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Resonance Scattering of Lyman-- Alpha Radiation by
Hydrogen in the Ground State

1. INTRODUCTION

The calculation of the resonance-scattering cross section for Lyman-alpha
radiation is important for a variety of reasons. First of all, such scattering is
exiremely important in astrophysics, since hydrogen is the most abundant element
in "empty" space. Hydrogen is also important in the higher portions of the earth's
atmosphere, where it acts as a scatterer of solar radiation.

Another reason for calculating this cross section is that this is the simplest
resonance cross section which one can calculate, since the wave functions are
simple and since a two-level approxirnation, involving the ground state and the
degenerate first excited state, is apt to be especially good. One may expect some
insight into the methods of calculating resonance cross sections for more compli-
cated atoms.

A more fundamental reason is that the resonance line shape, which is identical
to the line shape of Lyman-alpha radiation emitted by excited hydrogen, lead
directly to the self-energy problem of quantum electrodynamics, As is well-
known, the position of resonance {(or maximum intensity in the case of emission)
is not precisely at the Lyman-alpha frequency, but is shifted. In the traditional
calculations of this shift, the dipole approximation to the elertromagnetic matrix

(Received for publication 5 December 1973)
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elements is used, and the shift is infinite., Since the advent of renormalization
theory one uses renormalization to obtain finite results.1 Where resonance scat-
tering is treated directly,2 it is found that the shift is of the order of the Lamb
shift of the energy levels, However, to obtain a finite result, renormalization
theory is used which includes a higher order correction.

In the present paper, we use Dirac's theory of resonance scattering.3 In this
theory only the matrix elements which have a resonant denominator in the usual
perturbation theory expansions are assumed to be non-zero. One is then led to a
Hamiltonian whose eigenfunctions can be obtained exactly. The Dirac resonance
theory is studied from a rigorous mathematical point of view by K.". Friedrichs,
and we are greatly influenced by his paper.4

However, we must modify the Dirac resonance theory somewhat to take into
account the degeneracy of the first excited state of hydrogen. In our treatment we
shall consider only the matrix eleinents of the electromagnetic interaction

H = i(efi/Mc)A-Y, (n
where M is the electron mass, which connects the following states with each other
by the emission of a photon from the vacuum: 1S, 28§, 23p, In contrast to the
traditicnal treatments, we shall not use the dipole approximation but instead we
shall use exact matrix elements.5 It will be seen that in contrast to earlier treat-
ments, the shift in position of resonance will be finite without renormalization.
Furthermore, this shift, when translated into shift ' in energy level, is close to
the Lamb shift for the ground state. We include all matrix elements of the two-
level system, those which lead to "'forbidden" (in the dipole approximation) as well
as those which lead to "permitted” transitions. When we first carried out the cal-
culations for the frequency shift using the techniques of the present paper,6 we
ignored the ''forbidden" transitions. This calculation led to a frequency shift

1.  Stenholm, S. (1973) Quantum theory of electromagnetic fields interacting with
atoms and molecules, Physics Reports 6C(No.1). North-Holland Publishing
Co., Amsterdam, m

Low, F. (1952) Natural line shape, Phys. Rev. %&:53.

Dirac, P. A, M, (1947) The Principles of Quantum Mechanics, 3rd Edition,
Clarendon Press, Oxford, p.201.
4. Friedrichs, K, Q. (1948) On the perturbation of continuous spectra, Commun,
Appl. Math, A}'\:36 1,

5. Moses, H.E. (1973) Photon wave functions and the exact electromagnetic
matrix elements for hydrogenic atoms, Phys. Rev. A, 3:1710.

6. Moses, H.E, (1966) Resonance scattering of Lyman-¢ radiation by hydrogen
in the ground state, Tech. Note 1966-14, Lincoln Lab., MIT,
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somewhat greater than one-half of the Lamb shift. [The line shape of emitted
Lyman-alpha radiation was also calculated in 7, also taking into account only the
permitted transition tetween the 1S state and the 23P states, using the exact
matrix elements (calculated differently but agreeing with other matrix elementss’ )
but with an unconventional treatment of the electromagnetic interaction. Exactly
the same shift as found previously was obtained.sl The inclusion of matrix ele-
ments corresponding to "forbidder' transitions between the 25 and 23P states
and between the 23P states themselves gives a substantial contribution to the
shift. On the other hand, only the permitted transition from the 1S to the 23P
state contributes to the natural line breadth, It would be interesting to see what
contributions the n=3 states and two-photon intermediate states give, There
should be no difficulty in calculating these contributions other than '"book-keeping. "
If the contributions are small, it would appear that the two-ievel, single-photon
theory is indeed a good approximation,
In short, the calculations of the present paper are of the kind that could have
been done in the early 1930's had the exact matrix elements been known. The
shift which we obtain corresponds to the raising of the ground state by an amount
of 6297 MH in frequency terms. The Lamb shift calculated using renormalization s
theory is 8126 MH.8 Thus our calculation, which is completely free of infinities,
gives in excess of 75 percent of the Lamb shift. Since retardation gives such a
large proportion of the Lamb shift which is usually attributed to renormalization,
it would appear that renormalization theory shculd be re-~examined for bound states
at least.9 It ought to be mentioned that the inclusion of the effects of retardation is
being treated in recent times by a number of writers from a Green's functions
point of view (see, for exampie, 10). However, the objectives and methods are

very different from those of the present paper.

2. THE DIFFERENTIAL AND TOTAL CROSS-SECTIONS,
THE RADIATION PATTERN OF THE SCATTERED RADIATION.
COMPARISON WITH PHENOMENOLOGICAL THEORY

The quantity k = (277/X) is the wave number of the incident and scattered radia-~ R’l“
tion which is assumed ¢o be near the wave number & of Lyman-alpha radiation.

