UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER ENVPREDRSCHFAC 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Paper No. 5-74	
A Three-Parameter Model for Limited Area	5. TYPE OF REPORT & PERIOD COVERED
Forecasting	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)
Swedish Meteorological and Hydrological Institute, Stockholm, Sweden	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Environmental Prediction Research Facility Naval Postgraduate School Monterey, California 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Commander, Naval Air Systems Command	March 1974
Washington, D.C. 20361	112
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
AtmosphereAtmospheric PreNumericalLimited Area FoAtmospheric Circulation	diction precasting
20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)	
This report describes an operational que three-parameter model. The original model Dr. L. Bengtsson and has been used operation years at the Swedish Meteorological and Hy The improved model described in this report Ekman function and the effect of the flow as sensible and latent heat sources. Humi	asi-geostrophic was developed by conally for several drological Institute. port incorporates an over mountains as well dity and precipitation

UNCLASSIFIED

LUIRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (continued)

are also predicted by the model.

An additional feature is the optional inclusion in the vorticity equation of the terms which are usually considered negligible: (1) the advection of vorticity by the divergent wind, (2) the product of relative vorticity and divergence, (3) the vertical advection of vorticity, and (4) the twisting term.

The model can easily be adapted for different geographical areas with different grid lengths and also be integrated over different vertical layers. The lateral boundary values can be fixed or allowed to vary in time and thus it is possible to apply the so called nesting or telescoping technique. A special, relatively simple method to apply the nesting techniques is described.

AN FG FG CA	(1) (2) (2) (3) (5)	AD- 777 406 040200 120500 (U) ENVIRONMENTAL PREDICTION RESEARCH FACILITY (NAVY)
TL	(6)	A Three-Parameter Model for Limited Area Forecasting,
AU	(3) (10)	Bengtsson.L.
FG	(12)	nar 1774 1130 cwweeneeureFar-tach-paner-5-74
RC	(20)*	Unclassified report
DE	(23)	*Weather forecasting, *Lomputer programs, running, Numerical analysis, Atmospheric motion, Vortices,
The	(24)	
ID	(25)	*Numerical weather forecasting, FORTRAN 4 programming language, PROG 3P computer program, STEP 3P computer program, STEPEXT computer program, Primitive equations, Sensible heat, Latent heat
IC	(26)	(U)
AB	(27)	The report destribes an operational model was developed three-parameter model. The original model was developed by Dr. L. Bengtsson and has been used operationally for several years at the Swedish Meteorological and Hydrological Institute. The improved model described in this report incorporates an Ekman function and the effect of the flow over mountains as well as sensible and latent heat sources. Humidity and precipitation are also predicted by the model. (Modified author abstract)
AC	(28)	
CC	(35)	4ø7279

ENVIRONMENTAL PREDICTION RESEARCH FACILITY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

IN REPLY REFER TO EPRF/KGR:wc 5605 Ser:105 4 APR 1974

3-4 · .

Commanding Officer From: Distribution List To:

..

Subj: Research Publication; forwarding of

Encl: (1) "A Three-Parameter Model For Limited Area Forecasting," ENVPREDRSCHFAC Technical Paper No. 5-74, March 1974

Enclosure (1) is forwarded for information. 1.

26 Hamite G. D. HAMILTON

Distribution List: Environmental Prediction Research Facility Master Distribution List of 1 September 1973.

LIST II: SNDL Nos. A2A (Codes 410, 412, 480, 482, 460M and 462 only), A3 (OP-986G and OP-945 only), A4A (MAT-03416 only), B2 (RADM Kotsch only), E3A (Code 2620 only), E3B, FD1 (less Code N-5), FF38 (ENVSCIDEPT only), FF42 (less Oceanography Dept.), FKALA (AIR-5017, AIR-370C and AIR-05F only), FW1 (Codes 304 and 37 only), FW2 (CO FLENUMWEACEN only), FW3 and FW4 (Suitland and London only).

LIST III: Item Nos. 1, 2, 3, 5, 6 and 7.

LIST IV: Item Nos. 3 and 7.

Item Nos. 1 and 2. LIST V:

LIST VII.a: Item Nos. 1, 3, 5, 8, 14 and 15. VII.d: Item No. 5.

LIST IX.a: Item Nos. 1, 2, 3, 10, 17, 22 and 32. IX.b: Item No. 2.

Item Nos. 4, 8, 14 and 32. LIST X:

LIST XII: Item Nos. 1, 2, 5, 6 and 7.

LIST XIII: Item Nos. AUS-1, 5 (including Meteorology Research Center), CAN-3, DEN-1, ENG-1,5 and 14, FIN-1, FRA-1, GER-1 and 3, HGKG-1, INDIA-4 (including Meteor. Dept., New Delhi), ITL-2, JAP-1, NZEA-1, NOR-1 and 3, SOAF-1 and 2, SWE-1, 2, 3 and 4.

LIBRARY TECHNICAL REPORT SECTION NAVAL POSTGRADUATE SCHOOL MONTEREY, CALLEORNIA 93940

Approved for public release; Distribution unlimited

11

ENVPREDRSCHFAC Technical Paper No. 5–74

3

A THREE-PARAMETER MODEL FOR LIMITED AREA FORECASTING

by

DR. L. BENGTSSON

MARCH 1974

ENVIRONMENTAL PREDICTION RESEARCH FACILITY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

CONTENTS

ACKNO	OWLEDGEMENTS	2
1.	INTRODUCTION	3
2.	PROGNOSTIC EQUATIONS	7
3.	BOUNDARY CONDITION	15 15 16
4.	PARAMETERIZATION OF PHYSICAL PROCESSES	18 18 19
	Precipitation	21
5.	COMPUTATION OF VERTICAL MOTION	22
6.	NUMERICAL VALUES OF DIFFERENT CONSTANTS	24
7.	INTEGRATION OF THE COMPLETE VORTICITY EQUATION 7.1 General Aspects	25 25 29
8.	<pre>NUMERICAL SOLUTION OF THE 3-PARAMETER MODEL 8.1 General Aspects</pre>	33 33 34 36 37 40
9.	INITIALIZATION	48 49 50
10.	TIME INTEGRATION AND TREATMENT OF BOUNDARY CONDITIONS	51
11.	THE CRITERION OF ELLIPTICITY	54
REFE	CRENCES	55
APPE APPE APPE	ENDIX A: GENERAL PRINCIPLES OF PROGRAMMING ENDIX B: PROGRAM SPECIFICATIONS ENDIX C: PROGRAM LISTINGS	58 61 92

ACKNOWLEDGEMENTS

The author wishes to thank LT Byron Maxwell, USN for his careful computations and critical checking of the manuscript. The efforts of Mrs. Winona Carlisle who typed the manuscript are also gratefully acknowledged.

I. INTRODUCTION

Numerical weather prediction with the aid of primitive equations has now been performed operationally for several years (Reiser, 1969; Shuman, 1968). Forecasts for one and two days by primitive equations indicate some improvement when compared with forecasts with the quasi-geostrophic and filtered equations. However, it has not been shown in a clear and convincing way whether this is solely due to the unfiltered part of the equations or to purely numerical improvements such as improved vertical resolution, an alternating grid, and the introduction of new physical effects such as sensible heat, latent heat, radiation, etc. When the forecasts with the primitive models are extended further in time, the improvements achieved with these models seem to be more obvious.

If a quasi-geostrophic model is compared with a primitive model with a resolution of three to four vertical layers or less, it will be found that the computational time (and cost) for the forecast with the primitive model is roughly about ten times as large as for the quasi-geostrophic model, if explicit time-integration schemes are used. The grid lengths now in use for operational weather prediction are still about 300 to 400 km.

- 3 -

Since significant weather disturbances have dimensions which are only three to five times that size, it is obvious that the truncation errors in the computation of the horizontal finite differences are much too large.

That grid distances of 300 km and more have been used for such a long time is naturally due to insufficient computational capacity, but may also partly be due to accustomed routine. However, a decrease in the horizontal grid length to half the size implies an increase in the number of grid points by a factor of four for the same computation area.

Due to the criterion of Courant, Friedrichs and Lewy, the time step must be decreased by a factor of two in order to maintain computational stability. If the computations can be organized in the same way as for the larger grid, a halving of the grid length, therefore, implies an eight-fold increase in the computation time. From the operational point of view, therefore, a primitive model should be compared with a quasi-geostrophic model where the horizontal grid length has been decreased to half the size.

When the forecasting areas are small and cover only one third or less of a hemisphere, the horizontal boundaries will fall in meteorologically active areas. This disadvantage does not create any large problem for the filtered models and a moderate horizontal smoothing in the neighborhood of the boundaries is sufficient. For the primitive models the

- 4 -

problem is much worse, since high-amplitude gravity waves are generated at the boundaries. These waves propagate into the area and greatly affect the meteorological information. Except for some successful experiments (Bushby, 1967, 1968; Gerrity, 1969), there has not been reported any adequate technique to avoid this in the general case. For this reason, forecasts for restricted areas with the complete equations in operational use imply considerable difficulties.

It may now be argued that it is of no use to apply a quasi-geostrophic model to a fine mesh, since that means the model will predict (or try to predict) scales of motion characterized by large Rossby numbers. For instance, when the Rossby number is on the order of one, all the terms in the vorticity equation are of equal magnitude. The quasigeostrophic models will thus, according to this analysis, give rise to intolerably large errors for small and intense vortices, especially at low latitudes. However, it has been shown (Bengtsson and Moen, 1971) that substantial improvements in forecasts from quasi-geostrophic models are obtained if the grid size is reduced from 300 to 150 km.

The reason for this is that the higher order terms in the vorticity equation to a considerable degree cancel each other. It is only in the final stage of the cyclone development, when the flow becomes very deformed, that these terms become important.

- 5 -

It is also possible, as will be shown in this report, to include these terms in the integration and estimate them with the aid of quasi-geostrophic divergence.

It is the experience of the author that filtered models still are very useful for short-range predictions at medium and high latitudes. It is also very probable that unsuccessful predictions of especially rapid cyclogenesis are due to inaccuracies in the initial state and to unsatisfactory ways of including topographical effects, parameterization of dissipation, and the heating mechanisms. Recent comparisons performed in Sweden between filtered and primitive equation models support this view.

2. PROGNOSTIC EQUATIONS

The vorticity equation, thermodynamical equation and the continuity equation read:

$$\frac{\partial \zeta}{\partial t} = -W \cdot \nabla \eta - f \quad D; \qquad (2.1a)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial p}\right) = -W \cdot \nabla \left(\frac{\partial \phi}{\partial p}\right) - R(\Gamma_{d} - \Gamma)\frac{\omega}{p} - \frac{R}{c_{p}p} \left(\frac{\delta Q}{dt}\right); \qquad (2.1b)$$

$$\frac{\partial \omega}{\partial p} = -D; \qquad (2.1c)$$

where

 $W = ik X \nabla \phi,$ $D = \nabla \cdot W,$ $\Gamma_{d} = \frac{1}{\rho c_{p}}, \text{ and}$ $\Gamma = \frac{\partial T}{\partial p}.$

We will now introduce some special model assumptions. We assume that the atmosphere is bounded by a pressure surface near the surface of the earth, $p=p_0$, and an upper pressure surface, $p=p_1$, near the tropopause. We will further assume a third interjacent pressure surface, $p=p_m$, which separates the atmosphere in two layers. We will now represent the wind field in the following way:

$$W = V_{m} - 2V_{1} \frac{p - p_{m}}{p_{0} - p_{m}}; \quad \text{layer 1}$$

$$W = V_{m} + 2V_{2} \frac{p_{m} - p}{p_{m} - p_{1}}; \quad \text{layer 2}$$

$$W = (V_{m} + 2V_{2}) \frac{p}{p_{1}}; \quad \text{layer 3}$$

Figure 1. Vertical representation of the wind for a 3-parameter model.

According to the definition, equations for D and ζ will have the same form as those for W. Equation (2.1a) can now be integrated between p=p_o and p=0 with the boundary conditions ω (p=0)=0 and ω (p_o)= ω _s.

This gives a prognostic equation for the vertically integrated vorticity:

$$\frac{\partial}{\partial t} (\zeta_{m} + c_{1}\zeta_{2} - c_{2}\zeta_{1}) = - W_{m} \cdot \nabla (c_{3}\eta_{m} - c_{2}\zeta_{1} + c_{4}\zeta_{2} + c_{7}f)$$
$$- W_{1} \cdot \nabla (-c_{2}\eta_{m} + c_{5}\zeta_{1}) - W_{2} \cdot \nabla (c_{4}\eta_{m} + c_{6}\zeta_{2} + 2c_{7}f) + c_{8}f\omega_{s} \qquad (2.2)$$

where

$$\begin{aligned} c_1 &= \frac{2p_m}{2p_0 - p_1} & c_4 &= \frac{6p_m - 2p_1}{6p_0 - 3p_1} & c_7 &= \frac{p_1}{6p_0 - 3p_1} \\ c_2 &= \frac{2(p_0 - p_m)}{2p_0 - p_1} & c_5 &= \frac{8p_0 - 8p_m}{6p_0 - 3p_1} & c_8 &= \frac{2}{2p_0 - p_1} \\ c_3 &= \frac{6p_0 - 4p_1}{6p_0 - 3p_1} & c_6 &= \frac{8p_m}{6p_0 - 3p_1} \end{aligned}$$

The next two prognostic equations are computed from the difference between the vorticity equation at level p_m and p_o and the corresponding difference for p_1 and p_m . We will now get two vorticity equations valid for layer 1 and layer 2:

$$\frac{\partial \zeta_1}{\partial t} + (W_m - W_1) \cdot \nabla \zeta_1 + W_1 \cdot \nabla (\eta_m - \zeta_1) + f D_1 = 0; \qquad (2.3)$$

$$\frac{\partial \zeta_2}{\partial t} + (W_m + V_2) \cdot \nabla \zeta_2 + W_2 \cdot \nabla (\eta_m + \zeta_2) + f D_2 = 0. \qquad (2.4)$$

From these two equations we will now eliminate the divergencies D_1 and D_2 with the aid of the continuity equation (2.1c) and the thermodynamical equation (2.1b). We will first integrate the continuity equation between the two levels P_a and P_b :

$$\omega(\mathbf{p}_{a}) = \omega(\mathbf{p}_{b}) + \int_{\mathbf{p}_{a}} D d\mathbf{p}. \qquad (2.5)$$

9.

We will now put $p_a=p$, $p_b=p_o$ and $\omega(p_o)=\omega_s$ and will, thereby, get an expression for $\omega(p)$ in layer 1:

$$\omega(\mathbf{p}) = \omega_{s} + (\mathbf{p}_{o} - \mathbf{p}) D_{m} + \frac{(\mathbf{p} - \mathbf{p}_{m})^{2} - (\mathbf{p}_{o} - \mathbf{p}_{m})^{2}}{\mathbf{p}_{o} - \mathbf{p}_{m}} D_{1}.$$
 (2.6)

With $p_a = p$, $p_b = p_m$ and $\omega(p_m)$ from (2.6) we get the following expression for ω in layer 2:

$$\omega(p) = \omega_{s} + (p_{o}-p) D_{m} - (p_{o}-p_{m}) D_{1} + \frac{(p_{m}-p)^{2}}{p_{m}-p_{1}} D_{2}. \qquad (2.7)$$

With $p_a=p$, $p_b=0$ and $\omega(p=0)=0$ we will have for layer 3:

$$\omega(p) = -\frac{p^2}{2p_1} (D_m + 2D_2). \qquad (2.8)$$

Finally we get a relation between D_m , D_1 , D_2 and ω_s with the aid of an integration of the continuity equation from the top to the bottom of the atmosphere:

$$D_{m} = C_{2}D_{1} - C_{1}D_{2} - C_{8}\omega_{s}.$$
 (2.9)

We now introduce the stream function into the thermodynamical equation and integrate through layers 1 and 2. $(\Gamma_{d}-\Gamma)$ is assumed to be constant in every layer and $(\frac{\delta Q}{dt})_{pm} = (\frac{\delta Q}{dt})_{p_{1}} = 0.$

$$2f \frac{\partial \psi_{1}}{\partial t} = -2f W_{m} \cdot \nabla \psi_{1} + R(\Gamma_{d} - \Gamma)_{1} \frac{p_{o}}{p_{m}} \frac{\omega}{p} dp + \frac{R}{2c_{p}} ln(\frac{p_{o}}{p_{m}})(\frac{\delta Q}{dt})_{p_{o}};$$

$$2f \frac{\partial \psi}{\partial t}^2 = -2f W_m \cdot \nabla \psi_2 + R(\Gamma_d - \Gamma)_2 \int_{p_1}^{p_m} \frac{\omega}{p} dp. \qquad (2.10)$$

The integrals $\int \frac{\omega}{p} dp$ can be computed with the aid of equations (2.6), 2.7) and (2.9), and the system (2.10) can be written

$$m_1 D_1 + m_2 D_2 = H_1;$$

 $n_1 D_1 + n_2 D_2 = H_2;$
(2.11)

where

$$\begin{split} \mathbf{m}_{1} &= \frac{\mathbf{R}}{2} \left(\Gamma_{d} - \Gamma\right)_{1} \left[\frac{\mathbf{p}_{1} \left(\mathbf{p}_{o} - \mathbf{p}_{m}\right)^{2} + \mathbf{p}_{m}^{2} \left(2\mathbf{p}_{o} - \mathbf{p}_{1}\right)}{\left(\mathbf{p}_{o} - \mathbf{p}_{m}\right) \left(2\mathbf{p}_{o} - \mathbf{p}_{1}\right)} \cdot \ln \left(\frac{\mathbf{p}_{o}}{\mathbf{p}_{m}}\right) \\ &- \frac{2 \left(\mathbf{p}_{o} - \mathbf{p}_{m}\right)^{2}}{2\mathbf{p}_{o} - \mathbf{p}_{1}}^{2} + \frac{1}{2} \left(\mathbf{p}_{o} + \mathbf{p}_{m}\right) - 2\mathbf{p}_{m}\right]; \\ \mathbf{m}_{2} &= \frac{\mathbf{R}}{2} \left(\Gamma_{d} - \Gamma\right)_{1} \left[- \frac{2\mathbf{p}_{o}\mathbf{p}_{m}}{2\mathbf{p}_{o} - \mathbf{p}_{1}} \cdot \ln \left(\frac{\mathbf{p}_{o}}{\mathbf{p}_{m}}\right) + \frac{2\mathbf{p}_{m} \left(\mathbf{p}_{o} - \mathbf{p}_{m}\right)}{2\mathbf{p}_{o} - \mathbf{p}_{1}}\right]; \\ \mathbf{n}_{1} &= \frac{\mathbf{R}}{2} \left(\Gamma_{d} - \Gamma\right)_{2} \left[\frac{\mathbf{p}_{1} \left(\mathbf{p}_{o} - \mathbf{p}_{m}\right)}{2\mathbf{p}_{o} - \mathbf{p}_{1}} \ln \left(\frac{\mathbf{p}_{m}}{\mathbf{p}_{1}}\right) - \frac{2 \left(\mathbf{p}_{o} - \mathbf{p}_{m}\right) \left(\mathbf{p}_{m} - \mathbf{p}_{1}\right)}{2\mathbf{p}_{o} - \mathbf{p}_{1}}\right]; \end{split}$$

$$\begin{split} n_{2} &= \frac{R}{2} \left(\Gamma_{d} - \Gamma \right)_{2} \left[\left(\frac{P_{1}P_{m} \left(2P_{0} - P_{m} \right)}{\left(2P_{0} - P_{1} \right) \left(P_{m} - P_{1} \right)} \right) \ln \left(\frac{P_{m}}{P_{1}} \right) + \frac{2P_{m} \left(P_{m} - P_{1} \right)}{2P_{0} - P_{1}} \right) \\ &+ \frac{1}{2} \left(P_{m} + P_{1} \right) - 2P_{m} \right]; \\ H_{1} &= f \left(\frac{\partial \psi_{1}}{\partial t} + f W_{m} \cdot \nabla \psi_{1} - \frac{R}{4c_{p}} \ln \left(\frac{P_{0}}{P_{m}} \right) \cdot \left(\frac{\delta Q}{dt} \right)_{P_{0}} \right) \\ &- \frac{R}{2} \left(\Gamma_{d} - \Gamma \right)_{1} \left[- \frac{P_{1}}{2P_{0} - P_{1}} \ln \left(\frac{P_{0}}{P_{m}} \right) + \frac{2 \left(P_{0} - P_{m} \right)}{2P_{0} - P_{1}} \right] \right] \omega_{s} ; \\ H_{2} &= f \left(\frac{\partial \psi_{2}}{\partial t} + f W_{m} \cdot \nabla \psi_{2} - \frac{R}{2} \left(\Gamma_{d} - \Gamma \right)_{2} \left[- \frac{P_{1}}{2P_{0} - P_{1}} \ln \left(\frac{P_{m}}{P_{1}} \right) + \frac{2 \left(P_{m} - P_{1} \right)}{2P_{0} - P_{1}} \ln \left(\frac{P_{m}}{P_{1}} \right) \right] \right] \\ &+ \frac{2 \left(P_{m} - P_{1} \right)}{2P_{0} - P_{1}} \right] \omega_{s} . \end{split}$$

From the system (2.11) we can easily express the divergencies in an explicit way:

(2.12)

$$D_{1} = -a_{1}H_{1} + a_{2}H_{2};$$
$$D_{2} = b_{1}H_{1} - b_{2}H_{2};$$

where

$$a_{1} = \frac{-n_{2}}{m_{1}n_{2}-n_{1}m_{2}}; \qquad a_{2} = \frac{-m_{2}}{m_{1}n_{2}-n_{1}m_{2}}; \\ b_{1} = \frac{-n_{1}}{m_{1}n_{2}-n_{1}m_{2}}; \qquad b_{2} = \frac{-m_{1}}{m_{1}n_{2}-n_{1}m_{2}}.$$

Introducing these expressions for D_1 and D_2 into the prognostic equations (2.3) and (2.4) and expressing the wind and vorticity in terms of the stream function gives:

$$\nabla^{2} \frac{\partial \Psi_{1}}{\partial t} - a_{1} f^{2} \frac{\partial \Psi_{1}}{\partial t} + a_{2} f^{2} \frac{\partial \Psi_{2}}{\partial t} = - J(\Psi_{m}; \zeta_{1}) - J(\Psi_{1}; n_{m} - 2\zeta_{1}) + a_{1} f^{2} J(\Psi_{m}; \Psi_{1}) - a_{2} f^{2} J(\Psi_{m}; \Psi_{2}) - a_{3} f \omega_{S} - a_{1} f H \qquad (2.13)$$

$$\nabla^2 \frac{\partial \psi_2}{\partial t} - b_2 f^2 \frac{\partial \psi_2}{\partial t} + b_1 f^2 \frac{\partial \psi_1}{\partial t} = - J(\psi_m; \zeta_2) - J(\psi_2; n_m + 2\zeta_2)$$

$$- b_{1}f^{2}J(\psi_{m};\psi_{1}) + b_{2}f^{2}J(\psi_{m};\psi_{2}) + b_{3}f\omega_{s} + b_{1}fH \qquad (2.14)$$

Here we have

 $a_3 = a_1s_1 - a_2s_2;$ $b_3 = b_1s_1 - b_2s_2;$

where

$$s_{1} = \frac{R}{2}(\Gamma_{d} - \Gamma)_{1} \begin{bmatrix} -\frac{P_{1}}{2P_{o} - P_{1}} \ln(\frac{P_{o}}{P_{m}}) + \frac{2(P_{o} - P_{m})}{2P_{o} - P_{1}} \end{bmatrix};$$

$$s_{2} = \frac{R}{2}(\Gamma_{d} - \Gamma)_{2} \begin{bmatrix} -\frac{P_{1}}{2P_{o} - P_{1}} \ln(\frac{P_{m}}{P_{1}}) + \frac{2(P_{m} - P_{1})}{2P_{o} - P_{1}} \end{bmatrix};$$

$$H = \frac{R}{4c_{p}} \ln(\frac{P_{o}}{P_{m}}) (\frac{\delta Q}{dt})_{P_{o}} = h_{1} (\frac{\delta Q}{dt})_{P_{o}} \text{ with } h_{1} = \frac{R}{4c_{p}} \ln(\frac{P_{o}}{P_{m}}).$$

We will also introduce the stream functions into equation (2.2) and define ψ_M by $\psi_M = \psi_m - c_2 \psi_1 + c_1 \psi_2$. This results in the equation

$$\nabla^{2} \frac{\partial \psi_{M}}{\partial t} = - J(\psi_{m}; c_{3}n_{m} - c_{2}\zeta_{1} + c_{4}\zeta_{2} + c_{7}f) - J(\psi_{1}; -c_{2}n_{m} + c_{5}\zeta_{1})$$
$$- J(\psi_{2}; c_{4}n_{m} + c_{6}\zeta_{2} + 2c_{7}f) + c_{8}f\omega_{s}. \qquad (2.15)$$

The equations (2.13) through (2.15) now constitute our system of prognostic equations. The only thing which we now have to do is to find an expression for the non-adiabatic heat H, and the lower boundary condition, ω_s .

