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FORSWOPD

The Eighteenth Conference on the Design of Experiments in Army Research,
Development and Testing !as Iheld 25-27 October 1972 at the Aberdeen Proving
Ground, Maryland. The U. S. Arnly Test and Evaluation Command served as its
host. This is the second conference in this series to be held at the
Proving Ground. The first one, called the Sixth Conference on the Design of
Experiments, was held in October 1960 with the Ballistic Research Laboratories
serving as the host. The father of these meetings, Professor S. S. Wilks,
was in charge of arranging the program, and the undersigned served as the
Chairman on Local Arrangements. Having served once in this capacity, one
has a better appreciation of the work-load faced this year by the Local
Chairman, Mr. Gerard T. Dobrindt. Let me thank Mr. Dobrindt for his excellent
handling of the many prcblems with the physical arrangements as well as the
problems presented by the attendees. Thanks are also due to Dr. William
McIntosh for his guidance and assistance in many phases of the on-base
arrangements.

Professor John Tukey, the first invited speaker, got the conference off
to an excellent start with his interesting and informative treatment of the
top5.c "Exploratory Data Analysis". He was followed on the program by one of
his colleagues at Princeton University, Progessor G. S. Watson. Dr. Watson
discussed some recent developments in the interesting field of "Orientation
Analysis". At the Second General Session members of the audience had the
pleasure of hearing Professor J. S. Hunter discuss one of his papers on
"Sequential Factorial Estimation" and Professor G. E. P. Box present some
of his work on "Forecasting and Control". It is interesting to note that
both Drs. Box and Hunter served on a panel discussion entitled "Common
Pitfalls in the Design and Analysis of Experiments" at the Sixth Design
Conference. The fifth invited speaker was Professor Raymond H. Myers who
enlightened members of the audience on some recent and important
developments in the field of "Dual Response Surface Analysis". The recipient
of this years Samuel S. Wilks Memorial Awards was one of the above-mentioned
invited speakers, namely Dr. G. E. P. Box. We are pleased to be able to
include in these proceedings his acceptance remarks.

The Army Mathematics Steering Committee sponsors these conferences
on behalf of the Chief of Research and Development. Members of this
committee would like to thank the many Army scientists who contributed to
the success of this meeting. Without their dedicated efforts these meetings
would not be repeated year after year. Scientists in other government agencies
have also lent their talents to the programs. This year we were pleased to
have three contributed papers presented by members of the National Bureau of
Standards, and also to have Dr. Churchill Eisenhart of the Bureau serve as a
member of the Program Committee. The Food and Drug Administration was
represented on the agenda by Dr. Clifford Maloney. His services as a member of
the Program Committee were also appreciated. One or two Canadian scientists
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usually Attend and contribL to the discussion at these meetings. This year
we were pleased to have one ;. our Canadian friends, Mr. G. J. McLaughlin,
of the Defense Research Establishment Valcartier, present one of the clinical
papers. --

In addition to the two members of my Program Committee already mentioned,
the following individuals served: Robert Bechhofer, Norman Coleman, Gerard
Dobrindt, Francis Dressel, Walter Foster, Boyd Harshbarger, William McIntosh,
Herbert Soloman, Grace Wahba, and Geoffrey Watson. Those gentlemen and onelady were charged with the responsibility of outlining the general character
of the conference, and to select the invited speakers. My thanks to them

for preforming this task in a fashion that again led to a successful
scientific conference. It seems in order at this time to give speciai mention
to Dr. Walter D. Foster, w-o is the Chairman of the AMSC Subcommittee on

Probability and Statistics. In this capacity Dr. Foster can be looked upon
as the one generally responsible for initiating the advanced and overall
planning for each conference. He serves in the conduction of many other
phases of these meetings; in particular, he serves as the Chair-•an of the
committee that organizes the final form of the agenda. He uakes the report
to the AMSC on some of the accomplishments of each Design of Experiment
Conference. On behalf of all attendees at these meetings, let me express
our thanks to Dr. Foster for his dedicated efforts to t:hese scientific
conferences.

Finally, we desire to express our sincerest appreciation to Dr. Francis
G. Dressel whose many significant contributions make the Army Design of
Experiments Conferences a success from year to year.

S Frank E. Crubbs
Conference Chairman
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EIGHTEENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH, DEVELOPMENT, AND TESTING

25-27 October 1972

HQ, U. S. Army Test and Evaluation Command

* * * * * Wednesday, 25 October * * * * *

0830-0900 REGISTRATION - Library Conference Room. Building 330

0900-1130 GENERAL SESSION I - Library Conference Room

CALLING OF CONFERENCE TO ORDER
Gerard Dobrindt, Chairman for Local Arrangements,
US Army Test and E:valuation Command

WELCOME TO THE U. S. ARMY TEST AND EVALUATION COMMAND
Benjamin S. Goodwin, Chief Engineer, U. S. Army Test and
Evaluation Command

CHAIRMAN OF SESSION I
Dr. Fred Frishman, Physical Sciences & Engineering Division,
Office, Chief of Research & Development, Washington, D. C.

EXPLORATORY DATA ANALYSIS
Professor John Tukey, Department of Mathematics, Princeton
University, Princeton, New Jersey

ORIENTATION ANALYSIS
Professor G. S. Watson, Princeton University, Department of
Statistics, Fine Hall, Princeton, New Jersey

1130-1300 LUNCH - Officers' Open Mess, APG, MD

1300-1445 CLINICAL SESSION A - Library Conference Room, Bldg. 330

CHAIRMAIN:
Norman P. Coleman, Jr., HQ, US Army Weapons Command,
Rock Island, Illinois

PANELISTS:
A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia 4
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'o .WEDNESDAY • .. c'•..

Bernard Harris, Mathematics Rez-arch Center, The University
of Wisconsin, Madison, Wisconsin

Boyd Harshbarger, Department of Statistics, Virginia
Polytechnic Institute and State University, Blscksburg,
Virginia

Herbert Solomon, Department of Statistics, George Washington
University, Washington, D. C.

FREQUENCY RESPONSE ON THE M50 ROCKET DUE TO WIND
Bernard F. Engebos, Atmospheric Sciences Laboratory, U. S.
Army Electronic Command, White Sands Missile Range,f New Mexico

EXPERIMENTAL DESIGNS WITH LARGE NUMBERS OF VARIABLES
Roger L. Brauer and Charles C. Lozar, Architecture Branch,
Special Projects Division, U. S. Army Construction Engineering
Research Laboratory, Champaign, Illinois

* 1300-1445 TECHNICAL SESSION 1 - Conference Room B, Building 314

CHAIRMAN:
Jerome R. Johnson, US A7-my Materiel Systems Analysis Agency,V- Aberdeen Proving Ground, Maryland

ORTHOGONAL ESTIMATES. IN WEIGHING DESIGNS
William G, Lese, Jr., US Army Materiel Systems Analysis Agency,
Aberdeen Proving Ground, Maryland

WEIGHING DESIGNS FOR MASS CALIBRATION
J. M. Cameron and R. C. Raybold, Office of Measurement Services,
Institute for Basic Standards, US Department of Commerce,
National Bureau of Standards, Washington, D. C.

COMPUTER CONSTRUCTION OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS
Malcolm S. Taylor, US Army Aberdeen Research and Development
Center, Aberdeen Proving Ground, Maryland

1300-1445 TECHNICAL SE3SION 2 - Conference Room A, Building 314

CHAIRMAN:
Vernon V. Visnaw, Materiel Testing Directorate, Aberdeen
Proving Ground, Maryland
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WEDNESDAY

REGRESSION ANALYSIS APPROACH TO INTERPOLATION ALGORITHMS
E. L. McDowell, Structural Concepts Branch, Construction
Systems Division, US Army Construction Engineering Research
Laboratory, Champaign, Illinois

ON SPURIOUS CORRELATIONS FOR PARTIALLY RELATED VARIATES
Oscar M. Essenwanger, Physical Science Directorate,
Directorate for Research, Development, Engineering and
Missile Systems Laboratory, US Arxiy Missile Command,
Redstone Arsenal, Alabama

THE LEAST SQUARES ANALYSIS OF DATA GENERATED BY A "PIECE-WISE"
GENERAL LINEAR MODEL

Robert L. Launer, Procurement Research Office, US Army
Logistics Management Center, Fort Lee, Virginia

1445-1515 BREAK

1515-1700 CLINICAL SESSION B - Library Conference Room, Building 330

CHAIRMAN:

Paul C. Cox, White Sands Missile Range, New Mexico

PANELISTS:
A. Clilford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

Bernard Harris, Mathematics Research Center, The University
of Wisconsin, Madison, Wisconsin

Boyd Harshbarger, Department of Statistics, Virginia Polytezhnic
Institute and State University, Blacksburg, Virginia

Herbert Solomon, Department of Statistics, George Washington
University, Washington, D. C.

EXPERIMENTAL ESTABLISHMENT OF ACCURACY OF RANGE-TO-FUNCTION
MEASUREMENT FOR ARTILLERY PROJECTILFS

ILT L. Dave Clements, Data Reduction Section, Yuma Proving
Ground, Yuma, Arizona

AN IMPROVED METHOD OF ESTIMATING THE CRITICAL VELOCITY OF A
PROJECTILE IN PENETRATION BALLISTICS

G. J. MrLaughlin, Defence Research Establishment Valcartier,
Courcelette, P. Q., Canada
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WEDNESDAYc

1515-1700 TECHNICAL SESSION 3 - Conference Room A, Building 314

CHAIRMAN:
COL L. Ponder, US Army Test and Evaluation Command, Aberdeen
Proving. Ground, Maryland

EVALUATING AND SCHEDULING PROTOTYPE REQUIREMENTS FOR SUITABILITY
TESTING

Majors Richard B. Cole and William J. Owen, US Army Infantry
Board, Fort Benning, Georgia

STOPPING RULES FOR SCHEDULING WITH PARTICULAR REFERENCE TO
MISSILE RANGE SCHEDULING

Paul H. Randolph, New Mexico State University, Representing-
Instrumentation Directorate, White Sands Missile Range,
New Mexico

1515-1700 TECHNICAL SESSION 4 - Conference Room B, Building 314

CHAIRMAN:
John S. Hagan, Materiel Testing Directorate, Aberdeen Proving
Ground, Maryland

A ROBUST CONFIDENCE INTERVAL FOR LOCATION
Alan M. Gross, Princeton University, Department of Statistics,
Fine Hall, Princeton, New Jersey

APPROXIMATE CONFIDENCE LIMITS FOR P(X<Y)
J. R. Moore and M. S. Taylor, US Army Aberdeen Research and
Development Center, Aberdeen Proving Ground, Maryland

STATISTICAL EVALUATION OF FLIGHT TEST PERFORMANCE OF THE
HELICOPTER LIFT MARGIN SYSTEM (HLMS)

Er•-n Biser and Ronald Kurowsky, Avionics Laboratorr, US
Army Electronics Command, Fort Monmoutih, New Jersey

1830- SOCIAL HOUR FOLLOWED BY THE BANQUET. PRESENTATION OF THE
SAMUEL S. WILKS MEMORIAL AWARD

Dr. Frank E. Grubbs, Chairman of the Conference

k * * * *Thursday, 26 October * * * * *

0900-1015 TECHNICAL SESSION 5 - Library Conference Room, Building 330

CHAIRMAN:
Royce W. Soanes, Jr., Benet R&E Laboratory, Watervliet
Arsenal, Watervliet, New York
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THURSDAY

AUTOMATED RADAF DATA PROCESSING AT WHITE SNADS MISSILE RANGE
FEATURING ADAPTIVE FILTERING WITH BIAS ESTIMATION

W. A. McCool' Analysis and Computation Division, White
Sands Missile Range, New Mexico

ALGORITHM FOR EDITING BIVARIATE DATA FILES WITH RANDOM
SPACING IN THE INDEPENDENT VARIABLE

ILT L. Dave Clements, Data Reduction Section, Yuma Proving
Ground, Yuma, Arizona

0900-1015 TECHNICAL SESSION 6 - Conference Room B, Building 314

CHAIRMAN,
SP/4 Ray Peterson, Frankford Arsenal, Philadelphia,
Pennsylvania

STATISTICAL ANALYSIS OF H. F. OBLIQUE AND VERTICAL INCIDENCE
INOSPHERIC DATA APPLICABLE TO FIELD ARMY DISTANCES

Richard J. D'Accardi, US Army Electronics Command, Fort
Monmouth, New Jersey
Chris P. Tsokos, University of South Florida, Tampa, Florida

COMPARISON OF THE TRANSMISSION THROUGH FOG OF THE 3-5 AND
8-12 •ICRON SPECTRAL REGIONS AS A FUNCTION OF THE VISIBLE
TRANSMISSION

James E. Perry and Stuart Laymar, Night Vision Laboratory
USAECOM, Fort Belvoir, Virginia

0900-1015 TECHNICAL SESSION 7 - Conference Room A, Building 314

CHAIRMAN:
Col. George T. Morris, Jr., US Army Test and Evaluation
Command, Aberdeen Provix.g Ground, Maryland

MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES IN RELIABILITY
GROWTH

Larry H. Crow, US Army Materiel Systems Analysis Agency,
Aberdeen Proving Ground, Maryland

MODIFIED PROPAGATION OF ERRORS WITH APPLICATIONS TO MAINTAINABILITY
AND AVAILABILITY

Paul C. Cox, White Sands Missile Range, White Sands, .

New Mexico /

1015-1065 BREAK

10145-1130 TECHNICAL SESSION 8 - Conference Room A, Building 314
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.. .THURSDAY

CHAIRMAN:
George L. Kinnett, HQ, US Army Aviation Materiel Laboratories,

jFort Eustis, Virginia o

WIND TUNNEL MODIFICATION AND EVALUATION
E. G. Peterson, C. E. Sperry and E. Covert, Deseret Test
Center, Building 100, Soldiers' Circle, Fort Douglas, Utah

1045-1130 TECHNICAL SESSION 9 - Library Conference Room, Building 330

CHAIRMAN:
E.,ward Fiske, Product Assurance Director, Edgewood Arsenal,
Maryland

TECHNIQUES FOR TAIL LENGTH ANALYSIS
James J. Filliben, Statistical Engineering Laboratory,
Institute for Basic Standards, National Bureau of Standards,
Washington, D. C.

CRITERIA FOR A BIOCELLULAR MODEL - BIOCELLULAR COMMUNICATION
George I. Lavin, Vulnerability Laboratory, BRL, ARDC,
Aberdeen Proving Ground, Maryland

1045-1130 TECHNICAL SESSION 10 - Conference Room B, Building 314

CHAIRMAN:
Boyd Harshbarger, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia

EQUATION-OF-STATE AND SHOCK INITIATION EXPERIMENT ON EXPLOSIVES
USING PULSED ELECTRON BEAMS

L. Avrami and P. Harris, Picatinny Arsenal, Dover, New Jersey
J. Shea, Physics International Companyc[

AN ANALYSIS OF 5.56MM ALUMINUM CARTRIDGE CASE "BURN-THROUGH"
PHENOMENON

Walter H. Squire and Reed E. Donnard, Frankford Arsenal,
Philadelphia, Pennsylvania

1130-1300 LUNCH - Officers' Open Mess, APG

1300-1415 TECHNICAL SESSION 11 - Library Conference Room, Building 330

CHAIRMAN:
Hurry Greveris, US Army MUCOM, Frankford Arsenal, Philadelphia,
Pennsylvania

xiv
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THURSDAY

STATISTICAL MODELING OF PROPAGATION LOSS DATA
M. Acker, R. D'Accardi, D. Dense, Communications/ADP
Laboratory, US Army Electronics Command, Fort Monmouth,
New Jersey
C. Tsokos, Department of Mathematics:and Statistics,
University of South Florida, Tampa, Florida

1300-1415 TECHNICAL SESSION 12 - Conference Room A, Building 314

CHAIRMAN:
A. Clifford Cohen, University of Georgia, Athens, Georgia

GRUBBS' ESTIMATORS TO DATE
Clifford J. Maloney, Bureau of Biologics, Food & Drug
Administration, 5600 Fishers Lane, Rockville, Maryland

A SYSTEM FOR POSITION-LOCATION BASED ON RANGES
Richard H. F. Jackson, James A. Lechner, and David J. Sookne,
US Department of Ccmmerce, National Bureau of Standards,
Washington, D. C.

1300-1415 TECHNICAL SESSION 13 - Conference Room B, Building 314

CHAIRMAN:
COL Luke Vavra, Combat Develcpment Command, Aberdeen Proving
Ground, Maryland

APPROXIMATE CONFIDENCE LIMITS ON THE CEP: CASE FOR UNEQUAL
VARIANCES

E. Inselmann, Headquarters US Army Materiel Conmmand,
Washington, D. C.

ON THE VARIATION IN MECHANICAL PROPERTIES OF LARGE CALIBER
GUN TUBE FORGINGS

Peter A. Thornton, Benet Weapons Laboratory, Watervliet
Arsenal, Watervliet, New York

1415-1445 BREAK

1445-1700 GENERAL SESSION 1i - Library Conference Room, Building 330

CHAIRMAN:
Professor Herbert Solomon, George Washington, University,
Washington, D.fC.
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THURSDAY

SEQUENTIAL FACTORIAL ESTIMATION
Professor J. Stuart Hunter, Department of Chemical Engineering,
Princeton University, Pzinceton, New Jersey

FORECASTING & CONTROL
Professor G. E. P. Box, Department of Statistics, University
of Statistics, University of Wisconsin, Madison, Wisconsin

* * * * * Friday, 27 October * * * * *

0900-0940 TECHNICAL SESSION 14 - Library Conference Room, Building 330

CHAIRMAN:
Alan W. Benton, Army Materiel Systems Analysis Agency,
Aberdeen Proving Ground, Maryland

A CONTINUOUS SAMPLING PLAN WITH A PROVISION FOR A REDUCED
CLEARANCE NUMBER

Gary L. Aasheim, Mathematical Statistician, US Army
"Ammunition Procurement & Supply Agency, Joliet, Illinois

0900-0940 TECHNICAL SESSION 15 - Conference Room A, Building 314

CHAIRMAN:
Douglas Tang, Walter Reed Army Institute of Research,
Washington, D. C.

SELECTION OF THE MOST MEANINGFUL SUBSET OF RESPONSES IN A
MULTIPLE RESPONSE EXPERIMENT

Walter D. Foster, Fort Detrick. 1rederick, Maryland

0940-1010 BREAK

1010-1130 GENERAL SESSION III - Library Conference Room, Building 330

CHAIRMAN:
Dr. Frank E. Grubbs, Aberdeen Research & Development Center,
Aberdeen Proving Ground,Maryland

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBALILITY AND
STATISTICS

Dr. Walter D. Foster, Fort Detrick, Frederick, Maryland

DUAL RESPONSE SURFACE ANALYSIS
Professor Raymond H. Myers, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia
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EXPLORATORY DATA ,%NALYSIS AS PART OF A LARGER WhOLE*

John W. Tukey

-Princeton University, Princeton, New Jersey,

(4) Most data analysis should be investigative

r It is not enough to, look for what we anticipate. The greatest gains
from data come from surprises. We will usually not be very surprised,
but we should try to be.

(AA) Data analysis is well thought of in three phases

As we come to think over the process of analyzing data, when done well,
we can hardly fail to identify the unrealism of the descriptions given or
implied in our texts and lectures. The description I am about to give
emphasizes three kinds of stages. It is more realistic than the description
we are accustomed to but we dare not think it (or anything else) the ultimate
in realism.

The first stage is exploratory data analysis, which does not need
probability, significance, or confidence,and which, when there is much data,
may need to handle only either a portion or a sample of what is available.
That there iz still much to be said and that there are new simple techniques
to be developed is testified to by 3 volumes of a book now in a limited
preliminary edition (Tukey 1970-1911) which deals only with the simpler
questions, leaving multiple regression and related questions for later treatment.

The second stage is probabilistic. Rough confirmatory data analysis
-asks, perhaps quite crudely: "With what accuracy are the appearances already

found to be believed?" Three answers are reasonable:

- The appearances arf- so poorly defined that they can be forgotten
(at least as evidence though probably not as clues).
The appearances are marginal (so that crude analysis may not suffice
and a more careful analysis is called for).

The appearances are well-determined (when we may, but more often
do not, have grounds for a more careful analysis).

Among the key issues of such a second stage are the issues of multiplicity:
How many things might have been looked at? How many had a real chance to be
looked at? How should the multiplicity decided upon, in answer to these
questions, affect the resulting confidence sets and significance levels? These

* are important questions; their answers can affect what we think the data
has shown.

*At the Eighteenth Conference on the Design of Experiments, Professor Tukey
issued this outline of his address. It contains several references for
those interested in pursuing this topic.
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It will only be after we have become used to dealing with the
issues of multiplicity that we will be psychologically ready to deal
effectively with correlated estimates, to 7ecognize in particular (a)
that the higher the correlatiou the less the chance - NOT THE GREATER --

of one or more accidental significances and (b) that correlation of
fluctuations need imply nothing as to whether the real effects measured
by one calculated quantity will in any way "leak" into other calculated
quantities. Leakage of fluctuation and leakage of effect NEED NOT
go together, though they sometimes do.

When the result of the second stage is marginal, we need a
third stage, in which we wish to muster whatever strength the data
before us possesses that bears directly ov the question at issue - and in
which we often also want to borrow strength from either other aspects of
the same body of data or from other bodies of data. It is at this stage
of "mustering and borrowing strength" that we require our best statistical
techniques. Medians may be quite good enough for our rough confirmatory
analysis, but if we have guod robust measures of location they are needed
in mustering and borrowing strength.

To argue, as we have implicitly done so often in the past, that
-(1) all data requires mustering and borrowing of strength and (2) this

can - nay should - be done without any exploratory data analysis -- is
surely at least one of the minor heights of unrealism. Trying to make
what needs to be data investigation into data processing that really meets
our needs involves many new ideas, and ideas come slowly.

(AAA) Novel ad hoc analyses need not bar us from confirmatory analysis

To be clear that this is so, we must be prepared to face up to two
points:

- questions of multiplicity are not going to be avoided.

- approximate confidence and significance procedures are quite
good enough.

Once we do, the jackknife+ will give us adequate confirmatory
assessment; our only struggle will be with assessing degrees of multiplicity.

(Waiting for specific statistical theory for specific analyses is
unsound. We have to wait too long, and - what is worse - we get theory
based on too narrow assumptions.)

+ For an introductory account see:

Mosteller, F. and Tukey, J.W. (1968). Data analysis, including statistics.
Handbook of Social PsychcZogy, 2nd edition, vol. 2. C. Lindzey and E. Aronson,
editors, Addison-Wesley, ksading, Massachueetts, 80-203.

-2-

L 37*



/'

' ¶

SKM! PRINCIPLES

THAT SHOULD GUIDE

EXPLORATORY DATA ANALYSIS

(A) Walk first, run later

"It is weill to understand what you can do before you learn how to
seasure bow veil you sem to have don* it".

CM) Don't vait for runnins shoes, start now

(AM) Data analysis should be investigative

"Exploratory data analysis is detective work - numerical detective
work - or counting detective work - or graphical detective work".

(AWA) Resistant technigues should be the usual beginning

A technique is resistant if changing a small part of the data will
have only small effects on the result, no matter what is done to the small
part. (Means are not resistant, but medians are.)

(AAAA) Analyses should come bifore summaries

Before we sunaarize, we should analyze, and look at the analysis.
Here an analysis is:

a conversion -- usually a breakdown - of numerical data into
other numbers that is both reversible and relevant.

Reversible means that you can Set all the data back IN DETAIL
from the results of analysis. Relevant means that some, at least, of the
results of analysis illuminate each of the questions most likely to arise.
We will come to examples a little later.

(AAA6At) In routine analysis the client should be presented with at
least two different versions

If the two versions "agree", fine. Let some summary of one be
p,,bliahed.

If the two versions "disagree", the client must think - very
painful, but forcing this may be the best thing the statistician can do.

/ I.
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(MAA"A) "Looking at the data" implies both MORE NUMBERS and BETTER
PICTURES

The unexpected is beat brought to our attention by pictures.
Failing this, as is always to some extent necessary, more numbers can
and do help.

(MAgAA) Implicitly defined -- and hence iteratively calculated --

analyses are inevitable

We have been frightened too long by some mixture of the apparent
difficulties of hand calculation and the inaptness of mathematical

.formulas. Some implicitly defined, iterative calculations are "as easy"
at least ai safe from error" as those that use arithmetic means.

(*********) Not only mathematical statistics, but also data analysis.

is goini to have to become more like biochemistry.
(added March 1972)

The greatest danger of an applied mathematical science is the

tacit assumption cf

OMNU-RENCE

of the assumption that both users and bystanders, from knowing exactly
what is done, will be able to draw -- and will, in fact, draw-- the relevant
inferences concerning the behavior of every techniqu2 at hand. To have
direct omniference by as many users as possible about as many techniques
as possible is a very good thing. But to avoid a technique, because
omniference is hard or impossible, can be very unwise.

We ought all tc expect that users are to be told the best
informnation about data analysis techniques that is available -- whether
or not they can afford the effort to understand how that information was
gained-- and whether or not the information is proved, provable, or even
subject to confidence statements.

-4-
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t EXPLORATORY DATA ANALYSES

S! PROBABILITY MODELSIsi

(4) Probability models are to give results for guidance.

As statisticians we must take the major share of responsibility
here. We ought to make the existence, nature, and details of probability
models openly available to all - encouraging their perusal. But we
ought not shove the. down throats in the early stages of learning.

Mathematics is the only possible scientific discipline in which
reaponsibility can be completely avoided -- by teaching every student
all the proofs, thus making him responsible for the validity of all the
mathematics he has thus learned. No one else can avoid responsibility
this way. If, as statisticians, we are concerned with the analysis of data,
we cumot escape.

Understanding what comes of carefully formulated probability
situations Is of the essence. Rarely will it be directly and precisely
applicable to our problems. Caly as we carefully broaden the bases on
which it is built will we bring it closer and closer to direct application.

(AA) In Exploratory Data Analysis. 50Z efficiency is plenty

If 501 efficiency will not reveal an effect, 95Z will nc' %ske
it significant.

(AAA) Simplicity and flexibility outweigh efficiency

Recall Churchill Eisenhart's definition of the "practical power"
of a statistical test:

The product of the probability that the test will be applied and
the mathematical power when applied.

(MM) As we learn from broader probability models,.vs will be
better guided in Exploratory Data Analysis

-5-



TWO-WAY TABLES

OF

RESPONSES

We have analyzed many hundreds of thousands (at least) of
two-way tables of responses by fitting something of the form

a + B + hash

Almost all of this has been done by explicit arithmetic means.

These are really used as algorithms to meet implicit conditions
that certain arithmetic means of residuals and effects are zero.

The results are very NON-resistant, - and hence very NON-robust

of efficiency. We can no longer live with them as the only approach.

Implicit medians do quite well, and are not hard to apply.

As an example, let us look at data from page 103 of the
Rothamsted Field Experiments of 1969. The analysis by means hardly shows
that anything is going on among the residuals. The analysis by implicit
medians calls at least two things to our attention.

.p

-6-
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DATA. weitht of sugar best roots in 0.01 ton

NI N3 15 U7 Olsas)

DG 1468 1.597 1670, 1647 (1596)

ST 980 1237 1379 .14S (1260)

PT 967 1156 1457 1511 (1273)

CH 1304 1411 1470 1444 (1415)

7J 912 1234 1325 1374 (1211)

FS 963 1234 1351 1367 (1228)

(Means) (1104) (1311) (1442) (1462) %1330)

ANALYSIS 1, by explicit or implicit means

DG 94 20 -38 -83 266

ST -52 14 3 5M1 -70

PT -80 -98 72 104 -57

QE 145 15 -57 -105 85

FJ -73 42 2 29 -119

FS -39 25 11 2 -102

(eff) -226 -19 112 132 1330

ANALYSIS 2. by implicit medians

DG 176 22 -21 -67 289

ST -6 -32 6 41 -17

PT -53 -147 62 73 17

GH 230 22 -21 -80 103

FJ -23 6 -5 11 -58

7S 6 -6 7 -11 -41

(off) -334 -51 51 84 1337

Note: N1, 13, N5, 07 are four levels of added nitrogen.

-7-I



OTHE KINDS

OF ANALYSIS

CONSIDERED BRIEFLY

(A) When reiression is for residuals, as usually in the analysis
of covariance, for example, we often need structural regression, rather than
predictive regreslion.

Stripping out an effect can be much more Important than minimizing
residuals.

(W) Almost all applications of spectrum analysis are exploratory
in nature

Where spectrum analysis has helped, it has been because oZ what
it has shown to us.

(AAA) Numerical classification (numerical taxonomy, cluster analysis,
etc.) has been an unrecognized battleground between explanatory. and
confirmatory data analysis

The techniques of steadily increasing effectiveness pushed onward
by W.J. Williams and G.N. Lance are essentially exploratory in nature.
The views of N. Jardine and R. Sibson, to pick an antithesis, are basically
confirmatory. (Rather than facing the multiplicity problem ((see, for
example, Day, N.E. (1969) Biomntrika 56. 470-473)) the most usual reaction
has been one of fear and retreat to axioms and abstrdct criteria.)

(AMA) Almost all of multivariate analysis has suffered from an
emphasis on confirmatory data analysis, to the concealment of what mlght
have been seen

(The nearly complete book of RL Gnandesikan on multivariate data
analysis is a valuable first step forward.) (Canonical analysis, in the
sense of M.J.R. Healy et al, is an outstanding example of improved data
insight by exploratory methods.)

(AAAMA) Contingency tables can often be analyzed, not just summarized

It is their analysis that offers an effective foothold for their
exploratory data analysis.

(******) Effective local techniques in multivariate analysis seem
likely to Jepend on near-volume indicators. (added March 1972)

Cells and grids are useful in one-dimension from moderate amounts of
date up, in two-dimensions from moderately large amounts up, and in three
dimensions from quite large amounts of data up. To work in four or more
dimensions with any feasible amounts of data, or to work in three or two
with lesser amounts of data, we have to do something else. kth nearest
volume, for an appropriate shape of neighborhood, seems likely to fill this
gap.

-8-
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EXAMPLES

OF

BETTER PICTURES

-1) to 4) Stem-aind-leaf

5) to 7) Schem~atic plots

8) to 9) Residuals from line.

10) to 13) Rov-PLUS-colwm fits4

14) Bar diagrams may need bow legs.

15) to 19) Rootograms for amounts or balances

20) to 22) Rootogram. for counts

23) to 24) Rank-size-log plots

25) to .9) Counting-in

There needs to be a

GOOD PlC¶'URE

in response to

EVERY

type of question

FREQUENTLY ASTM

*Taken or adapted from Johv W. Tukey, Exploratory Data Analysis.
Limited preliminary editioL ( volumes). Copyright 1970! 1971,
Addison-Wesley Publishing Company.
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CLOSE

Some would call o Out loud, or in their minds exploratory
data analysia "Just descriptive statistics". Those who r.te this view
must believe that "descriptive" statistics is a horrible misnomer. For
I hope I have shown thAt exploratory data analysis is actively incisive
rather than passi*y descriptive, with a real emphasis on the discovery
of the unexpected - if necessary by figuratively knocking the analyst's
head against the wall until he notices it.

Data analysis should customerily, if not routinely, be
investigative. Quantitative detective wo:k has to be a professional
responsibility.

Undoubtedly, the swing to exploratory data analysis will go
somewhat too far. However:

It in better to ride a damped pendulum

than to be stuck in the mud.

-in-
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THE STATISTICS OF DIRECTIONS

G. S. WatsonS• • • Princeton University,= •''•.. .. °o

f
INTRODUCTION. An analysis of directional data is required in many

fields of research. The writer's work was stimulated first by studies
of the direction of permanent magnetization of ancient rocks (palaeo
magnetism - see Irving (1964)) and then by studies of bird navigation.
These yield examples of directions in three and two dimensions respec-
tively. Like so much of statistics, the developement of the required
theory and methods owes much to a paper by Fisher (1943). The literature
has been recently summarized in a book my Mardia (1972).

The subject not only has practical interest - it has theoretical
interest. The tools of statistics -- means, medians, variances, distri-
bution functions, etc. - are all fashioned for the real line on which

' " the observations are points. When they are points on a circle or a
sphere, one must start afresh - none of the tools just mentioned make
sense any more. Creating a new set, although a simple job, has given
the writer more pleasure than any of his other statistical work. Other

* interest stems from the compact nature of the circle and the sphere
which makes things simpler than the line - but this aspect is not
appropriate for further discussion today.

2. Data and its summary descriptions. In two dimensions, a
direction may be thought of as an angle, a point on a circle or a unit
vector. To display data in angles one could show it on a straight
line of length 3600 and find the mean, median, variance, etc. But this
is surely wrong since it supposes that observations of V and 359* are
far apart. If all the data is concentrated around 180, no great harm
is done, of'course. If it is shown on a: circle no such:problem arises
but new tools are required. If we think of it as

/

a bunch of unit vectors, the new concepts immediately suggest themselves.

The direction of the mean vector E E is suggested as a center of the

sample. E - is the vector resultant of the sample and we define the

sample r .n direction to be a unit vector in the direction of R. Thus

instead of having e.g. the mean of directions I' and 3590 as 1800 (H!),
it comes out sensibly as0 = 3600.

-11- 4
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The graphical display of directional data is shown in Figure 1 a,b.
Figure l.c shows how undirected lines are plotted - these are called
axes and need a different treatment than directions. Figure l's b and c
together indicate the axes of slump folds tend to be parallel with the
palaeo current direction.