7. Stroud, C,R.,Jr. (1970) Quantum and Semiclaggical Radjation Theories,
University Microfilms, Ann Arbor,

8. Bethe, H.A., and Salpeter, E.E. (1957) Quantum Mechanics of One- and
Two-Electron Atoms, Academic Press, Inc., Iew York, p. 103,

9. Hoffman, H.S., and Moses, H,E, {1972) The ultraviolet convergence of the
ground state of hydrogen, Lettera al Nuovo Cimento 3\:54.

10, Gavrila, M., and Costescu, A, (1970) Retardation in the elastic scattering
of photons by atomic hydrogen, Phys. Rev.A 3:1752'
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From the Bohr formula for the energy levels of hydrogen
= 3
a=g3da (2)

where a is the first Bohr radius of the hydrogen atom and « is the fine structure
constant. The polarization of the radiation is most conveniently described by the
heiicity variable 8=+ 1. If 8=1, the radiation is circularly polarized in the direc-
tion opposite to that of propagation, whereas if B=-1, the radiation is circularly
polarized in the direction of propagation.

We shall assume that incident radiation of wave number k and helicity B
propagates in the positive direction along the z-axis from minus infinity and
strikes the hydrogen atom in the ground state located at the origin. Let us denote
by 1 the unit vector in the direction of propagation of the scattered radiation, and
let us introduce the usual polar coordinates 8 and ¢ by

n = (sin® cosd, sind sin¢, cos ). (3)

WWe shall denote the cross section for the scattering of the photon with the
same circuvlar polarization as the incident radiation in the direction 3 by 01(9).
This and the other cross-sections are independent of ©¢. Then, oy 0)dQ (where
dQ2= sin 0 df d¢) gives the relative intensity of the radiation scattered in the solid
angle d2. Explicitly,

9
3 F(k) cos

4K

_ 4
0'1(0) =

ol

, 4)

where F(k} is the resonance function given by

y2
F(k) = — 5 (5)
(k=K -0)°4 y
and in which the half-breadth ¥ and the resonance shift 6 have the values Rﬁ'
6 = - -1 _ -2 -1
= -1,320cm °, y=-1,046 X 10 “em . (5a)

In terms of frequency these quantities are

b _ Y . .
57 = 6297 MH, 57 = 49,9 MH., (5b)



The differential cross section for scattering of radiation whose circular
polarization is opposite to that of the incident radiation is denoted by 02(9) and
1S given by

4

ol
.

0,0 = =% F(X) sin ()

4K

The differential cross section for scattering of nhotons of either polarization but
with the incident circular polarization still given by B is denoted by oT(G) and
is just the sum of ¢,(f) amd v,(6):

oT(G) = 01(9) + 02(0).
One easily verifies that

9 2.1
Or@) = 872- F(k) [1+ cos GJ. (7

If the incident radiation is unpolarized, one averages over both values of 8 to
obtain the cross section for the scattering of unpolarized incident polarization
without distinguishing the polarization of the scattered radiation. Since cT(O) is
independent of 8, cT(G) also gives the differential scattering cross section for
unpolarized Yncident radiation. It is of interest to note that the 0-devendence of
OT(G) 115l identical to that predicted by the classical theory of resonance fluores-
cence. In the quantum theory of scattering, we shall see that this dependence is
due to the fact that in our approximation, only photons with angular momentum
quantum number j=1 are scattered.

The total cross section I is given by

z = {op@an

where the integration is taken over the entire sphere. We have

= rFuw. (8)
K
We can confront Eq.(8) with the phenomenological results of Mitchell and
Zemansky.12 It is assumed in 12 that in resonance sca‘tering a photon is absorbed

11. Panofsky, W.K.H., and Phillips, M. (1962) Classical Electricity and Mag-
netism, Addison-Wesley, Reading, 2nd Edition, p.407,

12, Mitchell, A, C.G., and Zemansky, M. W, (1934) Resonance Radiation and
Excited Atoms, Cambridge University Press, p. 116.
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by the ground atom and then re-emitted. This process is quite different than the
scattering process assumed in the present paper. Still we shall compare one of
the consequences of these assumptions with that of the present paper (scattering,
not absorption and re-emission) as giver by Eq.(8). By the use of detailed bal-
ance and relations between the Einstein A and B coefficients one can construct a

cross-section I’ considered as a function of the frequency v. [I.is shown that12
2
A g, 1
'dy = — 22 _
(ra =2 27 (@)

where }\o is the wavelength of the resonant line, gy and g, are the degeneracies
of the upper and lower states, and 7 is the lifetime of the upper stat~. From
Eq. (8)

gzdu = £ §de = —i’—’;& [y!. (10)

But ¥ = (20/) o). From the Heisenberg uncertaintv priaciple

7 (AE) ~ % an
where AE is the "width" of the excited state. The width of the excited state is
|2‘y| in terms of wave numbers, But AE =4ic l 2'y| . Then Eqgs,(10) and (11) yield
the following:

Y 2
o) 1
S\Edv~_§1—7- 3 T (12)

Equation (12} agrees with the phenomenological result Eq. (9)!

We can'also give the radiation pattern for the scattered radiation. We shall
give the case where the incident radiation is plane-polarized. Let 1049 , i be
an orthonormal triad of unit vectors, We take the incident radiation to have the

form

Ei .0 =Ci, sin klig- x-ct) ,

oo

—~
"

=
i

= Ci, sin k(iz-x-ct) . (13)

The radiation scattered in the direction described by the unit vector n is

10
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by the ground atom and then re-emitted. This process is quite different than the
scattering process assumed in the present paper. Still we shall compare one of
the consequences of these assumptions with that of the present paper (scattering,
not absorption and re-emission) as giver by Eq.(8). By the use of detailed bal-
ance and relations between the Einstein A and B coefficients one can construct a

cross-section I’ consideved as a function of the frequency v. I.is shown 1:ha’t12
S g
...°_ _2
SS dv 87 g7 , (9

where Ao is the wavelength of the resonant line, g9 and g, are the degeneracies
of the upper and lower states, and T is the lifetime of the upper stat~., From
Ea. (8)

S}:dv = %= S.de = %’l; [y!. (10)

But & = (211/)\0). From the Heisenberg uncertaintv priaciple

7 (AE) ~ an
where AE is the "width" of the excited state. The width of the excited state is
‘2y| in terms of wave numbers. But AE =1ic | 2’y| . Then Eqs. (10} and (11) yield
the following:

) 1
STdV*-'—a—ﬂ— 3 Fp (12)

Equation (12‘: agrees with the phenomenologxcal result Eq.(9)!

