2 P P 
e  =   S s ~ - 2   2 a.   £   s  s    .   +   2   a. a     Z   s    , s 

k=l n        k      I    '    n ""' 

R   - 2   Z  a.R.   +     Z    a.a, R, 
.   k  k       k k j    k-j lt=l (5) 

where the autocorrelation function R,  is defined by 

Rk  =   R-k Z   s s    , n    n n-k (6) 

It will be convenient to rewrite equation (5) in matrix form as follows: 

(7) 

where 

e  =  R   -2aTr + arRa 

T r     » 

[ar---apl 
[»VR2"--Rpl 

(8) 

All sums without limits will henceforth be assumed to run from n ■ -«to n 

/ 
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and the correlation matrix R has as its (i,j)    element Rj-j.   Note that 

because R is a correlation matrix, it is positive definite and, therefore, 

non-sin pillar. 

Completing the square in equation (7) yields the result, 

e  -  (a - R'1 r)T R fa - R-' r) +   R   - rT R"1 r (9) 

Equation (9) may be verified simply by multiplying out the quadratic form and 

cancelling the appropriate terms.   The desired minimization can now be 

performed by noting that since R is positive definite the minimum value of the 

quadratic form in equation (9) is zero and can be achieved by setting a equal 

(P) 

to a ^' where 

ft KlL (10) 

The resulting minimum e is given by 

e    .     .e(P) mm R   - rrR'1r o    — — 

R   - rT a^ o     -    - 

R   -   E •<*) Rv o   kx]   k      k (11) 

The use of the superscript p to denote the minimizing a. 's and e   .    may ■   k mm 

s ^em peculiar but the reason for this notation will become apparent in the next 

section. 

Hqua-ion (10) expresses the solution to a set of linear equations in matrix 

notation.   In ordinary notation, the equations to which equation (10) is the 

solution are 

R: -       '■    aT'R     , ti , r:'s 
k=l        k     l-k 

i =   1,... ,p 

These equations,called the autocorrelation normal equations, will play 

a vital role in the sequel. 

i^tai^ -i— 
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THE LEVINSON RECURSION 

The autocorrelation normal equations (12) can be solved in a recursive 

way W means of a technique known as Levinson's method* To derive this 

technique, first assume that the solution to the n    order autocorrelation 

normal equations is known and denote it by a "', k = 1,.. .n.   Next, write 

st 
down the n + 1      order equations in the form 

R,      Z  a(.n+1) R, .    -   a^R.      , 
i    .,    k i-k n+1      i-n-1 =    0 

R 
rrl 

i = 1,.. .n. 

I    a(n+1)   R^,   .-a^^R 
|c=l     k n+l-k        n+1      o 

0 

(13) 

A neat way of getting at the Levinson recursion is to assume a solution to (13) 

of the form 

(n+1) .(«) 
\ 

k = 1,... n. (14) 

>+l) with a\,       to be determined later.   Substitution of (14) into the first 

n of equations (13) leads to the new equation 

1  bk Ri-k k=l K    1 K 
an+l      Ri-n-l 0 (15) 

th 

i = 1,.. .n. 

Motivated by the fact that equations (15) look very much like the nl" order 

autocorrelation normal equations, the change of variable j =n+l-i is made with 

the result 

.(n+D a.x"'' R.   -    2   b.    R. . n+1     j       .   ,    k     j-fk-n-1 0 
(16) 

j   ■   1,...n. 

Next, the change of variable C = n + 1 - k  is made and (16) becomes 

a(n+l) 
n+1 R. 

J Lb^-' Ri-f o (17) 

j -- I, ... n. 

rti 
Since, equations (17) are a scaled version of the n    order autocorrelation normal 

equations their solution is evidently given by. 

See reference 7. 
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b -  a(n+I>  a(
n) /,     , nfl-J       an+l     af        '      t 'l,..,n. (is) 

and, therefore 

>+l)      =       a(n)       a(i>fl)   (n) 
k k n+1       rHl-k 

It only remains to see if a value of ajjj1) can be found such that 

the last remaining equation in the set (13) can be satisfied.   Using (19). 

this equation now reads, 

(19) 

Rn+1 r       a(n+1)  a(n)        |   R .   >+) 
n+l-kj     r ^       \ Vl      Vl-kJ   Vl-k   -   an+i  '  Ro    =  0 

(20) 

This equation can be solved for a <n+1>     with the result. 