3. BOUNDARY CONDITIONS

3.1 LOWER BOUNDARY CONDITIONS

We now assume that ω_s can be separated into two parts; one part which depends upon the dissipation in the boundary layer ω'_s and one part which depends upon topography ω''_s . We thereby assume:

$$\omega_{\mathbf{s}} = \omega_{\mathbf{s}}^{\dagger} + \omega_{\mathbf{s}}^{"} \quad (3.1.1)$$

From the Ekman theory about the variation of the wind in the friction layer, we could easily derive the following expression:

$$\omega_{\rm s}^{\prime} = -g\rho_{\rm O}\sqrt{\frac{K}{2f}}\cdot F\cdot\zeta_{\rm O}$$
 where $F = 1 + c\cdot\sin\theta - c\cdot\cos\theta$,

the wind in the surface layer has a magnitude $c|W_0|$, the angle between the geostrophic wind and the surface wind is given by Θ , K is the turbulent coefficient of the viscosity, and ρ_0 is the density of the air at the surface. Inserting the following numerical values:

$$K = 10 \text{ m/s}; \quad g = 9.81 \text{ m/s}^2; \quad f = 10^{-4} \text{s}^{-1}; \quad T_0 = 280^{\circ} \text{K};$$

$$R = 287; \quad p_0 = 100 \text{ cb}; \quad \text{gives}$$

$$\omega'_{\text{s}} = -2.729597 \text{ F} \cdot \zeta_0 = -2.729597 \cdot \text{F}(\zeta_m - 2\zeta_1). \quad (3.1.2)$$

 $F(c, \theta)$ can be given a constant value in the model or we can also assume different values over land and sea.

The following values will be used:

Over land $\theta = 10^{\circ}$ and c = 0.78 gives F = 0.36635,

that is $\omega'_{s} = -1.\zeta_{0}$.

Over sea $\theta = 5^{\circ}$; c = 0.85 gives F = 0.22734,

that is,
$$\omega_{c}^{\prime} = 0.62055 \zeta_{0}$$
.

If k_2 is assumed to be that part of the air which is forced over the mountains, we get

$$\omega_{s}^{"} = k_{2} \nabla_{p} \cdot \nabla_{p} = k_{2} (\nabla_{m} - 2\nabla_{1}) \cdot \nabla_{p}$$

$$(3.1.3)$$

 $k_2 = 1$ will be used in the model.

The equations (3.1.1 - 3.1.3) now give the lower boundary condition for ω_s . For further information see Bengtsson (1969). This way of treating the topographical effect as given by equation 3.1.3 is quite unrealistic and seems to underestimate the effect of the topography. (This will be especially true for steep and/or small scale mountains.) A new way to treat mountains as impenetrable vertical barriers has recently been published (Egger, 1972). A similar way to include mountains in vertically integrated balanced models will be described by the author in a coming investigation.

3.2 LATERAL BOUNDARY CONDITIONS

The model can use two different kinds of lateral boundary conditions namely:

a. Constant Inflow

$$\frac{\partial \psi_1}{\partial t} = \frac{\partial \psi_2}{\partial t} = \frac{\partial \psi_m}{\partial t} = 0$$

 $\zeta_1(t) = \zeta_1(t=0)$ (= constant in time)

 $\zeta_2(t) = \zeta_2(t=0)$ (= constant in time) (3.2.1)

 $\zeta_{m}(t) = \zeta_{m}(t=0)$ (= constant in time)

b. Variable Inflow

The values for $\frac{\partial \psi_1}{\partial t}$, $\frac{\partial \psi_2}{\partial t}$, $\frac{\partial \psi_m}{\partial t}$, ζ_1 , ζ_2 , and ζ_m along the boundary are generated through an integration for a larger area which includes the actual area. Interpolation in time and space is necessary to syncronize the boundary values. A technical description of this is found in section 10.

4. PARAMETERIZATION OF PHYSICAL PROCESSES

4.1 SENSIBLE HEAT

In the computation of equation (2.10) we assume that $\frac{\delta Q}{dt}$ decreased linearly to 0 from p_0 to p_m . The sensible heat which is transported to the atmosphere from the underlying surface, is introduced in the following way:

$$\begin{pmatrix} \frac{\delta Q}{dt} \end{pmatrix}_{P_{O}} = (A_{1} | V_{O} | + A_{2}) (T_{S} - T_{O}) \text{ over sea, if } T_{S} > T_{O};$$

$$\begin{pmatrix} \frac{\delta Q}{dt} \end{pmatrix}_{P_{O}} = 0 \text{ over land and over ocean areas if } T_{S} \le T_{O};$$

$$(4.1.1)$$

where A_1 and A_2 are empirical constants $A_2 = 10A_1$

= 5.10^{-3} m(sec)⁻²(deg)⁻¹. T_s is the sea surface temperature and T_o is the air temperature near the sea surface.

An approximative temperature at the level $p_x = \frac{1}{2} (p_0 + p_M)$ is obtained through an integration of the hydrostatic equation:

$$T_{x} = \frac{2f_{o}}{R \ln (\frac{p_{o}}{p_{m}})} \psi_{1}.$$
 (4.1.2)

We now assume that Γ is constant in the layer and is 75% of $\Gamma_{\rm d}.$ We therefore get

$$T_{o} = T_{x} + 0.75 \Gamma_{d} \frac{1}{2} (p_{o} - p_{m}) = \frac{2f_{o}}{R \ln(\frac{p_{o}}{p_{m}})} \left[1 + \frac{0.75 R(p_{o} - p_{m})}{c_{p}(p_{o} + p_{m})} \right] \psi_{1}.$$
(4.1.3)

In equations (2.13) and (2.14) the sensible heating (H) was defined to be:

$$H = \frac{R}{4C_{p}} \ln \left(\frac{Po}{Pm}\right) \left(\frac{\delta Q}{dt}\right)_{Po}$$

Substitution of $(\frac{\delta Q}{dt})$ from equation (4.1.1) and using the expression for T₀ from equation (4.1.3) gives:

$$H = h_1 \cdot 10^{-2} (0.5 \cdot 10^{-1} |V_0| - 0.5) (T_s - h_2 \cdot \psi_1)$$
(4.1.4)

where

$$h_{1} = \frac{R}{4c_{p}} \ln \left(\frac{p_{o}}{p_{m}}\right) ;$$

$$h_{2} = \frac{2f_{o}}{R \ln \left(\frac{p_{o}}{p_{m}}\right)} \left[1 + \frac{0.75 R(p_{o} - p_{m})}{c_{p}(p_{o} + p_{m})}\right]$$

4.2 PROGNOSTIC EQUATION FOR HUMIDITY

The specific humidity can be predicted by the following equation:

$$\frac{\partial q}{\partial t} = -W \cdot \nabla q - \omega \frac{\partial q}{\partial p} + \varepsilon - r + A \nabla^2 q . \qquad (4.2.1)$$

Here ε denotes evaporation, r condensation, and A is the coefficient of dissipation. We will disregard ε and r will be introduced in a different way. Using the continuity equation we get the following prognostic equation:

$$\frac{\partial q}{\partial t} = - \nabla \cdot (q \ \nabla) - \frac{\partial}{\partial p} (q \omega) + A \nabla^2 q. \qquad (4.2.2)$$

- 19 -

Since our model has a very low vertical resolution we have to parameterize the vertical distribution of humidity. We will, therefore, use precipitable water as the prognostic variable. The precipitable water is defined as

$$p_{\mathbf{w}} = \int_{0}^{\infty} \rho_{\mathbf{w}} dz = \frac{1}{g} \int_{p_{\mathbf{m}}}^{p_{\mathbf{0}}} q dp \qquad (4.2.3)$$

where

 ρ_w = the density of water vapor and p_T is the pressure at the level over which we can disregard the humidity. (Here we have p_T = 30 cb and p_o = 100 cb.)

A new quantity

$$v = \frac{1}{p_0 - p_T} p_W$$
(4.2.4)

which may be called normalized precipitable water is introduced. We assume that q(x,y,p,t) = gE(p)w(x,y,t) where E(p)describes the vertical variation of q computed from the standard atmosphere under the assumption that the relative humidity is 50%. The expression (4.2.4) is now introduced into (4.2.2) and we then integrate with respect to p from p_0 to P_1 to give

$$\frac{\partial w}{\partial t} = -\nabla (\nabla w) - w d' \omega_s + A \nabla^2 w \qquad (4.2.5)$$

where

$$\widetilde{\mathbb{V}} = \frac{1}{p_0^{-p_T}} \int_{p_T}^{p_0} \mathbb{V}(p) \quad \mathbb{E}(p) \quad dp \text{ and } d' = \frac{\mathbb{E}(p_0)}{p_0^{-p_T}}$$

With $W = |kx\nabla \psi + \nabla \chi$ equation (4.2.5) can be written

$$\frac{\partial w}{\partial t} = - J(\tilde{\psi}, w) - \nabla \tilde{\chi} \cdot \nabla w - w \nabla^2 \tilde{\chi} - w d' \omega_s + A \nabla^2 w \qquad (4.2.6)$$

where

$$\tilde{\Psi} = e_m \Psi_m + e_1 \Psi_1 + e_2 \Psi_2$$
 and $\nabla^2 \tilde{\chi} = \tilde{D} = e_m D_m + e_1 D_1 + e_2 D_2$.

4.3 LATENT HEAT

There are two conditions for condensation:

- (a) $\bar{\omega}_1 < \omega_{tol}$ (where ω_{tol} is a given tolerance)
- (b) the relative humidity should exceed and be equal to 80%.

If these two conditions are valid, the latent heat is computed by the aid of expression (4.3.1)

$$H_{lat} = \frac{R}{4c_{p}} \ln \left(\frac{p_{o}}{p_{m}}\right) \left(\frac{\delta Q}{dt}\right)_{lat} = h_{l} \left(\frac{\delta Q}{dt}\right)_{lat}$$

where

(4.3.1)

$$\frac{\left(\frac{\delta Q}{dt}\right)_{lat} = -L \cdot \bar{\omega}_{l} F \text{ and } F = \frac{1}{1 + \frac{L}{c_{p}} \left(\frac{\partial q}{\partial t}^{X}\right)_{p}} \left[\left(\frac{\partial q^{X}}{\partial p}\right)_{T} + \frac{R}{c_{p}} \frac{T}{p} \left(\frac{\partial q^{X}}{\partial T}\right)_{p} \right]$$

 q^x is the maximum specific humidity. If the conditions (a) and (b) are not valid, we put $H_{lat} = 0$. Also see paragraph 8.4.

5. COMPUTATION OF THE VERTICAL MOTION

The integrated vertical motions in the two layers 1 and 2 are computed in the model. With the aid of the equation (2.6) and (2.9) we obtain:

$$\overline{\omega}_{1} = \frac{1}{p_{o}^{-p_{m}}} \int_{p_{m}}^{p_{o}} \omega dp = \frac{p_{o}^{+p_{m}^{-p_{1}}}}{2p_{o}^{-p_{1}}} \omega_{s} + \frac{\frac{1}{3}(2p_{1}^{-3}p_{m}^{-p_{o}})(p_{o}^{-p_{m}})}{2p_{o}^{-p_{1}}} D_{1} - \frac{p_{m}(p_{o}^{-p_{m}})}{2p_{o}^{-p_{1}}} D_{2};$$

$$(5.1)$$

$$\omega_1 = t_1 \omega_s + t_2 D_1 - t_3 D_2$$
.

In the same way we obtain from the equation (2.7) and (2.9):

$$\bar{\omega}_{2} = \frac{1}{p_{m}-p_{1}} \int_{p_{1}}^{p_{m}} \omega dp = \frac{p_{m}}{2p_{0}-p_{1}} \omega_{s} - \frac{p_{m}(p_{0}-p_{m})}{2p_{0}-p_{1}} D_{1} + \frac{\frac{1}{3}(2p_{0}-p_{1})(p_{m}-p_{1})-p_{m}(2p_{0}-p_{m}-p_{1})}{2p_{0}-p_{1}} D_{2}; \qquad (5.2)$$

$$\bar{\omega}_2 = t_4 \omega_s - t_3 D_1 + t_5 D_2$$
.

Here we have

$$t_{1} = \frac{p_{o}^{+}p_{m}^{-}p_{1}}{2p_{o}^{-}p_{1}}$$

$$t_{2} = \frac{1}{3} \frac{(2p_{1}^{-}3p_{m}^{-}p_{o}^{-})(p_{o}^{-}p_{m}^{-})}{2p_{o}^{-}p_{1}}$$

$$t_{3} = \frac{p_{m}^{-}(p_{o}^{-}p_{m}^{-})}{2p_{o}^{-}p_{1}}$$

$$t_{4} = \frac{p_{m}}{2p_{o}-p_{1}}$$

$$t_{5} = \frac{\frac{1}{3}(2p_{o}-p_{1})(p_{m}-p_{1}) - p_{m}(2p_{o}-p_{m}-p_{1})}{(2p_{o}-p_{1})}$$

The physical parameters are computed by the subroutine COEFF3P. (See appendix B to this report)

6. NUMERICAL VALUES OF THE CONSTANTS

For the levels $p_0 = 100 \text{ cb}$, $p_m = 50 \text{ cb}$, $p_1 = 30 \text{ cb}$ and the stabilities $(\Gamma_d - \Gamma)_1 = 0.422222$, $(\Gamma_d - \Gamma)_2 = 0.511111$ we get the following numerical values for the constants:

$$c_{1} = \frac{10}{17} = 0.588235 \quad m_{1} = -826.330 \qquad s_{1} = 28.230856$$

$$c_{2} = \frac{10}{17} = 0.588235 \quad m_{2} = -688.40 \qquad s_{2} = 10.645832$$

$$c_{3} = \frac{48}{51} = 0.941176 \quad n_{1} = -532.92 \qquad a_{3} = 0.044374$$

$$c_{4} = \frac{24}{51} = 0.470588 \quad n_{2} = -10.58.36 \qquad b_{3} = 0.012258$$

$$c_{5} = \frac{40}{51} = 0.784314 \quad a_{1} = 2.0828 \cdot 10^{-3} \qquad h_{1} = 0.495351 \cdot 10^{-1}$$

$$c_{6} = \frac{40}{51} = 0.784314 \quad a_{2} = 1.3546 \cdot 10^{-3} \qquad h_{2} = 0.110953 \cdot 10^{-5} \qquad h_{3} = 1.03552 \cdot 10^{-6} \qquad h_{4} = 0 \qquad h_{5} = 0.492929 \cdot 10^{-1} \qquad h_{6} = 1.03552 \cdot 10^{-6} \qquad h_{4} = 0 \qquad h_{5} = 0.492929 \cdot 10^{-1} \qquad h_{6} = 1.03552 \cdot 10^{-6} \qquad t_{1} = 0.705882 \qquad t_{2} = -18.627500 \qquad t_{3} = 14.705900 \qquad t_{4} = 0.294118 \qquad t_{5} = -28.627500$$

7. INTEGRATION OF THE COMPLETE VORTICITY EQUATION

7.1 GENERAL ASPECTS

Very little knowledge exists about the effect of the small order terms in the vorticity equation: the advection of vorticity by the divergent wind, $W\chi \cdot \nabla \zeta$; the product of relative vorticity and divergence, $\zeta \nabla \cdot W$; the vertical advection of vorticity, $\omega \frac{\partial \zeta}{\partial p}$; and the twisting term $\mathbb{k} \cdot (\frac{\partial W}{\partial p} x \nabla \omega)$.

If these terms are used it is necessary, in order to conserve the total energy for an adiabatic model, to use the complete balance equation. If this is not the case, the model will not conserve total energy and after a certain time the development starts to deteriorate. This judgment has been mainly <u>qualitative</u> and we do not know the size of the error due to this inconsistency. It may be that this error is relatively small in comparison to other errors, as for instance, uncertainties of the initial state, and uncertainties in the description of the dissipation and the heating mechanisms. Therefore, it is necessary to perform a more detailed study of the problem and base our decision on a quantitative investigation.

It is by no means evident that we should use the same kind of assumptions in the formulation of models for shortrange predictions (24 hours) as for models for medium- and long-range prediction. An example will illustrate this.

- 25 -

If one is interested in long-time integrations of the barotropic vorticity equation, it is necessary to use a finite difference expression which conserves kinetic energy, vorticity, and mean-squared vorticity. A finite difference expression which conserves these identities has been derived by Arakawa. However, if one is interested in short-range predictions, the so-called "Arakawa Jacobian" is not recommended since the phase-speed error is larger than the conventional finite difference analog to the Jacobian operator which only conserves vorticity. Experiments have shown that for forecasts up to four or five days it is not necessary to use an energy consistent Jacobian operator since the error in the kinetic energy is much smaller than errors due to other effects.

One of the problems which we have with the simplified vorticity equation is the over-prediction of anticyclogenesis. This seems due mainly to the lack of the term $\zeta \nabla \cdot W$ in the vorticity equation:

$$\frac{\partial \zeta}{\partial t} = \cdots - (f + \zeta) \nabla \cdot W. \tag{7.1.1}$$

In areas of convergence, relative vorticity is mostly positive, or will be after a short time. This means that the relative vorticity will increase faster in such areas if the complete expression (7.1.1) is included. On the other hand, in areas of divergence, the relative vorticity is mostly negative, or will be after some hours. If the complete expression is used, the relative vorticity will decrease more slowly than if we use the simplified expression. It is easily seen that this term will create an asymmetry in the vorticity pattern which is also observed in reality.

Also the vertical advection of vorticity seems to play an important role, especially in cyclone development. During the development of the cyclone the activity is mainly concentrated in two different areas.

One area is in front of the warm front or, later in the development, the occluded part of the front. The other area is found below the upper-air low or trough, where a special center of activity is created in the later stages of the cyclone development. During the development of the cyclone, an area of sinking motion is concentrated under the upperair low.

$$\frac{\partial \zeta}{\partial t} = -\omega \frac{\partial \zeta}{\partial p}$$
(7.1.2)

It is easily seen from the vorticity equation (7.1.2) that this effect will give an increase in the relative vorticity in areas of sinking motion and where the vorticity increases with height.

Upward motion over a surface low yields, in the same way, an increase in the vorticity for the levels above. Therefore the vertical advection of vorticity will <u>increase</u> the speed of occlusion. Figure 2 shows two different 12-hour

- 27 -

Two example 12-hour predictions with a 5-layer quasi-geostrophic model. Figure 2. predictions with a 5-layer quasi-geostrophic model. Solid lines indicate a prediction performed with a quasi-geostrophic energy consistent model. Dashed lines indicate a prediction where the terms $-(\zeta \nabla \cdot \nabla + \omega \frac{\partial \zeta}{\partial p})$ have been included.

7.2 DERIVATION OF THE FORECASTING EQUATIONS

The complete vorticity equation reads:

$$\frac{\partial \zeta}{\partial t} = -W_{\psi} \cdot \nabla \eta - \underbrace{W_{\chi} \cdot \nabla \eta}_{1} - f \nabla \cdot W_{\chi} - \underbrace{\zeta \nabla \cdot W_{\chi}}_{2} - \underbrace{\omega \frac{\partial \zeta}{\partial p}}_{3} + \underbrace{k \cdot (\frac{\partial W_{\psi}}{\partial p} \times \nabla \omega)}_{4}. (7.2.1)$$

Here V_{ψ} is the non-divergent wind and V_{χ} the divergent wind. The terms 1, 2, 3 and 4 are denoted non-geostrophic terms. Integrating through layer 1 by the representation of V, ζ and D given in section 2 yields

$$(\mathbf{p}_{O} - \mathbf{p}_{m}) \left[\frac{\partial \zeta_{m}}{\partial t} - \frac{\partial \zeta_{1}}{\partial t} \right] = (\mathbf{p}_{O} - \mathbf{p}_{m}) \left[- \mathcal{W}_{m} \cdot \nabla (\zeta_{m} - \zeta_{1} + f) + \mathcal{W}_{1} \cdot \nabla (\zeta_{m} + f) - \frac{4}{3} \mathcal{W}_{1} \cdot \nabla \zeta_{1} - f (\mathbf{D}_{m} - \mathbf{D}_{1}) - \zeta_{m} (\mathbf{D}_{m} - \mathbf{D}_{1}) + \zeta_{1} (\mathbf{D}_{m} - \frac{4}{3} \mathbf{D}_{1}) \right] + 2\zeta_{1} \overline{\omega}_{1} - 2 \mathcal{W} \cdot (\mathcal{W}_{1} \times \nabla \overline{\omega}_{1})$$

$$(7.2.2)$$

Integration through layer 2 and layer 3 yields in a similar way

$$(\mathbf{p}_{m} - \mathbf{p}_{1}) \left[\frac{\partial \zeta_{m}}{\partial t} + \frac{\partial \zeta_{2}}{\partial t} \right] = (\mathbf{p}_{m} - \mathbf{p}_{1}) \left[- W_{m} \cdot \nabla (\zeta_{m} + \zeta_{2} + \mathbf{f}) - W_{2} \cdot \nabla (\zeta_{m} + \mathbf{f}) - \frac{4}{3} W_{2} \cdot \nabla \zeta_{2} - \mathbf{f} (D_{m} + D_{2}) - \zeta_{m} (D_{m} + D_{2}) - \zeta_{2} (D_{m} + \frac{4}{3}D_{2}) \right]$$

$$+ 2\zeta_{2} \overline{\omega}_{2} - 2 \mathbb{k} \cdot (W_{2} \times \nabla \overline{\omega}_{2})$$

$$(7.2.3)$$

$$\frac{1}{2}p_{1}\left[\frac{\partial\zeta_{m}}{\partialt}+2\frac{\partial\zeta_{2}}{\partialt}\right] = \frac{1}{2}p_{1}\left[-\left(\nabla_{m}\pm2\nabla_{2}\right)\cdot\nabla f - \frac{2}{3}\left(\nabla_{m}\pm2\nabla_{2}\right)\cdot\nabla\left(\zeta_{m}\pm2\zeta_{2}\right)\right] - f\left(D_{m}\pm2D_{2}\right) - \frac{2}{3}\left(\zeta_{m}\pm2\zeta_{2}\right)\left(D_{m}\pm2D_{2}\right)\right] - \left(\zeta_{m}\pm2\zeta_{2}\right)\overline{\omega}_{3} + ik\cdot\left\{\nabla_{m}\pm2\nabla_{2}\right)\cdot\nabla\overline{\omega}_{3}\right\}$$
(7.2.4)

where $\bar{\omega}_1$ and $\bar{\omega}_2$ are given in (5.1) and (5.2) and $\bar{\omega}_3$ is given by:

$$\bar{\omega}_3 = \frac{1}{p_1} \int_{0}^{p_1} \omega dp.$$
 (7.2.5)

If we now add (7.2.2), (7.2.3) and (7.2.4) and divide by $\frac{2p_o - p_1}{2}$, we get a prognostic equation for the vertically integrated mean vorticity. From now on we will only keep the non-geostrophic terms on the right hand side of the equation.

$$\frac{\partial}{\partial t} (\zeta_{m} + c_{1}\zeta_{2} - c_{2}\zeta_{1}) = \{-(W_{\chi})_{m} \cdot \nabla (c_{3}\eta_{m} - c_{2}\zeta_{1} + c_{4}\zeta_{2} + c_{7}f) \\ -(W_{\chi})_{1} \cdot \nabla (-c_{2}\zeta_{m} + c_{5}\zeta_{1}) - (W_{\chi})_{2} \cdot \nabla (c_{4}\eta_{m} + c_{6}\zeta_{2} + 2c_{7}f) \}_{1} \\ + \{c_{8}\zeta_{m}\omega_{s} + c_{2}\zeta_{1}(D_{m} - \frac{4}{3}D_{1}) - \zeta_{2}(c_{4}D_{m} + c_{6}D_{2}) + \zeta_{m}(c_{7}D_{m} + 2c_{7}D_{2}) \}_{2} \\ + c_{8}\{2\zeta_{1}\overline{\omega}_{1} + 2\zeta_{2}\overline{\omega}_{2} - (\zeta_{m} + 2\zeta_{2})\overline{\omega}_{3}\}_{3} + c_{8}\{|k \cdot [-2W_{1}x\nabla\overline{\omega}_{1} - 2W_{2}x\nabla\overline{\omega}_{2} + (W_{m} + 2W_{2})x\nabla\overline{\omega}_{3}]\}_{4}$$

$$(7.2.6)$$

The two remaining prognostic equations are computed from the difference between the vorticity equation for p_m and p_o and the difference between the vorticity equation for p_1 and p_m . We will then have two vorticity equations valid for layer 1 and layer 2 respectively. The geostrophic terms are omitted.
$$\frac{\partial \zeta_{1}}{\partial t} = - \{ ((\mathbb{W}_{\chi})_{m} - (\mathbb{W}_{\chi})_{1}) \cdot \nabla \zeta_{1} + (\mathbb{W}_{\chi})_{1} \cdot \nabla (\mathfrak{n}_{m} - \zeta_{1}) \}_{1} \\ - \{ (\zeta_{m} - 2\zeta_{1})_{1} D_{1} + \zeta_{1} D_{m} \}_{2} + \{ \frac{\zeta_{1}}{P_{0} - P_{m}} (\omega_{m} - \omega_{s}) \}_{3} \\ - \{ (\frac{1}{P_{0} - P_{m}} \mathbb{I}_{k} \cdot [(\mathbb{W}_{\psi})_{1} \times \nabla (\omega_{m} - \omega_{s})] \}_{4}$$
(7.2.7)

$$\frac{\partial \zeta_{2}}{\partial t} = - \{ (\langle W_{x} \rangle_{m} + \langle W_{x} \rangle_{2}) \cdot \nabla \zeta_{2} + \langle W_{x} \rangle_{2} \cdot \nabla (\eta_{m} + \zeta_{2}) \}_{1} \\ - \{ (\zeta_{m} + 2\zeta_{2}) D_{2} + \zeta_{2} D_{m} \}_{2} + \{ \frac{1}{p_{m} - p_{1}} \zeta_{2} - (\omega_{1} - \omega_{m}) \}_{3} \\ - \{ \frac{1}{p_{m} - p_{1}} | k \cdot [(W_{\psi}) 2^{x \nabla} (\omega_{1} - \omega_{m})] \}_{4}$$
(7.2.8)

Subscript 1 indicates contribution from $W_{\chi} \cdot \nabla \eta$ Subscript 2 indicates contribution from $\zeta \cdot \nabla W$ Subscript 3 indicates contribution from $\omega \frac{\partial \zeta}{\partial p}$ Subscript 4 indicates contribution from $|k \cdot (\frac{\partial W}{\partial p} x \nabla \omega)$ $\omega_{\rm m}$ and $\omega_{\rm 1}$ are the vertical motion at level $p_{\rm m}$ and $p_{\rm 1}$ respectively.