We can also give the radiation pattern for the scattered radiation. We shall
give the case where the incident radiation is plane~polarized. Let i i i iy, 3 be
an orthonormal triad of unit vectors. We take the incident radiation to have the

form
E, &, 0= Ci, sin k(ig - x-ct) ,
Hy, (x,t) = Ci, sin k(ig-x-ct) . (13)

The radiation scattered in the direction deseribed by the unit vector 7 is

10
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12 costitm. x- ct) + ()] ,

B & t) [(iy X 1) X n] C[F(K)]

1/2

I}

-3
e
Ho (1) = 5 (1, X 0l CIFM)]Y? cosfk(n-x - ct) + &0, (14)

where ®(k) is defined by
sin $(k) = -[F(k)]ll2 =y [(1:—&-6)2 + 72]'1/2 ,
cos &) = (k-1-0) [(-k-0)% + y*] V/2, (142)

At resonance, & = -7/2. It is to be noted that l(.i_1 Xn)X y_| = lil X nl = sin©
where O is the angle between i,and 5. Hence, the maximum radiation is in the
i, 15 plane, and there is no radiation in or opposite to the i, direction.

3. EIGENFUNCTIONS OF THE UNPERTURBED HAMILTONIAN.

EXACT MATRIX ELEMENTS

For the sake of brevity the remainder of the paper will be written as a direct
axtension of earlier work,5 except that in the present paper the helicity will be
denoted by B instead of A as in 5 to prevent confusion with the wavelength X,
Equations from the previous paper5 will have a prime attached to them,

The Hamiltonian of the atom interacting with the radiation field is the usual
one:

H=HA+H +H=H0+H {15)

P 1 I’
where H, is the usual Hamilionian for the hydrogen atom, HP is the Hamiltonian
for the photon field given by the first of Eq. (37’), and HI is the interaction of

Eq. (1), As is.customary, we ignore the 1}_2 term, Of course, Hy=H, + Hp is
the unperturbed Hamiltonian.

The space of wave functions is st 1ned by the eigenfunctions of Ho . Thes~
eigenfunctions are direct products of atomic eigenfunctions and either vacuum
states of the field or of n-photon states which we take to be in the energy- angular
momentum representation as discussed in Eqs. (41’) - (43’). Particular eigen-
functions will concern us: '

(1) The state in which the atom is in the 1S state and the photon field is in the
vacuum state will be designated by | 1>. The state in which the atom is in the 1S
state and there is a photon in the state whose energy is E_ = fick, whose angular
momentum is given by the quantum numbers j, m and whose helicity is given by
8 will be denoted by I1,Ep,j.m.p>.

11
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(2) The analogous kets in which the atom is in the 2S state will be denoted
by l2> and |2, Ep.j.m.B> respectively.

{3) In the case that the atem is in a 23P state with the magnetic quantum
number M (=¥, £ 1) and the photon field is in a vacuum state, the eigenket will be
denoted by | 2,M>. When a photon is present the ket will be written
|2.M.Ep,j,m,ﬁ>.

Til.ue in cur notation, the absence or presence of the quantum number M indi-
cates whether the atomic state is an S state or P state.

These three sets of kets are orthogonal to all other eigenkets of Ho’ They
are also orthogonal to each other. Within each set they satisfy the orthonormality
relations

<1|1> =1,

<1.Ep.j.m.i3|1.E ,i,m', B>

3 -E 6.6 b,nr )
p Bpb(Ey-By 85 Orum’ Oppr

<1|1.Ep.j.m.ﬁ> =0,

<2|2> =1,

<2,E_,j,m,Bl2,E ,j, m', B>
prism gl o im', B

& * - ’
E 6(13 E )63]1 5 ’ GBBI >
<2|2,I:. ,j,m,B> = 0,

1
<2, M2, M'> = Sy’ *

s s [ N A A _w !
<2vMDEanomvﬂ|2’M ’Ep,‘]’m .B>—6MMI pr(Ep Ep)ijlémmIGBﬁf,

<2.M|2,'M’.Ep,j,m,p>= 0. (16)

We shall take all matrix elements of HI to be zevo except those between the
eigeniunctions introduced above. The only non-vanishing matrix elements are
easily calculated from Egs. (2a’) and (2b’) when one uses the appropriate radial
wave functions for the hydrogen atom. The non-vanishing matrix elements are the
following:

<n,E_,j,m,plnl2,m> Jisem, B>

o <2,M|H;jn, E

P

g @imt ey 6 G ka, (172)

12
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where n is the principal quantum number 1 or 2 and the functions G n(x) are

given by

G,(x) = - (2/3)1/2x[x2 + (3/2)2]'2 ,

Gyx) = - (12)"172 3 [x2 + 1]'3 ) (17b)

Furthermore,

<nlglz,M,E,j,m,p> = <2,M,E_.j,m,8]H|n>"*

P

- 1™ (ea) (o/m/ 26

M, -m 6j ,1Gplka). (17¢)

Finally,

<2,M'lgl2,M,E ,j,m, B> = <2,M,E_,j, m,8lH ]2, M>*

M (e2/a)(oz/m”2<r}1 o ;,,)

X 6j. 1A(ka) , (17d)

where the function A(x) is given by
At = @ V2[4 1]3, (17¢)

As noted previously k = Ep/ﬂc .