11 /     X 

a'-1'»   K     .       R-"   "£,VVl.l, n+1 n  ?-l  
n    / \ 

R -    Z  a^R^ 0     ^, k     k 
k"1 (21) 

This result is meaningful as long as the denominator is not zero; however, 

the denominator is exactly equal to the minimum mean squared error for the 

n    stage of the process, e n) as given by equation (11).  However, c(n) can never 

be zero, for if it were, it would follow that sn =     "     a.s    , for all n.   Since s    =0 
k = 1 " 

for n^n, this equation implies that s   = 0 for all n.   Since this case never arises 

in practice, it follows that equation (21)is always meaningtul. 

The only ingredient missing to set this recursive process in motion is 

a solution to the first order   ystem and this can be written down by inspection 

of (12) as 

n\ „     Ri a.   s  K    = -i I o       R 
0 (22) 

For later considerations, it will be useful to rewrite the Levinson recursion 

in terms of the inverse filter transfer function H^z) instead of in terms of the 

coefficients •<■' as given by Rations (19) and (21).   This recursion is easily 

  

J^. 



^r 
^ 

seen ro he givon liy. 

iin+1(/.)    iin(z) - Kn/-(n+1) ly«-1) (23) 

wirli K   lK-in>i; ttutormllKXi I"' the K.'s via equation (21).   The initial condition 

lor {2:\) i« Kiv*-'11 ^V 
R|      -1 

o 
(24) 

It is evident from equation (22) thai   K    <- 1 and it turns out that this 

is true for    K for all n.   Since this fact will be vital In the sequel h .vill he proved 

now. 

To this end. it will be necessary to rewrite equation (21)in the /-transfomi 

domain by making use of the easily verified identity. 

I 

R. X    s   s    . 
k n      ii   n-k 

"     e-^kf|s(e^^   I      «If r e-'?'k,| 
-4 

where S(z) denotes the z-transfonn of the speech samples 

S(z) Z    s       z'n 

(25) 

(2ft) 

In order to simplify notation, equation (2S) will be rewritten as 

■k 
R. 

/ 
S(z) df (27) 

where the convention in   orce here and in the  sequel is that all Integrals have 

limits (-t, i) and whenever the variable z appears under an integral sign, it is 

understood to be equal to e1      .   Equation (21) which defines K   now can be 

rewritten in the form 

A 
/i 

5(z)| z-
(n+1> - i Ä-^-w 

k=l    k 
df 

n   (n) -k 
1 -   2   a.  z 

k=l    k 
df 

in " 



-^ 

/ S(z)|        z '^^H (l"1)   df 

/ 
s(z: Hn (z) df (28) 

Since the denominator of this equation is the minimum mean squared error, it 

follows that, 

M) 

M 
l )S(z) |      Hn (z)       df (29) 

A recursion for e     can easily be derived by writing 

>(n+1) * H  ,, (z)  df n+l =-    (\ S(z) 

H   (z  *).   df 
n 

(n)   -   K       f   S(z) ?   z-(n+1)H   (z"1)     df x\   J n 

.(«) K 

(30) 

where the last step follows from equation  (28). 

Since c      must always be positive, it follows from the last equation that 

<■    1   as advertised. 

As an important application of the result that j K    I <•   1, it will be shown 

that all the zeros of H (z) lie strictly inside the unit circle, which implies 

that the speech synthesis filters   JH (z) will always be stable.   The 

proof proceeds by induction by first noting that because a correlation function 

is always maximum at the origin. R, *      R , it follows that     H.fz)  as o I 

defined by equation (24), has Its zero Inside the unit circle.   Next, assume that 

n-^I Hn(z) has Its n zeros inside the unit circle. Multiplying equation (23) by ^       ana 

noting that, on the unit circle  z      H (z) I II (z    ) it follows from Roue he's 

theorem that z  ^  H   , .(z) and z       H (z)     have equal numbers of zeros n+l n 

inside the unit circle.   Since z      H (z) has n+l zeros inside the unit circle n 

the proof of the statement follows by induction. 

