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SUMMARY

Data from one high frame speed camera on a target can give missile

trajectory and miss distance. This Report gives a theoretical solution and
indicates how it can be modified to process practical data in a computer. The

sources of error and their magnitudes are given.
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INTRODUCTION

Whenever a missile is fired at a target it is important during the final

stage of attack, to obtain relative trajectory and miss distance information.

At Aberporth these are either aerial or sea targets and the attacking missile is

normally sighted by one or more high speed cameras. These cameras are free

running and run nominally at one hundred frames per second. Time information

from the Range Central Timing Unit is recorded on the edge of the camera film,

so that an accurate time can be given to each frame.

Only two types of aerial targets at present carry a camera system, these

are aircraft targets and towed targets (infra-red or radar sources towed by an

aircraft). Normally the missile is photographed by two camera packs (each pack

consisting of two cameras) one on each wing tip of the target aircraft. The data

obtained from these cameras can then be interpolated to corresponding times, to

allow a simple two camera solution using the wing span of the aircraft as a

baseline. It has been found from experience that the extrapolation of camera

data seldom gives satisfactory results.

For aircraft targets and 13 metres towed targets the camera packs

consist of two WRETAR Mark 3 cameras 2 . These cameras have a field of view of

1860 and are mounted to give a complete spherical optical coverage. At least

three occasions arise on these targets when a single camera solution must give

trajectory data. These occur when

(a) a faulty camera fails to record either pictures or the timing information

(b) a camera pack is removed to allow additional equipment on the aircraft,

(e.g. a telemetry pack)

(c) the time interval common to both cameras for interpolating data is too

short to allow a satisfactory two camera solution over the intercept period.

Although the camera packs have full spherical coverage, on some flight paths the

missile is obscured by the aircraft, for part of the intercept, from one or

both cameras. This situation can be made worse by certain events (e.g. flash)

which results in the loss of further data. Quite often in these conditions one

or both cameras will give sufficient data for a single camera solution, given

an independent velocity estimate.

The single camera solution is considered too inaccurate for use on the

longer range, 30 metres and 61 metres, towed targets. The greater ranges
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involved, of the missile from the camera, (see section 5) and the probable

inaccuracies in the knowledge of the tow position are the main reasons for this

decision.

The Range's sea targets were basically designed for a single camera

solution as the fields of view of the target cameras do not overlap to any

great extent, except on the largest targets. The cameras used are GW1 Mark IA

and GW2 Mark 2, and these have a field of view of 1200. This means that most

missile trials against sea targets require a single camera solution.

Until recently a manual single camera solution described in a previous

Report3 has been used. This manual solution has now been superseded by a

computer solution. This Report describes the theoretical solution of the

problem and how this solution is modified for computer use in the practical

case.

2 THEORETICAL SOLUTION

To obtain a theoretical solution for trajectory data using a single

camera, certain assumptions have to be made about the trajectory during the

period of time covered by the solution. The trajectory in question is the

relative trajectory of the missile with respect to (a) the camera origin and

(b) the camera axes system. These assumptions are

(1) the missile flies in a straight line

(2) the velocity V of the missile is a known constant.

In practice these assumptions imply that the target (and hence camera) is

also moving in a straight line at constant velocity and that the attitude of

the target is steady.

Since basically any camera system supplies direction cosine vectors of a

trajectory with respect to the camera, the following theory is based on direc-

tion cosine vectors. For the theoretical solution, it will be assumed that

there are no errors in the direction cosine vectors. The effect of these and

other practical errors will be discussed briefly in a later section.

The missile flies in a straight line and therefore, provided the camera

does not lie in the path of the missile the missile trajectory and the camera

origin define a unique plane in space. In addition all rays from the camera to

the missile and hence all direction cosine vectors of the missile with respect

to the camera, lie in this plane. The missile also flies at a constant velocity
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both spatially and with respect to camera axes, and therefore the distance flown

between two given time points depends only on the time difference and not on

absolute time.

Let-P. = (xi, Yi. zi) be the position vector of the missile with respect

to the camera, at the time t. . Then a constant velocity implies that1

D. t - t. ,
1 i+I 1

D.1
i.e. = - constant ( velocity of the missile)

where D. I= i+ -

J - 'd 2 + ( - yi) 2 + (zi+1 - zi)21

see Fig.].

2.1 Calculation of missile direction

Consider any line parallel to the missile trajectory which also lies in

the camera-trajectory plane. The length of a section of this line, formed by

two rays from the camera to the missile trajectory, depends only on the time

difference between these two rays. This follows because the missile trajectory

also has this property. Therefore the direction of the missile can be found

from just direction cosine vectors. This is achieved by finding a line in the

camera-trajectory plane with the following property:-

The direction cosine vectors from the camera should cut the line into

sections whose length depend only on the time difference between the successive

direction cosine vectors.

