AD-777 068

CERAMIC PROCESSING STUDIES IN MgA1204 SYSTEM

Paul J. Jorgensen

Stanford Research Institute

AD 777 068

Prepared for:

Naval Air Systems Command

January 1974

Best Available Copy

DISTRIBUTED BY:

NITS

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

DD 1 NOV 1473 (PAGE 1)		Unclassified
Reproduced by NATIONAL INFORMAT U S Departm Springfie	TECHNICAL ION SLRVICE ent of Commerce id VA 22151	
Changes in stoichiometry do not prove vent the occurrence of discontinuous ge theoretical density by a second-phase of presence of the second phase in the sp translucest material.	ide sufficient rain growth. mechanism in w inel causes li	grain growth inhibition to pre- However, spinel can be sintered hich the second phase is MgO. 7 ght scattering and results in a
and that grain growth inhibition increased solid solubility limit in MgO-rich spin culated from the grain growth data obey grain growth with a ow driving force, excess of the stoichiometric composition	ased as the sp nel. The rela ys Cahn's impu if we assume on acts as the	inel composition approached the tive grain boundary velocity cal rity drag model for low-velocity that the oxide concentration in solute.
The final-stage sintering behavior of a function of stoichiometry in an atter tion to the grain boundaries and to all was found that the grain growth could 1	r densificatio mpt to inhibit low spinel to be inhibited b	n of MgA1 0 has been studied as grain growth by solute segrega- sinter to theoretical density. y deviations from stoich ometry,
3 A6574AC7	Departme Washingt	nt of the Navy on, D.C. 20360
Approved for public release; distribut:	ion unlimited.	r Systems Command
DISTRIBUTION STATEMENT		
·.	96. OTHER REF this report	ORT 160(5) (Any other numbers that may be assigned
N00019-71-C-0246	PYU-1	123
January 1974	98. ORIGINATO	42 30
Paul J. Jorgensen	28. TOTAL NO.	OF PAGES TO NO OF REFS
CESCRIPTIVE NOTES (Type of report and inclusive dates) Final Technical Report Authority (First name, middle initial, last name)		
CERAMIC PROCESSING STUDIES IN MgA1_0_S	SYSTEM	
Menlo Park, California 94025		
Stanford Research Institute 333 Ravenswood Avenue		2b. 64000
CREGINA TITIC ACT SITY (Comorate author)		

t

a1

.

. .

.

					· · · ·	4		
Unclassified						Ľ		
Security Classification			LINI		LIN	кð	LIN	ĸ c
			ROLE	₩ T	ROLE	wT	AOLE	*
Sintering								
Ceramic Frocessing								
Grain Growth								
Spinel	-							
Armor								
			i					
					i.			
					!			
					1			
D FORM 1472 (DAGE)								
PAGE 2;	i a	_		Uncla	Classifi	ed		

۴

ł

F

¥.

ſ

~

PYU-1123

1

CERAMIC PROCESSING STUDIES IN MgAl₂O₄ SYSTEM

by

PAUL J. JORGENSEN Stanford Research Institute 333 Rayanswood Avanue Manlo Park, California 94025

Copy No.

f

AFPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLINITED

11

¥

CONTENTS

5

۲. ۲

																									Page
ABSTI	uct.		•••	• •	•		•		•	•	•	•		•	•	•		•	•	•	•	•	•	•	111
LIST	OF TABL	ES .	• •	• .	•	•	•	•		•	•	•	•	•				•	•	•		•	•		1 v
LIST	OF ILLU	STRAT	IONS	5.	•	•	•	•	•	•	•	•,	•	•	•	v	•	•	•	•			•	•	vi
I	INTRODU	CT IO	ι.	• •	•			•	·	•	•	•	•	•	•	•	•	•		•		•	•	•	1
II	SUMMA RY	'AND	CON	LUS	101	NS	•		•			•			•	•			•	•		•	,	•	9
III	EXPERIM	ĒNĪAL	PRO	OCEI	DURI	Ξ	•	•	•	•	•	-	•	•		•	•	•		•	•	•			11
IV	RESULTS	; .	•••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		16
v	DISCUSS	ION	· .		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		31
REFEI	RENCES		. .		•		•	•	•			•				•	•						•		35

TABLES

I	Spinel Powders		•••			٠	• •	12
11	Grain Size of Mg	А1_0_ в	is a	Function	of Stoichiometry		• •	19

Preceding page blank

h,

F

1 v

ILLUSTRATIONS

Figure		Page
1	Cation and Anion Diffusion Coefficients in Y O as a Function of Reciprocal Temperature	3
2	Grain Boundary Velocity in Y $_2$ at 2000 $^{\circ}$ C as a Function of Thoria Solute Concentration	4
3	Phase Diagram for the MgO Al O System (after Roy et al. 23 and Alper et al. 30)	6
4	Cation and Anion Diffusion Coefficients in MgAl C as a Function of Reciprocal Temperature Compared with Diffusion Coefficients Calculated from Initial-Stage Sintering Kinetics	8
5	Scanning Electron Micrograph of MgAl O. Powder Obtained by Calcining a Mixture of Hydrated Ammonium Aluminum Sulfate and Hydrated Magnesium Nitrate Salts	14
6	Typical Microstructure of Sintered MgAl O Exhibiting Discontinuous Grain Growth	17
7	Grain Boundary Velocity in NgAl 0 at 1900° C as a Function of Alumina Concentration	20
8	A Plot of the Reciprocal of the Grain Boundary Velocity as a Function of Aluming Concentration	23
9	Infrared Absorption Spectra of MgAl $_{23}^{0}$	24
10	A Plot of the Kelative Peak Height at a Wavelength of 2.9 μm in MgAl O as a Function of MgO Concentration	26
11	Typical Microstructure of a Nonstoichiometric Sintered $MgA1_{2}_{4}^{0}$ in the MgO-rich Spinel Phase field	27
12	Microstructure of Y ₂ Doped MgAl ₂	29
13	Typical Microstructure of MgAl O Exhibiting Pore Coalescence	30

