—

@%AD777526

|

RAE
TR-73162

TR 73162

D'I/ECEMBER
1973

Crown Copyright
1973

AR RRTERA R RA IR SARIR R AT

! w5
| Lenre 22 TED)

¢ ﬂ s et
A

b b e | | i\J(S ”7

ROYAL AIRCRAFT ESTABLISHMENT
TECHNICAL REPORT 73162

MISS DISTANCE MEASUREMENT

USING ONE CAMERA

by |
‘ TRCHNTICAL LIBRARY
A. T. Smith BLDG. 305
‘ ABFRDUEN PROVING GROUND., MD=
EAP~TL
QQ.'JNTED IN n

PROCUREMENT EXECUTIVE MINISTRY OF DEFI:N =
FARNBOROUGH HANTS | §

Best Available Copy




UDC 623,544 : 531.555 : 629.19.096.1 : 771.319 : 778.37

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 73162

Received for printing 9 October 1973

MISS DISTANCE MEASUREMENT USING ONE CAMERA
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A. T. Smith

SUMMARY

Data from one high frame speed camera on a target can give missile
trajectory and miss distance. This Report gives a theoretical solution and
indicates how it can be modified to process practical data in a computer. The

sources of error and their magnitudes are given.
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1 INTRODUCTION

Whenever a missile is fired at a target it is important during the final
stage of attack, to obtain relative trajectory and miss distance information.
At Aberporth these are either aerial or sea targets and the attacking missile is
normally sighted by one or more high speed cameras. These cameras are free
running and run nominally at one hundred frames per second. Time information
from the Range Central Timing Unit is recorded on the edge of the camera film,

so that an accurate time can be given to each frame.

. Only two types of aerial targets at present carry a camera system, these
are aircraft targets and towed targets (infra-red or radar sources towed by an
aircraft). Normally the missile is photographed by two camera packs (each pack
consisting of two cameras) one on each wing tip of the target aircraft. The data
obtained from these cameras can then be interpolated to corresponding times, to
allow a simple two camera solution] using the wing span of the aircraft as a
baseline. It has been found from experience that the extrapolation of camera

data seldom gives satisfactory results.

For aircraft targets an& 13 metres towed targets the camera packs
consist of two WRETAR Mark 3 cameras®. These cameras have a field of view of
186° and are mounted to give a complete spherical optical coverage. At least
three occasions arise on these targets when a single camera solution must give

trajectory data. These occur when
(a) a faulty camera fails to record either pictures or the timing information

(b) a camera pack 1s removed to allow additional equipment on the aircraft,

(e.g. a telemetry pack)

(c) the time interval common to both cameras for interpolating data is too
short to allow a satisfactory two camera solution over the intercept period.
Although the camera packs have full spherical coverage, on some flight paths the
missile is obscured by the aircraft, for part of the intercept, from one or
both cameras. This situation can be made worse by certain events (e.g. flash)
which results in the loss of further data. Quite often in these conditions one
or both cameras will give sufficient data for a single camera solution, given

an independent velocity estimate.

The single camera solution is considered too inaccurate for use on the

longer range, 30 metres and 61 metres, towed targets. The greater ranges
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involved, of the missile from the camera, (see section 5) and the probable

inaccuracies in the knowledge of the tow position are the main reasons for this

decision.,

The Range's sea targets were basically designed for a single camera
solution as the fields of view of the target cameras do not overlap to any
great extent, except on the largest targets. The cameras used are GW1 Mark IA
and GW2 Mark 2, and these have a field of view of 120°. This means that most

missile trials against sea targets require a single camera solutionm. .

Until recently a manual single camera solution described in a previous
Report3 has been used. This manual solution has now been superseded by a
computer solution. This Report describes the theoretical solution of the
problem and how this solution is modified for computer use in the practical

case.

2 THEORETICAL SOLUTION

To obtain a theoretical solution for trajectory data using a single
camera, certain assumptions have to be made about the trajectory during the
period of time covered by the solution. The trajectory in question is the
relative trajectory of the missile with respect to (a) the camera origin and

(b) the camera axes system. These assumptions are
n the missile flies in a straight line
(2) the velocity V of ‘the missile is a known constant.

In practice these assumptions imply that the target (and hence camera) is
also moving in a straight line at constant velocity and that the attitude of

the target is steady.

Since baéically any camera system supplies direction cosine vectors of a
trajectory with respect to the camera, the following theory is based on direc-
tion cosine vectors. For the theoretical solution, it will be assumed thét
there are no errors in the direction cosine vectors. The effect of these and

other practical errors will be discussed briefly in a later section.

The missile flies in a straight line and therefore, provided the camera
does not lie in the path of the missile the missile trajectory and the camera
origin define a unique plane in space. In addition all rays from the camera to
the missile and hence all direction cosine vectors of the missile with respect

to the camera, lie in this plane. The missile also flies at a constant velocity
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both spatially and with respect to camera axes, and therefore the distance flown
between two given time points depends only on the time difference and not on

absolute time.
Let P, = (Xi’ Yi» zi) be the position vector of the missile with respect

to the camera, at the time t. . Then a constant velocity implies that

D. . - t.
i ° t1+1 tl ?

i —_— constant ( = velocity of the missile)

[ ol
1]
]

- Eil

|2;,
2 2 2
\/{’%ﬁd R YPRNL S FIPED 7D R SN C P Zy }

see Fig.l.