With reference to Fig.2 let d. be the direction cosine vector of the

missile at time ti . Let ki be the length of the section of a line formed by

the successive direction cosine vectors d. and d.. Then-1+11

i = constant for a line parallel to the missile trajectory
+I

A line with this property can be obtained by using the following procedure:-

Define a new system of axes X', Y', Z' such that
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(a) Z' is in the direction of a vector perpendicular to the camera-trajectory

plane,

(b) Y' is in the direction of the first direction cosine vector d,

(c) X' is in the direction of a vector perpendicular to both the Y' and Z'

axes, and

(d) X', Y' and Z' form a right handed triad.

Both the new X' and Y' axes lie in the camera-trajectory plane and

hence form a base for the plane. Any direction cosine vector in this plane can

now be described by the single variable

S. - x di (see 1'ig.3)
1 x .d.

where x and y are unit vectors along the axes X' and Y' respectively.

Note that y = S.x is a line in the plane (X', Y') which lies in the same1

direction as d and that SI =

Since any line with the relevant property is required, a line of the form

y = Mx + I

is calculated. This line intersects

y = S.x

when

S.x = Mx + I1

i.e.

1 M
x - S.-M and y - - + I

In theory three direction cosine vectors are now required. For convenience let

these be the first three vectors. The line y = Mx + I intersects the lines

y= Six, y= S2 x and y= S3x at the points
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(xS, y1 ) = (0, 1)

(x 2 , y 2 ) = S M M +

and

(x3  Y3) = ( 3 M' S +M respectively.

See Fig.4. Then

1 ~ L) 2 _ ( )2 1

and

3l M H 2) + -"

S3 - MI S
3ý 21

JI+ M 2) 8 3 - M S 2 -M

For the line y Mx + I to have the required property

PI ______k_____2 _

t2 - tI t3 - t2

where tl, t 2  and t 3  are the times of the first three direction cosine

vectors.

Therefore I I (1 -_

(S- M)(t 2 - t 1 ) t 3 - t 2  3 M S2

therefore S2 - (M t = S31 M

therefore M 2 t 2 2 I
(I 3 i 3 S2 3 1
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Hence

M S3 (t 3 - tl) - S2 (t 2 - t1)M =
t 3 - t 2

Note that the x and y co-ordinates of the missile in the (X', Y') plane

are both linear in time t . It is therefore possible to find a pair of

equations of the form

y = m(t - t + I

and

x = n(t- t)

instead of the single equation y = Mx + I The auxiliary equation y x x+1
n

then automatically has the required property.

Therefore n(t 2 - tI) = x 2 = m
S2 n-n

and

n(t 3 - tl) I x3
S3 -

Therefore S - S I t2 -t t tl
2 3 n 't 2 - 1  t 3 -

t3-t2

therefore n = _ 3 )(t 2  - tl)(t 3 2 tl)

and
S3(t3 - t1) - S 2 (t 2 - t )

m S2 - S3 )(t 2 - t 1 )(t 3 - t )

In the computer program solution of the problem, the solution is simplified by

calculating m and n .

2.2 Calculation of missile trajectory

Now the trajectory of the missile has an equation of the form

=m
y = - x+ rn
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in the (X', Y') plane and the co-ordinates have equations of the form

y = m(t - t )r + r

x = n(t - t 1 )r

where m and n have already been calculated. Now in one second the missile

would have moved a distance of V units, assuming that time is measured in

seconds.

Therefore r 2(m2 +n) = V ,

V
therefore r = .2V(m2 + n2

Therefore the x co-ordinate of the missile, in the (X', Y') plane is

nV (t - )
(m + n 2 )

at the time t . The corresponding y co-ordinate is

mV V2 2(t-t) +

/(m + n) *i2 +2)

The position vector of the missile at the time t in camera axis and origin is

therefore

2V 2 [n(t - t )x + {m(t - t 1 ) + I}y]
m + n2)

This now completes the theoretical solution since it is possible to calculate the

missile position at any given time. The calculation of the time and range of

nearest miss, and other useful parameters is given in section 4.

3 PRACTICAL SOLUTION

Considering a missile travelling at 700 m/s, with a limit of 25 g on the

lateral acceleration, it can be shown that there exists a straight line from

which the missile cannot deviate by more than 16 cm, over a period of 1/10 s

(a likely maximum time for a missile to be in view). Therefore in practice, a

missile will not deviate much from the assumed model, at least while passing

the camera. This model can therefore be used as an approximation, to obtain a
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trajectory. The solution requires the velocities of the missile and the target,

which must be supplied from external sources. Due to errors introduced by the

camera system and the error of applying the model to the missile, the solution

needs to be modified in the practical case.

The following information will be assumed for the solution of a practical

situation:

(a) At least three direction cosine vectors of the missile with respect
to a camera and their corresponding times, i.e.

(ti, •d) for i = 1,2,...,r(r > 3)

where d. = (ki, n , and

(b) the relative velocity V of the missile or at least an estimate for

it.

