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ABSTRACT

This note presents a tutorial survey of the mathematics that is used in the
study of linear predictive filtering as applied to the analysis and synthesis of
speech, Speech is modelled as the output of an all-pole filter that is driven bv
either a periodic pulse train or white noise. A minimum-mean-squared-error
technique for estimating the coefficients of this filter from speech data is
presented. This technique leacs to a set of equations for the coefficient
estimates which can be solved by a computationally efficient recursive technique
known as Levinson’s method,

The filter derived by the above mentioned technique can be realized by
any standard technique; however, a particularly interesting realization is in
terms of a digital simulation of a non-uniform acoustic tube. It is shown
tha: any stable all-pole filter can be realized as an acoustic tube and, moreover,
that the Levinson recursion produces as a hy-product exactly the reflection
coefficients needed for such a realization.

The report concludes by showing how the classical theory of orthogonal
polynomials can be applied to the speech analysis/synthesis problem and used
to derive many of the results obtained above by other means.

Accepted for the Air Force
Eugene C. Raabe, Lt. Col., USAF
Chicf, ESD Lincoln Laboratory Project Office




INTRODUCTION

The purpose of this note is to present a tutorial discussion of the mathematical
theory underlying the analysis and synthesis of spr2ch by means of linear
predictive filtering. None of the results presented here are new, all having
appeared either in the literature or in research reports. The main reason
for the present note is to present these scattered results from a unified stand-
point and, in some cases, to provide more detail than is available in the
literature.

The basic speech problem under consideration can be formulated as

follows." Samples of a speech waveform are modelled as being the output of
a digital filter that has been excited by either a series of equally spaced pulses
or white noise depending whether the speech is voiced or unvoiced. The filter

is described by the difference equation

P

S:x;_\S_.’.U (l)
n k=lknk n

where u denotes the nth sample of the excitation and Sh denotes the nth sample of
speech, The filter order p is assumed to be known on the basis of other

considerations. The transfer function of this filter is easily seen to he [Hp(z)\ i

where
Y ok

Hp(z) =1- kflakz (2)
from which it is apparent that IHp(z)] il is an all-pole filter. The problem at hand
is to use samples of real speech to arrive at an estimate of the filter coefficients
ak and then to use these coefficients to synthesize a filter that could be
used to regenerate the original speech. The latter operation requires a knowledge
of whether the original speech was voiced or unvoiced but the problem of how
to obtain this information is not the concern of the present work.

There are many ways one could go about estimating the filter coefficients

from the speech samples. The particular method that will be considered in this

* This section is based on references 1, 2, 6, 8, 9.




note is a minimum-mean-squared error technique that now will be

described, '

Select a group of N+1 speech samples which, for convenience, will

be numbered from n = 0 ton = N. Define a sequence S by

speech sample 0<n <N

s = (3) |
0 n<(), n>N

and define the mean-squared prediction error by

2
p

o
e = X |Is - a, s
n=-5" k=] Kk MK (4)

The quantity ¢ is a function of the assumed values for the ak's. The

desired estimate for the ak’s is ohtained by choosing those values that yield

a minimum value of e,

This problem can be solved by first expanding equation (4) as follows" :

p p
e-Esz-Z}:a}:ss + X aa X s . s .
non S % f Tnn-k . k) T Tn-kTn-j
k=1 k, j=1
R,=2 g R g R
- a + a a, ] s
o k-1 k' 'k k., i=1 k'j Tk-j 3)
where the autocorrelation function Rk is defined by
Ry = Rk = & Sn®nek (6)

It will be convenient to rewrite equation (5) in matrix form as follows:

¢c-R -2a r+a'Ra (7)

where

37 2 [a yeood ]

T

(8)
r :[RI,RZ,...RP\

* All sums without limits will henceforth be assumed to run from n = -wto n = =,




: . . oooth
and the correlation matrix R has as its (i,j) clement Rj-j. Note rhat
because R is a correlation matrix, it is positive definite and, therefore,
non-singular.