2.1 Calculation of missile direction

Consider any line parallel to the missile trajectory which also lies in
the camera-trajectory plane. The length of a section of this line, formed by
two rays from the camera to the missile trajectory, depends only on the time
difference between these two rays. This follows because the missile trajectory
also has this property. Therefore the direction of the missile can be found
from just direction cosine vectors. This is achieved by finding a line in the

camera-trajectory plane with the following property:-

The direction cosine vectors from the camera should cut the line into
sections whose length depend only on the time difference between the successive

direction cosine vectors.

With reference to Fig.2 let 9& be the direction cosine vector of the

missile at time t; . Let 2., be the length of the section of a line formed by
the successive direction cosine vectors 9&+1 and gi . Then
g
S ——; = constant for a line parallel to the missile trajectory .
i+l i

A line with this property can be obtained by using the following procedure:-

Define a new system of axes X', Y', Z' such that




(a) Z' 1is in the direction of a vector perpendicular to the camera-trajectory
plane,
(b) Y' is in the direction of the first direction cosine vector -i] ,

(¢) X' is in the direction of a vector perpendicular to both the Y' and 2Z'

axes, and
(d) X', Y and Z' form a right handed triad.

Both the new X' and Y' axes lie in the camera-trajectory plane and
hence form a base for the plane. Any direction cosine vector in this plane can
now be described by the single variable

¥y -4 .
S = E——d—. (See Flg. 3)

where x and y are unit vectors along the axes X' and Y' respectively.
Note that y = Six is a line in the plane (X', Y') which lies in the same

direction as -91 and that S] = o ,

Since any line with the relevant property is required, a line of the form
y = Mx + 1

is calculated. This line intersects

y = Six
when
Six = Mx+1 ,
i.e.
- ] _ M
X = S, - X and y = 5, - M +1 .

In theory three direction cosine vectors are now required. TFor convenience let
these be the first three vectors. The line y = Mx + | intersects the lines

y = SIX’ y=8,x and y = S3x at the points

162
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1 M
o - (e e )
2° 72 82 M 82 M
and
63 )y = L ¥, 1 respectively.
3 93 §5,-M ’ § -H

See Fig.4. Then
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For the line y = Mx + 1 to have the required property

where ts t, and ty are the times of the first three direction cosine

vectors.
1 1 1 1
. Therefore — — = — — - —
(S2 M) (t2 tl) ty ~ t, (83 MoS, - )
t, -t
1 3 1 1
therefore =
32 M (tz - tl) S3 M

t, - t t, - t
therefore M (l __Z______l) = S3- S —E———]
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Hence
83(t3 - t]) - sz(t2 - t])

t3 -t

2

Note that the x and y co-ordinates of the missile in the (X', Y') plane
are both linear in time t . It is therefore possible to find a pair of

equations of the form
y = m(t - t]) + 1

and

x = n(t - t]) s

B3
M
+

instead of the single equation y = Mx + 1 . The auxiliary equation y =

then automatically has the required property.

Therefore n(t2 - t]) = X2 = 7 °
S - -
2 n
and
n(t, - t,) = x, = !
3 1 3 g [
3 n
Therefore S, = S = 1 l = !
- - ]
2 3 n t2 tl t3 t]
t, - t
3 2
therefore n =
(S2 - S3)(t2 - tl)(t3 - t])

and
S3(t3 - t]) - Sz(t2 - t])
(§) = 83)(ty - ) (k5 = ty)

In the computer program solution of the problem, the solution is simplified by

calculating m and n .

2.2 Calculation of missile trajectory

Now the trajectory of the missile has an equation of the form
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in the (X', Y') plane and the co-ordinates have equations of the form

<
L]

m(t - tl)r +r

"
Il

n(t - t])r

where m and n have already been calculated. Now in one second the missile

would have moved a distance of V wunits, assuming that time is measured in

seconds.
. Therefore r/(m2 + n2) = vV ,
therefore r = -___EJL__f_ .
/(m +n)

Therefore the x co—ordinate of the missile, in the (X', Y') plane is

ey
Y(@m® + n°)
at the time t . The corresponding y co-ordinate is

mV
/(m2 + n2)

v
/(m2 + n2)

(t - tl) +

The position vector of the missile at the time t in camera axis and origin is

therefore

A [ :
—— |n(t -t )x + {m(t - t,) + 1}y| .
/(mZ + n2) 1 1 —J
This now completes the theoretical solution since it is possible to calculate the

missile position at any given time. The calculation of the time and range of

nearest miss, and other useful parameters is given in section 4.

3 PRACTICAL SOLUTION

Considering a missile travelling at 700 m/s, with a limit of 25 g on the
lateral acceleration, it can be shown that there exists a straight line from
which the missile cannot deviate by more than 16 cm, over a pefiod of 1/10 s
(a likely maximum time for a missile to be in view). Therefore in practice, a
missile will not deviate much from the assumed model, at least while passing

the camera. This model can therefore be used as an approximation, to obtain a
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trajectory. The solution requires the velocities of the missile and the target,
which must be supplied from external sources. Due to errors introduced by the

camera system and the error of applying the model to the missile, the solution

needs to be modified in the practical case.

The following information will be assumed for the solution of a practical
situation:

(a) At least three direction cosine vectors of the missile with respect

to a camera and their corresponding times, i.e.