`Ŧ

V

1

<u>ب</u>م بر

I INTRODUCTION

Studies of the atomic mechanisms of sintering of oxides have been primarily concerned with initial stage sintering, i.e., neck growth between spheres or initial shrinkage of powder compacts. This situation has resulted because of the ease of applying physical models to initial stage sintering. Technological interest, however, is centered on the final stages of sintering or on the ultimate densification of a powder compact, in which a geometrically more complex situation exists.

The importance of grain boundaries to intermediate and final stage sintering has been well recognized since the experiments of Alexander and Balluffi¹ Subsequent experimental and theoretical treatments of the role of grain boundaries include the studies of Burke,² Seigle.³ Van Bueren and Hornstra,⁴ and Coble and Burke.⁵

The sintering of oxides during final densification may be regarded as a diffusion process in which the vacancies diffuse from the pores to the grain boundaries. The vacancies are eliminated at the grain boundaries, resulting in shrinkage and densification. A compacted powder may sinter to theoretical density if the vacancy flux from the pores to the boundaries can be maintained at a high level.

A high vacancy flux can be maintained by controlling the grain boundary motion, so that the distance between pores and grain boundaries remains relatively shall or by modifying the defect structure so that diffusion of the rate limiting species is increased. If the reduction in grain boundary mobility is sufficient to maintain a relatively high vacancy flux, and simultaneously prevent discontinuous grain growth, sintering will proceed until theoretical density has been achieved. Sintering to theoretical

density has been achieved in Al₂O₃ by adding MgO,⁶ in Y₂O₃ by adding ThO₂,⁷ and in ThO₂ by adding either CaO⁸ or Y₂O₃.⁹

Several mechanisms have been postulated to explain the effects of solute additions on final stage sintering, and these include (1) modification of the defect structure, (2) solute segregation to grain boundaries resulting in a decreased grain boundary mobility, $\frac{11}{1}$ and (3) the formation of a second phase which impedes grain boundary motion. The last mechanism is believed to occur in the ThO₂-CaO system. The amount of solute required to achieve theoretical density in Al $_2^{0}$, Y $_2^{0}$, and ThO $_2$ doped with Y $_2^{0}$, 's less than the equilibrium solid solubility limit and therefore a second phase mechanism cannot explain the final stage sintering in these systems. Jorgensen and Anderson invoked a solute segregation mechanism to explain the sintering of Y_2O_3 doped with ThO₂, and Reijnen¹⁰ ascribed the phenomenon to a modified defect structure. Reijnen assumed that yttrium ions diffuse faster than oxygen ions in $Y_{2,3}^{0}$ and reasoned that the cation deficient defect structure resulting from doping $Y_{2,3}^0$ with ThO₂ would cause a decrease in the sintering rate and decreased grain growth. Figure 1 is a plot of the oxygen and yttrium diffusion coefficients in Y_{20}^{0} as a function of recipiocal temperature. Since yttrium ions are the slower diffusion species, Reijnen's hypothesis is incorrect. Furthermore, ThO₂ can be sintered to theoretical density by adding Y_{203} solute, and a model involving a higher diffusion flux between the pores and grain boundaries because of the formation of favorable defect structures cannot explain the sintering to theoretical density in both systems since cation diffusion is slower than anion diffusion in both Y_2O_3 and ThO₂.

Segregation of the solute to grain boundaries with the solute producing a drag on the grain boundary motion is the best available model to explain the inhibition of grain growth and sintering to theoretical density in Al_2O_3 and Y_2O_3 . The grain boundary velocity decreases in Y_2O_3 as the solute concentration increases (see Fig. 2) and this phenomenon

V

FIGURE 1 CATION AND ANION DIFFUSION COEFFICIENTS IN $\rm Y_2O_3$ AS ... FUNCTION OF RECIPROCAL TEMPERATURE

Y

has been treated theoretically by Cahn.¹² For low velocity grain boundary motion Cahn's theory gives the following relationship between grain boundary ry velocity, V, and solute concentration, C_{2} ,

$$V = \frac{P}{\lambda + \alpha C_{o}}$$
(1)

where P is the driving force for grain boundary motion, λ is an intrinsic drag coefficient, and α is a constant containing the reciprocal of the mobility multiplied by a summation of the adsorption energies of the solute on the grain boundary.

The solid line shown in Figure 2 is a curve calculated from Equation (1) force-fitted to the yttria sintering data, substituting the instantaneous grain growth rate dD/dt for the grain boundary velocity. Thus it appears that the ThO₂ solute in Y_2O_3 segregated to the grain boundaries and that the relative amount of segregation increases as the solid solubility limit is approached.