Given a sample of directions with a single center, how might one
describe the scatter or dispersion of a sample of directions? If the
bunch of vectors is very tight (i.e. none of rl.,...,rN make much of an

angle with R) the dispersion is small and R, the length of R, is almost
as large as N. If the E point in many directions, the dispersion is

large and R will be small. Hence

Dispersion of sample - N - R (1)

would be a sensible definition. This needs to be reduced by a factor
like N to get it on a per-observation basis so we might define

Scatter N - - 1- (2)N N

It is clear that we have found analogues of x, Z(xi-x)2 and 82i

If we turn to directions in three dimensions the above arguments

and definitions still make sense. To visualize such data, we must look
at points on the surface of a sphere. To show them on a two dimensional
page, some projection must be used. Different projections are used in
different subjects. The Lambert projection projects a hemisphere so
that areas are preserved. Thus the density of points is not distorted.
Hence it is usually best for statistics. Special paper is available for
doing this manually. The point with spherical polar coordinates (0,0),
0 < < 7/2, is made to correspond to a point (p,p) using planar polars,

where p - * and p - /rC sin 0/2. Thus the upper hemisphere is mapped on
a disc of radius C. Figure 2 shows plots of some sets of geological
data. Efforts are often made to "contour" the density of points -- a
generalization of histogramming. The paper by Watson (1970) gives more
details and references and relates all the ways different subjects have
used to define a direction in three dimensions.

The definitions of mean direction, dispersion and scatter are only
useful for data like that in Figure 2.a. It will be noted that they are
related to the center of mass of the points, each of unit mass. By con-
sidering the moment of inertia (M. I.) of the set of points we can sort
out other configurations e.g. bipolar distributions, girdle distributions.
Let the vector ri have components xiy and z so that x 2 + y,2 + zi 2 =

1. Define

-12-
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The matrix M is symmetric and definite. Its eigenvalues, 1 1 > X2 > A3

say, are positive and add to n - trace M. .They are the stationary values
•of d'Md where d is a unit vector and the eigenvectors are the veccors d
yielding these values. The eigenvalues and eigenvectors of M may be
interpreted. Consider the M. I. of the unit mass at point r about an

axis through the origin parallel to a unit vector d.

d

.r d

Figure 3
t 2

From Figure 3, it is 1- (rd) - - dr ri so that the M. I. of all

the points is

M.I. -N -1 d d N d Md.
i=1

Suppose now the points are fairly uniformly distributed around a
great circle. The direction of greatest M. I. is perpendicular to the
great circle. The M. I. is about the same around any orthogonal direc-
tion. Thus this distribution corresponds to one small root and two

h nearly equal larger roots. One large and two small corresponds to a
uni- or bi-polar distribution - and these can be distinguished by the
length of R (large in one case and small in another). If all three roots
are equal, the distribution of points must be uniform on the sphere.
And so on.

It is possible to write a simple program to draw Lambert projections
of samples and to calculate R , R , M and its eigenvectors and values.
These quantities give one a good feel for the data.

3. Parametric distributions and tests, If the observations are
symmetrically arranged about a single center with a density falling off
as one moves away from the center, one will not go far wrong in assuming

-13-
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they are a sample drawn a distribution with density proportional to
exp k cos 8 where k > 0 is an accuracy parameter and 0 is the angle
between the center and the observation.

We will now, because of time, stick to three dimensions. There
this distribution is called the Fisher distribution. If the center is
the unit vector y and r the observation, the density is

1

k ek r u (4)

4vsinh k

With data li,...,#N, it is easily seen that the maximum likelihood (m.l.)

estimates of k and v are

p - the direction of R - R/R (5)

and k, the solution of
A 1 R

Coth k- - (6)
kk N

If k is greater than 3,

k - w-(7)
N-R

Now k is an "accuracy" parameter, the opposite of scatter, so this
matches our intuitive formula (2). This fortifies our belief that (2),
(5) and (7) make sense even if (4) is not quite true.

If y is known, the m.l. estimate of k is

N/(N-X), X - R p (8)

Thus N-X is evidently the dispersion of the sample about p, just as

N-R is the dispersion of the sample about v.

When k - 0, (4) is the uniform distribution. It is often necessary
to test whether this is so. For single cluster alternatives, we will
naturally reject if R is too large. It is easily shown that

23R2 2-N X3 (9)

so the test is easy to make. (For more complex alternatives, other tests
are appropriate.)

To test whether a sample comes from (4) with a given mean or polar
direction, one may consider the analysis of dispersion

-14-
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so that the test is

1+ -

oF2,2(N-2) N- R 2  (N - 2) (17)

The logic of (16) is seen from the triangle

R

It has been shown that these tests are robust against quite severe
changes in the parental law of Fisher. The extreme outliers that play
havoc on the line cannot occur here.
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(C)

1'gr' (a) ilaw'latitr plotted on circle,

(b) Roce diagram of some pealaeocurrent directions,

(c) Rose diaigra~m of some axes of slump folds.1

(Redrawn from Pott--r and Pettijohn(1963))

-17-

'4' 7, i



77---

N

(0) (b)

-Cv

I'IiPa ttf."rri; of' preferred orientation (miedian girdles shown by broken
lines) . (a) Maximum (symmetric): 150 lineations from Loch Tleven, /
Scottish Highlands. (b) GJirdle: 1,000 poles of foliation f'rom
Turoka, Kenya. (c) "crossed girdle": 390 [0001] of quartz from
quartzite, Barstow', California. (d) Small circle or "cleft" girdle:
140 [00013 of quartz from Orocopia schist, California. (After J. M.
Christie; redrawn from Turner and Weiss (1963))



AN INVESTIGATION OF WIND FREQUENCY RESPONSE ON THE M50 ROCKET

Bernard F. Engebos and Abel J. Blanco
Atmospheric Sciences Laboratory, US Army Electronics Command

White Sands Missile Range, New Mexico

ABSTRACT

The wind frequency response for the M50 rocket was studied using
quadrant elevation angles of 200, 400, and 800 miles. The wind profile
was assumed to be of the form of finite Fourier series with statistically
determined amplitudes obtained through a random number generator.
Impacts were simulated using a 5-degree-of-freedom trajectory model
using 100 randomly generated wind profiles. Correlations between the
randomly generated amplitudes and the simulated displacements were then
computed. So far the results are inconclusive and improvement is necessary.

INTRODUCTION

The main reason for this study is to delineate the degree of fidelity with
which the w!nd field must be known to achieve acceptable rocketry
accuracy. Specifically, how high must a space frequency of wind be before
the flight path of the rocket is essentially unaffected by that frequency?
An exact answer to this question would involve exhaustive studies into
meteorological data collection, data analysis, and the aerodynamics
involved in treating wavelengths of wind. Several preliminary studies
[1-5] concerning this type problem have been reported. The objective of
the study is to find optimal wind layers so that relatively accurate
impacts can be achieved. To accomplish this end, a 5-degree-of-freedom
ballistic simulation model was used (6].

The Honest John M50 rocket is approximately 8 meters long. The
mathematical ballistic model (linear aerodynamics) used to calculate
theoretical trajectories assumes a net aerodynamic force acting through
the center of pressure of the rocket, which is equivalent to assuming
a constant angle of attack over the surface of the rocket, i.e., the
wind is invariant along the rocket's length. Thus, it is difficult to
speak of the effect of wind oscillations when the wavelength is the same
order as the length of the rocket. As a result, the highest space
frequency considered corresponds to a wavelength of 16 meters (twice
the length of the rocket). For all trajectory simulations considered,
all atmospheric and aerodynamic data on the rocket but the wind were
held constant.

The remainder of this article was reproduced photographically from the
authors' manuscript.
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DISCUSS ION

The input wind conditions were components of the horizontal wind
as functions of the altitude z.

'The first approach consisted of letting

J wx (z) = 5 E (A cosw z + B ij.snw z)

J=1

m

wy I(z) = 5 E (C cosw z + D sinw z)

j=I

where wx. (z) Is the east-west and wy (z) the north-south component of
the I-th wind profile (m/sec). . r4presents m wind space frequencies
with wavelengths in intervals of 4i6 meters up to the burnout altitude
of the rocket. It should be noted that m is equal to the greatest
integer value of the quotient of the burnout altitude and 16.
The various coefficients of the trigonomatric functions were generated
by a random number generator, assuming a normal distribution of mean
zero and standard deviation of one. The multiplier of 5 was chosen
to ensure representative wind magnitudes. This y~ields a finite
Fourier series for-the wind components.

Associated with the i-th wind profile is the simulated impact
point (x., y.). This point was obtained by using the above wind
profile buriAg the power on and power off portions of flight. Let
(x,, y,) be the nowind impact point. Setting

" "Dx= xI - x0

Dy. = Y. - x0
1/2

TD. = (Dx 2 + Dyi 2 )

-20-
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[(A 1
2  + BeJ2 + ciJ2 + ij2)31/2

"one then can compute correlation coefficient: as fol lows:

DxI vs Aij

DxI vs BIj

Dyi Vs C ij j=l,2...,m.

"-,Dyl vs Dilj

TO I Vs P IJ

Only the latter correlation coefficient is shown, since the others are
similar. Figure I shows this correlation coefficient versus the wave-
length of the space frequency for a quadrant elevation angle of 200
mils, 100 wind profiles, and m equal to 12. One should note here
that this correlation coefficient is low in value. This may be caused
by too few cases considered and/or by the Doppler effect on the space
frequency due to the rocket's changing velocity.

Figures 2 and 3 show similar results for quadrant elevation
angles of 400 and 800 mils, respectively.

Another approach involves holding the amplitude of wind constant
and varying the space frequency, wj; i.e., set

wx.(z) = 5cosw.z
J J

wyj(z) : 5slnw.zS~J

Figure 4 is a plot of total displacement versus the various wavelengths
of the space frequency for 200, 400, and 800 mil trajectory simulations.
As the wavelengths increase, the total displacement of the simulated
impact point from the nominal impact point also increases. This is
quite logical since the low frequency wind occurring during the
powered portion of the rocket's trajectory (most of the wind weighting
effect [7] occurs here) appears more as a trending wind. In the "real
world situation," higher frequencies have smaller amplitude and thus
can be neglected. Generally frequencies with wavelengths less than

,21-,
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50 meters long can be ignored for the M50 rocket, as can be seen by
Figure 4.'

Combining several wind space frequencies into a single wind profile
seems to bear out the fact that space frequencies are relatively
independent of one another in influencing the rocket's flight path.

CONCLUDING REMARKS

Several questions still are unanswered:

(1) Will the statistically derived wind profile technique described
herein be successful when the sampling size is increased?

(2) What about wind measurements as a function of horizontal range?

(3) At what altitudes do wind space frequencies most effect the
rocket impact accuracy?

(4) Is there a "best" way to determine optimal wind layering to
ensure relatively accurate impacts?

A solution to the above questions is extremely difficult. Any possible
suggestions on how to solve this overall problem would be greatly appreciated.
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PROBLEMS IN DESIGNING EXPERIMENTS WITH
LARGE NUMBERS OF VARIABLES

Roger L. Brauer and Charles C. Lozar
Special Projects Division Architecture Branch
Construction Engineering Research Laboratory

Champaign, Illinois

The performance of buildings is of primary concern to architects. The
designer desires to produce a building for human occupancy that not only
achieves high performance of materials of construction but also achieves
high quality for the user. The designer wishes to achieve a high degree of
user satisfaction and support for user performance.

The problem we wish to present at this clinical session occurs in the
evaluation of buildings for users and in measurement of the quality of the
constructed space. In completing such evaluations and designing experiments
which will measure comparative differences between buildings there is a
tremendous number of variables that can contribute to user satisfaction and
performance within buildings. We are faced with a problem in measuring and
accounting for this wide range of factors and in putting them all together
in an experimental design. The results of such experiments are intended to
help establish design criteria that will increase the satisfaction of users
and meet their needs, as well as satisfy the requirements of management.

Briefly the evaluation of buildings must include the assessment of:

a. Physical conditions,
b. Functionality,
c. Attitudes of users about conditions,
d. Behavior and performance of users,
e. Cost.

The physical conditions include space, heat, light, sound, color, furnish-
ings. Functionality includes such things as traffic flow, productivity of
workers, etc. The attitudes of building users can be influenced not only
by the physical conditions but also by organizational climate, personal
factors, and demographics. The behavior of people within a building can
be social or nonsocial and their performance can be in terms of sickness,
absenteeism and productivity. Finally, cost is important to determine the
cost effectiveness of designs.

Consider the case of family housing as an example of the large num-
ber of variables that can influence user performance and satisfaction.
Many of these are shown in Figure 1. Everyone has some idea of what

-27-
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FAMILY HOUSING

PHYSICAL CONDITIONS j

M~TUMP*?RUM

PO.NUS OChE CONDIION

PLO@UNMU SOS?

P*ESONAL COMMaMITIN AItm DUMOGMAWNCS.
A??IIUuome TowAUU P*WYUIcAL coadorNS

EMMAVmION k "

ENO RESULTS:
SULMLY UP upacri
USER SATIUFACTION

Figure 1. An Example (Family Housing) Showing the Many Variables
That Have Some Influence on the Quality of Design
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contributes to making a house acceptable, pleasant, desirable, and satis-
fying to its occupants and how well the design of the house supports the
activities that occur there.

In describing the physical condition of the house it is clear
that the various rooms in the house individually and collectively contri-
bute to the quality of the house. Each room can be described in several
ways. The number of bedrooms would be important, as would the size of
the bedrooms, the amount of storage space, the lighting, the temperature,
the state of repairs, room color, type of wall and woodwork finish, type
of flooring, the kind of windows, the arrangement of one bedroom relative
to the others, the arrangement of bedrooms relative to the rest of the
house, the distance from the bedrooms to the bathroom, and so on. Each
of the other rooms in the house could be described similarly. Each con-
dition in each room contributes in some degree to the overall quality of
the house.

Beside physical conditions, other factors can also have an in-
fluence on the quality of the house. It could be the overall cost of the
house. If a house is too cheap, it may not be durable; if it is too ex-
pensive, it may place other constraints on family finances. The geographical
location may be important to members of the family. Because the house is
located in the wrong part of the country, no house would be good enough to
satisfy the user. Geographical location might include distances to shops
and stores, convenience to schools and convenience to work. Again each of
these factors contributes to some degree to the quality of the house and
to the satisfaction of its users.

Furthermore, each of these conditions may not contribute directly
to the quality of the space or user satisfaction but are usually affected
by intervening factors. The intervening factors could include previous
experience with other houses, differences in personal composition--personal-
ity factors, age, level of income, social status, and other demographics.
Attitudes are also important. There can be attitudes towards the physical
conditions themselves, attitudes about one's job, general attitudes towardsthe Army and attitudes towards neighbors, the neighborhood, the community,

the geographical location. In addition, behavior can have an effect on how
the physical conditions relate to quality of the space or user satisfaction.
If little time is spent in the house, the occupant may not be as critical
about conditions. On the other hand, the occupant may prefer to do activ-
ities at home for which the design of the house is not very accommodating.
The design of the house may directly impact the health and safety of the
occupant. All these intervening factors in some way mediate the effect of -•

physical and other conditions on the quality of the space and on user satis-
faction and performance.

In designing an experiment which is intended to evaluate the
quality of the house and how satisfied the user is with it, all these factors
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must be measured and the effect that each one has on the quality of the

space or on user satisfaction must be determined. To complicate matters,
it is clear that interactions or interrelations between the physical con-
ditions, attitudes, behaviors, previous experience, and personal composi-
tion exist. The strength of these interrelationships, as well as their
effects must also be determined.

Other buildings could similarly be described and evaluated in
terms of user satisfaction and performance as a measure of quality of de-
sign. Some buildings need to be evaluated on a more micro-scale basis.
Here the problems of all of the other variables mentioned still exist,
with one additional parameter attached. In order that the designer be
able to make decisions about the physical character of the space he pro-
vides, he needs the psycho-social data to be location-specific. He re-
quires that the data be connected to an identifiable physical location
in a room, or a specific room in a building. Much of the psychological
literature to date ignores this need and therefore is regarded as "unusable
theory" by many designers. We find a need to quantify the behavioral suc-
cess of a building and relate these data to specific locations in the en-
vironment. Therefore the problem under examination in this part of the
discussion is the quantification of the degree of "fit" between man and
his environmental setting and the identification of behavioral "units" of
designable environment.

A basic "chunk" or unit of man-environment interaction called a
behavior setting has been identified in the psychological literature (Barker,
1968) and applied to such contexts as housing (Bechtel, 1970) and hospitals
(LeCompte, 1972). This unit shows great promise for analyzation of micro-
scale architectural environments. Barker states that this "chunk," the
behavior setting, is characterized by a standing pattern of clearly iden-
tifiable behaviors regardless of participants. Examples might be classes
of behaviors in restaurants, libraries, and supermarkets. In each of
these contexts, patterns of behavior are similar for participants, and are
independent of individuals. The behavior setting analysis technology de-
veloped by Barker provides a system for identifying chunks of location
specific behavior and notating activities and attitudes to these. Just as
a language has a vocabulary, syntax, and rules of grammar, the behavior set-
ting has units, qualities, and degrees of independence and interdependence.
Now, the problem of using these "chunks" of man-environment interaction be-
comes more difficult when structured into an experimental situation to pro-
vide information usable for the designer.

An example of a military dining hall might serve to develop the
concept of behavior and attitude relationships related to specific units
of environment. In the normal dining process of food acquisition, respon-
dents experience physical and social environment in a linear sequence
(Thiel, 1961). Each of the activities subjects engage in can be differ-
entiated by the nature of the behavior mechanisms employed, i.e., gross
motor, manipulative, motion, etc. On the basis of this differentiation,
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we can identify some ten, distinctly different key behavior settings such
.as sign-in desk, silverware pick-up, path to table, etc. Now the behavior

in the physical space of one setting will affect the attitudes of respon-
dents at another setting elsewhere in the dining space. We know that re-
spondents will rate the concept of "privacy" lower at the dining table as
the number of persons standing in line at the sign-in desk increases (Gibbs,
1972). The behavioral data in this case is location-specific. The designer
can make decisions of a physical nature to change the attitude rating. He
can shield the check-in desk from view, provide two desks for faster pro-
cessing, or more the check-in desk elsewhere, all with the intent of in-
creasing the sense of privacy at the dining table. In this example, be-
havioral data (number of persons in line) and attitude (rating of privacy)
have been made location-specific (sign-in desk, table) and the designer
can make decisions based upon this information. However it is not quite
that simple.

From our previous discussion, we realize the great number of
variables interacting in any social setting. Obviously privacy and popu-
lation at sign-in desk are not independent of other factors in the environ-
ment. Not only would the dining "privacy" experience be affected by popu-
lation movement, but also by physical conditions, noise level, and the
management climate. To some degree, all of these affect the rating of
privacy. It is the combination of factors that cumulatively make up the
concept of privacy and the problem is again one of a large number of vari-
ables. It is, of course, possible that the designer could not solve them
all, but certainly a knowledge of what amount of the total variance could
be accounted for by changes in physical design would be useful in develop-
ing a measure of cost effectiveness for changes in the environment.

We have presented two kinds of problems in environmental analysis
each involving a great number of variables. The first involved the range
of parameters and variables existent in any environmental setting, and the
second problem addressed the need for identifiable "chunks" of behavior-
environment interaction which the designer might address to begin his ar-
chitectural translation process, with the intent of improving the performance
of the building. From the standpoint of the designer, he realized that be-
havior and environment interaction is not a one-valued concept, but rather
multi-dimensional and interactive. The behavioral scientist would certainly
believe that interactions between the many variables suggested in this paper
are probably more complicated than simple correlation coefficients would
describe, yet he would not suggest a priori a series of interrelated factors.
The question is then, what kinds of research designs and analytic techniques
will lend themselves to discovering major components of human interaction with
environment. Multiple linear regressipn (Brauer, 1972), factor analysis
(Canter, 1972), and cluster analysis (Bechtel, 1972) have been suggested.
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Since it is seldom possible to experimentally control variables
in building designs and comparative demonstration projects are far too
expensive, suggestions for handling a large number of variables in a semi-
controlled, real world situation are needed. Are there other techniques
more responsive than tnose suggested to discovering relations and major
factors in large data matrices? Can they also relate disparate data from
attitude and behavioral investigations to location-specific chunks of
environment? Will these techniques be more or less responsive than
present ones to investigations in the real world context, and what sort
of experimental controls are necessary? These are the questions we ask in
order to build a firm scientific basis for the design of buildings that
are compatible with human behavior and needs.
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ORTHOGONAL ESTIMATES IN WEIGHING DESIGNS

William G. Lese, Jr.
US Army Materiel Systems Analysis Agency, APG, Maryland

and

K. S. BanerJee
University of Delaware, Newark, Delaware

ABSTRACT

A new technique has been developed for modifying all balanced incomplete

block designs (BIBD) to provide orthogonal estimates when the modified BIBD

are to be used as a weighing design. Previously, K. S. Banerjee developed a

method for modifying BIBD to provide orthogonal estimates. However, for a

certain class of BIBD, Banerjee's method failed to provide orthogonal estimates.

A comparison of the relative efficiencies of the new procedure with that of

Banerjee's procedure is also presented. In addition, under the new procedure

it is shown that the covariance matrix of the estimators obtained by the least

squares procedure is identical to that obtained by the maximum liklihood

procedure, even when the design matrix X is not square. Several examples of

the utilization of the new technique, along with a historical development of

the weighing problem from its origin in a casual example by Yates through the

work of Hotelling, Mood, Kempthorne, and Banerjee as relative to the problem

of providing orthogonal estimates, is also presented.

-33-

- -~* ~ -- I- ~ ~.~4A< ~ ."A



CHAPTER I

ORIGIN OF THE WEIGHING PROBLEM

In an article, "Complex Experiments", Yates [10J considered the

following problem: A chemist is given the task of determining the

weights of seven ligt~t objects, and the scale the chemist must use

requires a zero correction. The customary technique would be to

weigh each of the seven objects individually and then make an eighth

weighing with no objects on the scale.. This eighth weighing would be

used to determine the zero correction factor.

Mathematically, the customary weighing technique for the

chemist problem would be as follows: The seven objects will be

denoted as a, b, c, d, e, f, and g. The scal'e bias will be denoted

by z.

Weighing Number Object'Weighed Scale Reading

2 b + z

3 c+ z 3
4 d + z
5 e +z

6 f+z
7 g + Z7
8 z Y
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Using this notation the weight of any object can be determined by

taking the difference between the scale readings when carrying the

object and the scale reading when no object is on the scale. For this

example, the weights of the seven objects would be determined as

follows:

a = Y 8

b Y, 2 " Y8

C -
c 3" Y8

d Y

e = 5 Y8

f = Y6  8

g= Y 7  Y

Assuming that systematic errors are non-existent and that the

errors are random, the variance of each weighing may be denoted by

o2 and the standard error by a. With these assumptions, the variance

of the estimated weights using the customary weighing technique is 2G2

and the standard error is oc12

For an improvement over the customary weighing technique,

Yates suggested that the objects should be weighed in combinations

with each other instead of being weighed individually. For example,

Figure 1 presents Yates'technique for the determination of the weights

of seven objects.
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tWe notice that in Yates method, each object is weighed four

times in combination with the other objects. In the four weighings of

"a given object, every other object is included twice. In the remain-

ing four weighings, i.e. the weighing without the object, every other

object is also included twice. Therefore, the weight of any object

can be determined by adding the scale readings containing the object,

subtracting the scale readings not containing the object and dividing

this result by 4. Using this procedure, the weights of the seven

objects would be determined as follows:

a 1 Y + Y2 + Y3 + Y(4 - Y5- Y6 Y7" Y8

4

b' Y1 + Y 2 + Y 5 + Y 6 " Y3 "Y4 "Y7"- Y8! b=a

4

C Y1 + Y 73 + Y + Y7 " Y2 Y4 Y6"- Y8

4
d = 1 +2 7 + 8 " Y3 "41 Y5 Y6

Y1 + Y3 + + '8 - '2 Y3 5 Y 7 "
4
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Weighing Number Objects Weighed Scale Reading

1 a+b +c +d +e f +g 4
2 a+b + d V2

3 a + c + e V3

4a +f+ g Y4

5 b +c + f

6 b + e + g V6

7 c +d + 9.

8 d +e +f Y8

Figure 1. Yates Weighing Design
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S Y1 + Y4 + Y5 + Y8" Y" Y "

and
Y1 +Y 4 + Y6 + Y7 Y Y3  Y5  Y8

4

-It should be noted that the bias (i.e. the zero scale correc-

tion) cancels out in the above expressions. Since the variance of a

sum of independent observations is the equal to the sum of the vari-

ances, the variance of an estimated weight determined by Yates tech-
2

nique is a /2 and the standard error is /v/7 , whereas the variance and

standard error using the customary technique was 2a2 and av1 , respec-

tively. Therefore, Yates weighing technique improved the precision of

the estimated weights as compared to the customary weighing technique

without increasing the number of weighing operations (both techniques

required eight weighing operations).

This illustration by Yates, whereby the precision of an

estimated weight was increased (without additional weighings) by

weighing the objects in combinations rather than individually, was

the origin of the weighing problem.
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CHAPTER II

HOTELLING'S ENUNCIATION OF THE WEIGHING PROBLEM

Hotelling [5] presented a further improvement by suggesting

that Yates' procedure be modified by placing in the other pan of the

scale those objects not included in each weighing as specified by Yateý..

For example, in Yates' procedure (see Chapter I) one weighing of the

seven objects had the combination of a + b + d = Y2 which represented

the objects a, b, and d being weighed on the scale. Hotelling suggested

that in addition to objects a, b, and d being placed in one pan for

weighing, the remaining objects, i.e. c, e, f, and g, be placed in the

other pan. Hotelling's weighing design for the determination of the

weights of seven light objects is presented in Figure 2. Using

Hotelling's procedure, the estimated weights of each of the seven

light objects would be given as follows:

W1 + W2 + W3 + W4 -W - W6 -W 7 - W88

b = I + W? + W5 + W6 - W3 - W4 - W7  W8

8

C= WI + W3 + W5 + W7 - W2 -W4 -W6 W88
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Weighing Number Obje:ts Weighed Scale Reading

1 a+b+c+d+e+f+g W1

2 a + b-c + d- e- f- g 4W2

3 a-b+c-d+e-f-g W3

4a b - c -d -e + f+ g W4f

5 +a+b+c-d-e+f-g W5 51
6 -a+b-c-d+e-f+g + g

7 -a-b+c+d-e-f+g W7

8 -a-b-c+d+e+f-g W8

Figure 2. Hotelling's Weighing Design
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d- + W 2+ W7 + W8 "W3 " W4 " W5 " W6

de W1 + W3+ W6 + N8 W - W4- W5-W

8

W + W + W +W -W -W -W -W
f 1 4 5 8 - W2 W3 W6 W7

8

9 1 + W4 +W6 + W7 - 2 - 3 - 5 -%W

8

The variance of each unknown weight by Hotelling's method is therefore
2, /8 and the standard error is a/11 . This standard error is half that

of Yates method and a fourth of the value determiied by the customary

method. Also in Hotelling's method, as in Yates' method, the scale

bias (zero correction) gets subtracted out in the equations for the

determination of the unknown weights.

The design principle inherent in both Yates' and Hotelling's

method may be illustrated even better with reference to a simpler

example. Let us suppose that it is required to find the unknown

weights of two objects a and b, and that the scale to be used is

already corrected for bias. If the two objects are weighed together

in one pan of the scale, and also in opposite pans, the equations for

the unknown weights will be

a + b =Y, a- b =Y 2

where Y, and Y2 denote the readings from the scale. From the above,
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we get Y1 + Y2

Y1  
2

and
Yl - Y2

If o2 is the variance of an individual weighing, the variance of a and

b, by this method, is obtained as a2/2. The error for both the esti-

mates, therefore, is a/l&2. Thus, with only 2 weighing operations, It

has been possible to obtain the standard error for both the objects

as /v17; whereas if the objects were weighed separately twice each,

4 weighing operations would have been needed in all to obtain this

standard error for both. Weighing the objects in combination has,

therefore, saved the trouble of making weighing operations by half

the number.

The above, therefore, amply illustrates the following quotation

due to Hotelling: "When several quantities are to be ascertained

there is frequently an opportunity to increase the accuracy and reduce

the cost by suitably combining in one experiment what might ordinarily

be-considered separate operations".

In addition to the improvement in Yates' method, Hotelling

also gave a precise formulatibn of the weighing design problem. This

formulation, as later pointed out by Banerjee (l, may be interpretated

as follows:

Results of N weighing operations to determine the individual
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weights of p light objects fit in to the general linear hypothesis

model, Y - X0 + t, where Y is an N x I random observed vector of the

recorded weights; X - (xij), i a 1, 2, . . . N; j - 1, 2, . .. , p, Is

an N x p matrix of known quantities, with x - +1, -1 or 0, if, in-

the Ih weighing operation the j th object is placed respectively in the

left pan, right pan or in none; 8 is a p x 1 vector (p s N) represent-

ing the weights of the objects; c is an N x I unobserved random vector

such that E (c) = 0 and E (cc') = 02 1N.

Consistent with the signs that the elements xij can take, the

record of the ith weighing is taken as positive or negative, according

.' as the balancing weight is placed in the right pan or left.

The matrix X is called the "design matrix". When X is of

full rank, that is, when [X'X] is non-singular, the least squares

estimates of the weights are given by [ = [X'X"lY X'Y, where X' is the

transpose of X. The covariance matrix of the estimated weights is

given by COV (s) = c2 C. The ith diagonal element of C, cij, represents

Othe variance factor for the ith object. The objective of the Weighing

Design Problem is to obtain the design matrix, X, such that the ci1

are a minimum.

In this connection, H6telling [53 proved the following Lemma:

Let A = [X'X] = (a..), I, j = 1, 2, . .. , p. Then, if a12,

a13, • •., a. p (= a2 1, a31, . . ., ap respectively) are free to

vary while the other elements of A remain fixed, the maximum value of
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is all, and is attained when and only when an a13  * . . .

alp - O, where All is the Tnor of A obtained by deleting the first

row and column.

From the above Lemma, it is evident that the variance of a1.

namely o2 AII/jAf, cannot be less than 02/all, and that the variance

would reach this value only if the experiment is so arranged that the

elements after the first row and column of A are all zero. This

minimum value, a2 /alI, will be attained, when the first column of X

is orthogonal to all the others. It will also be clear that the

minimum minimorum [s] of the variance will be reached, if the first

column of X is not only orthogonal to all the others, but also if it

consists entirely of +1's and -l's as its elements, so that a,1 = N.

N is the maximum possible Value that a11 can take. The value of this

minimum minlmorumn will thus be equal to 02/N.

It is evident from the Lenmma and the above discussion

that this minimum minimorum of the variance would be reached in respect

of all the estimates a , (1= 1, 2, . .. , p), if the design matrix X
1

is orthogonal in the sense that [X'X] is diagonal with N on the
/

diagonal.

/

///
/
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CHAPTER III

TWO TYPES OF WEIGHING PROBLEMS (SPRING AND
ý:CHEMICAL BALANCE) AND ILLUSTRATIONS OF EACH

In general, there are two distinct types of weighing problems.

These problems have been designated as the spring balance weighing

problem and the chemical balance weighing problem. In the spring

balance problem (only one pan is used) the design matrix X is composed

of elements xij which can assume only the values of +1 or 0, where

+1 denotes that the object is to be pla-ed in the pan and a 0 denotes

that the object is not to be placed in the pan. In the chemical

balance problem (two pans are used), the design matrix X is composed

of elements xij which can assume values of +1, -1, or 0, where +1

denotes that the object be placed in the left pan, -l denotes that

the object be placed in the right pan and 0 denotes that the object

not be placed on either pan. It is evident that the design origi-

nally proposed by Yates (see Chapter I) was a spring balance design,

"and the improved design proposed by Hotelling was really a chemical

balance design (see Chapter II).

Example of a Spring Balance Weighing Design

As an example of a spring balance weighing design, consider

the problem of determining the weights of three objects (a, b, and c).
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A spring balance weighing design matrix would be:

0 1

Where the columns refer to the objects and the rows refer to the

weighing operation. For this example the first weighing would have

objects a and b on the scale. Object c would not be used in the first

weighing operation. The second weighing operation would have objects

a and c being weighed together. Object b would not be used in the

second weighing operation. Likewise, the third weighing operation

would have objects b and c being weighed together. Object a would not

be used in the third weighing operation.

The least squares estimates of the unknown weights are given

by = [X'X X'IxY and the covariance of the unknown weights are given

by Coy (v) = (XIX)'lo, where X is the weighing design matrix and Y

is the matrix of recorded weights of each weighing operation. GFor

'this example

I0 1

211

(x'xJ =

-46-
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and

3/ -'g 4 ~ -1/4 -1/A]
-1/4 3/4 -1/4j

L-1.4-1/4 
3/j

For the least squares estimates, C

[1/2 1/2 -1/2 Y

(X'XJ'IxY - 1/2 -1/2 1/2 Y

Wie therefore have, as least squares estimates,

2

""1 - 2 + Y

2

and

2
2

The variance of each unknown weight is 3/4 a2 (as given by the diagonal

elements of (X'X)I).

Example of Chemical Balance Weiahing Design

As an example of a chemical balance weighing design consider

the problem of determining the weights of four objects (a,b,c, and d).