(ti’ gi) for i=1,2,...,r(x > 3)

where d. = (L,, m.

n. and
-1 1 i? 1) ?

(b) the relative velocity V of the missile or at least an estimate for
it.

3.1 Calculation of the camera-trajectory plane

The first stage of the computer solution is the calculation of the camera-
trajectory plane. Since the direction cosine vectors will not lie perfectly
in a common plane, the 'best' plane passing through them must be defined and
then calculated. Before continuing it must be noted that any plane passing
through the origin can be defined by a single unit vector (L, M, N) . This
vector is perpendicular to any vector lying in that plane. If (L, M, N)
satisfies this condition then so does (~L, -M, -N) , therefore it will be

assumed that N =0 . With reference to Fig.5 define 6; by

LL. + Mm. + Nn. = cos ("l - e.)
1 1 i 2 1

sin 0. .
i

The 'best' plane is defined as that plane which minimizes i

b o

Ee?

i
i=1
T

-1 2
{sin L. + Mm. + Nn. } .
i i

i=1

S (L,M,N)

i
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. P | . , . s
Now for small 6 , sin 8 ® B8 ®sin 6 , Therefore the problem is simplified by

finding the vector (L, M, N) which minimizes

L3 2
s@am = ) {ueg v+ )
i=1
Now since L2 + M2 +N2 =1 and N is assumed non-negative the problem is to

find, say L and M , such that S(L,M) is a minimum, where

r

| = S g vy v J[1 12 - n

1

S(L, M) has a minimum when

38 _ 38 _
oL oM ’
i.e
r nlL
L,Q,i'!'Mmi-!-Nni 2.--——-—; = 0
i=1
and
r n.M
L. + Mm, + Nn. gm.——-—l——z = 0
1 1 N
| i=1
where N = /{1 - L2 —Mz} R
i.e.
r T T
L ,QZ._ n2 + M ) +_(.Il]i_-_.l_‘_2_)_rng__@.r = 0
Zi Zi 1M N i1 TN L
i=1 i=1 i=1 i=1 i=1
and
r T r r T

2 2
Z 2 E 2 (N© - M°) ML
M - < AN ) L - n. = .
y (L jz'1'.mi + N e S Lyns 0

i=1 i=1 i=1 i=1 i=1
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The root of the above two non-linear equations gives the required L and M .

The problem of finding the best plane has now reduced to solving these two non-~
, . . 2 2 2 2

linear equations. Since zzi - Zni, Zzimi, Znizi, Zmini and Zmi - Zni are

constants they will be replaced by a, b, ¢, d and e respectively.

Let
2 2 ML
_ (NT - L%e _T7d _
fl(M’L) = La + Mb + 5 i 0
and
2 2 ML
N - M7)d c
£,(M,L) = Me + Lb + < . -5 =0

The root of this pair of non-linear equations is found by using the Newton-
Raphson technique. The details of this technique are given in Appendix A. Let

(M, L) be the root required and (M, L) be an approximation to this root, then

M = M—@_—_%
By - o
and
L ~ [ -YAZoes
2
By - a
9f (M,L) 3f, (4,L)
where o = ! = ;
aM oL ’
af](ﬁ,i)
B = —p—
afz(ﬁ,i)
Y="'_’—'—3M s

¢ = f2 (M,L)
9f. (M,L)
1 - L {(M2 - 1)Mc + (L2 - 1)Ld}
M N3
9f, (M,L)
""%TT“" - a+ —L-{(3M2 + 212 - BLe + o - l)Md}
03
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3£, (M,L)
—§T- = e 4 {(3L2 + 22 - DM + @? - l)Lc}
3
3F, (M,L)
2 ]
A - b +-‘-3- {(Mz - DMe + @2 - l)Ld} .
N

The Newton-Raphson technique gives rise to an iterative process for finding
the root (L, M) . An initial estimate for the root can be obtained by
considering the plane formed by two of the original direction cosine vectors.
Using the first and last direction cosine vectors, the initial estimate for L

and M is given by

L, M, N) Ml if 4m - me_ >0

1 r

= —xr =1 if le - mlﬁ <0
d ~d. | £ ¥

where d., = (2., m,

-1 i i? ni)

and d; ~d, = (m]nr - nym, n]lr -0, 4m - mlﬂr) .
Note both functions fl(M,L) and f2(M,L) and their derivatives have
poles at N =0, (i.e. L2 + M2 = 1) . Therefore if N 1is small or zero, the
iteration may not converge. These poles have no physical significance and are
a consequence of the axes system used. Therefore if N 1is small or zero a
change to another system of axes X', Y', Z' , where N' 1is not small, allows
the vector (L', M', N') to be calculated. This by-passes the poles and the
problem of convergence. Once the vector (L', M', N') has been calculated a

rotation back to the original system of axes gives (L, M, N) .

At this stage the 'best' plane nearly containing the direction cosine
vectors d. has been calculated. Now in general these direction cosine vectors
will not lie in this plane, therefore these vectors must be projected onto the
plane. Let P = (L, M, N) , then the projection of gi onto the camera-
trajectory plane is

d, - @ .d)P .

