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1.0     INTROnUCTION  AND  SUMMARY 

This report presents the results of a theoretical study 

of nonlinearities in seismometers. The effects of nonlinear 

elements in the mechanical and electrical parts of the seis- 

mometer system have been modeled and investigated, with par- 

ticular attention to the transfer of noise power between 

different  regions  of the  seismic noise   spectrum. 

The study was  motivated by  the  following  considerations.     A 

number of  inveitigators   have studied  the  spectral   characteristics 

of microseismic noise,   which  is  considered  to be   the principal 

limiting  factor  in  the   accura+e estimation  of  the waveforms  gener- 

ated by  seismic  events   of  interest.     There  is  general  agreement 

that  this  noise l-as   a  spectral peak at   roughly  a   seven second 

period,  while  at both  longer  and shorter periods,   the  spectrum 

has   a  fairly  low noise   level.     The effects  of  the  noise peak  are 

customarily minimized by  narrowband  filtering of  the  seismometer 

output  above  ur below  the noisy  region  to give  short  or  long 

period signals.     If nonlinearities  exist before  the  filter,  however, 

one  of the possible  effects   is  the  transfer of energy  from the 

spectral  components   in   the  noisy  region  to  low-noise  regions  of 

the  spectrum,   thus   causing  a  loss  of signal-to-noi.^ e  ratio  in  the 

useful bands.     It was   hypothesized that  if this  were  the  case, 

then  a possible  solution would be  to use  seismometers  whose  mecha- 

nical  systems  would be   sufficiently narrowband  that   they would  re- 

ject   the noise peak. 
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In pursuing the investigation, work has been concentrated in two 

areas.  First, in order to investigate the effects of nonlinearities 

by numerical simulation, it was necessary to model the seismometer- 

electronic amplifier combination.  This model was based on a simple 

second order mechanical system followed by a transducer and an 

electronic filter amplifier.  The qualitative effects ot nonlinear- 

ities in the seismometer spring or damper, the transducer, and the 

amplifier were investigated.  This work is described in Section 2. 

It was demonstrated quantitatively that a nonlinearity would 

indeed have the effect of decreasing the signal-to-noise ratio 

in the low noise portion of the seismic spectrum.  This was shown 

by a numerical analysis which simulated the effect of a polynomial 

nonlinearity on typical seismic noise waveforms.  The simulation 

work included investigations of how the signal-to-noise ratio re- 

duction was affected by 1) the mechanical parameters of the seis- 

mometer and 2) whether the nonlinearity was located in the mechani- 

cal or electronic parts of the seismometer-amplifier combination. 

Section 3 gives the results and discussion. 

It was found that the literature on seismometers which was 

available to us contained little information on nonlinearities 

which was directly applicable to this research.  For this reason 

the nonlinearities which we investigated and the results which 

we obtained can not be associated with any particular seismometer. 

We did not include complicated forms of nonlinearity such as 

mechanical hystereses or stiction.  Rather, we used small distor- 

tions which could be described by a Taylor series.  This should 

provide a conservative estimate of the severity of the effects 

of nonlinearities.  The results of this work then should be con- 

sidered as tentative until further research provides more detailed 

information about the nonlinearities of actual seismometers. 
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We were more concerned with degradation of the signnl- 

to-noise ratio due to nonlincaritics than with amplitude or 

shape distortions of signals.  A ncnlinearity can have a 

negligible effect on a signal while still causing appreciable 

transfer of microseismic noise energy between spectrum bands, 

with accompanying degradation of the signal-to-noise ratio. 

The designer of a seismometer is restricted in his choice 

of basic parameters.  The second order nature of a mechanical 

seismometer leaves the designer essentially free to choose 

only the resonant frequency fo and the damping factor Q.  No 

control of the mechanic'I gain can be exercised independently 

of f and Q.  This limitation has signi 
o 

the consideration of nonlinear effects. 

of f and 0.  This limitation has significant consequences in 
o 

If a nonlinearity occurs in the mechanical elements of 

the seismometer, including the pick-off transducer, then one 

might expect its effect to be minimized by reducing the ex- 

cursion of the pendulum, i.e. reducing the gain.  For a given 

Q, this can only be accomplished by increasing fo.  But if 

one attempts to reduce the effect of a nonlinearity by designing 

a narrowband, low-frequency, seismometer, then the resonant 

peak, f , must necessarily be placed in the low frequency 

region.  A low value of f , however, implies a large pendulum 

excursion, but a lower relative gain in the noisy region of 

the spectrum above f .  Whether the net effect will be a re- 

duction or an increase in the nonlinear distortion cannot be 

readily deduced from qualitative analysis. 