Reference 10, p. 116. 
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The Nonuniform Acoustic Tube 

I'igurc 1 depicts three sections of a nonuniform acoustic tube.   The 

cross-sectional area of the n'   section is A   and the length of all sections 

is A.   The forward and backward components of the volume velocity measured 

at the left-hand end of the n    section are sampled every 2A/c seconds and the 

z-transforms of these samples are denoted by Vn (z) and V   {*),   The constant 

c denotes the velocity of sound in the tube. 

The relationship between the volume velocities in the n    and nt-1 

sections can be determined by writing down the continuity equations fc ■ volume 

velocity and acoustic pressure at the boundary between the n    and n+l     sections. 

The z-transforms of the forward and backward volume velocities measured 

at the right-hand end of the n    section are given by z cVn (z) and zc Vn (z) 

respectively.   The continuity of volume velocity can now be expressed by the equation 

i«- 
Vl  i7)   -   Vl (Z)       Z     Vn <*>   -   Z   Vn (Z) (31) 

f h 
Since the acoustic impedence of the n     section is given by pc /An where p 

denotes tiie density of air, the continuity of acoustic pressure is expressed 

by the equation, 

£— \>)+ Vi(z) 
n+l 

pc 

n 

(32) 

These equations can be solved for Vn+] (z) and Vn+1 (z) with the result. 

Vn+1 (Z)        1TF- n 

vn+l (z) - TTF 

[«■*V«    (Z)    -   rnzivn   ^\ 

ivn   (Z)   1 r   z • V  (z)    +    I 
n n 

(33) 

where the reflection coefficient rp is defined by 

A   - A. i n       n+l 
An  +  An+1 

(34) 

This section is based primaiilv on reference 1. Note carefully that the numbering 
of the tube sections differs from that in ref. 1 in that n here corresponds to Wakita's 
N-n. 

/ 
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Vn + 1^ 

ln + 1 

Fig. 1.      Portion of a nonuniform acoustic tube. 
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In matrix form these equations read, 

Vn+1 (z) 
■r z     V„ (z) 

Vn+1 (Z) 

n  -i 

•- -r        z n 
V   (z) 

n 

(35) 

1 quation (35) can be Inverted easily with the result, 

1 V>) 

V   (z) 
n 

1-r 

r Vn+1   <Z) n _ ^     n+1 

r z       z 
n Vi <z> 

(36) 

These equations can be conveniently normalized by introducing the 

quantities 

ü>) 

U   (z)   - 
n 

n 
2 

V (1-r.) 
V 

i-1 (37) 

n-1 
T^   d-r.) 

in terms of which equation (36) becomes: 

• Un   <*> 

L Un   (z) r z       z 
n 

Cl (Z) 

^1  (Z) 

(38) 

The quantities U^ (z) and if (z) can be interpreted as the forward and backward 

components of volume velocity in a fictitious acoustic tube which differs 
n-1 

from the real tube only in that a gain factor      "     (1 -r.) and an overall 
1=1 

delay v T have been removed. 

Equation (38) can be used to derive a digital network whose response is the same as that 

of the acoustic tube.   To accomplish this, equation (38) is first rewritten in the 

form: 

10 
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U J ^  :    l'n &       rnl,n+l (7) 

ün (X)       z 
I 

I rnUn+l ^
)    +   Un+1   (z)l 

(39) 

The dipiral nerwork that is generated by equation (39) is shown in Figure 2. 

This network as drawn is incomplete because no termination has been specified 

thus making it impossible to compute the sequence of backward going waves. 

As an example of a termination (one that will play a role in the sequel) assume 

i!ie end of ihe tube is connected to a tube of infinite cross section and of infinite 

length i.e., free space filled with air.   This means that the final reflection coefficient 

is -1 and that there is no backward wave at the output.    The network for this 

arrangement is shown in Figure 3 with the inputs to the network being the output 

of an N-section acoustic tube. • 

The next order of business is to compute the transfer function of an 

N-scction acoustic tube.   This will be done for the tube termination depicted in 

Figure 3 which implies that U    A*)       11   (z).   Since equation (38) enables ■ out |\ 

one to recursivclv compute the /-transforms of the forward and backv/ard waves 

in the n ' section of the tube in terms of their counterparts in the n+l'    section it is 

natural to acsume a simple output /-transform and then compute the input /-transform 