The non-geostrophic terms will be approximated by the divergence computed from the geostrophic part of the equations for the preceeding time step.

We can now express the forecasting equations in the following formal way (compare (2.2, 2.13 and 2.14).

$$\nabla^{2} \left\{ \frac{\partial}{\partial t} \left(\psi_{m} + c_{1} \psi_{2} - c_{2} \psi_{1} \right) \right\} = F_{mG}$$

+ $F_{m1} + F_{m2} + F_{m3} + F_{m4}$ (7.2.9)

- 31 -

$$\nabla^{2} \frac{\partial \psi_{1}}{\partial t} - a_{1}f^{2} \frac{\partial \psi_{1}}{\partial t} + a_{2}f^{2} \frac{\partial \psi_{2}}{\partial t} = F_{1G}$$

$$+ F_{11} + F_{12} + F_{13} + F_{14}$$
(7.2.10)
$$\nabla^{2} \frac{\partial \psi_{2}}{\partial t} - b_{2}f^{2} \frac{\partial \psi_{2}}{\partial t} + b_{1}f^{2} \frac{\partial \psi_{1}}{\partial t} = F_{2G} + F_{21} + F_{22} + F_{23} + F_{24}$$
(7.2.11)

 F_{mG} , F_{1G} and F_{2G} are the geostrophic and non-adiabatic terms. They correspond to the right hand part of the equations 2.2, 2.13 and 2.14.

The non-geostrophic terms are the same as in the equations (7.2.6), (7.2.7) and (7.2.8).

8. NUMERICAL SOLUTION OF THE 3-PARAMETER MODEL

8.1 GENERAL ASPECTS

The equation of the model will be applied on a polarstereographic projection. The polar-stereographic plane is assumed to cut the sphere at a latitude ϕ_0 . In the numerical computations ϕ_0 is put equal to 60°N, however, other values of ϕ_0 can easily be chosen. The grid-distance d can also be chosen arbitrarily. For further details see the program description in Appendix B.

The computational area can have any form, from an irregular octagon to a square. The only geometrical condition is that the inner angles of the area must be 90° or 135°.

The coordinate axis of the grid is positively oriented (see Figure 3). The computational area is specified by the coordinates of the corner points $(x_1/y_1 \cdots x_8/y_8)$ and by the coordinates of the north pole (x_{pole}/y_{pole}) .

If the area is reduced to a rectangle $x_1 = x_2$, $y_1 = y_2$, $x_3 = x_4$, $y_3 = y_4$, etc.

8.2 FINITE-DIFFERENCES

In order to transform the differential equations to finite-difference equations we will introduce the following finite-difference notation and operators (α and β are arbitrary quantities):

$$x \approx i\Delta s$$

$$y \approx j\Delta s$$

$$t \approx \tau\Delta t$$

$$f(x,y,t) \approx f_{i,j}^{T}$$

$$\nabla^{2}\alpha \approx \frac{1}{d^{2}} \nabla^{2}\alpha$$

$$(8.2.1a)$$

$$J(\alpha,\beta) \approx \frac{1}{4d^{2}} J(\alpha,\beta)$$

$$(8.2.1b)$$

$$\frac{\partial \alpha}{\partial t} \approx \frac{\Delta^{T} \alpha}{\epsilon \Delta t}$$

$$(8.2.1c)$$

$$(\nabla^{2} \alpha)_{ij} = \alpha_{i+1,j} + \alpha_{i-1,j} + \alpha_{i,j+1} + \alpha_{i,j-1} - 4\alpha_{ij} \quad (8.2.2a)$$

$$J_{i}(\alpha;\beta) = (\alpha_{i+1} - \alpha_{i-1})_{j}(\beta_{j+1} - \beta_{j-1})_{i}$$

$$- (\alpha_{j+1} - \alpha_{j-1})_{i}(\beta_{i+1} - \beta_{i-1})_{j} \quad (8.2.2b)$$

$$\tau = 0 \text{ yields } \alpha^{\frac{1}{2}} - \alpha^{0} \text{ and } \varepsilon = \frac{1}{2}$$

$$\tau = \frac{1}{2} \text{ yields } \alpha^{-\alpha} \text{ and } \varepsilon = \frac{1}{2}$$

$$\tau = \frac{1}{2} \text{ yields } \alpha^{1} - \alpha^{0} \text{ and } \varepsilon = 1$$

$$\tau \ge 1 \text{ yields } \alpha^{t+1} - \alpha^{t-1} \text{ and } \varepsilon = 2 \qquad (8.2.2\varepsilon)$$

Introducing the map-scale factor $m=\frac{1+\sin\varphi_O}{1+\sin\varphi}$ and inserting the quantity μ = $(\frac{m}{d})^2$ we get:

$$\Psi^{2}(\Delta \psi_{1}) - a_{1} \frac{f^{2}}{\mu} (\Delta \psi_{2}) + a_{2} \frac{f^{2}}{\mu} (\Delta \psi_{2}) = F_{1G}, \qquad (8.2.3)$$

$$\mathbb{V}^{2}(\Delta \psi_{2}) - b_{2} \frac{f^{2}}{\mu} (\Delta \psi_{2}) + b_{1} \frac{f^{2}}{\mu} (\Delta \psi_{1}) = F_{2G}, \qquad (8.2.4)$$

$$\nabla^2 (\Delta \psi_{\mathrm{M}}) - \frac{\mathrm{q}}{\mu} (\Delta \psi_{\mathrm{M}}) = \mathrm{F}_{\mathrm{mG}}. \qquad (8.2.5)$$

q is an empirical constant to adjust for the very long waves, q = $0.75 \cdot 10^{-12} \text{m}^{-2}$.

Here we have (for simplicity we from now on put J = J):

$$\begin{split} \mathbf{F}_{1G} &= \mathbf{F}_{1} + \mathbf{F}_{1}, \\ \mathbf{F}_{2G} &= \mathbf{F}_{2} + \mathbf{F}_{2}, \\ \mathbf{F}_{1} &= -\epsilon \Delta t \cdot \frac{f}{\mu} (\mathbf{a}_{3} \mathbf{\omega}_{s} + \mathbf{a}_{1} \mathbf{H}), \\ \mathbf{F}_{1} &= -\epsilon \Delta t \frac{1}{4} \left[\mathbf{J}_{1} + \mathbf{J}_{2} + \mathbf{f}^{2} (\mathbf{a}_{2} \mathbf{J}_{4} - \mathbf{a}_{1} \mathbf{J}_{3}) \right], \\ \mathbf{F}_{2} &= -\epsilon \Delta t \frac{f}{\mu} \left(\mathbf{b}_{3} \mathbf{\omega}_{s} + \mathbf{b}_{1} \mathbf{H} \right), \\ \mathbf{F}_{2} &= -\epsilon \Delta t \frac{1}{4} \left[\mathbf{J}_{5} + \mathbf{J}_{6} + \mathbf{f}^{2} (\mathbf{b}_{1} \mathbf{J}_{3} - \mathbf{b}_{2} \mathbf{J}_{4}) \right], \\ \mathbf{F}_{mG} &= -\epsilon \Delta t \frac{1}{4} \left[\mathbf{J}_{7} + \mathbf{J}_{8} + \mathbf{J}_{9} - 4 \frac{f}{\mu} \mathbf{c}_{8} \mathbf{\omega}_{s} \right]. \end{split}$$

We further have:

$$\beta_{2} = \eta_{m} - 2\zeta_{1},$$

$$\beta_{6} = \eta_{m} + 2\zeta_{2},$$

$$\beta_{7} = c_{3}\eta_{m} - c_{2}\zeta_{1} + c_{4}\zeta_{2} + c_{7}f,$$

$$\beta_{8} = -c_{2}\eta_{m} + c_{5}\zeta_{1};$$

$$\beta_{9} = c_{4}\eta_{m} + c_{6}\zeta_{2} + 2c_{7}f,$$

$$- 35$$

$$J_{1} = J(\psi_{m}; \zeta_{1}),$$

$$J_{2} = J(\psi_{1}; \beta_{2}),$$

$$J_{3} = J(\psi_{m}; \psi_{1}),$$

$$J_{4} = J(\psi_{m}; \psi_{2}),$$

$$J_{5} = J(\psi_{m}; \zeta_{2}),$$

$$J_{6} = J(\psi_{2}; \beta_{6}),$$

$$J_{7} = J(\psi_{m}; \beta_{7}),$$

$$J_{8} = J(\psi_{1}; \beta_{8}),$$

$$J_{9} = J(\psi_{2}; \beta_{9}),$$

$$J_{10} = J(\psi_{m} - 2\psi_{1}; p_{s}),$$

$$\omega_{s} = \frac{\mu}{4} J_{10} - c_{f} (\zeta_{m} - 2\zeta_{1}).$$

 c_{f} is an empirical constant and a function of the exchange coefficient of momentum in the boundary layer.

8.3 COMPUTATION OF SENSIBLE HEAT

Equation (4.1.4) reads in finite-difference form:

$$H_{SENS} = 0.5 \cdot 10^{-2} h (0.1) \sqrt{\frac{\mu}{4} ((A_x \psi_0)^2 + (A_y \psi_0)^2)} + 1) (T_s - h_2 \psi_1)}$$

over ocean, if $(T_s - h_2 \psi_1) > 0$, (8.3.1)
$$H_{SENS} = 0 \text{ over land and if } (T_s - h_2 \psi_1) < 0$$
.
$$A_x \psi_0 = [\psi_m(i+1) - 2\psi_1(i+1)] - [\psi_m(i-1) - 2\psi_1(i-1)]$$

$$A_y \psi_0 = [\psi_m(j+1) - 2\psi_1(j+1)] - [\psi_m(j-1) - 2\psi_1(j-1)]$$

8.4 COMPUTATION OF LATENT HEAT (See Gambo 1963)

The latent heat is introduced in the model by the expression:

$$\begin{split} H_{LAT} &= -hL\omega^{*}F^{*} & \text{if } \bar{\omega}_{1} < -\delta_{1} \\ H_{LAT} &= 0 & \text{if } \bar{\omega}_{1} > -\delta_{1} \\ H_{LAT} &= 0 & \text{if } \frac{r}{\epsilon\Delta t} < \text{tolerance} \\ \omega^{*} &= -(\delta_{1}+\delta_{2}) & \text{if } \bar{\omega}_{1} < -(\delta_{1}+\delta_{2}) \\ \omega^{*} &= -|\frac{\bar{\omega}_{1}^{2}}{\delta_{1}+\delta_{2}}| & \text{if } -(\delta_{1}+\delta_{2}) < \bar{\omega}_{1} < -\delta_{1} \end{split}$$
(8.4.2)

 δ_1 and δ_2 are here two tolerances with the same dimension as $\bar{\omega}_1$, r is the precipitation, and δ_2 is introduced for operational purposes.

$$F^{*} = F^{*}(p,T) = \frac{\varepsilon \frac{T}{p} E(T) \left[\frac{\varepsilon L}{c_{p}} - T\right]}{pT^{2} + \frac{\varepsilon^{2} L^{2}}{C_{p}R} E(T)}$$
(8.4.3)

$$\frac{\varepsilon L}{R} \left(\frac{1}{T_{o}} - \frac{1}{T} \right)$$

$$E(T) = E_{o}e$$

$$\varepsilon = 0.622$$

$$L = 2.5 \cdot 10^{6}$$

$$P = P_{mean} = \frac{P_{m} + P_{o}}{2}$$

$$C_{p} = 1004$$

$$T_{o} = 273$$

$$E_{o} = 0.611$$

$$T = \frac{2f_{o}}{Rln(\frac{P}{P_{m}})}\psi_{1} = h_{6}\psi_{1}$$

8.4.1 Computation of \tilde{W} and \tilde{D}

We will compute the humidity in the layer $P_0 = 100$ cb and $P_T = 30$ cb; defining \hat{W} as

$$\widetilde{W} = \frac{1}{70} \int_{30}^{100} W(P) E(P) dp$$

and inserting the wind profile yields

$$\tilde{\mathbb{W}} = e_{m} \mathbb{W}_{m} + e_{1} \mathbb{W}_{1} + e_{2} \mathbb{W}_{2}$$
 (8.4.4)

where

$$\begin{aligned} \mathbf{e}_{m} &= \frac{1}{70} [15E(100) \mathbf{a}_{100} + 25E(70) \mathbf{a}_{70} + 20E(50) \mathbf{a}_{50} + 10E(30) \mathbf{a}_{30}], \\ \mathbf{e}_{1} &= \frac{1}{70} [15E(100) \mathbf{b}_{100} + 25E(70) \mathbf{b}_{70} + 20E(50) \mathbf{b}_{50} + 10E(30) \mathbf{b}_{30}], \\ \mathbf{e}_{2} &= \frac{1}{70} [15E(100) \mathbf{c}_{100} + 25E(70) \mathbf{c}_{70} + 20E(50) \mathbf{c}_{50} + 10E(30) \mathbf{c}_{30}]. \\ \end{aligned}$$

$$(8.4.5)$$

The constants a_p , b_p and c_p , where p assumes the values 100, 70, 50, 30 are computed for the three following alternatives:

I II III

$$P_{m} \leq p \leq p_{0} \qquad P_{1} \leq p < p_{m} \qquad 0 \leq p < p_{1}$$

$$a_{p} = 1 \qquad a_{p} = 1 \qquad a_{p} = p$$

$$b_{p} = -\frac{2(p-p_{m})}{p_{0}-p_{m}} \qquad b_{p} = 0 \qquad b_{p} = 0$$

$$c_{p} = 0 \qquad c_{p} = \frac{2(p_{m}-p)}{p_{m}-p_{1}} \qquad c_{p} = \frac{2p}{p_{1}}$$

E(100) = 2.5415, E(70) = 0.9683, E(50) = 0.3527, E(30) = 0.0613

Correspondingly we get

$$D = e_m D_m + e_1 D_1 + e_2 D_2 = (e_1 + e_m c_2) D_1 + (e_2 - e_m c_1) D_2 - e_m c_8 w_e$$

8.4.2 Computation of Precipitation

Equation (4.2.6) reads in finite-difference form (the term $\nabla \tilde{\chi} \nabla w$ disregarded and w replaced with q):

$$q^{\tau+1} = q^{\tau-1} + \varepsilon \Delta t H_{q}^{\tau},$$

$$H_{q}^{\tau} = -\frac{\mu}{4} J(\tilde{\psi}^{\tau}; q^{t}) - q^{\tau} (\tilde{D}^{\tau} + dw_{s}^{\tau}) + A_{diff} \psi^{\psi^{2}} q^{\tau}. \qquad (8.4.6)$$

The precipitation is computed in the following way (precipitation is indicated by r) :

$$q_{SAT} = q(\bar{T}_{\psi}) = q(h_3\psi_1+h_4\psi_2)$$

If $(q^{\tau+1}-0.8 q_{SAT}) > 0$ then $q^{\tau+1} = 0.8 q_{SAT}'$
 $r = \Delta p(q^{\tau+1}-0.8q_{SAT}) .$
If $(q^{\tau+1}-0.8 q_{SAT}) < 0$ then $r = 0$ and if

$$(q^{\tau+1}-0.2q_{SAT}) < 0$$
 then $q_{mod}^{\tau+1} = 0.2 q_{SAT}$. (8.4.7)

r is accumulated for every timestep and printed out at certain prescribed times. See Appendix B.

8.5 NUMERICAL SOLUTION OF THE NON-GEOSTROPHIC TERMS

The finite difference analogues for (7.2.9), (7.2.10) and (7.2.11) read:

$$\nabla^{2} (\Delta \psi_{M}) - \frac{q}{\mu} (\Delta \psi_{M}) = F_{mG} + \frac{\varepsilon \Delta t}{\mu} \frac{4}{\varepsilon r} F_{mi}$$

$$\nabla^{2} (\Delta \psi_{M}) - a \frac{f^{2}}{\mu} (\Delta \psi_{M}) + a \frac{f^{2}}{\mu} (\Delta \psi_{M}) = F_{mi} + \frac{\varepsilon \Delta t}{r} \frac{4}{r} F_{mi}$$

$$(8.5.1)$$

$$^{2} (\Delta \psi_{1}) - a_{1 \mu} \stackrel{\underline{r}}{(\Delta \psi_{1})} + a_{2 \mu} \stackrel{\underline{r}}{(\Delta \psi_{2})} = F_{1G} + \frac{\varepsilon \Delta t}{\mu} \stackrel{\Sigma}{\underset{i=1}{\Sigma}} F_{1i}$$

$$\nabla^{2} (\Delta \psi_{2}) - b_{2} \frac{f^{2}}{\mu} (\Delta \psi_{2}) + b_{1} \frac{f^{2}}{\mu} (\Delta \psi_{1}) = F_{2G} + \frac{\varepsilon \Delta t}{\mu} \frac{4}{\sum_{i=1}^{\Sigma} F_{2i}}$$
(8.5.2)
(8.5.3)

$$F_{m1} = -\frac{\mu}{2} \{ \Psi \chi_{m} \cdot \Psi [c_{3}(\zeta_{m} + f) - c_{2}\zeta_{1} + c_{4}\zeta_{2} + c_{7}f] \\ + \Psi \chi_{1} \cdot \Psi [-c_{2}(\zeta_{m} + f) + c_{5}\zeta_{1}] \\ \beta_{8} \\ + \Psi \chi_{2} \cdot \Psi [c_{4}(\zeta_{m} + f) + c_{6}\zeta_{2} + 2c_{7}f] \}$$

$$(8.5.4a)$$

$$F_{m2} = [D_{1}(k_{1}\zeta_{1}+k_{2}\zeta_{2}+k_{3}\zeta_{m}) + D_{2}(k_{4}\zeta_{1}+k_{5}\zeta_{2}+k_{6}\zeta_{m}) + \omega_{s}(k_{7}\zeta_{1}+k_{8}\zeta_{2}+k_{9}\zeta_{m})]$$
(8.5.4b)

$$F_{m3} = [D_{1}(k_{10}\zeta_{1}+k_{11}\zeta_{2}+k_{12}\zeta_{m}) + D_{2}(k_{13}\zeta_{1}+k_{14}\zeta_{2}+k_{15}\zeta_{m}) + \omega_{s}(k_{16}\zeta_{1}+k_{17}\zeta_{2}+k_{18}\zeta_{m})]$$
(8.5.4c)

$$F_{m4} = \frac{\mu}{2} \{ \Psi \psi_1 \cdot \Psi [k_{19} D_1 + k_{20} D_2 + k_{21} \omega_s]$$

+
$$\nabla \psi_2 \cdot \nabla [k_{22} D_1 + k_{23} D_2 + k_{24} \omega_s]$$

 γ_8

+
$$\Psi \psi_{m} \cdot \Psi [k_{25} D_{1} + k_{26} D_{2} + k_{27} \omega_{s}]$$
 (8.5.4d)

$$F_{11} = -\frac{\mu}{2} \{ \nabla \chi_{m} \cdot \nabla \zeta_{1} + \nabla \chi_{1} \cdot \nabla (\zeta_{m} + f - 2\zeta_{1}) \}$$
(8.5.5a)

$$F_{12} = [D_1(k_{28}\zeta_1 - \zeta_m) + D_2k_{29}\zeta_1 + \omega_s k_{30}\zeta_1]$$
(8.5.5b)

$$F_{13} = [\zeta_1 (k_{31} D_1 + k_{32} D_2 + k_{33} \omega_s)]$$
(8.5.5c)

$$F_{14} = \frac{\mu}{2} \{ \nabla \psi_1 \cdot \nabla [k_{31} D_1 + k_{32} D_2 + k_{33} \omega_s] \}$$

$$(8.5.5d)$$

$$\mathbf{F}_{21} = -\frac{\mu}{2} \{ \nabla \chi_{m} \cdot \nabla \zeta_{2} + \nabla \chi_{2} \cdot \nabla (\zeta_{m} + f + 2\zeta_{2}) \}$$
(8.5.6a)

$$F_{22} = \{ D_1 k_{34} \zeta_2 + D_2 [k_{35} \zeta_2 - \zeta_m] + \omega_s k_{30} \zeta_2 \}$$
(8.5.6b)

$$F_{23} = [\zeta_2^{(k_{36}D_1 + k_{37}D_2 + k_{38}\omega_s)]}$$
(8.5.6c)

$$F_{24} = \frac{\mu}{2} \{ \Psi \psi_2 \cdot \Psi [k_{36} D_1 + k_{37} D_2 + k_{38} \omega_s]$$
(8.5.6d)

The computation of the non-geostrophic forcing function $\frac{\varepsilon \Delta t}{\mu} \sum_{i=1}^{4} F_{mi}' \frac{\varepsilon \Delta t}{\mu} \sum_{i=1}^{4} F_{1i} \text{ and } \frac{\varepsilon \Delta t}{\mu} \sum_{i=1}^{4} F_{2i}$

are performed by a separate program. See Appendix B.