If a nonlinearity exists in the electronic amplifier, 

then it is reasonable to assume that the nonlinear distortion 

will be reduced by reducing the amplifier gain. 
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The basic results of the study can be summarized as follows. 

1. Small nonlinearities in a seismometer can cause 

serious loss of signal-to-noise ratio in both 

the short period and long period spectral regions 

by transfer of noise energy from the high-inten- 

sity spectral peaks at intermediate frequencies. 

2. For certain mechanical nonlinearities, the distortion 

may be reduced by increasing the resonant frequency 

while the effect of reducing the resonant frequency 

below the noise peak is not clear. 

3. The firm recommendation of design procedures to re- 

duce the deleterious effects of nonlinearities de- 

pends upon a better understanding of nonlinear effects. 

It is recommended that this be based on analysis of 

experimental seismometer signals.  Experimental data 

is needed to show how large the nonlinearities will 

be in normal operating conditions and whether their 

principal source is the seismometer or its associated        • 

electronics. 
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2.0  SEISMOMETER SYSTEM MODEL 

A seismometer system can be considered to consist of 

three subsystems connected in series, any one of which could 

have a non-linear response. 

The three subsystems are:  1)  The mechanical seismometer, 

including the inertial mass, springs, and dampers.  2) The 

output transducer which senses the motion or position of the 

inertial mass and produces an electrical output signal.  3) 

Amplifiers, filters, analog-digital converters, tape recorders, 

etc. leading to the final recorded form.  The input signal is 

the acceleration of the earth's surface, while the output sig- 

nal from the seismometer is the displacement of the inertial 

mass.  The output of the transducer is generally proportional 

to either the displacement or velocity of the inertial mass. 

In this section we first consider briefly the equation 

of motion of a simplified second order model of a seismometer 

in order to examine the two parameters at the disposal of the 

designer,and to determine how these parameters effect the fre- 

quency response in the linear case.  The equations of motion 

are then investigated for nonlinearities in the mechanical 

and electrical elements. 
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2.1  Simplified Model 

A simplified seismometer model is illustrated in Figure 

2-1.  It consists of an inertial mass, m, a spring k, velocity 

damping b, a case or frame and a pointer.  This model is not 

intended to reflect the details of construction of a particular 

seismometer, but merely to make clear that any single degree of 

freedom seismometer must be functionally equivalent to this simple 

model. 

The actual spring in a physical seismometer may be a 

coiled spring, a u-shaped piece of spring steel, or a twisted 

quartz or metal fiber.  All these, and/or combinations are 

represented by a single effective spring, with spring con- 

stant, k, in Figure 2-1.  Similarly, various systems of velo- 

city dependent damping are represented by the damping constant 

b.  The pointer P, measures the displacement of the center 

of mass, x, of the effective suspended mass, m, relative to 

the frame, F. 

The exact equivalent model of physical seismometers will of 

course differ from this model, since physical seismometers are 

three dimensional objects and therefore will have at least three 

degrees of freedom.  However, the goal of any seismometer design 

would be to uncouple these extra degrees of freedom from the 

motion along the sensitive direction.  Typical designs also 

place spurious vibrational modes above the seismic band of 

interest. 
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Output (displacement) 

x(t) 

a(t)  Earth's Acceleration Input 

Basic Seismometer Model 

Figure 2-1 
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From the forces acting on the mass the equation of mass 

motion may be written as 

+ bx+kx=y 
m    m 

(2-1) 

where y is the displacement of earth and frame relative to the 

inertial reference.  This equation may be rewritten 

x+ o x+  o x = y (2-2) 

where     u       =  k     is   the  undamped natural  frequency  and Q  =  mw 
n T 

is the reciprocal damping factor. 