 $MgAl_{24}^{0}$, spinel, was selected as a system in which final stage sintering should be studied because of the wide range of solid solubility on both sides of the stoichiometric compound (see Fig. 3) and because the achievement of transparent polycrystalline spinel having a controlled microstructure could find application as an armor material.

Considerable work has been expended on studying the final stage sintering of MgAl₂O₄. Gatti et al.¹³ produced a large-grained, transparent, spinel material by adding Li₂O and SiO₂ to MgAl₂O₄ using a firing schedule designed to remove the Li₂O and SiO₂ following complete densification. Bagley¹⁴ has also produced a theoretically dense spinel material by adding MgO to MgAl₂O₄; however, this material is best described as translucent since the in-line transmission between wavelengths of 0.4 and 0.7 μ m was approximately 9% for a 1-mm-thick sample.

FIGURE 3 PHASE DIAGRAM FOR THE MgO AL203 SYSTEM (AFTER ROY ET AL²⁹ AND ALPER ET AL³⁰)

Bratton^{15,16} has also studied the densification of $MgAl_{20,1}^{0}$ including the initial stage sintering kinetics. He concluded that the sintering kinetics were controlled by a volume diffusion mechanism. Diffusion coefficients calculated from Bratton's initial sintering data are shown in Fig. 4. compared with some preliminary magnesium diffusion data,¹⁷ and oxygen self-diffusion data.¹⁸ Earlier oxygen diffusion data published by Ando and Oishi¹⁹ were determined by analyzing the 0¹⁸/0¹⁶ ratio in the gas phere above solid spinel as functions of time and temperature without correcting for surface exchange. Correction of these data for surface exchange gave the oxygen diffusion coefficients shown in Fig. 4. An extrapolation of Bratton's calculated diffusion coefficients to higher temperatures shows good agreement with the oxygen self-diffusion data, indicating that the sintering kinetics are controlled by oxygen diffusion.

Aluminum ion diffusion has not been measured in MgAl $_{24}^{0}$, but we expect the aluminum ions to diffuse faster than the oxygen ions and it is reasonable to expect oxyger to be the slowest diffusing species in the MgAl $_{24}^{0}$ system, since oxyger ions are the slowest diffusing species in both MgO and Al $_{23}^{0}$. Therefore, if volume diffusion processes control the final stage sintering or densification of spinel, we would expect the transport of oxygen to be rate limiting.

From the existing data on sintering of oxides such as Y_{23}^{0} and ThO_{2}^{+} we can postulate that the segregation of a solute increases as the oxide composition approaches the solid solubility limit. The objectives of this study are to determine whether sintering of nonstoichiometric spinel with compositions approaching the solid solubility limit will exhibit a reduced grain boundary mobility and allow sintering to proceed to theoretical density.

. . (

i Fe

FIGURE 4 CATION AND ANION DITFUSION COEFFICIENTS IN MgAl₂O₄ AS A FUNCTION OF RECIPROCAL TEMPERATURE COMPARED WITH DIFFUSION COEFFICIENTS CALCULATED FROM INITIAL STAGE SINTERING KINETICS

II SUMMARY AND CONCLUSIONS

The calcining of a mixture of hydrated ammonium aluminum sulfate and hydrated magnesium nitrate salls provides the most consistently reproducible method for producing submicron MgAl $_{2}^{0}$ powder. These salts melt at approximately 95°C forming a liquid phase in which excellent mixing of the magnesium and aluminum ions occurs. Decomposition of the nitrate-sulfate mixture on heating to 1300°C for one hour results in a fine powder with an average particle size of approximately 0.3 μ m.

Hydroxyl groups are incorporated in the spinel lattice during calcining and sintering. The concentration of the hydroxyl groups is inversely proportional to the MgO content of MgO-rich spinels, and it is suggested that a defect equilibrium forms in which two protons substitute for one magnesium ion.

Rapid pore coalescence occurs in spinel during sintering, and this pore coalescence allows the spinel grains to grow uninhibited by the pore phase. Grain growth in spinel therefore follows the theoretical grain growth law rather than the usual cubic grain growth law.

If we assume that the average velocity of the spinel grain boundaries is proportional to dD/dt where D is the average grain diameter, then the relative grain boundary velocity can be determined as a function of stoichiometry. It was observed that the relative grain boundary velocity increased as the concentration of the Al_2O_3 increased in the spinel. A maximum in the grain boundary velocity occurred at approximately 83 wt% Al_2O_3 and the reasons for this maximum are discussed in the text.

The calculated grain boundary velocities are low and are consistent with Cahn's impurity drag theory for low-velocity grain growth with a

F

low driving force, in which the solute is assumed to be the excess oxide greater than the stoichiometric composition. Conformance to Cahn's theory suggests that the solute segregates to the grain Loundaries as the solid solubility limit is approached. However, varying the stoichiometry of spinel within the limits of the $MgAl_2O_4$ phase field did not provide a spinel composition that exhibited sufficient grain growth inhibition to prevent discontinuous grain growth even though grain growth was inhibited as the composition approached the solid solubility limit.

4

 $MgAl_{24}^{O}$ can be sintered to theoretical density by the addition of a MgO second phase or other second phases that inhibit the grain boundary mobility. However, these second phases scatter light, and lower the in-line transmission, and as a result the spinel samples are opaque or translucent.