A chemical balance weighing design matrix would be:

-4•!-
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1111
Ll-11-1 1

As in the spring balance example, the columns refer to the objects to

be weighed and the rows refer to the weighing operation. In this case,

the first weighing operation would have all four objects (a, b, c, and

d) placed in the left pan. The second weighing operation would have

objects b and d placed in the left pan and objects a and c in the

right pan. The third weighing would have objects a and b placed in

the right pan and objects c and d in the left pan. Likewise, the

fourth operation would have objects b and c placed in the right pan

"and objects a and d placed in the left pan. Using the same notation

as in the spring balance example, we have

-11

4 04000

0 40 0

~000j

and
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1/4 01 00
SX'X 0 0 1/4 0

0 0 0 1/4

For the least squares estimators,

1/4 -1/4-1/4 1/4 Y

1/4 1/4 -1/4 -1/4 Y
x'1/4-1/4 1/4 -1/4 Y 3J

1/4 1/4 1/4 1/4 Y4

We therefore have, as least squares estimates,

yl-y- y +y2 y3 4

S."Y1 " 2 Y3 + 4 !

4

S I Y1  Y2  Y3  Y4

4

4

y . 1 + Y 2 + Y 3 + Y 4

The variance of each unknown weight is a /4 (as given by the

diagonal elements of (X'X) l)

/4
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CHAPTER IV

MOOD AND KEMPTHORNE'S CONTRIBUTIONS

Mood [ 7J has indicated that if N weighing operations are made

to determine the weights of N objects, the minimum variance that the

estimated weights could have is a2 /N; and further, this minimum vari-

ance will be reached only when the design matrix is orthogonal

(orthogonal in the sense that (X'X) is diagonal) with elements con-

sisting entirely of +I's and -;Ts. Thus, Mood C 7] showed that the

problem of finding the best chemical balance design is related to

Hadamard matrices and the Hadamard determinant problem.

The theorem that Hadamard proved is as follows:

If the elements xij of a square matrix X are restricted to

the range -1 s xij s 1, the maximum possible value of the determinant

of X is NN/ 2, and when this maximum value is achieved, all x.. = ±1.

The matrix X also will be orthogonal in the sense that (X'X) will be

- diagonal with all non-zero elements equal to N.

Such matrices are denoted by HN. If Hr exists for a given

N, HN is the best chemical balance design for N = p. If the number of

objects, p, to be weighed is less than N, the best design is one which
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is derived from H. by selecting a number of columns equal to the

* I number of objects to be weighed.

Mood has further pointed out the work of Paley [8] and

Williamson [ 9] and showed that H4k exists for the range of 0 < 4k < 100

with the possible exception of 4k - 92. The solution for 4k - 92 was

liter found by Baumert, Golomb, and Hall Jr. [3J.

In summary, for those chemical balance designs where an HN

exists, the determination of the optimum design is completely solved;

i.e. the optimum chemical balance design will be H., if HN exists.

For the remainder of this dissertation we shall devote our

attention to the spring balance problem. As mentioned before, the

spring balance problem differs from the chemical balance problem in

that the elements of the design matrix X can only assume values of +1

or 0, whereas, in tie chemical balance design the elements of the

design matrix X can assume values of +1, -1,.or 0.

We notice that Hadamard's theorem does not directly apply to

the spring balance problem since the design matrix, X, can only

assume values of +1 and 0. For the spring balance problems, where

N = p and N" 3 (mod 4), Mood showed that the best possible spring

" balance design is determined by HN + 1' if H N + 1 exists. Mood's

method of construction of these best possible designs is as follows:

Let K N + I denote a matrix formed from HN + 1 by adding or
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subtracting the elements of the first row of HN + I from the correspond.

ing elements of the other rows in such a way as to make the first

element of each of the remaining rows zero. Obviously,

I'N + 1 IHN + 11

Except for the first row, the elements of KN + I are 0 and 2 2 with

the signs of the non-zero elements being the same for elements in the

same row. Let L be the matrix obtained by omitting the first row

and column of KN + l by changing all non-zero elements to +1, and by

permuting two rows, if necessary, to make the determinant of LN

positive. Then

IHN + 11 = 2NILNI

It is clear that, given LN, one could reverse the procedure and deter-

mine an HN + V" In the same manner, there is a correspondence in

general between square matrices with elements ±1 and square matrices

of one less order with elements 0 and 1. The ratio of the values of

corresponding determinants is always 2N, if their determinants do not

vanish; hence the (0, 1)-determinant will always have its maximum

value when its corresponding (+1, -1)-determinant has its maximum

possible value. Thus, ILNI is the maximum value possible for a deter-

minant of O's and l's of order N, and the value of ILNI is

ILN1 = (N + 1) h(N + 1)
2N

The variances of the estimated weights will be ali = a24N/(N+l). We

knew in advance that aii would be greater than 1/fl, since an optimum
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design cannot exist unless the design matrix has its elements equal

±I and the spring balance design is restricted to elements +1 or 0.

SForthesprng blane pobles wen > p Mod hs prsened ...
the following approach for obtaining optimum spring balance designs:

Let Pr be a matrix whose rows are all the arrangements of r

ones and (p - r) zeroes (0 s r i p). (The symbol should also have a

subscript p but that is omitted because any specific value for p will

always be clear from the context.) The matrix will have p columns and

(r)rows. Let X be a matrix made up of matrices Pr arranged in verti-

cal order. Let nr be the number of times Pr is used in constructing X.

The matrix X is then a weighing design for p objects and N= r nr(P).r r\'/)

Using these notations, Mood has proven the following two theorems giv-

ing the best spring balance designs:

Theorem (1): If p = 2k - 1, where k is a positive integer, and if N
/

contains the factor (P) then Jaija (det. [AI) will be maximized when

nk= N/=k) and all other nr = 0.

Theorem (2): If p = 2k, where k is a positive integer, and if N con-

tains the factors + P ), then 1aijI (det. IAI) will be maximized

when n = n, ad all other nr O.

When p is odd, Mood observed that Pk is a design which not

only minimizes the confidence region for estimating the weights, but

also minimizes the individual variance factors. When, however, p is
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even, Mood observed that the variance factors may not be the minimum,
T-

and makes a surmise that the best design from the point of view of

minimum variance factors would be made up largely from 'k and a small

proportion from P k+ V

Kempthorne [ 6 1 discussed the weighing problem from the point

of view of factorial experiments and in C 6 ] has given rules by which

the fractional designs may be constructed. Kempthorne has indicated

that the fractional designs have the following properties:

(1) The design automatically takes care of any bias In the

balance.

(2) The effects or weights may be easily computed.

(3) The eff.cts or weights are uncorrelated.

(4) All the weights are measured with the same precision.

(5) An estimate of the experimental erroi which is independent

of the effects may be computed from the results.

Kempthorne also compared his fractional designs with the designs

proposed by Mood and has found that the fractional factorial designs

will yield estimates which have a somewhat higher variance than Mood's

designs. Kempthorne also indicated that the increase in precisionm in

Mood's designs had been obtained at the expense of having correlated

estimates which are subject to any bias that the measuring instrument

may have. For these reasons, Kempthorre doubted whether the use of

Mood's designs for any practical problem could be justified.
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Subsequent to this remark by Kempthorne, Banerjee [C] showed

that the LN designs of Mood are a special class of symmetrical balanced

incomplete block designs and that the LN designs could be easily modi-

fled to provide orthogonal estimates-as was referred to by Kempthorne.

In addition, since the LN designs are a subset of symmetrical balanced

incomplete block designs, Banerjee (.2] developed a general method to

show how BIBD's in general could be made to provide orthogonal estimates

when used as weighing designs. A detailed description of Banerjee's

* method is presented in the next chapter.
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CHIAPTER V

BANERJEE'S METHOD OF MODIFYING BIBO TO PROVIDE
ORTHOGONAL ESTIMATES IN WEIGHING DESIGNS

As was mentioned in Chapter IV, Kempthorne rioted that although

the optimum designs for the spring balance problem suggested by Mood

furnish somewhat smaller variance than that given by fractional repli-

cates, Mood's designs have the disadvantage that the estimates are

correlated, whereas the estimates furnished by fractional replicates

are orthogonal. Banerjee [l) has 5hown that the optimum designs of

Mood may also be made to furnish orthogonal estimates when the designs

are adjusted to suit estimation in a biased spring balance. Since the

optimum designs, L N. of Mood are a special class of a symmnetrical

BIBD's a question arises if it would be possible to provide by a

similar type of an adjustment, orthogonal estimates when BIBD's are

used as spring balance weighing design. A complete detailed procedure

indicating how balanced incomplete block designs, in general, may be

made to furnish orthogonal estimates in weighing designs was presented

by Banerjee [2)]. Banerjee's procedure is presented it' the following:

Usually v denotes the number of varieties and b denotes the num.-

",ber of blocks in a balanced incomplete block design. However, in weigh-

ing designs, v will be used to denote Jthe number of objects to be weighed
5r

/
/
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and b will denote the number of weighings to be made. The parameter

r will be used to denote the number of times each object is weighed,

A will denote the number of times each pair is weighed together and k

will denote the number of objects weighed in a combination., Let X be

the design matrix where a BIBD is used as a weighing design. The

matrix [X'X] will have the form,

r A A A . A

A r A A

r A

xOx

(X'XJ is of order v xXv.

For the determination of the variances and covariances, we need

to determine the inverse of IX'X]. The diagonal elements in the in-

verse matrix, [X'X]", represent the variance factors and will all be

equal to

r + A (v -2) 2

. (r'- A)'[r + A (v- 1)]

The off-diagonal elements represent the .covariance terms and will all

be equal to

-A

(r A [r + A (vI) C

Since these off-diagonal elements are not zero, we see that the esti-

mates are correlated.
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BanerJee [2 ] has suggested the following procedure for modify-

ing-the BIBD to provide orthogonal estimates. Taking the bias as an

additional object to be weighed, a column of ones and only one row of

zeroes in that order may be added to the BIBD design matrix to corre-

spond to the bias assumed as an additional object. The modified design

will then be suitable for the estimation of the weights. This really

means to make one additional weighing to obtain an estimate of the bias

and in the subsequent weighings the bias will automatically be included.

If, however, a column of ones and t rows of zeroes are added to the

design matrix, this implies that t weighings will be devoted to the

estimation of the bias. In such a situation, the matrix [X'X] will

be of the form,

b+t rrr. .. r

r r

[x'x] - . . . . .

L r . . . . .

r AAA...r

Because of the inclusion of the bias, the order of this matrix is

(v + 1) x (v+ +).

We would like to obtain the inverse of this matrix in the

following manner:

The determinant, IXxI, = (r - - b + t) Jr + X(v - r2 v j.

-58-

* - "
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On simplifying we obtain,

S...... •Ix'xl (r -x "I[ r + I (v -) l~+ b jr + I (v -I -r2 v]

jX'X. C(r, ) - 1 [t r + )I (v I)1 + b {r + r (k- 1)1 - r2 v]

v-i 2

(r- W " [t lr+ x (v- 1)1 + b k r- r v]

"(r-.X)v 1 [tr + x v-( I

•t (r - X)v- lr + A (v- 1 I

In a similar fashion, the value of the determinant obtained

after suppressing the first row and the first column of [x'x] can be

"shown to be

(r- A -1 r+ (v- 1)1 (2)

The value of the determinant after suppressing the second row and

second column of [xx] is

(r )v - 2 (b + t) r + (v -2) - r2 (v - l)] (3)

The value of the determinant obtained after suppressing the first row

and second column of [X'X] is

)r (r- x)v 1 (4)

The value of the determinant obtained after suppressing the second

row and the third column of [X'X] is

.(r - )v - 2 px(b + t) - r2 (5)

For any tNo estimates to be orthogonal, the off-diagonal A
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eler~mnts of [X'X]" 1 corresponding to those estimators must be equal to-
zero. Keeping the bias out of consideration we would like expression

(5) to be equal to zero. That is, to obtain orthogonal estimates, the

value of t must be chosen such that

(r- A)V 2{A(b + t) - r 0
Since r cannot be equal to A, the expression

A(b + t) - r2 .0,

or

t - -b7
Using this value for t, the matrix [X'X]"I becomes:

1 1 1**l

T~ "ET "0• 0 ""I'I

r - A- 0 0

1 0

This expression shows that, except for the bias, the other estimates
I- are mutually orthogonal. The estimates given by B [XX]"l X'Y will

be_ given as:

0 0

I

This expression shows ....................... exce t f r te b , te o r M



1 1 1.

IT T

1[x1x]1X1y

1 1 1 1 1 1
"IT "I F "W W t-

Given a balanced incomplete block design with parameters v, b,

r, k and X, it is always possible to obtain another balanced Incomplete

block design with parameters

V0 "y

b0- b

ro b-r

k= v-k

Xo b-2r+4A

The two balanced incomplete block designs derived in such a fashion

are said to be complementary to one another.

2
When an integral value of t (t b) is available it is

also possible to obtain orthogonal estimates in the complementary

• ~design. This is done by adding a column, of ones and t rows of onesin that order to the design matrix X. The matrix [X'X] will then have

the form,

-6I-'
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bo+t ro+ t ro+t • .. ro +t

ro+t ro+t A0 +t . . . A 0 +t

r.x+t A0 +t r+t ... A +t
0 0

r+t A0 + t A0 + t ... rO+ t

The value of the determinant after suppressing the second row and the

third column of [X'XJ in this case will be given by:
[(r 0 + t) - (Ao+ t)]V (AO + t) (bo + t) - (ro 2t)

To have orthogonal estimates, for all the weights except for the bias,

this quantity must be zero, i.e.

CrO" - (- 0 +t) (b 0 + t) - (r 0 +t) 0

or

(A0 b + A0 t + t b0 + t2 - r2 - 2 r0 t- t 2 ) - 0

which is satisfied. The matrix [XX]" then becomes

0 0
r r-1 1 ..

0 0
r r-6
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7 ,

where * " 1+The estimated weights of the objects

-ill be given by

S, v ko ko

So1 1 1 1 1 ..r r r r r

(X'X]- 1 ~1
= 1 1 1 1 1 r [i

X'Y- t-'v t-'k t-'""v-" "'

0I

It may be noticed that the variance factors for theý objects in

the complementary designs are the same as those of the original d esign.

It may be further noticed that for the designs LN suggested by M'ood,

t a 1, as was pointed out before. This means that orthogonal estimates

may be obtained for LN' by adding one column of ones and on'ly one row

of zeroes to the design matrix. As Banerjee [ 1] has shownm, this

modified LN design is identically the same as given by Kemp~thorne's

fractional replication designs.

The above procedure will fail to furnish orthogonal, estimates

when r2/X is not an integral number, i.e. when t will 1 not be an inte-

gral number. For these situations Banerjee has suggested the following

procedure for determining orthogonal estimates. Let & be the least

positive integer such that (r + &2is divisible by (X + &). Then, if

a column of ones and rows of ones and n rows of zeroes in that orderj
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are added to the design matrix to suit the estimation of the bias in a

biased spring balance, the matrix [X'XJ will become:

b .* +. r+ . r+... . . . .r+.
r + c r +¢ c + c . ,+ C

DIX X

r + C x + x + c . *. . r + g

The value of the determinant IX'X( is given by

IX'X( - (r - X)V (b + c + n)

The value of the determinant obtained after suppressing the

first row and first column of E('Xj is given by

(r - v {r + Xk (v- 1)+ (v}

Thevalue of the determinant obtained after suppressing the

second row and second column of [X'XJ is given by

..(r - V - (b + C + n)

The value of the determinant obtained after suppressing the

"first row and second column is given by

(r + c) (r- AV'-

The value of the determinant [.'X] obtained by suppressing the

second row and third column will be equal to
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[(r +c) (A + I)2v -2 [(b + + n) (+ c) -(r + C)2

Setting this expression equal to zero, we obtain

(b + C+n) (x+ g) (r + 4)or

(b + ++ n) + j or

x (r+ 2  - (b+ ) .

. j Hence, the value of n is determined.

Using these values the matrix [X'X]" will reduce to the

following form,

A -C -C ... -C
// -1 I 0 ... 0

I/[x'xJ"= -- l o

-C 00. r--AT "

-C 0 0""" r"

Swhere

-XXI

(b+•+n) (r-Ax

iII C and

r+

C (b + + n) (r- A)

This procedure shows that a more general class of BIBN designs may be

-65-4
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made to furnish orthogonal estimates as indicated by the off-diagonal

elements of EX'X]" 1 being zero except for the first row and column

which corresponds to the bias, and not the objects.

As an illustration of the above development, Banerjee [2 )
presented the following example. The design matrix X in an L7 (i.e.

A\ a symmetrical balanced incomplete block design which has v = 7, b 7,

r -4, k -4, and A =2) is given by

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

I" 1 0 0 1 1 0

0 1 1 1 1 0 0

1 0 1 1 0 1 0

• 'I 1 0 1 0o 0

iwhere the rotis refer to the weighing operat16ns and the columns refer

to the objects bl, b2, . .. ," b7 to be weighed.

Seven small copper pieces have been arbitrarily chosen for this

illustration. The results of weighings (in grams) of the combinations

of objects as given in the above design matrix are:

10.76251 = Y1

7.83798 = Y2
6.11380 = Y3

12-07808 = Y4
8.90452 -Y5
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10.63856 -Y6

and

12.80768 = Y

Using these values, and the normal equations, the estimates of

t.he seven objects are given by:

bl a 5.85763

b2 - 3.52835

b3 - 7.78600

b4a 1.94650

;55 w 1.64367

&6 w 1.04843

and

b7 - 1.47520

For this example the matrix [X'X] is of order 7 x 7 and is given

as follovis:

422 2222

242 2222
2242222

[X'X] =2 2 2 2 2 2

2 22 2422

2222242

2222224
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The inverse of this matrix, i.e. t'X]"! is

7 1 1 1 1 1 °,

1 7 1 1 1 1 1"16 Tr "T9 "Tr "Tr "Tr "T

1 1 7 1 1 1ý 1

Tr'f1  V~ -r _7 -~ 1r - 1T
= 1 11 1 7 1 1

1 11 17 11

1 1 1 1 1 7 1

1 1 1 1 1 1 7

T6' V T37 -~ 7U V T6' 1

This matrix shows that the estimates furnished by this design are corre-

lated (i.e. the off-diagonal elements are not zerd).

By utilizing Banerjee's technique previously presented the BIBD

may be modified to provide orthogonal estimates. For this example t =

-- _ b = 16 - 7 = 1, therefore one column of ones and only one row

of zeroes (in that order) must be added to the SIB3 design matrix (L7 ),

to obtain orthogonal estimates. 9

This modified matrix is given as follows:
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I

'i • I10000000
I 1 10 1 0 10 1

1 0 1 1 001 1

10001 1 1 1~X=
- 1 1 1 0 0 1 1 0

S10111100

,• 11011010

1 1 1 0 1 001

The results corresponding to these eight weighing operations

are:

0.00101

10.76379

7.83990

6.11580
Y=

12.08000

8.90543

10.63998

12.80998I _J
The first reading (0.00101) corresponds to a measurement with no

objects on the scale.

The inverse of the matrix [X'X] is given as:

-
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O__ 0 0 0 0 0 0

0 - 0 0 0 0 0

4

1 1 c

0 0 0 0 0 0

(x'xJ" "-• o0 0 0 0 0 0

0 0 0 0 0 0

-~ 0 0 0 0 00

0 00 0 0 00

This matrix shows that under the modified BIBD, the estimates are

uncorrelated (i.e., the off-diagonal elements are zero', except for the

first row and first colirmn which correspond to the scale bias.

The estimates of the scale bias and the seven weights under

this modified set-up are:

b 0.00101 (scale bias) - 1.946620

=I 5.85790 b5 = 1.64354

b2  3.52868 b ,1.0487

b3, 1.78558 b 7 = 1.47576

This example demonstrates how a BIED can be modified to produce
2

orthogonal estimates when t = (- b) is an integer.

/

/
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As an example of how a BIBO may be modified in a more general

situation (whenever t is not an integer), consider the BIBD where v j
8, ba 14, r= 7, k =4. and x -3. This BIBD will not, in its present

form, provide orthogonal estimates. However, orthogonal estimates may
r2 7

be obtained as previously mentioned. For this example t = " b =

(not an integer). The least integer ( such that (r + i)2 is divisible
by (A + 0 is 1. The value of n, r+ ( (b + &), also equals to 1 for

A+

this example. Using these values, the modified weighing design is

given as:

1 0 0 0 0 0 0 0 0

l 1 0 0 0 1
I l 1 0 0 0 0 1 1

. "1 l 0 1 0 0 1 0 1

. -1 1 0 0 1 0 1 1 0

1 0 0 0 0 1 1 1 1

1 0o 0 1 1I 1 1 0 0
X=

1 0 l 0 1 1 0 1 0

l 0 1 1 0 1 0 0 1

""1 I 1 0 0 1 1 0 .0

1 1 0 1 0 1 k; 1 0

1 1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1

1 0 1 1 1- 0 1 1 0
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The results of the 16 weighings as specified by this design

are represented by the vector Y and are given as:

18.91670

"0.00101

13.12036

12.49119
10.32320

F 10.-32997

5.79780

Y y 6.42631

8.59500

8.58860
12.07940

10.76320

11.08093

6. 83861

8.15469

7.83968

The matrix [X'X], corresponding to the modified BIBD, will have

the form:

16 8 8 8 8 8 8 8 8
884444444

84 4844 44 4
[X'XJ = 84 4 4 8 4 4 4 4

844 44 8444

844 44 4 84 4

84 44 4 4 4 84

844 44 4448
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The inverse of this matrix is given as:

9 1 o. o 1 o o1 1
J

Ii

.,. • o o o~ o

1 0 0. 0 0 0 0

0 0 0 0 0

IX'X]"l- 0- 0 0 T 0 0 0 0
- -. 0 0 0 0 0 0 00~ 00 . 0 0 0 0 0

=-•- o o o o o T o a

0 0 0 1 0 0 0-. 0 0 0 0 0 0 0

-g 0 0 0 0 0 0 0 1

:> /
fWe notice from this matrix that the estimates furnished by this design

"will be uncorrelated since the off-diagonal elements are zero (except

for the first row and first column which correspond to the scale bias).

"Solving the normal equations we get, therefore, the following

• ,estimates of the weights of the objects:

60 " 0.00132 (scale bias)

6 = 5.85791

= 3.52807 -

= 1.78583
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b4 1.94731

b 5" 1.64365

b6 a 1.04861
b7 a 1.47471

"and

b 8 1.62960

-

/

/
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CHAPTER VI

A GENERALIZED PROCEDURE FOR MODIFYING BIBD TO PROVIDE
~ iORTHOGONAL ESTIMATES IN WEIGHING DESIGNS

For some balanced incomplete block designs the procedure

developed by Banerjee [ 2] fails to provide orthogonal estimates when

these modified BIBD are used as weighing designs. For example, in

"Fisher and Yates Tables C 4], the BIBD with reference number 15 has

v a 10, b - 30, r a 9, k a 3, and X - 2. These values produce nr - 7

For these situations, i.e., whenever a negative value is obtained for

n, no procedure yet exists for modifying the corresponding BIBD to
provide orthogonal estimates when the BIBD is used as a weighing design.

SThe remainder of this dissertatica will be devoted to obtaining

a general procedure for modifying all BIBD designs to provide orthog-

onal estimates. Several theorems that are directly related to this

development will also be presented. In-addition, a comparison of the

r ,merits of this generalized procedure with those of Banerjee's procedure

"will be made.

As was noted by Banerijee[Z], if a column of ones and t rows

of zeroes in that order are added to the BIBD matrix, the matrix

(X'XJ will be of the form:'
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b b+t r r . . . r

r r X...

r . r . . . .

r rx- .... r

For this matrix Banerjee obtained the following:

1. IXX- t(r 'x-- {r + AN -

2. Value of the determinant obtained after suppressing the

first row and the first column of X'XU is

(r - )v"- r{ + I (v-

3. The value of the determinant obtained after suppressing the

second row and the second column of [X'X] is

(r - )v - 2 C(b + t){r + x (v - 2)} r2 (v-),.

4. The value of the determinant obtained after suopressing the

"first row and the second column of [X'T is

r(r - A)v -

5. The value of the determinant obtained after suppressing the

• second row and the third column of [X'XJ is

"(r - A)v - 2{A(b + t)- r-2

Banerjee suggested that 5 above (which would correspond to the off-diag-

onal elements in [X'X]-I) should be identically zero (except for the
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first row and first column) for the estimates to be orthogonal, i.e.

or(r -W 2{ (b +t) ~r2}w a

Therefore Banerjee suggested adding one column of ones and t rows of

this procedure t must always be positive. This will be shown in the

following lemmra:

Lemmna: For balanced incomplete block designs characterized by v, b, r,

k, and 1, and the two well known identities bk - Yr and X(v -1)

r(k - 1): the quantity t = 7* b will always be positive.

We wish to show proof that t -b > 0, or substituting for r and I

bk2
-b'

b-

by b

Th qantity b (v k)j will be greater than zero if v > k and
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if k > 1. These conditions hold for BIBD'IS. Therefore the lemma is
S~r 2

shown to be valid, i.e. t a -r-- b will always be positive.
/c

The above lemma guarantees t to be positive. However t does

not necessarily have to be an integer. For these situations Banerjee,

as was noted in Chapter V, suggested adding one column of ones, n rows

of zeroes, and t rows of ones in that order to the BIBD to provide

orthogonal estimates, where n - ( (b + and is the

least positive integer such that

•,, i '(r + E)2

- (b +

"is an integer value. This procedure, however, does not guarantee

n to be positive and in fact we have shown at the beginning of this

chapter where n is negative. We shall now present a method for

modifying all BIBD's to produce orthogonal estimates in weighing

designs.

If Banerjee's method is modified by adding one column of ones

and only one row where the first elem-!nt of the row is /Y and all

other elements are zeroes, we obtain the modified BIBD design as

follows:

"-78-
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,,/ / ... / i , / ! "

it 000 ... 0

X XS1

1

1- (b+l)x(v+l)

where X0 is the original design matrix given by the balanced incomplete

block design. This is consistent with the assumption as made with

respect to a spring balance design. We would make only one weighing

,- operation on empty pans and multiply the corresponding reading on the

scale by /t. It may, how.,ever, be remarked here that the structure of

/ the variance-covariance matrix for e will also undergo, a corresoonding

change, i.e. under Banerjee's procedure E(ee') = a21 whereas under
n

"this new procedure E [ee'] - Va2.

Using this modification, the matrix [X'X] becomes:

r r I
b+t r r . . r

'"r r A .. Ak

r X . ... .

_r . . . _r (N+I)x(v+l)

which is identically the same as that when t rows were added instead
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of the row, (rt 0 0 0 . . . 0). Since the [X'X] matrix is the same,

S"[X'X] 1 will also be the same and therefore will provide orthogonal

estimates as before. The advantage of adding only one row (/t0 0 . . .

0) to the BIBD is that less weighing operations are required and that

this method will provide orthogonal estimates for all BIBD's since t

does not have to be an integer. For example, the BIBD with reference

no. 15 in Fisher and Yates' tables [4 ] is given by

v " 10, b - 30, r - 9, k = 3, and A - 2.

Previously for this BIBO there was no method for modifying this design

to provide orthogonal estimates. Using the new technique we get

t b 81 - 3 21

t

We would now add a column of ones and a row of (VFT 0 0 . . . 0) in

that order to the original BIBD and obtain the matrix [X'X] as follows:

8 • 9  9 9 9 9 99 9 9 9
,.2 r

9 9 2 2 2 2 2 2 2 2 2

,, "9 2 9 2 2 2 2 2 2 2 2

9 2 2 9 2 2 2 2 2 2 2
9 2 2 2 9 2 2 2 2 2 2

[IX'X= 9 2 2 2 2 9 2 2 2 2 2

"•9 2 2 2 2 2 9 2 2 2 2

S9 2 2 2 2 2 2 9 2 2 2

•".. "9 2 2 2 2 2 2 2 9 2 2

, 9 2 2 2 2 2 2 2 2 9 2
9 2 2 2 2 2 2 2 2 2 9

8
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The inverse of this matrIx will be given as:

2 2 2 2 2 2 2 2 2 2 2
T 6363 63 63 63 636363 63 63
2 1

"62 " 0 0 0 0 0 0 0 0 0

2 1.0 0 0 0 0 0 0 0
63 7
2 0 0 1 0 0 0 0 0 0 0
2~ 0 0 01

2 0 0 0 ~- 0 0 0 0 0 0-37

""2" 0 0 0 0 0 0 0 0 0

2
"r3 0 0 0 0 0 0 0 0 0

2 1-~ 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

L2 0 0 0 0 0 0 0 o

This matrix, [X'X]", shows that under the new prorpdure, tie

modified balanced incomplete block designs do provide orthogonal

estimates when used as weighing desions (i.e. the estimates will be

orthogonal since the off-diagonal elements of IX'X]"I except in the

first row and first col unn which correspond to the estimate of the

scale bias, are equal to zero).

41

It should be noted here that the basic difference between
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B.nerjee's method and the new method is that Banerjee's method requires

t additional weighing operations whenever t is an integer and C + n

.additional weighings whenever t is'not an integer whereas the hew

method requires only one additional weighing operation. In addition,

the variance-covariance matrix for e will be slightly different for

Banerjee's method and the new method. Several questions arise concern-

ing these differences, such as, "What is the relative efficiency of

the new procedure as compared to that of Banerjee's procedure?" "What

implications arise since the variance-covariance matrices are differ-

ent?" These questions will be addressed in the following.

Under Banerjee's previous method (adding t rows) the weighing
design model had the form Y = XB + e with E [el = 0 and E [ee'] = c21n.

Under the new method (adding one row, rt 0 0 . . 0) the model beco-'es

Y XS + e with E [e= 0 and E [ee'] = Va2 where V has the form:

S010 .0"

001 . 0

Since, as noted above, the covariances have different forms, it is

appropriate to compare the relative efficiencies between the two

methods. Relative efficiency is defined in this case as the ratio of

the reciprocals of the variances.

First to aid us in this development, the following theorem
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will be proven:

Theorem: In the estimation Procedure under consideration, when . .

E [ee']= V02, the covariance of the estimators, Cov(s), obtained by

the least squares procedure is identical to the covariance of the

estimators obtained by the maximum likelihood procedure even when X

is not square.

(We know that for the estimation procedure under consideration, when

the design matrix X is square the covariance of the estimators obtained

by the least squares procedure is identical to those obtained by the

maximum likelihood procedure.)

Proof: We wish to show that L.S. Cov(i) = M.L. Cov(9)

or

I = M.L. Cov(6) [L.S. Cov(5)] 1"

We shall now determine Lhe Cov(ý) by the least square method

and also by the maximum likelihood method.

1. By Least Squares.

= (X'X)" X'Y

Cov(i) = E [(i - 0) (i - 6)']

- E{[(X'X)l X'Y - a] [(X'X)" X'Y - a]'l

•Ek[(X'X)"l X' (xs + e) - e][(X'X)" X' (Xs + e)- s]'I

E= t(X'X)"l X'e][(X'X)"I X'e]'}

F r [(XX)"1 X'e e'X (X'X)"1

or finally 02 [(X'X)" 1 X'VX (X'X) 1 ]
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2. Maximum likelihood approach.

The maximum likelihood estimator of 8 (assuming e is normally

distributed) is" 'v -1-

Crv(i) =E[(i - 06( - W)I

E{[XvrlXwl X-V1l Y - a] ((X.VlX)1 X'V Y -

E E{(X'V 14)1 X'V 1 (XO + e) - 0]

L(XlV- X)- XIV1 ( e) + e)

=EIE(X.V'lX)Y X V- X0 + (XV 1 X)1l X'v- e - 0

[(XIV x) X'V-1 X0 + (Xv 10-1 X'V- Ie - 0,'

3 vf(X'V-'Xr 1 X'VlFeJ [(X'V 1'Xf1 X'Vle]-l

=E [(X'V 14)1 X'V1 ee'V 1lX (X.V 1 )1]

0 2 ( 1 vX'1

or finally 02 ( XVx)

We would now like to show that

102(X'V-lXfl U 2 £(X'X)- 1 X VX(XXY-1]

or

I =[(xlx)1l x'vx(x'x) 1) I[(x'V 1 x)]

Under the new procedure the matrix X is determined by adding

one colunmn of ones and one row, rt 0 0 . . . 0, in that order to the

BIBD design where t = -b. i.e.
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S0 0 .0

X X

~0

*x xo

1 I

where X0 correspcnds to the BIBD used as a weighing design. Also

0

0

* xo

Using this notation, the matrix X'X will have the following form:

b b+t r r . . . r

r rr

r Xr . . .

-85- A

'K . --- I..



i0

iTheinverse of this ir.trix will be given as:

t -a a -,a

j-a b 0 ... 0

IX'X]"1  - a 0 b ... 0

-a 0 0 . . b

where a - and b F = Lr "
The matrix V will be as follows:

C v=t  :1
where 0 and I have the appropriate dimension. Writing V in another form,

V *[I + MJ F

Swhere =L+ .

t
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The inverse of V is given as:

0-1

or alternatively,

V-l

t

Using this notation, the maximum likeliho od covariance, (X'V1X)W,

becomes = X'V )- (X(I - { I

or

(x.v-x) I x ~ 'i
t

The least squares covariance becomes

11(X'x)1 x'vx(x'x) 1 = (x'x)1 x1(0 + Mi) x(Xx'xf

= (XIxf 1 (x I )(X'X)- + (X'xY1 (Xlx'MxXX)1

and finally,

- CX' X)1 + (X.X) - (X'mx)k-xxX)1
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To prove equality wem now must show that

* (X'X) 1 (x-x) - ,(v'x) 1  X'Mx + (x.x) 1, x'Mx(X'x) 1

(X-X) -J (xlx) 1 x :4X(X'X) 1 X-MX]

= I + r- 1: (XxX)1l X'MX + (X'x) 1 X'MX. I. (X'X) 1l X'MX

(X-x)1  -MX].