_l —
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This vector will not in general be a unit vector, therefore it should be normal-
ized before continuing. Let e, be this modified direction cosine vector, then
ii_i - (R . ii)g

|£1_i - ®. fl_i)gl

e.
—1

3.2 Calculation of missile direction

Define a new system of axes X', Y' and 2Z'

where X' is in the direction of e, "Ek= Q say

Y' 1is in the direction of e

and 2' 1is in the direction of P = (L, M, N)

Q = (g,N-hM, hL-Nf

1 EM gL,

where e; = (fi’ 8> hi)
This gives a right handed system of axes Q, e, and P . Using the
vectors Q and e, which both lie in the camera-trajectory plane, define the

1
variable S at the time ¢t

Note S] = o

At this stage, the best pair of equations of the form
y = m(t - tl) + 1 and x = n(t - t])

to satisfy the assumed model, have to be defined and then calculated. The curve

y = mx/n + 1 intersects the lines vy = Six when

X % 48, - m and Yy = &S +

In theory these co-ordinates should be

x = n(ti - t]) and y = m(ti - t]) + 1 .

162



Therefore the best values of m and n are defined as those which minimize

L3 2 2
A(m,n) = Z {(m(ti -t) - -551;-"_—5) + (n(ti - ) - Hs‘ln-"‘) }
= 2
<m2"n2>2(ti't1‘;s—.]—-"ﬁ) :
i=2 t

. 3A _ 3A _ .
A(m,n) has a minimum when - 0, i.e.
T r
2
1 2 .2 1 1 _
n (tl—tl_nsi—m) @ + 0% (tl t) T a8 'm>(S —m)2 i
i=2 i=2 1
and
r r
nE t.-t-——-—-—]—-2+(m2+n2) t, - t, - ! i =
1 1 nSi—m i 1 nSi—m (ns _m)2
i=2 i=2 i
The root of this pair of non-linear equations gives the best values of m and
n . Again the Newton-Raphson technique is used to find the root.
Let
g, (m,n)
r r
2 ‘
_ 1 2, 2 o1 1
B mz<ti t]_nSi—m> m +n)2(ti 1 nSi—m)(nS Y.
i=2 i=2 i~ ™
and
g, (m,n)
r r
=nE t., - t ————l———-2+(m2+n2)z t. - t, - ] Si
i 7 nSi—m i 1 nSi—m(S‘_ 2
i=2 i=2 ns; - m
Let (m, n) be the root and (m, n) be an approximation to the root, then
mzfﬁ-%:ﬁ and nwﬁ—a_;_.__ﬁ R
a” - By a” = By

.15
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2, @,1) g, (@,
where a = = = Py 5
o Bg](m,n)
B om >
agz(m’n)
T on
A= g](fn,fi) and
¢ = gz(ﬁlsﬁ)
g, (m,n)
om
T T
= t—t:-———-————l 2—4m .t'~t" ! ' 1
- i I nS; - m z i 1 nS; -m @S, - m)>
i=2 i=2 i~ "
r T
+(m2+n2) E ————-—1-————-—-2(m2+n2) t. - t, - ! I
@s, - m* Z ool o8 o) s, - w3
i=2 i i=2 i
3g1(m,n)
on
T T
-ZEt—t-] i —ZnEt—t—l !
= 4m i I nS, -m (aS. - )2 i I n§; - m (nS --m)2
i=2 i~ n i=2 i
r T
S S
+2(m2+n)2 t, - t, - ! = —(m2+n2)2 =
i 1 nSi—m (nS —m)3 (S —m)4
1=2 1=2 i
38, (m,n) dg, (m,n)

om on

- 162
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agz(m,n)
on
r 2 L S.
= é: - tl Y : m) * 4n (ti _'t] Y l- m) - 2
1 . - -
1=2 i 1=2 L (nsi. m)
T 2 r 2
S. S,
- 2(m2 + nz) E t, - £, - ! = + (m2 + nz) L
i=2 i i=2 5 T M

An initial estimate for this iteration can be obtained using the data of three

time points. TFor example, tl’ t, and tys then
. - (tq _,t2)
'(32 - 33)(t2 - t])(t3 - tl)
and
5 . S5(tg = £)) = Sy (ty) - t})

(82 - 83)(t2 - tl)(t3 -ty

3.3 Calculation of missile trajectory

The missile trajectory is now calculated as in the theoretical solution.
The position vector of the missile at the time t , in camera axes and with

respect to the camera origin is therefore

v
”JZ;E—:-;E; [n(t - t])g_+ {m(t - tl) + ]} 31] .

The target origin and axes system is in general different to that of the camera,
therefore to complete the solution the trajectory has to be converted to this
new origin and axes system. The actual target origin is normally a nominal

position on the target, for example the centre of gravity of the aircraft.

This solution has been written into a computer program subroutine, a

listing and short description is given in Appendix B.

4 MISS DISTANCE PARAMETERS

This section gives the mathematics for the calculation of the normal
parameters required at the time of nearest miss. The time of nearest miss is
the time at which the range of the missile from the target is a minimum. The

parameters required at nearest miss are
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(a) Time ¢t .
miss
(b) Range R_.
miss

)

o-ordi X . ., 2.
(c) Co-ordinates ( iss’ Ymiss® Zmiss

(d) Direction cosine vector of the trajectory (&, m, n) and

(e) Velocity, assumed supplied from other sources.