Un (z) that produced this output.   If Ü       ~ 1 is assumed, then it follows that 

U , (/)       1 and Ü   (z)       -/    .   Fquation (38) is now employed N times to arrive 

at FU (/) and it follows that the tube's transfer function is 

T(z) -^     -     |  ü+
0(.) 1   ^ (40) 

Ut  (/) 

The computation just described is related to the Levinson recursion in 

a very important way.   To make this fact clear, the Levinson recursion must 

be rewritten by introducing the functions   G   (z) and G   (z) defined by 

G* (/) 

Gn(z) 

lin (z) 

-z-^IVz"1) 
(41) 

11 

-—    ■■ -' A 



"NT 
^ 

I 

0 
U 

■2 

o 

c 

M 
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Un+; &  ^   V+n V   -   rnl'n+l & 
(39) 

ü>)   =  ^('n^t^    +   Un+1   (Z)J 
The digital network that is gcneratetl by equation (3^) is shov^Ti in Figure 2, 

This network as drawn is incomplete because no termination has been specified 

thus making it impossible to compute the sequence of backward going waves. 

As an example of a termination (one that will play a role in the sequel) assume 

the end of the rube is connected to a tube of infinite cross section and of infinite 

length i.e. , free space filled with air.   This means that the final reflection coefficient 

is -1 and that there is no backward wave at the output.     The network for this 

arrangement is shown in Figure 3 with the inputs to fhe network being the output 

of an K-section acoustic tube. 

The next order of business is to compute the transfer function of an 

N-seetion acoustic tube.   This will be done for the tube termination depicted in 

Figure 3 which implies that U     (z)       ULJ (*)•   Since equation (38) enables 

one to recursively compute the z-transforms of the forward and backward waves 

in the n     section of the tube in terms of their counterparts in the n+l'    section it is 

natural to assume a simple output z-transform and then compute the input z-transform 

+ (7) U« (7) that produced this output.   If U   *     ' >s assumed, then it follows that 

U   (z)       1 and U   (z)       -z    .   Fquation (38) is now employed N times to arrive 

at UQ (z) and it follows that the tube's transfer function is 

T(z)    -.        _^!l    =     I  ^(z)  I   "» (40) 
Ü+   (z) 

The computation just described is rel-.ted to the Levinson recursion in 

a very important way.   To make this fact clear, the Levinson recursion must 

be rewritten by introducing the functions  G   (z) and G   (z) defined by 

n n (41) 

Gn(z) •z-{^l\{z'1) 

11 
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Fig. 3-      Acoustic tube terminktion. 
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In terms of tuese functions, the Lennson recursion, equation (23), can be written 

as a set of two recursions as follows: 

CW1(Z) Gn(z)   +    Kn    G;(Z) 

Gn+1 ^ 

or, in matrix form, 

-1 K    0   (z)     +      G   (z) 
n     n n 

(42) 

[   cVl (z> 1 r  ,          Kn  1 r G+(Z) i n 

. G;;+I (Z) . Kz"1   z"1 

n .    Gn(Z>. 
(43) 

The initial condition for the recursion is now 

Go(z) 

G   (z) o v ' 
-1 

(44) 

A comparison of equations (42) and (38) reveals that these two recursions 

are identical in form except that the indexing of the two are reversed, i.e., 

the acoustic tube indexing is from n -- N-l to n -= 0 but the Levinson recursion 

indexes from n    0 to n - N-l.   Moreover, comparison of equation (44) and the 

initial conditions used for computing the acoustic tube's transfer function shows 

that these are also identical.   What this all means is that an acoustic tube 

with reflection coefficients given by r.,     = K
n-i 

has a cransfer function given by 

T(z) HN     (z) 
1 

(43) 

In other words, since the Levinson recursion yields the best estimate of the filter 

inverse to the filter that produced the original speech samples, the acoustic tube 

filter discussed above has a transfer function that is an estimate of the filter 

that originally produced the speech.   Thus, this acoustic tube filter is a natural 

candidate for a filter to synthesize speech. 