3.1 Calculation of the camera-trajectory plane

The first stage of the computer solution is the calculation of the camera-

trajectory plane. Since the direction cosine vectors will not lie perfectly

in a common plane, the 'best' plane passing through them must be defined and

then calculated. Before continuing it must be noted that any plane passing

through the origin can be defined by a single unit vector (L, M, N) . This

vector is perpendicular to any vector lying in that plane. If (L, M, N)

satisfies this condition then so does (-L, -M, -N) , therefore it will be

assumed that N > 0 . With reference to Fig.5 define e by

LU. + Mm. + Nn. = cos E - ei
i i 2 1/

= sin e.
i

The 'best' plane is defined as that plane which minimizes

S(L,M,N) = 2

i=l1

r

= sin-I Zi + Mm. + Nn 2

i=1
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Now for small 0 , sin e • 0 - sin-1 0 . Therefore the problem is simplified by

finding the vector (L, M, N) which minimizes

r 2

S(L,M,N) = ý {Lki + Mm" + Nni}

i= i

Now since L2 + M2 + N2 = I and N is assumed non-negative the problem is to

find, say L and M , such that S(L,M) is a minimum, where

S(L,M) = j Li + Mmi + •[- L2- M2]niJ2

i= I

S(L, M) has a minimum when

as _as 0

i.e.

r .
SL9i + Mmi + Nni * i - T =

i=1

and

r +Mm + Nn nM

where N= V{ -L2 M}

i.e.

I 2 nr + M  r m. + (n.

i . N Ii N iIIiMZ ilmi . +i=Il i=Il

and

MI m2r•2 r .m. + (N2 _ M2) rL

Sn i ( N nimi -T ini = 0

ii= 1 i]
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The root of the above two non-linear equations gives the required L and M

The problem of finding the best plane has now reduced to solving these two non-
2 2 2 2linear equations. Since X - En 2 Ek imi, En.i i, Emin. and Em2 - En2 are

constants they will be replaced by a, b, c, d and e respectively.

Let

(N2 L 2)c MLd
f (M'L) = La + Mb + N - L 0IN N

and

f 2 (ML) = Me + Lb + (N2 - M2)d- MLc = 0
N N

The root of this pair of non-linear equations is found by 'using the Newton-

Raphson technique. The details of this technique are given in Appendix A. Let

(M, L) be the root required and (M, L) be an approximation to this root, then

M f 4 - - ax

-
2

and

- 2'

where a = - f
9M 3L

a•La

_af 2(MPL)
Y- •M

am
X = f (MI) and

S= f2 (M'L)

afl (M'L)- b + I (M2 - I)Mc + (L 2 
-)Ld

9M N-

9f (M,9L) =a + ' (32 + 2L 2 - 3)Lc + (M2 -)d

@L N (3M)dj
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f_2_(ML)3L 2 2 2}
Sf(,+- eM+ ( + 2M2 - 3)Md + (L2  )Lc

af 2 (M$L) 2 2
ýL = b+1 3 M - 1)Mc + (L - 1)Ld

The Newton-Raphson technique gives rise to an iterative process for finding

the root (L, M) . An initial estimate for the root can be obtained by

considering the plane formed by two of the original direction cosine vectors.

Using the first and last direction cosine vectors, the initial estimate for L

and M is given by

-1 -rif m

(L, M, N) - if ZImr - mIkr > 0

1rd i r - m12r < 0

d d
Ir d if k Im r- m I Y r<

where d" = (Zi' mi, n.)

and d rr = (minr - nmr, nI r - nr1 , rP mr - mlkr

Note both functions fI(ML) and f 2 (M,L) and their derivatives have

poles at N = 0 , (i.e. L2 + M2 = 1) . Therefore if N is small or zero, the

iteration may not converge. These poles have no physical significance and are

a consequence of the axes system used. Therefore if N is small or zero a

change to another system of axes X', Y', Z' , where N' is not small, allows

the vector (L', M', N') to be calculated. This by-passes the poles and the

problem of convergence. Once the vector (L', M', N') has been calculated a

rotation back to the original system of axes gives (L, M, N)

At this stage the 'best' plane nearly containing the direction cosine

vectors di has been calculated. Now in general these direction cosine vectors

will not lie in this plane, therefore these vectors must be projected onto the

plane. Let P = (L, M, N) , then the projection of d. onto the camera-

trajectory plane is

d. - (P . d .)P
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This vector will not in general be a unit vector, therefore it should be normal-

ized before continuing. Let e. be this modified direction cosine vector, then

d. - (P d )P
e.=

Idl (P d d)PI

3.2 Calculation of missile direction

Define a new system of axes X', Y' and Z'

where X' is in the direction of e, P Q say

Y' is in the direction of e

and Z' is in the direction of P = (L, M, N)

Q = (g 1N - hiM, hlL - Nfl, flM - g1 L)

where = (fi' gi' hi)