111 EXPERIMENTAL PROCEDURE

Submicron oxide powders can be produced by calcining the appropriate carbonate, hydroxide, nitrate, oxalate, or sulfate salt at temperatures in the range of $1000^{\circ} - 1300^{\circ}$ C. The ultimate success in sintering an oxide to theoretical density depends critically on the starting materials since factors such as agglomeration, particle size, and particle size distribution affects the shrinkage kinetics and pore removal. For example Al₂0₃ powders obtained from calcination of carbonate, nitrate, hydroxide, or oxalate salts will not sinter to theoretical density as easily as alumina powders obtained from calcining of the sulfate selts. The ideal starting material would be a submicron-size powder with a uniform particle size so that the pore size would be small and uniformly distributed. Sintering experiments were therefore conducted with various starting materials to determine which spinel powder had the best sintering characteristics.

The evaluation prochdure consisted of isostatically pressing the powders at 50,000 psi and sintering in a hydrogen atmosphere or an oxygen atmosphere for 16 hr at 1800° C. Samples were also sintered for 16 hr at 1900° C. Final densities were measured and metallographic sections were made to determine the final pore size and the final grain size.

Spinel powders were formed for evaluation using mixed oxide powders, and by calcining the following types of salts: carbonates, nitrates, sulfates, and hydrated ammonium aluminum sulfate mixed with hydrated magnesium nitrate. W. R. Grace & Co. spinel powder that was manufactured by a proprietary process was also evaluated. The evaluation data are shown in Table I.

All of the samples in Table I exhibited discontinuous grain growth,

-		
¢		
ē		
e,		
_		

POWDERS	
SPINEL	

cing Material	Calcining Temperature (^O C)	Calcining Time (Hr)	Sintering Temperature	Sintering Time (CHr)	Final Density (g/cm ³)	Microstructural Features
	1100	I	1800	16	3.26	Pores in centers of
	1100	-	0061	16	3.36	grains
	1250	1	1800	16	2.87	Large nonuniforn
lre) ¹³	1250	ľ	1900	16	3.10	pores
nel	1	1	1900	4	3.57	Small uniform Dores in
. (023)						grains
nel Powder 2 ⁰	1000	1	1900	۲	3.30	Small unitorm pores in grains
2H ₂ 0 +	1300	-	1900	4		Small uniform pores in grains

÷

i.e., the grain boundaries break away from the pores and trap pores inside the grains of the sample. The oxide-derived powders had the lowest sintered density and the largest amount of nonuniform pores. The Grace Co. spinel powder sintered very well (see Table I); however, a second batch of material having a MgO/Al₂O₃ mole ratio of 1.056 did not sinter very well in that large pores formed inside the sample. This probably was due to incomplete calcination. Further work on Grace Co. spinel powders was discontinued because of the nonreproducibility.

Each of the above powders was also tested for its ability to form spinel powders having finely divided second phases of either magnesia or alumina. The ammonium aluminum sulfate plus magnesium nitrate mixed salts provided the best starting materials judging from the uniformity of the grains in the microstructure and the uniformity of the pores in the sintered samples. This material also yielded the most consistent particle size as a function of spinel composition and was therefore selected for the sintering study. The average particle size obtained as determined by a corrected Fisher analysis was $G.33 \ \mu m$. Figure 5 is a scanning electron micrograph of the calcined spinel powder.

The composition of the spinel materials studied was varied from $60 \text{ wt\% Al}_{23}^{0}$ to $91 \text{ wt\% Al}_{203}^{0}$ by combining varying amounts of $\text{NH}_{4}\text{Al}(\text{SO}_{4})_{2}^{-12\text{H}_{2}^{0}}$ and $\text{Mg}(\text{NO}_{3})_{2}^{-6}\text{H}_{2}^{0}$. The ammonium aluminum sulfate and the magnesium nitrate melt at 93.5°C and 95°C , respectively. The aluminum and magnesium ions become intimately mixed in the liquid phase and on further heating to 1300°C the materials are decomposed to form finely divided spinel crystals approximately 0.3 µm in diameter. At calcining temperatures below 1300°C , the sintered samples expanded or bloated during sintering, which provided evidence that the calcining heat treatments below 1300°C were insufficient to decompose the sulfate salts.

13

F

FIGURE 5 SCANNING ELECTRON MICROGRAPH OF MgA(204 POWDER OBTAINED BY CALCINING A MIXTURE OF HYDRATED AMMONIUM ALUMINUM SULFATE AND HYDRATED MAGNESIUM NITRATE SALES (X20,000) The calcined spinel powders were then isostatically pressed at 50,000 psi into cylindrical-shaped specimens and were packed in spinel powders of identical composition in covered molybdenum crucibles for firing in either a vacuum or hydrogen atmosphere. Spinel samples were also fired in an oxygen atmosphere at 1800° C using Al₂O₃ crucibles.

After firing, the samples were sectioned near the center of the sample, polished, and etched to reveal the microstructure. The grain size was determined by measuring the average length of random line intercepts across the grains, multiplied by a factor of 1.5.

The densification of oxides is often enhanced by the addition of various solutes; therefore, several potential solutes were added to $MgAl_2O_4$ to investigate possible means of controlling the grain boundary mobility so that the material could be sintered to theoretical density. These solutes included Li_2O_4 LiF, Y_2O_3 , and ZrO_2 .

Spinel crystals often contain OH^{-} ions in the crystal lattice and therefore the hydroxyl concentration was followed in this study by monitoring the infrared absorption peaks at wavelengths of 2.5 to 3.5 μ m.