14 
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Atal (reference H) has given a different derivation of the transfer function of 

a noniiniform acoustic tube.   His derivation leads to the transfer function given 

by equation (4S) however, his acoustic tube differs from the one derived above 

mainly in thai the input and output terminals are interchanged.   In other words, 

the reflection trv'ncient Kn which appears at the output end of the acoustic tube 

derived above, appears at the input end of Atal's acoustic tube.   Mathematically 

there does not seem to be any reason to choose one of these acoustic tubes over 

the other since they have identical transfer functions, however Wakita's 

tube seems more natural as a model of the vocal i rac .      ')is follows from 

the fact that Wakita's output termination is an ir finite cross-sect ion tube 

which appears correct for modelling the Interface hr- ween the lips and the 

outside world. 

It has now been demonstrated how speech data can be used to derive 

a set of filter coefficients a, 'P' and a set of reflection coefficients   K    . k n 

The former could be used in a direct-form realization of a speech synthesis 

filter whereas the latter could be used to synthesize an acoustic tube synthesis 

filter.   Which of these realizations is better is still a topic for investigation. 

For the sake of completeness, this section will conclude by showing how 

1 IIn(z) can be realized as an an arbitrary, stable all-pole filter 

acoustic tuiie. 

The basic tool for this demonstration is the so-called backward Levinson 

recursion which can be derived from the forward Levinson recursion, equation (23) 

as follows.   Solving equation (23) for H (z) yields the relation. 
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Next set z = z'   in equation (23) and solve again for  Kn Hn(z) with the 

(46) 

result: 

K   H   (z)  =  z 
n    n v ' 

(n+l) 

-1 

V'1)  -   "n+l tl> (47) 

The elimination of H (~    ) between equations (46) and (47) leads to the 
n 

desired result: 

HAZ) 
1 - K 

"n^^n^0^!^ 
(48) 

Since the constant term in H (z) is unity, it follows from equation (48) 

that 

P$    K--   -z   (n+1)  H..   (I) n+l n n+l !    z=0 (49) 

th -1 
Let H (z) denote an arbitrary N    order polynomial in z     with constant 

N 
term equal to unity.   Furthermore, assume that all the zeros of H fz) lie strictly 

z) is the transfer function of a stable, all- inside the unit circle so that V 
pole filter.   Since all the zeros of HUz) are inside the unit circle and since the 

coefficient of z"N in H (z) is the product of all the zeros of HJz), it follows that 
N n 

K    as given by equation (49) satisfies K     <l. 
N '   N' 

Assume next, that the backward Levinson recursion, equation (48), 

has been implemented n times and that   KN,_ „+1     <^ ! and that the polynomial 

HK,     , (z) has a constant term equal to unity and that all its zeros lie inside the 
N-n+l 

unit circle.   It now follows from an application of Rouche's theorem that 

R,     (Z) as given by equation (48) has all of its zeros inside the unit circle 

and. therefore, that I K.^   I <  1 •   The details of this argument will not be 

given here because they are virtually identical to those given earlier when it 
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was shown that the forward Levinson recursion leads to stable filters as long 

as the   K.  's used satisfy I K    \ <   1.   It now follows by induction that all n ^ I    n I 

the K 's produced by the backward Levinson recursion equations (4H) and (49) 

satisfy JK I ^ 1 as long as the starting polynomial 1L, (z) had all of its zeros 

inside the unit circle. 

Since it is obvious that a forward Levinson recursion using the K   's derived 

from a backward Levinson recursion will yield back the starting polynomial 

H.^z), it follows from the discussion earlier in this section that a properly 

terminated acoustic tube having these K  's as reflection coefficients will have 

a transfer function given by HN (z) 
-I It has thus been shown how an 

arbitrary, stable all-pole filter can be realized as an acoustic tube. 

The Orthogonal Polynomial Approach 

The theory that has been presented is complete in itself, however, it 

should be pointed out that the results that have been derived are often arrived at 

in the literature by a completely different path making use of the theory of polynomials 

orthogonal on the unit circle4'.   The details of this alternate approach will now 

be presented.   The first part of this section will deal exclusively with the theory 

of these polynomials with the connection to the speech problem being made later. 