We now need only -show that the tern in brackets is zero, i.e.

- X.(xx) I x'mx + (ýx'Wxr1 X MX - ~. (xX-y1- X'MX (X'X)l X-'MX 0

To simplify this expre sion, we obtain X'MX as:

/E 1..t -1 0 .. 0 /t 0 0.

X'MX o 0

0 L ;*0
0'01 iLi jj L

and finally,
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t(t-1) 0

(X MX) .o

Now,

aa .- a t~ 0

0
a b 0 ... 0

(X'X) X'MX a 0 b ... 0 0L 0La 0 ... b

where a - and b 1 rrk X- tkAk

Or,

t-1 O0 ... 0

- at(t - 1)

- at(t - 1)

(x'x)f X'MX 0 (1)

- at(t - 1)
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Further

(t-1) 0 ... 0 (t-1) 0 ..._ 0
'-at(t-1) F.-iat(t- t17

-atlt-l) at(t-l)

E(x'x)'x't.1xJx'x 1x'MIx J -- : 0 0

-at(t-l) L-at(t-l)..J

or

(t-i) 2  0 ... 0

-at(t-I )2

-at(t-l)2(X'x)' X'v'X(X'x)'l X'MIX =0 (2)

-at(t-l)
2

Substituting equations (1) and (2) into our original exoression we get,

01 0
T •

and we need only to show that this expression reduces to a zero matrix.

On simplification we obtain the following expression
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-t-)+ 0ti C-) ... 0

t t

at(t-1) -at(t-1) + a~-)

t I
atŽl* - at(t-1) + a~-)

Reducing these expressions we get

- t-I) + (ti t-1) 2  
-t + 1 + t - t -t 2+ 2t -1 _ 0

t t t ~tO

and

at(t-i) -at(t-1) + at-) at(t-1) - at 2(t-1) + at(t-i)2
t t t

at(t-1) (1-t + t-1) = at(t-1) (0) - 0-
t t t

Therefore expr2ssion (3) in fact reduces to the zero matrix and the

theorem is proven.

As an example of this theorem consider the BIED given by v =4,

b =6, r = 3, k =2, and x=1. For this example the design matrix X, >

1i
the transpose of this matrix, X', and the matrices V and V- are given

as follows:



o ,.

1 0

11 1 0 0

01 10

X= 1 0 0 1

0 0 1 1 0

X'= 0 1 0 0 1 1 0

S0 01 0 0 0 0
0 0 1 0 11

0 0 1 0 00 0

0 0 000 0 1 0 0

10 0 0 a 0 1 010 0 0 0 0 0 1

90200001
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0 , x

and

00 0 00 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

V 0 0 0 1 0 0 0F0 0 0 0 1 0 0

0 0 0 0 0 1 0

10 0 0 0 0 0 I

The covariance obtained by the maximum likelihood method is given by

'"I 1 1 11 1 1 J0 0 0 0 0

0111000 "Ox6 11100(X'Vx) = 1 1 1 0 .I j 1 0 10IWI =
0010101 L6x1 0I6x6 1 1 0 01

0 _100 101 011 .x !I10110 [
10101

-101

--!-l1111 1o /3 ooo00
11100

0111000 11010': :
0100110 11001

0010101 1

0001011 111

101 01 0 0

0 10011 .0

/1

1 1 0 1

0 1 0 -9131 .



73333

33111

(XV-Ix)" 1  3 1 3 1 1

3 1, 1 3 1

C31 13

Finally the maximum likelihood covariance is given b;-:

1 21
7 T Ti

1 2 1 1

21 1 1

11 T11

The least squares covariance is given by [(X'X) Ix'vx(x'X)'I]. To

evaluate this expression the matrix (X'X) "I is determined as follows:

v' ;'11111 •/o~ooo -

0XX) 1 01 00110 F1 101 00111000 11100IX'X)"1,, 0 1 0 0 1 1 0 1 1 0 1 0

0 01 0 101 1 1 001 1

0 0001 011 110110
L - 'I 10101

10011

On simplification vie obtain:
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9 3.3 3 3

3 31 1 1

(X,X) = 3 1 3 1
3 1 1 3 1
3 1 1 1 31

0 00

a 3 0 0 0

0 0 0

0 0 0

The matrix O'VX is determined as follows:

03 1 1111 0 30 010 0000 •10110 0

. .,vX 0 1 0 0 1 1 0 010 1 0 0000 i11001 0X'X O 1 O0 1 01 0 0 10 000 1 1 010 1

0010101 00010001 11001
j 000010 10110

0 0010 00 0000 I01 0 1
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1V11 1 1 01 0o0 01
101110 0 11100

S'VX 01001100 11010

001010011010 010 1 01 10110 1

L'10 10101

10011

153333
33111
3 3 1311
3 1131

31113,

Therefore the expression (X'X)'Ix'Vx(x'x)" 1 is given as: t

71 1 1 3 1 1 1 1 IT11 I•."3 • • 133111 3 6 6 66• " "

3 1 1 3 1 0
- - •- 0 0 0 [ 1311 3 0-
- 0 00 ~-o.o

0 0 0 00
1 0 0 01 G 1

Or upon multiplication,
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1 2
ThC f t s a u c th cvrae

- j r: , : 7 .: "' * :'

-I.1 1 I

1 1 1
1 1

ob1eu~aThereforefr the sthatio under iosieaon the tovexr::an :c \

obtained by maximum likelihood method is the same as that obtained by

the least squares method even when X is not square.

Having established that the covariance matrix obtained by

either the least squares approach or the maximum likelihood approach

are identical for BIBD designs mudified to be weighing designs to

produce orthogonal estimates, vie can proceed to compare the relative

efficiencies of Banerjee's previous method with the new method. We

would like to determine the covariance matrix, Cov(O), for both

Banerjee's method and the new method. Cov(j) under Banerjee's method

was given in Chapter V as

",q97-



._. 
'C

_ r 0 0 0 0

/,V6 ft 0 0 0 0 024 , ' " r/. Co( = - 0 0 o o o o z

0c l 0 0 o 0 0

0 0 0 0 r 0

1r"0 0 0 0 0
"L'

for those BIBD's that could be modified, i.e. either t was integer or

a positive value for n was obtainable.

For the new procedure (adding on row, /F 0 0 ... 0) the Cov(j)

as given by the method of maximum likelihood (which was previously shown

to Also be equal to that derived by the method of least squares) is:

CoVyl ) -(X 'v 'l X)l1 2 (6)

where V has the form .

0
0. 0

Substituting this expression into equation (6) we get
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• .' ..... , \ ." I, ... _ - / ' , / C

i t

-/-- $) XO I + ÷ 02

or

... ... ' = DXX +i (- ) ,Mx]-3 ,2

•-" -where

We see that

S• 11 .. 1 -l) 01 f roo0... 0

0
o 1

X'MX : X6 x
0 1e

where X and X' are the original BIBD and transpose of the original

BIBN respectively.

Simplifying we obtain

X'M /(t-l) HýiO
0 0J L 2

-99-



.. ,- C •.

7 N

or

XIMX

0 0

Substituting back into the original expression, we get

CoylY) = X'x - ,

Writing this in another form and letting Z u XIX, we obtain

()= IX) + I 1 ] = + IWI%2

Using the formula,

(Z + UMY)" = Z- zU(Im + WZ'U) wz

we have for

Cov(6) (X 'vX)lOz I

t-)a(t-l) . a(t-l) (t-') a(t-l) .. a(t-l)I, -t -t __ ___ __ __

10 0 ... 0 0 0 ... 0=(x, x)-I_ ixlx)- I I+ . • :1: : - : - -.

0 0 ... 0 0 0 ... 0

or,

//

.•• -_ i/ zo - .< c?<,

\ • ,;.1 1,,, ,., ,, .- . .- - . . . . " -•_. .- " I -_ l ) . ...



i

1 a(t-l) ... a(t-l) It) a(t-l) ... a(t-l),

0 0 ... 00
0 0 0 0

* (XXv) 1  (XX)' 1 0

0
To invert the matrix

a~t-I) ... a~t-l]

L
we use the result that the inverse of a matrix of 'the form

die f g h ... 1

is given by
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I e -f -n -1

d --
0

0

0

to obtain

0

0

t a(t-1)(t) - .a(t-1)(t) -

0

0

0

o(

Substituting into the original expression we get for Cov(8):

1"102-
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t -at(t-l) -at(t-l) • atl ~-
0O ' -t " " ... a ....

,(xx)'l r 0 0 ... 0 ]

0

•' - 0 0 0.

-(t-1) at(t-l) atlt-I) ... at(t-l)

0 0 0 0

(xx)- . (xx)-I :

0 0 0 0

To further simplify this expression we obtain (X'X)"I as:

1 aI-ia . -a

(X'X)" = : bI

where a an d b -

r 1

Substituting this matrix for [X'X]", we get Cov(6) =

-1) ...at~t-1
, 1 a .. -a -(t-1)att-l) at(t- )' aO- 0 ... 0-a

"a abI bI :!

i0 0 0i
a
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On further simplification,

-a f .. -a s-a. a(t-a )

.-a -a 2 t(t-1) -,, -a2t(t-l)
COV(O) abI 

-r

-a 
2 2

-a a~-1) -a~ttl -a t(t-M)

Finally,

-at -at

-at a2t(t-l) b+a 2 t(t-I)

or substituting for a and b we get

1 1

-I rk+x(t-l
tkT tk I

This expression represents the Cov(i) for the situation where a BIBD is
modified to produce orthogonal estimates in weighing designs by adding
one column of ones and one row where the first element in the row is
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Rt and all other elements are zerces. ,C C

Since the diagonal elements of the covariance matrix represent

the variance factors we have for Banerjee's previous method the

variances of the estimates for t additional weighings equal to r

whereas in the new method the variance for theestiniates for only pne
additional weighing (/t 0 0 ... 0) is given byt Using

tk A
these values we obtain the relative efficiency (defined as the ratio

of the reciprocal of the variancies) as follows:

rk+"•t-l)

Relative Efficiency = tk -
1
r

tic

= rk
rk+x(t-l)C C

Using this definition, the relative efficiencies of the new

method as co,-,pared to Banerjee's method for those BIBD listed in

. Fisher and Yates Tables [4] for which t is an integer is given iný 7

Table I. For those BIBD were t is not an integer the relative

efficiencies are presented in Table II.

-~ -105-
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TABLE I

RELATIVE EFFICIENCY OF THE NEW METHOD AS COMPARED
TO BANERJEE'S METHOD WHEN T IS AN INTEGER

Reference * r 2  Relative
Number t b Efficiency

3 3 0.857'
5 2 0.9474
7 14 0.6176

13 14 0.7111
17 3 0.9000
18 24 0.5400
20 2 0.9643
21 18 0.6792
24 12 0.8308
25 30 0.5085
29 18 0.7463
36 22 0.7237
42 15 0.6316
43 6 0.8276
44 3 O.9231
46 4 0.9000
49 3 0.9600
61 7 0.7447
64 5, 0.8596
66 14 0.7636
67 12 0.8167
71 20 0.4412
72 6 0.7500
75 5 0.8182
77 10 0.7692
78 3 0.9375
81 2 0.9783
82 6 0.9091
83 5 0.9375
85 1 0.9615

t indicates the number of additional weighings required by
Banerjee's method. The new method requires only one addi-
tional weighing.
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TABLE II
c

RELATIVE EFFICIENCY OF THE NEW METHOD AS C01.PARED
TO BANERJEE'S METHOD WHEN t IS NOT AN INTEGER

Reference r2  , LA Relative
Number t = -- - b Efficiency

1 2.50 1 1 2 0.8333
2 1.50 0 1 1 0.9615
6 2.33 1 1 2 0.8753
9 1.33 0 1 1 0.9802

11 3.33 0 2 2 0.8207
16 2.25 1 1 2 0.9000
19 1.25 0 1 1 0.9878

*

ln denotes the number of additional weighings with no ohjects on the
scale.

Sdenotes the number of additional weighings with all the objects on
"rthe scale. requ red

n+p indicate the total number of additional weighings required to
provide orthogonal estimates by Banerjee's method.
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Tables I and II indicate the followingt.

a. Whenever t is an integer Banerjee `'mthod produces

smaller variances than the new method. (In al.1. situations in Table I

the relative efficiency was less than 1.0.) .

b. Whenever t is not an integer and Valong with a positive

q could be found, Banerjee's method again provided smaller variances.

(In all situations in Table II the relative effifiencies were less

than 1.0.)

However, whenever Banerjee's method produces a negative n, e.g. refer-

ence numbers 15, 22, 23, 26, and 27 in [4], .or 016never a value for

Scould not be determined e.g. the design given as v = 4, b = 4, r = 3,

k = 3, and X = 2, the new method is the only available method for

modifying BIBD to provide orthogonal estimates th weighing designs.

It is of interest to note that in the design given as v = 4,

b 4, r -3. k- 3, and x =2, the value of t it 0.5. For these

situations, i.e. whenever t is less than 1.0, the relative efficiency,

when compared to Banerjee's method, is greater than 1. That is for

those designs when t is less than 1.0, the new method provides

smaller variances than Banerjee's method.

Before we compared the relative efficiency of the new method

to Banerjee's method we had shown that the covariance matrix, for our

estimation procedure, obtained by the least squares approach was

identical to that obtained by the maximum likelihood approach. Since

these covariance matrices for the least squares and maximum likelihood
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approach are the same, pne may wonder if the estimators of 0 for

the least squares and majimum likelihood approach are identical, i.e.

does (X'X}Ixi y (leas't sI.u ares estimator) (XVI X v (maximum

likelihood estimator)?' This will be shown in the following theorem.

There: I te stiatonproedreunder ccedrtowith

E(ee') - Va2, the t o , cbtained by the Least squares pro-

cedure is identica to th. estimators obtained by the maximum ZikeLi-

hood procedure.

Proof: We wish to show pat (X'x)-xY (the least squares estimator

of •) -(X'V~ XI Ix YA-.(tht maximum likelihood estimator of •), i.e.

we wish to show that,.

x'_I-•XY- (X'V'•x)- xV-IY,

or vjA()
• . I? -°

•( X,"X'X (X' v lx)x'" (1M

The method of proving'equality is to show that the left and right
sides of expression (1) reduce to the same expression. The left side

of expression (1) reduces to

l~ ~ , a -a -a ¢t T ...... 1, ,

-a c 0 ... 0 0

-a 0 c ... 0 0
S(X.x)-lx, X#

= : * ***: : : X
0 •

-a 0 0 ... c 0

where a = C U= and X0 is the original BIBD. On multipl!cation
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we get,

ka - ka
t - ka - a .

r of these terms* b-r of these terms*

S -at c -a ... c- a - a ... -a
(X'X)'X = (2)

r of these terms* b-r of these terms*

-a c - a .. c - a -a ... -a

The arrangement of these terms is determined from the X' matrix i.e.

for every 0 and I in all rows of X'0 there will respectiqely be (c-a)
and (-a) in all rows of (2).

Substituting for a and c we get

0 0 0

r of these terms b-r of these terms

(x~~1 ' ~tr -rF -

r of these terms b-r of these terms

vt r-• r-A 1 1
"I t "' " tkA t- " tk

The right side of expression (1) reduces to
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(XlV 1Ix)" 1  X1 V-1

- U- S1-•1 1 f
v.1 rv" 11 ... 1 0 ...ot

" e d ... d 0 0

(XV.1 -1XV1 1d ed 00
( - d e ... d 0 0

* . .*.. . ..
"* .. ... . *

1
, " d d... e 0 01

rkdx tt andt- is the original BIBD. On multi-
tktWplication, we get
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" r of these terms* b-r of these terms*

AC

r of these terms* b-r of these terms*

A. A

+ e +(k-l)d + +(k-1)d + k + "

+ e" •,• - + e +(k-l)d + kd ,, - + kd

The arrangement of these terms is again determined from the X6 matrix.
... Therefore the arrangement of these terms will be identical to those

in the matrix given in expression (2).

Substituting for e and d, we get

/F 0 0 0 ... 0
t 

0

r of these terms b-r of these terms

(V 1- 1x = - tk- W - - tk

: . . . . . .

Sr of these terms b-r of these terms J'

, 1 ,- " r- - r- . 1 1
FA- -* 71-WI

We see that expressions (3) and (4) are identical, therefore

for our estimation procedure (X'X)'Ix - (X6VIX) 1xv- and the theorem

is proven.
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As an example of the above theorem, consider the BIBD given

as v 4, b =6, r = 3, k = 2, and 1 =1.

The least squares estimator of a is given as:

I VT 1 1 1 1 1 111

i T 1 0 1 1 1 0 0 0
01 1

-" " 0 0 0 0 1 0 0 1 1 0

•0 0 0 1 0 1 1S 00 0 -

0 0 0

/ 1
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We see that expressions (1) and (2), i.e. the least squares
C and maximum likelihood estirrators for a, are identical.
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COMPUTER CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS

Malcolm S. Taylor

US Army Ballistic Research Labcratories
Aberdeen Proving Ground, Maryland.

ABSTRACT. Numerous papers on construction of BIBD's (Balanced Incomplete
Block Designs) appearing in the literature consist of derivations of a set
of base blocks with symmetrically repeated differences. The inherent
properties of the algebraic or geometric structures that are employed
lead to sharply constrained values of the design parameters. There would
appear, therefore, to b- some interest in a more efficient computational
scheme to discriminate readily between a set of blocks which have symmetri-
cally repeated differences and those which do not. This is the topic of
this paper, and although the values of the parameters are limited in
magnitude by computational considerations, no restrictive parameter rela-
tionships are involved, and a number of new design configurations are
presented.

INTRODUCTION. A BIBD is an arrangement of j distinct elements (varieties)
into b sets (blocks) of exactly k distinct members, each element occurs
in exactly r different blocks, and every pair of distinct elements occurs
together in exactly A blocks. The parameters u, b, r, k, A which charac-
terize a BIBD satisfy the fundamental relations

and bk - or (1.1)

~r(k-1) -'A(u-l) (1.2),

For example,
0 0, 1, 3 ]

[ 1, 2, 4 ]
2, 3, 5

[3,4,61
[4,5, 0]

5, 6, ]
[6, 0, 2 ] r

is a BIBD with parameters u - b - 7, r = k - 3, A - 1.
Notice that if the block 0, 1, 3 1 was specified, the eatire design could
be generated by successively adding (rrodulo u) the non-zero residue classes
to each element of the specified (or base) block.

Bose (1 presented a technique for generating a BIBD directly from a set of
blocks, called base blocks, when a sufficient condition known as gymmetrically
repeated differences is satisfied. Within the scope of this investigation
symmetrically repeated differences means that the totality of the inner-
block differences of the base block elements modulo u results in the occurence
of every non-zero element exactly A times.

Preceding page blank -117-
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The k(k-1) modular differences of [ 0, 1, 3 ] are

0-1-_=6 1-0=- 1 3-0-3

0-5 4 1-3--S 3- 1= 2

and so [ 0, 1, 3 ] is a base block for a BIRD with X = 1.

Since each block gives rise to k(k-l) modular differences, it is

desirable to discriminate readily between a set of blocks which have

symmetrically repeated differences and those which do not.

One can characterize a block of a BIBD with parameters v, b. r, k, A.

as a vector of dimension v with elements 0 or 1, where the presence of a

variety i is indicated by a I in the i+lth position, and zero otherwise.

For example, thr 0, 3, 4, 7J in a dsign with v = 9, k.= 4 is

uniquely represeii "..y the vector x - (1, 0, 0, 1, 1, 0, 0, 1, 0).

Notice that the varieties are represented by the residue classes modulo v.

A NECESSARY AND SUFFICIENT CONDITION FOR SYM•ETRICALLY REPEATED DIFFERENCES

If we consider the v x v matrix

1 1 0 ... 0

0 1 1 0 ... 0

0 0 1 1 ... 0

M - (2.1)

1 0 0 ... 1

-118-
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and form the product Mtx = b, to every pair of elements ai, aj in the block

represented by x whose difference a- a. = 1 (mod v) there occurs a 2 in

the resultant vector b. Converseley, the number of 2's in the vector b is

precisely the number of differences congruent to 1(mod v) that would occur

if the totality of differences modulo v of the elements of the block were

computed.

Similarly the matrix

1 0 1 0 ... 0

0 1 0 1 0 ... 0

M2  0 0 1 0 1 (2.2)

0 1 0 ... 1

upon multiplying the vector x will cause a 2 to occur in the resultant b for

every difference of elements of the block ai - a. a 2 (mod v).

It is now apparent how the construction should proceed. We form successively

the products M x, M2x, ... , M x,12] x, and if exactly A twos occur in b at each

stage, then the block differences are symmetricall.y repeated. This constitutes

a necessary and sufficient condition for a block to have symmetrically repeated

differences.

One need never proceed further than [v/2] steps, since the existence of a
pair of elements ai, a., ai - a. = n(mod m) implies a. - a. = m - n. The

generalization from a single block to a set of blocks consists merely of

replacing the vector x in the product Mx, where X = ( **, x2 ... , x,) denotes a

partitioned matrix, each column of which is the representative of a block.

We proceed to sunmari ze this observation as

-119-
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ThEOR~EM 2.1 Consider a block B. = V a.2  aj ]with elements

:ik

represented by the congruence classes modulo v, and its representative x.. ..
A necessary and sufficient condition that B. satisfy the property of

symmetrically repeated differences is that the products M j Xi;

1, 2, ... , [v1Z] each contain the sam number, X, of twos, in the resultant

9 vector.

Generalizing from a single block B. to a set of blocks {Bi. we obtain

the in•ndiate

CORROLUARY 2.1 A necessary and sufficient co.dition that a set of blocks
{B.) constitute a base for a (v, b, r, k, A) -design is that the products

MX K, X2 K, ... , M[v/2] K contain exactly X twos in each of the resultant

matrices.

Observe that the matrices "2, M ... , Mv/2] may be obtained from M Z

in the following fashion: row i of matrix M 2 c r c [vI2], is precisely

the~vector sum, modulo 2, of rows i, i+Z,., i+M-Z (/nod v) of matrix MZ.

This observation is quite useful when implementing this techninue for

automatic computation, since matrices M2 a .,•v2]cnb eeae

. internally.

If one considers a block as a set of k beads on a necklace of v positions

we have, for example, for the block [0, 1, 3] the following representation:

6 /

2

43 -l2O--1

S. .... ' • -'lk,, "." p. -..1 :
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Notice that in computing modular differences what is imortant is not the

labels we have attached to' the varieties, but their positions relative to each

other. In other words, blocks [0, 1, 3] - [1, 2, 4] ... [6, 0, 2]] are

all equivalent since each gives rise to the same set of modular differences,

and as such each could serve as a base block for the BIBD. These blocks are

all members of the sawe equivalence class, or orbit.

Clearly, when constructing designs frm base blocks, we want to consider

as candidates only blocks in distinct orbits. Toward this end a convenient

way to characterize an orbit is to notice the 1-1 correspondence between an

orbit and the circular partition of an integer v; e. g.,

[0, 1, 3] ", 1 + 2 + 4

where the sunmands are simply the "distance" between adjacent beads (varieties).

If one generates distinct circular partitions, a task to which the computer is

well suited, we are equivalently generating representatives of distinct equiva-

lence classes.,

A COMITATIONAL ALGOPr M

If we denote the ith rcw of the matrix X as a =(a i V ...a , aib),

then X can be represented as

a;
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c 7 i / I . .C A

In this compact notation

aZ ai+Z

a 2 + a. 2

"If. X (3.1)

a1 + a.

where a. + a. represents the usual component-wise addition of the row

vectors ai., a in. Notice thac if the subscripts i + n > v in (3.1) then

i ÷n = i + ,i(mod v). We compute successively M.X, i - Z, 2, ... , (v/2]

and terminate the procedure as soon as the required number, X, of twos fail

to appear. Otherwise, completion of the process, indicated here by i taking

its maxim~um value (v12] without rejection, ii sufficient to establish the

'blocks represented by X as base blocks, generating a BIBD.

Since addition can be performed much more rapidly than multiplication

by the computer, in practice we compute M.X additively as expressed in the

right-hand side of (3.1) rather than performing the actual matrix multiplication

indicated in Section 2. By a judicious selection of candidates for base blocks,

it may be possible to determine a set of blocks generating a (v, b, r, k, X) -

design. Some solutions for BIBD's with large replicates determined in this

manner are presented i -a_4.L ,..
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Parameters Base Blocks
(v, b, r, k, X)

(17, 68, 16, 4, 3) [0, 1, 2, 4], [0, 1, 7, 10], (0, 2, 6, 111, (0, 3, 7, 12]

(19, 57, 18, 6, 5) [0, 1, 2, 3, 5, 10], [0, 1, 3, 7, 11, 14], [0, 1, 5, 7, 11, 14]

(11, 44, 20, 5, 8) [0, 1, 2, 3, 5], [0, 1, 2, 4, 7], [0, 1, 3, 6, 7], [0, 1, 4, 6, 8]

(11, 55, 20, 4, 6) [0, 1, 2, 31, [0, 1, 3, 61, [0, 1, 4, 7],[0, 1, 5, 7],[0, 2, 4. 7]

1(17, 68, 20, 5, 5) [0, 1, 2, 3, 6], (0, 1, 3, 8, 11], (0, 1, 5, 9, 12],

(0, 2, 6, 10, 12].
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ON SPURIOUS CORRELATIONS FOR PARTIALLY RELATED VARIATES

Oskar M. Essenwanger

Physical Sciences Directorate
US Army Missile Research, Development

and Engineering Laboratory
US Army Missile Command

Redstone Arsenal, Alabama

ABSTRACT. The spurious correlation coefficient between related objects
such as a(a ± b) is well known, although sometimes overlooked. Mostly
unnoticed goes the spurious correlation, however, when only a subset of
the material variates is identical.

The respective formulae for the spurious correlation coefficient are
being developed in the case of correlation between wind profile
characteristics of the lower tropospheric layers and the atmosphere up
to 25 km. Significance testing of the (linear) correlation coefficient
against these spurious correlations is described and demonstrated by the
wind profile analysis for four typical climatic zones.

Although the method has been developed primarily for the analysis of
wind profiles and its physical interpretation, the statistical method-
ology has general validity.

INTRODUCTION. It is well known that a spurious correlation coefficient is
produced when the correlated variates are related such as x - a and
x2 - a ± b, where x and x represent the first and second hata sets,
respectively. It is overlooked sometimes that a spurious correlation
also appears when a subset of the data is related from which x and xI
are formed. We may call this case a 'partial" spurious correlation.

The particular instance arises in the correlation between characteristic
ýcoefficients of wind profiles from overlapping layers when x is taken, I
e.g., for the surface to 3 km profile and x would be computed for the
surface to 25 km layer. Although the variaies may apparently not be
directly related in the sense of an a(a ± b) multiplication, the param-
eters are based on material data of which one part is a subset of the
total. The appropriate equations will be developed in the following
*sections.

It should be pointed out that the partial spurious correlation coefficient
is not automatically useless for practical applications. Its merit
depends on the problem to be solved. When significance of the coefficientis tested against the hypothesis of zero correlation one must be aware that

significance may be caused by the interrelation between the two variables

Preceding page blank



and not by physical cause. When the independent additional correlation
is the question, the test basis should be the spurious correlation
coefficient rather than the zero value. This may not preclude the
utilization of the spurious relationship for intar- or extra-polation,
prediction, etc., but the user should be aware that probably no new
information is gained in addition to the one already available from the
lower layer. This can be checked as discussed later.

JI

The following pages have been reproduced photographically from the
author's manuscript.
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11I. PARTIAL SPURIOUS CORRELATION~<

1. Correlption Between Means.

This partial spurious correlation is not restricted to

the application in the wind profile analysis where it originated. Cor-

relations between parameters which are mean values rather than

individual observations can be found in the literature frequently.

When one mean is calculated from a subset of the data we have

a case of partial relation.

In the parameterization of the wind profile (see

Essenwanger 1970, 1971) the characteristic coefficient for the

.•representation of the vindspeed v.h as function of the altitude

(surface to 25 km) is the mean speed A . Assume the characteristic

coefficient for the surface to 3 km layer windspeed profile is the

mean of that layer, too. Then we have
•~h1

x= (1 v.)/-v -A (1)

x 1 0h o ha~]B ..
h2  rh2 h 2 1

and y /ny [E v + Bv /n B (2)
Vh)lhn hl+l h] y

It is evident that hl < h 2 . Further, n and n are the respective
y

number of points in the computation of the means, nx < n *

x y
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We have now the choice of notation for the term E Vh- We may

select either one of the subsequent expressions eqn. 3a or b.

First we state

Vh /n 2 (3s)

which provides

7y M vz1n/ny + V2  (2b)

or y = wlv1 + V2 (2c)

Then we define

v h y n 2 (3b)
hj+I

where v2 is the regular average of the top layer. Accordingly

y - wlV1 + (n - n)v 2 /n (2d)

or y +1 + 2v2 (2c)

We have denoted

"-n/n • and w2 (n " X )/n'y

The two forms (eqn. 3a and 3b) are equivalent, but the sbsequent

-development has been written for the v2 . The equations can be

readily brought into the first form by setting w2 1.I.

The definition of the x and y can be expanded to and j, the

mean values, with

w. v" 1  22 (4a)

or y M IV I + V2 (4b)

-i-A (ic)
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As customary, the linear correlation coefficient can be written

r -COY /aC a. ,)xy xy xV y AB•~0 0

with

'Cov ix-i( N(a
4 y IE x )]W

2 [ x - IN (6b)

13! (6c)

Now
2 . 1 (6d)

17 Z[(V 1 -1 1)+ w2(v2 - ;2)

W W2 2~ + 2 wiwr + w
1a 2 1210 w-a (6e)

where r is the true correlation between v1 and v. and 4 the

variance of the layer h through h2 naly 2

vaiace1+1 2g4 a'2'

ovY - "1 ) [ 1 (V - 2(V2 "2-

W 2* 1(7 + V2 ayla 2 r 1 2  (6f)
Finally, the linear correlation coefficient becomes

r + w2 la 2 r- + 2 ww 2r12] 1 1 / C -rl 12r7 +w-,

In order to derive the spurious correlation we assume that there

is no correlation between v 1 and v2 , i.e., r 12 -'O. Then

apluw1al/(1a 1 2 2~) (5b)

is the spurious correlation. Since the weight wI and standard

deviation a, are positive this coefficient will be positive, too.
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different. It should be noted, however, that now 1 and this
V2

compensating change makes the new form identical with the first

expression.

The 02 or ag is usually not known when the correlation

*of A and B ts calculated. When amust be obtained from the data
0 0 I

there may be no need for the computation of the spurious correlation

since probably the coefficient rA can be calculated at the same

time. When data sets of A and B are available with o Cs and

, he(r 2  ad eeriato

r he establishment of v2 (rV)adsubsequent deeriatin
of Br2

0 0r

Of 1A v may be costly or time consuming. Then the examination

o the spurious correlation would be advantageous. In order to

replace 2 in eqn. 5b we go back toeeqn. 2. After some arithmetic
V2

we find

w~ a2 (Cf + w UAIV cA aB r A B w~a2  (6g)
2v2  B0  a 0 00 A0 B0

The second form appears with w2 - 1, from which we can deduct that

the same terms replace the second term in the denominator of eqn. 5b.

Consequently, the spurious correlation may be written as

r . + 2 7A
0 0 0 000

It should be pointed out that r :o r
spl 0 B-

-130-
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If we take the equal sign it can be shown that j
2crs - r,2c2( + +c 2 =0 (7)

where c = w laA /aB.

This equation can be used to study the behavior between spurious

correlation, CA and aB.

We find the two solutions

C - r (7a)

or r - wla/oB (7b)

and c1 -- r/( - 2r2) (7c)
The latter must be discarded since 0 < rp< l1.0 and c1 > 0.

Equation (7a) represents the maximum value the spurious cor-

relation could assume when all the correlation between A and B0 0

would be spurious. Since the empirical correlation comprises

the spurious and the added part, we must state
S'- ... rAoE = rs + r 1 .•.. (7d)

The independent contribution in the empirical coefficient is not

known a priori. It should be added that eqn. 7d is symbolic aid

a linear addition of the two parts is not applicable, i.e. the

r Is not identical with the rAov (see eqn. 8 and 9 later).
o 2

We may also interpret this spurious correlation co-

efficient for partially related variables as a weighted correlation.

When w 1 '2 the weights cancel out in eqn. 5b and the notation of

the familiar spurious correlation remains.
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We may test the significance of the difference between two

correlation coefficients by the transformation to Fisher's z

(e.gc see Hald, 1952 Brownlee, 1960, etc.). We find

- W 0. 5 - Cl + r)/(I - r)1 (8)

and
•z " r -z (9)r1 r2

The z is approximately Gaussian distributed and the standard

error of z can be written as

-t a (N - cor0l5 (10)

The null hypothesis that two correlption coefficients

came from the same population can be tested by

CA = [1/(hI - 3) + l/(n2 - 3)1"0•5 (1)

which is again normally distributed.