Completing the square in equation (7) yields the result,

-1 T ,-1

e-@-R'n'Ra@-Rip+r -TrR ¢ )

Equation (9) may be verified simply by multiplying out the quadratic form and
cancelling the appropriate terms., The desired minimization can now be
performed by noting that since R is positive definite the minimum value of the

quadratic form in equation (9) is zero and can be achieved by setting a equal

(p)

to a**’ where

a® - R (10)

The resulting minimum e is given by

e . = e(p) R rT R-lr
min 0o = -
R - rT a(p)
o n "
(p)
R - Za R
0 k-1 12 k (11)
The use of the superscript p to denote the minimizing ak's and € in May

s2em peculiar but the reason for this notation will become apparent in the next
, section,
Equarion (10) expresses the solution to a set of linear equations in matrix
notation. In ordinary notation, the equations to which equation (10) is the
solution are

L
- oox AP
R, o a ) 'R =0 (12)

i=1,...,p
These equations, called the autocorrelation normal equations, will play

a vital role in the sequel.




THE LEVINSON RECURSION

The autocorrelation normal equations (12) can be solved in a recursive

way ‘v means of a technique xnown as Levinson’s method.! To derive this

technique, first assume that the solution to the nth order autocorrelation |
: n :
normal equations is known and denote it by a(k ) , k=1,...n. Next, write

s . :
down the n + 1 5% order equations in the form

n
S0 ) (D) _
fim 2% Rk T fn Ry 7 0
i=1,...n. (13)
n
_ . (n+1) _ (1) -
forr 7 20 % Raeek "% Ro 7 0

A neat way of getting at the Levinson recursion is to assume a solution to (13)

of the form
n+l n
alﬁ ) = af() - bk , k=1,...n, (14)
with agril) to be determined later. Substitution of (14)into the first

n of equations (13) leads to the new equation

_ (n+]) - .
Z PRk T % Rp =0 0 (15)
i=1, n

Motivated by the fact that equations (15) look very much like tiie nth order

autocorrelation normal equations, the change of variable j =n+1-i is made with

the result

n

(n+1) . _
2 1 Rj kz=:l " Rj+k-n-l = 9 (16) .

j = 1,...n,
Next, the change of variable £ =n+ 1 - k is made and (16) becomes

(n+1) s _
1 Ry T 2 P Ry 700 (17)

j=1,.s.n,

' th .
Since, equations (17) are a scaled version of the n~ order autocorrelation normal

equations their solution is evidently given by,

[ ]
See reference 7,

=
/
P, TP S




b = a(n'H) aﬁ(")

M1-0 3 £=1,...n. (18)

and, therefore

(m+1) (n) _ _(m1) _(n)
A T 1 -k (19)

It only remains to see if a value of ag_:l’ can be found such that

the last remaining equation in the set (13) can be satisfied, Using (19),

this equation now reads,

n
. (n) _ _(n+1) (M) ., (nt1) -
Sl N E A A | Rk - s R, = 0
(20)
This equation can be solved for ang_’fl) with the result,
n
= (n)
amD s Raen T 2 ARy
ml ~ Tn =
S (n)
Ro- p) a, Rk

k=1 (21)

This result is meaningful as long as the denominator is not zero; however,

the denominator is exactly 2qual to the minimum mean squared error for the

nth stage of the process, e(") as given by equation (11). However, e(") can never

. . . n . .
be zero, for if it were, it would follow that i kzzl s i for all n. Since S, 0

for n~0, this equation implies that s = 0 for all n. Since this case never arises

in practice, it follows that equation (21)is always meaningful.,

The only ingredient missing to set this recursive process in motion is

a solution to the first order “ystem and this can be written down by inspection

of (12) as

(22)

For later considerations, it will be useful to rewrite the Levinson recursion
in terms of the inverse filter transfer function Hn(z) instead of in terms of the

coefficients a]((n) as given by equations (19) and (21). This recursion is easily




scen 1o be given by,

! v m(nt]) -1
lln_H(l.) Iln(z) l\n/. lln(Z ) (23)

with Kn being determined B0 the Rk's via cquation (21). The initial condition

for (23) is given by

R| -1

O
It is evident from cquation (22) that : .(0 < 1 and it turms out that this
Is true for Kn for all n, Sincce this fact will be vital in the sequel it will be proved
now,
To this end, it will be necessary to rewrite equatrion (21)in the z-transform

domain by making usc of the casily verified identity.