From this equation it is clear that the seismometer is com- 

pletely specified by to and Q.  In terms of modifying the per- 

formance of Mie seismometer, the designer is limited to the 

response characteristics of a damped second-order system.  It 

should be noted that, unlike the case oi an electronic amplifier, 

there is no arbitrary control of the system gain independent of 

w  and Q. 

The actual gain versus frequency characteristics of a second 

order system is found by Laplace transform of equation 2-2, which 

give 

2-4 
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2   u)      co s  +  o  s +  o x(s) = -s Y(s) E A(s), 

where ACs) is the inj'Ut acceleration.  The frequency response 

for both acceleration and displacement inputs can be written by 

letting s = iw as 

da 
Xfiu)} o2 - "T ♦ KN 1/2 

(2-3) 

and 

Gdd(^ 
X(ia)) 
Ui^I 

tt2Gda(«] (2-4) 

Typical plots of these transfer functions are given in 

Figures 2-2 and 2-3, showing the variatirn with the design para- 

meters to and Q.  In particular, it is noted that seismometers 

with high natural frequencies have lower mechanical gain than those 

with low natural frequencies. 
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2   r1, „2  ,, ^,3 
where    N(x) ■ w *    k2x" + kjX"* 

^r L 
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2.2 Nonlinear Models 

The addition of nonlinear elements into the seismometer 

models can lead to two possible models - one containing a non- 

linear feedback element, and one containing a series nonlinearity. 

The nonlinear feedback model results from nonlinear mechanical 

elements in the seismometer itself (either spring or damper) , 

while nonlinearities in the transducer or electronics can only be 

represented by series nonlinearities.  In this section we illu- 

strate the feedback nonlinearity by considering the equation 

of motion for a seismometer containing a nonlinear spring, 

and invest:gating its equivalent frequency response.  Series 

nonlinearities are then discussed. 

2.2.1 Nonlinear spring, feedback model 

A nonlinear spring will in general have a restoring force 

of polynomial type.  This leads to an equation of the form 

9        % 
mx + bx + kj^x + k2x + kjX = my, (2-5) 

where nonlinear terms above the third order are neglected.  In 

terms of w and Q this can be written 
o 

x + CüO  x + a)0^ x = y - N(x) , (2-6) 
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In the absence of nonlinearities, the seismometer output 

can be represented as a linear transformation L on the input, 

that is, 

x = L(y) 

Analogously, the output in the nonlinear case can be considered to 

be the same linear operator acting on the right hand side of 

equation (2-6).  Then we have 

x = L[y - N(x)], 

which must be represented by the nonlinear feedback circuit 

^O- 

N 
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We have computed the principal frequency response for 

« cubic spring non-linearity, using the perturbation theory 

techniques described in references 6 and 7.  The differential 

equation of motion for the mechanical seismometer with a 

sinusoidal input is 

X + ö-X + ü)0X + -j^— x = A sin cot 

This can be converted Into a normalized form by the 

change of variables: 

x1 = x/X2) where x, = (k,/!?,) 1/2 

t1 = a) t 

yielding 

% x2 
f/f 

dV + 1 dx' + x, + x,3 = E sin ft 

In other words, length is measured in units of the length 

X2, time in multiples of the time it takes a natural oscilla- 

tion of frequency f0 = ü)0/2TT, to complete one radian t = 1/w 

For an input acceleration of amplitude A, the output displace- 
2 

ment amplitude is A/w  for off resonance low frequencies: 

• 
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then this quantity is measured In units of x^-     Therefore, 

the magnitude of the input signal E is normalized to the off- 

resonance output signal for i   unit input.  For weak non-linearities, 

the situation of interest, E is less than one, E << 1. 

In this system of units, the ca.n G, as a function of 

frequency, ratio f and input signal magnitude E is given by: 

■ -j  Cl * |(GE)2)2 t g"! 

Figures 2-4, 2-5 and 2-6 show v/nical plots of G versus f 

for various Q values.  These curves shov; that neglecting harmonic 

generation, a small non-linearity can severely distort the fre- 

quency response of a high-Q system.  The distortion caused by 

non-linearity must bo added to the recognized reasons (primarily 

stability) for avoiding high Q mechanical systems. 