IV RESULTS

Sintering of relatively pure oxide powders results in an entrapment of peres within the grains. A typical microstructure for $MgAl_{20}_{4}$ is shown in Figure 6. This type of microstructure results from the grain boundaries breaking away from the pores, i.e., discontinuous grain growth. To sinter to theoretical density, discontinuous grain growth must be prevented, and the present program was initiated to investigate the possibility of preventing discontinuous grain growth by controlling the stoichiometry of the spinel phase. Evidence from other oxide systems such as Y_{20}_{3} and ThO₂ suggested that solute segregation to the grain boundaries increases us the chemical composition approaches the solid solubility limit. If we consider the solute in this system to be the MgO or Al_{20}^{0} in excess of the stoichiometric composition, we would expect the grain boundary mobility to decrease as the composition of the spinel phase approaches the solid solubility limits either on the MgO-rich side of the phase field or on the Al_{20}^{0} -rich side of the phase field.

The grain boundary velocity, V, is related to the grain boundary mobility, μ , by the relationship

$$\mathbf{V} = \boldsymbol{\mu} \mathbf{P} \tag{2}$$

:,

ע

where P is the force causing the boundary to move. Grain boundaries move so that the total grain boundary area is decreased, i.e., the grain boundaries migrate toward their centers of curvature.

The grain boundaries are internal surfaces that can be described by two principal radii of curvature. The force, P, in Eq. (2) is therefore given by

$$\mathbf{P} = 2\sigma(1/r_1 + 1/r_5) \tag{3}$$

Y

where σ is the grain boundary energy and r_1 and r_2 are the principal radii describing the grain boundary surface. Substituting Eq. (3) into Eq. (2) gives the following expression for the grain boundary velocity:

$$V = 2\mu\sigma(1/r_1 + 1/r_2) .$$
 (4)

If we assume that V is proportional to dD/dt and that $(1/r_1 + 1/r_2)$ is proportional to 1/D where D is the average grain diameter, then

$$dD'dt = k' \mu \sigma / D \qquad (5)$$

Integration of Eq. (5) gives the theoretical grain growth equation, 21,22

$$D^2 - D_0^2 = K\mu\sigma t$$
 (6)

where D is the initial average diameter at zero time.

ľ

The grain growth kinetics of MgAl $_{24}^{O}$, follow the above derived grain growth law, as shown by Bratton's data over the temperature range 1400° - 1600°C. The grain growth measurements made in this study are consistent with Bratton's data, and have been determined as functions of stoichiometry and time at 1900°C. Table II lists the grain growth values obtained as a function of stoichiometry at a constant time of 4 hours.

Grain growth kinetics in oxide systems often follow a cubic grain growth law, i.e.,

 $D^3 = At$ (7)

when coalescence or disappearance of the pore phase in the oxide controls the grain growth (see Hillert²³). Since the grain growth kinetics in

5101CH1	OMETRY
Composition (wt% A1 ₂ 0 ₃)	Grain Size (um)
€3.0	12.7
65.9	17.5
68.0	13.5
71,8	20,8
79.1	28.1
85.5	31.3
91.0	18.1

GRAIN	SIZE	OF	MgA1 O	AS	A	FUNCTION	OF
			6 1		*		
		5	TOICHIOM	ETR	Y -		

Table 11

the MgAl $_{24}^{O}$ system do not follow Eq. (7) and because the rate of grain growth depends on the stoichiometry of the spinel, we can conclude that the grain growth kinetics are not influenced by the presence of porosity. Reasons why this is true will be presented in the discussion section.

The measurement of the grain growth kinetics as a function of time allow the relative velocity of the average grain boundary to be calculated if we assume that dD/dt = V, and this will provide a means of comparing relative grain boundary velocities at 1900°C as a function of stoichiometry. These data are shown in Figure ". The MgAl₂O₄ phase boundaries at 1900°C

The grain sizes listed in Table II are the average grain diameters obtained for a temperature of 1900° C and a constant time of 4 hours.

ý

|-**e** |-

þ

÷

X

FIGURE 7 GRAIN BOUNDARY VELOCITY IN MgAL204 AT 1900°C AS A FUNCTION OF ALUMINA CONCENTRATION

occur at approximately 64 and 92 wt% $A1_{20}$, thus all of the data points in Figure 7 except the 63 wt% $A1_{20}$ point fall within the spinel phase field. The 63 wt% Al_{203}^{0} sample showed a second phase at three grain corners and in the centers of the grains, while the 65 wt% $Al_{2}O_{3}$ sample showed second phase in the center of the grains and only an occasional second-phase particle in the grain boundaries. Therefore, it is reasonable to conclude that the 65 wt% Al₀0₃ sample was single phase at 1900°C. The 91 wt% Al_0_3 sample on cooling had large lath-like second phase grains that extended uninterrupted across the spinel grain boundaries. There were also small equiaxed second phase grains in the grain boundaries; however, the volume fraction of these latter grains was impossible to determine due to the extensive nature of the precipitated second phase grains. Thus it is impossible to conclude that the 91 wt% Al $_{2,3}^{\infty}$ samples were single phase at 1900° C; i.e., we cannot assume that the 91 wt% Al 0 23 samples were in equilibrium, and therefore the decrease in the grain boundary velocity as illustrated by the curve drawn in Figure 7 at high concentrations of Al_2O_3 may decrease too rapidly. However, it can be argued that the 85.5 wt% $Al_{2}O_{3}$ point shows a definite decrease, and that the grainboundary velocity goes through a . inum as the spinel composition varies across the phase field.