4. EIGENFUNCTIONS OF THE PERTURBED HAMILTONIAN
IN THE TWO LEVEL APPROXIMATION R’E“

We shall denote the energy of the ground state of the hydrogen atom by E1
and the energy of the first excited state by E,. Clearly & = (E2 - El)/ﬁc. We
shall be interested in particular eigenfunctions of the Hamiltonian H = H0 + II,.
They will be denot4d by | 1, Ep, j»m,B) and satisfy the set of integral equations
symbolically given by

|1,E !j'moﬁ) = |1:E »j:m:B)p (18)

p p.j.m.:‘3>+7_(E1+EP-H0)HI|1,E

P

13
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where ¥ (x) {which is not to be confused witk the half-width ¥ oc the function y(x)
whick will be usecd later as a "half-wiath fuucticn"”)] is given by

(19)

) . 1
- inb(x) = 61::1:10 ol

» |

v.x) =

where P means that the principal value of the integral is to be used when P/x is
,j»m,pB) is an outgoing

used as a factor in an integrand. The eigenfunction l 1, Ep
In our discussion of scaitering,

wave function in the sense of scattering theory.1
we shall, however, follow more closely Friedrichs4 and Moses.14
t is readily seen that |1,E_,j, m,B) satisfies required eigenvalue equation

(E-Hy 12,5, m,8 = BlLE,j,m.p, (20)
where
E = E +E, (20a)

We require these eigenfunctions to satisfy Eq,(18) because they are particu-
larly useful in solving the initial value problem in which we are interested, From

Eq. (18) it follows that
(21

lim ex -L(H -E)lt |1,E yj,m,B) = |1.E +j.m,B>,
£ v P K Wy p ] p J
lim exp = (H,-EX |1,E ,j,m,B = |1,E_,j,m.B8>
ttoo PE Mo p p*?

- 2Mib(E - HO)HI| 1L Ey j»m, ). (22)

It should be noted that the right-hand side of Eq.(22) is an eigenstate of HO
with the eigenvalue E. It can be shown that the eigenfunctions I 1 .Ep, j»m,B)

satisfy the orthonormalily relations
1L,E ,j,m,Bl1,E i, m',f)= E 8(E_-E 6.6 gt - 23)
( p]mﬂl meB p(pEp)JJlmmlBBl (
Let us require that the solution |<I> (t) > of the perturbed time-dependent

Schroedingey equation approach, as t»-», the solution of the unperturbed time-

13. Lippmann, B.A., and Schwinger, J. (1950) Variational principles for

scattering, I, Phys. Rev, '53:469.
Moses, H. E. (1955) The scattering operator and the adiabatic theorem,

140
Nuovo Cimer_xt_o_k:103.

14
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dependent equation which cocresponds to the state in which tl.e atom is in the
ground state and in which a photon is in an energy, angular momentum state. The
state of the system is the direct product of the ground state of the atom, which we
take to be normalized to unity and the wave functior of the photon g(Ep yj,m,B)
whose norm is

dE ']”2

[Z ("law,. 1m0 pJ :

i,m,B *0

Tien for to-«

. dE
Id>(t)> = exp[-—%Hot] 2 (‘ ll E_ ,i,m B>g(1‘ ,j,m, B)—-—“—
J p
ji-m,B Y

= 3 Il Lmeﬁ>e\p[-—(L +I')t]

J.m B
dE
X glE ,j.m,p) L. (24)
p

Tor t finite the state is given by

| i di,
() > = exp [—-ﬁ-llt] z ? I, JEo . iem,Bg(E i m, B =L
»m,B g
= X 1.1 ,_]mﬂ)exp[ (2 +|:)t]
j»m,B '(;) 1
dE
X g(Ep.j.m.ﬁ)—E—E. (25)
p
For t=+ew

- dE
Vo> = exp[-—n H z ? f1, VB, .m, B> (B viom,B) £
m,

.

-om 2 6(r‘ HO)HIIE.]mB)
jom,B
dE
X g(E,,j,m,p) —1-3—9} (26)
p

15
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where E= I-_‘p+ . as before. By evaluating <1, Ep.j, m,B |<I>(t)> using Eq. (26),
it is seen that the s:attered part of the photon wave function in the energy, anguiar
momentum representation is

. . = - . < E - -7 4 14
I (Ep,;.m.b‘,t\ emi i',?q',,s' 1, p.J.m.B|HI|1.Ep.J.m.B)
-1 . i
X (Ep) g(Ep,J', m’, B) exp [- %— Ept]. (27)

In terms of the linear momentum representation, the scattered part of the photoun
wave function is given by

1/2
zZ Yf“B (0,0 g_ (cp,jom,B;t). (28)
Zm d sc

foe (p,B;t) = J

<lo

(See Eq.(31a’).] The angles 8 amd ¢ a the usual angles which give the direc-
tion of p in spherical coordinates.
At finite times t let the wave function h(p,B;t) be defined by

1/2
hp.Bid = £ L% Y™ o,0<1,E ,jm.Blem>,

P i m J p

(®, = cp). (20)

Let 7 = (p/p) and define v(n,B;t) and w(n,58;t) by

0
v(n,B;t) = g—t g‘ Ih(g.lﬁ:t)l2 p? %;E:’
0

[+
w(n,B;t) aqt— S‘ Ih(E,ﬂ;t) 2p2 dp. (30)

0

Then V(E.,B;t)dQ where dQ = sinf d8d$, represents the number of photons
with polarization described by B passing, per unit time, through the solid angle
dQ. Likewise w(7n,B;t) dQ givec the energy of radiation per unit time passing
through the solid angle d2 when the radiation is polarized in the manner given by
B. 7he atom is in the ground state. When the wave function ¢f the incident photon
g(Ep. j.m,B) is chosen to correspond in the limit to the case in which the photon
ic monochromatic and when its incident path is a prescribed straight line,
v(n,B;t) and w(n,B;t) are independent of time. One can then use these quantities
to obtain the cross-sections. Our treatment will correspond to the discussion of

16
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os 1
time-p1cportional transition probabihtxes.ls’ 6

which in turn are more careful
treztmeats of the theorv discussed by Lippmann and Schwinger.13