For some curves, one observes that there are three 

possible gains at some frequencies.  We can interpret this 

by refe:ring to Figure 2-5.  The actual gain at frequencies 

f, to f2 depends on the initial conditions.  If the frequency 

of a low frequency signal is slowly increased, then its gain 

will be specified by the section A - B of the gain curve; 

while if the frequency of a high frequency signal is slowly 

decreased, its gain will follow section C - D of the curve. 

At frequencies f, and £2,   the gain will jump.  Gains along 

curve D - B are unstable. 

These results indicate that for a given non-linearity, 

a low-Q seismometer will suffer less distortion than 

a high-Q seismometer.  Since the greatest distortion is near 

and above the resonant frequency, the resonant frequency 

should be above the frequencies of interest. 

2-12 
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Ratio of Driving Frequency to Resonant Frequency 

Frequency RFsponse with a Cubin Non-Linearity, Q=20 
Figure 2-S 
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In this model L is the linear transformaticn of the seis- 

mometer with no nonlinearity, while N contains t.ie nonlinear 

operations of the nonlinear element.  A nonlinearity in the 

damper leads to an equivalent representation.  This feedback 

equivalent circuit cannot be reduced to a series nonlinearity 

such as that which represents a nonlinearity in either the output 

transducer or the amplifier. 

For a series nonlirear system 

y(t) x(t) 
1 + N(x) 

z(t) 

the principal frequency response of the output z(t) will be 

almost the same as the principal frequency response of the 

linear output x(t) , if the non-linearity N(x) is resonably 

small. 

However, for a non-linear feedback system, the principal 

frequency response of the output x(t) may be considerably 

different from the linear frequency response, particularly 

near the resonant frequency for high-Q systems. 
s 
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2.2.2 Transducer and Amplifier Non-linearities.  (Series mode 1) 

In addition to the mechanical elements of the seismometer 

itself, non-linearities in the output electro-mechanical 

transducer and in the seismometer amplifier can also contri- 

bute to non-linear distortion of the output signal. 

The  ransducer converts either the mass displacement 

or the mass velocity, depending on its type, to an electrical 

signal.  In the linear case the transducer output x. will there- 

fore be either 

xt =  Ax 

or 

xt ■ AX 

Non-linearities in the transducer will introduce higher order 

terms into the output, resulting in expression of the form 

xt = AjX ♦ A2x2 + AjX3 + 

or its equivalent in terms of velocity. 

The seismometer amplifier may also introduce non-linear 

terms in its action on the transducer output x to produce 

the firal observable signal x .  The general expression is 

xa = C^ * C2xt
2 ♦ C3Xt3 ♦ ... 

2-16 
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In contrast to the feedback model required to represent 

non-linear mechanical elements, non-linearities in either 

the transducer or amplifier are represented by series non- 

linear elements: 

A + N, C + N. 

. 

where A and C are the linear terms and ^ and N2 contain the 

higher order effects. 

< 
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2.3 Discussion and Summary 

In this section we have identified two distinct types 

of non-linearities - those associated with the mechanical 

elements of the seismometer, which require representation 

by a non-linear feedback element within the seismometer it- 

self, and those which are associated with the trar.sducer 

or amplifier and can be represented by series non-linear ele- 

ments. 

In addition to distinguishing "mechanical" and "electrical" 

non-linearities by their equivalent representation, it is 

reasonable to postulate that the errors incurred in these two 

cases will be differently affected by the signal amplitude 

observed at the mechanical elements. 

In both cases, the output signal x can be represented 

as a linear function of the acceleration input plus an error 

term caused by the non-linearity. 

xa = LCy) ♦ e 

The  fractional  error  incurred  is 

LTTT 
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If the non-linearity occurs only in the mechanical elements, 

say in the spring, then its effects can be reduced by reducing 

the mass excusion, hence the spring extension.  We assume in 

this case that the true situation can be approximated by al- 

lowing the fractional error to be directly proportional to 

signal amplitude. 

In the case of the "electrical" non-linearity, the situa- 

tion differs in the following way.  The amplifier is used to 

bring the signal up to a useable level.  A fixed change in 

mechanical gain lesulting in a change in input signal level 

will probably be compensated by a change in amplifier gain 

so as to maintain roughly the same signal level.  Since ampli- 

fier non-linearities are generally dependent on output signal 

level, this situation is approximated by assuming the frac- 

tional error to be constant, and independent of input signal 

level. 