This gives a right handed system of axes Q, eI and P . Using the

vectors Q and e which both lie in the camera-trajectory plane, define the

variable S at the time t

e . e

Q e.S - -1i

Note S =

At this stage, the best pair of equations of the form

y = m(t - t1) + I and x = n(t - t1 )

to satisfy the assumed model, have to be defined and then calculated. The curve

y = mx/n + I intersects the lines y = S.x when

n m
nS. - m and y nS. - m +

I I

In theory these co-ordinates should be

x = n(ti - t) and y = m(t. - t) +
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Therefore the best values of m and n are defined as those which minimize

r \2
A'mS' lM (t. t nS.-rMn) -- n( t)n

(mn + n - t+n -2 ) r (t

i=2

A(m,n) has a minimum when -A = -0 ,i.e.

m (ti - t l n ) - ( 1 nSi - m) (nS.- M) 2  0

i=2 i=2

and

(t] 1 2 + (m 2 + n 2) -t 1 - - = 0E ti I- t nSi M E ti I nSi M) m 2M"

i=2 i=2 i

The root of this pair of non-linear equations gives the best values of m and

n . Again the Newton-Raphson technique is used to find the root.

Let

g1 (m,n)
rr

_ 2 _ 1Sm -tl nS - (in2 n2) i ~ - tl 2S
i=2 (ti t i i=2 / i n) (nS. - m)2

i2i=2 1

and

g2 (m,n)
r 1 2 2 2 r

(m2 +_n2)__t__ S.

=n i t, nS. - m i nS. -
1. E __ _+ (nS. M

i=2 i=2 1

Let (m, n) be the root and (M-, n) be an approximation to the root, then

M a- - y2 and n 2n I "
a - ay a2 _ Oy
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where a 9g2 (ffi ,f) 3g1(mt n)
am an

agl (m,n)

3m

ag2 (m,n)

y an

X = gI(fin,A) and

S= g2 (fn, a)

ag, (m,n)

3m

r 2r
= i - t - nS.'- m 2 n i - m (nS.- M) 2

i=2 i=2

r r

+ (m2 + n2) (S I - 2(m2 + n 2 ) ti - I- (nSi M)3
i=2 (nSi - m). i=2 -

3gl (m,n)

an

2m t -2n 2E ti I-_ nS i -M (nS. - in)2  fa I (nS. MS) )i=2 i=2 l (~ )

r r
+ 2(m + n2 E ti - 1nS. - m) i - (m2 + n2) 3M

iS=2( - m)i2 (nS. -m)4

ag2 (m,n) ag1 (m,n)

3m an
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2g2 (m,n)
ýn

(ti - t| I nSi -) 2 + 4n E ti -t I - (nS° m) 2

i=2 i--2 i

r S2 r 2?

-2(m2 +n) t- n nS. - m + (m2 + n2)

i=2 1 (nSi - m) i,-2 (nSi - m)

An initial estimate for this iteration can be obtained using the data of three

time points. For example, t , t 2  and t 3, then

(t 3 -t 2 )

(S2 - S 3 )(t 2 - t 1 )(t 3 - t1 )

and

S 3 (t 3 - t1 ) - S 2 (t 2 - ti)

(S 2 - S 3 )(t 2 - t 1 )(t 3 - t1 )

3.3 Calculation of missile trajectory

The missile trajectory is now calculated as in the theoretical solution.

The position vector of the missile at the time t in camera axes and with

respect to the camera origin is therefore

2V 2 [n(t - tI)Q + {m(t - tl) + 1} e,AJ(m2 + n)

The target origin and axes system is in general different to that of the camera,

therefore to complete the solution the trajectory has to be converted to this

new origin and axes system. The actual target origin is normally a nominal

position on the target, for example the centre of gravity of the aircraft.

This solution has been written into a computer program subroutine, a

listing and short description is given in Appendix B.

4 MISS DISTANCE PARAMETERS

This section gives the mathematics for the calculation of the normal

parameters required at the time of nearest miss. The time of nearest miss is

the time at which the range of the missile from the target is a minimum. The

parameters required at nearest miss are
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(a) Time t miss

(b) Range R miss

(c) Co-ordinates (Xmiss' Ymiss' Z )

(d) Direction cosine vector of the trajectory (k, m, n) and

(e) Velocity, assumed supplied from other sources.

Let the position of the missile, with respect to the target, at time t ,

be (x 1P YI' zI) and at time t 2  be (x 2 ' Y2 . z 2 ) Then the position of

the missile at time t is

(x0 + Lt, y0 + Mt, z 0 + Nt)

whert 2x - t1 X2

where x0 = x1 + 2 _ t ( - 2) = t t

' I tt 2 y 1 - tlY2
Y0  = Y1  + (Yl - Y2) =

t2 '1 t 2 tI t 2 - t1
t+ t(zI - t2 z

x2 - X Y2 -vY z2 -zI

L -t M t t and N t

L, M and N are velocity components.