1; is seen that {c solve the scattering problem, sne must solve Eq.(18) for
the eigenstates | t,E _,j.,m,B). Usually these eigenstates are obtained by pertur-
bation theory o°:, equivalently, by iteration. On the right-hand side of Eq.(18),
one replace.« |1, Ep. j.m,B by l 1, Ep. j,m,B> and continues this iterative proc-
ess in an cbvious way. The second order iteration yields rzsults which are of the
Kramers-Huisenberg dispersion formula type, and gives infinite results when the
incominrg photon has its energy equal to the difference in energies of two atomic
states. For this reason Dirac” proposed a different type of approximation which
is more accurate near resonance. What follows is our version of the Dirac res-
onance theory. Our version is a generalization in which degeneracy of the atomic
state is taken into account. Normally one would need to use analogues of "'stabil-
ized eigenfunctions' of HO. But because we are working in an angular momentum
representation and becanse both HO and the two level H commute with the anyu-~
lar momentum (as does the exact H, of .ourse) there is a consiaerable simyplifiza~
tion. Indeed, the use of the correct angular momentum representations for
photons makes this comparatively simple calculation possibie.

In our approximation we assume that the only non-zero matrix elements of
HI are those given in Eq.(17). These are all the one-photon state which connect
the ground state and the first excited states with each other. The effect of this
assumption is that we have replaced the interaction HI by another interaction
which is also Hermitian. This interaction enables us to solve Eq. (18) exactly.

From Eq.(18)

<1DE'1.'5 " ! 1, 23y ’ = FE 6(E_- ! 6.0 6

E -E' <1,E°,i,m'. g ~
+ ¥ ( p p)§ 1 Ep j’,m BIHIIZ,M><2,M|1.E yj.1a, B). (31)

p

15. Friedrichs, K.0. {1852) Zur asumptotischen Beschreibun von Streuprozessen,
Nachrichten der Akademie der Wissenshaften in Goettingen, Mathematische-

Physikalische Klasse, Ila Mathematish-Physikalish~-Chemische Abteilun,”
T:43. .
M

16, Moses, H.E. (1953) The Scattering Operator in Quantum Mechanics, Part II:
The Scattering Operator Formalism and Other Formalisms, Research
Report No, CX-13, New York Univ,, Inst. for Mathematical Sciences.
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On using Eq. (17a)

<L E i ml B 11, E i m.B = kb(k-k)b.. 6
p]mﬁll meB) k(kk)b]]lﬁmmlﬁﬂl

-idmt 257ty (k-K)by |Gy (Kar<2,m'[1,E .5, m,B. (32)

In Eq.(32) and later k= E /ﬁc and k' = E '/ fic.
From Eq.(20) we have, on multiplying through by <2, Vll

[ - (Ey-E >]<2 M1, VEp.§im,B) = Z S <2,Mln|1 E’, i, m\ B>

]rm, P

dE_’
X <1,Ep’,j’,m’,ﬂ'|1,Ep,j.m,ﬁ>~E—’,’
P
<0
+ ’Z'B' <2,M|HI|2,Ep’,j',m',ﬁ'>
j,m,
dE_’

x <2,E'{,m . &1,E_,j.m,pB —E
p’J I prd-m. A =7

Pl

P
2]
+ X <z, mlul2, M\ E S, f, m, 8>
i,m’, B P
MI

dE '’
X <2.M',Ep’,j',m',ﬁ'|l.Ep.j,m,B)Fr,i. (33)
p

On using the expressions Eq.(17) for the matrix elements

o0
(k-~)<2,Mln.Ep,j.m,B) 2 i(a3/1l)1/2a—1z,ﬁ'g G, (k'a)
B .
' ' - . dx’
X <l,Ep,1,M,ﬂ|l,Ep,J,m,B)'l'(T

y i@dmt % IZﬂ’g Gyk'a) <2,E ’,1,M,6'[1,E ,j.m,ﬂ)%’}f-
B 3 P

s (OMFL 3121 3 <1’ 1 1 )

m’, g’ -M M-m’
*° dk’
X g AK'a)<2,M-m’.E ', 1,m’,8'|1,E Jjem, B 3T (34)
h P P
Ez‘El

where we have used K = o

18
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From Eq.(18) one obtains in a similar fashion the following:

<z,E',i’'m" 11 E_,j,m,p) =
o3 Bl p*] B

- by f@P M2y (k06 <2, 1L E L m L 39)

<2’Nl,lEp,'j"m,oB,‘llE ’j’m’B) =

P

1/2

']
6y, 1(o¢3/n) aly (k-k-K) {iﬂ'(-l)m 8 0t Gy (K'a)

X <1|1.Ep.j.m.i3)

.ol m’ ’ .
+ (-1 6m:’_M/G2(ka)<2|1,Ep,],m,ﬁ)

’

1 1 1 ) I
- COMFPD A<z, m’s M 1L E L §m, )Y, (36)
m’  -(m'+M) ™M p

<1|1,Ep,jm,ﬁ) = -ite’m 2371y )

“ 1o ’
x T peo™ (e wace, ml Bl 1w 1L E L m, 08, 67
m’, B/ b 1 p p

<2li,e,5,m,B = -ie’m /%2ty (k-x)

’ L]
x L fs’(-nmg G, (K'a)<2,-m’,8'|1,E_,j,m,B)
Y

ml' B’

p

1
X ikk— X (38)

Equations (32), (34), (35), {36), (37), and (38) are a set of equations for the
quantities <1,Ep", i, m’,g'|1,E_,j,m,p); <2,M[1,E_,j,m,B);
<2,Ep’,j',m',f3'|1,Ep,j,m,B); <2, M, j',m'.ﬂ"l,Ep,j,m,B);
<i| 1,E,.j,m,B); and <2|1 VEj»§»m, B, It is to be noted that these are the

only components of l 1, Ep. j»m,B) in the H,-representation which have the pos-

sibility of being non-zero.
We shall now solve the set of equations., On substituting Eq, (36) into Egs.
(37) and (38), one obtains a pair of homogeneous linear equations for