Rk % h‘n h‘n-k
1 [
/ e kf| s”™) l df (23)
i

»

where $(z) denotes the z-transform of the speech samples

S(z) T s z " (26)
n

In order to simplify notation, equation (25) will be rewritten as
-k 5
Rk / z | s(z)\ df 27)

where the convention in orce here and in the :equel is that all integrals have

limits (-2, #) and whenever the variable z appears under an integral sign, it is
2n : 2 :

understood to be equal to ej f. iquation (21) which defines Kn now can be

rewritten in the form

TS e A__.__, o




* Reference 10, p. 116.

|2 5 =
_ /|S(z)| z ™Dy @) af |

[ |se] B e (28) |

Since the denominator of this equation is the minimum mean squared error, it
follows that,
(n) ?
e = S| H () df (29)
(n)

A recursion for €' * can easily be derived by writing

c(l’H‘l) - /, S(Z)l (Z) df
/lS(z)' ,Hn () - K 2~ (1) H_ z 1) at

; e . K_ f S(z) * z'(““)Hn ey at

2
B [ N e B ] ;
n
(30)
where the last step follows from equation (28).
Since c(n) must always be positive, it follows from the last equation that

l Kn | <« 1 as advertised.

As an important application of the result that , K ' < 1, it will be shown
that all the zeros of H (7) lie strictly inside the unit circle, which implies
that the speech synthesis filters [Hn(z) l ! will always be stable, The
proof proceeds by induction by first noting that because a correlation function
is always maximum at the origin, I Rk | < RO, it follows that Hl(z) as
defined by equation (24), has its zero inside the unit circlc. Next, assume that
Hn(z) has its n zeros inside the unit circle. Multiplying equation (23) by zm'l ana
noting that, on the unit circle I zn+lHn(z)| = I Hn(z- l) ’ , it follows from Rouche’s ™

oo lHn+ 1(z) and zn+ 1Hn(z) have equal numbers of zeros

theorem that z
inside the unit circle, Since anHn(z) has n+l zeros inside the unit circle

the proof of the statement follows by induction.

e e ] ‘_A_l__.u__._.‘________*_—.._—n——_



The Nonuniform Acoustic Tube

Figure 1 depicts three sections of a nonuniform acoustic tubcf. The
cross-sectional area of the nth section is An and the length of all sections
isA. The forward and backward components of the volume velocity measured
at the left-hand end of the nth section are sampled every 2A/c seconds and the
z-transforms of these samples are denoted by V: (z) and V; (z). The constant
¢ denotes the velocity of sound in the tube.

The relationship between the volume velocities in the nth and ni-lth
sections can be determined by writing down the continuity equations fc - volume
velocity and acoustic pressure at the boundary between the nth and n+1th sections.,
The z-transforms of the forward and backward volume velocities measured
at the right-hand end of the nth section are given by z-%v: (z) and z% V;1 (2)
respectively. The continuity of volume velocity can now be expressed by the equation

Vi@ - V@) - 2t V@) - 2 V(@) (31)

Since the acoustic impedence of the nth section is given by pc /An where p
denotes the density of air, the continuity of acoustic pressure is expressed

by the equation,

pc + - . pc -+ + ¥ -
ml— Vn+](2) # Vn+1 (Z) ] I: z Vn (Z) + z Vn (Z)
(32)

These equations can be solved for V:+1 (z) and Vr-1+l (z) with the result,

4. . E
Vi, @ r-l—l [z V.o@ - x z"V (z)]

+r n
(33)

- -2 4+ -

o S, - s 7
Vn+l ) 1+rn [ " o Vn ) = 4 \n (z) l
where the reflection coefficient r, is defined by
" An ) An+1 (34)
= A
B An * Anh

*
This scction is based primaiily on reference 1. Note carefully that the numbering
of the tube scctions differs from that in ref. 1 in that n here corresponds to Wakita's
N-n,




Portion of a nonuniform acoustic tube,

Fig. 1.