8.5.1 Numerical Coefficients for the Non-geostrophic Terms Expressions for constants of the non-geostrophic terms read:

$$\bar{w}_{3} = t_{6}w_{s} + t_{7}D_{1} + t_{8}D_{2}$$

$$w_{m} = t_{9}w_{s} + t_{10}D_{1} + t_{11}D_{2}$$

$$w_{1} = t_{12}w_{s} + t_{13}D_{1} + t_{14}D_{2}$$

$$t_{6} = c_{8} \frac{P_{1}}{6}$$

$$t_{7} = -c_{2} \frac{P_{1}}{6}$$

$$t_{9} = 1 - c_{8}(P_{0} - P_{m})$$

$$t_{10} = (c_{2} - 1)(P_{0} - P_{m})$$

$$t_{11} = -c_{1}(P_{0} - P_{m})$$

$$t_{12} = c_{8} \frac{P_{1}}{2}$$

$$t_{13} = -c_{2} \frac{P_{1}}{2}$$

$$t_{14} = (c_{1} - 2) \frac{P_{1}}{2}$$

$$k_{1} = c_{2}(c_{2} - \frac{4}{3})$$

$$k_{2} = -c_{2}c_{4}$$

$$k_{3} = c_{2}c_{7}$$

1

 $k_4 = -c_1c_2$ $k_5 = c_1 c_4 - c_6$ $k_{6} = c_{7}(2-c_{1})$ $k_7 = -c_2 c_8$ $k_8 = c_4 c_8$ $k_9 = c_8(1-c_7)$ $k_{10} = 2t_2c_8$ $k_{11} = -2(t_3+t_7)c_8$ $k_{12} = -t_7 c_8$ $k_{13} = -2t_3c_8$ $k_{14} = 2(t_5 - t_8)c_8$ $k_{15} = -t_8 c_8$ $k_{16} = 2t_1c_8$ $k_{17} = 2(t_4 - t_6)c_8$ $k_{18} = -t_6 c_8$ $k_{19} = 2t_2c_8$ $k_{20} = -2t_3c_8$

$$k_{21} = 2t_{1}c_{8}$$

$$k_{22} = -2(t_{3}+t_{7})c_{8}$$

$$k_{23} = 2(t_{5}-t_{8})c_{8}$$

$$k_{24} = 2(t_{4}-t_{6})c_{8}$$

$$k_{25} = -t_{7}c_{8}$$

$$k_{26} = -t_{8}c_{8}$$

$$k_{27} = -t_{6}c_{8}$$

$$k_{28} = 2-c_{2}$$

$$k_{29} = +c_{1}$$

$$k_{30} = +c_{8}$$

$$k_{31} = -\frac{t_{10}}{(p_{0}-p_{m})}$$

$$k_{32} = -\frac{t_{11}}{(p_{0}-p_{m})}$$

$$k_{33} = \frac{1-t_{9}}{(p_{0}-p_{m})}$$

$$k_{34} = -c_{2}$$

$$k_{35} = c_{1}-2$$

$$k_{36} = \frac{t_{10}-t_{13}}{(p_{m}-p_{1})}$$

- 44 -

$$k_{37} = \frac{t_{11} - t_{14}}{(p_m - p_1)}$$
$$k_{38} = \frac{t_9 - t_{12}}{(p_m - p_1)}$$

For $p_0 = 100$, $p_m = 50$ and $p_1 = 30$ we have the following numerical values for the constants:

 $t_6 = 0.0588235$ $t_7 = -2.941175$ $t_8 = -7.058825$ $t_9 = 0.411765$ $t_{10} = -20.588250$ $t_{11} = -29.411750$ $t_{12} = 0.176471$ $t_{13} = -8.823525$ $t_{14} = -21.176475$ $k_1 = -0.438291$ $k_2 = -0.276816$ $k_3 = 0.034602$ $k_4 = -0.346020$ $k_5 = -0.507498$ $k_6 = 0.083045$ $k_7 = -0.006920$ $k_8 = 0.005536$ $k_9 = 0.011073$ $k_{10} = -0.438294$ $k_{11} = -0.276817$

^k 12	=	0.034602
^k 13	=	-0.346021
^k 14	=	-0.507498
^k 15	=	0.083045
^k 16	=	0.016609
^k 17	=	0.005536
^k 18	=	-0.000692
k 19	=	-0.438293
^k 20	=	-0.346021
^k 21	=	0.016609
k ₂₂	=	-0.276817
^k 23	=	-0.507497
^k 24	=	0.005536
^k 25	=	0.034602
^k 26	=	0.083045
^k 27	=	-0.000692
^k 28	=].411765
^k 29	=	+0.588235
k 30	=	+0.0117647
^k 31	=	0.411765
^k 32	=	0.588235
k ₃₃	=	0.0117647
^k 34	=	-0.588235
k ₃₅	=	-1.411765

^k 36	=	-0.588235
^k 37	=	-0.411765
k.38	=	0.0117647

9. INITIALIZATION

The stream functions ψ are computed from the geopotential Z by the relation

$$g\nabla^{2} z = \nabla \cdot (f\nabla\psi) \quad \text{or}$$

$$\nabla^{2} \psi = \frac{g}{f} \nabla^{2} z - \frac{1}{f} \nabla f \cdot \nabla\psi; \quad (9.1)$$

inserting

$$\nabla \psi = \frac{g}{f} \nabla Z \qquad \text{yields}$$

$$\nabla^2 \psi = \frac{g}{f} \nabla^2 Z - \frac{g}{f^2} \nabla f \cdot \nabla Z. \qquad (9.2)$$

The boundary values of ψ are computed by the relation (γ is a constant)

$$\frac{\partial \psi}{\partial s} = \frac{g}{f} \frac{\partial Z}{\partial s} + \gamma.$$
(9.3)

If we assume that there is no net flow out of the area it is easily seen that $\gamma = -\frac{1}{L} \oint \frac{g}{f} \frac{\partial Z}{\partial s} ds$. The integration is performed along the boundary of the area in positive order. The integration starts in point x_1/y_1 where we put

$$\psi(x_{1}; y_{1}) = \frac{g}{f(x_{1}; y_{1})} Z(x_{1}; y_{1}) . \qquad (9.4)$$

Z is computed from ψ in a similar way using the following equation:

$$\nabla^2 z = \frac{f}{g} \nabla^2 \psi + \frac{1}{g} \nabla f \cdot \nabla \psi. \qquad (9.5)$$

Boundary values for Z are computed initially and stored in a special string. See Appendix B.

9.1 NUMERICAL SOLUTION

Equation (9.2) reads in finite difference form:

$$\nabla^2 \psi = \frac{g}{f} \nabla^2 z - \frac{g}{2f^2} \nabla f \cdot \nabla z$$
(9.6)

where the standard five point formulas are used to compute ${\tt V}^2\psi, \ {\tt V}^2{\tt Z}$ and ${\tt V}{\tt f}{\tt V}{\tt Z}$ is defined as

$$\nabla f \cdot \nabla z = (f_{i+1} - f_i)_j (z_{i+1} - z_i)_j + (f_i - f_{i-1})_j (z_i - z_{i-1})_j \\ + (f_{i+1} - f_j)_i (z_{i+1} - z_j)_i + (f_j - f_{j-1})_i (z_j - z_{j-1})_i .$$

Equation (9.3) reads in finite difference form:

$$\psi_{k+1} = \psi_k + 2g \frac{Z_{k+1} - Z_k}{f_{k+1} + f_k} + \gamma(\Delta s)_k$$
(9.7)

where

$$\gamma = -\frac{1}{L} 2g \sum_{k=1}^{N-1} \frac{z_{k+1} - z_k}{f_{k+1} + f_k}$$
(9.8)

Figure 4 defines k and the order of integration.

Z to ψ and ψ to Z is computed by the program STREAMF (see Appendix B).

9.2 INITIALIZATION OF THE SPECIFIC HUMIDITY

Since we are using the ψ -functions as the time-dependent variables, we have to modify the initial humidities in order to make them consistent with the time-integration. Therefore, we put

$$q = q_{analyzed} \cdot \frac{q_{sat} (\bar{T}_{\psi})}{q_{sat} (\bar{T}_{z})}$$
(9.2.1)
$$\bar{T}_{z} = \frac{2g}{Rln2} \left(\frac{z_{500} - z_{1000}}{2} \right) = \frac{g}{f_{o}} (h_{3}z_{1} + h_{4}z_{2}), \text{ and}$$
$$\bar{T}_{\psi} = h_{3}\psi_{1} + h_{4}\psi_{2}.$$

IO. TIME-INTEGRATION AND TREATMENT OF LATERAL BOUNDARY VALUES

The forecast is basically computed in 6-hour intervals but this interval can easily be changed. The first time step in each interval is non-centered. Smoothing, elliptization and printing of results (if so desired) are performed at the end of every interval.

Initial height fields Z° are stored on secondary storage during the whole computation. In the case of variable boundary conditions, Z° is followed by Z^N (N=1,2,3...) (forecasts for each interval).

Assuming

$$\frac{\partial \psi}{\partial t} = \frac{g}{f} \frac{\partial Z}{\partial t} \text{ or } \psi^{N} - \psi^{O} = \frac{g}{f} (Z^{N} - Z^{O})$$
(10.2)

the stream function at time step k can be interpolated from:

$$\psi^{k} = (\psi^{o} - \frac{g}{f} z^{o}) + \frac{g}{f} [(1-\alpha_{k}) z^{N} + \alpha_{k} z^{N+1}]$$
 (10.3)

where

$$\alpha_{\mathbf{k}} = \frac{\mathbf{k}\mathbf{T}-\mathbf{l}}{\mathbf{N}\mathbf{D}}$$

At each time step this interpolated stream function is mixed with the forecasted stream function ψ_{prog}^{k} in the following way:

Boundary values
$$\psi_{mod} = \psi_{prog}^{k} + wl(\psi^{k}-\psi_{prog}^{k})$$

1 grid point inside
the boundary $\psi_{mod} = \psi_{prog}^{k} + w2(\psi^{k}-\psi_{prog}^{k})$
2 grid points inside
the boundary $\psi_{mod} = \psi_{prog}^{k} + w3(\psi^{k}-\psi_{prog}^{k})$
3 grid points or more
inside the boundary $\psi_{mod} = \psi_{prog}^{k}$ (10.4)

w1, w2 and w3 are 3 predetermined constants with oswl, w2, w3<1

The following flow diagram illustrates the treatment of the boundary values:

Flow diagram: Treatment of boundary values.

1-

II. THE CRITERION OF ELLIPTICITY

An iterative procedure is used to modify a streamfunction field so that the ellipticity criterion

$$\nabla^2 \psi + \frac{f}{2} > 0$$

is valid in all points of the field.

Each point is tested with the following formula:

$$\mu \nabla^2 \psi + \frac{f}{2} - \varepsilon = \delta$$

where

$$\mathbf{v}^{2}\psi = \psi_{i+1,j} + \psi_{i-1,j} + \psi_{i,j+1} + \psi_{i,j-1} - 4 \cdot \psi_{i,j}$$

and

 ϵ = 0.001·f. If δ < 0, $\psi_{i,j}$ is modified by

 $\Psi_{i,j} = \Psi_{i,j} - \frac{\varepsilon - \delta}{2\mu} \cdot k$ where k is a convergence parameter. This means that the vorticity increases by $2(\varepsilon - \delta) \cdot k$ in the point (i,j) and decreases by $0.5 \ (\varepsilon - \delta) \cdot k$ in the four surrounding points (i+1,j), (i-1,j), (i,j+1) and (i,j-1). This procedure guarantees that δ becomes positive in the point (i,j), but not necessarily in the surrounding points. The test must therefore be repeated for all points until the criterion is valid in the whole field. With a suitable choice of k the method is convergent.

k can be found empirically and is estimated to be of the order $k \simeq 0.85$.

REFERENCES

- Bengtsson, L., 1969: Dynamical Weather Prediction, Part B (VI 6). Swedish Meteorological and Hydrological Institute.
- Bengtsson, L., and Moen, L., 1971: An operational system for numerical weather prediction. WMO No. 283 Satellite and Computer Applications to Synoptic Meteorology.
- Bushby, F.M. and Timpson, M.S., 1967: A 10-level atmospheric model and frontal rain. Quart. J. Roy. Meteor. Soc., 93.
- Egger, T., 1972: Incorporation of steep mountains into numerical forecasting models. Tellus, Vol. 24, No. 4.
- Gambo, K., 1963: The rôle of sensible and latent heats in the baroclinic atmosphere. J. Meteor. Soc. Japan, 41.
- Gerrity, J.P. and McPherson, R.D., 1969: Development of a limited area fine-mesh prediction model. Mon. Wea. Rev., 97.
- Reiser, H., 1969: On short-range forecasting with a baroclinic unfiltered model. Proc. WMO/IVGG Symp. NWP, Tokyo.
- Shuman, F.G. and Hovermale, T. B., 1968: Operational six-layer primitive model. J. Appl. Meteor.

APPENDIXES

APPENDIX A

GENERAL PRINCIPLES IN THE PROGRAMMING OF THE THREE PARAMETER MODEL

The programming has been performed in a very general way. It is therefore possible:

a. to generate initial fields and run the model in a channel with variable cyclic boundary conditions (this is the case for the actual program).

b. to run the model with constant boundary values on a given area (see above).

c. to run the model with variable boundary values, the boundary values taken from another model.

The model needs 13 fields in the core;

1	field	for	the	coriolis	parameter	F,
1	field	for	μ =	$\frac{m^2}{d^2}$		MY,
1	specia	al fi	ield	indicator	-	MARK,

10 fields for the model computations F1-F10. In addition to this, 40 fields (28 for the quasi-geostrophic part of the model) are specified on secondary memories (disks, drums or large extended core).

"Household" programs:

PUT1: This program computes FPAR (see common, Subroutine JMIMA)

- MARKF: This program computes a special integer field MARK. The program MARK specifies status of the field. Points outside the area = 0, points inside the are <0 and points on the boundary >0. The corner points etc. are specified according to given examples.
- MYFF: This program computes f and μ and puts the result in the fields F and MY.
- RANWT: Writes fields on secondary storage e.g., disk drums, or extended core storage.
- RANRD: Reads fields from secondary storage e.g., disk, drums, or extended core storage.
- MAP: Prints pattern on line printer;0 (zero) points, resolution and map scale are specified.
- GENCH: Generates initial state for a channel flow.
- BMOVE: Administrates computation of cyclic boundary conditions for a channel flow.

Since the axis of the grid is defined differently from what is used in Fortran, the programming of finite difference operators should be performed in a special way. This is not necessary, but speeds up the computation considerably. As an example, subroutine JACOB reads:

- 59 -

: MI = M-1 D\$\overline\$ 10 I = 2,MI J1 = JMIN(I)+1 J2 = JMAX(I)-1 K = (J1-1)*M+I D\$\overline\$ 10 J = J1,J2 C(K) = (A(K+1) - A(K-1)*(B(K+M) - B(K-M))..... 10 K = K + M

APPENDIX B

PROGRAM SPECIFICATIONS

The following programs are written for the 3-parameter model.

Level	1:	Main progra	n	
Level	2:	Subroutines	called by level 1	
Level	3:	Subroutines	called by level 2	
Level	4:	Subroutines	called by level 3	
Level			Program	
1			PROG3P	
2			PUT1	
3			JMIMA	
2			COEFF3P	
2			MARKF	
2			MYFF	
2			STREAMF	
3			BDRGDR	
3			BDRVAL	
2			SATUR	
2			RANWT (RANRD)	
2			ELLIPT	
2			GENCH	
2			ASMUT	
2			MAP 3P	
3			МАР	
2			STEP 3P	

Level	Program
3	JACOB
3	ABSVOR (RELVOR)
3	MIXF
3	HELM (POIS)
3	HELMSYS
3	BMOVE
3	STEPEXT
4	GRADPR
4	VELPOT

Program PROG3	(Main program f	or 3-parameter model, see flow							
Arrays	aragram Dr a								
Name	Dimensions	Description							
F1-F10	2	Working fields in core. See flow							
		diagram B-1.							
F,MY (real)	2	Fields for Coriolis parameter, f,							
		and $\mu = \left(\frac{m}{d}\right)^2$. m is the mapscale							
		factor for a polar stereographic							
		projection and d is the grid							
		length. F and MY are generated							
		by the subroutine MYFF.							
MARK	2	Marking of each grid point by a							
		special integer (index). See							
		description. MARK is generated							
		by the subroutine MARKF.							
UPS, UPM, UP1	1	Zonal wind profiles at the levels							
		$p_s^{}$, $p_m^{}$ and $p_1^{}$ for the initial							
		fields in the channel case. The							
		values are introduced by DATA							
		statements.							
WX	1	Working array for generation of							
	initial fields in the channel								
		case. Dimension shall be at							
		least equal to the number of grid-							
		points across the channel.							

Name	Dimensions	Description					
NX,NY	1	Wave numbers for perturbations					
		of the initial fields in the					
		channel case in x and y direc-					
		tions. The values are introduced					
		by DATA statements.					
PSIC, PSIS, LAMC, LAMS	1	Amplitudes (PSI) and phase lags					
		(LAM) perturbations of the initial					
		field with cosine and sine profiles					
		in the y direction respectively.					
		For both profiles a sine wave is					
		used in the x-direction. The					
		values are introduced by DATA					
		statements. See further descrip-					
		tion of GENCH.					
ZB,PSIB,FB,SB	1	Boundary strings for storage of					
		boundary values in counterclock-					
		wise order, starting with corner					
		point 1 (see FPAR). Used by the					
		subroutine STREAMF.					
IT	2	Storage of the number of iterations					
		for the solution of a): the system					

- 64 -

of two Helmholz equations and b):

mean field. Values for an inte-

array by the subroutine STEP3P.

gration interval are stored in the

the Helmholz equation for the

Name	Dimensions	Description
MAPHOUR (1)	1	Integers giving the hours for
		mapping (2).
NSMUTT (1)	1	Integers giving the hours for
		smoothing (2).
MELLIPT (1)	1	Integers giving the hours for
		ellipticity (2).
LETACC (1)	1	Integers giving the hours at
		which the accumulation of
		precipitation shall be
		interrupted (2).

(1) The values shall be given in DATA statements and must be multiples of the integration interval (e.g., 6 hours). Unused positions are indicated by -1.

(2) This value can be increased if this is necessary.

	INITE STREAME			7 2M2 / 217 / 222 BLLIPT	var. bound.			+STRM, STRL, STR2	GENCH	crms [ams nams+	ZATS, TATS, MALET	+PSIML, PSILL, PSI21, HUML, PS, TS, 0+PREC, WS, DIVL, DIV2		0+DIVL,DIV2 HUM1+HUM2,PSIM1+PSIM2 PSII1+PSII2,PSII2+PSI22 Z22-ZM1,Z12+Z11	T774777	ZINPUT		+2M2, Z12, Z22	STEP3P	SMOOTHING	K ELLIPT	O+PREC
014									 			0										
F9	ψ ^ο (P ₁)			×	ψ2 ⁰	ψ ⁰ -920 ψ2-522	₩2°	 	+ 0 (P1)													
F8	ψ ^O (P _m)			×	°I¢	+0-9z0 ₩1-£z1	ψ ¹		ψ ^o (P _m)	F								2				
F7	ψ ⁰ (P _S)			×	o ≞ ⊅	maria o_gzo maria	 0 0 		ψ ⁰ (P ₈)											•		
F6	E 8						 		(273.0)		 + 											
F5	е, Ø								(100.0)		 +				1	1						
F4	d ^o NA	טי							g ^o (~50%)		 +											
F3	z ^o (P ₁)	z ⁰	t			\$2°	₩20		ψ20	+	+				z ^{T+1} (P1)	$\mathbf{z}_{2}^{\mathrm{T+1}}$	+					
F2	z ^o (P _m)	z1 ⁰	t		 	ψ ₁ °	ψ1°		¢1°	+	+		×		Z ^{T+1}	z1+1	t					-
F1	z ^o (p _s)	0 8	t	·		ψ ⁿ o.	φ ^m 0		о ^щ ,	 	t	0.0			z ^{T+1} (P _S)	zm T+1	t					

Flow Diagram B-1: PROG3P

- 66 -

Common areas

/FPAR/

Name	Type	Description						
IC(8),JC(8)	integer	i- and j-coordinates for the						
		corner points of the area.						
XPOL, YPOL	real	i- and j-coordinates for the						
		north pole. Specified relative						
		to the origin of the grid.						
R	real	radius of the earth.						
RE	real	Distance from the pole to the						
		equator on the map in grid-length						
		units.						
DS	real	grid-length (in meters).						
JMIN(100),	integer	minimum and maximum j-coordinate						
51111(100)		for each i-column in the field.						
M,N	integer	Dimension of the field arrays.						
KIND	integer	Channel indicator. Channel = 1,						
		No channel = 0. Value shall be						
		given by DATA statement.						

/FORM1/

		stateme	nt.				
		field.	Values	intro	oduced	by	DATA
IC1(8),JC1(8)	integer	Same as	IC(8),	JC (8)	for a	ctua	al
Name	Type	Description					
---------------------------	---------	---					
JMIN1(100), JMAX1(100)	integer	Same as JMIN(100), JMAX(100)					
XP,YP,D1	real	Same as XPOL, YPOL, DS. Values shall					
		be introduced by DATA statements.					
		Dl is given in km.					
/KANAL/							
FIM	real	Used for channel computations.					
		Latitude for the middle of the channel.					
		Used for computation of B-plane. To					
		be given by DATA statement.					
/DRM/*							
MN	integer	=M*N. To be computed in main program					
NDIM	integer	Core memory space available for field					
		arrays. The arrays Fl-Fl0, F,MY,MARK					
		must be included in this area.					
		Additional space is used for storage					
		of fields in COMMON area//.					
NFLD	integer	Number of field arrays in core					
SL	real	Working area for core memory fields.					
		The dimension must be at least SL(NDIM)					

Arrays stored at extended core, disks or drums. 1 in the end of the name indicate timestep τ , 2 in the end of the name timestep τ -1.

*Not necessary to specify if only extended core storage is used.

PSIM1,PSI11,PSI21 PSIM2,PSI12,PSI22	real	Storage arrays for stream func-
		tions. See flow diagram B-1.
HUM1,HUM2,DIV1 DIV2,WS,HEAT	real	Storage arrays for humidity,
		divergence, vertical velocity
		at the lower boundary, and heat.
J 7 89,J12,J56,J3		Storage arrays for Jacobians.
PS,TS,PREC		Storage arrays for surface
		standard pressure, sea surface
		temperature, and accumulated
		precipitation.
STRM, STR1, STR2, ZM1 Z11, Z21, ZM2, Z12, Z22	real	Storage arrays. See Chapter 10 (lateral boundary mixing).
H11,H21,HM1		Fields for advection of vorticity
		by the divergent wind, thickness
		field (1,2) and mean field (M).
H12,H22,HM2		$\omega \frac{\partial \zeta}{\partial t} + \zeta \nabla \cdot W$ for thickness fields
		(1,2) and mean field (M).
Н13,Н23,НМ3		Twisting term for thickness fields
		(1,2) and for mean field, M.
V1,V2,VM		Velocity potential for thickness
		fields (1,2) and for mean field
		(M).
ID(200)*	integer	Catalog array for direct memory
		access.

* Not necessary to specify if only extended core storage is used. /COEFF/

Al,A2,T5	real	Constants used in the model.							
		Computed by the subroutine							
		COEFF3P from given values on							
		stability and pressure levels.							
/COEFF2/									
T6,TF,T38	real	Constants used for the computation							
		of the non-geostrophic terms.							
		Computed by COEFF3P from given							
		values on stability and pressure							
		levels.							
/RUNPAR/									
DELT	real	Timestep in sec. computed in the							
		main program.							
NTSTEP	integer	Number of timesteps for an inte-							
		gration interval (6 hours).							
		To be defined in a DATA statement.							
ALFASYS, ALFAM	real	Overrelaxation coefficients (ALFA)							
RESSYS, RESM,		and maximum residual in the solu-							
KESZ, KESPSI		tion for the system of the two							
		Helmholz equations (SYS), Helmholz							
		equation for the mean field equa-							
		tion (M), solution of Z from ψ							
		(Z) and solution of ψ from Z							
		(PSI). To be defined by a DATA							
		statement.							

Q, FOCEAN, FCONT	real	The Helmholz term for the mean
		field equation, friction coeffi-
		cients over ocean and land. To
		be defined by a DATA statement.
WGT1,WGT2,WGT3	real	Weights for mixing near the
		boundary of boundary fields with
		forecasted fields. To be defined
		by a DATA statement.
ADIFF	real	Diffusion coefficient for humidity;
		it is defined by a DATA statement
Parameters only sp	ecified in	Data statements.
STAB1	real	Static stability of layer l
STAB2	real	Static stability of layer 2
PNIVS*	real	Pressure level P _o
PNIVM	real	Pressure level Pm
PNIV1	real	Pressure level Pl
IVAR	integer	Indicates if variable lateral
		boundaries are used; IVAR=0, constant
		boundary values; IVAR=1, variable
		boundary values.
KIND	integer	Indicates if channel is used
		(cyclic boundary conditions);
		KIND=1, channel;
		KIND=0, no channel (polar stereo-
		graphic projection).