This section is based on references 3,4 and S, 
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A weighting function w(z) is defined to be any function that satisfies 

w(z) > 0   on the unit circle and in addition, satisfies 

rw(z)df      >   0 (50) 

A finite or infinite set of polynomials, 

'rm (z)  =     2   a     z n = 0, I,,,. 
k=0 

(51) 

is said to be orthogonal with respect to the weighting function w(z) on the unit 

circle If 

n = 0, 1,... a)       a      > 0 ' nn 

b)       /Pn (z) ^ (Z) W(Z) df     ^   Ö nm 

(52) 

In equation ^52), the overbar denotes complex conjugation and ö the Kroneker 

delta. 

It will now be shown that, given any weighting function, there exists a set 

of polynomials satisfying conditions a) and b).   The proof will proceed by induction 

by defining. 

where 

^0<z) 

=.-/ w(z) dz 

(53) 

(54) 

The set of polynomials consisting of (T (z) alone obviously satisfies a) and b). 

Assume now that a set of N polynomials satisfying a) and b) has  been 

constructed and enlarge this set by one by defining 

%(z)    ■    A 
N N-l 

Z    a <P   (z) 
k=0     K   K 

(55) 

where A and the a. 's are to be determined, 
k 
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It follows that 

/ 
tfcjfS)*, (z)w(z)df 

A  £NOf(z)w(z)df-aJ 

H =0,...   N-l (56) 

It is n w obvious from equation (56) that condition b) will be satisfied by 

defining 

z    O 

Z  ak(Ok(z) | w(z)df 

a^   j   z'NOc (z)w(z)df 

"* (57) 

/ 
<Pn(z)  zkw(z)df    ■    0 

k = 0, 1,... n-l (58) 

Now, because there are two sets of polynomials satisfying a) and b), it follows 

that the polynomial 
k 

p(z)  = yn(z) -  Jl      (Pn  (z)  .  0 (59) 

n 

where k   and k' denote the coefficiem of z11 in o' (z) ando' (z) respectlvelr, is of nn nn'r 

degree no higher than n-l. 
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k=0 

The last equation is meaningful only if the integral appearing in it doesn't 

vanish which is always the case because it is well ki^own that the powers of z form 

a linearly independent set.   Finally, If the positive square root Is always taken 

in equation (57), it follows that condition a) Is also satisfied by the enlarged 

set of polynomials.   The proof of existence Is complete. 

Next it will be shown that a set of polynomials satisfying a) and b) 

is unique.   Assume the contrary.   Then there exist two different sets of polynomials 

<pn(z) andfp'n (z) both satisfying a) and b).   Next, note that it follows from 

condition b) that z   can be written as a linear combination of •  (z), C3      (a)... 
nv n-l 

V0 (z).   (This Is obvious for n ^ 0 and follows by a simple Induction for the other 

powers of z.) This fact in turn implies that 

^ 
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From this fact and equation (58), it follows that 

f |p(z)t        w(z)df 

k 

■/•■ 
(Z)   -  _" 9    (Z)       p(z)    w(z)df 

t      n 

(i 

and, therefore, that p(z) = 0 which implies that 

(60) 

On (z)   =  In  ^n(z) 

n 

(61) 

However, k   ^ k    because, n      n 
1 = y"|t?n(z)|2 w(z)df 

/i O     (z)|     w(z) df 
(62) 

and the uniqueness of any set of polynomials satisfying a) and b) has been 

established. 

It is now possible to establish a number of important properties of orthogonal 

polynomials.   The first of these is the fact that all the zeros of a set of polynomials 

satisfying a) and b) lie inside the unit circle.   To prove this fact, let z0 be a zero 

of o  (z); CO   (z„)  ■  0.   The polynomial C   (z) Az - zJis then of degree 
n n     0 n If 

n-1 and it follows from equation (58) that 

/vz> 
On(z) 

z - z n 
w(z) df 

Hquation ;63) can easily be rewritten in the form, 

2 

/ 
(1 - z0) 

On(z) 

z     z. 
w(z) df 

(63) 

(64) 

from which it follows that, 

...     /• 

0n(z) 

z - z. w(z) df 

/ 

0n(z) 

z - z„ w(z) df 

(65) 
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Since z = z-1, a simple application of the Schwartz inequality to equation(6.S) now 

shows that I z,. I <   1 where the strong inequality follows from the fact that 

z is not proportional to unity on the unit circle.   This proves the theorem. 