These two cases will be investigated numerically in Sec- 

tion 3 to determine their relative effects in reducing signal 

to noise ratio by non-linear transfer of energy between fre- 

quency bands.  It should be emphasized that the above assump- 

tion regarding the action of mechanical and electrical non- 

linearities represents an approximation to the true situation 

made for convenience of numerical simulation.  The actual effects 

require study of actual seismometer waveforms. 

2-19 
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3.0 NUMERICAL EFFECTS OF SMALL NON-LINEARITIES 

The simulation work began with a brief investigation 

of the effects of non-linearities on the signal-to-noise 

ratio in low-noise regions of a typical seismic noise spec- 

trum.  This initial work was dene without considering the 

frequency response of the seismometer, that is, the seismo- 

meter was modeled as an all-pass network. 

This work was followed by an investigation of the sig- 

nal-to-noise ratio reduction caused by non-linearities of 

the two particular types discussed in the preceding section. 

This work included the determination of the effects of the 

seismometer parameters f0 and Q. 

The non-linearities investigated have been consistently 

small - of the order of magnitude that may introduce one or 

two percent harmonic distortion in a pure sinusoid. It is 

assumed that large non-linearities can be easily avoided by 

careful design procedures. In spite of this restriction to 

small non-linearities, large degradation of signal-to-noise 

ratio were observed. 
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3.1 Non-Linearity Effects on Microseismic Noise 

A model for microseismic displacement noise covering 

the period range from 0.1 to greater than 100 seconds was 

synthesized in consultation with ARPA technical representatives 

using measurement data primarily from Reference 4.  This dis- 

placement noise spectrum is shown in Figure 3-1.  A program was 

devised for generating a noise time signal which exhibits the 

spectral properties shown in Figure 3-1 and covering the range 

from .002 Hz to 8 Hz (.125 to 500 seconds period).  These 

noise time signals were then processed türough a cubic non- 
3 linearity of the form y = x + ax and comparisons were made 

between input and output spectra. 

An estimate for the corresponding acceleration spectrum 

was obtained by doubly differentiating with respect to time the 

displacement curve.  Results of this process are shown in Figure 

3-2. 

The model can be depicted as shown 

acceleration 
input 

Seismometer Nonlinearity 

>■  output 

In this model the signal x is the seismometer transducer 

output, and the seismometer itself is simplified to be either 

all-pass or a perfect double integrator.  Thus in the following 

discussions the output x is proportional either to mass accelera 

tion or to mass displacement. The choice is made by choosing 

either the earth noise acceleration spectrum or displacement 

spectrum (respectively) used as the input. 
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Figure  3-1.     Displacement Micro-seismic Noise Spectrum 
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Figure 3-2.  Acceleration Micro-seismic Noise Spectrum 
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The percentage distortion is based upon signal (microseismic 

noise) level.  In a microseismic storm, for example, one 

would expect the non-linearity to have greater effect because 

of the higher signal " jvels.  This effect was removed by ad- 

justing the parameter "a" so that the distortion is related to 

the input RMS values.  A PI distortion means that 1+ax = 1+PxlO 

when x is set equal to its RMS value. 

Results of application of the non-linearity model to 

displacement noise are shown in Figure 3-3.  The input spectrum 

is shown as a solid line and output spectra are shown for values 

of distortion (at rms) of 0.1%, 0.31, 1.01 and St. As would be 

expected the high energy microseismic peak at approximately 

6-seconds when passed thru the non-linearity model causes signi- 

ficant increases in noise energy at the third harmonic level 

(approximately 0.4 Hz) and at the lew (difference) frequencies. 

A significant increase in a portion of the 20-40 second band 

is observed.  Peak differences as high as 33 db at 0.4 Hz are 

observed with peak differences in the LP band at approximately 

12 db. 