The velocity of the missile is

V ={L-2 + 2  + N2 = tI J{(x2 x)2 + (Y 2 - Y)2 + (z 2 - Z 1 )2

and the direction cosine vector of the missile trajectory is given by

(k, m, n) = !(L,M,N)

+ 1

J •x 2 - X1) 2 + (Y 2 -Y l) 2 + (z2 z - ) Z 2ý (x 2 - xl' Y2 - Y I' z2 - Z 1).
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Now the range of the missile from the target is given by

R = Jý(x0 + Lt) 2 + (y0 + Mt) 2 + (z 0 + Nt)2}

This has a minimum when

dR 0d(R
dt (0 t

i.e. when

L(x 0 + Lt) + M(y0 + Mt) + N(z 0 + Nt) 0

i.e.

x0 L + y 0 M + z 0N -(L2 + M2 + N 2)t

V2= - Vt .

Therefore the time of nearest miss is

(x 0L + y 0M + z0 N) (x0 , + y0 m + z0 n)

miss V2 V

The range at tmiss is

Rmiss (X0 + Ltmiss)2 + (Y + Mtmiss 2 + (z0 +Nt 2

and the position co-ordinates are

Xmiss = x0 + Ltmiss

Ymiss = YO + Mtmiss

Z miss = z0 + Ntmiss

5 SOURCES OF ERROR

Throughout this section, let T be the length of time covered by the

single camera solution and during this period of time let

(a) R be the maximum range of the missile from the camera, and

(b) V be the average missile velocity.

OURICAL LY~W

ABERDEEN PR VOING GROUND. MD
STEAP-TL
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There are three sources of error for the single camera solution, in a

practical situation, these are:-

(a) Reading errors

Both time and angular data, have to be read from films. This can only

be done to a finite accuracy which depends on the camera system used.

The timing information on the Range's films can be read to an accuracy of

0.1 milliseconds, therefore the maximum percentage error in the calculated

trajectory data, due to a timing error is

2 x 0.000] x 100% 0.02 (T in seconds)
T T

Let a be the accuracy of the angular data read from the film in radians,

then the maximum percentage error is 100u% which is probably pessimistic since

the least squares technique used should reduce this error.

(b) The error in applying the model, required by the single camera

solution, to an actual trajectory

The missile can fail to satisfy the model for at least three reasons:-

(i) a lateral acceleration, of say 'a' m/s 2

2
(ii) a longitudinal acceleration, of say 'Z' m/s , and

(iii) a rotating camera axes system, say the axes system is

rotating at a rate of 'b' rad/s.

(N.B. The lateral and longitudinal accelerations are in general the combined

effects of both the missile and the camera moving.)

It can easily be shown that the maximum deviations from the model are

(1) '(•a(/ ) aT metres, due to the lateral acceleration
2 T2 216

(2) 2 /2 = 8 metres, due to the longitudinal acceleration

and

bV3)T\2  bVT2

() r = 8 metres, due to the rotating axes system.
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(c) The error in the velocity estimate

A 5% error in the velocity will produce a 5% error in the calculated

trajectory data. (It should be noted, that all the percentage errors quoted

above, apply only when the trajectory origin is identical to the camera origin.)

Given the characteristics (actual or theoretical) of the missile, target

and camera system (e.g. velocity, lateral accelerations, etc., it is therefore

possible to calculate the maximum error to be expected from using a single

camera solution. For example, consider the representative figures for a missile

fired against an aerial target, typical maximum values would be

R = 35 m

a = 150 m/s 2 (- 15 g)

k = 50 m/s ( 5 g)

b = 10°/s

a =

V = 700 m/s with a 5% error.

Then the maximum compounded error in position, assuming a typical time T

of 0.05 s, is approximately 2.27 m, of which 1.75 m is due to the velocity error.

It should be noted that this compounded error has its maximum value at the

extreme range from the camera and will be considerably less nearer the camera.

The main source of error for the single camera solution, in the example

quoted, is the velocity estimate. This is considered to be the situation for

most single camera solutions calculated at Aberporth. The reason being that the

tracking radars usually fail to give trajectory data and hence velocity data

during the period of the intercept.

When the trajectory data is calculated with respect to an origin and

axes system, other than that of the camera (e.g. if the target aircraft is

towing a decoy target behind it), additional errors can easily be introduced.

These errors are obviously dependent on the accuracy of the trajectory origin

and axes system with respect to those of the camera, but must be smaller for

origins nearer the camera.

6 CONCLUSION

The single camera solution puts fairly restrictive conditions on the

trajectory of the missile. These conditions limit the situations in which a

single camera solution can be used. This is in contrast with solutions

obtained from two or more cameras. For example, the single camera solution
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is unsuitable for obtaining trajectory data during the launch phase of a missile.

This is because the missile is undergoing substantial longitudinal acceleration

at relatively low speed, during this period.

Another restriction on the single camera solution is the fact that the

velocity of the missile relative to the camera must be supplied from an external

Source.