In our case nI - n2 as both samples have the same number

of observations. Hence

z- O• 2 (N - 3)"0 5 - -e2e (Ia)

At the 95% level of significance we accept the null hypothesis

when

-.5z 1 1.96 %,j= (11b)

Table 1 illustrates the testing procedure with the surface

to 5 km versus surface to 25 km windspeed profiles and the 3 km

versus 25 km system. The headings should be self explanatory.
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Table 1. Correlation Between Lower and Upper Systems'(A versus B
0 B0)

a) Surface to 5 km versus surface to 25 km

Winter Spring
95%95

r rap Ax C,6 x r r p z CA z

Albrook .204 .179 -. o26 .092 .26 .2 .203 -. 002 .091 .27

Montg. .619 .197 -. 524 .io9 .62 .r74 .174 -. 855 .096 .79
Chat. .675 .201 -. 615 .098 .67 .759 .213 -. 776 .087 .76

Thule • 51" .174 -. 191 142 .42 .496 .216 -. 325 .065 .53

Summer Fall
Albrook .223* .204 -. 019 .113 .27 .204* .191 -. o14 .096 .23

Montg. .494 .218 -. 320 .084 .49 .745 .176 -. 784 .087 .75

Chat. .785 .218 -. 837 .089 .79 .765 .205 -. 799 .092 .76

Thule .698 .290 -. 575 .057 .70 .496 .198 -. 3413 .087 .50

b) Surface to 3 km versus surface to 25 km

Winter Spring

Albrook .l86* .144 -. 043 .092 .21 .199* .163 -.037 .091 .23

Montg. .46 .105 -. 375 .109 .45 .613 .085 -. 628 .o96 .61
Ch9t. .550 .119 .56 .587 .118 - .087 .59
Thule . 15 .12 -. 201 .142 .35 .396 .115 -.304 .065 .42

Suumer Fall

Albrook .136* .133 -. 002 .075 .18 .143 .136 -. 008 .096 .20

Montg. .370 .132 -.255 .o84 .37 .588 .091 -.583 .087 .60
Chat .6195 1191 -. 6o5 .o89 .62 .62o .119 -. 6o5 .092 .62
Thule .504 .172 -. 381 .057 .50 .277 .1161 -. 167 .087 .28

Not significantly different from spurious correlation coefficient.

•/-1-
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It can be concluded from Table 1 that in the tropics close to the

equator (Albrook 90 N) the correlation between the two coefficients

has the same magnitude as the spurious correlation, but for all

other regions the linear relationship goes beyond the one expected

merely by a spurious relationship. Since the expectation in

zero correlation is the mean value, we could interprete the tropic region

result as a Justification that the most likely windspeed profile

above the lower layer in the tropical region is the mean profile.

When the (spurious) correlation coefficient is utilized for

extrapolation from the lower layer to the 25 km altitude then only

for reason of continuity of the speed profile at the top of the

lower layer. There is no apparent physical cause to associate

the lower and upper layer. This conclusion agrees with the present

facts about the general circulation in the tropical zones.

In contrast to the tropical region midlatitudes and Sub-

tropics appear with one closed system from surface to the upper

layers. The upper boundary of this system reaches far into the

stratosphere but cannot be exactly determined from this wind profile

analysis. The top of 25 km was chosen by other considerations and

should not be taken literally for the dominance of the wind regime

up to that altitude. The question about the upper boundary would
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have to be investigated by different techn ques. From other

correlation analysis (see Stewart and Esse anger, 1968) 20 Ikm

appears most likely. In this article the point of interest is

a correlation beyond the spurious relationship.

The columns next to the 95% value of Ez display the

correlation ratio q (see Mills, 1955, etc.) which includes a

non-linear relationship. As illustrated by this last column

in the parts of Table 1, there is virtually no addition to the

linear correlation.
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2. Correlation Between Slope and Means.

In the development of the characteristic coefficient cf the

windspeed profile for the layers surface to 3 km and surface to

5 km the slope is a better representation than the mean.

Hc.ice, correlation coefficients betwieen A1 (slope) of the lower

and Bo (mean) of the total altitude range have been computed.

Since again the windspeed in the lower layers is the same for

both profiles the question arises how much of it is spurious

contribution.

We assume
hi

x= 1(E vh 0lh)/n " A1  (12)

where Wlh is a linear polynomial term and n0  the respective

deviser. The y remains the same as defined by eqn's (2). Let

us introduce instead of v in eqn (2c) the A, then we

can write

y -a VA0 + w2vv (13)

(The w 1 and w2 were defined previously.) -

With x and j as customary we derive

Z( XA -A) VnaA (14a)

2' 1 A 0 + 2w o v2 0o2 20v2  (14b)
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and NCov XY= (AA, 1)w(A 0 w2( -;2)

with Cov sy- ,r A Awrl + w2 (~valv2  (14c)

WedenotePr r andR r Then the
Ao v2 - P Av 2  1 A1A4

correlation coefficient follows as

"r [vlla a + w p 2 aa 1[ (V + ,2w,, +V2a0AA 2 , 2 A, 1 A 1v2  A av2  2 v2

We can now again require for the determination of the spurious

correlation that wind profiles in the lower layer are independent

from the upper layer. This postulation makes p1 and p2 zero.

The third correlation coefficient R stems from the lower layer

alone. Thus the spurious correlation is

r2 +Rl W+ a) (15b)o ol

We find by comparison with eqn. (5b) that now the spurious

correlation comprises the same terms except the added factor

r rs - rBPI •R (15c)

It Is evident that the spurious correlation is produced again

based on the existence of the variances alone as in r 1

which will always be positive. The change is now
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the multiplication by the second factor, R. • It modifies the size

anl determines the sign of this spurious coefficient. One could

call r 5 p2 a spurious correlation coefficient of second kind. It

depends on the relationship between the A and AI coefficient in

the lower layer, or in other words the mean and slope and their

association. When these two characteristics are independent

the R is zero and the spurious relationiship, too, becomes zero.

Table 2 lists the actual correlations, the spurious

correlation and the correlation between A and A1 of the lower

layer (R 1). The checking procedure was the same as for Table I

and is not repeated here.

We notice that the spurious correlation in all cases is

virtually zero. The remaining correlation should, therefore,

be due to the relationship between the lower layers and the one

above. One would now expect that the correlation coefficieut

between A1 and B has been adjusted by excluding the spurious1 o

part from the tA B and thus the new rAB would include this
00 0

correction. This leaves the optimum correlation between lower

and upper layer. This can be confirmed by inspection of Table 2,

especially for Albrook, where r - 0.
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Table 2. Correlations Between Slope (A ) of Lower Layer Windspeed

Profile and Mean (B ) for Suriace to 25 km.t0

a) 5 km versus 25 km system

Winter Spring Summer Fall

r sp R r r r r sP rsp

Albrook -. 014 .006 .110 -. 013" .003 .060 .230 .017 .380 .102 .010 .230

Montg. .684 .023 .610 .787 .023 .710 .428 .018 .430 .721 016 .510

Chat. .587 .019 .610 .690 .024 .640 .747 .024 .660 668 020 .620
Thule .321 .0x26 .740 .484 .030 .700 .607 .0x24 .470 516 [023 .60

b) 3 km versus 25 km system

r rap RI r rR R r r R, r r R,

Albrook .000 .003 .120 .032 -. 003 .110 .136 .004 .180 .007 .003 .120

Montg. .536 .olo .65o .592 .007 .620 .249 .oo9 .420 .546 .007 .470

Chat. .490 .007 .610 .533 .008 .560 .597 .009 .56o .589 .oo8 .63o0

Thule .268 .006 .430 .413l .009 .560 .333 .005 .230 .302 .005 .300

Not significantly different from spurious correlation.

I
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Since the correlation in the other regions is based on physical

cause, however, the reduction is not very large. In fact, some

of the correlations have even increased slightly. This result

is not contradictory as we are dealing with a different para-

meter, the slope.

Replacement of 02 from eqn. 15b follows by eqn. 6g as
v2

discussed.
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3. CORRELATIONS BETWEEN SLOPES. F

In this phase we treat the problem that both x and y

represent a slope of windspeed profiles. The determination of

the spurious correlation becomes more difficult than in the

previous cases.

,x = =w A1  (16a)

h2
Y.v ih /n, - B1  (16b)

where 01h and *lh are linear polynomials of range h1 and h2 with

dividers no < n,. We split y again into a lower and upper layer

part
Shh*)/n + (16c)
l vhtlh + h+l h .

In order to formulate the correlation in terms of lower and full

layer let us replace the vh in the first term of y by an orthogonal

polynomial expression

vh a A +0+ A Alh +A22 +... (17)

This substitution is merely a representation of the lower layer

windspeed profile by polynomials and can be expanded to higher

order if necessary. Then

y Y = (A° + Allh + A2 02h)*lh/n + V2  (I6d)

with the abbreviation V h/n (16e)
V2 Tvh*lhhl+l
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The y can be further developed into

hh
yinA r*/n+ A /n, + A '0/ h

Y 1h A lh/i lh* lit + 2hlh/nt + V2

or y- %aA + A aA ' V2 (16f

h1

with a° = lh/n, (i8a)

ai -- lh hn (18b)

hla l0  /nlbc)

12 N hlh/fl,8c

where th e suzmnation is carried out over the range of the lower

layer only.
'- C

By analogy we derive x and j by the usual operation.

Finally we calculate

ax -OPA,(19a)

Ne fa (A aA1  2 (2 A -X 2 ) +**- V2 ]2 2aa.

2 eA a 2 2 + a20 2 +.. .+ A2 + 2 aalRlO'AaA1 + Aa 0R + 2a a
+2A aa~O Vv lAo' A,~u (l R~AU

+ a 1aA0a 2+ 2a IP2a A aV + 2a 2PaA V 2 'b

where the pi are correlation coefficients between lower and upper

layer.

//
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7.1

The covariance becomes

HCov - ao1(A -1 )(A.-A.) + a,.A -A.) 2 + &2,.,-A) A-12)

Cv a AOL + ii a R

oy -. RoaAYT + a1A, 2 • ,N +.+ Rlc7,•7 2

Again we derive the correlation coefficient

"r (a e. + a Roa a + a" h +' 1 A.1ava /aA a°

¶ (20)

In the spurious correlation coefficient we assume that no relation-

ship between lower and upper layer exists. Hence, p = P2 3 =0.

r5, 3 "(ale +a R a a. + 8a R a a +...)•)oC •r,p a o I A 0 % 3 A A2A
(20a)

2C? o; a,+a "f+ 22• + 2 1oa1R ora+ 2a0a R

C with&, ,-...+ a .O 2 •." Oha .....

+ 2 aa 2 RA~c~ 4'**4 ~2(20b)

We determine 2 from

' B4 + rA~y +Al -a+a A( + 2aoalaAoaAlR
1 2 •o.

+ 2 aa r2Aoa R2 + 2ala
A1la R) - 2( aoaA a, rA

0cTA2R 2a Al ol

+' a cO\ty.r 9  + a a. OrAB (20c)

a 2a2o. + 2a2c72 + 2a 02e + 02B +2(2a aa cT R,

+ 2a a 2cAaA R2+ 2ala2 rAcaA 2 R3) -2( a0aA CrB rA B

+~ ~ ~ ~ a olr + ~
I £lA, B 1rA1 B1 + a2UBr1A 2B)] (20d)
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When no correlation between the coefficients of the lower layer

exists, i.e. -= =R = ... Ri - 0, chen

r' ina~ 1(&2e + a!02 + a2C? +. i, 2e

SOp alaAlo A 0  1 A, 2 A2  42) 2e

or vith 42replaced

c.0A/L2  .ci + 2an . 2a 2  -r 1(aO I a rA
SO 1 A, ~o A 1 A a2 A2  1 o 1o 01 O

+ al aa.r B + aaa B rA 1 ):il (20f)

This is the logically expanded form of r and r Usually

some correlatiow R,, R2 or R3 are not zero, and the compmtation

must be based on (20a).

The actual r 5 p3 can again assume positive and negative values

depending on the a

The analysis results of the surface to 3 km and surface to 5 km

wind profile system (slopes) is illustrated in Table 3. This table

depicts the correlation between the slopes and the spurious cor-

relation in the upper part. The correlation between AO, A2 of the

lower layer and the slope B1 of the entire layer up to 5 km is added

in the middle part, while the lower part contains the inter-

correlations of the surfacd to 3 km layer.

It proves again that the spurious correlation is close to

zero in the subtropics, midlatitudes and polar regions, while it is

significantly different from zero in the tropical region. In contrast
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to the previous results, however, the actual (linear) correlation

coefficient displays significant difference from the spurious

correlation at the 05% level. Although the possibility exists

that the additional information between spurious and actual cor-

relation in the tropics could be attributed to physical cause, the

suspicion of identity between spurious and actual correlation remains.

Two factors may contribute to produce significance.

Since N > 1000 in all cases already smaller differences

between spurious and actual correlations render significant

dissimilarity. Since eqn. (17) is an approximation, the inclusion

of a third order term may bring both coefficients closer together.

Whether the actual spurious correlation is underestimated, however,

cannot be readily predicted. There is no doubt that the correlations

in the other climatic regions are real.

!Again, the correlation ratio did not prove of any practical

value beyond the linear relationship and has been omitted from

publication.
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Table 3. Correlation Between Slope (A1 ) of 3 km Windspeed Profile
and Slope (B,) of 5 km Windspeed Profile.

Winter Spring Summer Fall

r r r r r r r r
sp sp sp sp

Albrook .46 .27 .61 .42 .48 .23 -54 .28

Montg. .78 -. 06 .77 -. 06 .62 .05 .78 .01

Chat. .72 -. 13 .73 -. 05 ,78 -. 0 .75 -. 14

Thule .67 .09 .78 -. 01 .66 .11 .68 .09

Correlations Between Ao, A2 and B1

rAB r B1 rAB rAB1 rA B1 rA2B1 rAoB rA B,
0 0 A~ 1 -A 1 -A3 D1 0 AB o 1. A2

Albrook -. 43 .39 -. 50 .46 -. 12 .31 -. 26 .38

Montg. .42 .39 .53 .33 .12 .28 .A1 .28

Chat. .33 .17 .28 .31 .37 .28 .33 .24

Thule .15 .33 .42 .28 .07 .30 .17 .4

Intercorrelations, surface to 3 km Windspeed Profiles.

rAoq rAoA2 rAA 2 rAoA 1  o rA 2 AIA 2  rAoAl rAoA2 AA2 rAo ArAoAr

ol

Albrook .12 -. 55 .05 -. 11 -. o0 .12 .18 -. 21 -. 09 .11 -. 36 o00

Montg. .65 -. 37 .15 ,62 -. 38 .11 .42 -. 47 .00 .47 -. 49 .15

Chat. .61 -. 53 -. 17 .56 -. 45 .c4 .56 -. 43 .07 .63 -. 5% -. 05

Thule .33 -. 43 -.02 .6 -. 27 .00 .23 -. 37 -. 02 .30 -. 31 .03
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CONCLUSION. It has been demonstrated that the linear correlation
coefficient may be spurious when the data are only partially related.
The investigated case in this article deals with the particular problem
in which one parameter is computed from a subset of the total data.

Three cases were examined. The first case was based on the condition
where two mean values are computed, and one mean is calculated from a
subset of the data. As the example for windspeed profiles in four
different climatic regions shows (Table 1), a spurious correlation
different from zero emerges in all four zones, but only in the tropical
zone does it appear that the actual correlation is identical with the
spurious one as tested at the 95% level of significance.

The study is expanded to examine the spurious correlation between slope
in the lower layer and mean of the entire altitude range. Thi spurious
correlation must be modified by the inclusion of a correlation term.
The example for windspeed profiles from four climatic zones displays that
this tim he spurious correlation is approximately zero. Adjustments
to reflect this reduction of the spurious correlation appear in the
correlation coefficients, especially in the tropical zone.

The last case deals with the problem of two slopes. The spurious corre-
lation assumes a more intricate form containing various correlation terms.
The empirical example for windspeed profiles exhibits spurious correlation
different from zero only in the tropical zone. Present tests indicate,
however, that in this zone spurious and actual cotielation coefficients
are different, too, as tested at the 95% level of significance.

The spurious correlation has been largely developed in this study to check
correlation coefficients between characteristic coefficients of windspeed
profiles which were established in the analysis of wind data for missile
design and operational purposes. The consequences go far beyond this
limit, however, and the method has application in various fields of
statistical analysis. One of the main goals was further to illustrate in
this article that spurious correlations can arise in cases where only
parts of the data are related. It is, therefore, advisable to examine the
parameters to be correlated for any source of possible spurious rela-
tionship before conclusions are drawn about physical causes of any-
existing correlation.
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THE LEAST SQUARES ANALYSIS OF DATA GENZRATED BY
A "PIECE-WISE" GENERAL LINEAR MODEL

Robert L. Launer

* Army Procurement Research Office
Fort Lee, Virginia

This study was motivated by the frequent appearance of economic data
which can be described as piece-wise linear with certain "end-point" or
"cross-sectional" constraints. (Figure 1 depicts several examples of this.)
The study is intended mainly for the field analyst who is confronted with
this type of data and insufficient time to work out more than the barest
details.

All of the models in figure 1 can be expressed as straight lines

within each of several intervals with a linear constraint on the parameters.

For example, the broken line can be represented as follows:

a lXx < x*

: a1 + b x , x x*

subject to the constraint:

a1 + b 1x* + d a a2 + b2 x*.

The "bent line" model is just the "broken line" with d - o, and the third

example in figure 1 has the same form of representation except that the

auxilliary condition is just bI - b2

149
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Examples of models which follow this broken line pattern, but which

are not linear within each interval, also exist. For example, a corpora-

tion's stable economic growth might be suddenly interrupted by an external

factor such as a war or merger, after which its growth is again stable

but progressing at a different rate. If the growth equation contains

only line,-y parameters and the exact time of the change in growth is

known, then this model can be analyzed with the methods outlined in this

paper.

The theory of least squares and regression analysis subject to

parametric constraints has been treated extensively. In this paper,

the theory subject to linear parametric constraints is presented and

cast in a form which allows easy adaptation to "piece-wise" general

linear models. A test for linearity of data is proposed and finally,

the theory is illustrated with data obtained from US Army cost-incentive

contracts. A general familiarity with the theory of linear hypotheses

will be assumed.

1. Regression Analysis with Linear Constraints.

Let it be required to estimate the elements ofs (81,•2 ,...,=), .-,02

from the n observations Y. (Y1 , Y2,''''yn) which are generated by the
I

general linear model L=X B+E. If e., .... ,e,, ) is the error vector

and the matrix X is known, of dimension nxp and of rank pn, then the

least squares estimate of B is • - (x x)'x . (W.1)
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Suppose now that the elements of I are constrained by the k<p

known linearly independent relationships:

t. Olftl1202+...+tlp Spud,

(1.2)

tkl l+tk22+- •-+tkpspidk

If Tm(t ) and d'-(dl,d2 ,...,dk). equations (1.2) may be written.

T I-d. -jd (1.3)

Note that T is of full rank k< p.

In order to minimize (X.-Xs '(y-x) with respect to a subject to the

constraint (1.2), the method of LaGrangian multipliers immediately suggests

itself. Let _ It is necessary then to find the extreme

value of (-Xxs'(•.-X 2,•[TB-m (1.4) with respect to s andS.

Differentiation of (1.4) with respuct to a and k yields the 'constrained'

normal equations:
X 'X W + TI' ' , .a I

x' 7 T' X~ X Y-
ST u_ (1.5)

Solving (1.5) for s yields:

0 i (xx) - 1 'x)T (1.6)

where,

-_ -[T(x'x)'IT'J "1[T(x'x)lx'y - (1.7)
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Thu fro (1.1):

p /

%

Out (x'x) IT'[T(x'x)TI] [T s-d_ (1.8)

Notice that I Is a linear combination of the components of ' and therefore,

is unbiased for o (as it must be.) Furthermore, . is normally distributed

with

cov 100 a 2 ((x'x)'-(x'x) IT'[T(x'x) T'] 1 T(x'x) 1  , (1.9)

and the rank of coy (jo) is p - k.

The remaining distributional properties of s and the tests of linear

hypotheses are not difficult to establish. First, recall' that

1 2-•i (y-xs_)'(z-x• ) x • (1.10)
XnI

Furthermore, if M is an nxn matrix, then
" (•-x_) '(z-xse)-(-x_)'(!-r4)(z-xs_)÷(•-x§)'M(•-xB_). (1.11)...

Finally, from 1.3 it may be observed that

(•-O~x,(yxb-(Ts-. [T(x'x)V] [T-1_l = 0 and it follows that

(.xjO(.XxO-(X..x36,(y..xj + (_.-4x'x(1--. (1.12)

If

N * x(x'x)'lx -x (xWx)IT [T(x'x)'IT']-IT(x'x)'lx' (1.13)

it also follows that
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(-..-_jf'x'x (-s) " (y-x.'f 4(y-x.. (1.14)

Notice that M is idempotent of rank p - k. Therefore (1.14) is distributed

as a2x so long as % (XS, A21). Finally, from (1.12), (1.14) and

Cochrans Theorem3 the distribution of the residual or error estimate a is:
I. ,

The error sum of squares(1.15) is related to the "unconstrained" error

sum of squares which can be shown by direct substitution of (1.8) into (1.15):

÷[T_-dj' [T(x 'x)T V] [To-d_.

This formula leads to computational efficiencies later.

Tests of hypotheses regarding the elements of B must be conducted

* with slightly more care than is usual. Evidently, any test of hypothesis

on o subject to the given constraints T_.d may be regarded as a test of

hypothesis on a second set of constraints, T a - d , given the first set.
o7 -o

Since o contains p elements and the rank of T is k< p, then the

test of hypothesis may be expressed as no more than p-k linearly

independent equations. In other words, the rank of T may be no more

than p-k.

/
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Suppose that the matrix TO referred to in the preceding paragraph is

m x p of full rank m, and that the roys of TO are linearly independent

of the roys of T. Then define the augmented matrix T* of dimension

(k4m)xp and rank (k+m) and the augmented vector * of dimension k+m

as follows:

The null hypothesis, Ho, is T, B_-d and the alternative is T•*da.

Then the sum of squares due to B subject to T*, SS* (J), is given by

(1.13) with T replaced by T*.

SS* () " (-x')' M*(v•'x ) (1.16)

K',x(x'x) 1lx -x(x'x)rlT*' [T*(xx)llT*']rlT*(x'x)-lx' (1.17)

If No is true then,
SS* (B) "•a 2. (1.18)

p-k-m

Note that M is idempotent of rank p-k-m. The "corrected" sum of squares

(Graybill) to test Ho is the difference (1.14) and (1016)

(rx-x_)' (M-M*l (XV-xB) 0l.19)

For computational purposes, this may be written as
A A^ .1 ,11,-

*.-4 d*)]T*(x'x)T*sJ-1[T*-d__*] -[Ti-d'[T(x'x)lT- 1 [Tý-od (1.20)
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In order to investigate the properties of (1.20), Introduce the

notation:
S! AnTlx 'x)lx'

-1Ao'To(x'x)"lx'

A*-T*(x'x)'x- il(21)

Then the sums of squares (1.15) (through (1.13), (1.14), and (1.11))

and (1.19) can be written respectively as:

(&.-xp)'[I-x(x'x)'lx'-A'[AA'I" 1 (y-xj) (1.22)

and
-1

(y.-x!)'[A*'[A*A*']J'A*-A(MJAAI A] (y-x_) (1.23)

Now, notice that both A[AAJl A and A*[A*A*STlJA* are idenpotent.j

Furthermore, x(x'x)'lx'A'-A' and x(x'x) 1 x'A*UA*'. Since the invers -

of [A*A*J is

0A-A ( 0A0 1  -(AA') ~AA&E[AOA0 -A0AI(AAr-IAA&J- (1.24)

-[AoA&]I A0A'[AA'-AA1(%A0A0 ) Ao1- [A0A0'I-A0A I(AA 1 'AA0'JI

then A*.[A*A*'].IA* is I :

[A,-AO,(AAo,) A,] AA' - ,,AAO0(AOAO,)1AOA,]'A+

+A°,[AoAO'-AoA'(AA,-1AA, 0 ]-1 [Ao-AoA'(AA,) 1 A] (1.25)

The matrix (1.24) is symmetric, from which fact one can show that each of

the two terms of (1.25) is symmetric. Therefore,

A*-[A*A*°]JIA*A-CAA]" I1A"A' [AA'I]IA (1.26)
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These facts together with the transpose relationship derived from

(1.26) allow one to show that the matrices of the two quadratic forms

(1.22) and (1.23) are idempotent and that the two quadratic forms are

independent of ranks m and n-p+k, respectively.

Therefore, to test the hypothesis

Ho: To8 d, (given T o-d)

use the upper tall F statistic F-Fm, n-p+k,),

g--l
(T*~*JIA*A'YlT*~.d*4T~JEM6 (T.~J (i~~+k) - (1.27)

A" A
AAXD+* 1VL.A W

where,

1
A 2 _A[Aoo'-AoA'[AA']'IAAo'] _ý for To -do+ .

2. Sectional Models;

Suppose thatj u. (_;f is a "piece-wise" general linear model described

earlier. Since the functional form itself depends on the independent

variable, one may write:

•I(:LBI)x .•Xl*

ye f2(z.;!q),.1 <x,12)
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subject to the constraints:

T1 d

T2  -d2 (2.2)

Tr 0 dr

Equation (2.1) may be written

x2,h x * <c x2 -,,2*
Y< •( x

yt

XqAq X4-1 *q

subject to the constraints:

TI a -d.

-1
It is clear that x, x'x, and (x'x) may be written as pbrtitioned matrices

with zero in every non-diagonal block.

l1 0 ., 0

x [ 0 2(2.3)

0 0

0 0 X
q

-1
and similarly for x'x and (x'x)
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A glance at equations (1.8), (1.16) and (1.20) indicate that the

calculation involved in obtaining Iand the F statistic are simplified
Asince _ is a linear combination of the •_jand • X - (xl'X y.

-i j (x j'

3. The Broken Line Example.

Suppose it is necessary to estimate the parameters in the broken

line model

fi l+bl(xi-7 1) x,<xt, i÷1,...,n (3.1)

where a +b (x*-x"1) +d-a+bx (3.2)

_ Z • nd 7 I :•X* Xi .

The subscripts 1 and 2 refer to the elements of the model and their

estimates which lie to the left and right hand side-, respectively, of the

discontinuity point x*. x* and d are known, and m2 1n-m1.

Let

x - .

1-1-9-
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and similarly for X. Then

2*

FX1: olX.

0- , (3.3)

Tn[1,x*i 1 -,,°.(x*'' 2 )] and (3.4)

C (a1 ,b1 ,a 2 ,b2 ], so that the broken line model can be written in
matric notation,

'-x_4 E_ subject to T_-d.
The matrix (x'x) is

"ým1 o o 0

00S
0 x * 00xxl and

(x0x)- 0 0 Uo 0

0 0 0Os xx .1
* T~x'x] T ui + 5xl ' + 5SXXI " + Sxx2z-

The results of section I give:

SS

1x(x*- -1) x 3 x*- 2-

1. (- 2 1 (x-id2)

Sxx2
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I' j
Sa1

3 y1 -2.~

,.s Yl (3.6)1

S a27Y2 +÷M

X2 +

It is interesting to note that, if

*WAl ̂ fx.A- i
SYI "al 1 Cx-b ) Y2 -a2+b2(x*x 2 )

then

i y1*4.d-.y

Z [Var(yl*)+Var(y 2*)J/? oj

It is important to note, that if d Is not known, then (from (1.4)) it

follows that A. o and the least squares estimate of is merely B S B.

This means that the constraint is unknown and must be estimated with the

unconstrained estimate a. If d contains at least one known element and

at least one unknown element then this is not always true. /

/
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A test of hypothesis which seems potentially very useful is a test for

"linearity" of data; i.e., a test to detemine whether or not the data

is generated by a single straight line model over the entire range of the

independent variable. The test is easily conceptualized.

First, the bent line model, eq. (3.1) and eq. (3.2) with duo, is

assumed. The "bend* point (x*y 1 *) is then one point in common to the

straight line segments which compose the model. Then the hypothesis

is either, Hol, that the two slipes in question are equal or, Ho2,

that a point different from the bend point is common to the line segments

or their extensions.

Fomally, the two hypothesis are:

Hol: bl-b 2 ,(3.7)

Ho2: a1+bI(xO-i1 )-a 2+b2 (X°-7 2)

The statistics for both tests are presented here. (Ho2 involves x°"o).

Unfortunately, both tests involve unwieldly formulae and can be recommended

only by the possible savings in degrees of freedom. The F-statistics are

of the form (.27). To facilitate writing, let B _(Ts_-d) AA I(T_-_

and Ci-[T*k-d*]' [A*A*I]'I[T*Aid* where C1 and C2 refer to Hol and Ho2,

respectively, and let SS refer to the denominator of the F-tes$(l.27).
Then.

y (x2 x1  • 2 + 2 xy (x*-i,) 2

B,

m +)+ (x*_i 1)2  + (x*_i 2) 2
Sxxl Sxx2
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4. A Procurement Example.

By law, a corporation which is desirous of selling goods or services

to the Department of Defense, must become a party to a contract with the

US Government. The contract includes, among other things, an agreed

upon price (cost plus profit) which the Government is oblv'ted to pay for

the product. When thj cost of satisfying the contract is uncertain or

technical uncertainity is high, an incentive feature and a "tArget" cost

and target profit are introluced. If the contractor's cost is lower

than the target cost, then a (previously established) percentage of the

savings are returned to the contractor as an increased profit. If, however,

the actual cost exceeds the target cost, then a percentage of this cost

growth is subtracted from the contractors' profit.

This study concerns only the Cost Plus Incentive Fee (CPIF) type

contracts. The CPIF contract type must always state a maximum fee and

usually a minimum fee while the Government pays for all allowable costs.

Figure 2 illustrates the relationship between cost and profit for this

contract type. Notice that the sum of cost and profit is called the price

(or total price) so that a broken line relationship also exists between

price and cost.

The following symbols will be used throughout:

wT target profit CU greatest lower bound of all costs
which should yield profit v*H maximum profit m

W minimum profit C.L a least upper bound c(f all costs
SS iwhich should yieid profit M N

CT a target cost
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RELATIONSHIP BETWEEN COST ANDPROFIT FOR A CPIF CONTRACT

Profit

•T

•m

0 CL CT CU

FIGURE 2 
a

The datum set consists of 29 randomly selected CPIF contracts with

target price $375,000 or more which were definitized after 1963 and

completed prior to September 1971. The data were normalized to unit target

cost and target profit and unit difference between the maximum profit and I
target profit and between the target profit and minimum profit. The costs

were similarly transformed. These transformations are linear or strictly
piecewise linear if the original relationship is not symmetric with respect

to the point (C•i T). The normalized data is presented in Figure 3.
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Normalized
Profit NORMALIZED SAMPLE DATA

a ap

a *

0 1 2

FIGURE 3

Each data point should (theoretically) lie on the dashed line, but

for various reasons, variation is introduced into the system. If the

contract incentive feature is to properly motivate the contractor ther

at least the expected normalized profit would coincide with the dashed

line. To test this hypothesis, the piecewise general linear model proce-

dure outlined in the preceding sections was used.

Notice that the two points in figure 3 which lie to the left of the

origin exhibit no variation. There is (apparently) reason to believe that

this will always be the case for points to the left of the vertical axis

and to the right of the vertical line at X-2 in figure 3.

There is however, considerable variation for the points to the right.

Expert advise could not resolve this issue. Therefore, the two leftmost

points were discarded in this analysis.
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The model used in this section then, is:

ar1+2bi (x-'xl) +c <2

I a 2 + b2 (x-72) +E , x 2

and a1 + b1 (2-7 1 ) - a2 + b2 (2 -2);

where y - normalized profit.

x - normalized cost.

The null hypothesis is:

Ho: b -1

b"o

In the notation of the previous section the notation is:

nu29, p-4, k-l, m-3 and, y X _ + FE subject to T a - d-

where T- (1, 1.12, -1, .65), d±'(o) and

S1, 1.12, -1, . 0

01 -1T*- ; d*-

0 0 1 0 0

0 0 1 0
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o -(

AA
The data yields the following: al1.109, b --.84. 35, b2 .60

al x1. 08, 'b - 8 .8 b zu.42 , ~. 973375. Alk so: T(x'x) 1 r-1 .445-11

and (Tp-d)' (W') 1 (T€1d)-.o 36 and

1.45 .29 -. 2 1.35

.29 .26 0 0

-. 2 0 .2 0

.1.352 0 0 2.08

[T*(x'x)-lT*1)] 22.5 -25.2 22.6 -14.6

-25.2 32.2 -25.4 16.4

22.6 -25.4 27.7 -14.7

-14.6 16.4 -14.7 10.0

"Finally [Td*] - [.189, .12, .35, .6) and F3 2 4  3.68**

/
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EXPERIMENTAL ESTABLISHMRENT OF ACCURACY OF
RANGE-TO-FUNCTION MEASUREMENTS FOR ARTILLERY PROJECTILES

ILT L.D. Clements
Data Reduction Section

Yuma Proving Ground
Yuma, Arizona

FIELD MEASUREMENT OF AIRBURST LOCATION. An accurate means of deter-
mining the range-to-function (slant range) is a necessity in testing of
artillery fuzing mechanisms. Precise location of ground impacts is not
particularly difficult, but exact measutement of airbursts is often a
definite problem. Various means are available for locating airbursts
directly. The most common is the use of observers and some form of tran-
sit to locate the smoke signature by triargulation (digital transit or

* cinetheodolite being the most accurate). Another direct location method
* which has been proposed is the use of acoustic sensors to locate a point

sound source but the reliability of the acoustic method is questionable.
An indirect means of obtaining the slant range to function is to use

the time-velocity record from a Doppler velocimeter and numerically inte-
grate to get slant range. Although the numerical techniques involved are
explained more fully in Brittain (1966) and in Clements (1973), briefly
the process is this. During the time interval when the Doppler is locked
onto the round, successive radial velocity readings are averaged and multi-
plied by the time interval between readings. The resulting distances

* traveled in each time increment are summed up to give an estimate of the
distance traveled during the locked-on period. The distance the shell
traveled before the Doppler locked on is estimated using the muzzle veloc-
ity, the first Doppler measured velocity, and the time interval between
tube exit and lock-on. Since the Doppler break-track coincides with shell
function, the sum of the distances traveled before lock-on and from lock-
on to function is the slant range to function. This direct numerical
integration is quite good at low gun elevations and a mathematical routine
to calculate actual shell tangential velocities for use in integration has
been developed.