The results of Figure 3-3 indicate the expected output 

spectrum for a non-linearity acting on the earth displacement 

if the input spectrum is truly representative of earth displace- 

ment noise.  It is emphasized that this input spectrum is based 

on measurement data and is in fact a seismometer output spectrum 

upon which non-linearities (if present) have already acted. 
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Figure  3-3. Effect  of Non-Linearity Model  on 
Displacement Noise  Spectrum 
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Figure 3-4 shows results of the non-linearity model 

acting on the acceleration microseismic noise.  The result 

of the non-linearity is to fill in the notch at 18 seconds 

and to increase energy in the low frequencies and near the 

third harmonic.  The increase in low frequency energy for the 

acceleration model is more pronounced than for the displacement 

model because of the relative levels of low and high frequency 

energy at the input.  That is, for the acceleration noise model, 

significant energy in the range from 1 to 8 Hz is also pumped 

down into the LP band. 

Peak spectral noise increase occurs in the LP band and 

ranges from about 1 db for a - 0.It to about 21 db for a = 3%. 

Thus, for an instrument with non-linearities acting on the 

acceleration input to the instrument, the non-linearity levels 

examined would cause significant degradation of the system 

performance. 
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Figure   3-4 Effect  of Nonlinearity Model  on 
Acceleration Noise  Spectrum 
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3.2     Effects  of Seismometer  Frequency Response 

In section  3.1  the  seismometer was  assumed  to be  all- 

pass   in  the  frequency band  of  interest.     This   is  approximated 
in practice when f  >1 Hz   and Q  is  low.     It  can be  hypothesized 

that  one  could decouple  the  LP bands   from the microseismic 

band by  choosing  low  f    or/and high Q design parameters.     In 
this   section we  show  that  this  hypothesis  may be  true but  that 

a simple  conclusion  in  this   regard is   impossible. 

Our simulation scheme   is  outlined in Figure  3-5.     For 

this  work we  continue  to  utilize  the series   type non-linearity. 

The  basic system consists  of  a  linear seismometer  followed by 

a polynomial non-linearity.     The   linear seismometer   is  specified 

by   its  resonant  frequency   f    and Q and har-  the gain  characteris- 

tics   described  in Section  2.     The  input signal  is   a  time  series 

having  the same  power spectrum,  Pw,  as  the  earth noise model 
shown  in Figure  3-2.     After  the  linear seismometer,   we  take  the 

power spectrum,  P,.     Then  the  time series   is  passed  through  the 
polynomial   (cubic)   non-linearity,   characterized by  x3,   and the 

power spectrum Pj»,  of the  distorted data  is   taken.     The differ- 

ence  between PD and PL represents  the distortion  caused by the 

non-linearity.     We  then  compare  the  low frequency  end of P. 

and PD by examining 

PD(f)   - PLC£) 
A(£)   = _u—p-Tjy^  for f  -   .03 Hertz 

as we systematically vary  f0,  Q and ay 
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Figure   3-5 
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The input signal is a random noise process, therefore, there are 

variations in the realizations of the power spectra.  To smooth 

out these variations the spectra were smoothed and averaged 

to a resolution of .01 Hz. 

In Table 3-1 we present the results of the calculations 

of A(f) in terms of db. 

A(fHdb) ■ 10 log10A(f) 

in the leftmost columns of the table. The righthand columns 

give the r.m.s. magnitude of the seismometer output signal 

and the non-linearity parameter.  The seismometer output sig- 

nal is taken to be the inertial mass displacement, measured 

in millimicrons, my, responding to seismic noise.  Instead 
1/2 

of giving the value of a^ we give X2 = (l/a)   which is 

the equivalent output displacement, in mp's, at which the 

seismometer is highly non-linear. 

The first half of the table shows that for "electronics 

non-iinearity" (i.e. one for which fractional error is pro- 

portional to signal amplitude) the low frequency seismometer 

experiences less increase in low frequency noise, A(f), than ff 

the high frequency seismometer.  In fact, the noise increase 

for t = .02, vvcs unobservable for the non-linearity chosen. 
o 

The relative noise increase is less for small f0, since the 

low frequency background noise at the output of the seismometer 

is much larger, relative to the 7 second seismic per.k, than 

it is for high f . 
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"ELECTRONICS  NON-LINEARITY" 

O 

a, set for 2'i  non-linearity at each fo and Q 

a3 x2 
Q = 1 

\ Q ■ I- 3. 10. RMS x2 

V\ Q ■  1 my 

8837. 