In marrix form these equations read,
+ +
Vn+l (2) 3 1 rz Vn (z)
rA -
“ T (35)
n
Vn+l (z) T, z Vn (z)

l:quation (35) can be inverted casily with the result,

+ +
Vn (z) 1 rn Vn+l (z)
bt
Z
1-r (36)
- n -1 -1 =
vV (2) Tz z Vthl (2)
n

These equations can be conveniently normalized by introducing the

quantitics
n
2
R
o (1T
2
- Z -
U (2) = n-1 \Y
i m (l-ri) i
i=]
in terms of which equation (36) becomes:
+ +
u, @ 1 e, U, @
- (38)
= -1 -1 -]
Un (z) rnz z Un+l (z)

The quantities U: (z) and U; (z) can be interpreted as the forward and backward
components of volume velocity in a fictitious acoustic tube which differs
from the real tube only in that a gain factor nﬂ-‘l (1 —ri) and an overall
1=1
delay 2'32— have been removed,
Equation (38)can be used to derive a digital network whose response is the same as that

of the acoustic tube. To accomplish this, equation (38)is first rewritten in the

form:

10




-ty -
L'n-;{ (z) [n ) rn[‘n+l (z)

39)
-1

- ) + -
U () =z rU, @ + Un+l (7)

The digital network that is generated by cquation (39) is shown in Figure 2,
This network as drawn is incomplete because no termination has been specified
thus making it impossible to compute the sequence of backward going waves.
As an example of a termination (onc that will play a role in the sequel) assume
the end of the tube is connected to a tube of infinite cross section and of infinite
length i.c., free space filled with air. This means that the final reflection cocfficient
is -1 and that there is no backward wave at the output, The network for this
arrangement is shown in Figurc 3 with the inputs to the network being the output
of an N-scction acoustic tube. ¢

The next order of business is to compute the transfer function of an
N-section acoustic tube, This will be done for the tube termination depicted in

Figure 3 which implies that UOu (z) [fl: (z). Since cquation (38) enables

t
one to recursively compute the z-transforms of the forward and backward waves

in the nth section of the tube in terms of their counterparts in the n+ISt section it is
natural to assumece a simple output z-transform and then compute the input Z-transform
U; (z) that producced this output, If U(%t) = | is assumed, then it follows that

U:, (z) = 1and U}\,(z) -z"!. Equartion (38) is now employed N times to arrive

at U?; (z) and it follows that the tube's transfer function is

(z)

g t
T(z) ou
U @)

EC

The computation just described is related to the Levinson recursion in
a very important way. To make this fact clear, the Levinson recursion must

be rewritten by introducing the functions G: (z) and Gr-] (z) defined by
+ -
Gn (z) Hn (z)

(41)
o - e

11
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O A T
L‘].H_-; (/4) [n (l) rnl 0] (7.)

(39)
U@ -21ru T@ +u ; (z)]
n n n+l nt+l

The digital network that is generated by cquation (39) is shown in Figure 2,
This network as drawn is incomplete because no termination has been specified
thus making it impossible to compute the sequence of backward going waves.
As an cxample of a termination (onc that will play a role in the sequel) assume
the end of the tube is connected to a tube of infinite cross section and of infinite
length i.e., free space filled with air, This means that the final reflection coefficient
is -1 and that there is no backward wave at the output, The network for this
arrangement is shown in Figure 3 with the inputs to rhe network being the output
of an N-scction acoustic tube,

The next order of business is to compute the transfer function of an
N-section acoustic tube. This will be done for the tube termination depicted in

Figure 3 which implies that U__ () U:, (z). Since equation (38) cnables

t
onc to recursively compute the z-transforms of the forward and backward waves
in the n[ll section of the tube in terms of their counterparts in the n+l ' section it is

natural to assume a simple output z-transform and then compute the input z-transform

U'(*') (z) that produced this output, If U‘fgt) =1 is assumed, then it follows that

U:: (z) = 1 and U;\,(z) -z'l. Equation (38) is now employed N times to arrive
i

at Ug (z) and it follows that the tube's transfer function is

(z)

out
T(z) -

: : ‘ ut (2) | B (40)
0 @

The computation just described is relnted to the Levinson recursion in

a very important way. To make this fact clear, the Levinson recursion must

be rewritten by introducing the functions G'; (z) and G_ (z) defined by
+
Gn (z) ‘ Hrl (z)

(41)
Gy = 7 mPHe™h

11
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Fig.3. Acoustic tube termination.
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In terms of tinese functions, the Levinson recursion, cquation (23), can be written

as a sct of two recursions as follows:

+ + -
G z)y = G (z) + K G _(2)
n+1 n n n (42)
- '1 + - ‘
Gn+1 (z) z [ Kn Gn (z) + Gn (z) ;
or, in matrix form,
+ +
(’n+1 (z) ) 1 Kn Gn (z)
g W = (43)
Gn+1 (z) l\nz z Gn ()
1
The initial condition for the recursion is now
GZ z) = 1
(44)
G(; (z) = -z-1