At Yuma Proving Ground use of observers is the most common means of
acquiring slant range data, with use of the Doppler enjoying an increasing
interest. Unfortunately, with both acquisition methods, the precision of
measurement is known but the actual accuracy of measurement is unknown.
The observers only occasionally are able to catch the flash of light
accompanying the function, and more generally are sighting on the tell-tale
puff of smoke. The relation of the event measured to the actual fuze
function is not known. Similarly, the function point on the Doppler
record is evidenced by a relatively sudden loss of track. Again, Che
relation of this break-track point to the actual function point is
unknown.
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PHOTOGRAPHIC AIRBURST REGISTRATION. In order to obtain an accurate
standard against which the other slant range determinations could be com-
pared, photographic techniques were employed. The method used was to
emplace a bank of cameras at a point down range such that each camera could
look at a rectangular window along the line of fire (see Figure 1). The
nominal center of bursts was obtained by plotting data from previous tests
and locating the ground range where most of the functions took place.
The cameras were located along a line parallel to the nominal line of
fire, at a distance of 750 meters from the line of fire. A bank of four
cameras was used. Each camera, a Milliken 35mm framing camera with a 40
inch lens, was aimed normal to the line of fire. The cameras were spaced
at 17 meter intervals to insure overlap in the fields of view and the aim-
points were stairstepped upwards to follow the trajectory. The "windows"
described by the cameras appeared as shown in Figure 2. Time correlation
among the several acquisition media was provided by the Proving Ground
range timing facility.

Actual data collection was extremely simple. As indicated above,
the cameras were prepositioned based upon previous experimental data so
no major adjustments were possible. The round-by-round collection sequence
consisted only of listening for the sound of the firing over the intercom
system, delaying for an appropriate time, and starting the cameras. The
cameras were allowed to run for two to three seconds after the sound of
the burst was noted. For maximum contrast high speed color film was used.
Physical operating limitations consisted of a need for clear skies, prefer-
ably with the sun in a position to provide back lighting, and minimal winds.

Data from the cameras were reduced by locating the smoke puff on a
frame and backing off until either the puff was no longer visible, or the
flash from the fuze function was observed. The location of the function
point relative to the center of optics was calculated by ratio and pro-
portion (see Figure 3). Then, knowing the location of the burst along the
nominal line of fire and the deflection of the round (from observers), the
coordinates of the burst can be calculated. Observed slant range was then
calculated from the burst coordinates and gun coordinates.

DATA ANALYSIS. Sample data comparing observer and camera values are
given in Table 1. "Extrapolated" data are those events where the actual
burst was not within the view field, but was close enough to be estimated
from the smoke pattern. The mean error for each of the quantities gives
some idea of the overall accuracy of the measurement, while the unbiased
estimate of the standard deviation can be taken to indicate the precision.

Similar statistics for the Doppler data may be developed to provide
some basis for comparison between the two methods, perhaps through an F-
test. Also, as more data are acquired, the mean errors and estimated
standard deviations may be refined and the basis fcr comparison between
acquisition methods strengthened.
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SIMMARY. This short clinical paper is intended to show an approach
to fulfilling an ever present need in testing operations, that of assigning
reliable accuracies to experimental data. The example cited is a real one.
The analysis of the data, though simple, allows realistic bounds to be
placed on data accuracy requirements and comparison of redundant data
acquisition methods for future applications.
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1. Brittain, J.E., "Derivation of Trajectory Data from Records of
Doppler Radar and Cameras", USATECOM Report No. DPS-2066, 1966.
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AN IMPROVED METHOD OF ESTIMATING THE CRITICAL
VELOCITY OF A PROJECTILE IN PENETRATION BALLISTICS

G. J. McLaughlin
DEFENCE RESEARCH ESTABLISHMENT

VALCARTIER, CANADA

ABSTRACT. In recent years, many studies have been done on the rela-
tive merits of several methods of fitting the logistic and specially the
normal distribution functions as dosage response curves. Most assessments
have been made only for sensitivity experiments where the stimulus had no
random fluctuations around the chosen test levels. The purpose of this
study is to assess the relative efficiency of some of the methodi based on
the 'up and down' sampling technique in an experiment where the stimulus
has random variations around some fixed levels. One of those methods has
been found more efficient than the one currently used to determine the
critical velocity of a projectile.

NOTATION.

V: The dosage or stimulus in general; the striking velocity in the case
of tests to determine ballistic limits.

a: A parameter measuring the spread of tolerances in the response curve,
usually called standard deviation.

D: Step by which the stimulus (veiociry) is increased or decreased de-
pending on whether the previous trial was a fa.1lure or a success
(in units of a).

K: Error of estimation for the stpzting value of V (in units of j).
S: Standard deviation of the stimulus at each level (in units of a).
N: Minimum number of observations required for one determination of

the 50% point, V50.
NR: Number of determinations of the 50% point for a given set of

conditions.
R: Allowable spread for N/2 successes and N/2 failures according to

Method B (in units of a).,
RMS: Root mean square error of the NR determinations of the 50% point.
G: A random value from a normal distribution with mean 0 and variance 1.
U: A random value from a uniform distribution between 0 and i.
N Average number of observations used to approach V50 in Method A, but

not included in sample of N.

1.0 INTRODUCTION. In the last twenty years, there has been much discus-
sion of the relative merits of several methods of fitting the normal inte-
gral or the logistic integral response curves to sensitivity data, i.e. to
data obtained from experiments in which an increasing proportion of items
either fail, explode or die as the seveiity of the test is increased. In
such an experiment the severity of test which would barely produce a failure
cannot be measured exactly; one can only observe whether an applied severity

Preceding page blank
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produces a failure or not. Sensitivity data involve responses which can be
either positive or negative, and which are observed at different levels of
some variable of interest. The response is said to be "quantal" because it
is measuted not in terms of a continuous scale such as weight or length but
in terms of the observed proportion that is positive. The main purpose in
analyzing sensitivity data is to estimate the 50% point, i.e. the level of
the variable for which the positive and negative responses are equally
likely.

In some methods of sensitivity testing, like the Probit, Normit or Logit
methods, the experimenter chooses in advance the stimulus levels to be
applied and the number of observations at each level. In other methods,
like those based on the 'Up and Down'sampling technique, the choices are
made sequentially, as the experiment progresses. Up to now, most methods
have been applied and their efficiency tested only in the case where the
stimulus levals are free of random errors. The object of this study is to
assess the relative efficiency of the various methods of sensitivity testing
when the dosage or stimulus is subject to random errors around the levels
chosen.

After a brief description of the general sensitivity problem, two
methods of estimating the 50% point of the stimulus variables are described
together with a Monte Carlo simulation procedure used to assess their rela-
tive accuracy. The two methods described here use the 'Up and Down' sampling
technique to gather the data, but they involve different estimation proce-
dures of the 50% point.

2.0 THE PROBLEM OF SENSITIVITY TESTING. The cumulative normal distri-
butlon function has been used extensively in bioassay and in other sensiti-
vity experiments because the probability of some all-or-none response is a
monotonic non-decreasing function of a quantity V which measures the potency
of the agent producing the response. The occurrence or non-occurrence of
the response in a particular individual depends on whether or not the dose
exceeds the tolerance value for that individual. Individual tolerances are
assumed to have a normal frequency distribution in the population. There-
fore the probability that a subject chosen at random from the population
will respond to a dose V is given by

W )-112 2P - (2,) exp (-t /2) dt. (1)

where W - (V-V50)/a, V50 is the value of V corresponding to P -. 5 and a
is the standard deviation of tolerances in the response function. In a
sensitivity experiment, a two-category response is observed to determine
the effect of different levels of the dose or stimulus V. Each experiment
has the goal of estimating the value of the variable for which the two
responses occur with equal probability, i.e. the VS0 which is also the mean
in a normal distribution. The estimation of the 50% point is more desilable
than that of other percentage points for two main reasons. It can be more
accurately determined with a reasonable number of observaticns. Furthermore,
it provides the most satisfactory basis for comparison, because for two
distribution curves with the same mean but with different values of a, the
only percentage point in common is the 50% one.
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3.0 PURPOSE OF THE STUDY. In recent years, many studies have been done
on the relative merits of several methods of fitting the logistic and espec-
ially the normal distribution functions as dosage response curves. The
first standaru techniques of a .alysis were those called Logit or Probit
methods depending on whether the assumed response curve was the logistic or
the normal distribution functions. They are fully described in References
1 and 2 respectively. Several alternative methods for estimating the 50%
point were later suggested, either because they involve less computation or
because their validity may depend to a lesser extent on the choice of response
curve. Most of these recent methods are based on the 'Up and Down' sampling
technique. They are purely arithmetical processes that use the observed res-
ponses independently of what the true functional form of the response curve,
P, may be. Their merits for any given set of data depend upon the particular
form of P that applies. These alternative methods have been described and
evaluated in References 3 to 6. Unfortunately all assessments have been maeI
only for sensitivity experiments where the stimulus had no random fluctuations
around the chosen test levels.

The purpose of this study is to generalize two of the methods mentioned
previously and to assess their efficiency in an experiment where the stimulus
has random variations around some fixed levels. This is the case in tests to
determine the critizal velocity of a projectile to defeat a Larget since
sampling variations in velocity occur for a fixed weight of propellant. Two
methods to determine the critical velocity of a projectile or equivalently
the ballistic limits of its corresponding armoured target are described herein
and their efficiency is assessed for various combinations of the parameters
involved.

As far as the authors are aware, Reference 7 is the only existing study
on the efficiency of sensitivity testing methods for obtaining the critical
velocity. However most of the methods suggested in it are a subset of Method
B given in the present study and were evaluated for some particular cases
only.

4.0 THE METHODS OF SENSITIVITY TESTING USED FOR DETERMINING CRITICAL
VELOCITIES

4'.ý General. In experiments to estimate the sensitivity of armour
plate to projectile velocity, a common procedure is to fire a given type of
projectile at various velocities against a given armour plate. Obviously,
there are velocities at which some projectiles will perforate the armour and
others will not. ýt is assumed that those which do not defeat the plate
would do lo were the projectiles fired with a sufficiently larger velocity.
It is therefore assumed that there is a critical velocity, V50, over which a
success (defeat of the plate) is more likely and under which a failure is
more likely. This critical velocity is the velocity corresponding to 50%
successes and 50% failures. On account of the symmetry of the normal distri-
bution, the median velocity, V50, is the same as the mean of the normal inte-
gral response function of Section 2. In the case of tests to determine the
critical velocity, the parameter a in the response function measures the
spread of tolerances of a type of armour with respect to the striking velo-
cities of a given type of projectile. It should not be confused with the
parameter S which measures the spread in striking velocity corresponding
to a fixed weight of propellant.
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It is assumed that the probability of response (defeat uf target), P,
to the stimulus (striking velocity), V, is given by an integrated normal
curve with parameters V50 and c. According to Reference 7, this assumpt on
is supported by results of tests involving the firing of a considerable
number of rounds at one target.

4.2 DESCRIPTION OF THE METHODS. The purpose of the two methods studied
here is to estimate V50 under the assumption that the normal response func-
tion is valid.

For the two methods, an attempt is made, by adjusting the weight of pro-
pellant, to fire the first round at a velocity which is the best estimate of
the V50 known to the experimenter, say VT1 . Each subsequent round is fired
according to the 'Up and Down' firing technique, increasing the velocity by D
(in units of a) for any round following a failure, and decreasing it by D for
any round following a success. The series of velocities used in this 'Up and
Down' experiment form a stochastic process, whose main feature is that the
velocities tend to have a distribution concentrated around the V50. Method A
uses the fact that an initial run of responses of the same sign is an indi-
cation that the first velocity was Lidly chosen. If the initial run of con-
stant sign contains No+l rounds, another N-1 rounds are fired. In this case,
the estimator is

I No+N
VA - E V + +V D) (2)VA=N--l i V N +N-

i=N0 +l o

where the sign associated with D is positive if the last round was a fail-
ure and negative if it was a success. Method B requires that firing
should continue until N/2 successes and N/2 failures are achieved within a
range of velocities of R units. The estimator VB suggested by this method
is the arithmetic mean of the N velocities corresponring to the N/2 successes
ano N/2 failures.

4.3 SIMULATION OF THE METHODS. No attempt was made to asses6 the rela-
tive merits of those methods from actual firing data because such a procedure
would have involved a tremendous number of rounds besides loosing its general-
ity through its association with specific weapons. The error inherent in
each method of estimating the 50% point was evaluated using Monte Carlo tech-
niques. A program was written to simulate on a computer the complete firing
procedure for the two estimation methods.

Without any loss of generality for te present study, thp variables were
scaled in such a way that V50 = 0 and a = 1 in the response function. The
velocity of the jth round for the two methods can therefore be simulated
using the following equation:

J
V. = K + G S + D Z C for J=I,2,...(N+No) (3)
J i=l 0

where K = error of estimation for the starting value of V
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G G = a random value from a normal distribution with zero mean and
unit standard deviation

C - 0 for J - 1
j -1 for U < and J - 2,...(N+No)

+1 for UJ_1 > P J- and j - 2,...(N+N )
Uj a a uniformly distributed random real number between 0 and 1

Pj = value of response function when V - V J

Each group of (N+No) velocities thus calculated yields one estimate of
V50 which is obtained by averaging according to the appropriate formula of
Section 4.2. This process is repeated as many times as required to allow
the computation of a RMS error for each method and for each combination of
parameters. A complete description of the simulation programs is given in
Appendix A of Reference 8.

4.4 RANGE OF PARAMETERS AND TYPE OF RESPONSE FUNCTION. A RMS error
based on 3500 determinations of the 50% point has been computed for each
method and for all conbinations of the following values of the parameters:
D-.5, 4., 2., S=O, .5, 1., K=O, 1,2,4. The values of N were 6, 9, 12, 15
for method A. In the case of method B, which is based on the first X suc-
cesses and X failures within a velocity spread of R, the RMS error has
been evaluated for the following pairs of (X,R) values: (2,2), (3,2), (5,2),
(2,3), (3,3), and (5,3).

The most frequently used functional forms for the probability of res-
ponse tc a stimulus are the normal and the logistic distribution functions.
Since the curv-s corresponding to those functions are almost identical, only
the normal integral has been used as response function throughout this study.

The RMS error calculated with the simulation program has been expressed
in units of a as were D, S, K, and R. The RMS error of each method is given
in the first two Tables for the combinations of parameters mentioned pre-
viously.

The RMS errors of method B for D=l, (XR)=(5,2) and (3,3) check with
those of Figure 10, Reference 7, when interpolating over S in Table Bi.

5.0 DATA REDUCTION AND ANALYSIS.

5.1 WEIGHTING OVER THE PARAMETERS. Since the purpose of this study is
to find the best method of sensitivity testing for critical velocity deter-
mination, the RMS errors have been averaged over the various parameters using
the weighting system which appeared the most realistic in critical velocity
estimation problems.

The right portion of Tables Al and B1 gives for each method the RMS
error averaged over K according to normal distributions with a common mean
K=O but different standard deviations CK=l.5, 2.5 and 4.0. This means that
the initial velocity estimate is assumed to follow a normal distribution
centered on the true V50 with standard deviations of 1.5, 2.5 and 4.0 times
the basic parameter a. The value of aK= 2 .5 is believed to be more appropri-
ate for most applications, unless a preliminary "feeler" round is fired to
improve the accuracy of the initial estimate of V50, in which case the value
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or=1.5 appears more realistic. This is in agreement with the set of starting
velocities used in Reference 7, which corresponds to values of aK ranging
between 1 and 2 in units of a, with one "feeler" round to improve the starting
velocity.

The average number of observations used in approaching V50 for Method A,
but not included in the sample of N, is designated No and given in Table Al.

The average sample size, N+N4o, on which each RMS error of Method B is
based, is given in Table Bl.

The best distribution for S to cover the range of weapons is not known,
but since it is definitively heavily concentrated around 0.5, a triangular
distribution between 0 and 1 and centered at 0.5 has been assumed realistic
for S. Therefore the RMS values of Tables Al and BI already weighted over
K according to normal distributions with uK=1.5,2.5 and 4.0 have been aver-
aged over S arcording to the set of weights corresponding to a triangular
distribution of S between 0 and 1 with center at 0.5, that is 0.125, 0.75,
0.125, for S=O, 0.5, 1., respectively. The resulting RMS errors weighted
over K and S are given in Tables A2 and B2.

5.2 SELECTION OF THE OPTIKMU STEP LEVEL. On account uf the variable
sample size, it is not obvious from Tables A2 and B2 which level of D is
optimum for the two methods. A graphical comparison of the RMS error asso-
ciated with each level of D is made in Figures 1 to 6. The curves indicate
that the optimum level of D is 1 for Method A and Method E, whether 0K is
2.5 or 4.0. From Figures 1 and 2 of Reference 8, this is also true for
Method A when OK is 1.5, but not for Method B where D=0.5 is better. There-
fore a value of one a for D should be aimed at, since it is associated with
a greater accuracy for both methods over the values of OK likely to be
met in practice.

5.3 COMPARISON OF THE METHODS. The curves plotted in Figure 7 indicate
clearly that Method A is superior to Method B with R equals to either 2 or
3 when aK=2 .5 and the step level D is one. The same conclusion can be drawn
from Figures 8 and 9 for OK= 4 .0 and 1.5 respectively. Therefore Method A
is definitively more accurate than Method B for GK=l.5, 2.5 and 4.0 when
the step level D is at its optimum value of one a.

In a critical velocity test, unfortunately, the parameter a is not
known in advance. It is therefore necessary to use for u a reasonable esti-
mate, 0 based upon experience. If no such estimate is available, the value
of 50 ft/s which is recommended in Reference 7, appears to be realistic.
It is assumed here that ^ has a normal distribution with mean a and standard
deviation o/4. Therefore, the step D being taken equal to ; it also has a
normal distribution with mean a and standard deviation a/4. The RMS error
values of Tables A2 and B2 were averaged over D using the set of weighting
factors corresponding to this distribution, and the resulting RMS values
are given in Tables A3 and B3. The weights were .16, .82 and .02 for D equal
to 0.5, 1.0 and 2.0 respectively. The confidence that the V50 estimate is
between the true V25 and V75 is also given in Tables A3 and B3, for Methods
A and B respectively. The RMS error and the confidence in the V50 estimate
are plotted in Figure 10, for both methods when GK is 2.5 and D is normally
distributed with mean I and standard deviation .25. The curves on Figure 10
illustrate again the superiority of Method A over Ifethod B.
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5.4 ACCURACY vs SAMPLE SIZE FOR METHOD A. The authors are not aware
of any agreed level of accura, required from a sensitivity testing method.
However, a level of accuracy . i that one is 90% confident that a V50 esti-
mate is between V25 and V75 is considered desirable and realistic. Assuming
that the error, K, in the initial value of V is nor--ally distributed with
mean 0 and standard deviation OK= 2 .5 (an acceptable assumption when no pre-
liminary "feeler" round is used), a confidence level of 90% would require
a total sample size of 16.48 on the average with Method A. This total sam-
ple is made up of No+l - 2.48, which is the average length of the initial
run of identical responses, and N-1 = 14, which is the fixed number of obser-
vations after the run of No+l. In this case the average number of observa-
tions used in approaching V50, but not included in the sample of N, is Ng o
1.48 and the subsequent sample on which V50 is based has size N = 15. Such
a sample would yield a confldenc2 of 90.9% according to Table A3.

An interesting feature of Method A is that it ignores any initial run
of identical responses (an indication that the initial V was badly chosen)
and therefore produces an estimate of V50 which has a guaranteed accuracy
independent of the error K in the initial V. Of course, the greater K or
OK for a fixed N, the longer the initial run of rejected values No and
therefore the greater the total sample size, N+No, required to achieve a
given accuracy.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS. Two methods A and B to evaluate the 50% point in a
sensitivity test when the stimulus has random variations have been assessed
by Monte Carlo simulation, and Method A has been found superior to the other
over a realistic range of error in the starting value of the stimulus. It
is more accurate and therefore more economical than Method B which is cur-
rently used in critical velocity determination.

The optimum step level D by which the stimulus is increased or decreased
was determined to be around la. However the accuracy provided by Method A is
not too sensitive to variations up to 50% in the size of this step level.
Therefore the performance of the estimate of V50 provided by Method A is not
sensitive to errors in the guessed value of a.

Method A requires on the average 16.48 observations to insure a 90%
confidence that the estimate of V50 lies between V25 and V75. This number
is made up of an average of 1.48 observations that are rejected, followed
by a sequence of observations with a predetermined length of 15.

6.2 RECOMMENDATIONS. It is recommended that Method A be used to evaluate
the critical velocity required from a given projectile to defeat a target,
since it is more accurate than Method B and also can be handled more quickly
and more easily than Method B during a field trial to determine the V50. In
an experiment using Method A, the steps are:

a) Select from past experience an estimate, S, of the parameter a in
the response function. Otherwise, use 6 equal to 50 ft/s as an esti-
mate since the procedure requires that a be known within rough limits.

b) Choose N in advance. A value of N=15 will yield a 90.9% confidence
that the V50 estimate is within V25 and V75.
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c) Fire the first shot at a velocity as close as possible to an initial
guess of V50.

d) Carry out a series of trials, increasing the velocity by a ft/s fol-
1c!:ing a failure and decreasing it by 5 ft/s following a success.
This is done by regulating carefully the weight of propellant for
each step.

e) Continue firing until the chosen nominal sample size N is reached.
If No+l responses are alike at the beginning, the total number of
trials is No+N.

f) Use as an estimate of V50 the average,

NQ+N
TAE V + V ao]
N+ iNo+ N+Ni-No+l o

where the plus sign is associated with a failure in the last trial and the
minus one with a success.
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EVALUATING AND SCHEDULING PROTOTYPE
REQUIREMENTS FOR SUITABILITY TESTING

Major Richard B. Cole & Major William J. Owen
U. S. Army Infantry Board

Fort Benning, Georgia

ABSTRACT. This paper addresses the problem of developing a schedule
for suitability testing of the prototype of a complex item. The sequential
approach discussed involves ordering the requirements against which the
prototype is to be evaluated and then using this ordered set of require-
ments as a basis for sequencing the subtests included in the suitability
test. Emphasis is placed on developing the ordered set of requirements.
A model based on the criteria recommended by Fishburn and by Moore and
Baker is developed for mapping the requirements from a randomly arranged
set to an unconstrained test sequence. A linear model is developed which
is determined to be an acceptable normative model. Based on the results,
of this model a method is proposed for partitioning requirements into sub-
tests and for sequencing subtests into a constrained test schedule.

PURPOSE. The purpose of this presentation is to develop a method use-
ful in scheduling a suitability test for the prototype of a complex item.
A suitability test is a test designed to evaluate the prototype in order
to determine if the item represented by the prototype is suitable for pro-
duction. The overall test of the prototype will usually involve evaluating
the prototype against many, often related, requirements. Generally, a
separate test is required for the evaluation of one or more related require-
ments. Consequently, the suitability test will actually consist of a
series of individual tests, or subtests. The specific problem to be addressed
is to determine a method of scheduling the subtests to maximize the rate in
which information, relative to the potential suitability of the item, is

C; generated during the suitability test.

BACKGROUND. In the development of a complex item of equipment, it is
common for the equipment to undergo a research and development (R&D) cycle
of several years in length and to incur R&D costs of several million dollars.
prototype of the item. The actual test of the prototype can be quite expen-

sive and time-consuming and can directly affect the final cost and final
availability date of the end item. Consequently, if this phase of the
cycle could most efficiently serve its purpose, then an important portion
of the cost and developmental time of the end item could be minimized.

The purpose of the suitability test of a prototype is to provide in-
formation upon which a decision of item disposition can be made. The deci-
sion usually will be to determine whether the item represented by the proto-
type should be accepted and placed into production, accepted contingent
upon certain modifications, retained for further development, or rejected
from further consideration. This decision may have to be made prior to the

completion of the suitability test; thus it is essential to maximize the
flow of information.

Preceding page blank -203-



The overall suitability test will consist of a series of intermed-
late tests each designed to evaluate the prototype against one or more
specifications or operational requirements. Each of the subtests derives'
specific information about the prototype. The information accumulated
from all subtests then serves as a basis for the decision relating to the
final disposition of the item.

The time required to make the decision on equipment disposition
directly relates to the time required to accumulate sufficient informa-
tion upon which the decision can be based. Consequently, it is desirable
that the subtests be scheduled so as to maximize the rate of information
generated. This is obviously a particularly important criterion in the
scheduling of prototypes of items required for an immediate need. On the
other hand, care must be exercised so as to prevent a premature decision
on item disposition. Obviously, an incorrect decision could result in
accepting an expensive but unsatisfactory piece of equipment, or it could
result in delaying the production of a suitable item.

The problem of developing a test schedule which will maximize the rate
of information generated is compounded and made more important by the fact
that there is frequently no predetermined stopping rule upon which the
decision on item disposition can be made. For example, it may be undesirable
to decide before the test that if a certain per cent of the operational re-
quirements are not met, then the testing will stop and the item will be
rejected. This type of stopping rule may be unsatisfactory since the per-
formance of the prototype against other requirements may be so outstanding
as to overshadow its failures, or the degree of failure may be more impor-
tant than the failure itself.

CONCEPT. There are multiple factors relating to a suitability test
which influence the desired sequencing of its subtests. These factors must,
of course, relate to the amount of potential information which could be
gained from executing the subtest. An illustrative factor pertaining to
the amount of information is the importance of the requirements tested.
For example, the information gained from evaluating the prototype against
an essential requireaent would contribute more information upon which to
base the decision of item dispositicn than would evaluating against a
relatively minor "equirement. However, there may be several factors which
warrant consideration. In the tests considered in this research, five
factors were identified as influencing the desired relative placement in
the testing sequence, and these factors were found to be of varying degrees
of relative importance.

In addition to the factors, the degree to which each factor would
apply to each requirement must be considered. The possible degrees of appli-
cability of a factor to the requirements in the suitability test are defined
as the categories of the factor. In this research, methods were developed
for identifying, weighting as to relative importance, and categorizing each
factor applicable to the suitability test of a prototype. The factors,
factor weights, and factor categories are considered to be suitability
test dependent.
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Once the factors, factor weights, and factor categories have been
determined for a prototype, each requirement is described in terms of
the degree to which the factors apply to the requirement and to the sub-
test needed for the evaluation.

Obviously there are trade-offsa to be made between the desire to place
essential requirements early in the te3t sequence and the desire to main-
tain the prototype in testable condition. These trade-offs become unmanage-
able when several factors of several categories each must be considered.

A model is developed for mapping the requirements from a randomly
ordered collection of requirements to an ordered set of requirements. This
model maps the requirement against which the prototype should first be
evaluated to the first place in the ordered set.

When the requirements are ordered, they are in the proper sequence for
unconstrained testing of requirements. However, in developing the actual
test schedule, there may be constraints which require that several require-
ments be grouped into one subtest, or which prevent the bests being sequenced
as desired, or which affect the test schedule in other ways. Consequently,
a second model is then needed to map the requirements from their positions
in the ordered set to their final position in the test schedule. The con-
cept upon which this research was based is shown in Figure 1.

Three vital tasks must be accomplished to execute this schematic con-
cept. First, for each prototype to be tested, the appropriate factors,
categories and weighting values must be determined. Secondly, a model must
be developed which will map the set of random requirements according to the
parameters determined. The third task to be accomplished is to develop a
scheduling algorithm to transform the set of ordered requirements into a
constrained sequence of ordered subtests.

The first two tasks were accomplished by experimenting with actual
suitability tests that were being conducted in the US Army R&D community.
A brief summary of this portion of the research will be given. The third
task of developing a scheduling algorithm has been partially accomplished
and is included for future consideration. However, it should be noted that
this algorithm has not been used on an actual suitability test as of this

* date.

DETERMINATION OF MODEL PARAMETERS. The primary concern is to develop
a model to maximize the flow of information upon which to base the dispo-
sition decision. It is desired to place the most important requirementsfirst in the testing sequence. The desired placement is a function of the

requirement importance and the effect that the testing of the prototype
against the requirement may have on the overall rate of information flow.
If a model can be constructed which develops a measure that represents the
"Requirement Importance vs Effect on Overall Information Flow" tradeoff for
each requirement, then these measures can be used in specifying and sequenc-
ing subtests. This measure of criticality will be indicated as Ci.

The next task is to identify the factors which are relevant to measuring
C!. These factors will be applicable to any suitability test, but will be

in varying degrees for each prototype. This phase of the research was con-
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requirements
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ducted by extensive interviews and group discussions with experienced test
officers at a test installation. As a result, five major factors were
identified for consideration and for inclusion into the model. These fac-
tors are shown in Figure 2.

These five factors should not be considered as being an exhaustive
list applicable to all suitability tests. There should be a flexible
method for selecting the factors appropriate to each test analyzed. Conse-
quently, it is proposed that the first step in analyzing a suitability
test is to present the above five factors to the test supervisory personnel
and ask them to consider the applicability of each factor. In addit 4 on to
considering applicability of these five, it is also essential that they be
given the opportunity to add other factors if needed.

Once the factors applicable to testing a prototype have been identified,
the importance of each factor, j, relative to the other factors must be
determinedi. These are simply factor weights and will be indicated by W•.

In their ciscussion of scoring models, Moore and Baker (1) stress the impor-
tance of assigning weights to factors in order to insure that the model
reflects the priorities of the decision makers. Similarly, in the model
being developed, it is essential that weights be determined to reflect the
relative importance of the factors.

Numerous means are available to determine relative imnortance. These
include simple rank ordering, correlated simple rankings, ratings, and
successive ratings. The method of successive ratings was selected for this
research because:

a. It is a simple and fast method;
b. It will allow the decision-maker to determine the weights consi-

dered appropriate by each judge as well as the overall group
weights;

c. It forces each judge to develop ratings which he feels to be
consistent and;

d. The method is intuitively appealing.
For this portion of the research, test supervisory personnel ranked

the factors applicable to the test of a prototype by a simplified version
of the Delphi Technique. This simplified ranking scheme converged rapidly
to a ranking acceptable to each judge. Once the factors had been ranked,
the method of successive ratings was used to assign weights to each factor.

This portion of the research used two major suitability tests as experi-
mental vehicles. The rankings and weights assigned in one test differed *
from those assigned in the other. Whether these differences are due to dif-
ferences in the prototypes for the two tests, or due to differences between
the groups is an unanswered question. However, it appears that the prototype
tested is the most important factor since the members of both group; agreed
that they could rank and weight the factors for any particular test.

After the factors which were considered to be important for inclusion
into the model have been selected and weighted, the next task is to cate-
gorize each of them. Categorization is merely the partitioning of each
factor into levels.
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PROBABILITY OF FAILURE The estimated probability that the
prototype will not meet the specific
requirement. (Relates to the importance
of the requirement.)

CONFIDENCE LEVEL The estimated accuracy of the estimated
probability of failure. (Relates to
the importance of the requirement.)

IMPACT The importance of the requirement to
the potential suitability of the item.
(Relates to the importance of the
requirement.)

DESTRUCTIVENESS The potential destructiveness of the
subtest required for testing the
prototype against the requirement.
(Relates to the effect on information
flow.)

CONSEQUENCE The effect that the results of the
subtest evaluating the requirement
would have on the test schedule if
the requirement is not met. (Relates
to the effect on information flow.)

FACTORS, j

Figure 2
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The categorization of the factors in this research was accomplished
by two test project groups and was generally based on the guidance found
in the US Army Test and Evaluation Command Regulation 70-34 on Risk Analysis
(2). The categories shown in Figures 3, 4, and 5 were agreed upon by both
test project groups. It must be emphasized that these categories are merely
suggested and may in fact be prototype dependent.

In categorizing the estimated probability that a requirement would not
be met, the test groups indicated a preference to use the point estimate of
the probability. This same technique was also used in categorizing the con-
fidence level with which the estimate of probability of failure is made.

Now with each factor partitioned into categories, it is necessary to
weight the categories of each factor. This portion of the research again
used a modified Delphi Technique to order the categories of each factor.
Then each member of each test panel weighted the categories of each factor
on a scale from one to ten with ten being applied to the most important
category and one being applied to the least important category. The other
categories were scaled between one and ten. The category score was assigned
as the average score for each category.

The net category weight for each factor was then computed as the pro-
duct of factor weight and category score. An example of this is shown in
Figure 6.

It was found during this portion that the categories of Impact and
Probability of Failure were constant in both tests. This may be a random
occurrence or it may be true for all suitability testing. The categories
for the other factors were not so clear and this indicates prototype
dependence.

The result thus far has been the determination of the parameters which
may be included in the model. The next task is to determine the parameters
applicable to each requirement. The results of this portion of the research
indicate that each member of the test group should categorize each require-
ment. Then a composite of these is given to the test project officer for a
final determination as to the category of each requirement. This step in
the procedure is seen as a simplified version of the Delphi Technique.

A summary of the parameter development is shown in Figure 7.