Equation (1) provides a relationship between the grain boundary velocity and the solute concentration¹² for grain boundaries moving with low velocities. The reciprocal of Equation (1) is

$$1/V = \lambda/P + \alpha/PC$$
 (8)

and this expression predicts a linear relationship between the reciprocal of the grain boundary velocity and the solute concentration.

If the solute in the spinel system is considered to be the difference between the nonstoichiometric composition and the stoichiometric composition, then the linearity of a plot of Eq. (8) will be maintained if the composition of the spinel phase is plotted versus the reciprocal velocity. Figure 8 is such a plot.

Since the datum point at 63 wt% Al_2O_3 is in a two-phase region $(MgO + MgAl_2O_4)$, the linear relationship predicted by Eq. (8) should not pass through this particular point. The same argument can be given for the 91 wt% Al_2O_3 datum point. The remaining points form a good straight line when the error limits are considered indicating that Eq. (1) can describe the grain boundary velocity as a function of stoichiometry in spinel, and this suggests that solute segregation to the grain boundaries increases as the spinel composition approaches the solid solubility limit on the MgO-rich side of the spinel phase field.

Single crystal spinel grown by the Verneuil method contains hydroxyl groups 24 as evidenced by an infrared absorption peak at a wavelength of about 3 µm. Wang and Zanzvechi observed that these absorption peaks occurred only in spinel crystals grown by the Verneuil technique and did not occur in flux or Czochralski-grown crystals. These authors therefore concluded that the 3-um absorption band was not an intrinsic property of spinel. Jagodzinski showed that there existed two absorption maximu in alumina-rich spinels corresponding to two energetically different O-H-O bonds. One of the absorition peaks occurs at 3.0 μ m and the other peak occurs at 2.8 µm. The 2.8 µm peak as reported by Jagodzinski decreases with decreasing Al₂O₃ content and disappears at the stoichiometric composition. Since a changing hydroxyl concentration can alter the defect structure and thereby influence the solute segregation to grain boundaries and hence affect the sintering kinetics, the hydroxyl concentration was monitored in the polycrystalline-sintered samples. Only one absorption peak was observed at a wavelength of 2.9 µm (see Figure 9) regardless of the spinel composition. The infrared absorption of MgO-rich spinel was measured between 60 and 70 wt% Al_{203}^{0} for samples fired at 1800°C. These

22

Г

J

y

FIGURE 8 A PLOT OF THE RECIPROCAL OF THE GRAIN BOUNDARY VELOCITY AS A FUNCTION OF ALUMINA CONCENTRATION

धु

y Y

ł,

24

data are shown in Figure 10 as a function of wt% MgO. The break in the curve in Figure 10 corresponds exactly to the solid solubility limit at 1800° C. The significance of the hydroxyl concentration decreasing as the MgO concentration in the spinel phase increases will be presented in the discussion section.

Since Wang and Zanzvechi²⁵ did not observe hydroxyl groups in stoichiometric crystals grown by the flux or by the Czochralski methods, we investigated the effect of the sintering atmosphere on the hydroxyl concentration. The absorption band at 2.9 μ m was present in the spinel samples sintered at 1800°C regardless of the sintering atmosphere. Samples were sintered in hydrogen, oxygen, and in a vacuum of 10⁻⁵ torr at 1800°C. The OH[°] peak heights were identical for either a hydrogen or an oxygen sintering heat treatment, and therefore the hydroxyl ions incorporated into the spinel crystals during the calcining procedure are not easily removed. The data shown in Figure 10 were obtained on samples sintered in 750 torr of oxygen at 1800°C.

Sintering spinel samples with large deviations from stoichiometry did not provide sufficient reduction in the grain boundary mobility to achieve theoretical density and on cooling the MgO-rich spinel samples contained a precipitated MgO second phase. The minor amount of residual porosity and small second-phase precipitates shown in the micrograph of Figure 11 cause light scattering to such an extent that the samples exhibit less than 5% in-line transmission for a sample 1 mm thick. Dopants were therefore added to spinel in an attempt to find an additive that would go into solid solution and simultaneously inhibit grain growth, since these two requirements are necessary to achieve a transparent, theoretically dense, oxide material.

The additives selected for investigation were Li_20 , LiF, Y_20_3 and ZrO_2 . The lithium compounds were added in an attempt to increase the concentration of anion vacancies and the zirconia was added to increase

FIGURE 10 A PLOT OF THE RELATIVE PEAK HEIGHT AT A WAVELENGTH OF 2.9 μm in ${\rm MgAl}_2{\rm O}_4$ as a function of MgO concentration

х́́т У

•

26

:

FIGURE 11 TYPICAL MICROSTRUCTURE OF A NONSTOICHIOMETRIC SINTERED $M_{g}A\ell_{2}O_{4}$ IN THE MgO-RICH SPINEL PHASE FIELD (X850)

the cation vacuumly concentration. Y_2O_3 was added to MgO-rich spinel samples to investigate whether a liquid-phase addition would increase the sintering kinetics sufficiently to prevent discontinuous grain growth. The yttria additions produced a liquid phase as evidenced by the structure at the triple point in the micrograph shown in Figure 12. The pores in the centers of the grains of Figure 12 provide evidence that discontinuous grain growth occurred in this sample.