A comparison of cquations (42) and (38) reveals that these two recursions
arc identical in form except that the indexing of the two are reversed, i.e.,
the acoustic tube indexing is from n = N-1 to n = 0 but the Levinson recursion
indexes from n = 0 to n = N-1, Moreover, comparison of equation (44) and the
initial conditions used for computing the acoustic tube's transfer function shows
that these are also identical. What this all means is that an acoustic tube

with reflection cocefficients given by INep © K has a transfer function given by

n-1

T@) [HN (z)] E (45)

In other words, since the Levinson recursion yields the best estimate of the filter
inverse to the filter that produced the original speech samples, the acoustic tube
filter discussed above has a transfer function that is an estimate of the filter

that originally produced the speech. Thus, this acoustic tube filter is a natural

candidate for a filter to synthesize speech.




Atal (reference 8) has given a different derivation of the rransfer function of
1 nonuniform acoustic rube. His derivation leads to rhe transfer function given
by equation (45) however, his acoustic tube differs from the one derived above
mainly in that the inpur and output terminals arc interchanged. In other words,
the reflection cecfricient K() which appears at the output end of the acoustic tube
derived above, appears at the inpur end of Aral's acoustic tube. Mathematically
there does not seem to be any reason to choose one of these acoustic tubes over

: g
the other since they have identical transfer functions, however Wakita's

tube seems more natural as a model of the vocal tract, uis follows from
the fact that Wakita's output termination is an infinit ¢ cross-section tube
which appears correct for modelling the interface v ween the lips and the

outside world,

It has now been demonstrated how speech data can be used to derive
a set of filter coefficients ak(p) and a set of reflection coefficients Kn .
The former could be used in a direct-form realization of a spcech synthesis
filter whereas the latter could be used to synthesize an acoustic tube synthesis
filter, Which of these realizations is better is still a topic for investigation.
For the sake of completeness, this section will conctude by showing how
an arbitrary, stable all-pole filter | H_(z) "1 can be realized as an
acoustic tune,

The basic tool for this demonstration is the so-called backward Levinson

recursion which can be derived from the forward Levinson recursion, equation (23)

as follows. Solving equation (23) for Hn(z) yields the relation,




H(z) = H, () + K s bl Hn(z'l) (46)

Next set z = z-1 in equation (23) and solve again for Kn Hn(z) with the

result:
C_-(n1) ol -1
Kl‘l Hn (z) = z Hn(Z ) Hn+l (z ) (47)
The elimination of Hn(u'l) between equations (46) and (47) leads to the

desired result:

H (2) - 1—?12—-— [ H,, @+ k_2™Du (z'l)] (48)
n

Since the constant term in Hn(z) is unity, it follows from equation (48)

that

(n+1)

a -z (n+1) H

nt+l n 1 (z) I
Let HN(z) denote an arbitrary Nth order polynomial in z-1 with constant

z=0 (49)

term cqual to unity. Furthermore. assume that all the zeros of H, (z) lie strictly
inside the unit circle so that HN(z) -1 is the transfer function of a stable, all-
pole filter. Since all the zeros of HN(Z) are inside the unit circle and since the
coefficient of z-N in H“(z) is the product of all the zeros of HN(Z)' it follows that

K, a5 given by cquation (49) satisfieleN| <1.

Assume next, that the backward Levinson recursion, equation (48),
has been implemented n times and that IK\]_ 1 I < 1 and that the polynomial
HN— n+l (z) has a constant term equal to unity and that all its zeros lie inside the
unit circle. It now follows from an application of Rouche’s theorem that
Hyon (z) as given by equation (48) has all of its zeros inside the unit circle
and, therefore, that, Ky-n | < 1. The details of this argument will not be

given here because they are virtually identical to those given earlier when it

16




was shown that the forward Levinson recursion leads to stable filters as long

as the Kn's used satisfy | Kn l < 1. It now follows by induction that all

the Kn 's produced by the backward Levinson recursion equations (4 8) and (49)
satisfy ,Kn | < 1 as long as the starting polynomial I-lN (z) had all of its zeros
inside the unit circle.