19




<1l1, Ep ,j.m,B) and <2| 1, Ep,j ,m,B). Since the determinant of the coeffi-
cients is not zero it follows that

<ilt,E,.5,m.B = <d1,E,.i.m.B = 0. (39)

Equation (36) now simplifies considerably. On substituting Egs. (36), (32),
and (35) into Eq.(34), one obtains an equation for <2, M| 1, Ep,j, m,B) which
one can solve easily, On substituting <2, Ml 1,E_,j,m,B) so obtained into
Eqs. (32), (35), and (36) one finds <1,E_, ', m',8'|1,Ep,jm, ),
<2,Ep',j',m'.ﬁ'|l,Ep,j,m.B). and <2,M',Ep’,j',m'B' |1 ,Ep,j,m,ﬂ) respec-
tively. In carrying out the substitutions, one should note that summations over g
yield factors of 2. Furthermore, one uses

2
1 1 1
ZI ( 4 [ =
M m -M M-m

for M = 0,%1.
In order to give the solution, it is convenient to make sorme definitions., Let
the functions Ii(x) be defined for i = 2, 3 by

[

, (40)

-}

L(x) = So [Gi(é)]z'y_ (x-£) 955 for i=1,2. (41)
® 2 d

L) = S; [ae)?r o) §. (42)

The functions Ii(x) are given in Appendix I, Indeed the imaginary parts can
be obtained immediately using the 6-function in Eq. (19).
Let us further define

3 3
- 207 = 20 s
bl(k\ = 1 Re Il(ka), 62(k) = Re Iz(ka K3),
- 2
63(k) = ma Re Is(ka-lca). (43)

Let H(k) =1 for k=0 and H(k) = 0 for k<0. Then also

3 3
_ I 2
v 00 = Z- ke = - [Gl(ka\] H(K),
y (k) = 2° Im I,(ka-Ka) = - _2® [G (ka-Ka)]2 H(k-K)
2 Ta 2 (k-x)az 2 '

20

Koy



3 3
2 , 2 2
v (k) = 2 ImIika-Ks) = —Z [A(ka—xa)] H(k-K) . (44)
‘3 ra 3! 3(k-K)a2
Also
3 3
6 = 2 8, v = L %K) (45)
i=1 i=1

[6(k) of Eq.(45) should not be confused with usual 6-function. ]

Then
. t 2 1ot . _ 1
<1,E . {,m'.B |1,Ep,3,m,B) = Kb(k-K) 8 8 By
t =6, 6.6 (k-k’)———aﬁL—
21 %1 75§ Pm,m’ - k= K=B(k) - 1y (K)
x {1 PN ] (46)

| _ _ B[-(x/2m 5, (]2
<2)M I;EpIJ’mlp) = -laj.léM,m k-K-O(k)-i‘y(k) ’ (47)

N A SN Y . _ 1 / ’
<2,E, {,m', 8 Il.Ep,J,m.B) = 35 801 05,50 0 e BB'Y. (keK'-K)

[y 00 7,00 ]2
X

oy T ey (48;

<2,M’.Ep'.j',m'.ﬁ’ll.Ep.j.m.ﬁ) =

i m ' 1 1 1
52 (=176, . 6. 46 1, ¢ By (k-k"-K)

2 b1 73 m,M+m - m  -m M
l-iikk"yl(k) 73(k'+ K)]l/2

X kK00 -k (49)

A quantity which is important for finding the scattered portion of the wave
function [see Eq.(27)] is given by

. -1 . - NP
- D < 0 =
2171(Ep) l.Ep.J.m,BIHIh.Ep,J.m,B)

~2mi(fick)™! :\ZA<1,Ep,j.m.B|HI|2.M><2,M|1,Ep',j'.m',B') =

21



e ——r— Iadr f.g”’

. 5 ’ 1
2051 85 5 Om,m’ BB w0 (50)

It is to be noted that angular momentum is conserved as indicatzd by the pres-

ence of factors as 6, ., b ‘.
‘ jj m,m

tion of angular momentum,

Eg. (39) 1s another consequence of the conserva-

5. THE LINE BREADTH AND THE SHIFT IN POSITION OF RESONANCE

It is obvious that the square of the absolute value ¢f k-k-6(k) - iy(k) -1, that
is { k56007 2 + ]!
culations. Since we are considering values of k near k, and since 6(k) and y(k)

, is U ~ resonance denominator in the scattering cal-

are slowly varying functions of k, we may replace k by kK in these functions as
is customary. We define 6 and y by

6 = 6(), y=y(x) = 7,(K). (51)
The rewonance denominator then becomes [(k--!t-&)2 + yZJ'l. The values 6
and y given by Eq.(5a) are those obtained from Eq.(51). It is seen that while the
matrix elements corresponding to the "forbidden" transitions contribute nothing
to v, they give a substantial contribution to 6. The value of 8 in 6,7, which ig-
nores the effect of the forbidden transitions is the principal contribution of 61
which is seen to be 51(0). The value of ¥ of 6 is in error and should have the
value given in Eq. (5a).

6. CALCULATION OF THE CROSS-SECTIONS

We she! now derive Eqgs. (4) and (6) for 0](0) and 02(9) respectively, Our
procedure will be to obtain the transitions per unit time w(n.B8;t) of Eq.(30),
taking as the initial photon state g(Ep,j, m, f) that one which gives rise to a cir-
cularly polarized electromagnetic wave of a given wavelength, travelling along the
positive z-axis, One then divides w(n,B8;t) by the flux of energy of the incoming
radiation, that is, the Poynting vector.