- 71 -

Subroutine STEP3P(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,MY,F,MARK, IT,IVAR,M,N)

The subroutine performs a computation for a time interval (6 hours) by the 3P-model including humidity and precipitation prediction. (See Flow Diagram B-2.)

Subro	outine Parameters	Description
	F1-F10	Working fields.
	МҮ	µ-parameter field.
	F	Coriolis parameter field.
	MARK	Field indicator field.
	IT	Array to store number of
		iterations for every timestep.
	IVAR	Indicator for constant or
		variable boundary conditions;
		IVAR = 0 constant boundary;
		IVAR = 1 variable boundary.
	M,N	Field vector.
Para	meters specified only in 1	DATA statements
	RGAS	R = 287
	EE	E = 0.622
	HL	$L = 2.5 \cdot 10^6$
	СР	Cp = 1004
	то	To = 273
	EO	Eo = 0.611
	DEL1	δ
	DEL2	δ ₂
	TOL	Tolerance
For	explanation see chapter 8	.4.

- 72 -

Subroutine MARK

The subroutine mixes field FA (corresponding to limited area) with FB (corresponding to a field taken from a large area).

limited comp. area

Weight factors Field vectors

MARK-field

The MARK-field generated by the subrotine MARKF can be described by the following examples.

1	•	Chann	el	fie	1d.

	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0
	0	<u><u> </u></u>	<u></u>	<u>T0</u>	10	10	10	10	<u> </u>	<u> 10</u>	10	<u></u>	10	TO	<u>T0</u>	<u>T0</u>	10	<u> </u>	<u></u>	0
	0	-T	-T	-T	-1	-1	-1	-1	- T	-1	-T	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Õ
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Õ
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Ō
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	Ő
i	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	ň
5	Ō	-1	-1	-1	-1	-1	-1	-1	-1	_ī	-1	_1		_ 1	_1	1	7	1	7	0
1	ŏ	_1		_1		-	1		- <u>+</u>	-1	L	1	-			- T	- T	-1	•~ T	0
1	0	<u> </u>	<u> </u>	-1	<u> </u>	-1	-1	-1	-1	-1	1	-1		-1	-1	-1	-1	-1	-1	0
	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0
				-																

2. Ordinary octagonal field.

1

j

0	0	0	0	0	11	10	10	10	10	10	10	10	9	2	0	0	0	0	0
0	0	0	8	12	-4	8	-8	-8	-8	-8	-8	-8	-3	8	2	0	0	0	0
0	0	8	12	-3	10-	-10.	-10-	-10	-10-	-10-	-10-	-10	-10	-3	8	0	0	0	0
0	Ø	12	-j-	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	10	-3	8	0	0	0
D	12	1	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	10	-3	8	0	0
13	-4r	101	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	10	-3	8	0
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-11-	10	-3]	71
14	-9	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	10	-7	6
14	-9	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	10	-7	6
14	-9	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	10	-7	6
45	651	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
0	16	-3-	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-11-	10	-21	5
0	0	16	-3-	10	<1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	10	-2	4	1
0	0	0	16	-3-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-2	10	-2,	4	1	0
0	0	0	0	16	-3-	10-	-10-	-10-	-10-	-10-	-10-	-10-	-10-	-10	-2,	4	10	0	0
0	0	0	0	9	16	-5	-6	-6	-6	-6	-6	-6	-6	-2	1	0	0	0	0
0	0	0	0	0	0	1	2	2	2	2	2	2	2	3	1	0	0	0	0

3. Fields with 2 rectangular points.

20	10	10	10	10	10	10	10	10	10	10	10	10	0	- 0	0	0	0	0	0
14	-9	-8	-8	-8	-8	8	-8	-8	-8	-8	-0	-0		à	\n	õ	õ	õ	ő
14	_0[-10-	-10-	-10-	-10-	-10-	-10	-10	-10-	-10.	-10.	-10.	-10	2	R	~0	ő	ő	õ
14	-9-	-10	1-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	10	1	8	~õ	õ	ŏ
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10	-7	8	0	ŏ
14	-9-	-10	1-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-	10	-3	8	<u></u>
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-	-101	-3	71
14	-9-	-10	1-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
14	-9.	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
15	L-5L	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
D	16	~5	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
0	0	16	-5	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-]	-1-	-10	-7	6
0	0	0	16	~5	-10	~1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
0	0	0	0	16	~5	10.	-10	-10	-10	-10	-10	-10.	-10	-10	-10.	-10	-10	-7	6
0	0	0	0	D	16	~5	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-7	6
0	0	0	0	0	0	1	2	2	2	2	2	2	2	2	2	2	2	2	18

									_			_								
	0	0	0	0	0	11	10	10	10	10	10	10	10	10	10	10	10	10	10	19
	0	0	0	0	12	-4	~8	8	- 8	-8	8	8	-8	-8	-8	-8	-8	-8	-7	6
	0	0	2	12	-4	10.	-10-	-10-	-10	-10	-10-	-10-	-10-	-10-	-10.	-10-	-10-	-10	-7	6
	0	0	12	-4	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10	-7	6
	0	12	-4,	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	13	F-4,	10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1-	-10	-7	6
	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-16	-10	-2)	5
;	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-10	-2	4	10
J	14	-9-	-10	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	10	-2	4	10	0
	14	-9	-10-	-10.	-10-	-10-	-10-	-10-	-10.	-10.	-10-	-10-	-10	-10-	-10	-2,	4	0	0	0
	14	-9	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-2	1	0	0	0	0
	17	2	2	2	2	2	2	2	2	2	2	2	2	2	3	10	0	0	0	0
	****	·																		

-> i

j

- 75 -

Subroutine RANWT (A, ALFA)

This subroutine writes field A (in core) to field ALFA (in secondary storage).

Subroutine RANRD (A, ALFA)

This subroutine reads field ALFA (in secondary storage) into field A (in core).

Subroutine MIXF(FA,FB,MARK,W1,W2,W3,M,N)

This subroutine mixes field FA (corresponding to limited area) with FB (corresponding to a field taken from a large area).

Subroutine HELMSYS (Z1,Z2,FORC1,FORC2,F,MY,FMY,A1,A2,B1,B2, ALFA,RESIDUE,IT,M,N)

This subroutine solves the following system of Helmholz equations by relaxation:

∇^2 (Z1) - A1 $\frac{f^2}{\mu}$ (Z1) + A2 $\frac{f}{\mu}$	- (Z2) = FORC1
$\mathbb{V}^{2}(\mathbb{Z}^{2}) - \mathbb{B}^{2}\frac{f^{2}}{\mu}(\mathbb{Z}^{2}) + \mathbb{B}^{1}\frac{f}{\mu}$	$\frac{2}{-}$ (21) = FORC2
Subroutine Parameter	Description
21,22	Fields to be solved by relaxation.
	First guesses in Z1,Z2 before
	using subroutine.
FORC1,FORC2	Forcing functions.
F	Coriolis parameter field.
МҮ	µ-parameter field.
FMY	Working field.
Al,A2,A3,A4	Physical parameters (constants).
ALPHA	α-overrelaxation coefficient.
RESIDUE	Residual, R, in the solution
	of the system.
IT	Number of iterations.
M, N	Field vectors.

Subroutine MAP3P(I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,F1,F2, F3,F4,F5,F6,F7,F8,F9,F10,F,MARK,M,N,IDAY,ITIME,NTIME,PNIVS, PNIVM, PNIV1,ZB1,ZB2,ZB3)

Printing on line-printer of forecast fields in zebra patterns. Heights are computed from stream functions.

Subroutine Parameters	Description
11-111	Indicators. I = 0: no printing
	I = 1: printing. The numbers
	refer to the following fields:
	Il: Surface pressure. I2: Height for level p_m . I3: Height for level p_1 . I4: Thickness $(p_m - p_s)$. I5: Lower vertical velocity ω_1 . I6: Precipitable water. I7: Accumulated precipitation. I8: Relative humidity. I9: Stream function for level p_s . I10: Stream function for level p_m . I11: Stream function for level p_1 .
Fl-F10	Working fields. (See flow diagram B-2
F	Coriolis parameter field.
MARK	Indicator field (see MARKF).
M,N	Field dimension.
IDAY	Year, month and day as one integer.
ITIME,NTIME	Initial and forecast time.
PNIVS, PNIVM, PNIV1	Pressure levels in the model.
ZB1,ZB2,ZB3	Working arrays for boundary strings.

	ΓI	F2	F.3	F4	F5	F6	۲ ۲	F 8	Р 9	FIO	Variables to and from secondary storage
								ψ m	ţ ^ψ	¥2	PSIMI, PSIII
								×	×	×	(PSI21
	(P _S)	ψ(Ρ _m)	ψ(P ₁)								1
AAP	•	·	•								
				з Ю	Dl	D2	ק	Σr			{ WS,DIV1,DIV2 { HUM1,PREC
				×	×	×					
				3							
				1			×	×			
						К.Н.					
AAP							•	•			
	×	×	×					т ^г ш	а г г	E Z	\$ZM2,Z12,Z22
STREAMF					Z (Ps)	z (Pm)	z (P1)				
					×	×					
			A	27							
IAP			·				•				
	L	1									

Flow Diagram B-2: MAP3P

- 79 -

Subroutine STREAMF (Z,PSI,R,F,MARK, ZB,PSIB,FB,SB,GAMMA,IND, IT,M,N)

The subroutine computes	the linearized balance equation.
Subroutine Parameter	Description
Z	Z field.
PSI	PSI field.
R	Forcing function for the
	Poisson equation in the
	solution of $\nabla^2 \psi = F(Z)$ or
	$\nabla^2 z = z(\psi) .$
F	Coriolis parameter.
MARK	MARK-field.
ZB	String of boundary values for z_k .
PSIB	String of boundary values for ψ_k .
FB	String of boundary values for f_k .
SB	String of boundary values for
	(∆s) _k .
GAMMA	γ.
IND	See subroutine comments.
IT	Number of iterations for solving
	the Poisson equation by relaxation.
M,N	Field vectors.

Subroutines called by STREAMF

BDRGRD (SB)	Computes SB.
BRDVAL(A,AB,M,IND)	Computes boundary values from
	field A and stores the boundary
	values in string AB or reverse:
	IND = O, $AB = A$; $IND = 1$, $A = AB$.
Μ	Field parameter
IND	See subroutine comments

POIS is an entry point in HELM for the solution of a Helmholz equation by Liebmann relaxation.

HELM(Z,FORC,Q,ALFA,RESIDUE,IT,M,N)

Subroutine Parameter	Description									
Z	Z-field.									
FORC	Forcing function.									
Q	Helmholz coefficient.									
ALFA	Overrelaxation coefficient.									
RESIDUE	Residual.									
M, N	Field vectors.									
IT	Counts the number of iterations									
	required to obtain a solution.									

Subroutine SATUR(TM,QSAT)

This subroutine computes QSAT, integrated mixing ratio at saturation as a function of the mean temperature between 500 and 1000 mb. TM values of QSAT are given for each whole degree between -50°C to +20°C in the subroutine. Linear interpolation between whole degrees is employed and the result QSAT is given in $TON/m^2/cb$. Subroutine MAP(Q,M,N,DS,QZ,QD,SCALE)

Prints a field in "zebra	pattern" on line-printer.
Subroutine Parameters	Description
Q	Field to be printed.
M , N	Field vectors.
DS	Grid distance (meters)
QZ	Isoline corresponding to 000, the
	line towards 999 on printer
	(indicated by heavy line below).
QD	Resolution indicator (see below).

000000000	QD
}	QD
111111111	
111111111	

222222222 222222222

Map	SC	are	Iactor
(uni	t	10 ⁶	m)

SCALE

Subroutine JACOB(A,B,C,M,N)

This subroutine computes a Jacobian operator (of the form)

$$C = J(A,B) = (A_{i+1}-A_{i-1}) j (B_{j+1}-B_{j-1}) i$$

- (A_{j+1}-A_{j-1}) i (B_{i+1}-B_{i-1}) j

Subroutine parameters	Description
A,B,C	Fields according to formula.
M , N	Field vectors .

Subroutine ABSVOR(PSI, VOR, F, MY, MARK, M, N)

This subroutine computes the relative or the absolute vorticity.

a. $\eta = \mu \nabla^2 \psi + f$	ABSVOR
b. $\zeta = \mu \nabla^2 \psi$	RELVOR (via entry point)
Subroutine Parameters	Description
PSI	ψ field.
VOR	η or ζ field.
F	Coriolis parameter field.
МУ	μ parameter field.
MARK	Field indicator array.
M, N	Field vectors .

Subroutine GENCH(PSI,M,N,PSIO,U,NU,NWAVE,NX,NY,PSIC,LAMC,

PSIS, LAMS, WX)

Subroutine Parameters	Description									
PSI	Result field.									
M, N	Field vectors.									
PSIO	Constant value (ψ_{O}).									
υ	Zonal wind speed.									
NU	Resolution of zonal wind speed.									
NWAVE	Number of waves.									
NX	Wave numbers as a function of									
	channel length in x-direction (nx).									
NY	Wave numbers as a function of									
	channel width in y-direction (ny).									
PSIC	Amplitudes of the cosine function									
	(ψ_c) .									
LAMC	Phase differences for the cosine									
	functions (ψ_c) in whole degrees.									
PSIS	Amplitudes of the sine functions									
	(ψ_{s}) in whole degrees.									
LAMS	Phase differences for the sine									
	functions(λ_s) in whole degrees.									
WX	Adjustment of the wave near the									
	rigid boundaries:									
	Boundary, $WX = 0$;									
	+1 row from the boundary, WX = 0.33;									
	+2 row from the boundary, $WX = 0.64$;									
	TS and more, WX = 1.									

- 86 -

Fields are generated according to the formula:

$$\psi = \psi_{0} - Uy + \sum_{\nu=1}^{N} [(\psi_{c})_{\nu} \sin\{(nx)_{\nu}(x) - \frac{\pi}{180}(\lambda_{c})_{\nu}\}\cos(ny)_{\nu}$$
$$+ (\psi_{s})_{\nu} \sin\{(nx)_{\nu}(x) - \frac{\pi}{180}(\lambda_{s})_{\nu}\}\sin(ny)_{\nu}]$$

The zonal wind speed is specified with an arbitrary resolution across the channel. All parameters are given by a DATA statement.

- 87 -

Subroutine STEPEXT(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,MY,F,MARK, M,N,I1,I2,I3,I4)

The subroutine computes the forcing functions

and stores the result in the fields HM3, H13 and H23 respectively on secondary memories (see Flow Diagram B-3). The program is a subroutine to STEP3P.

Subroutine Parameters	Description
F1-F10	Working field.
МҮ	µ-parameter field.
F	Coriolis parameter field.
MARK	Field indicator array.
11,12,13,14	Computational parameters.
	$II = 0 \forall \nabla_{\gamma} \cdot \nabla \eta = 0$
	$II = 1 W_{\chi} \cdot \nabla \eta \neq 0.$
	$I2 = 0 \qquad \zeta \cdot \nabla W = 0.$
	$I2 = 1 \qquad \zeta \cdot \nabla V \neq 0.$
	$I3 = 0 \qquad \omega \frac{\partial \zeta}{\partial \beta} = 0.$
	$I3 = 1$ $\omega \frac{\partial \zeta}{\partial p} \neq 0.$
	$I4 = 0 \mathbf{k} \cdot (\frac{\partial \Psi}{\partial p} \mathbf{x} \nabla \omega) = 0.$
	$I4 = 1 \mathbf{k} \cdot (\frac{\partial \nabla}{\partial \mathbf{p}} \mathbf{x} \nabla \omega) \neq 0.$
M,N	Field vectors.

Flow Diagram B-3: STEPEXT

		Τ			T	T		Т			- <u>-</u>	T	-						_						
pu				Twisting term for thickness fields to		Twisting term for mean field to second	a cotage .			$\frac{\omega_{3}^{2}\zeta}{\omega_{3}^{2}} + \zeta \nabla \cdot V \ to$	Compute forcing function for velocity notantial is	order to get velocity in			Y13=""m-251	VX ⁷ n to secondary storage	Y14"""=-242	VX.4h to secondary	aberne	ļ			Sum of higher order terms to HM3, H13	57U Date	Restore initial fields
From seco	F5=DIVL	F6=DIV2									P4=VM FS=V1	F6=V2													
To second storace	J4=F8			H13=F9 H23=F10			HH3=£8			HM2=F1 H12=F2 H12=F2	n	VH*F4 VI=P5	V2=F6			H11-F10		H21=F10					HM3~F1 H13-F4 H23-F7		
PIO			7×27711	F24	74248									. DY .	EI	r'n	×2 ⁹⁷ 14	21				Τ	Τ		
64	34		0TAATAA	P14	2#21#4										+		6			2789		24		+	
8 <i>4</i>	1		11,		¥в	و¥۳ ⁴ 9	5 4 4	t,				İ	Ť							X1788 7X		22 ^{+P} 23 P			5
77	•		Y10		۲7	۶		, e					T							Xm ^{gd} 7 0		21 1	21		
r 6	•	D2 ^{t-1}									(x ₂) ج	×2 .										F14 1	H		
£	Heat	D1 1									(x1)g	۲					1					^F 12 ^{+F} 13			Heat
54	3"							·			⁶ (۳x)	Xm										Fli	F11	0	3"
53	\$2 ¹								r22	$F_{22}^{+F}_{23}$	^{و2} x ₂			VXmVC1		0. 0.	2 By		^g			Pa4			¥2
2	¹ 4								P12	F12 ^{+F} 13	γ ² x1		7m+262						88			r _{m2} +P _{m3}			ψı ^τ
E.	H H								Pm2	Pm2+Fm3	v² _{xm}		η _m -2ε						87		Fal		LP _{m1}	0	р

Subroutine VELPOT(KSI, FORC, M, N, RESIDUE, ALFA)

This subroutine computes the velocity potential from a known divergence field

 $\nabla^2 \chi = D.$

In finite-difference form

 $\Psi^2 \chi = \frac{D}{11}.$

The solution is performed by Liebmann relaxation with an overrelaxation coefficient ALFA equal approximately to 1.4, but its size depends on the area and mesh width. The residual RESIDUE must also be given $(0.5 \cdot 10^{+6} \text{ recommended value})$.

Subroutine Parameters	Description
KSI	2D array for the χ field.
FORC	2D array for the forcing function.
ALFA	Overrelaxation coefficient.
RESIDUE	Residual.
M,N	Field vectors.

Remark: A first guess must be put in χ field before the execution.

Subroutine GRADPR(A, B, C, MARK, M, N)

This subroutine computes a finite difference operation of the form $VA \cdot VB$.

 $(\Psi A \Psi B)_{ij} = (A_{i+1} - A_i) (B_{i+1} - B_i)_j + (A_i - A_{i-1}) (B_i - B_{i-1})_j$ $+ (A_{j+1} - A_j) (B_{j+1} - B_j)_i + (A_j - A_{j-1}) (B_j - B_{j-1})_i$

Subroutine Parameters	Description
А,В	Fields for operational vector.
С	Result field.
MARK	Field indicator array.
M, N	Field vectors.

APPENDIX C

PROGRAM LISTINGS

Three programs for the three-parameter model in Fortran IV are presented: PROG3P, STEP3P, and STEPEXT. The other subroutines may be obtained from ENVPREDRSCHFAC by request.

PROGRAM PROG3P

```
PROGRAM PROG3P(OUTPUT, TAPE6=OUTPUT, DATA, INPUT=DATA)
                                                                                                                  PROG3P.2
* BAROCLINIC BALANCED INTEGRATED 3-PARAMETER MODEL INCLUDING HUMIDITY
* AND PRECIPITATION. BOUNDARY VALUES CAN BE VARIABLE, CONSTANT OR OF
                                                                                                                  PROG3P.3
                                                                                                                  PROG3P.4
                                                                                                                  PROG3P.5
PROG3P.6
* CHANNEL TYPE.
          DIMENSION F1(57,57),F2(57,57),F3(57,57),F4(57,57),F5(57,57),
        1
                         F6(57,57),F7(57,57),F8(57,57),F9(57,57),F10(57,57),
                                                                                                                  PROG3P.7
        2
                         F(57,57), MY(57,57), MARK(57,57)
                                                                                                                  PROG3P
                                                                                                                           .8
         DIMENSION UPS(10),UPM(10),UP1(10),WX(15),NX(20),NY(20),PSIC(20),
PSIS(20),LAMC(20),LAMS(20)
DIMENSION ZB(250),PSIB(250),FB(250),SB(250),IT(2,25)
DIMENSION MAPHOUR(10),LETACC(10),NSMUTT(10),NELLIPT(10)
                                                                                                                  PROG3P.9
        X
                                                                                                                  PROG3P,10
                                                                                                                  PROG3P 11
                                                                                                                  PR0G3P
                                                                                                                            ,12
          DIMENSION MSMUTT(10)
                                                                                                                  JUN12.2
          DIMENSION MELLIPT(10)
                                                                                                                  JUN12.3
С
                                                                                                                  PROG3P,13
                                                                                                                  PROG3P.14
C
                                                                                                                  PROG3P.15
PROG3P.16
         COMMON/FPAR/IC(8), JC(8), XPOL, YPOL, R, RE, DS, JMIN(100), JMAX(100),
                              M.N.KIND
        X
                                                                                                                  PROG3P.17
          COMMON/FORM1/IC1(8), JC1(8), JMIN1(100), JMAX1(100), XP1, YP1, D1
                                                                                                                  PROG3P.18
PROG3P.19
APR14,2
          COMMON/DRM/MN, NDIM, NFLD
          COMMON/KANAL/FIM
          COMMON F
        COMMON/ECS/ PSIM1, PSI11, PSI21, PSIM2, PSI12, PSI22, HUM1, HUM2, DIV1, PROG3P.29
2DIV2, WS, HEAT, J789, J12, J56, J3, PS, TS, PREC, STRM, STR1, STR2, ZM1, Z11, Z21PROG3P, 30
        3, ZM2, Z12, Z22, H13, H23, HM3, HM2, H12, H22, H11, H21, J4, VM, V1, V2
         , ZM2, Z12, Z22, H13, H23, HM3, HM2, H12, H22, H11, H21, J4, VM, V1, V2 PROG3P, 31
COMMON/COEFF/A1, A2, A3, B1, B2, B3, C1, C2, C3, C4, C5, C6, C7, C8, D, DELP, EM, PROG3P, 32
                                                                                                                  PR0G3P
                            E1, E2, H1, H2, H3, H4, H5, H6, PMEAN, S1, S2, T1, T2, T3, T4, T5,
        х
                                                                                                                  PROG3P.33
        X
                            PO.PM.P1
                                                                                                                  PROG3P 34
         COMMON/COEFF2/T6, T7, T8, T9, T10, T11, T12, T13, T14,
K1+K2+K3+K4+K5+K6+K7+K8+K9+K10+K11+K12+K13+K14+K15+ PROG3P.36
        X
                                K16, K17, K18, K19, K20, K21, K22, K23, K24, K25, K26, K27, K28, PROG3P. 37
        х
                                                                                                                  PROG3P,38
        х
                                K29,K30,K31,K32,K33,K34,K35,K36,K37,K38
         COMMON/RUNPAR/DELT,NTSTEP,ALFASYS,ALFAM,ALFAZ,ALFAPSI,RESSYS,RESM,PROG3P,30
RESZ,RESPSI,Q,FOCEAN,FCONT,WGT1,WGT2,WGT3,ADIFF PROG3P.40
        X
                                                                                                                  PROG3P 41
         REAL MY
                                K1 . K2 . K3 . K4 . K5 . K6 . K7 . K8 . K9 . K10 . K11 . K12 . K13 . K14 . K15 .
         REAL
                                                                                                                 PR003P.42
                               K16,K17,K18,K19,K20,K21,K22,K23,K24,K25,K26,K27,K28,PR0G3P,43
K29,K30,K31,K32,K33,K34,K35,K36,K37,K38 PR0G3P,44
        X
        Y
        DATA PSIM1, PSI11, PSI21, PSIM2, PSI12, PSI22, HUM1, HUM2, DIV1, APR14, 3
+DIV2, WS, HEAT, J789, J12, J56, J3, PS, TS, PREC, STRM, STR1, STR2, ZM1, Z11, Z21APR14, 4
+, ZM2, Z12, Z22, H13, H23, HM3, HM2, H12, H22, H11, H21, J4, VM, V1, V2 APR14, 5
                                                                                                                  APR14,3
        */1,3250,6499,9748,12997,16246,19495,22744,25993,29242,32491,35740,APR14,6
        *16989,42238,45487,48736,51985,55234,58483,61732,64981,68230,
*71479,74728,77977,81226,64475,87724,90973,94222,97471,100720,
*103969,107218,110467,113716,116965,120214,123463,126712/
NAMELIST/FPARR/IC,C,XPOL,YPOL,R,RE,DS,JMIN,JMAX,M,N,KIND
                                                                                                                 APR14,7
                                                                                                                  APR14.8
                                                                                                                 APR14,9
                                                                                                                 PROG3P,45
         DATA(IC1(1), 1=1,8)/1,1,57,57,57,97,1,1/
                                                                                                                 PROG3P,46
PROG3P,47
         DATA(JC1(1), I=1,8)/1,1,1,1,57,57,57,57/
         DATA XP1. YP1. D1 /-21, 29, 95,25/
                                                                                                                 PROG3P.48
         DATA FIM/ 50. /
DATA KIND/0/
                                                                                                                 PROG3P 49
PROG3P 50
         DATA ICASE, IDAY, ITIME/1, 660922, 00/
DATA ALFASYS, ALFAM, ALFAZ, ALFAPSI/, 85,1,45,1,4,1,8/
                                                                                                                 PROG3P.51
                                                                                                                  JUN12,4
         DATA RESSYS.RESM,RESZ.RESPSI/,565,555,565 / DATA G,FOCEAN,FCONT,WGT1,WGT2,WGT3,ADIFF/ 0,0 ,
                                                                                                                 PR003P.53
                                                                              0,0 ,,62,1,,1,,,5,,2, PROG3P,54
                                                                                                                 PROGSP.55
                                                             0.0/
         DATA STAB1, STAB2, PNIVS, PNIVM, PNIV1/, 422222, 511111,100,, 50,, 30,/
                                                                                                                 PROG3P,56
    NTSTEP IS NUMBER OF TIME STEPS IN 3 HOURS
C
                                                                                                                 APR14.10
         DATA NTSTEP/4/
                                                                                                                 JUN12.5
APR14,12
         DATA NEND/48/
DATA IVAR/ 0 /
                                                                                                                 PROG3P.50
```