Let the position of the missile, with respect to the target, at time t ,
be (Xl’ Vs z]) and at time ¢, be (x2, Yos 22) . Then the position of

the missile at time t 1is

(x0 + Lt, y, + Mt, z + Nt)
where X. = x, + i (x X,) = tle ~ 1
= P 1~ T —
0 1 £y £ 2 £, t]
t t,y, - t.y
1 271 172
Y=y, +t——— (y, = ¥,) = —/——F——
0 1 t2 t1 1 2 t2 t]
t t,z, — t,2
1 271 192
z, = z, + — (z, - 2z ) = _
0 1 t2 tl 1 2 ty t]
X, — X Vo - Y 2, = 2
L=t2-tl’ M='t£-—t‘]‘ and N=Eg—-:_t:l
2 1 2 1 2 1

L, M and N are velocity components.

The velocity of the missile is

2 2
V = «/{L + M° + Nz} = EET%T?;-A/{(X2 - x])2 + (y2 - y])2 + (z, - 21)2}

and the direction cosine vector of the missile trajectory is given by

|1}

(Q/’ m, n) %(L,M,N)

= ! ( -
} Xy = Xy Yy T ¥ 2y~ Zp).

q/{(xz - Xl)z + O, - yl)z + (2 - 21)2
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Now the range of the missile from the target is given by
R = ,\/{(XO + Lt)2 + (yo + Mt:)2 + (zo + Nt)z} .

This has a minimum when

2
R _ d@®R")
ac - %> (or dt
i.e. when
L(x0 + Lt) + M(y0 + Mt) + N(zo +Nt) = 0
i.e.
2 2 2
x0L+yOM+zON— (L™ + M + Nt
= -V .
Therefore the time of nearest miss is
. L (xOL + yOM + zON) _ (xoz + yolt + zOn)
miss 2 v

v

The range at tmiss is

2

= 2 2
Rpiss = ’\/{(XO ¥ Ltmiss) ¥ (yO tME )t (2 + Ntyiqe) }

and the position co-ordinates are

X . = x. + Lt .
miss 0 miss

Y . = + .
miss Yo thlSS

Z . = z_ + Nt .,
miss 0 miss .

5 SOURCES OF ERROR

Throughout this section, let T be the length of time covered by the

single camera solution and during this period of time let
(a) R be the maximum range of the missile from the camera, and

(b) V be the average missile velocity.

TEORNICAL LIDRARY 3
BLDG. &06
ARTRDEEN PROVING GROUND: MD.
SIEAY-TL

.19
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There are three sources of error for the single camera solution, in a

practical situation, these are:-

(a) Reading errors

Both time and angular data, have to be read from films. This can only

be done to a finite accuracy which depends on the camera system used.

The timing information on the Range's films can be read to an accuracy of
0.1 milliseconds, therefore the maximum percentage error in the calculated

trajectory data, due to a timing error is

0.0001 , 100y . 0:02, (T

T T in seconds)

2 X
Let o be the accuracy of the angular data read from the film in radians,
then the maximum percentage error is 10007 which is probably pessimistic since

the least squares technique used should reduce this error.

(b) The error in applying the model, required by the single camera
solution, to an actual trajectory

The missile can fail to satisfy the model for at least three reasons:-

''m/s

1) a lateral acceleration, of say 'a
(ii) a longitudinal acceleration, of say '%' m/sz, and

(iii) a rotating camera axes system, say the axes system is

rotating at a rate of 'b' rad/s.

(N.B. The lateral and longitudinal accelerations are in general the combined

effects of both the missile and the camera moving.)

It can easily be shown that the maximum deviations from the model are

2 2
1{1 (T _aT .
(1) > Ea(é) ST metrgs, due to the lateral acceleration
1 (T 2 Q,Tz
(2) §2<é> = ~g~ metres, due to the longitudinal acceleration
and

bV (T 2 bVT2 .
(3) = b = —g— metres, due to the rotating axes system.
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(¢c) The error in the velocity estimate

A 57 error in the velocity will produce a 57 error in the calculated
trajectory data. (It should be noted, that all the percentage errors quoted

above, apply only when the trajectory origin is identical to the camera origin.)

Given the characteristics (actual or theoretical) of the missile, target
and camera system (e.g. velocity, lateral accelerations, etc.), it is therefore
possible to calculate the maximum error to be expected from using a single
camera solution. For example, consider the representative figures for a missile

fired against an aerial target, typical maximum values would be

R = 35 m

a = 150 m/s? (* 15 g)

2 = 50 m/s2 =5 g)

b = 10°/s

a = 4°

V = 700 m/s with a 5% error.

Then the maximum compounded error in position, assuming a typical time T
of 0.05 s, is approximately 2.27 m, of which 1.75 m is due to the velocity error.
It should be noted that this compounded error has its maximum value at the

extreme range from the camera and will be considerably less nearer the camera.

The main source of error for the single camera solution, in the example
quoted, is the velocity estimate. This is considered to be the situation for
most single camera solutions calculated at Aberporth. The reason being that the
tracking radars usually fail to give trajectory data and hence velocity data

during the period of the intercept.

When the trajectory data is calculated with respect to an origin and
axes system, other than that of the camera (e.g. if the target aircraft is
towing a decoy target behind it), additional errors can easily be introduced.
These errors are obviously dependent on the accuracy of the trajectory origin
and axes system with respect to those of the camera, but must be smaller for

origins nearer the camera.
6 CONCLUSION

The single camera solution puts fairly restrictive conditions on the
trajectory of the missile. These conditions limit the situations in which a
single camera solution can be used. This is in contrast with solutions

obtained from two or more cameras. For example, the single camera solution

v
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is unsuitable for obtaining trajectory data during the launch phase of a missile.