We shall now proceed. It is convenient to specify the initial photon state in
the linear momentum representation instead of the angular momentum represen-
tation. Let the initial state in the linear momentum representation be denoted by
f(p,B). Then from Eq.(31b")

E 27 T ”
g(E,.j,m,B) = -c—37p3 S;) dé S dé sin 6 Y’j""ﬁ (6,0)1(p, B
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P = (Ep/c) {sin 8 cos ¢, sin § sin ¢, cos 8). (52)

On using Eqgs.(29), (46), and (52) we obtain the wave function of the photon at
finite times in the linear momentum representation as

D

. dp’ ]
-ickt 1 R ,
i) = oK.+ L T { 7 17 Bo.9)
1 '] - 1
¥ Ynll )B %* (9'.¢')ﬂﬁlG(k’,k) e‘lck t,y-(ki_k) f(g’,ﬂ’) , (53)

where 6,4’ are the polar angles of p’,G(k', k) is given by

L (kv 00 v 000]1 2

’ — —
GO, K) = 5r T RBw T (53a)

and where here and later

Ep = ¢p = chik, Ep' = cp’ = chk/, Ep" = chix”. (53b)

'
In deriving Eq.(53), we have used the completeness relation for Yzln,m 6, ¢
Eq. (A12).17

For the wave function f(p, ) let us take

f(p.B) = Gﬁ’B‘f(_p_) (54)
where f(p) is a real function of p which has a very sharp peak at B=Ro’ where

P = fiK(0,0, 1), (542)

The incoming electromagnetic field corresponding to this wave function can be
obtained from Eq.(34'). Because of the sharpnéess of the peak in the wave function

2 = . A [3oa iK(z-ct) g% -iK(z-ct)
Bt = -~y [Bagpg) e Aajip,) e .

17, Moses, H.E., and Quesada, A.F, (1973) The expansion of physical quan-
tities in terms of the irreducible representations of the srale~Euclidean
group and application to the construction of scale-invariant correlation
functions, II, Three-Zdimcnsional problems, Generalization of the
Helmholtz vector decomposition theorem, Arch, Ratl, Mech, %):194.
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_ __A R iK(z-ct) % -iK(z-ct)
H(x,t) = m Qﬂ(Ro) e + ~B(~0) e ,
A = S‘f(R) dp.

In terms of the Cartesian components

- Y . W —c
Ex(?‘:"t) = Hy(_’s_.t) = 21/2nﬁ3,2 Sln[K(Z Ct)] »
E (x,t) = H_(x,t) = _1/_12\5_375 cos [K(z-ct)],

¥ x 2 % ,

0. (56)

E,(x,t) = Hylx,t)

Only the z-component of the Poynting vector is not zerv. The z-component,
denoted by S, is given by

~

- -F £ _
S = E:XHy Dny e ——3 . (57)
We shall calculate w(Q,ﬂ; t) for n which does not coincide with the z-axis.

For this reason, and because f(p) is so sharply peaked at p = By the first term
on the right of Eq.{(53) is zero. Thus one has

X dp’ o dp '
d I 2 ic L4 P om , B
S et = -5 2 T\ — g—— YT P, ¢
dt ~ 2 o p12 p;.2 1
7 - ” 2
x Y B0, 0 v B, ) c o 10 YT Pl ¢ R0
. ! L4
x (k-1 e 1R Ky iy ¥ -1 119 1057 (58)

where p’, 8',¢', and p’, 9", ¢” are the spherical coordinates of p and p' re-
spectively. In Eq.(5 we make the substitution

&Ky (KR Y k) = (KK - (K=K 7. (K k) 5 (K <K)
= Y WK - 7 (K -k) (59)

and obtain two terms on the right of Eq.(58) On interchanging the primed and
double-primed dummy variables in one of the terms
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2 dp’ p dp
4ol -2 mE T (E2 (R ymipy
dt L 2 T 12 e2 1

p mm Y p P

. r g , 5
x Y™ B0, Y™ B0, 0 0 Y Ren, 6 6¥ 0

. 1 ”
x e 1ok -KIY, (e £(g) (60)

We now use the fact that f(p) is sharply peaked at p= Ry to make the following
approximations under the integrand which become increasingly good with increas-

ing sharpness of the peak.
. '] ¥ .
e-lc(k -kt ~e-xc(K-K)t =1,

‘ R%, 1 .t 1,‘* 1/2

Ym B (0 ,d )~ Y;n B (o‘¢l) = (3/417) / éml,g s
m',ﬁ ey m",é I 1/2

YR e ~ YT (0,6T) = (3/4m7T00 s g,

p'~ 8K, p~5K,

Gk', k) ~G(K,k), G(K,k) ~G(K,k), 7 (k'-k) ~vy (K-k). (61
Then, on using Im y_(x) = -n(x)
d 2 2cA2 21 8.8 2
5 I8t = =2 e, wl®Iv] P, 0" 610, (62)
- 2p“ (1K)
Finally, from Eq.(30) und the fact that 6(K-k) = b(p- K)
-]
win,B;t) = S. ad_t- |h(E.B:t)|2 p2dp
0
2 2
3cA [r,(K)] A ¢
- [vB:F o, 012, (63)

C K28r%43 [K-Kk-6(K))% + [y(K))?

where 6,6 are, of course, the polar angles of 7.
Now from Appendix D of Ref, 17

vB800,00 = 3r16mV% (14 cos 0)

25

-



v B, e = (3/16m1/2e2P% (1 _cos §) .,

B

1. (64)

Now the cross section for the case that the circular pularization of the scat-
tered photon is the same as that of the incident photon is given by

2
(7, (KN
0,(6) = win,B:t)/s = —2 o cos®(8/2) (65)
- 4K® [K-x=0(KN° + [y(K)}

Similarly, the cross section for the case that the circular polarization of the
scattered photon is opposite to that of the incident photon is

[y, K2
(K-x-6(K)]° + [%(K)]

0,(0) = win,-B:t)/S = 1y 5 sin®(6/2). (66)

9
4K

The expressions Eqs, (4) and (6) are obtained from Egs, (65) and (66) re-
spectively by replacing K in the functions K2. 8(K), y(K), and yl(K) by x, and by
uging Eq.(51).

7. CALCULATION OF THE SCATTERED ELECTROMAGNETIC FIELD

We shall now derive Eq.(14) for the scattered electromagnetic field.