Nevertheless, taking these restrictions into account the single camera

solution can be very useful in obtaining trajectory data. This is particularly

so during the attack phase of a missile, when the missile trajectory normally

approximates to the model required by the single camera solution. The solution

is not specifically restricted to aerial or sea targets and will apply to any

single camera situation where the necessary extra information (timing, missile

velocity, etc.) is available.
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Appendix A

DETAILS OF THE 'NEWTON-RAPHSON' TECHNIQUE

Given here are the details for finding the root of a pair of non-linear

equations, using the Newton-Raphson technique.

Let the pair of non-linear equations be

fI (M,L) = 0

and

f 2 (M,L) = 0

Let (M, L) be the root and ( L, £) be an approximation to this root, then

af I M'L) ýfl (Rot)
fI (M,L) f fI (R,•) - 6M 3M 6L al

and

ff(L)f2 (ML) S _2____)

I 2I(M,L) 2 - am D L L

where 6M = -M and RL= L

Since

f I(ML) = f 2 (M,L) = 0

it follows that

f( (I')6f4 (M6)
fI(MpL) 6 am + 6L 3L

and

ff (RM' 6m) + Lf 2 (M'L)
f2(ML) • 6M 2M + 6L. 2

Let

af| (M'L) af I (MOL) 9f 2 (R{')

aM 3 L a M -Y

-f2 (M'ad,)
DL W f I (ROL) X and f2 •,•
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then

X • M + ý6L

and

Sy6M + w6L

Therefore

ýy- wai

and

L y - wa

therefore

and

L L -

This gives rise to an iterative process for calculating the root (M, L)
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Appendix B

SHORT DESCRIPTION AND LISTING OF THE SINGLE CAMERA SOLUTION SUBROUTINE SINCA

The subroutine SINCA performs the single camera solution described in

Section 3. Starting with a velocity estimate and at least three direction

cosine vectors and their corresponding times, the subroutine calculates

trajectory data and miss distance information with respect to any given origin

and axes system. Trajectory data is automatically produced at the times of the

direction cosine vectors and the time of nearest miss. Since trajectory data is

often required at special times, e.g. at fuse triggering time, there is an

option to supply data at other given times. The subroutine is called

SINCA (T, RL, RM, RN, IN, JN, X, V, RMISS, D)

T, RL, TM, RN, X, RMISS and D are arrays dimensioned as follows: T(25), RL(25),

RM(25), RN(25), X(3), RMISS(8) and D(3,3).

INPUT DATA

IN : number of direction cosine vectors (3 < IN < 24)

JN : number of special time points (IN+JN < 25)

T(I) (a) time of Ith direction cosine vector I = 1, IN

(b) time of a special time point I = IN+I, IN+JN

RL(I) : I component of Ith direction cosine vector I = 1, IN

RM(I) : m component of Ith direction cosine vector I = 1, IN

RN(I) n component of Ith direction cosine vector I = I, IN

X : (x, y, z) co-ordinates of the target, with respect to the axes system of the

direction cosine vectors and the camera origin.

D : rotation matrix

V : velocity estimate

OUTPUT DATA

.IN : as input

JN : as input

V : as input

X : as input
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D : as input

T(I) as input I = 1, IN+JN

RL(I) x co-ordinate of trajectory at time T(I), I = ], IN+JN

RM(I) y co-ordinate of trajectory at time T(I), I = 1, IN+JN

RN(): z co-ordinate of trajectory at time T(I), I = 1, IN+JN

RMISS miss distance parameters, as follows

RMISS(), time of nearest miss

RMISS(2), x co-ordinate of trajectory at time of nearest miss

RMISS(3), y co-ordinate of trajectory at time of nearest miss

RMISS(4), z co-ordinate of trajectory at time of nearest miss

RMISS(5), range at time of nearest miss

RMISS(6), I component of trajectory' direction cosine vector

RMISS(7), m component of trajectory direction cosine vector

RMISS(8), n component of trajectory direction cosine vector

// JO0

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0006 0006 0000

V2 M09 ACTUAL 16K CONFIG 16K

// FOR
*LIST ALL
*ONE WORD INTFGLŽm
*EXTENDED PRECISION
*NA>"E SINCA

** SINGLE CAMEKRA SOLUTION SUB,%OUTINE



162 Appendix B 27

SINGLE CAMERA SOLUTION SUBROUTINE

SUBROUTINE SINCAC TRL.Rf',tR'NIN,.JNXVRMISSoD)
DIMENSION TC25) ,RL(25) ,RM(25) .RNC25) .X(3) .RMISS(8) .0(393) .AW.)
15(25)

C CALCULATE INITIAL VALUES FOR (L#MtN)#ROTATING AXES IF NECESSARY
RLL=RM( 1) *RN( IN )-RN( 1) *RM( IN)
RMM=RN(1)*RL( IN)-RL(1)*RN( If)
Rt..N=RL(1)*RM(IN)-RM(l)*RL(IN)
RR=SQRT (RLL*FRLL+RjMMV*RMiM+RiNN*RNN)
RLL=RLL/RR
R lM R MM/ R
RNN=RNN/RR
K2=1
JI=1
IF(At3S(RNN)-0*1)100#100#107