Since it is obvious that a forward Levinson recursion using the Kn's derived
from a backward Levinson recursion will yicld back the starting polynomial
HN(Z)’ it follows from the discussion carlier in this section that a properly
terminated acoustic tube having these K _'s as reflection coefficients will have
a transfer function given by HN (z)] -4 . It has thus been shown how an
arbitrary, stable all-pole filter can be realized as an acoustic tube.

The Orthogonal Polynomial Approach

The theory thar has been presented is complete in itself, however, it

should be pointed out that the results that have been derived arc often arrived at

in the literature by a complet ly different path making use of the theory of polynomials

orthogonal on the unit circle®, The details of this alternate approach will now
be presented. The first part of this section will deal exclusively with the theory

of these polynomials with the connection to the speech problem being made later.

M
This section is based on references 3,4 and 3.




A weighting function w(z) is defined to be any function that satisfies

w(z) > 0 on the unit circle and in addition, satisfies

[w(z) ad > 0 (50)

A finite or infinite set of polynomials,

n k |
'/‘m (z) = kZoankz , n=0,1,... (51) \

is said to be orthogonal with respect to the weighting function w(z) on the unit

circle if

a) a_ >0 = =05 lyeas
nn

(52)

b) /‘Pn (2) p_(z) wz)df =6

In equation (52), the overbar denotes complex conjugation and 6 - the Kroneker
delta,
It will now be shown that, given any weighting function, there exists a set

of polynomials satisfying conditions a) and b). The proof will proceed by induction

by defining,
-%
where
Gy ® fw(z) dz (54)
The set of polynomials consisting of mo(z‘, alone obviously satisfies a) and b). 1 ‘

Assume now that a set of N polynomials satisfying a) and b) has been
constructed and enlarge this set by one by defining
N N-1
0 N(Z) = Alz - kfo ak(f-‘k (z) (55)

where A and the ak's are to be determined.




It follows that

on2r e, (z) wz) df

Nw__
= Al Jz ﬂ(z)w(z)df-aﬂ

2 =0,... N-1 (56)
It is now obvious from equation ( 56) that condition b) will be satisfied by
defining

zN 409 (z) w(z) df

2 -%
/N N- 1 (57)
(z) w(z) df

The last equation is meaningful only if the integral appearing in it doesn't
vanish which is always the case because it is well known that the powers of z form
a linearly independent set. Finally, if the positive square root is always taken
in equation (57), it follows that condition a) is also satisfied by the enlarged
set of polynomials. The proof of existence is complete,
Next it will be shown that a set of polynomials satisfying a) and b)
is unique. Assume the contrary. Then there exist two difierent sets of polynomials
(pn(z) and cp'n (z) both satisfying a) and b). Next, note that it follows from
condition b) that z" can be written as a linear combination of‘Pn(z), wn_l(z). o
®, (z). (This is obvious for n = 0 and follows by a simple induction for the other

powers of z.) This fact in turn implies that

fwn(z) X w(z) df

k=0,1,... n~1 (58)

0

Now, because there are two sets of polynomials satisfying a) and b), it follows

that the polynomial
k

pz) = ¢ (2)- ¢ @ =0 (59)

~
=

where k_and kr'l denote the coefficient of z" in mr'1 (z) and @' (z),respectively, is of

degree no higher than n-1.
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From this fact and equation (58), it follows that |

[ lp@] % w(z) df
k

o f wn(z) - 2 ‘ﬂn (z) p(z) w(z)df (60)
k‘
=0 n
and, therefore, that p(z) = 0 which implies that

© @ =% v @ (61)

k'
n

However, k_ k;] because,

" pis f,vn (z)| 2wz df

~/‘|c‘n (z)\ 2 wiz) df

and the uniqueness of any set of polynomials satisfying a) and b) has been

(62) |

established.

1t is now possible to establish a number of important properties of orthogonal
polynomials. The first of these is the fact that all the zeros of a set of polynomials
satisfying a) and b) lic inside the unit circle. To prove this fact, let z, be a zero
of on(z); on (zO) = 0. The polynomial wn (z) Az - z&is then of degree
n-1 and it follows from equation (58) that

. © (z)
fon(z) > w(z)df = 0 (63)

Z'ZO

Equation /63) can casily be rewritten in the form,

o (z) |2
/(z-zo) :
Z Z

w(z)df = 0 (64)
from which it follows that,

0

© (2)
- /z zZ-z w(z) df
%0 © 9 7 (65)
©_(2)
. f 2| wz)df
zZ -z




Since z = z-1, a simple application of the Schwartz inequality to equation (65) now
shows that | Z0 |< 1 where the strong inequality follows from the fact that
z is not proportional to unity on the unit circle. This proves the theorem.