As before the wave function of the incident photon in the linear momentum,
helicity representation will be denoted by the complex function f(p,B). On using
Eqs. (27), (28), (50), and (52), the wave function of the scattered photon in the
linear momentum representation is

By, (k) -ickt
fsc'R- B0 = | B R0 ©

2w 7
x I ? B YP(6,0) S; a¢’ S; sin 0' Y8 (6", ¢)

X 1(p',8)d0’, (67)

where 0,¢ and 6’,¢' are the polar angles of p and p’ respectively and lB‘ =
’
| El = p = Hk.
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The incident wave function will be taken as

fip,B) = f(p) (68)
and is independent of B. The function f(_g) is real and has a sharp peak at
R~Pqy: where Py = HK(0,0, 1), as before. It is readily shown that the incident
electromagnetic field is given by Eq.(13) where

2% ( ap
C = ~2r g f(p)dp. (69)
15372 R 4R

The proof is close to that for Eqgs. (55) and (56).

The electromagnetic field of the scattered radiation is obtained by substituting
fsc(g,ﬂ;t) for g(p,A) ex -(i/fi)ept] in Eq. (24'), The scattered electromagnetic
field can be written

E(x, S‘l}‘_(;s_.t;n)dﬂ.

Hes.0 = ( Hetpae, (70)

where in Eq.(24') we have written dp = pzdde. with d2= sin 6 d0 d9 being the
element of solid angle and 1 = p/p as before. The vectors E(x,t;n) and H(x,t;n)
are the components of the electrofield propagating in the direction 1. The quanti-
ties E(x,t;n)d2 and H(x,t;n)d2 are portions of the electromagnetic field which
would be intercepted by an antenna of aperture dQ. In fact, E(x,t;) and H(x,t;n)
are E_ (x,t) and H_ (x,t) of Eq.(14). The evaluation of E(x,t;n) and H(x, t:n) in-
volves an integration over the variable p, Because of the sharpness of f(p) at P
near p 0’ the following approximations are made:

okl x-ct) _ iK(-x-ct) ,

71 71(K) Y
k-K-0(k) - iy(k) ~ K-K-8K)-iy(K) ~ K-K-b-iy
= - (PN 21K (1)

In Eq.(71) we have used the fact that K is near k. Eq.(14a) and (51) have
also been used.

The sharpness of f(p) also permits the approximation given by the second of
Eq. (61) where ﬁ is replaced by £’ Finally, one has
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1/2 i[Kif- x - ct + (K)]

Etx,tm = -3/8mY2crmnt/? Re o
x LT B )YB Bo,o). (72)
=1 B=z1 ..le

But by explicit calculation

Z pemyiPe.e = - et/ xpx ). (13)

z
B=21 B'=x1 =B

The first of Eq.(14) then follows., The second of Eq.(14) is obtained in a
similar fashion.

8. COMPLETENESS OF THE EIGENSTATES.

HIGHER ORDER PERTURBATION THEORY

By eliminating all but the two-level matrix elements of the interaction, we nave
constructed an approximate Hamiltonian H'. One can ask the question whether the
eigenfunctions of Section 4 are a complete set of eigenstates, We believe that this
question can be answered, and missing eigenstates can be found using techniques of
Reference 4, When we have such a complete set, we may get a better approximation
by considering the exact Hamiltonian H to be a sum of the approximate Hamiltonian H,
whose eigenstates are known, and a perturbation consisting of the interaction which
has been ignored so far. One can sei up integral equations for the "outgoing" eigen-
functions of H in terms of the "outgoing" eigenfunctions of H’. 18 This integral
equation can be solved, formally at least, in terms of a Born expansion about the
"outgoing" eigenfunctions of H', We believe that the expressions for these Born
approximation terms will converge if the exact matrix elements of the electro-
nagnetic interaction are used to prevent ultraviolet catastrophes, One of the
principal causes of divergence in the usual Born expansion of the problem is that
it is not recognized that H, has point eignevalues embedded in the continuum
which the interaction may cause to disappear. Even when one uses H’, the Born
expansion about Ho would yield divergences. This matter is discussed in great
detail for a simpler model.” Thus a more careful study of the nature of the
changes of the spectrum is needed to prevent some of the divergences,

18. Gell-man, M., and Goldberger, M.L, (1953) The formal theory of scattering,
Phys. Rev. 91:398,
MA
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Appendix A

Evaluation of the Integrais k;(x)

We shall first give the integrals Ii(x) and then sketch the derivation of Iz(x)
which is the most complicated of them, the derivation of II(X) and Is(x) being a
simpler version of that for Iz(x).

We need give only the real parts of Ii(x), since the imaginary parts are given
in Eq. (44).

8 \ 51 y (2q-2)!
ReI(x)=-(2/3)"—'}’[ Z =
1 %2 2 @1 229D [ Tnn?
1 1 é 1 1
X e + 3 =
(1+y“)°~9 2 q=2 q-1 (1+y2)5-q
+ 12 7 log lyl ' ,» where y=(2x/3) (A-1)
{1+y°) \

Re I,(x) = - (1/12) 5-31 - x [_"L b (2g-2)!

51 2 1 2@l g2
1 % (2q-2) ! 1
X —m—me—— = X L
(14x2)%-9 g=1 212(‘1"1){(q--1)!]2 (1+x28-9
% 8 (2q-2) ! 1

+ X7
2 g=1 22(q"1)[(q-1)]2 (1+x9) "4
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It should be noted that only the first terms on the right of Eqs.(A-2) and (A-3)
contribute to 6, since x=0 in the computation.
To derive the expressions for Ii(x) the following integrals are used:

¥ _d  _n (292! (A-4)
b (23 T 2 2@ g g2

°__ & %g“’._g;_

0 (14£AP¢-2) a=1 Jy (14899
1 L 1 1 1
-3 IR Ee - log(-2), (A-5)

=2 A1 (1Pl g 2P
q

where z is a complex number.
Now, from Eq.(41)

o 5
oo = -5 | —S%— (8-6)

o (1+ )s(g-z)'

where z = x+i€¢, After evaluating the integral we take € -0,
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