CONSTRUCTING AND TESTING THE MODEL. The problem now is to develop a
model using these parameters to transform the random requirements into a
set of ordered requirements. It is hypothesized that such a model would
be of the form

C-G{[N kI) k k (1] . Nk(i)]}
k (i)], [N k()] [N ki)], N k M[
1 2 n, jx

where C is the measure of criticality (i.e., a number which reflects the
i

"Requirement Importance vs Effect on Overall Information Flow" trade-off
of requirement i) and Nk (i) is the importance of category k of factor j

relative to the other categories of j for requirement i.
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DESTRUCTIVE Testing against the requirement is potentially
destructive to the test item.

DAMAGING Testing against the requirement is potentially
damaging to the test item or to components not
under test.

SENSITIVE The requirement relates to a component which
is delicate and which could be easily damaged
during the course of unrelated tests.

STABLE The requirement does not require potentially
destructive testing and does not relate to a
delicate component.

CATEGORIES OF THE FACTOR DESTRUCTIVENESS

Figure 3
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CRITICAL Failure to meet the requirement is sufficient
for declaring the item unsuitable.

IMPORTANT Failure to meet the requirement is not suffi-
cient for declaring the item to be unsuitable
but the requirement will be given major con-
sideration in making the final determination
of suitability.

DESIRED The requirement will be given some considera-
tion in making the final determination of
suitability.

MINOR The requirement will be given little or no
consideration in making the final determina-
tion of suitability.

CATEGORIES OF THE FACTOR IMPACT

Figure 4-
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If the requirement is not met, the consequence to the test plan may be:

STOP TESTING The test will be stopped for an undetermined
length of time or will be terminated.

SUSPEND TESTING The test will result in a slippage of more than
5 days in the test schedule.

TEST DELAY There will be a test schedule slippage of from
1 to 5 days.

DEGRADE TEST Testing may continue in a degraded mode while
the deficiency is being corrected. There will
be no test schedule slippage nor significant
effect in the determination of suitability of
the Item under test.

OVERTIME REQUIRED Retesting or additional wQrk will be required
but there should be no test schedule slippage.

RESCHEDULING Testing will continue but rescheduling of sub-
sequent requirements will be required. However,
neither rescheduling nor retesting should result
in test schedule slippage.

REPEAT TEST Testing will continue, but the failed require-
ment will require re-evaluation during other
planned tests.

WAIVE The requirement will probably be waived due to
being overly stringent or beyond the current
state of the art. Failing the requirement
will have no effect on the test schedule.

NONESSENTIAL The requirement will not affect the determina-
tion of suitability and failing the.requirement
will have no effect on the test schedule.

CATEGORIES OF 1HE FACTOR CONSEQUENCE

Figure 5
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FACTOR CATEGORIES CATEGOR CATEGR
ACRj) WEIGHT W k SCORE 5W AEGR

(1,10) j (1,10)J WEIGHT Njk

Destructiveness 3.0 Destructive 1.0 3.0

Damaging 5.8 17.4

Sensitive 10.0 .30.0

Stable 6.1 18.3ii
'/-EAML OF FACTOR DESTGRUCIVEES SCTGR E

Senigur e 600 3.
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Identify the appropriate factors through test
group discussion.

Rank the factors in order of relative impor-
tance by a modified Delphi Technique followed
by group discussion. Weight the factors by
the technique of successive ratings.

Identify the appropriate categories of each
factor through group discussion.

Weight the categories by a 3-step procedure:
(1) Use a modified Delphi Technique to order
the categories within each factor.
(2) Weight the categories within each factor
on an interval of one to ten.
"(3) Compute the net category weight as the
product of factor weight (W.) and category
score (Wj) i.e., N• (Wj) J(WK).

jJ

Categorize each requirement using a simpli-
fied Delphi Technique. I

DETERMINATION OF MODEL PARAMETERS

Figure 7
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In determining G, only linear and simple multiplicative functions are
evaluated. Disjunctive and conjunctive functions described by Einhorn (3, 4)
and logarithmic functions were considered but not included in this research.t The primary reason for not investigating these forms Is that the potential

benefits from the more complicated model would be offset by its computational
difficulties. It must be stressed that this research was oriented towards
the suitability test planner who cannot be expected to have an operations
research br other strong mathematical background.

Six models were evaluated during this research. Models 1 and 2 are
formulated as:

n k
C Z N (i) (1)i j l

C H N (W) (2)i ji
Models 3 and 4 are respectively formulated as:

c m kci Z N (1) (3)
Jul

m
ci jn N k (i) (4)S~Jul

where the factor confidence level is not included in the set j = (l,2,...,m).
Models 5 and 6 are respectively formulated as:

S3 kC- Z N 1 (5)
j-l

3 -k,i 11 N Wi)C- i(6)

where j denotes the three factors of Impact, Probability of Failure and
Consequence as specified in TECOM Regulation 70-34.

This phase of the research involved designing an experiment in which
significant indications of the relative desirability of additive and multi-
plicative models could be determined. Models 1 and 2 are included since it
is hypothesized that one of them is the desired model. Since Model 6 was
proposed by the US Army Test and Evaluation Command for identifying "high
risk" requirements, it was included. Models 3 and 4 were considered since
the factor Confidence Level was not deemed appropriate in one of the test
projects considered in this research. Models 3 and 4 are essentially com-
promises between Models l and 2 and Models 5 and 6.

Each model was used to compute the measures of criticality for each
requirement. For ease of reading, the term "score" is used as being
synonomous with the term "measure of criticality."
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Based on the scores computed by the six models, six sequences of
requirements were generated. The requirement placed first in each sequence
was the one receiving the highest score by the corresponding model. The
other requirements are then sequenced in order of decreasing scores. As
expected, the sequences were not identical.

Procedures were developed for identifying the most desirable sequence.
These procedures were developed for determining a ranking of the sequences
and consequently a ranking of the models. The purpose was to Identify the
better function (linear or simple multiplicative) and to identify whether
the model should include the five factors identified earlier or only the
three factors identified by TECOM. It is assumed that since the sequences
are determined by the models, the sequence identified as being the most
desirable must be the output of the best model. Three procedures were
used in attempting to identify the best model.

The first procedure involved the test officer's attempting to rank
the sequences generated by each model. This procedure was found unsatis-
factory since it required him to consiler too many variables. For example,
one test had 59 requirements, 5 factors and 7 categories per factor. This
is more than 2000 decision variables in comparing just two sequences.

The second procedure involved the test personnel discriminating between
sequences indirectly. The technique used was to have the test officers com-
pare requirements which had received appreciably different rankings in
linear and multiplicative models. The orocedure appeared feasible but no
significant results were obtained. There was no detectable fault in the,,
procedure used so it was concluded either the results indicate u1one of the
models is a particularly good predictive model or that the judges were not
consistent in their evaluations.

The third procedure in-olved simulating the actual results which would
have been experienced if tests had been conducted according to each model.
This simulating procedure addressed the normative side of model building in
that the results of the rankings rather than the rankings themselves are
considered. This approach was found to be successful in that a ranking of
sequences (and consequently a ranking of models) is generated with a signi-
ficant level of concordance among evaluations.

In this procedure, it was hypothesized that if the judges could identify
the simulated tests which they considered to be better scheduled and if these
tests could be ranked in order of desirability, then an ordering of the rela-
tive desirability of the models would result. For this procedure a seventh
sequence based upon random placement of requirements was generated and was
identified as Model 7.

Based upon the simulations for one of the prototype tests (Test A),
the test sequences were ranked by test personnel judges. The results are
shown in Figure S.

The judges on this test agreed that each of the models produced sequences
superior to Model 7. It was also concluded that the additive models (i.e.,
1, 3, and 5) were respectively superior to the multiplicative models (i.e.,
2, 4, and 6). It was further concluded that the five factor models (i.e.,
I and 2) were superior to the three factor models (i.e., 5 and 6). These
conclusions were reinforced by the results of simulations on another proto-
type test (Test B).
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MODEL

JUDGE 1 2 3. 4 5 6 7

"A 3 2 4 1 5 6 7

1 5 2 4 3 6 7

C 2 6 1 4 3 5 7

Correlated 1 53 4 " 6 7 .686

W* is the concordance coefficient described by Kendall (5). The

value shown indicates agreement between judges significant at the

.05 level.

RANKING OF MODELS BASED ON TEST A

Figure
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Based on these conclusions, Models 1, 2, 5, and 6 were simulated for
Test B and presented to a new panel of judges (i.e., new test supervisory
personnel). These judges ranked the models as shown in Figure 9.

The judges concurred that the sequence generated by Model 1 produced
a test schedule superior to that generated by the others. This sequence
was so obviously superior that further opinions were not obtained.

Test A was ready to begin, so no rescheduling was allnwed for that
prototype based on model results. Test B had sufficient planning time to
make use of the model results. The test officer for Test B was given the
requirement se4uence of 58 requirements for his test as generated by Model
1. He was asked to use this ranking in any way he saw fit in scheduling
the test.

In scheduling the test the test officer first identified the constraints
active for Test B. As it turned out, only technological constraints were
required and these dictated that the test consist of four subtests of multi-
ple requirements. Three of these subtests were required to be conducted
sequentially and the fourth subtest consisted of requirements which required
evaluation throughout the entire testing period. The requirements which
were required to be placed in each subtest were identified and grouped within
their appropriate subtests. The ranking of requirements generated by Model
No. 1 were then used to order the requirements within each subtest to form
the final test sequence. The ordering of requirements in each subtest was
rank order consistent with the ordering of the requirements in Sequence No.1.
Finally, the time and personnel requirements for the subtests were identi-
fied and a teutative test schedule which required four personnel and 2 weeks
was established. The test officer found the ranking of requirements gener-
ated by Model No. I to be of appreciable assistance when establishing the
order in which the requirements would be addressed within each subtest. He
also considered the resulting test schedule to be "optimum!', or as nearly
"optimum" as he could determine.

Prior to the conduct of this research, a tentative test schedule for
Test B had been developed. According to the previously developed schedule,
a planning figure of 16 weeks was established for the time required to
complete the suitability test. Of course, this planning figure is a pessi-
mistic estimate. A most likely estimate of the time required had not been'determined.

Through the application of the methods and model described herein,' a
test schedule was developed with a most likely estimate of the time required
being established at 2 weeks. The test officer did not wish to establish a
new planning figure, or pessimistic estimate, until he had re-evaluated all
possible contingencies. However, he was confident that the new planning
figure would be no more than 4 weeks. No claims are made that through the
use of the procedures and model developed in this research a test. schedule
will be developed which will require less than one-fourth of the time which
would otherwise be rqquired. However, it appears that the procedures can
result in either a substantial savings in test time or a more accurate
estimate of the test time required.
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4 C

JUDGi 1 2 5 6 W*

A 1 3 2 4

B 3 2 4

C 1 4 2 3

Correlated 1 3 2 4 .91

RANKINGS OF MODELS BASED ON TEST 8

Figure 9

/ 29
A
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Finally, the authors and the test officer discussed the resulting test
schedule. Without benefit of the sequence generated by the model or of the
categorizations of the requirements established earlier, the test officer
was asked to justify his test schedule based only upon the verbal descrip-
tions of the requirements and hi's knowledge of tie overall te3t. He was
able to justify convincingly the relative placement of each requirement
and found the schedule to be, somewhat to his owi surprise, "optinum" from
his point of view. Of course, this determination of optimatity is based
uoon subjective judgment and the validity of the conclusions is only as
valid as the judgment of the officer making them. However, this officer is
an experienced test officer and could reasonably be considered to be an ex-
pert in his field. Until a constrained optimization model is developed
which will replace expert judgment in qualitative analysis, the opinions of
the experts in the field will have to be used in the determination of optimality.

Based on the apparent success of this method, it was concluded that
Model I was applicable in developing an ordered set of requirements for use
in echeduling suitability tests for a prototype irpm. Model I is a sLmple
linear model and ircludes all factors considered important by the decision
makers involved.

To recap the research thus far, we have determined the parameters deemed
important for inclusion in the model and we have selected an acceptable norma-
tive model to map a set of randomly placed requirements into a set of ordered
requirements. This set of c.-dered requirements represents an ordered uncon-
strained test sequence of requirements. If we could evaluate each requirement
sequentially we would maximize the rate of information flow by the measure of
criticality. However, this unconstrained testing is not practical since it
does not consider time and personnel constraints'on the testing sequence.
This brings us to the third task outlined in the research concept.

SCHEDULING PROCEDURES. The problem under consideration now is to deter-
mine a procedure for developing an actual test schedule which will result ir.
the optimum rate of information being generated during the test. The possloil-
ities of evaluating each requirement simultaneously and evaluating the require-
ments individually and sequentially are considered infeasible and are n't
addressed. This portion of the research assumes !that there are technological,
precedence or proximity constraints which make these type tests ImpracticaL
The following discussion of scheduling procedures raquires the adoption of
the assumptions shown in Figure 10.

Three approaches were investigated in developing test schedules. The
"first two approaches considered situations in which the requirements coald
be easily partitioned into logical and practical subtests. The last approach
"investigated a procedure to quantitatively assign the requirements to sub-
tests and then order the subtests into a constrained test sequence.

The first approach considers unconstrained test scheduling where one or
more requirements have already been assigned to each subtest. The value of
each subtest is determined from the model previously developed and the assump-
tions shown in Figure 10. The time required for each subtest must be esti-
mated by the test planner. These time estimates are presently being accom-
plished so there is no new requirement for the evaluating organization.

/
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1. The measure of criticality, C , is the same
as the value of the informati6n which will
be gained from evaluating the prototype
against the requirements.

2. The value of the requirement is the same
as the value of the information to be
gained from evaluating the prototype
against the. requirement.

3. *The value of a subtest is the sum of the
values of the included requirements.

4. There'is a linear relationship between
the value of the information obtained
from a subtest and the length of time
which will be spent on the subtest.

_S. The time required to complete a subtest
is the same as the time required totest I -

the prototype against the most time con-
suming requirement included in the subtest.

6. The personnel required to conduct a sub-
test is the sum of the personnel required
to individually evaluate each of the
requirements.

SCHEDULING ASSUMPTIONS

Figure 10

Al
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Procedure A is a two-step algorithm recommended for determining a test
schedule under these conditions. This procedure is shown in Figure 11.
This procedure is a direct application of Theorem 3-10 stated and proved by
Conway, Maxwell and Miller in their book, The Theory of Scheduling (6).

In situations where the subtests have been established and where prece-
dence constraints are active, a second procedure is recommended. Procedure
B is recommended under these circumstances. This procedure is an applica-
tion of the constrained least cost testing sequence described by Mankekar
and Mitten (7). See Figure 12.

Basically this procedure itvvolves isolating those subtests for which
the precedence constraints are active and then systematically satisfying
the constraints. After this is done, Procedure A is applied in a manner

0 which does not violate any of the constraints previously satisfied.
Set 1 consists of those subtests for which precedence constraints are

active and Set 2 consists of those subtests for which there are no prece-
dence constraints. The matrix R Is an m x m matrix.

R { (r where m is the number of subtests in Set I and
ij

rnj -1 if subtest i

must precede subtest J; otherwise

rj =0. (ri 0).

The matrix R reflects all precedence constraints on Set 1. The matrix R'
is identical to R and is merely used as a working matrix. With these defi-
nitions in hand, the procedure will lead to an optimal least time test
sequence under the assumptions noted. The development, proof of finiteness
and proof of optimality were developed by Mankekar and Mitten (7). A
computational algorithm for using this precedure is shown in Appendix 1.

In these two approaches at scheduling, it was assumed that the subtestrs
were predetermined. The next approach attempts to quantitatively assign
the requirements to appropriate subtests.

It is assumed that the only constraint is personnel where only N person-
nel are available for commitment to a subtest. It is further assumed that
Vi, Pi and Ti are known where these variables are the value, personnel re-

quired, and the time required for requirement i, respectively. Vi can be

determined from the model previously developed and Pi and Ti can be esti-

mated as they are presently being done. The problem now becomes one of
designing the best set of subtests which can be sequenced by Procedure A.

This problem is analogous to the n/m job shop problem where the n jobs
(test requirements) are assigned to m machines (subtests). Procedure C,
shown in Figure 13, is presented here only for consideration as a solution
to the problem. It draws heavily from the work done by Conway, Maxwell and
Miller. It has received very little testing and has not been applied to an
actual suitability test. However, it is simple, intuitively appealing, and
it can be carried out by hand or coded for computer use.
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-Compute Ti/Vi for all i

Construct Sequence S(A)

S(A)- (S,$,.,S,., Sn TI/V, <_T2V <.. Tt/Vi <_.... Tn/Vn)

S(A) is the desired test sequence

TI a time required to conduct subtest I for each I c (l,n)

V, - value of subtest i for each i c (l,n} t
Sn - number of subtests

PROCEDURE A
UNCONSTRAINED SCHEDULING

Figure 11
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Procedure B

Form Set 1]
I

[Apply Procedure A to Set 11

Form Matrices R and R'

'oFor all i and J for which rij - 12n o

Swhich sj precedes sj, set ri 2

whIs there an i and j for Label current
which rj a I sequence S(A)'

No___ ter an i forI Apply Procedure A to
o which rik - I Set 2 forming

Yes Sequence S(A)"
Set k equal
to index of Form Set Tk of all Integrate S(A)"
next subtest subtests 1 such Into S(A)'
in the current that rik - 1
sequence

Label this sequenceApply Procedure A s(B)
to set Tk to form
ordered set Tý s itI ~S(B) is the "

desired sequence:
For all I and J H Place T1I V
for which rij = 2 immediately
and sj now prior to sk
precedes si, set
rij a I

PROCEDURE B
Set k - to index of first CONSTRAINED SCHEDULING
subtest in the current sequence Figur3 12
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Procedure C

fwhere TI/V 1 1.T2/V2  whrP1 2 wheTt 2I hr V2:2

-*EFo~r=mBT from Sequence 3

dd require- Fdd requirements from [Add requirements

ments from 24et from 2

a~rm subtest BT1 I Form subtest BT2  a~rm Subtest B

rom 8T1, BT2, and BT3 select the one with max V

IDelete from Sequences 1, 2, 3, and 4 those requirements inthe subtest selected above

No Ar 1rqirements placed into selected subt~es~ts?
Yes-

L~np2Lfrodure

1s there a su test for which personnel constraints are not active?

II
Yes fsr whc pesonne con-j< T n P Pýae nt

L1~~esi~eseuf~-
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ST2: B,D,F Unconstrained
1A ST1: A,E sequence of

A Procedure ST3: C subtests
A

F B

C ST3: E,r Sequence of
E STI: A,B subtests with

B D Procedure ST2: D,C precedence
B constraints

C Model E

F ST1: A,C Sequence of
ST2: B ordered subtests

Procedure ST3: D,E,F with personnel
C constraints

Set ofrandomly Set of orderedplaced require- requirements

-ments

CONCEPT SUMMARY,-

Figure 14
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Basically, Procedure C involves forming four sequences of require-
ments and alternately drawing from the sequences to form trial subtests.
The subtest which contains the most value is then selected as the best
of the trial subtests and the procedure is repeated until each require-
ment is assigned to a subtest. A computational algorithm for using Proce-
dure C in included in Appendix II.

SUMMARY. The three procedures used during this research can be put
into perspective by relating to the original concept of the research. See
Figure 14. The model developed mapped a set of randomly placed require-
ments into a set of ordered requirements. Procedure A maps this set into
an unconstrained sequence of subtests when the requirements have already
been assigned to subtests. Procedure B maps the set of ordered require-
ments into a constrained sequence of subtests when the requirements have
already been established and there are active precedence constraints.
Procedure C maps the set of ordered requirements into subtests and then
develops the order or sequence for these subtests when there are active
personnel constraints.

None of the scheduling procedures used during this research are com-
pletely satisfying. Each procedure is only a partial answer. What is re-
quired is a procedure which will map a set of ordered test requirements
into an ordered sequence of subtests when there are active precedence,
proximity, personnel, time and economic constraints. This is an area for
future research.

However, it is felt that the portions of the research dealing with
parameter identification and model development are a worthwhile basis for
further research into the problem of test scheduling when there are multi-
ple active constraints.

REFERENCES

1.' John R. Moore and Norman R. Baker. "An Analytical Approach to Scoring
Model Design - Application to Research and Development Project Selection".
IEEE Transactions on Engineering Management Volume EM-16, No. 3, August 1969.

2. Headquarters, US Army Test and Evaluation Command, Risk Analysis of Suit-
ability Testing (USATECOMR 70-34), Aberdeen Proving Ground, Maryland, 1971.

3. Hillel J. Einhorn, "The Use of Nonlinear, Noncompensatory Models in Deci-
sion Making", Psychological Bulletin, Volume 73, No. 3, 1970.

-, 4. ---. "Use of Nonlinear, Noncompensatory Models as a Function of Task

and Amount of Information". Organizational Behavior and Human Performance,
Volume 6, 1971. -

5. M. C. Kendall, Rank Correlation Methods. Charles Griffin and Company
Limited. 4th Edition, London, 1970.

6. Richard W. Conway, William L. Maxwell and Louis W. Miller, Theor f
Scheduling. Addison-Wesley Publishing Company, Reading, Massachusetts, 1967.

7. P.S. Mankekar and L.G. Mitten, "The Constrained Least Cost Test Sequenc-
ing Problem", The Journal of Industrial Engineering, Volume XVI, No. 2
March-April 1965. -!

-22 7-

V. #.- ,



APPENDIX A

COMPUTATIONAL ALGORITHM FOR PROCEDURE B

STEP 1: Form two sets of subtests. Let Set 1 consist of those
subtests for which precedence constraints are active. Let
Set 2 consist of those subtests for which no precedence
constraints are active. Steps 2 through 15 refer to
Set I only.

STEP 2: Order the subtests in Set I by Procedure A. Index the
subtests according to their relative position in S(A)
with the first subtest in the sequence being denoted sl.

STEP 3: Form an m x m matrix R = (rijJ where

rij -1 if.subtest i must precede subtest j,

otherwise rij = 0; and

rii, 0; and

rij =I implies r; i = 0; and

if rij = I and rjk = 1, then rik = 1.

STEP 4: Form a matrix R' = (rij} identical to matrix R.

STEP 5: Set the index k = 1.

STEP 6: Consider each pair of subtests i and j. If r.. I and
subtest i precedes subtest j in the current siuence,
set rij = 2.

STEP 7: If rii for all i and j go to-Step 15.

STEP 8: Scan R' to determine if ri 1 for any i. If there exists
an i such that ri. = 1, go to Step 9. If ri• i I for all i,
set k equal to the index of the next subtest in the currentsequence vidJ r~peil tt:i,. step.

STEP 9: Form set Tk of all subtests i for which rik 1.
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STEP 10: Apply Procedure A to set Tk to form the ordered set T•.

STEP 11: Place the ordered set Tj immediately in front of subtest Sk.

STEP 12: Consider each pair of subtests I and j for which rjj - 2.
If subtest j now precedes subtest i, set rj - 1.

STEP 13: Set k equal to the index of the first subtest in the current
sequence of subtests in Set 1.

STEP 14: Go to Step 6.

STEP 15: Label the current sequence S(A)'.

STEP 16: Apply Procedure A to Set 2. Label the resulting sequenceS (A ) " . S (A ) " - { S .,

STEP 17: Form sequence S(B) from sequences S(A)' and S(A)" by itera-
tively integrating the S! into S(A)' such that
T'/V' <. T"/V.o TestI/Ving . S(B) is the desired
sequence rttsig
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APPENDIX B

COMPUTATIONAL ALGORITHM FOR PROCEDURE C

STEP 1: Apply Procedure A to the requirements to form Sequence 1.
For those requirements in which Ti/Vi * Ti/Vj place the
more time consuming requirement first in the sequence.

STEP 2: Construct Sequenceaof requirements with the requirements
being ranked in order of increasing value of personnel
required. Resolve ties by placing the more time consuming
requirement first.

STEP 3: Construct Sequence 3 of requirements with the requirements
being ranked in order of decreasing value of Tj. Resolve
ties by placing the more valuable requirement first.

STEP 4: Construct Sequence 4 of requirements with the requirements
being ranked in order of decreasing value of Vi. Resolve
ties by placing the more time consuming requirement first.

STEP 5: Construct a base-subtest by including in the subtest the
first consecutive requirements from Sequence 3 until the
inclusion of the next requirement in the sequence would
violate the personnel constraint. Call this base subtest
BT.

STEP 6: Construct three tentative subtests as follows:

a. Add the first consecutive requirements from Sequence 4
to BT until the inclusion of the next requirement in
the sequence would 'violate the personnel constraint.
Next add the first consecutive requirements from
Sequence I to the current subtest until the inclu-
sion of the next requirement would violate the per-
sonnel constraint. Finally, to this subtest add the
first consecutive requirements from Sequence 2 until
the inclusion of the next requirement would violate
personnel constraint. Label this subtest BTI.

b. Construct subtest BT in a manner similar to con-structing BTl. Howeger, in forming BT1 requirements

were added to BT from Sequences 4, 1, and 2 in that
order. In forming BT2 add requirements to BT from
Sequences 1, 4, and 2 -1 that order.
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c. Construct subtest BT3 by adding the first conseeutive
requirements from Sequence 2 until the inclusion of
the next requirement in the sequence would violate
the personnel constraint.

STEP 7: From subtests BTl, BT2, and BT3 select the subtest with
the greatest value. Note that the time required for each
subtest is the same as the time required for each of the
other subtests since each subtest is based upon BT. Con-
sequently, this step involves selecting the subtest with
the minimum value of T/V.

STEP 8: Delete from Sequences 1, 2, 3, and 4 those requirements
included in the subtest selected in Step 7.

STEP 9: If each of the requirements has been included in selected
subtests, go.to Step 10. Otherwise return to Step 5.

STEP 10: Apply procedure to the subtests generated to form Test
Sequence S(A).

STEP 11: Scan S(A) until the first subtest is found in which the
personnel constraints are not active. Call this subtest k
with test time required being Tk and personnel required
being Pk. If no such subtests are located, then go to
Step 14.

STEP 12: Continue to scan S(A) until the first requirement Rj is
found such that Tj < Tk and P < N- P. Place Rj into
subtest k. If no such requir"nt is Tocated, then return
to Step 11. Scan immediately below subtest k.

"STEP 13;- Return to Step 10.

STEP 14: Stop. The current sequence is the desired sequence which
should be the basis of the testing schedule.

C I.
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STOPPING RULES FOR SEQUENCING WITH PARTICULAR
REFERENCE TO MISSILE RANGE SCHEDULING*

'Paul H. Randolph
Department of Mathematical SciencesNew Mexico State University

Las Cruces, New Mexico

ABSTRACT. Monte Carlo methods have been proposed for finding soiu-
tions to scheduling problems. One deficiency of these methods has been
the absence of appropriate rules for stopping the sampling processes. This
paper presents stopping rules that not only have been found effective for
a variety of sequencing problems, but also provide a measure of the quality
of the sequence chosen. Reference to missile range scheduling is made.

MISSILE RANGE SCHEDULING. At a missile range a set of missions are
requested each day. One way to schedule these missions is to take a per-
mutation of the missions and schedule the missions as early in the day as
possible in the order of the permutation, but with no conflict in the re-
sources required for each mission. Because of the nature of the standard
work day, it may not be possible to schedule some missions when using the
given permutation. Different permutations will give schedules with
different sets of missions that are scheduled and not scheduled.

With each mission there is associated a payoff, so that a schedule pay-
off is the sum of the payoffs of the scheduled missions. If a permutation
is selected by a random procedure, then the corresponding schedule payoff
can be considered a random variable. By taking a sequence of random per-
mutations, a sequence of random variables of schedule payoffs is obtained.
If "enough" of these random payoffs are obtained, the random schedule
generation can be terminated and the schedule corresponding to the best
of the observed schedule payoffs can be used for the set of missions requested

for the day. The problem, of courcle, is to determine how much is "enough";.
or, in other words, when to stop the random generation of schedule or
sequences.

STOPPING RULES FOR INTEGER PAYOFvS. Let XVX 2.... denote the random

variable of the payoffs associated with generating successive sequences by
a Monte Carlo sampling process. For the present, assume. that each sequence
payoff is an integer and that the objective of the sequencing problem is to
find i sequence for which the payoff is maximized. Furthermore, without
loss of generality, assume that all payoffs are positive and bounded above
by the known integer 1. Also, let yn denote the maximum of the payoffs,

Xl,...xn obtained from the first n sequences; that is yn = max(xl'...,x)"

Thus, it is assumed that sampling will be with recall.

.*Research for this paper was partially supported under AROD Contract No.
DAHCO4-C-0011 at the Instrumentation Directorate, White Sands Missile I
Range, New Mexico.
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The probability function for each sequence payoff is the multinomial
characterized by P(X-k) - p(k), k - W,...,h. hen the values of p(k) are
known, then Chow and Robbins [1], [5] have shown that the optimal stopping
rule is obtained by calculating the expected increase in gross payoff
associated with generating another sequence,

T(yn) r (k-yn)p(k),n Yn

and comparing this with the relative cost, c, of generating a single se-
quence on the computer; that is, if T(y) > c, continue for another obser-

vation; if T(y n) < c, stop. The function T(y n) is sometimes called the
stopping rule function.

Note that this stopping rule states that at each stage of the process,
the experimenter computes the expected gain from taking exactly one further
observation and then terminating the Drocess. If the expected net gain
from taking this observation is not positive, then the process is terminated.
Otherwise, the next observation is taken, and a similar computation is again
performed. This procedure is called the myopic procedure because at each
stage the experimenter does not look beyond the possible outcomes of his
very next observation when making his decision, and for sampling with a
known distribution this myopic procedure is optimal.

Unfortunately, for sequencing problems the values of P(X-k) = p(k),
k =,..., , are almost never available. However, even though these pro-
babilities are not known, it is possible to obtain estimates of these pro-
babillties through a Bayesian analysis, and then substitute these Bayesian
estimates for the p(k) Into the above myopic stopping rule function to ob-
tain what might be called a Bayesian stopping rule for multinomial obser-
vations [4].

To obtain these estimates define the Z-dimensional vector 0-(01,...,0•)

of probabilities such that for the n-th observation, Xn, the conditional

probability function is given by P(X n kJO) 0 k, k 1,..., 1, where 0 is

an element of the simplex .

k.1

Since the conjugate prior density [3] for the multinomial is the Dirichlet,
the initial prior density of 0 can be written as

f(o) r r(m) /k=l

This is the Bayesian prior density of 0 for observation Xn+I.
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Furthermore, since the joint density function for Xn+1 and ek is ekfn(W),

then the marginal distribution

Pn (k) - (mk+nk)/(m+n), k ,

is the probability that X n+ will take on the value k.

This value of P(X "k) . p (k) can be 3ubstituted for p(k) in the
n+l n

stopping rule function, T(y), to obtain what might be called the "Bayesian

stopping rule function", which will be denoted T (y ), and is given by
B~ n

TB(y) n E (k-y n)pn (k) = (rn+n) E (k-yn)mk.
k=Yn k=Yn

Comparing the value of this function with the value of c will determine a
stopping point; that is, if TB(yn) < c, the sampling of sequence payoffs

should be stopped. Since y is a monotonically non-decreasing function of

n, then TB(Yn) is a decreasing function of n, which approaches zero as n

increases. Thus, sampling always will eventually stop.
This Bayesian stopping rule function depends on the specification of a

set of parameters associated with the Dirichlet prior density function. If
these parameters, ml,...,m,, are examined, it will be noted that they can

be written in terms of the initial probabilities as mk = mPo(k), k = 1,...,2.

Since the po(k) are essentially normalized values of the mk, it may be pre-
ferable to specify these initial probabilities, po(k), k =- ,...,, (of

which only 1-1 are independent) and the parameter m, rather than to estimate
the mkdirectly. This can be done by an arbitrary selection of probability

values, by specifying a discrete probability function, or even by integrating
a continuous function over a unit interval containing k.

The parameteri m has 'some interesting characteristics., A lower bound
for m is zero, and this can be a greatest lower bound only when po(k) =

1/t, k l,...,2, As m -÷ 0, then TB(y) 0, and the Monte Carlo process

stops with the first observation, implying no confidence in the initial
probabilities. On the other hand, as m ÷ , then

W~(y E-lY P~kmn+Iy m(mn) E (k-y)p0Ck) (ky (kn n
ky nky k=y n O )Ty

which is the expected improvement for a known multinomial distribution, in-
dicating a complete confidence in the initial probabilities. Thus, the
parameter m can be interpreted as a coefficient of confidence in the initial
probabilities. In fact, it can be considered as being analogous to the
sample size that would be needed to obtain through a random sample the same
quality ,i estimate of p 0 (k) as those given by the specified prior probabilities.
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STOPPING RULES FOR CONTINUOUS PAYCFFS. In missile range scheduling
the schedule payoff can be taken to be the sum of the payoffs of scheduled
missions. Each mission payoff is assumed to be a quadratic function of
the mission priority, weighted by a "project readiness" factor. Project
readiness is the probability that the contractor will not cancel the mission
after it has been scheduled. If the priority for mission i is given by ri

and the probability of noncancellation is qi, then the schedule payoff is

2
X - Zqir

1

where the summation is over all missions that can be scheduled when using a
* given permutation. Since q1 is a number between 0 and 1, it is evident that

the payoffs will not be integers. Furthermore, the number of different
possible values of the payoffs is large and also the values of these pay-
offs are unknown. Thus, for missile range problems the payoff can eosen-
tially be considered a continuous random variable.