The next fact to be established provides the link between the theory 

of orthogonal polynomials and the speech problem introduced earlier.   The property 

of orthogonal polynomials that accomplishes this is embodied in the statement 

that C9 (z) minimizes the integral 

2 
f\\-'n{7.) \        w(z)df (66) 

where the minimum is tr.ken over all polynomials of the form pn(z)  -   z   + a.^^z       +...a^. 

The minimum Itself Is k     where k   denotes the coefficient of z    in VJ?). n n n 

The proof of this statement can be established by first noting that 

since zn can be written as a linear combination of^(z) , <^n.1(
7-). • •-^Q (;), 

it follows that any p (z) can be represented as 

p (z)     = I   V   ^ (z) (67) 
n k=0 

where V   - k'1 in order to force the coefficient of zn In pri(z) to be unity, 
n       n n 

Substitution of equation (67) In equation (66) yields 

? .       ,2 

/ 
,n(z)|   w(z)  df      -     J   I Vk| 

k=0 

\i kn
2 (68) 

However, the lower bound given In equation (68) can be achieved by setting Vk   -  0, 

k = 0,.. .n-l and the proof of the minimization property of orthogonal polynomials 

follows. 

The connection to the speech problem now follows by recalling that this problem 

boiled down to minimizing the mean-squared error given by equation (4),   Using Parseval's 

theorem, this equation can be rewritten In the z-transform domain with the result, 

e   ■    J \Hv(zf    I S(z|2     df (69) 
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where 

Hp(z) P -k Z    a. z 
k-1    k 

(70) 

Since   I z   I =     1   on the unit circle.minimizing the integral in equation (69) 

is the same as minimizing the integral given by 

/KVH S(z) df (71) 

But zpil (z) is a p    order polynomial with lead coefficient uni';y and it follows from 

the above minimization property of orthogonal polynomials that the minimum of 

(70) is given by k     and is achieved when 

z1   H (z) 
P 
ill 

k '  <P (z) 
P       P 

(72) 

Here, ^  (z) denotes the p    orthogonal polynomial with respect to the weighting 

function given by 

w(z) S(z) (73) 

The above argument has transformed the speech problem under consideration 

from one of minimizing a certain integral to one of finding the pn order orthogonal 

polynomial with respect to the weighting function Js(z)/     .   There exist explicit 

expressions for the polynomials orthogonal with respect to an arbitrary weighting function, 

however, their evaluation requires the computation of large determinants.   A 

computationally more attractive approach to the evaluation of the coefficients of 

o (z) is available, however, because of the existence of a recursion formula 

for the orthogonal polynomials.   The existenceof such a recursion formula should 

come as no surprise; in fact, from the discussion in the previous section, it should 

be obvious that the desired recursion must be equivalent to the Levinson recursion. 

To derive this new version of the recursion, substitute equation (72) into the Levinson 

recursion, equation (23) with the result 

"wl V, <z> = k"1 zu (z) 
n n •SA1^2'1)        <74) 
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Next the fact that kn   is the mean-squared error at the n     stage coupled with 

equation (30) yields the final recursion formula 

The Kn
,s appearing in equation (75) are still given by equation (21) where 

now 

%    f" w(z)df   . (76) 

Conclusion 

The basic mathematics relating to the linear predictive filtering approach 

to speech analysis/synthesis has now been presented.   The analysis began by 

postulating that speech is produced by exciting an all-pole filter with either a uniform 

impulse train or white noise.   A minimum mean-squared error technique for 

estimating the parameters of an all-pulse filter from a segment of speech data 

was then introduced and an explicit expression for this filter in terms of the 

speech data was d »rived. 

Next, a numerically attractive recursive technique for computing this filter 

was derived and it was shown that this filter must always be stable.   This filter 

can be realized in a variety of ways such as direct form, cascade form, and in addition, 

it was demonstrated that it also can be realized as a non-uniform acoustic tube. 

The reflection coefficients defining this tube are generated as a matter of course 

when computing the filter by means of the recursive technique just mentioned. 
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