The Li₂O, LiF, and ZrO_2 were each added to separate spinel samples of stoichiometric composition and also to 68 wt% Al₂O₃ spinel. The concentration of the additives was varied between 1 and 3 wt%. In all cases pore coalescence occurred as seen in Figure 13 and the samples did not sinter to theoretical density after firing at 1900^OC for 16 hours. If a second phase was present, then sintering to theoretical density could be achieved; herever, the second-phase particles scattered light and the resulting samples were translucent.

Sintering of spinel containing a MgO second phase allowed sintering to proceed to theoretical density through the operation of the second phase pinning the grain boundaries and allowing a relatively high diffusion flux to remove all of the porosity. These samples were opaque to translucent due to the scattering of light by the extensive second phase. This phenomenon was not investigated further, because one of the objectives of this research was to produce transparent spinel.

FIGURE 12 MICROSTRUCTURE OF Y_2O_3 DOPED MgA ℓ_2O_4 (X850)

F

FIGURE 13 TYPICAL MICROSTRUCTURE OF MgA(204 EXHIBITING PORE COALESCENCE (X850)

V DISCUSSION

The principal defects in Al_2O_3 -rich spinel according to Jagodzinski and Saalfeld²⁷ are aluminum cation vacancies and the defect equilibria can be described by the following equation,

$$3Mg^{++} = 3A1^{+++} + V_{A1}^{+++}$$
 (9)

where V_{A1}^{+++} represents a fully ionized aluminum ion vacancy.

It is reasonable to assume that anion vacancies occur in MgO-rich spinel according to the equation,

$$2A1^{+++} = 2Mg^{++} + V_0^{--}$$
(10)

where V_0' is a doubly ionized oxygen vacancy. However, it is also possible that three magnesium ions substitute for two aluminum ions with the extra magnesium ion occupying a normally empty tetrahedral site.

The excess magnesium ions in MgO-rich spinel or the excess aluminum ions in Al_{20}^{0} -rich spinel will be distributed in the spinel lattice and on the existing grain boundaries. As the composition approaches the solid solubility limit, the concentration of the excess cations in the grain boundaries could increase more rapidly than the excess concentration in the lattice and this increased concentration at grain boundaries is postulated to exert a drag on the grain boundary mobility. This model would thus predict a maximum in the grain boundary velocity at the stoichiometric composition, and this was not observed.

The grain boundary velocity data were calculated from the rate of grain growth in a hydrogen atmosphere, and therefore it is possible that a significant concentration of anion vacancies exists at the stoichiometric

composition. If we postulate that the anion vacancy concentration at the stoichiometric composition is not nil, then Eq. (10) could describe the defect equilibria beyond the MgO-rich spinel region into the Al_{23}^{O} rich spinel region. The maximum in grain boundary velocity observed in Fig. 7, could be explained on this basis.

If the 91 wt% $Al_{2}O_{3}$ grain growth samples were actually in equilibrium, then two straight lines should have been drawn through the data in Fig. 8, with a minimum occurring in the reciprocal grain boundary velocity at approximately 83 wt% $Al_{2}O_{3}$. However, the existence of second-phase grains in the spinel grain boundaries of these samples having a different morphology than the precipitated grains strongly suggests that equilibrium did not occur and that Fig. 8 is correct as drawn.

The straight-line relationship exhibited in Fig. 8 suggests a solute segregation involving anion vacancies, and provides evidence that the grain boundary velocity decreases as the composition approaches the solid solubility limit. However, this reduction in grain boundary velocity was insufficient to allow the spinel to sinter to theoretical density or it was insufficient to prevent discontinuous grain growth. This could be due to the fact that the densification kinetics in $MgAl_{24}^{O}$ are slow (compare the slowest diffusion coefficients in Figs. 1 and 4), or it could be due to the replacement of cations by protons in the spinel lattice making the spinel system a four-component system with insufficiently controlled activity of the components which could affect the segregation of solute-defect clusters to grain boundaries.

The data in Fig. 10 clearly demonstrate that the hydroxyl concentration decreases as the amount of excess MgO in MgO-rich spinel increases. Jagodzinski²⁶ has observed a similar phenomenor. in Al₂O₃-rich spinels, and an equation that could describe this phenomenon is

$$H_2 + 20^{-2} \approx Mg^{+} + 2(OH^{-}) + V_{Mg}^{+}$$
 (11)

in which two protons substitute for a magnesium ion in the spinel lattice.

A cubic grain growth law was not observed in porous spinel and because this is unusual it merits discussion. Burke²² has written an excellent treatise on this topic, in which he gives the following grain growth law, for porous compacts

$$dD/dt = k\mu\sigma(1/D - 1/D_{\mu})$$
(12)

where $D_{\underline{\ell}}$ is the average limiting grain size determined by a Zener-type relationship,

$$D_{l} = d/f \tag{13}$$

in which d is the average diameter of the pores and f is the volume fraction of pores.

The diameter of the pores and their volume fraction change during sintering; for example, the volume fraction decreases as densification occurs and we know that the pores in $MgAl_{2}O_{4}$ coalesce (see Fig. 13). Both of these phenomena cause the average limiting grain size, D_{ℓ} , to increase. It is therefore hypothesized that the term $1/D_{\ell}$ in Eq. (12) is negligible with respect to the 1/D term for the spinel system, and therefore Eq. (12) becomes equal to Eq. (5) and we observe the grain growth behavior predicted by Eq. (6).