100 IF(ABS(RMM)-0*l1)104o104#l01
101 KK=2
102 DO 103 I=19IN

RR=RN( I)
RN( I)=RM( I)*J

103 RMCI)=-RR*J
RR=RNN
RN N =R M * J
R ivj M= -R R* J
GO TO (108#109)tK2

104 KK=3
105 DO 106 I=19IN

RR=RN( I
Rfi(I)=RL( I)*J

106 RL(1)=-RR*J
RR=RN'N
RNN=RLL*J
RLL=-RR*j
GO TO (108#109)oK2

107 KK1l
108 IFCRNN)10#11,11
10 RLL=-RLL

R MMl= -R MM
RNN=-RNN'

C CALCULATE COEFFICIENTS FOR THE FIRST ITERATIONtTO FIND) (L9M)
11 DO 12 1=196
12 A(I)=O*O

DO 13 I=19IN
A(1)=A(1)+RL(I )*RL( I)
A(2)=AC2).,RM(I)*RM(I)
AC3)=A(3)+RN(!I)*RN( I)
A(4)=A(4).RL(I)*RM(I)
A(5)=A(5)+RN( I)*RL( I)

13 A(6)=A(6)+Ri( I )*RN( I)
AC1)=A(l)-A(3)
A(2)=A(2)-A(3)

C PERFORM FIRST ITERATIONtAND IMPROVE ESTIMATE FOR (L9M)
DO 14 1=1#30
RLL2=RLL*RLL
RN MM2= R MM * RMM
RNN2=RNN*RNN
RR=1*0/RNN
Fl=RLL*AC1)+RMM*A(4)+RR*((RNN2-RLL2)*A(5)-RMiM*RLL*A(6))
F2=RM*M*AC2)+RLL*A(4)+RR*((RNN2-RM,ýM2)*A(6)-RMM4f*RLL*A(5))
RR=RR/RN~N2
F3=AC4)+RR*C (RMM,,'ý2-1)*RMIM*A(5)+(RLL2-1)*RLL*AC6))
F4=A( 1)+RR*( (-3*RNN2-RLL2)*RLL*AC5)+(RMM2..1)*RMpI*A(6))
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SIN4GLE CAMERA SOLUTION SUBROUTIN~E

F5=A(2)+RR*c((-3*fRi\2-RN1Iiý'2)*R1M*A(6)+(RLL2-1)*RLL*A(5))
RR=F4*F5-F3*F3
D(~CF4*F2-F3*F1 ) /RR

DL C F1*F5-F3*F2) /RR
R IM! R% A -DN
RLL.=RLL-DL
RNN=SQRT( 1.O-RMM*Ri'lAt-RLL*RLL)
RR=SORT (DN*DN-+DL*DL)
IF C R~-O.O0C001) 15915 14

14 CCNTINUE
15 J=-l

K2=2
C ROTATE BACK To ORIGINAL AALS SYSTEM IF fNECE,)SARY

GO TO (l09tl02#l05)#KK
C CALCULATE -vODIFIED DIRECTION COSINE VECTORS AND THE VECTOR 1ý

109 DO 16 I=19IN
RR=RLL*RL (I) +RNI*RM (I) +RNN*RN (I)
NL( I )RL( I)-RR*RLL
RMNi( I )R V( I )R R* R MM
RN(I )=PN( I)-!RR*RNiN
R R = Q*ýT ( RL( I ) * RL( I )+R,"- I R*~ I )+R N I *R f I)
,RL (I) :RL (I) /RR
R,'4( I) R M,( I) R R

16 RNCI)=RN(I)/RR
R L( 2 5 ) = RY( 1 ) *RN N- RNC( 1 *R lv,%
Rv( 25 )=RN( 1) *RLL-RL( 1) *RNN
R N (2 5 ) =RL ( 1 ) * Rv-R i' (1 ) * FL L

C CALCULATE THE VARIABLLS S11)
DO 17 I=29IN
Rr=RLC 1)*RL( I)+RMC 1)*R'( I )+RNC 1)*RN( I)
F4=RLC 25 )*ýL( I)+RM,( 25)*RMi(I)+RN( 25 )*R.N(I)

17 SCI)=RR/F4
1=1 IN-1)/2

DL=1*O/(T( 1+1)-Ti 1))

Avi'M= ANN*S (I N) -D~eA
C PERFORIM- SECOND ITERATION AND IMPROVE ESTIVATE FOR (MoN)

DO 20 J=1930
DO 18 1=1#9

18 A(I)=0O*
DO 19 I=29IN
DL=1 o0 / (ANN*S ( I ) -AiM)
DM=T( I)-T(1)-DL
R t/ iA 2 = D M * D N1
RLL2=DL*DL
AC 1) =A( 1) +R10-12
A(2)=A(2)-DNI*RLL2
A(3)=A(3)+S( I)*L2*iv
A(4) =A(4)+RLL2*RLL2
A(5) =A( 5)-2*DM*RLL2*DL
AC6)=A(6)+S(I)*RLL2*RLL2
A(7)=A(7)+2*S( I)*DNý*RLLZ*DL
ACB)=A(8)-2*S( I)*S( I)*DL*DA*RLL2