The next fact to be established provides the link between the theory
of orthogonal polynomials and the speech problem introduced earlier. The property
of orthogonal polynomials that accomplishes this is embodied in the statement

that on(z) minimizes the integral

2
/ | pz) | we) df (66)

where the minimum is taken over all polynomials of the form pn(z) = 2"+ an_lzn'l too.an.

The minimum itself is k;z where kn denotes the coefficient of z" in '»”n(z).
The proof of this statement can be established by first noting rhat
since z" can be written as a linear combination of " (z), ¢9n_l(z), a0 (),

it follows that any pn(z) can be represented as

n
b2 = kf.ovkwk(z) (67)

where Vn = k;]l in order to force the coefficient of z" in pn(z) to be unity.

Substitution of equation {67) in equation (66) yields

2

/ipn(z)l wz) df = k’% |Vk|2

=0
2
Z\Vnr = & (68)

However, the lower bound given in equation (68) can be achieved by setting Vk = 0,
k = 0,...n-1 and the proof of the minimization property of orthogonal polvnomials
follows.
The connection to the speech problem now follows by recalling that this problem
boiled down to minimizing the mean-squared error given by equation (4). Using Parscval's

theorem, this equation can be rewritten in the z-transform domain with the result,

e = j'Hp(zf ‘S(z‘l2 df (69)
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p o
H@ = 1 - T az k (70)
p k=1
Since |zp| = 1 on the unit circle,minimizing the integral in equation (69)

is the same as minimizing the integral given by

/lszp(z)l 2 \S(z)l df (71)

But zpllp(z) is a pth order polynomial with lead coefficient unity and it follows from
the above minimization property of orthogonal polynomials that the minimum of

(70) is given by kr_)2 and is achieved when
p B -1

z'" H (z = k z 72

o(®) p 0@ (72)

Here, ‘w‘p(z) denotes the pth orthogonal polynomial with respect to the weighting
function given hy
w@z) - | s@)| (73)

The above argument has transformed the speech problem under consideration
from onc of minimizing a certain integral to onc ¢f finding the pth order orthogonal
polynomial with respect to the weighting function ,S(z), 2 . There exist explicit
expressions for the polynomials orthogonal with respect to an arbitrary weighting function,
however, their evaluation requires the computation of large determinants, A
computationally more attractive approach to the evaluation of the coefficients of
lap(z) is available, however, because of the existence of a recursion formula
for the orthogonal polynomials, The existenceof such a recursion formula should
come as no surprise; in fact, from the discussion in the previous section, it should
be obvious that the desired recursion must be equivalent to the Levinson recursion.
To derive this new version of the recursion, substitute equation (72) into the Levinson

recursion, equation (23) with the result

-1 ] 1
m Cnt @)

-k . 1,ng (71
k kn zwn(z) Kn kn z n(z ) (74)
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2 .
Next the fact that kn is the mean-squared error at the nth stage coupled with

equation (30) yields the final recursion formula

0 @ - -K:) [zon(z) - K 2o @ (75)

ol

The Kn's appearing in equation (75) are still given by equation (21) where |

R = /z'“ w(z) df . (76)

The basic mathematics relating to the linear predictive filtering approach

now

Conclusion

to speech analysis/synthesis has now been presented. The analysis began by
postulating that speech is produced by exciting an all-pole filter with either a uniform
impulse train or white noise, A minimum mean-squared error technique for
estimating the parameters of an all-pulse filter from a segment of speech data
was then introduced and an explicit expression for this filter in terms of the
speech data was d:rived,

Next, a numerically attractive recursive technique for computing this filter
was derived and it was shown that this filter must always be stable. This filter
can be realized in a variety of ways such as direct form, cascade form, and in addition,
it was demonstrated that it also can be realized as a non-uniform acoustic tube.
The reflection coefficients defining this tube are generated as a matter of course

when computing the filter by means of the recursive technique just mentioned,
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