Bagley¹⁴ sintered spinel to theoretical density by adding small amounts of excess MgO to the stoichiometric composition. The mechanism by which theoretical donsity was achieved had to be one in which a nonequilibrium second phase inhibited the grain boundary mobility, and this sintering procedure did not produce a transparent spinel. Gatti¹³ and Bratton²⁸ have both produced theoretically dense spinel using additives that result in a liquid phase, but unless the liquid phase can be

removed, and this was Gatti's approach, the spinel will not be transparent. For example, Bratton used CaO additives and in his best material obtained approximately 30% - 35% in-line transmission for a 1-mm-thick sample, which is inadequate for window or armor applications.

मासिति जिन्द्री हो के निर्मेष्ठ निर्मेष्ठी में सिद्धि होते सिद्धि हो सिद्धि के सिद्धि हो हो है है।

s at a dail de la andrad

to a subliment

a sedid contr

REFERENCES

- B. H. Alexander and R. W. Balluffi, "Mechanism of Sintering of Copper," Acta Met. 5 666 (1957)
- J. E. Burke, "Role of Grain Boundaries in Sintering," J. Amer. Ceram. Soc. 40 (3) 80-85 (1957)
- L. Seigle, <u>Kinetics of High-Temperatures Processes</u>, pp. 172-178, edited by W. D. Kingery. (Technology Press of Massachusetts Listitute of Technology, Cambridge, and John Wiley & Sons, Inc., New York, 1959)
- H. G. Van Bueren and J. Hornstra, <u>Keactivity of Solids</u>, p. 112, edited by J. H. deBoer, W. G. Burgers, E. W. Gorter, J.P.F. Huesse, and G.C.A. Schmit (Elsevier Publishing Co., Princeton, J.H., 1961)
- 5. R. L. Coble and J. E. Burke, pp. 197-251 in <u>Progress in Ceramic</u> <u>Science</u>, Vol. 3, edited b; J. E. Burke. (Pergamon Press, New York 1964)
- R. L. Coble, "Sintering Crystalline Solids: I" J. Appl. Phys. <u>32</u>
 (5) 787-92 (1961); II ibid, pp. 793-99
- P. J. Jorgensen and R. C. Anderson, "Grain-Boundary Segregation and Final-Stage Sintering of Y₂," J. Amer. Ceram. Soc. <u>50</u> (11) 553-58 (1967)
- 8. P. J. Jorgensen and W. C. Schmidt, J. Amer. Ceram. Soc. 53 24 (1970)
- 9. R. C. Anderson, U.S. Patent 3,574,645, April 13, 1971
- P.J.L. Reijnen, Problems of Nonsteichiometry, edited by A. Rabeneau,
 p. 219 (North Holland Publishing Co., Amsterdam, 1970)
- P. J. Jorgensen and J. H. Westbrook, J. Amer. Ceram, Soc. <u>47</u> 332 (1964)
- 12. J. W. Cahn, Acta Met. 10 784 (1962)

5

- A. Gatti, R. L. Mehan and M. J. Noone, "Development of a Process for Producing Transparent Spinel Bodies," Naval Air Systems Command Report, Contract No. NOOO19-71-C-0126 (Dec. 1971)
- 14. R. D. Bagley, U.S. Patent 3,531,308, Sept. 29, 1970
- 15. R. J. Bratton, J. Amer. Ceram. Soc. 54 141 (1971)
- 16. R. J. Bratton, J. Amer. Ceram. Soc. 52 417 (1969)
- Lindner unpublished preliminary results, see 2. Physik. Chem. Neue Folge 18 303 (1958)
- 18. Y. Oishi, personal communication
- 19. K. Ando and Y. Oishi, Yogyo-Kyokai-Shi 80 324 (1972)
- 20. R. L. Fullman, Trans. AIME 197 447 (1953)
- 21. J. E. Burke and D. Turnbull, <u>Progress in Mctals Physics</u>, Vol. III, edited by Bruce Chalmers, p. 220 (Pergamon Press, London, 1952)
- 22. J. E. Burke, "Ceramic Microstructures," Proc. 3rd Int. Mater, Symp., Berkeley, Calif., p. 681, June 1966
- 23. M. Hillert, Acta Met. 13 227 (1965)

F

- 24. K. A. Wickersheim and R. A. Lefever, J. Opt. Soc. Am. 50 831 (1960)
- 25. C. C. Wang and P. J. Zunzucchi, J. Electrochem. Soc. 118 586 (1971)
- 26. H. Jagodzinski, <u>Problems of Nonstoichiometry</u>, edited by A. Rabeneau, p. 131 (North-Holland Publishing Co., Amsterdam, 1970)
- 27. H. Jagodzinski and H. Saalfeld, Z. Krist. 110 197 (1958)
- 28. R. J. Bratton, "Transparent Sintered MgAl $_{24}^{0}$ (to be published)
- 29. D. M. Roy, R. Roy, and E. F. Osburn, J. Amer. Ceram. Soc. <u>36</u> 149 (1953)
- 30. A. M. Alper, R. N. McNally, P. G. Ribbe, and R. C. Doman, J. Amer. Ceram. Soc. 45 264 (1962).

36