19 A(9)=AC9)+S( I)*5( I)*RLL2*IRLL2
R LL =A M N!* A,'r1M+ AN N*AN N

F2=ANNI*AC1)+RLL*A(3)
F3=A(1)+4*AMNIM*A(2)+RLL*AC4)+RLL*A(5)
F4=2*(ANIMN*A(3).ANIN*A(2) )+RiLL*CA(7)-A(6))
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F5.A(I),4*ANtN*A(3)4RLL*IA(8)4A(9)I
RR.1.0/ 1F4*F4-F5*F3)
DR-(F4*FZ-F5*Fl)*PR
DL* IF4*F1-F3*F2 I*RR
AMM.AMMN-DM
ANN-AN N-DL
RR.SURT DSI#DM+DL*DL I
IF IRR-0.OOODOO1)21#21*ZD

20 CONTINUE
C CALCULATE TRA.JECTORY DATA AND MISS DISTANCE PARAMETERS

21 OL.SQRTIAMM*AMMtANN*ANN)
RR-V/OL
DL.AMM*CTIIN I-T II 1+1.0
DM.ANN*IT(INI-Ttl) I
RLI IN)RL1Z5)*DM*RL(1l*DL
RMI INI.RMI25I*DM4RM(I)CDL
RN(IN).RN(25I*DM+RN(IO*OL

RN(l).RR*RNI1)-XI3)
RLIIN).RR*RLI IN)-XI1I
RH IN).RR*RMI IN)-XIZI
RNIINI.RR*RN(IN)-X13)

DO 800 1-103
Al IIRL(lI*OtI I.1+RM-I1)*1 132I+RN(I)*0U.#31

800 Al Is31.RL(IINi*D(I Il+RMI IN)*DI IZ)+RNIINl*0( 1,31
Fl-I.0/fT(INI-TII))

RMM2 IA 5 AI21 Fl
RNiN2-1AI61-A(3) 1Fl
.1.1N+JIN
D0 25 I-1.J
RR-T Il-TI 11
RU II.A1114.RR*RLLZ
RMI I 1A121+RR*RMM2

25 RNIII-AI3I+RR*RNN2
RR--IRL(I *RLL2I.RMI 1)*RMM2tRNI 1)*RNN2 1/(VCVI
RMISSI1I-RR+T Il)
RMISS(2)-RLI 11.RR*RLLZ
RMISS(3I=RMt l)+RR*RMMZ
RMIS5I4).RNI 1I4RR*RNN2
RMISS(5I.SORTIRMISS(21*RMISSIZ)4RMISSIS)*RMISSIBI+RMISSI4(*RMISSI4
1))
RIIISSI61*RLL2/V
RMISS(71 .RMM2/V
RMISSl6)-RNN2/V
RETURN
END

VARIABLE ALLOCATIONS
AIR )-0018-0000 5IR )-0063-001B RLLIR )-0066 RMMIR ).0069 RNNNR )-006C RRIR ).006F

RLL2 (R 1-0072 RMM2 (R )-0075 I)NN29R )-0078 Fl(R 1-0078 FZIR )-007E F31R 1-0081
F41R )-0084 FS(R 1.0087 DOMIR )-008A DLIR (-0080 ANNIR )-0090 AMMIR 1-0093
?K2II )-00AZ J(I (00A3 KKII l-00A4 I11 I*ODA5

STATEMLNT ALLOCATIONS
100 -0203 101 -0208 102 -02OF 103 .0225 104 *0259 105 -025D 106 -0273 107 .02A7 108 -02A6 10 .02B0
11 -02BF 12 -02C3 13 -0318 14 -0494 15 -049D 109 -04AD 16 -053F 17 -0503 18 -062F 19 -06D6
20 -07E3 21 -07EC SOUl *OSE5 25 -0977

FEATURES SUPPORTED
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ONE WORD INTEGERS
EXTENDED PRECISION

CALLED SUDPROGRAMS
ESORT EABS EADD EAODX ESUB ESUBX EMPY EMPYX LL)IV ELD ELOX ESTO ESTOX ESBR ESBRX
EDVR FLOAT 3U8SC SNR SUBIN

,EAL CONSTANTS
.1OO00000OE 0O0-0B4 .OOOOQUOOUE OQ-OOB7 sIO000000E 01OOBA *IOOOOOOOOE-06.OOD8

INTEGER CONSTANTS
1.OOCO 2OOCI 3OOCZ 6000C3 30*00C4 9.OC 4-O0C6

CORE REOUIREMENTS FOR SINCA

COMMON 0 VARIABLES 180 PROGRAM 2408

RELATIVE ENTRY POINT ADDRESS IS OOC (HEX)

END OF CUMPILATION
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