my 

.02 0.   db 0. 4 62490 

. .05 3.   db 7 12 5617. 39722 

.1 12. 16 17 5435. 38433 

1.0 IS. 16 15 57. 

• 

405 

i 
I 

"MECHANICAL NON-LINEARITY" 

a,  constanv   for all  f 

I 

^v ■y my 

^\ 
Q=1.0 RMS x2 

.02 65   db 8857 (405) 

•  X 87   db 5435 405 

1.0 16 57 405 

o Increase in Low - Frequency ■oise in db, A(f) 

Table 3-1 
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The second half of the table shows that for the "mechanical 

non-linearity" (one for which fractional error is independent 

of signal amplitude), the high frequency seismometer has the 

least low frequency noise increase A(f) . This is because 

the r.m.s. magnitude of the seismometer output signal decreases 

rapidly at high resonant frequencies, f0. 

These two cases show that there is no unique optimum 

seismometer design that will be most effective in mitigating 

the effects of any non-linearities that may be present. 

This conclusion is independent of the particular type 

of non-linearity used, even though the actual noise increases 

may be different.  For example, if we have a quadratic non- 

linearity where a3 is chosen to give a 0.2% non-linearity, 

then the noise increase will be 40 db for f0 - 1.0, Q  1, 

[and 6 db for f0 = .02, Q = 1], as opposed to 16 db for a 

2% cubic non-linearity.  However, the overall trends are 

similar:  for a fixed non-linearity, the noise increase A(f) 

is smaller for large f0, while for a constant percentage a2, 

the noise increase is smaller for small f0. 
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4.0  CONCLUSIONS AND RECOMMENDATIONS 

This study has considered two questions.  Ffrst, if small 

nonlinearities exist in seismometer elements, what is their 

effect on the output signal?  Second, what precautions, if any, 

can be taken in the basic design of seismometer systems to 

minimize the undesirable effects of nonlinearities. 

We have made more progress toward answering the first 

question than the second.  The work accomplished in modeling 

seismometers and simulating the effects of nonlinearities 

on typical seismic noise spectra has shown conclusively that 

even small nonlinearities in a simple linear system can cause 

reduction of the signal-to-noise ratio in quiet parts of the 

seismic spectrum of up to several orders of magnitude.  Since 

it is in just those quiet spectral regions that attempts are 

made to estimate small signals, this result indicates that 

removal of such nonlinearities could do a great deal toward 

the improvement of signal estimation. 

In considering the second question, we recognized that 

the art of seismometer design is an advanced one, and that 

the recommendation of major design modifications or radically 

different construction techniques would at this stage of our 

work be premature.  We have restricted our modeling to the 

basic second order mechanics in order to gain insight into 

how variations of the fundamental parameters might affect 

nonlinear behavior.  We have concluded that for some mechanical 

nonlinearities, an increase in natural frequency, with its 
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attendent reduction of gain and extension of flat frequency 

response, will tend to reduce signal distortion.  In addition, 

we have shown that gross distortions can occur near resonance 

in high-Q mechanical systems, which argues for keeping the 

resonant peak low in amplitude and above the frequencies of 

interest, as is the custom in prar.tice. 

The major question that remains unanswered by this study 

is a fundamental one.  Do nonlinearities of the type and mag- 

nitude considered indeed exist in seismometers? The answer 

to this question cannot be approached by simulation or models, 

nor can the non-existence of nonlinearities be assured by 

refined and advanced design and construction techniques. 

Since nonlinearities are an unwanted and unintended element 

in a physical system, their presence can only be confirmed 

or disproved by experiments performed on actual seismometers. 

Such experiments have as yet not been performed in a controlled 

way, although some results have been observed which show that 

identical seismometers rigidly mounted on the same platform 

produce output signals which are noticeably dissimilar.  This is 

just the effect that would be expected from small nonlinearities 

acting in quiet spectral bands. 

The detection and analysis of nonlinear effects in actual 

seismometer signals is not a straightforward problem, primarily 

because the seismometer input is unobservable. There are, 

however, signal processing techniques which provide a promising 

analytical approach to detecting nonlinearities by observing 

only the seismometer output.  In view of the dividends that 

can be achieved in improved signal-to-noise ratio by the de- 

tection and removal of small nonlinearities, it is recommended 

that the investigation be continued in this direction. 
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