This is because the missile is undergoing substantial longitudinal acceleration

at relatively low speed, during this period.

Another restriction on the single camera solution is the fact that the

velocity of the missile relative to the camera must be supplied from an external

Source.

Nevertheless, taking these restrictions into account the single camera
solution can be very useful in obtaining trajectory data. This is particularly
so during the attack phase of a missile, when the missile trajectory normally
approximates to the model required by the single camera solution. The solution
is not specifically restricted to aerial or sea targets and will apply to any

single camera situation where the necessary extra information (timing, missile

velocity, etc.) is available.
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Given here are the details for finding the root of a pair of non-~linear

Appendix A

DETAILS OF THE 'NEWTON-RAPHSON' TECHNIQUE

equations, using the Newton-Raphson technique.

Let the pair of non-linear equations be

and

Let (M, L) be the root and

£,(4,L)

£, (M,L)

M, L) be an

approximation to this root, then

o afl(ﬁ,i) 3£, (1,L)
£,04,L) =~ £,(M,1) - oM = - 8L 5T
and
L af, (#,1) df, (,L)
£,(4,1) ~ £,(,1) - oM N - 8L 5T
where M =M -M and SL=L -1 .
Since
£,04L) = £,(M,L) 0
it follows that
. af, (,L) afl(ﬁ,ﬂ)
ML) = M — T+ OL ——
and
@iy ~ o afz(ﬁ,i) afz(ﬂ,ﬁ)
’ ) 8 —5‘M——' + 8L —-—aL——-— .
Let
af ) (f,1) afl(ﬁ,i) 3£, (f,L)
oM > 9L = 8 ’ M
sz(ﬂ,i) } L
T ; fl(M,L) = A and f2(M,L)
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then

and

Therefore

and

therefore

and

This gives rise to an iterative process for calculating the root

A = adM + BEL
6 ~ y&M + wiL
sM ~ Bo - wh
By — wa

~ YA - 0f

§L =

By - wa

M ~ M- §M

L ~ L - gL

Appendix A

M, L) .

162
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Appendix B

SHORT DESCRIPTION AND LISTING OF THE SINGLE CAMERA SOLUTION SUBROUTINE SINCA

The subroutine SINCA performs the single camera solution described in
Section 3. Starting with a velocity estimate and at least three direction
cosine vectors and their corresponding times, the subroutine calculates
trajectory data and miss distance information with respect to any given origin
and axes system. Trajectory data is automatically produced at the times of the
direction cosine vectors and the time of nearest miss. Since trajectory data is
often required at special times, e.g. at fuse triggering time, there is an

option to supply data at other given times. The subroutine is called
SINCA (T, RL, RM, RN, IN, JN, X, V, RMISS, D)
T, RL, TM, RN, X, RMISS and D are arrays dimensioned as follows: T(25), RL(25),
RM(25), RN(25), X(3), RMISS(8) and D(3,3).
INPUT DATA
IN : number of direction cosine vectors (3 < IN < 24)
JN : number of special time points (IN+JN < 25)
T(I) : (a) time of Ith direction cosine vector I =1, IN

(b) time of a special time point I = IN+1, IN+JN

RL(I) : 1 component of Ith direction cosine vector I = 1, IN
RM(I) : m component of Ith direction cosine vector I = 1, IN
RN(I) : n component of Ith direction cosine vector I = 1, IN

X : (x, y, z) co-ordinates of the target, with respect to the axes system of the

direction cosine vectors and the camera origin.
D : rotation matrix
V : velocity estimate
OUTPUT DATA
-IN : as input
JN : as input
V : as input

X : as input
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D : as input

T(I) : as input I = 1, IN+JN

1

RL(I) : x co-ordinate of trajectory at time T(I), I

RM(I) : y co-ordinate of trajectory at time T(I), I =

RN(I)} : z co-ordinate of trajectory at time T(I), I
RMISS : miss distance parameters, as follows

RMISS (1), time of nearest miss

RMISS(2), x co-ordinate of trajectory at time of
RMISS(3), y co-ordinate of trajectory at time of
RMISS(4), z co-ordinate of trajectory at time of

RMISS(5), range at time of nearest miss

Appendix B

1, IN#JN
1, IN+JN

1, IN+JN

nearest miss
nearest miss

nearest miss

RMISS(6), 1 component of trajectory direction cosine vector

RMISS(7), m component of trajectory direction cosine vector

RMISS(8), n component of trajectory direction cosine vector

// JOR

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0006 0006 0000

v2 MO9S ACTUAL 16K CONFIG 16K

// FOR

*LIST ALL

*ONE WORD INTEGEXS

*EXTENDED PRECISION

*NAME STNCA

#%* SINGLE CAMERA SOLUTION SUB=OUTINE

16
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SINGLE CAMERA SOLUTION SUBROUTINE