C 0 AND ADIFF HAVE TO BE DEFINED ***	PRO	G3P.60
C MAPHOUR GIVES THE HOURS (MULTIPLE OF 6)	FOR MAP=PRINTING, PRO	G3P.61
C LETACC GIVES THE HOURS (MULTIPLE OF 6) A	T WHICH THE ACCUMULATED PRECIPIPRO	G3P.62
C SHALL BE PUT = U AGAIN.	PRO PRO	GSP.03
C NSMUTT GIVES THE HOURS (MULTIPLE OF 6) FO		637 .64
C TELLIPY GIVES THE HOURS (NULTIPLE OF 6)		12 4
DATA MAPHOUR/0,12,24,36,40,12,24,36,	48.=1.=1.=1.=1/	12.7
DATA (LETACC(1)) 1-1) 10) 011-1-1000	5.18.21.24.=1/ PRO	G3P 68
DATA (MONUTT(1), 1=1, 10)/0,0,0,0,0,0,0,0	139:42:45:48:=1:=1/	12.8
DATA(NELLIPT(1), I=1, 10)/0.3.6.9.12.	15.18.21.241/ PRO	G3P.69
DATA (MELLIPT(1), 1=1,10)/27,30,33,3	6, 39, 42, 45, 48, -1, -1/ JUN	12.9
3=9.806	PRO	G3P.70
Fn=1.03E=4	PRO	G3P.71
C TIME STEP IN SECONDS	APR	14.14
0FLT=1.+3.6E3/NTSTEP	JUN	12,10
LABEL = 10H PUT1	PRO	G3P.73
BTIME = SECOND(FAKE)	PRÖ	G3P.74
WRITE(6,8000) BTIME	PRO	G3P.75
8000 FORMAT(1H0, *BTIME=*, F10,4)	PRO	G3P.76
CALL RUT1	PRO PRO	G3P.77
OTIME = SECOND(FAKE) - BTIME	PRU	G3P.78
WRITE(6,8005) LABEL, DTIME	F10 4) PRO	G3P.79
8"05 FORMATCING, *TIME TO EXECUTE*, ALV,	F10,4) PRO	030 04
LABEL = 10H COEFFOP	PRU	070 00
BITTER SECONDIFANES	PRO	03P 87
WRITE(0,8000) BILME CALL COEFFERENCE STARD PAIVS.PAIV	M. PNIVI) PRO	GTP 84
DTIME = SECOND(FAKE) = BTIME	PRO	G3P.85
JPITE (A. 0005) LABEL, DTIME	PRO	G3P.86
MN = MeN	PRO	G3P.87
NDIM = 20000	PRO	G3P.89
LABEL = 10H MARKE	PRO	G3P.89
STIME = SECOND(FAKE)	PRO	G3P.90
WRITE(6,8000) BTIME	PRÓ	G3P.91
CALL NARKF (MARK, M, N)	PRO	G3P.92
DTIME = SECOND(FAKE) - BTIME	PRO	Gop.93
WRITE(6,8005) LABEL, DTIME	PRO	G3P,94
LABEL = 10H MYFF	PRU	070 04
BTIME = SECOND(FAKE)	PRO	030 07
WRITE(0,8000) BILTE		14 16
DTIME = SECOND(FAKE) - BTIME	PRO	G3P.96
WRITE(6,8005) LABEL DTIME	PRO	G3P.100
DO 9 I=1.MN	PRO	G3P 111
9 F1(I)=0.0	PRO	G3P 102
LABEL = 10H RANWT	PRO	G3P.103
BTIME = SECOND(FAKE)	PRO	G3P.104
WRITE(6,8000) BTIME	PRO	G3P,105
CALL RANWT(VM, F1)	PRO	G3P.106
CALL RANWT(V1,F1)	PRU	USP.10/
CALL RANWT(V2,F1)	PKU	03P .108
URITERA SECONDERANEL PRIME	PRO	G3P 110
NTIME = 0	PRO	G3P.141
IF(KIND.NE.0) GO TO 45	PRO	G3P.112
C INITIAL FIELDS, NO CHANNEL.	PRO	G3P,113
C THE SUBROUTINE INITE HAS TO BE WRITTEN	*** PR0	G3P.114
C INITIAL Z-FIELDS AT THE LEVELS PS, PM AN	D P1 TO F1.F2 AND F3. THE HUMIDPRO	G3P,115
C FIELD Q TO F4. STANDARD SURFACE PRESSUR	E PS TO F5 AND SEA LEVEL TEMPERPRO	G3P.116

```
C TS TO F6. DEFINITION 0=0.0334892+M(850)+0.0363689+M(700)+0.0290951+M(PROG3P.117
C 0.0145476+M(300) WHERE M(P) ARE MIXING RATIOS IN MTS=UNITS, PS=101.325PR0G3P.118
C AT SEA SURFACE.
                                                                                                  PR0G3P.119
        LABEL = 10H INITF
BTIME = SECOND(FAKE)
                                                                                                   PR0G3P,120
                                                                                                   PROG3P,121
        WRITE(6,8000) BTIME
CALL INITF(F1,F2,F3,F4,F5,F6,F7(1,1),F7(1,5),F7(1,9),F7(1,13),
                                                                                                  PROG3P.122
PROG3P.123
APR14.17
       +F7(1,17),F7(1,21),F7(1,25),F8,H,N)
                                                                                                  PR063P.125
        SCALE=20.
                                                                                                   PROG3P,126
PROG3P,127
        DTIME = SECOND(FAKE) . BTIME
        WRITE(6,8005) LABEL, DTIME
        LABEL = 10H MAP 6X
BTIME = SECOND(FAKE)
                                                                                                   PR0G3P, 128
                                                                                                  PR0G3P.129
                                                                                                   PR0G3P 130
WRITE(6,8000) BTIME
C SOLUTION OF STREAMFUNCTIONS
                                                                                                  PR0G3P.139
PR0G3P.140
PR0G3P.141
PR0G3P.142
        LABEL = 10H STREAMF 1
        STIME = SECOND(FAKE)
        WRITE(6,8000) BTIME
                                                                                                  PR0G3P.143
PR0G3P.144
        LABEL = 10H STREAMF
STIME = SECOND(FAKE)
                                                                                                  PR0G3P.145
APR14,18
        ARITE(6+8000) BTIME
    15 CALL STREAMF(F1,F7,F10,MARK,Z8,PSIB,FB,SB,GAMMA,0,IT1,M,N)
                                                                                                  PR0G3P.147
        DTIME = SECOND(FAKE) - BTIME
                                                                                                  PROG3P,148
        ARITE(6,8005) LABEL, DTIME
LABEL = 10H STREAMF 2
                                                                                                  PROG3P.149
PROG3P.150
PROG3P.151
APR14,19
        BTIME = SECOND(FAKE)
        WRITE(6+8000) BTIME
        CALL STREAMF (F2, F8, F10, MARK, Z8, PSIB, FB, SB, GAMMA, 0, IT2, M, N)
                                                                                                  PROG3P.153
PROG3P.154
        DTIME = SECOND(FAKE) - BTIME
        WRITE(6,8005) LABEL, DTIME
LABEL = 10H STREAMF 3
                                                                                                   PROG3P.155
PROG3P.156
        LABEL = 10H STREAMF
        BTIME = SECOND(FAKE)
        JRITE(6,8000) BTIME
CALL STREAMF(F3,F9,F10,MARK,ZB,PSIB,FB,SB,GAMMA,0,IT3,M,N)
                                                                                                  PROG3P,157
APR14,20
        DTIME = SECOND(FAKE) - BTIME
WRITE(6,8005) LABEL, DTIME
                                                                                                   PR0G3P.159
                                                                                                   PROG3P.160
PROG3P.161
        00 20 1=1,MN
        F5(1)=F5(1)+0.1
                                                                                                   PR0G3P,162
                                                                                                   PR0G3P,163
        Z=F2(1)
                                                                                                  PROG3P.164
        F_2(I) = .5 + (Z = F_1(I))
        F3(1)=,5*(F3(1)=Z)
                                                                                                   PR0G3P,165
                                                                                                  PR0G3P, 166
        F1(I)=Z
    20 CONTINUE
                                                                                                   PR0G3P.167
                                                                                                  PR0G3P.168
C ADAPTION OF HUMIDITY FIELD
        DO 21 I=1,MN
TZ = G*(H3*F2(I)+H4*F3(I))/F0
                                                                                                  PR0G3P.169
                                                                                                  PR0G3P.170
        TPSI = ,5*(H3*(F8(I)*F7(1))+H4*(F9(I)*F8(I)))
                                                                                                   PR0G3P 171
                                                                                                  PROG3P 172
PROG3P 173
PROG3P 174
        CALL SATUR(TZ,QZ)
CALL SATUR(TPSI, QPSI)
C CHANGE IN F4 SINCE F4 IS RELATIVE HUMIDITY
                                                                                                  PR0G3P.175
PR0G3P.176
        F4(1)=F4(1)+0PS1
        F4(1)=F4(1)+7P51/02
C
        Z = F4(1) = .8 * QPSI
                                                                                                   PR0G3P.177
        IF(Z,GT.0.0) F4(I)=,8+0PSI
                                                                                                  PR0G3P.178
    21 CONTINUE
                                                                                                   PR0G3P.179
C STORE Z-FIELDS FOR BOUNDARY MIXING
                                                                                                   PR0G3P.180
        LABEL = 10H RANWT 3X
BTIME = SECOND(FAKE)
                                                                                                  PR0G3P.181
                                                                                                  PROG3P.182
PROG3P.183
        WRITE(6,8000) BTIME
                                                                                                  PROG3P 184
PROG3P 185
        CALL RANWT (ZM2.F1)
        CALL RANWT(Z12,F2)
```

	CALL RANWT(Z22+F3)	PR0G3P.186
	DTIME = SECOND(FAKE) = BTIME	PR0G3P, 187
	WRITE(6,8005) LABEL, DTIME	PROG3P.188
С	TEST FOR ELLIPTICITY OF PSI-FIELDS	PROG3P.189
	LABEL - JOH FILLIPT 3Y	PR0G3P 190
		PROGRE 101
		000030 102
	WRITC(0,8000) BIIME	ADDA4 at
	CALL ELLIPT(F7,MY,M,N)	APR14-21
	CALL ELLIPT(F8,MY,M,N)	APR14, 24
	CALL ELLIPT(F9, MY, M, N)	APR14,23
	DTIME = SECOND(FAKE) = BTIME	PR0G3P.196
	WRITE(6,8005) LABEL, DTIME	PR0G3P,197
С	COMPUTATION OF PSIM.PSI1 AND PSI2	PR0G3P.108
	DO 25 L=1.MN	PR0G3P.199
	2=F8(1)	PR063P.200
		PR063P 201
		PP003P 202
		000070 047
	F7(1)=2	FRUGOF, 200
	25 CONTINUE	PROGSP.204
	IF IVAR.EQ.07 GO TO 31	PROG3P.205
С	STORE FIELDS FOR BOUNDARY MIXING	PR0G3P.206
	DO 30 I=1, MN	PR0G3P.207
	Z=F1(I)	PR0G3P,208
	F1(I)=F7(I)	PR0G3P,209
	$F_7(1) = F_7(1) + G + 7/F_0$	PR0G3P.210
	7=F2(1)	PR063P.211
	52(1)-58(1)	PP003P 212
		PP0030 213
		PD0030 214
		PROGOP, 214
		PR0037,212
	F9(1)=F9(1)=G*2)F0	PRUGSP 210
	30 CONTINUE	PR0G3P,217
	30 TO 36	PROG3P.218
	31 DO 35 I=1.MN	PR0G3P.219
	F1(I)=F7(I)	PR0G3P,220
	$F_{2}(I) = F_{3}(I)$	PR0G3P.221
	$F_3(I) = F_9(I)$	PR0G3P.222
	35 CONTINUE	PR0G3P.223
	LABEL = 10H RANWE 3X	PR063P.224
	RTIME = SECOND(FAKE)	PR063P 225
		PP0030 226
		PP003P 227
	G CALL RANGINGTOTO	nnoo3n 22e
	CALL RANKISTAIJE CO	PPDC7P 000
	CALL KANNU (SIR2, FY)	-R063F 229
	DTIME = SECOND(FAKE) = BTIME	PR0G3P.230
	WRITE(6,8005) LABEL, DTIME	PROGSP 231
С	PRINT NUMBER OF ITERATIONS IN THE SOLUTION OF PSI	PROGOP. 232
	41 WRITE(6,202) IT1, IT2, IT3	PR0G3P.233
	202 FORMAT(///1X, 33HNUMBER OF ITERATIONS IN STREAME, 3(14))	PROG3P 234
	10 TO 53	PR0G3P . 235
1	GENERATION OF INITIAL FIELDS FOR THE CHANNEL VERSION. PSI-FIELDS ARE	PR063P-236
c	GENERATED IN THE SUBROUTINE GENCH FROM PARAMETERS GIVEN IN DATA-STATEM	PROGEP 227
c	HIM DITY_FILL D CORRESPONDS TO 50 PERCENT DELATIVE HIMITOTTY DE 15 400	PROGEP 279
0	The are accounted to be a second seco	00001 +230
C	ANII IS 2/3 DEGREES EVERTWHERE .	PR0037,239
	45 CALL GENCH(17, MINIPOIPS, UPS, NUINWAVE, NXINT, PSIC, LAMC, PSIS, LAMS, WX)	FRUG3P . 240
	WRITE(6, FPARR)	PROGOP. 441
	CALL GENCH(F8,M,N,PSIFM,UFM,NU,NWAVE,NX,NY,PSIC,LAMC,PSIS,LAMS,WX)	PRUG3P 242
	CALL GENCH(F9+M+N+PSIP1+UP1+NU+NWAVE+NX+NY+PSIC+LAMC+PSIS+LAMS+WX)	PR0G3P.243
С	COMPUTATION OF PSIM, PSI1, PSI2, HUMIDITY, PS AND TS	PR0G3P,244
	46 DO 50 1-1 MN	ppor3p 245

	$F_1(1) = F_8(1)$	PROGEP 246
	$F_{2}(1) = .5 * (F_{2}(1) * F_{2}(1))$	PROCED 247
	$F_3(1) = F_{+}(F_0(1) - F_0(1))$	DB0070 040
		FR003F.240
		PROGOP, 249
		PR0G3P.250
	TF9I= H3+F2(I)+H4+F3(I)	PR0G3P 251
	CALL SATUR'TPSI,QPSI'	PR0G3P.252
	F4(I)=,5+QPSI	PR0G3P.253
	50 CONTINUE	PR063p 254
Ĉ	STORE PSI-FIELDS IN STRM.STRI AND STR2	PROGEP 255
	CALL RANWT(STRM+F1)	DD0070 054
		PROUSE 250
		PROGSP 25/
~		PROGOP 498
C	SHOUTHING UP INITIAL FIELDS	PROGOP, 259
	53 [F(NSMUTT(1),NE.0) GO TO 55	PR0G3P.260
	LABEL = 10H ASMUT 6X	PR0G3P,261
	BTIME = SECOND(FAKE)	PROG3P.242
	WRITE(6,8000) BTIME	PR003P.243
	CALL ASMUT(F1,F10,M,N, .5)	PROG3P 264
	CALL ASMUT(F1.F10.M.N 5)	PROGEP 245
	CALL ASMIT(52, F10, MANA B)	000070 244
	CALL ASHUTCZ CLUMAL S	PRUG3P,260
		PROGOP 267
	CALL ASMUT(F ⁰ ,FIU,M,N, 2)	PROG P. 268
	CALL ASMUT(FS,FI0,M,N,-,5)	PR0G3P,269
	DTIME = SECOND(FAKE) - BTIME	PR0G3P.270
	WRITE(6,8005) LABEL, DTIME	PR0G3P.271
С	LOADING OF INITIAL FIELDS, ZERO TO ACCUMULATED PRECIPITATION	PR0G3P.272
	55 DQ 56 I=1.MN	220032 273
	F10(1)=0.0	000070 074
	56 CONTINUE	PRUGSF.2/4
		PRUGSP 275
		PR0G3P.276
	BITTE 4 SECUND(FARE)	PR0G3P.277
	WRITE(6,8000) BTIME	PROG3P, 278
	CALL RANWT(PSIMI,F1)	PR0G3P,279
	CALL RANWT(PSI11,F2)	PR0G3P,280
	CALL RANWT(PSI21,F3)	PR0G3P.281
	CALL RANWT(HUM1, F4)	PR0G3P .282
	CALL RANWT(PS .F5)	PP063P 283
	CALL RANWTITS .F6)	PR0007 .200
		PROGOP.284
		PROGOP, 282
	CALL RANNE(NS) FIU)	PRUG3P,286
	GALL RANNICDIVI (FIU)	PROG3P.287
	CALL RANWT(DIV2 , FIC)	PR0G3P,288
	DITTE = SECUND(FAKE) + BTIME	PR0G3P, 289
	WRITE(6,8005) LABEL, DTIME	PR0G3P, 290
	IF(MAPHOUR(1),NE,0) GO Th 60	PROG3P.201
C	MAPPRINTING OF FIRST TIMESTEP	PR063P 202
•	IF(KIND.NE.O) GO TO 58	000070 007
	ABE = 10H MAP3P	PR003P.293
		PRUGOP, 294
	DITE - SECONDATANE/	PR0G3P.295
		PHOG3P.296
	UALL MAPOP(1,1,1,1,1,0,4,0,4,0,0,0,F1,F2,F0,F4,F5,F0,F7,F8,F9,F10,	APR14,24
	A MARN, M, N, IDAY, ITIME, NTIME, PNIVS, PNIVM, PNIV1, ZB, PSIB, FB)	PR0G3P,298
	DTIME = SECOND(FAKE) - BTIME	PR0G3P.209
	WRITE(6,8005) LABEL, DTIME	PROG3P 300
	GO TO 60	PROG3P 3nt
	58 CALL MAP3P(0,0,0,0,0,0,0,0,1,1,1,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10	APR14 25
	X MARKAMAN, IDAY, ITIME, NTIME, PNIVS, PNIVM, PNIVA, 79, 70, 70	PROCTO TAT
	LABEL = 10H FORECASTS	PP0070 764
	BTIME = SECONDIFAKES	FRUG3P, 304
	DIANC - DECONDATANE!	PR063P.305

	WRITE(6.8000) BTIME	PROGTP 366
~		BB6038 303
Ŷ	to Do to the test wh	PROGOT SU/
		PR0637 .300
		PRUGOP, OUG
	ol continue	PRUG3P.310
	CALL HANWT DIVISE1	PROG3P.311
	CALL RANWT(DIV2,F1)	PR003P.312
	CALL, RANRD (HUM1, F ²)	PR003P 313
	CALL RANWT(HUM2,F2)	PRDG3P, 314
	CALL RANRD(PSIM1·F2)	PR0G3P.315
	CALL RANWT(PSIM2,F2)	PR0G3P.316
	CALL RANRD(PS111.F2)	PR063P. 317
	CALL PANIET(PS142,F2)	PPOGTP 348
	CALL RANRIPSTOLES	PROOTP TIO
		2000 219
	TELE RANKI (F) 222722	PRUG3P.320
		PRUGOP, 021
	IF(KIND, NE, D) GO TO YU	PR0G3P . 322
C	INPUT OF BOUNDARY FIELD EACH SIX HOUR	PR0G3P.323
С	THE SUBROUTINE ZINPUT HAS TO BE WRITTEN ***	PR0G3P.324
	CALL RANRD(ZM2,F2)	PROG3P 325
	CALL RANWT(ZM1.F ²)	PR0G3P 326
	CALL RANRD(Z12,F2)	PR0G3P. 327
	CALL RANWT(Z11.F2)	PR0G3P. 328
	CALL RANRD(722-F2)	PR063P 329
		PP0079 370
c	ALL TINDITA TO TON TO TO DELLE EL ES AND ES	PROGOT 330
U	DO SE LA MU	PROGOP JOIL
	DU OD IBI, MN	FRUG3F . 332
		PROG3P.333
	$F^{2}(I) = .5 + (Z = F1(I))$	PROG3P.334
	F3(I)=,5+(F3(I)+Z)	PROG3P,335
	F1(I) = 7	PROG3P 336
	65 CONTINUE	PR0G3P.337
	CALL DANUT (7MO F1)	PR0G3P.338
		PR0G3P. 339
		PR0G3P.340
	CALL RAINTICZCITOT	PROG3P 341
Ç	GENERAL IITESTEP THREE HUMAS AREAD	APRAA 96
	70 CALL STEPSF(F1,F2,F3,F4,F5,F6,F7,F6,F9,F10,F9,F400,F1,F1040,F1,F1040,F1,F1)	000070 747
	NCOUNT =NTIME	PRUGSP 345
	NTIME=NTIME+1	JUN12.11
	I1=NTSTEP+1	PROG3P.345
C	PRINT NUMBER OF ITERATIONS	PROG3P,346
	WRITE(6,200) NCOUNT,NTIME	PR0G3P,347
		PROG3P 348
	WRITE(6, 201) IT(1, 1), IT(2, 1)	PR0G3P, 349
		PR063P.350
~	/1 CUNTINUE	PR063P.351
C	SMOUTHING AND ELLIPTICITY (ES)	000070 352
	11=0	PR003P 372
	12=0	PROG3P.353
	DO 80 I=1,10	PRUG3P.354
	IF(ABS(FLOAT(NSMUTT(I))=NTIME).LT.0.1) I1=1	JUN14,14
	IF(ABS(FLOAT(MSMUTT(I))=NTIME),LT.0,1) I1=1	JUN12,13
	IF(ABS(FLOAT(MELLIPT(I))=NTIME).LT.0.1) 12=1	JUN12.14
	IF (ABS(FLOAT(NELLIPT(I))-NTIME), LT, 0, 1) I2=1	JUN12,15
	AD CONTINUE	PR0G3P.357
	15(11, E0, 0, AND, 12, E0, 0) G0 T0 95	PR0G3P.358
	CALL DANDA DSIMI.F1)	PR0G3P.359
	CALL RANGED FOLDER I F2	PROG3P 3AN
		PR003P 341
	CALL KANKU(PSIZIITS)	PROGEP 342
	DO 65 1#1,MN	00031 362
		PR063P.363