SUBROUTINE SINCA(TsRLIRMaRNIINSJNIX9VIRMISSHD)
DIME?SION T(25)oRL(25) sRM(25) sRN(25) 9X(3) sRMISS(8)9D(393)9A(9) s
1s(25
C CALCULATE INITIAL VALUES FOR (LeMoN)sROTATING AXES IF NECESSARY
RLL=RM(1)*RN(IN)=RN{1)*¥RM(IN)
RMM=RN(1)*RL(IN)=RLI1I*RN(IN)
RNN=RL{1)*RM{IN)=RM{1)#RL(IIN)
RR=SQRT (RLL*RLL+RMM*¥RMM+RNN*RNN)
RLL=RLL/RR
RMM=RMM/RR
RNN=RNN/RR
’ K2=1
J=1
IF(ABS(RNN)=0e1)10091009107
100 IF(ABS(RMM)=0e1)10491049101
101 KK=2
102 DC 103 I=1yIN
RR=RN(T)
RN(I)=RM(1)*J
103 RM(1)==RR%*J
RR=RNN
RNN=RMM*J
RiviM==RR#*J
GO TO (108+9109)K2
104 KK=3 :
105 DO 106 1=19IN
RR=RN(T)
RNCTII=RL(T)*J
106 RL(I)==RR*J
RR=RNN
RNN=RLL%*J
RLL==RR%*J
GO TO (1089109)sK2
107 Kx=1
108 IF(RNN)10s11»11
10 RLL==RLL
RMM==RMM
RNN==RNN
C CALCULATE COEFFICIENTS FOR THE FIRST ITERATIONSTO FIND (LeM)
11 DO 12 I=1+6
12 A(1)=040
DC 13 I=1sIN
ALL)=A(L)+RLITI*RLI(I
A(2)=A(2)+RM(T ) #RM( ]
A(3)=A(3)+RN(T)*RN(1
Al4)=At4)+RLIT)I*RM(]
A(S5)=A(5)+RN(T)*RL(I]
13 A(6)=A(6)+RMITY*RN(1
All)=A(1)=A(3)
. A(2)=A(2)=A(3)
C PERFORM FIRST ITERATIONsAND IMPROVE ESTIMATE FOR (LeM)
DO 14 I=1930
RLLZ=RLL*RLL
RMM2=RMM*RMM
RNNZ2=RNN#*#RANN
RR=1e0/RNN
Fl=RLL*A(1)+RMM*A(4)+RR* ( (RNN2=RLL2)*A(5)=RMM*RLL*A(6))
F2=RMM*A(2)+RLL*A(4)+RR*{ (RNN2=RMM2 ) #A (6 ) =RMM¥RLL¥A(5) )
RR=RR/RNN2
F3=A(4)+RR*( (RMM2=1) #RMM*A (5 )+ (RLL2=1)#RLL*A(6))
Foe=A({1)+RR*( (=3%¥RNN2=RLL2)*RLL*A(5 )+ (RMM2=1) *¥RMM*A(6))

)
)
)
)
)
)
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Appendix B
SINGLE CAMERA SOLUTION SUBROQUTINE

FOA(2)+RR#( (=3 #RNN2=RMM2 ) ¥RVMM*¥A(6 )+ (RLL2=1)*RLL*A(5))
RR=F4xFH=F3%F3

SR {FL4xF2=F3%F 1) /RR

DL={Fl#F5=F3%#F2)}/RR

RMMERM =DM \
RLL=RLL=DL

RNN=SQART(1e 0=RMM*¥RMM=RLL*RLL)

RR=SGRT (DM*DM+DL*DL)

IF(RR=06C0000C1)15+15914

CCNTINVE

Jz=1

K2=2

ROTATE BACK TO ORIGINAL AXES SYSTEM IF NECESSARY
GO TO (1099102+105) KK

CALCULATE ~MODIFIED DIRECTION COSINE VECTORS AND THE VECTOR w
DO 16 I=19IN

RR=RLL*RL (I )+RMM¥RM(T)+RNN*RN(])
RLEI)=RL(I)=RR*RLL

RM(TI)=RM(1)=RR¥RVM

RNATY=RN(I)=RR*¥RNN .
RR=SURTIRLIII*RLATI)+RMUII*RM{TI)+RNCTIY%RRNIT))
RLIT)=RL{I)/RR

Ria(l)=RM({I)/RR

RN(EIY=RN(I)/RR

RLI25)=RM (L) *¥RNN=RN(1)#RMM
RM{Z2E)=RN(L1)#RLL=RL({1)#RNN
RM{25)=RL (1) #RMv=RMm (1) %#R0LL

CALCULATE THE VARIABLES SI(])

DO 17 1=2sIN

RRERLILI*¥RLITII+RMIL)RRMITI J+RNTL)I®RN(T)
FaesRLIZ2E)Y%RLITIY+RM(25 ) #RMITI+RN(25)#RN (1)
S(I)=RR/F&

I={IN=1)/2

DM=leQ/(TLINY=T(1))

CL=le0/(T(I+1)=T(1))

ANN= (DL=DM) /7 (S(I+1)=S{IN})

AMM= ANN#S (TN ) =OM

PERFORM SECCOND ITERATION AND IMPROVE ESTIMATE FOR (MaN)
DC 20 J=1+30

DO 18 =149

AlT1)=040

DO 19 I=24IN

DL=1e0/ (ANN¥S{])=AMM)