		$F_{1}^{1}(1) = Z + 2 + F_{2}^{2}(1)$	PROG3P. 34
		$F_{3}(I) = Z_{*}^{2} + F_{3}(I)$	PROG3p 34
		F ² (I)=Z	PROG3P 3A
	85	CONTINUE	PROG3P.34
		IF(I1.EQ.0) GO TO 86	PR003P. 34
		CALL ASMUT(F1,F4,M.N. ,5)	PR063P. 340
		CALL ASMUT(F1,F4,M,N,*,5)	PR063P 371
		CALL ASMUT(F2,F4,M,N, ,5)	PROGSP 37
		CALL ASMUT(F2+F4+M+N++,5)	PROGRE 37
		CALL ASMUT(F3,F4,M,N, ,5)	PROGTP 37
		CALL_ASMUT(F3,F4,M,N,=,5)	PROG3P 37
	86	IF(I ² .EQ.0) GO TO 90	PROG3P 375
		IF(KIND, ^N E,0) GO TO 90	PROGSP 37
		CALL ELLIPT(F1+MY+M+N)	APR14.27
		CALL ELLIPT(F2,MY,M,N)	APR14.28
	-	CALL ELLIPT(F3,MY,M,N)	APR14.29
	90	D0 93 I±1,MN	PROGSP 380
		Z=F2(I)	PR063P. 381
		$F_{2}(1) = .5 + (Z_{-}F_{1}(1))$	PROG3P 34
		$F_3(I) = {}_5 + (F_3(I) = Z)$	PROG3P 383
		$F1(\underline{I})=Z$	PROG3P . 384
	93	CONTINUE	PROG3P.385
		CALL RANWT(PSIM1.F1)	PROG3P.386
		CALL RANWT(PSI11,F ²)	PROG3P JA7
		CALL RANWT(PSI21,F3)	PR063P.388
3	MAP	PRINTING	PRAGJP JAG
	95	00 96 I=1,10	PROGTP 300
		IF (MAPHOUR(I).EQ.NTIME) GO TO 97	PRIG3P 301
	96	CONTINUE	PR063P 302
		GO TO 100	PROGRE 303
	97	IF(KIND,NE.0) GO TO 98	PR0632.304
		CALL MAP3P(1,1,1,0,1,1,1,1,0,0,0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,	APR14.30
)	MARK, M, N, IDAY, ITIME, NTIME, FNIVS, PNIVM, PNIVI, ZB, FB, SB)	PROG3P. 306
	•	GO TO 100	PROG3P 307
	98	CALL HAP3P(0,0,0,0,1,0,0,0,1,1,0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,	APR14.31
)	MARK+M+N+IDAY+ITIME+NTIME+PNIVS+PNIVM+PNIV1+ZB+ZB+ZB)	PR0G3P.399
;	ZER	D TO ACCUMULATED PRECIPITATION	PROG3P.400
	100	DO 105 I=1.10	PROG3P.401
		IF(LETACC(I).EQ.NTIME) GO TO 106	PROG3P 4n2
	105	CONTINUE	PROG3P.403
		GO TO 115	PROG3P.4n4
	106	DO 110 I=1.MN	PROG3P.405
		F1(I)=0.0	PROG3P 4n6
	110	CONTINUE	PROG3P.407
		CALL MANWT(PREC,F1)	PROG3P 4n8
	500	FURMAL(29H1NUMBER OF ITERATIONS BETWEEN, 13, 4H AND, 13, 6H HOURS)	PROG3P 4n9
	-01	FORMAT(4X, <(14))	PROG3P 410
	115	IFCUEND, LE, MTIME) STOP	PR0G3P 411
			PROG3P 412
		END	PROG3P.413

SUBROUTINE STEP3P

```
SUBROUTINE STEP3P(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,MY,MARK,IT,
                                                                                          APR14,46
C SIX HOURS FORECAST BY 3P-MODEL
                                                                                          STEP3P.3
                                                                                         STEP3P 4
       DIMENSION F1(1),F2(1),F3(1),F4(1),F5(1),F6(1),F7(1),F8(1),F9(1),
F10(1),MY(1),F(1),MARK(1),IT(2,1)
                                                                                         STEP3P,5
                                                                                         STEP3P.6
       X
        COMMON/FPAR/IC(8), JC(8), XPOL, YPOL, R, RE, DS, JMIN(100), JMAX(100),
                                                                                         STEP3P 7
       Х
                  MX, NX, KIND
                                                                                         STEP3P.8
                                                                                         STEP3P.18
        COMMON/ECS/ PSIM1, PSI11, PSI21, PSIM2, PSI12, PSI22, HUM1, HUM2, DIV1,
       201V2, WS, HEAT, J789, J12, J56, J3, PS, TS, PREC, STRM, STR1, STR2, ZM1, Z11, Z21STEP3P, 19
       3, ZM2, Z12, Z22, H13, H23, HM3, HM2, H12, H22, H11, H21, J4, VM, V1, V2
                                                                                         STEP3P,20
                                                                                         STEP3P.21
STEP3P.22
        COMMON/COEFF/A1+A2+A3+B1+B2+B3+C1+C2+C3+C4+C5+C6+C7+C8+D+DELP,EM,
                      E1, E2, H1, H2, H3, H4, H5, H6, PMEAN, S1, S2, T1, T2, T3, T4, T5,
       X
      X
                      PO.PM.P1
                                                                                         STEP3P 23
        COMMON/COEFF2/T6, T7, T8, T9, T10, T11, T12, T13, T14,
K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11, K12, K13, K14, K15, STEP3P, 25
      Х
                         K16,K17,K18,K19,K20,K21,K22,K23,K24,K25,K26,K27,K28,STEP3P.26
K29,K30,K31,K32,K33,K34,K35,K36,K37,K38 STEP3P.27
      X
      X
        COMMON/RUNPAR/DELT, NTSTEP, ALFASYS, ALFAM, ALFAZ, ALFAPSI, RESSYS, RESM, STEP3P, 28
                        RESZ, RESPSI, Q, FOCEAN, FCONT, WGT1, WGT2, WGT3, ADIFF
      х
                                                                                         STEP3P.29
        COMMON F
                                                                                         APR14.47
        REAL MY, KEFF
                                                                                         STEP3P.30
                         K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15, STEP3P,31
K16,K17,K18,K19,K20,K21,K22,K23,K24,K25,K26,K27,K28,STEP3P,32
K29,K30,K31,K32,K33,K34,K35,K36,K37,K38
STEP3P,33
        REAL
                                                                                         STEP3P 32
STEP3P 33
      X
        DATA RGAS, EE, HL, CP, TO, E0, DEL1, DEL2, TOL/287, , .622, 2, 5E6, 1004, ,
                                                                                         STEP3P.34
STEP3P.35
X 273.,.611.0.0.0.0.0.0/
C DEL1.DEL2, AND TOL HAVE TO BE DEFINED
                                                                                         STEP3P 36
                                                       ******
                                                                                         STEP3P.37
        DEL1=0.0001
       0EL2=0,001
                                                                                         STEP3P.38
       TOL=0,0
                                                                                         STEP3P, 39
C CONSTANTS FOR COMPUTATION OF LATENT HEAT
                                                                                         STEP3P.40
       CC1 = 1./TO
                                                                                         STEP3P.41
                                                                                         STEP 3P 42
        CC2 = EE+HL/RGAS
        CC^3 = EE + HL/CP
                                                                                         STEP3P.43
        CC4 = CC2 * CC3
                                                                                         STEP3P.44
       CC5 = DEL1+DEL2
                                                                                         STEP3P.45
C
                                                                                         STEP3P.46
       IF (KIND. EQ. 0) GU TO 5
                                                                                         STEP3P.47
       AGT1=1 0
                                                                                         STEP3P.4n
        AGT2=.67
                                                                                         JUN12,16
        AGT3=.33
                                                                                         JUN12,17
     5 MN= 4+N
                                                                                         STEP 3P .51
                                                                                         STEP3P 52
STEP3P 53
        ND=NTSTEP+1
        41=4-1
       DO 170 KT=1, JD
EPS = 2,
                                                                                         STEP3P.54
                                                                                         STEP3P 55
       IF(KT.LT.3) EPS = .5+KT
                                                                                         STEP3P,56
С
                                                                                         STEP3P.57
                    **STEP3P.58
                                                                                         STEP3P.50
C ALL JACOBIANS ARE COMPUTED AND STORED
       CALL RANRD(PSIM1,F1)
                                                                                         STEP3P.6n
                                                                                         STEP3P.61
       CALL RANRD(PSI11,F2)
       CALL RANRD(PSI21,F3)
                                                                                         STEP3P.62
C
                                                                                         STEP3P.63
       CALL ABSVOR(F1, F4, MY, MARK, M, N)
                                                                                         APR14,48
       CALL RELVOR(F2,F5,MY,MARK,M,N)
                                                                                         APR14.49
                                                                                         APR14.50
       CALL RELVOR(F3, F6, MY, MARK, M, N)
                                                                                         STEP3P.67
STEP3P.69
       KEFF=1.0
CALL RANRD(PS,MY)
                                                                                         STEP3P.69
       GALL OROG(F5+MY+M+N+KEFF)
                                                                                         STEP3P,70
C
```

STEP3P (Continued)

```
DO 10 I=1,MN

F7(I) = C3+F4(I)=C2+F5(I)+C4+F6(I) + C7+F(I)
                                                                                                           STEP3P.71
                                                                                                           STEP3P,72
          F8(1) ==C2+F4(1)+C5+F5(1)
                                                                                                           STEP3P.73
STEP3P.74
          F9(1) = 04 + F4(1)
                                      +C6+F6(1)+2+C7+F(1)
      10 CONTINUE
                                                                                                           STEP3P,75
 C
                                                                                                           STEP3P.76
STEP3P.77
          CALL JACOB(F1, F7, F10, M, N)
CALL JACOB(F2, F8, F7, M, N)
CALL JACOB(F^{3}, F9, F8, M, N)
CALL JACOB(F^{3}, F9, F8, M, N)
CALL OROG(F7, MY, M, N, KEFF,
                                                                                                           STEP3P.78
                                                                                                           STEP3P.79
STEP3P.80
 C
                                                                                                           STEP3P.81
          DO 20 I=1,MN
F10(I) = F10(I)+F8(I)+F7(I)
                                                                                                           STEP3P.82
STEP3P.83
STEP3P.84
STEP3P.85
          F9(1) = F4(1) = 2 + F5(1)
      20 CONTINUE
 С
                                                                                                           STEP3P,86
          CALL RANWT(J789,F10)
                                                                                                           STEP3P.87
 С
                                                                                                           STEP3P.88
         CALL JACOB(F2,F9,F7,N,N)
CALL OROG(F7,MY,M,N,KEFF)
CALL JACOB(F1,F5,F8,M,N)
                                                                                                           STEP3P.89
STEP3P.90
                                                                                                           STEP3P.91
 C
                                                                                                           STEP3P.92
          00 30 I=1, MN
F10(I) = F7(I)+F8(I)
                                                                                                          STEP3P.93
STEP3P.94
STEP3P.95
          F9(I) = F4(I) + 2 * F6(I)
                                                                                                           STEP3P.95
STEP3P.96
     30 CONTINUE
 С
                                                                                                           STEP3P,97
          CALL RANWT(J12,F10)
                                                                                                           STEP3P.98
 С
                                                                                                          STEP3P.99
          CALL JACOB(F3, F9, F7 , M, N)
                                                                                                          STEP3P,100
          CALL JACOB(F1+F6+F8 +M+N)
                                                                                                          STEP3P 101
STEP3P 102
         CALL JACOB(F1,F3,F9,M,N)
CALL JACOB(F1,F2,F10,M,N)
CALL OROG(F10,MY,M,N,KEFF)
                                                                                                          STEP3P 1n3
STEP3P 1n4
STEP3P 1n5
 С
         CALL RANWT(J3,F10)
                                                                                                          STEP3P,106
C
                                                                                                          STEP3P,107
         DO 40 I=1, MN
                                                                                                          STEP3P,108
     40 F10(I)=F7(I)+F8(I)
CALL RANWT(J56,F10)
                                                                                                          STEP3P.109
STEP3P.110
                                                                                                          STEP3P.110
STEP3P.111
         CALL RANRD(PS.F10)
         PPM=2./(P0-PM)
D0 44 I=1,MN
                                                                                                          STEP3P 112
STEP3P 113
         F7(I)=F1(I)+F2(I)*PPM*(F10(I)+PM)
F8(I)=PPM+F5(I)*(F10(I)+PM)-F4(I)+F(I)
                                                                                                          STEP3P 114
STEP3P 115
     44 F4(I)=F10(I)
                                                                                                          STEP3P 116
С
                                                                                                          STEP3P, 117
         CALL JACOB(F7, F4, F5, M, N)
                                                                                                          STEP3P.118
         CALL MYFF(MY, M.N)
                                                                                                          APR14,51
С
                                                                                                       STEP3P, 120
++STEP3P, 121
DO 50 I=1, MN
IF(MARK(I)) 49,50,50
                                                                                                         STEP3P.124
STEP3P.125
STEP3P.126
STEP3P.127
    49 CF=FOCEAN
         PP=F4(1)
         IF(PP.LT.101.35) CF=FCONT
                                                                                                          STEP3P.128
        F4(I) = .25*MY(I)*F5(I)+CF*F8(I)
                                                                                                          STEP3P, 129
        F10(1)=PP
                                                                                                         STEP3P,130
    50 CONTINUE
                                                                                                         STEP3P,131
```

STEP3P (Continued)

STEP3P.132 С STEP3P.133 STEP3P.134 CALL RANWT(WS, F4) CALL RANRD(TS, F5) ++STEP3P 135 C HEATING FROM OCEAN SURFACE WHEN THE AIR IS COLDER, PQ IS THE TEMP DIFFSTEP3P.136 C OCEAN SURFACE IS ASSUMED WHERE STANDARD PRESSURE PS IS 101.35 CB OR MOSTEP3P.137 STEP3P,138 DO 59 1=2,M1 STEP3P 139 STEP3P 140 J1=JMIN(I)=1 J2=JMAX(I)=1 K=(J1=1)+M+I STEP3P,141 STEP3P,142 DO 59 J=J1.J2 STEP3P 143 STEP3P 144 STEP3P 145 PP=F10(K) PQ=F5(K)=H2+F2(K) IF(PP.LT.101.324) GO TO 57 IF(PQ.LE.0.0) GO TO 57 STEP3P,146 PR = SQRT(,25+MY(K)+((F7(K+1)-F7(K-1))+(F7(K+1)-F7(K-1))+ STEP3P,147 X (F7(K+M)=F7(K=M))*(F7(K+M)+F7(K=M)))) STEP3P 148 F5(K) = .5E=2+H1+(,1+PR=1,)+PQ STEP3P,149 GO TO 58 STEP3P.150 57 F5(K)=0.0 STEP3P,151 58 K=K+M STEP3P.152 59 CONTINUE STEP3P.153 ******STEP3P.154 STEP3P,155 C EM.E1,E2 ARE COEFF FOR COMP OF MEAN STREAMFUNCTION STEP3P,155 C SS1,SS2,SS3 ARE COEFF FOR COMP OF MEAN DIVERGENCE, D IS ZERO OVER LANDSTEP3P.156 STEP3P,157 C THE HUMIDITY IS GIVEN IN TON PER SQUAREMETER AND CENTIBAR CALL RANRD(DIV1+F6) STEP3P.158 STEP3P 159 CALL RANRD(DIV2,F7) STEP3P,160 STEP3P,161 CALL RANRD(HUM1, F8) С STEP3P . 162 SS1 = E1+EH+C2 STEP3P.163 STEP3P.164 SS2 = E2-EM*C1 SS3 ==EM*C8 STEP3P,165 00 51 I=1, MN STEP3P,166 STEP3P,167 STEP3P,168 PQ = D PP = F10(1)IF(PP.LT.101.35) P0=0.0 STEP3P.169 F7(1) = F8(1)*(SS1*F6(1)+SS2*F7(1)+F4(1)*(PQ+SS3))F6(I) = EN*F1(I)+E1*F2(I)+E2*F3(I)STEP3P.170 STEP3P.171 61 CUNTINJE STEP3P.172 CALL JACOB(F6,F8,F10,M,N) STEP3P.173 STEP3P.174 00 62 I=2, M1 J1=JMIN(I)+1 J2=JMAX(I)-1 STEP3P,175 STEP3P.176 STEP3P.177 K =(J1-1)+4+1 30 62 J=J1,J2 F6(K) = F8(K+M)+F8(K-M)+F8(K+1)+F8(K-1)-4*F8(K)STEP3P.178 STEP3P.179 X = K + MSTEP3P.1P0 62 CONTINUE С STEP3P.181 STEP3P.182 DEPS = EPS*DELT JJ 63 I=1, 1N STEP3P, 183 IF (MARK(1), GE. 0) GD TO 63 STEP3P.184 F8(I)=-DEPS*(,25+MY(I)+F10(I)+F7(I)-ADIFF+MY(I)+F6(I)) STEP3P, 145 STEP3P.186 63 CONTINUE STEP3P.187 C STEP3P, 189 STEP3P, 189 STEP3P, 190 CALL RANPD(HUM2,F6) DO 65 I=1,HN IF(ARK(1)) 64,65,65 STEP3P,191 64 F6(I) = F6(I) + F8(I)STEP3P,192 65 CONTINUE *******STEP3P.193 C+++++++++++++

STEP3P (Continued)

c c	THE PER	RAIN FOR ONE TIMESTEP IS ACCUMULATED. THE RAIN IS GIVEN IN MM OR SQUAREMETER -	KSTEP3P.104 STEP3P.105
		DO 70 I=1, HN IF(MARK(I)) 66,70,70	STEP 3P 196 STEP 3P 197
	66	TEMP = H3*F2(I)+H4*F3(I)	STEP3P.198
		CALL SATUR(TEMP, QSAT)	STEP3P.199
		PQ = F6(1) = .8 + QSA + 1	STEP3P 201
	67	F(I) = 8+0507	STEP3P.202
	07	F7(I) = .5F3*DELP*PQ	STEP3P.203
		IF(KT,EQ.1) F7(I)=0,0	STEP3P,204
		IF(KT,EQ,2) F7(1)=2+F7(1)	STEP3P.205
	-	GO TO 70	STEPSP 200
	68	F7(1) = 0	SIEF3F,207
		$PQ = F6(1) - 2^{2}RSA1$	STEP3P 209
	60	$r_{6(1)} = 2 + 0.54T$	STEP3P 210
	70		STEP3P, 211
		CALL RANDU (PREC.F8)	STEP3P.212
		JO 71 I=1, 1N	STEP3P.213
		F8(1) = F8(1) + F7(1)	STEPSP 214
	71		STEP37 215
		CALL RANATYPREDATON	STEP3P 217
		CALL RANADINGTON	STEP39,218
		CALL RANAT(HUN2,F8)	STEP3P 219
C	****	**************************************	**STEP3P.220
		CALL RANRD(DIV1,F6)	STEP3P.221
		CALL RANRD(DIV2,F8)	STEPSP, 222
		00 180 I=1.MN	STEPSP 275
		IF(MARK(I)) 179,180,180	STEPTP 224
	1/9	$F_6(1) = 11*F_4(1)+12*F_6(1)*13*F_6(1)$	STEP 3P 220
C	- 50	CONTINCE	STEP3P 227
		DJ 190 I∓1.MN	STEP3P 228
		IF(MARK(I)) 187,190,190	STEP3P,229
	187	RAIN = F7(I)/EPS/DELT	STEP3P,230
		IF(RAI H.LT.TOL) GO TO 188	STEP3P.231
		VERT = F6(I)	STEP3P,232
		IF(VERI,GI,=DELA) GU IN 188	SIEPSP, 233
		IE (VERT.GE.=CC5.AND.VERT.LE.=DEL1) OSTAR = +ARS(VERT+VERT/CC5)	STEPSP, 235
		$TEMP = H_{0*}F^2(1)$	STEP3P 236
		$x = cc^{2} * (cc^{1} - 1, / TEMP)$	STEP3P 237
		E = E0 + EXP(X)	STEP3P.238
		FSTAR = EE*TEMP*E*(CC3=TEMP)/PMEAN/(PMEAN*TEMP*TEMP + CC4*E)	STEP3P 239
		HLAT = "H1+HL+OSTAR+FSTAR	STEP3P,240
	190		STEP3P 241
	182	$F_{1}(X) = 0.0$ $F_{2}(1) = F_{2}(1) + HLAT$	STEP3P. 243
	190	CONTINUE	STEP3P.244
		CALL RANAT(HEAT, F5)	STEP3P.245
С			STEP 3P. 246
		11=0	STEP3P.247
		12=0	STEP3P,248
		13=0	STEPTP 249
		14-0	016508.250
		CALL STEPEXT(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,MY,MARK,M,N,	APR14.50
	;	X I1, I2, I3, I4)	STEP3P,253
C	****	**************************************	++STEDID 054
STEP3P (Continued)

		CALL DANDON (JAC FIA)	STEDID 355
		CALL RANRD(J/89,F10)	
		DEPS_= .25*DELT*EPS	SIEPSP.250
		DO /S IEL,MN	SIEPSP 25/
		IF(MARK(I)) 72,73,73	STEPSP.250
	72	PQ = 4 + F(1) / MY(1)	STEPSP 259
		F8(I) = DEPS * (F10(I) = C8 * F4(I) * PQ)	STEP3P.240
		F6(I) = PQ+(A3+F4(I)+A1+F5(I))	STEP3P.261
		F7(I)=PQ*(83*F4(I)+81*F5(I))	STEP3P,242
	73	CONTINUE	STEP3P,263
C			STEP3P,244
		CALL RANRD(13-E10)	STEP3P. 265
		CALL RANKDU (12, F4)	STEP3P.266
			STEP3P. 267
C		CALL MARKETSPERSY	STEP3P 268
0		20 1-0 1-0 MM	STEP3P. 249
			STED30 270
		IF (MARK(1)) /9,80,80	STEP 30 271
	10	$P_{0} = F(1) + F(1)$	SIEPSP. 271
		$F_{0}(1) = HEPS*(F_{1}) + PU*(A_2 + P(1) + A_1 + PU(1)) + PO(1))$	STEPTP 272
		F7(1) ==0EPS*(F5(1)+PQ*(R1*F10(1)-B2*F9(1))+F7(1))	SIEP3P.273
8	80	CONTINUE	STEP3P.274
C * * *	* * *	**************************************	*****STEP3P.275
		CALL RANRD(HM3,F4)	STEP3P.276
		CALL RANRD(H13,F5)	STEP 3P 277
		CALL RANRD(H23,F10)	STEP3P_278
		DEPS1=DELT*EPS	STEP3P.279
		DO 81 1=1.4MN	STEP3P.200
		$F_{8}(1) = F_{8}(1) + 0 = P_{8}(1) + F_{4}(1)$	STEP3P.281
		$F_{6}(1) = F_{6}(1) + hEPS1/MY(1) + F_{5}(1)$	STEP3P, 2a2
	n 1	$F_{2}(1) = F_{2}(1) + DEPS_{2}(MY(1)) + F_{1}(1)$	STEP3P 283
	- 0		STEP3P 284
	22		STEDID 205
		CALL RANRD(PS122,F10)	STEF 30 206
C,		Design of the second	STEPSP, 280
		00 90 I=1,4N	STEP3P.287
	89	F2(I)=2*(F2(I)-F5(I))	STEPSP. 288
		F3(I)=2*(F3(I)-F10(I))	STEP3P.289
	91	CONTINUE	STEP3P,200
С			STEP3P.291
		LABEL = 10H HELMSYS	APR14.57
		STIME = SECOND(DUMMY)	APR14.58
		JRITE(5, 3000) BTIME	APR14.59
0.5	0.0	FOPMAT(1) + otime +, Fi0 4	APR14.60
6 U	0.1	TALL HE 1995 FD. F3. F6. F7. MY. F4. A1. A2. B1. B2. AL FASYS. RESSYS.	APR14.61
			STEPTP 203
	,	$\mathbf{x} = 1 + $	APR14.62
		DETERATIONE SCONDEDUTIN	APR14 43
e. 13		ARTIE(5,800) LABEL, DITE	APP14 64
8.0	07	FORMAT(IH , #TIME TO EXECUTE *, AID, FID. *)	AFRI'+D
		(T(1,KT) = ITSYS	STEP3P.294
		JALL ASMUT(F2,F4,M,N,S)	JUN12.18
		CALL ASMUT(F2;F4;M:N:T25)	JUN12.19
		CALL ASMUT(F ³ , F ⁴ , M, N, ⁵)	JUN1<,20
		CALL ASMUT(F3,F4,M,N,-,5)	JU~12.21
С			STEP3P,295
		0 100 I=1,MN	STEP3P.296
		IF(1ARK(I)) 99.100,100	STEP3P 297
99		TFILT=0.4	JUN12.22
		IF(1ARK(1), EQ10) TF1LT=0.7	JUN12.23
		IF(MARK(I), EQ1) TFILT=1.	JUN12,24
,		F5(1) = F5(1) + TF1 + F2(1)	JUN12,25
		$F_{10}(1) = F_{10}(1) + TF_{11}(1) + F_{3}(1)$	JUN12.26
		FA(1) = Q(NY(1))	STEP3P.3n0
	~ ~		STEP3P 3n1
1	0.0	CONTINUE	STEDID TAD
C			