DM=T({])=T(1)=DL

T RMiA2=DM*DM

19

RLL2=DL%*CL
All)=A(1)+RMM2
Al2)=A(2)=DM*RLL2
A(3)=A(3)+S(])*RLL2*DM

A(4)=Al4)+RLL2%RLLZ

A(5)=A(5)=2%DM*RLL2*DL
AlE)=A(6)+S(T)*¥RLLZ*RLL2
ALT)=A(T)+2%S (1) *DVM*¥RLL2Z*DL
A(B)=A(B)=2*S(T)%*S(])*¥DL*DVM*¥RLL2
AL9)=A(9)+S{1)*s(1)#RLLZ*RLLZ
RLL=AMM#EAMM+ANN¥ANN

Fl=ANMM*A(L1)+RLL*A(2)
F2=ANN#A(1)+RLL*A(3)
F3=A(1)+4*%ANM¥A(2)+RLLH*A(4)+RLL¥ALS)
Fa=2%(AMM*¥A (3 )+ANN®A(2) )+RLL®(A(T)=A(6))

162
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2
2

2

VAR

RL

STAT
100
11
20

FEAT

$INGLE CAMERA SOLUTION SWBROUTINE

FOWA(L)+4%ANN®A(3)+RLL®(A(BI+A(9))
RR®L1sQ/ (FeUF4=F5%F3)
Dhim (F4#F2=F5%F 1) #RR
DLe (F4#F1=F3%F2} #RR
AMM=ANMMeDM
ARN=ANN=DL
RR#SQRT (DM#DM+DL#OL)
1IF{RR=0,0000001)21421+20
0 CONTINVE
CALCULATE TRAJECTORY DATA AND MISS DISTANCE PARAMETERS
1 DL=SQRT {AMM*AMM+ANN®ANN}
RR=V/DL
DL=AMMS(T(IN)=T(1))+140
DM=ANN® (T(IN}=T{L))}
RLUINI=RL{25)#DM+RL (1) *DL
RMUINI=RM(28)#DNM+RM{ 1} DL
RN{INIWRN(25)#DM+RN (L) #DL
RL{1)=RR*RL(LI=X{1}
RM(1)=RR#RM(1}=X{2)
RN(11aRR#RN(L)=X(3}
RLEIN)=RR¥RL{INI=X(])
AM{IN)wRR*RM{IN)=X{(2)
RN{IN)SsRR*RNIIN)=X{3)
DO 800 1=143
A(T)=RL{L1I®O(I 41} +RMILI®D{Ta2)+RNII*D(T03)
0 ALT+3)=RLITNINDILslI+RMIINI*DITe2)«RNEINI#D(] D)
F1=1aQ/{TLINI=T(1))
RLL2®(A(4)=A{L))%F]
RMM2= (AL5)=A12) ) #F1
RHN2=(A{6)=A[3))#F]
JeIN+IN
DO 25 [=lad
RR=T(1}=T(1)
RLiT)=A(l)+RR¥RLL2
RM(I)®A(2)+RR*RMM2
RN(1)I=A(3)+RR¥RNN2
RR®={RL (1) #RLL2+RM{1)*RMM24RN (1) #RNN2} /7 (V#V]
RMISS(1)#RR+T (1)
RMISS{2)aRL{1)+RR*RLLZ .
RMISS(3)=RM(1)+RR¥RMME
RMISS(4)aRNIL) +RR*RAN2
RMISS{5)=SORT(RMISS(2)¥RMISSIZI4RMISSIII#RMISSIII+RMISS{4)I*#RMISS (&
i
AMISS(6)=RLLR/V
RMISS(7)=RMM2/V
RMISS18)sRNN2/V

w

RETURN

END
ABLE ALLOCAT]JONS

A(R )=0018=0000 S{R 1=0063«001B RLL(R 120066 RMM{R )=006% RNN(R }8006C
L2(R 1=0072 RMM2 (R 1%0075 RNN2(R )»0078 F1(R 120078 F2{R )=Q07E
F4{R }=0084 F5(R 1%0087 DM(R )=008A CLIR )=008D ‘ ANN{R )=0090
K2{1 }=00A2 J{I 1=00A3 KK{I )=Q0A4 I{l 1=00A5

EMENT ALLOCATIONS
=0203 101 0208 102 «Q20F 103 0225 104 =0259 105 =0250 106 0273 107 =02A7 108
=02BF 12 =02C3 12 =0318 14 #0494 15 =0490 109 wQ4AD 1¢ *053F 17 0503 18
=07E3 21 =0TEC 800 =QBES 25 0977

URES SUPPORTED

RR{R )mQO6F
F3(R 1=0061
AMM{R 1=0093

w0248
=062F

i0
19

=0280
«Q6PB

29
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SINGLE CAMERA SOLUTION SUBROUTINE

ONE WORD INTEGERS
EXTENDED PRECISION

CALLED SUBPROGRAMS
ESGRT EABS EADD
EDVR FLOAT 3UBsC SNR

EARDX EsuB ESUBX EMPY EMPYX tvlv

SUBIN

REAL CONSTANTS

«100000000€ 00=00B4 s100000000E 01=008A

200000U000E 00e00B7

INTEGER CONSTANTS

1»00C0 9200C5

2=00C1 3=00C2 6=00C3 30=00C4

CORE REQUIREMENTS FOR SINCA
COMMON 0 VARIABLES 180

RELATIVE ENTRY POINT ADDRESS IS 00CT (HEX}

PROGRAM 2408

END OF CUMPILATION

A ppendix B

ELD ELOX ESTO ESTOX ESBR ESBRX
+100000000E=~0620080
#=00C6
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