STEP3P (Continued)

	CALL RANRD(PSIM2.F6)	STEP3P.303
С	00 110 1-1 MN	STEPSP 305
109	$F_1(1) = 2*(F_1(1)=F_6(1)) = C_2*F_2(1) + C_1*F_3(1)$	STEP3P.3n6
110	CONTINUE	STEP3P.307
С		STEP3P,308
	CALL HELM(F1.F8.F4.ALFAM, RESM, ITM.M.N)	STEP3P.309
~	$IT(2_sKT) = ITM$	STEP3P.310
U	CALL ASMUTIFI F4.M.N. 5)	JUN12.27
	CALL ASHUT(F1+F4+M+N++.5)	JUN12.28
	00 120 1=1, MN	STEP3P, 312
	IF(MARK(I))119,120,120	JUN12,29
119	TFILT=,4	JUN12,30
	$\frac{1}{1} \frac{1}{1} \frac{1}$	UN12.31
	$F6(1) = F6(1) + TF1LT + F^{1}(1) + C^{2} + F^{2}(1)$	JUN12.33
9	S-C1+F3(I))	JUN12.34
120	CONTINUE	STEP3P,314
C****	**************************************	*STEP3P.315
	CALL RANRD(SIRM, F4)	STEP3P 316
	IF (IVAR, EQ. 0) GU ID 100	STEP3P 318
	CALL RANPD(ZM1.F7)	STEP3P.319
	CALL RANRD(ZM2,F8)	STEP3P.320
С		STEP3P.321
	$WF = (KT-1)/^{n}D$	STEP3P.322
	$FW = 1_{0} + WF$	SIEP3P. 323
	0 130 I=1.MU	STEP3P 325
	IF(MARK(1)) 129,130,130	STEP3P.326
129	F7(1) = G*(FW*F7(1)+WF*F8(1))/F(1)	JUN12,35
130		STEP3P.328
	CALL MIXEVE6, F7, MARK, WG[1, WG]2, WG[3, M, N'	STEP3P.329
C	CALL RANKDISIR1, F47	SIEP3P 33U
Ŭ	CALL RANRD(711,F7)	STEP3P.332
	CALL RANRD(Z12+F8)	STEP3P.333
	00 140 I=1,MN	STEP3P,334
470	IF(4ARK(I)) 139,140,140	STEPSP 335
1.59	r/(1) = 0+(rW+r/(1)+Wr+r8(1))/r(1) Continue	JU"12,36
7.40	CALL MIXF (F5, F7, MARK, WGT1, WGT2, WGT3, N, N)	STEP3P.338
	CALL RANRD(STR2,F4)	STEP3P.339
С		STEP 3P . 340
	CALL RANRD(Z21,F7)	STEP3P.341
	CALL RANRD(Z22+F8)	STEP3P.342
	TE (MARK(I)) 140.150.150	STEPSP 343
149	F7(I) = G*(FU*F7(I)*WF*F8(I))/F(I)	JUN12 37
150	CONTINUE	STEP3P.346
	CALL MIXF(F10,F7,MARK,WGT1,WGT2,WGT3,M,N)	STEP3P.347
		STEP3P.348
151	CALL MIAR (FO) FAMARKAWGT1,WGT2,WGT3,M,N)	STEP3P.349
	CALL MIXF(F5 .F4.MARK, WGT1.WGT2.WGT3.M.N)	STEP3P 351
	CALL RANRD(STR1+F4)	STEP3P 352
	CALL MIXF(F10, F4, MARK, WGT1, WGT2, WGT3, M, N)	STEP3P 353
	CALL RANRD(STR2,F4)	STEP3P, 354
C****	▼★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★	*STEP 5P. 355

STEP3P (Continued)

150	JE(KT. LT. 3) 60 TO 157	STEP3P.356
	CALL BANGD(BSIM1.F1)	STEP3P. 357
	CALL RANDOPSIII.F4)	STEP3P 358
	CALL RANRD(PSI21.F7)	STEP3P 359
157	CALL RANUT(DSIM1.F6)	STEP3P 360
221	CALL DANUT(DSI11.F5)	STEP3P 361
	CALL RANGT(DSI21.F10)	STEP3P. 342
	JECKT LT 3V GO TO 158	STEP3P 343
	CALL RANNT(PSIM2.F1)	STEP3P. 364
	CALL RAJUT(PSI12.F4)	STEP3P.365
	CALL RANJT(PS122.F7)	STEP3P. 366
C ****	**************************************	**************************************
153	CALL RANRO(J3.F10)	STEP3P. 368
	CALL RA-HRD (HEAT.F5)	STEP3P.369
	CALL RANAD(WS,F8)	STEP3P.370
C,		STEP3P.371
	Pu = 1./EPS/DELT	STEP3P 372
	DO 160 I=1.MH	STEP3P.373
	IF(MARK(1)) 159,160,160	STEP3P.374
1.59	TER41 = F(I)+(PQ +F2(I)+.25+MY(I)+F10(I))-F5(I)-S1	*F8(1) STEP3P.375
	TERM2 = F(I) * (PQ *F3(I) + 25 * Y(I) *F9 (I)) -S2	*F8(1) STEP3P.376
	F2(I) = -A1 + TERM1 + A2 + TFRM2	STEP3P.377
	FS(I) = H1 + TERM1 - B2 + TERM2	STEP3P.378
160	CUNTINUE	STEP3P.379
0		STEP3P, 3A0
	CALL RAIWT(DIV1,F2)	STEP3P.3A1
	CALL RANWT(DIV2,F3)	STEP3P.382
	CALL RATRD(PSIM1,F1)	STEP3P, 3A3
	CALL RANRD(PSI11,F5)	STEP3P, 384
	CALL RANRD(PSI21:F10)	STEP3P.385
С		STEP3P, 386
	PRINT 7512.KT	STEP3P.387
7512	FORMAT(1X, SHKT=, 1S)	STEP 3P, 388
170	CUNTINUE	STEP3P.389
	RET JRN	STEP3P.390
	END	STEP3P.391

SUBROUTINE STEPEXT

```
SUBROUTINE STEPEXT(F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,MY,MARK,M,N,
                                                                                             APR14,67
 1 I1, I2, I3, I4) STEPEXT, 3
THIS SUBROUTINE COMPUTES THE CONTRIBUTION FROM THE HIGHER ORDER TERMS STEPEXT, 4
С
 IN THE VORTICITY EQUATION.
I1 INDIGATES THE VORTICITY ADVECTION BY THE DIVERGENT VIND
I2 INDIGATES THE RELATIVE VORTICITY+DIVERGENCE
                                                                                             STEPEXT.5
C
                                                                                             STEPEXT . 6
С
                                                                                             STEPEXT.7
С
 13 INDICATES THE VERTICAL ADVECTION OF VORTICITY
                                                                                             STEPEXT.8
С
 14 INDICATES THE TWISTINGTERM
11=0 NO CONTRIBUTION 11 DIFFERENT FROM 0 CONTRIBUTION FROM 11
                                                                                             STEPEXT . 9
С
                                                                                             STEPEXT.10
C
                              12 DIFFERENT FROM 0 CONTRIBUTION FROM 12
13 DIFFERENT FROM 0 CONTRIBUTION FROM 13
                                                                                             STEPEXT.11
С
  I2=0 NO CONTRIBUTION
С
  13=0 NO CONTRIBUTION
                                                                                             STEPEXT.12
  14=0 NO CONTRIBUTION 14 DIFFERENT FROM 0 CONTRIBUTION FROM 14
                                                                                             STEPEXT.13
С
C PSIM IS IN F1, PSI1 IS IN F2, PSI2 IS IN F3, WS IS IN F4
                                                                                             STEPEXT.14
C STEPEXT NEEDS 10 FIELDS IN THE FAST CORE MEMORY F.MY AND MARK MUST C ALSO BE IN FAST CORE MEMORY
                                                                                             STEPEXT.15
                                                                                             STEPEXT.16
       DIMENSION F1(1),F2(1),F3(1),F4(1),F5(1),F6(1),F7(1),F8(1),F9(1),
                                                                                             STEPEXT.17
      1
                   F10(1),F(1),MARK(1),MY(1)
                                                                                             STEPEXT, 18
        COMMON F
                                                                                             APR14.68
        CUMMON/COEFF/A1, A2, A3, B1, B2, B3, C1, C2, C3, C4, C5, C6, C7, C8, D, DFLP, EM,
                                                                                             STEPEXT.19
                        E1+E2+H1+H2+H3+H4+H5+H6+PMEAN+S1+S2+T1+T2+T3+T4+T5+
                                                                                             STEPEXT.20
      1
                                                                                             STEPEXT. 21
                        PO, PM, P1
      2
       COMMON/COEFF2/T6,T7,T8,T9,T10,T11,T12,T13,T14,
K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15, STEPEXT,23
K16,K17,F18,K19,K20,K21,K22,K23,K24,K25,K26,F27,K28,STEPEXT,24
      Х
      Х
                                                                                             STEPEXT. 25
                          K29+K30+K31+K32+K33+K34+K35+K36+K37+K38
      Х
      COMMON/ECS/ PSIM1, PSI11, PSI21, PSIM2, PSI12, PSI22, HUM1, HUM2, DIV1, APP14, 69
201V2, WS, HEAT, J789, J12, J56, J3, PS, TS, PREC, STRM, STR1, STR2, ZM1, Z11, Z21APR14, 70
                                                                                             APR14.71
       3, ZM2, Z12, Z22, H13, H23, H43, HM2, H12, H22, H11, H21, J4, VM, V1, V2
        REAL MY
                                                                                             STEPFXT.34
                          K1,K2,K3,K4,K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15, STEPEXT,35
K16,K17,K18,K19,K20,K21,K22,K23,K24,K25,K26,K27,K28,STEPEXT,36
        REAL
      Y
                                                                                                        36
      х
                          K29,K30,K31,K32,K33,K34,K35,K36,K37,K38
                                                                                             STEPEXT, 37
                                                                                             APR14,72
        KIND=0
                                                                                             STEPEXT. 38
        에네= 1+네
        RESIDUE =.5E4
                                                                                             STEPEXT, 39
        ALFA=1.4
                                                                                             STEPEXT.40
C JACOBIAN J4 TO SECONDARY STOPAGE, DIVERGENCIES TO FAST MEMORY
                                                                                             STEPEXT.41
        CALL RANWT(J4, F9)
                                                                                             STEPEXT, 42
        CALL RANKD(DIV1,F5)
                                                                                             STEPEXT.43
                                                                                             STEPEXT, 44
        CALL RAHRD(DIV2, F6)
        00 9 I=1+14
                                                                                             STEPFXT.45
        IF(MARK(I)) 9,7,7
                                                                                             STEPEXT, 46
        F^{4}(1)=0.0
                                                                                             STEPEXT, 47
     7
        F5(1)=0,0
                                                                                             STEPEXT.48
        F6(I)=0.0
                                                                                             STEPEXT.49
     9 CONTINUE
                                                                                             STEPEXT, 50
        IF(KIND, FU.O) GD TO 8
                                                                                             STEPFXT.51
        CALL BIOVE(F4, M, N)
                                                                                             STEPEXT, 52
        CALL BIOVE(F5, M, N)
                                                                                             STEPEXT.53
    CALL BMOVE(F6, M, N)
B CUNTINJE
                                                                                             STEPEXT, 54
                                                                                             STEPFXT.55
        IF (14.EQ.0.AND.13.EQ.0.AND.12.EJ.0.AND.11.EQ.0) GO TO 170
                                                                                             STEPEXT, 56
        IF(14.EQ.0) GO TO 44
                                                                                             STEPEXT.57
& COMPUTE THE TWISTINGTERN, 14
                                                                                             STEPEXT.58
        DO 10 I=1, MN
                                                                                             STEPEXT, 59
        F7(I)=K31*F5(I)+K32*F6(I)+K33*F4(I)
                                                                                             STEPEXT, 60
    10 F8(1)=K36+F5(1)+K37+F6(1)+K38+F4(1)
                                                                                             STEPEXT. 41
        CALL GRADPR(F2,F7,F9,MARK,M,N)
CALL GRADPR(F3,F8,F10,MARK,M,N)
                                                                                             STEPEXT. 42
                                                                                             STEPFXT.63
                                                                                             STEPEXT. 64
        n0 11 I=1,MN
        F9(I)=0.5+MY(I)+F9(I)
                                                                                             STEPEXT. 65
```

STEPEXT (Continued)

	11	F10(I)=0.5+MY(I)+F10(I)	STEPEXT.66
		CALL RANWT(H13,F9)	STEPEXT.67
		CALL RANWT(H23+F10)	STEPFXT.68
		DU 20 I=1,MN	STEPEXT.69
		F7(I)=K19*F5(I)+K20*F6(I)+K21*F4(I)	STEPFXT.70
	2 r	F8(I) = K22 * F5(I) + K23 * F6(I) + K24 * F4(I)	STEPEXT.71
		CALL GRADPR(F2,F7,F9, ^{MARK} , ^M , ^N)	STEPEXT.72
		CALL GRADPR(F3+F8+F10+MARK+M+N)	STEPEXT.73
	7	00 30 I=1,MN	STEPEXT.74
	000	$F7(I) = K^2 5 * F5(I) + K^2 6 * F6(I) + K^2 7 * F4(I)$	STEPEXT, 72
		CALL GRADPR(F1,F7,F8,MARK,",")	STEPEXT.76
		00 40 I=1+NN	STEPEXT.7/
	413	$FB(1) = (F_3(1) + F_9(1) + F_1U(1)) + U_5 + MY(1)$	STEPEXT. 70
		CALL RANNT(HMO;F8)	STEPEXI +/9
			STEPEVT 01
	44		STEPEYT 92
	40	$ \begin{array}{c} r \circ (1) = 0 \\ (0 + 1) = 0 \\ (0 + 1) = 0 \\ (0 + 2) = 0 \end{array} $	STEPEYT. 03
			STEPEXT.04
			STEPEXT. 85
	45	I = (12, E0, 0, A)D, 13, E0, 0, A)D, (1, E0, 0) GO TO 163	STEPEXT. 46
	50	Call EE VOR(F1,F7,MY,MARK,M,N)	APR14.73
		CALL BELVOB (F2:F8:MY:MARK:M:N)	APR14.74
		CALL RELVOR(F3,F9,MY,MARK,M,N)	APR14,75
		IF(12.EQ.0.AND.13.EQ.0) GO TO 94	STEPEXT.90
		IF(12,E0.0) GO TO 65	STEPFXT,91
C	CO11	"JTATION OF THE RELATIVE VORTICITY+DIVERGENCE,12	STEPFXT,92
		00 60 I=1, MN	STEPEXT.93
		F1(I)=F5(I)*(K1*F3(I)*K2*F9(I)+K3*F7(I))+F6(I)*(K4*F8(I)+K5*F9(I)*	STEPFXT.94
	-	L K6*F7(I))+F4(I)*(K7*F8(I)+K8*F9(I)+K9*F7(I))	STEPEXT.95
		F2(I)=F5(I)*(K28*F8(I)+F7(I))+F6(I)*K29*F8(I)+F4(I)*K30*F8(I)	STEPEXT,96
	60	$F_3(I) = F_5(I) + K_34 + F_9(I) + F_6(I) + (K_35 + F_9(I) + F_7(I)) + F_4(I) + K_30 + F_9(I)$	STEPEXT.97
С	COM	SUTATION OF THE VERTICAL ADVECTION OF VORTICITY IS	STEPEXT.98
		IF(I3,E0,0) GO TO 91	STEPEXT.99
			STEPEXT, 190
	65	JO / 0 1=1, 1N	SIEPEAL 101
			STEPENT 40%
	7.0		STEPEYT +04
	50	F 3 5 1 / = U + 0	STEPEXT. 105
	0.1	$F_1(I) = F_1(I) + F_5(I) + (K_10 + F_8(I) + K_{11} + F_9(I) + K_{12} + F_7(I)) +$	STEPEXT. 106
		$F_{6}(1) * (K_{1}3 + F_{8}(1) + K_{1}4 + F_{9}(1) + K_{1}5 + F_{7}(1)) +$	STEPEXT.107
	:	F4(I)*(K16*F8(I)*K17*F9(I)*K18*F7(I))	STEPEXT. 108
		$F_{2}(I) = F_{2}(I) + F_{8}(I) + (K_{31} + F_{5}(I) + K_{32} + F_{6}(I) + K_{33} + F_{4}(I))$	STEPEXT.109
	91	F3(I)=F3(I)+F9(I)*(K36*F5(I)+K37*F6(I)+K38*F4(I))	STEPEXT.110
		S0 TO 91	STEPEXT. 111
	94	00 92 I=1, MN	STEPEXT.112
		F1(I)=0.0	STEPFXT.113
		F2(I)=0.0	STEPFXT.114
	92	$F_3(1) = 0.0$	STEPEXT.115
	91	CALL RANNT(HM2,F1)	STEPEXT.116
	•	JALL RANWT(H12,F2)	STEPEXT.117
		CALL RANNT(H22,F3)	STEPEXT, 118
C	1,04	PUTATION OF THE ADVECTION OF VORTICITY BY THE DIVERGENT WIND -11	STEPFXT.119
C	COM	TTE FORCINGFUNCTION FOR THE VELOCITYPOTENTIAL	STEPEXT 120
	0.5	IF(I1.EU.0) GU IU 166	SIEPEXT.121
	95	JU 100 J=1074 C1(1)=(02+C5(1)=C1+C6(1)=C2+C4(1))/44(1)	STEPEVY 491
		F_VI/=VU=*F/VI/=U4=FUVI/=U0=F=VI///MTVI/ FO/TV = FF/TV/MV/TV	STEPEVT 494
	100	$r_{2}(1) = r_{4}(1)/(1)(1)$	STEREYT I'DE
r	500	VE THE POISSONFOUATION BY RELAXATION IN DEDER TO GET VELOCITYPOT.	STEPEXT.125
0		CALL RANRD(VN,F4)	STEPEXT. 127

STEPEXT (Continued)

```
CALL RANRD(V1,F5)
CALL RANRD(V2,F6)
CALL VELPOT(F4,F1,M,N,RESIDUE,ALFA)
       CALL VELPOT(F5.F2.M.N.RESIDUE.ALFA)
       CALL VELPOT(F6,F3,M,N,RESIDUE,ALFA)
       CALL RANWT(VM, F4)
CALL RANWT(V2, F6)
       CALL RANWT(V1,F5)
       DO 110 I=1,MN
F1(I)=F7(I)+F(I)=2,*F8(I)
  110 F2(I)=F7(I)+F(I)+2+F9(I)
       CALL GRADPR(F4, F8, F3, MARK, M, N)
       CALL GRADPR(F5,F1,F10,MARK,M,N)
DO 120 I=1.MN
  120 F10(I)==0,5+My(I)+(F3(I)+F10(I))
CALL RANNT(H11+F10)
CALL GRADPR(F4,F9,F3,MARK,M,N)
       CALL GRADPR(F6,F2,F10,MARK,M,N)
       DO 130 I=1, MN
  130 F10(I)=-0,5+MY(I)+(F3(I)+F10(I))
       CALL RANWT(H21,F10)
       DO 140 I=1, MN
       F_1(I) = C_3 + (F_7(I) + F(I)) = C_2 + F_8(1) + C_4 + F_9(I) + C_7 + F(I)

F_2(I) = -C_2 + (F_7(I) + F(I)) + C_5 + F_8(I)
  140 F3(1)=C4*(F7(1)+F(1))+C6+F9(1)+2,+C7+F(1)
       CALL GRAUPR(F4,F1,F7,MARK,M,N)
       CALL GRADPR(F5,F2,F8,MARK,M,N)
       CALL GRADPR(F6,F3,F9,MARK,M,N)
       UO 150 1=1 MV
150
       F1(I)==0,5+MY(I)+(F7(I)+F8(I)+F9(I))
       CALL RANRD(HM2,F2)
       CALL RANRD(HM3,F3)
       CALL RANRD(H11,F4)
       CALL RANRD(H12+F5)
       CALL RANRD(H13,F6)
       CALL RANRD(H21,F7)
       CALL RANRD(H22,F8)
       CALL RANRD(H23, F9)
       00 160 I=1 MN
       F1(I)=F1(I)+F2(I)+F3(I)
       F4(I)=F4(I)+F5(I)+F6(I)
  160 F7(I)=F7(I)+F8(I)+F9(I)
       GO TO 190
  163 CALL RANRD(HM3,F1)
         CALL RANRD(H13,F4)
       CALL RANAD(H23,F7)
        30 TO 190
  166 CALL RANRD (HM2, F2)
       CALL RANRD(HM3+F3)
       CALL RANRD(H12,F5)
       CALL RANRD(H13,F6)
CALL RANRD(H22,F8)
       CALL RANRD(H23+F9)
       DO 167 I=1,MN
F1(I)=F2(I)+F3(I)
       F4(I) = F5(I) + F6(I)
  167 F7(I)=F8(I)+F9(I)
       30 TO 190
  170 DO 180 I=1, MN
       F1(I)=0.0
       F4(1)=0,0
  180 F7(1)=0.0
```

STEPEXT . 128 STEPEXT, 129 STEPEXT,130 STEPEXT . 131 STEPEXT, 132 STEPEXT,133 STEPEXT.134 STEPEXT.135 STEPEXT, 136 STEPEXT, 137 STEPEXT.138 STEPEXT,139 STEPEXT.140 STEPEXT 141 STEPEXT.142 STEPEXT, 143 STEPEXT, 144 STEPEXT.145 STEPEXT, 146 STEPEXT . 147 STEPEXT.148 STEPEXT.149 STEPEXT,150 STEPEXT.151 STEPEXT. 152 STEPEXT, 153 STEPEXT.154 STEPEXT, 155 STEPEXT.156 APR14,76 STEPEXT, 158 STEPEXT.159 STEPEXT, 160 STEPEXT. 161 STEPEXT.162 STEPEXT, 163 STEPEXT. 164 STEPEXT.165 STEPEXT.166 STEPEXT.167 STEPEXT,168 STEPEXT.169 STEPEXT.170 STEPEXT.171 STEPEXT.172 STEPEXT.173 STEPEXT.174 STEPEXT.175 STEPEXT.176 STEPEXT.177 STEPEXT.178 STEPEXT.179 STEPEXT.180 STEPFXT, 181 STEPEXT, 182 STEPEXT, 183 STEPEXT, 184 STEPEXT. 185 STEPEXT.186 STEPEXT.187 STEPEXT, 188 STEPEXT. 189

STEPEXT (Continued)

190	CALL	RANAT (HM3.F1)
	CALL	RANAT(A13,F4)
	CALL	RA'INT(H23,F7)
	CALL	RANRD(PSIM1+F1)
	CALL	RANRD(PSI11,F2)
	CALL	RANAD(PS121,F3)
	CALL	RANDD(WS,F4)
	CALL	RANED(HEAT, F5)
	CALL	RANRD(J4+F9)
200	RETUR	RN
	END	

STEPEXT.190 STEPEXT.191 STEPEXT.193 STEPEXT.193 STEPEXT.194 STEPEXT.195 STEPEXT.195 STEPEXT.196 STEPEXT.197 STEPEXT.199 STEPEXT.199 STEPEXT.200