To determine the prior distribution of e for discrete payoffs, it was
proposed that values of mk be obtained through the specification of the

initial probabilities p 0 (k). One way if estimating these initial probabili-

ties is by integrating a continuous function over a unit interval that con-
tains the point k. This suggests that a limiting procedure could result in
a stopping rule for continuous payoffs.

Suppose that the sequence payoffs can assume arbitrary values in the
interval [0,I], and let A ,...,A be any partition of this interval, where

Ak is defined as Ak t'-l,•), k 2,3,...,v, A1  [Ox1. Suppose H(x)

is a distribution function of [0,Z] such that

po(A.) " f dH(x) - H )- H(x%_l)

Ak

reflects the experimenter's prior intuition for the initial probabilities
for each partition Ak, k - l,...,£, regardless of the method of partition-
ing.' If x" is any point in Ak, then the integral defined by

k V

m(m4-n)- (x-y)dH(x) - lim m(m+n) - (-y )(H(') - H(x•_l))I(xk > y),
Yn n k-I k n -- '

is the expected gross improvement in payoff for an additional observation,
and is denoted by TB(yn). I(x) is the usual indicator or characteristic
function.

As an example, assume the normal listribution reflects the experimen-
tor's beliefs for a particular set of initial probabilities. If 0 denotes
the standarized normal distribution function (zero mean and unit variance)
and * its corresponding density function, then the stopping rule function
becomes
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Tn+l(y) - m(m+n)+(o(*((yn-•)la)-*((L-s)la))

where U and o are the mean and variance, respectively, for the prior dis-
tribution. It is suggested that a set of iritial observations be used to
estimate the parameters v and a.

EXAMPLE. In Figure 1 is given the results when 40 missions were re-
quested, and where the total number of different resources for these missions
was 116. If all 40 missions had been scheduled, the schedule payoff would
have been 189.5.

By scheduling via a Monte Carlo procedure, a total of 19 schedules
were generated. The corresponding schedule payoffs, x , are indicated in

the second column, with the maximum payoffs, y n given in the third column.

In the next column are the expected payoffs, TB(yn). In this problem the

value of c was 0.001. Three missions, all of low payoff value, were not
scheduled.

It should be noted that the expected payoff from continued sampling
is 0.00090. That is, if the computer were permitted to continue generat-
ing schedules, the amount of expected improvement of schedule payoff would
be only this much over the maximum of 186.88 that was obtained by stopping
wich the nineteenth observation. This, of course, is a measure of the
quality of the schedule finally chosen.

CNCLUSIONS AND LIMITATIONS. Myopic stopping rules have been applied
to missile range scheduling at White Sands Missile Range with very satis-
factory results. It is possible to generate a schedule in one-twentieth
of a second and thus in a few minutes hundreds of schedules can be observed,
and the Bayesian stopping rules are very effective in determining the
stopping point in the sampling procedure.

However, there exists one problem. It has been shown that the myopic
procedure is optimal for random variables with known distributions. When
the probability values are not known, then the myopic rule is not appropri-
ate. The fundamental distinction is that when the distribution is completely
specified, the observations are independent; that is, knowledge of the
values of some of the observations provides th: experimenter with no addi-
tional information about the values of the other observations. On the other
hand, if the distribution involves the value of one or more parameters that
have prior distributions, the observations are dependent under their joint
margi-nal distribution. Hence, knowledge of the values of some of the obser-
vations will, by providing information about the value of the parameters,also provide information about the values of the other observations. This

difference between independent and dependent observations distinguishes
these two types of problems. The observations in a random sample from a
distribution involving unknown values of parameters will no longer be
independent.

In general it is felt that myopic rules applied to the random variable
with unknown probabilities, using a Bayesian analysis, will provide stop-
ping rules that are "near-optimal". Preliminary analysis for the multi-
nomial indicates that such a rule may be conservative, that is, requiring
more observations than necessary before stopping, but this is not certain.
So, until more accurate results are available, the myopic rules will be
used as good approximations that will vield "near optimal" sequences.
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LARGEST POSSIBLE TOTAL CXPECTED SCHEJULE PAYOFF IS 189,sno

N %CVEDULE PAYOFF LARGE5T PAY;IFF SO FAR FXPECTED IMPROVLUt:4T
I 184s249973 194,247173 l.Cnlnoo
2 166on39772 I'4.4 9StT73 1 OUIt'10C0
3 170.S69973 Ja'4*249973 jeqlInjo
q 17416999772 I4*249973 1OO00uuo
S 17Ao319973 1049Z29973 1.001000
& 181-077973 184'4249973 1e001000
7 160067977Z 18'$4*9913 .013012
a 186.879972 jAAn.7qiTZ n003502
9 Ii0.919971 1l6.*79972 .(In0311

10 376*78997Z IS0498772 Q?002458

11 178*1'99973 184s979772 *002012
12 177,989773 Jn6s879972 b001645
13 179*209472 |t•6,q79772 00013s5
14 17.9999172 1rP6#q7997 2001151
15 16h.S19972 18&,q79972 *001168
16 1795•89973 186°479972 *001069
17 182.769972 1R6*979972 .001101
18 1819309973 R6.oq79972 0001056
19 1739019372 186,879972 .000900

FIGURE 1

Computer Printout of
Monte Carlo Scheduling
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APPROXIMATE CONFIDENCE LIMITS FOR P(Y < X)

J. R. Moore and M. S. Taylor

U. S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

-ABSTRACT

A procedure is given for constructing approximate confidence limits for
P(Y < X), whore X and Y are independent random variables; the distribution of
Y being known and normal and the distribution of X being unknown and positively
skewed. A problem of determining the probability that the sidewall of a
combustible cartridge case will not be burned through prior to firing an
artillery round in an automatic firing cycle, given that it is ignited by
smoldering residue after chambering, is used to illustrate the technique. A
listing of a computer subroutine for the procedure is also given.

INTRODUCTION

An artillery round with a combustible cartridge case is fired from a
weapon using a control system which loads the round, aims the weapon and fires
the weapon, all automatically. At least two rounds of ammunition are fired
in this fashion and some smoldering residue from the preceding round may
remain in the chamber of the weapon when a round is loaded. Let R be the
conditional probability that the sidewall of the cartridge case of the chambered
round is not burned through prior to firing, given that it is instantaneously
ignited by smoldering residue. The problem is to find both a point estimate

* and a 95% lower confidence limit for R, using information concerning the
gun cycle time and data on cartridge case burn-through time obtained from
laboratory tests.

There was sufficient gun cycle time data available to justify the
assumption that the elapsed time between chambering and firing a round is
normally distributed with (true) mean P2 - 2.9 seconds and standard deviation
a2 - 0.13 seconds.

An experiment was conducted to estimate the statistical distribution of
cartridge case sidewall burn-through times. One hundred and fifty samples of

* sidewall material were taken from several cartridge cases and tested. Each
sample of sidewall material was ignited and the elapsed time between ignition
and burn-through was measured by three observers using stop watches. No data
were obtained for two samples and there were some missing data for some of
the item under consideration, it was necessary to sample cartridge cases
from only one lot and assume that this sample was randomly selected from the
conceptual population consisting of all such cartridge cases which will be
manufactured. It was suggested that the validity of this assumption should
be verified by further testing when a sample which is more representative *1
of the production item can be selected.
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PRELIMINARY STATISTICAL ANALYSIS

The burn-through data were analyzed assuming a one way

classification, components of variance (random effects), analysis of
variance model with unequal numberof observations per cell. The
component of variance attributable to observers was much smaller than
the among samples component of variance (0.08 sec. 2 vs. 2.23 sec. 2 )

and was not statistically significant at the • * 0.001 level of significance.
It was concluded that the precision of measurement resulting from the

use of observers with stop watches was adequate.

The data were used to test the hypothesis of normality of the

distribution of burn-through times, a requirement of the Church-Harris
procedure used for estimating R. A chi-square goodness of fit test
rejected this hypothesis at the 0.05 level of significance but

accepted it at the 0.01 level. Since the chi-square test, which
is relatively insensitive to departures from normality in the region

of the tails of a distribution was inconclusive, the statistic
b, - n[E(xI - j) 3 12 [Z(xI - i)23-3 was calculated and used to test
the hypothesis that the distribution is not skewed. This hypothesis
was rejected at the 0.02 level of significance (a two tail test with

0.01 probability in each tail was used) so it was inferred that the
distribution is positively skewed. Next, Craig's procedure [2) was
used to determine which member of the Pearson system of frequency curves
best describes the data. It was found that the Pearson Type III curve

(a gamma density function) fits the data best. From Carver's table of -

the standardized Type III function [3], it was verified that the lower
tail ofcthe Pearson Type III curve contains less area in the interval
-- < x < u + a than a normal curve with the same mean and variance.

This indicated that a normality assumption would leave to conservative
point and interval estimates of R, i. e., if the estimats are biased,
the bias will be such that R is underestimated.
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For the purpose of estimating R, it was assumed that cartridge

case sidewall burn-througn time is normally distributed with estimates
of the mean and standard deviation of the distribution being X - 9.71

seconds and, S - 1.49 seconds, respectively.

APPLICATION OF A MODIFIED CHURCH-HARRIS PROCEDURE

The procedure used for estimating R is based on the work of Church
and Harris [1]. Let the random variable'X be the cartridge case sidewall
burn-through time in seconds and the random variable Y be the gun cycle

time in seconds. Assume that X and Y are statistically Independent and

both normally distributed. Introducing the notation

E(X) -

VAR(X) -a
E(Y) U12

VAR(Y)- a2

and defining the random variable W - Y - X, it follows that W is normally
distributed with E(W) - - U2 and VAR(W) -2 + aU. Then

2-

R N{Y < X) P P(Y - X < 1O}P( 0. M- (2 " )
We next make the transformation Z - so that Z is

~1 2
distributed normally with E(Z) = 0 and VAR(Z) 1. Then

S - U2 (1)
R~~o )( < )P!I 2+a 2U

12

'a
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where #(.) is the standard normal cumulative distribution function.
Substituting the known values P2 and o2 and the estimated values
\ I and o2 S2 into (1) yields the point estimate

R2

Now, having a point estimate of R, we proceed to approximate
the probability distribution of the random variable R and use this to
construct an approximate 100(1 - y)% lower confidence limit for R.
In doing so. we make use of the fact that I is normally distributed

with E(l) - P, and VAR(R) . 02/n; S2 is asymptotically normally
distributed with E(S2) . C2 and VAR(S 2 )w2o4/(n-l); and that I and S2

are statistically independent. 204
Let T S S2 - of so that E(T) -0 and VAR(T) -

and define

U2 IA2 I

V a - ___

v'S2~T , + + T
C2 1 2

Expanding V in a Taylor's series about the point [E(X), E(T)] (ii, 0)

we obtain

X IA2 1(IAI - O2 T +01
-T 7 /(iuy -+ n-r

1a" 02 1 2
with probability one.

i

Because of the indenendence of I and T, the distribution of V is
asyasymptotically normal with

E(V) -
"-2 + 02

12
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and

VAR(V) - 2)

02a + +2 1 + )

Using S2 to estimate 02 and X to estimate u, we obtain as an estimate

of the standard deviation of V (/)

SI 
I S2( 

212

____ I Cn-1)(S2 + 02)2

2

I("l-" 112I
Since R - #\• / u[E(V)]

and

p{V (v) (1 -- 1 - y

it follows that

(1 R > ) -

We use (2) to obtain the 100( 1 - %) % lower confidence lfmit for R as

LCL.d =#[V - * (- - "Oav
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COMPUTATIONAL RESULTS

For the combustible cartridge case problem we want a 95% lower

confidence limit for R. Since 1(.95) *1.645, this limit is given
by

LCL 95 " (V - 1.645;v).
A computer program (Appendix A) was prepared to calculate V, ft

'V

and a 95% lower confidence limit for R. In this particular problem a

95% lower confidence limit of 1 - lO"- was considered satisfactory to

assure the margin of safety required. The 95% lower confidence limit
was determined to be 1 - 0.2 X 10-4.

Next, the question of how much the mean gun cycle time can be

increased and still leave a 95% lower confidence limit of 1 - 10-4

for R was considered. To answer this question it was assumed that the

coefficient of variation of the random variable Y, 024/2, remained

constant as I2 increased, from 2.9 seconds to 3.9 seconds, in steps of
0.1 seconds. V, f, and the 95% lower confidence limit for R were'V
calculated at each step. It was found that the mean gun cycle time

can be increased as much as 0.5 seconds without the 95% lower confidence
limit forR falling below 1 - 10"4.

SUMMARY AND CONCLUSIONS

The application of the Church-Harris technique to-the combustible

cartridge case problem can be summarized as follows: The analysis

depended on two critical assumptions; a) the sample of cartridge case

sidewall material used to obtain burn-through time measurements was a
"random sample from the conceptual population consisting of all cartridge

cases of the same type which will be manufactured in the future and b)
the distributions of X and Y are normal. Assumption a) seemed

questionable and it was suggested that further testing be done to
verify it. Assumption b) was not satisfactorily established by the
data but the analysis indicated that, if the assumption is not valid

the inferences drawn from the study will be on the safe side, i. e.,
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R will be underestimated. The conditional probability that the sidewall
of a cartridge case of a chambered round will not be burned through prior
to firing, given that it is instantaneously ignited by smoldering residue
remaining from a round previously fired, was estimated to be 0.9999971 with
a 95% lower confidence limit of 0.9999779. It was also determined that the
mean gun cycle time can be increased as much as 0.5 seconds (a 17% increase)
without the 95% lower confidence limit exceeding 0.9999, provided that the
coefficient of variation remains constant.

REFERENCES

(1] Church, J. D. and Harris, B. (1970). "The Estimation of Reliability
from Stress-Strength Relationships". Technometrics 12, 49-54.

[21 Craig, C. C. (1936). "A New Exposition and Chart for the Pearson
System of Frequency Curves". The Annals of Mathematical Statistics,
7, 16-28.

[3] Carver, H. C. (1940). "Statistical Tables". Edwards Brothers Inc.,
Ann Arbor, Michigan.

APPENDIX A

The following is a listing of a subroutine CHAR (CHurch-HARris) and
a representative driving program written for this study. Notice that CHAR
requires as input X(a vector of data), v a oy, N and outputs X,S,R,a_,
and LCL. Surboutine CHAR calls subroutines 9D and FINVND to evaluate V
the normal distribution function and the inverse of the normal distribution
function respectively.

The output of the sample program is formatted as appears below. The
dimension statements (DIMENSION X(500)) appearing in the driving program
may be modified to accommodate the data available.

4
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STATISTICAL EVALUATION OF FLIGHT TEST PERFORMANCE
OF THE HELICOPTER LIFT MARGIN SYSTEM (HLMS)

'Erwin Biser and Ronald Kurowsky
Avionics Laboratory, USAECOM

Fort Monmouth, New Jersey

ABSTRACT. An item urgently needed by utility aircraft is a measurement of
lift margin. Lift Margin is defined as the maximum available lift minus
the effective gross weight of the aircraft. It is the intent of this
program to define a method whereby this value is automatically presented
to the pilot at all times.

Such a system is presently being designed and built under the auspices of
the Joint-Army-Navy-Aircraft-Instrument-Research (JANAIR) program. This
system will also have the added capability of forcasting Lift Margin (L.M.)
to and at a given destination if altitude and ambient air temperature are
known. The factors that are most likely to affect the performance of
HLMS are torque, air temperature, altitude, fuel weight, and aircraft weight.

The flight test evaluation of ELMS will be performed at US Army Systems
Test Activity (ASTA), Edwards AFB, California; and data collected on a
pulse-code-FM modulated (PCM) system will be reduced to digital format for
evaluation. A reference air density system, corrected for humidity and
calibrated by the National Bureau of Standards will be used to define errors
caused by calculating air density directly from pressure and temperature.

A statistical analysis of the performance of the entire HLMS and its
subsystems (components/sensors) is being undertaken by means of errormodels to determine and validate the effectiveness of HLMS. The objective
is to obtain regression equations of lift margin as a function of torque,
temperature, pressure, etc. -

Lift Margin (L.M.) = Maximum Available Lift (MAL) - Effective Gross Weight
(EGW) LM-0-the point at which the aircraft cannot hover at a higher alti-
tude under its present loading conditions.

INTRODUCTION. The present work was undertaken because it was realized that
the safety and utility of helicopters would be substantially improved if,
the pilot knew at all times the lift capability of the vehicle. There have
been a number of accidents wherein the major cause was attributed to the
inability of the pilot to accurately assess the lifting ability of the
vehicle and the helicopter "stalled". This phenomenon, usually referred
to as "settling-with power", typically occlirs when the helicopter attempts
to take off or land at high vehicle gross weights and high density altitudes.
If a helicopter should land in the early morning when the air is cool and
relatively dense, it might be impossible for the helicopter to ta.e off
with the same load in the afternoon when the air is warm.

Preceding page blank -249-
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Theoretically, it is possible to account for temperature, pressure,
humidity and varying loads by the use of slide rules and charts supplied
inaircraft handbooks or manuals but such is simply not convenient or
fast enough to be practical in most operating situations. In addition,
there is the tendency to feel that once the computation has been made, the
results will hold for a substantial length of time. Changes in ambient
conditions over a period of just a few hours may completely alter the
capability of the helicopter.

For these reasons a Helicopter Lift Margin System is extremely desirable.
Such a system will indicate to the pilot the present potential lift in
excess of the weight of the helicopter. Therefore, before slowing down
and landing the pilot can check the helicopter's lift margin and determine
if it is safe to hover and complete a vertical landing, or if a rolling
landing (STOL type) should be made, or if in fact it is totally unsafe to
la:id in a restricted space.

The major objective of the Helicopter Lift Margin System is to demonstrate
the feasibility of continuously computing helicopter lift margin with a
desired accuracy under varying operational conditions. Other objectives
such as determining the lift variations due to air density measurements
with and without humidity inputs and the empirical use of torque to
measure fuel consumed will be studied.

DEFLNITIONS OF PRINCIPAL PARAMETERS:

Helicopter Lift Margin - Maximum Available Lift - Effective Gross Weight
Maximum Available Lift (MAL)- The maximum left that can be generated by
the rotor under ambient conditions of air temperature, air density, alti-
tude, air speed, ground effect and engine characteristics.
Effective Gross Weight (EGW)- The apparent %yeight of the helicopter as
"seen" by the rotor under hover conditions considering air density, ground
effect and engine characteristics.

UNDERLYING CONCEPT. A concept by which lift margin may be obtained is"
illustrated in Figures 1 through 3.

As shown in Figure 1, lift margin is obtained by generating a current
proportional to "Potential Lift". A second current that is proportional
to weight is subtracted from potential lift. The remainder represents lift
margin.

Figure 2 illustrates that available lift is obtained from the computation
of potential horsepower multiplied by the ratio of lift to horsepower.
Potential horsepower is that horsepower that can be obtained from the
engine under the existing ambient conditions. Similarly, the ratio of lift
to horsepower is that ratio which holds for the existing ambient conditions.

Figure 3 shows the general concept for obtaining helicopter weight. The
horsepower actually being used is measured and converted to weight by
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multyplying with the lift-to-horsepower ratio appropriate for the existing
ambient conditions. This ratio is identical with the ratio used for the
potential lift computation.

The weight of the helicopter is not computed continuously but is computed
under flight conditions suitable for the measurement. At other times the
weight servo stores the weight so that it is available continuously. The
weight may be measured while the helicopter is hovering, with or without
wind, with its wheels within a few feet of the ground, i.e., within a
fraction of the rotor diameter of the ground or in-ground effect (IGE).
The other suitable flight condition is hovering out-of-ground effect
(OGE) at zero-indicated air speed; i.e., the helicopter is hovering in
the air mass, not necessarily with respect to the ground.

/

/c

The rest of this article was reproduced photographically from the
authors' manuscript. -
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II. SYSTE4 DESCRIPTION

FLIGHT TEST CONSIDFERATION:

Question: Can the feasibility of the helicopter lift margin system be

demonstrated with a meaningful flight test program which avoids the com-

plexity, cost, and time required to implement the complete system?

Answer: Yes, the basic system feasibility :an be demonstrated by flight

testing the simplified version of the helicopter lift margin system as

shown in Figure 4.

Figure 4 illustrates a method of representing the system required to

determine MAL and EGW. It is noted that the amount of fuel consumed is

obtained by means of an empirical equation based on Torque (Q). The effect

of IGE/OGE increases lift by approximately 150, in-ground effect.

Another item is destination lift margin. An attempt to obtain a measure

of this parameter consists of mechanically inserting altitude and temperature

* into the system with the readout presenting the expected lift nmargin.

Implementation: To simulate the helicopter/engine characteristics in a 7

computer.

To apply inputs to the computer representing engine torque, rotor speed,

air temperature, altitude, air 3peed. fuel weight, load changes and ground

effect.

To compute and dispiay continuously and automatically helicopter lift

margin and/or effective grosG weight.

To prove feasibility, three basic concepts of the helicopter lift margin

system must be verified.
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1. The helicopter/engine dynamic characteristics can be simulated in

a computer such that maximum available lift can be dynamically computed.

2., The effective gross weight of a helicopter can be accurately

"measured during a hover maneuver.

3. The difference between maximum available lift and effective gross

weight is helicopter lift margin,

Flight test of a hover lift computer will verify the above basic concepta.

Lift is derived from the basic equations of helicopter performance

(Wesson & Meyers, "Aerodynamics of the Helicopter").

L - C iR 2 (wR) 2  Lift

T
Q 7 CWR2P (wR) 2R Torque

PH C ffR 2 p(wR) 3  Horsepower
p

where:

R rotor radius

S = air density

S = rotor angular velocity

By M = Figure of merit of rotor system

S By operating the aircraft engine at a constant speed (maximum rpm) and '

using charts available in Ut-IB helicopter manual we obtain lift as
Lift = "o(p)2/3 1/3 bo C

Lf 0(H) P +b0 P

Mo /3 41(Hp)2/
• .1

b0 -997 (a constant)
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By proper manipulation of this equation and charts from the operator's

handbook

P
MAL W 6 7 QmsP 0 (K1 + K2T + K8P ( 3

P
Eaw = K6KNQw + K 8Po (K3 + K4T)"

Qms = (KI + K2 T

It is these equations that will be used to compute Lift Margin in the HIMS.

- -28
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IIi. OBJECTIVE OF EXPE

Helicopter Lift Margin is defined as the difference between Maximum

Available Lift and Effective Gross Weight. The accuracy of system is

dependent upon the accuracy of Maximum Available Lift and Effective Gross

Weight. The objective of the experiment is therefore to measure the errors

in Maximum Available Lift and Effective Gross Weight.

INDEPENDENT VARIABLES OF THE SYSTEM:

1.. Ambient temperature (T)

2. Compressor Inlet Temperature (CIT)

3. Absolute Pressure (P)

4. Relative Humidity (RH)

5. Torque (Q)

DEENDENT VARIABLES:

1. Effective Gross Weight (EGW)

2. Maximum Available Lift (MAL)

'3. Fuel Flow

4. Air Density (0)

EGW = f(Fuel Flow, Hover Torque, Air Density)

"MAL = g(Fuel Flow, Maximum Available Torque, Air Density)

-259-
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IV. OPERATIONS AND PROCEMRES

Below is described a typical operation of the Z , including the

initial elements of acquiring the aircraft effective gross weight and air-

craft engine potential.

1.1 TOPPING. To store the engine potential, the pilot will, after

the aircraft is airborne and the HIMS is turned on,

operate the engine at maximum take-off power, putting

the craft into a sufficient climb angle to limit the

airspeed to a suitable value. The (ENTER DATA) switch

is operated along with the out-of-ground effect (OGE)

and (EXISTING) switches, the (TOP) pushbutton depressed

to enter the engine maximum available torque, Qm. When

the (TOP) pushbutton becomes illuminated, QM has been

stored in the QMS memory, correction of S4 to the

maximum standard-condition torque, %M, being performed

automatically. At this point the (TOP) pushbutton may

be released and engine power reduced, and the (ENTER

"(DATA) switch restored to the (DILA DATA) condition.
4

If the (TOP) pushbutton is operated after the (DISPLAY

" DATA) switch is activated, QM will be displayed, proper

attention being given (automatically) to the transmission

limit.

1.2 WEIGHING. To store the aircraft effective gross weight (EGW),

the aircraft is brought to a hover in level flight out-

of-ground effect, the (ENTER DATA), (OGE), and (EXISTING)
/

switches all being activated. The hover pushbutton is
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depressed until it becomes illuminated, indicating

that the aircraft weight has been stored in the EW

memory. This weight is automatically updated for fuel

consumption, as may be demonstrated by operating the

(DISPLAY DATA) and (HOVR WEIGH) (weight) switches

upon which the steadily-decreasing gross weight will

be displayed.

1.3 Lift Margin. Once the topping (Para 1.1) and weighing (para 1.2)

operations have been performed, the H1/4S will read out

lift margin continuously in pounds of lift capability

for the ambient conditions surrounding the aircraft.

This data will be qualified appropriately by the operation

of three switches whose functions are described below.

1.3.1 (COMP DENS/DIR DENS) PUSHMTI'ON. This switch selects either a

computed or externally-supplied value of ambient air

density for calculation of rotor lift. The selection

is specific to this model of HIMS only, and is used to

compare the two methods of deriving air density as applied

to the computation of rotor lift.

1.3.2 (OGE/IGE) PUSHBUTION. This switch is used to increase the

computed maximum available lift (MAL) by about 15 per-

cent to approximate the effect of the ground (2-foot skid

height only) in lift margin and weighing operations.

For instance, an 0GE lift margin can be computed from

an in-ground-effect (IGE) weight determination. The

manually-controlled Hover Lift Computer was not so

arranged.
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In order to develop error models over the entire operational range of

the Lift Margin System, altitude should vary from sea level to 10,000 feet;

temperature from OC to +25*C and relative humidity from 10% to 100%. To

accomplish these variations, four test locations are to be used:

1. Oxnard, Calif. Sea level

2. Edwards, AFB, Calif. 2300 feet

3. Bishop, Calif. 5300 feet

!. Coyote Flats, Calif. 9400 feet

Eleven flights per location will be flown. The first flight to check

MAL and engine performance, flights 2-10 will consist of three flights per

day; one in early morning, one in late morning, and one in early evening for

3 days. The eleventh flight will again check engine degradation over this

period.

By use of these locations it is expected that a suitable variation in

all these parameters may be achieved.

Another hypothesis to be tested is that relative humidity will have

little or no effect on Lift Margin. By use of the modified air density

equations given by the National Bureau of Standards, error models will be

developed to show the effect of air density measurements made with and

without the relative humidity input on the performance of the Lift Margin

System.
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V. baROR MODELS AND REGRESSION EQUATIONS

It is assumed that the data, the output of the flight tests, will permit

of the construction of regression equations. These equations will establish

(probalistic) functional relations between Lift Margin, air density and

Torque; and pressure (a subsystem relationship).

It is also assumed that in view of the anticipated complexities of the

system and the difficulties of obtaining independent estimates of the effects

of the control variables, a predictive linear model will yield the salient

* characteristics of the behavior of the Lift Margin System response.

The selected independent variables will be tried and testf.i in the

regression equations. Confidence intervals about the coefficients will be

determined. This type of model will provide insight as to the response of

// the lift margin system; and suggest guidelines for more meaningful

experimental design in this area. The model will test the stability of

the parameters over the sample space, i.e. the operative range of the

controlled (and uncontrolled) variables.

1I . Ty+s of Linear Model • •, • •

a. M) +a X +a x
0 1 1 2 2

+ a 3 X3 + c X2

, • , • 5 X22 + a 6 XI 3 1 ... .. 3

, + a XlX2 + a8X2X3 • .

This is a linear model, linear in the parameters a i = 0,1 ....... 8.

The highest power of an independent variable is called the order of the model.

It is to be noted that the linearity of a model refers to the linearity (or
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non-linearity) of the coefficients.

The test data will enable us to obtain estimates of the true coefficients

a'0, Olt a..

XI = Torque

X2  = Air density

SX3 - Pressure

Estimation theory will be applied to obtain estimates of these coefficients:

Sbo, bl, b2 , etc. with tolerable confidence limits. The ultimate purpose it

to obtain an "optimal" regression equation.

ERROR MODELS

The error models are of significant impact in that they will establish

criteria for measuring the performance of the Helicopter Lift Margin system.

The error models will also enable us to compare the performance of the

system with respect to the standard reference provided by a strain gauge.

Distributions of errors for various levels of torque, pressure (mid altitude)

will be obtained. Estimates of the means and the respective standard errors

(of the means) will be obtained.

- The error model comparing the effect of air density as computed by the

NBS Air Density Equation (on the Helicopter Lift Margin System) with that

computed by the algorithms of the Transonics Computer is of special importance.

It will be used to validate the equations developed by the National Bureau

of Standards (NBS). One of the error models will compare the air density

computed by the NBS equations with that computed by ASTA.
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SYMBOIXY

LM - Lift Margin
MAL - Maximum Available Lift

GW- Effective Gross Weight
T - Temperature
CIT - Compressor Inlit Temperature
P - Pressure

- Air Density
Q - Torque
Qms - Maximum Standard Torque
Ps - Stntic Pressure (absolute)
OGE - Out of Grcind Effect
IGE - In Ground Effect
K1 - 1.0834
K2  - -0.00556
K3  - 0.94690
N Engine rpm
K4  .0003472
K6  .000352
K7  - 6.493,K8 = 225 (Set 1)
K7 - 7.639,K8 = 1325 (Set 2)
Qw - Torque at weighing (psi)
P0  - Standard pressure 29.921 (in Hg.)

1. Gessow and M.1eyers, "Aerodynanmic!; of the Helicopter". FrederickUnrar Pub Co.,-N.Y. 1952.

2. Edgerton, B., "Final Report for Helicopter Lift Margin System"
Vol II, Dec 1970.

3. UH-lB Operator's Manual TIM55-1520-219-i0, 16 January 1S69.

4. Jones, F., "Air Density and Helicopter Lift" Draft Report,
NBS Project 213043-.

5. Biser, Dworzak, and Santanelli, "Design of Experiment for
Eva•haticn Flights of Helicopter Lift Margin System Feasibility
Model", Draft report, July 1970.
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BOX AWARDED THE 1972 SAMUEL S. WILKS MEMORIAL MEDAL

Introductory Remarks Made by Frank E. Grubbs, Conference Chairman

Again, it is so nice for all of us to be together at another Army Design
of Experiments Banquet, .nd it is a pleasure to see all of you once again
this year for the Eighteenth Conference. This is not the first time we
have had the Army Design of E:,periments Conference at Aberdeen Proving
Ground. In fact, our Sixth Conference was held here twelve years ago, and
Sam Wilks was with us then. As I recall, George Box, Churchill Eisenhart,
Stu Hunter, Boyd Harshbarger and Bill Cochran were present for that
meeting, but John Tukey was unable to attend, although we are glad to have
him back for this year's conference.

Of all things. the program for the Sixth Army Design of Experiments
Conference at Aberdeen Proving Ground had a 10 X 10 Graeco Latin Square
on its cover! Thus, our first conference at Aberdeen Proving Ground
occurred just a year or so after the so-called "Euler-Spoilers" came
along. Way back, the great mathematician, Euler, conjectured that it was
not possible in general to construct Graeco Latin Squares of even sizcs
(2n + 2) for the Greek and Latin letters. (I might say, parenthetically,
that even though Tukey, Box and others present, are thinking about that
statement it is of sufficient accuracy for 90% to 95% of us present
anyway!) In any event, w.th high speed electronic computation capability
available, an attempt was made in the late 1950's to construct 10 X 10
Graeco Latin Squares on a computer. A program was set up to generate
10 X 10 Latin Squares, attempting to pair them up to satisfy the Graeco
Latin Square condition. For several hundred hours of running time, the
unfortunate computer tried to "marry" a Latin Square to a Greek Square
and failed to do so. The "Euler-Spoilers" (R. C. Bose, S. S. Shrikande,
and E. T. Parker of the University of North Carolina) on hearing about
this computer failure proved with the help of advanced group theory that
Euler's conjecture was wrong, and if the computer had been left to run the
way it was set up, it might have had a 50:50 chance of constructing a
10 X 10 Graeco Latin Square in too many years! Thus, we were just in time
for the correct construction of a 10 X 10 Graeco Latin Square and one
appears on this cover of our Sixth Army Design of Experiments Conference.
Anyone who cares to may check it out! I'll pass it around.

We now turn to the Samuel S. Wilks Memorial Medal.

The Samuel S. Wilks Memorial Medal Award, initiated jointly in 1964 by
the U. S. Army and the American Statistical Association, is administered
by the American Statistical Association, a non-profit, educational and
scientific society founded in 1839. The Wilks Award is given each year
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to a statistician and is based primarily on his contribution to the
advancement of scientific or technical knowledge in Army statistics,
ingenious application of such knowledge, or successful activity in the
fostering of cooperative scientific matters which coincidentally benefit
the Army, the Department of Defense, the U. S. Government, and our
country in general.

The Awards consists of a medal, with a profile of Professor Wilks and the

name of the recipient on the reverse, and a citation and honorarium related
to the magnitude of the Award funds. The annual Army Design of Experiments
Conferences, at which the Award is given each year, are sponsored by the
Army Mathematics Steering Committee on behalf of the Office of the Chief
ot Research and Development, Department of the Army.

The funds for the S. S. Wilks Memorial Medal Award were donated by Philip
G. Rust, retired industrialist, Thomasville, Georgia.

Previous recipients of the Samuel S. Wilks Memorial Medal include John
W. Tukey of Princeton University (1965), Major General Leslie E. Simon
retired (1966), William G. Cochran of Harvard University (1967), Jerzy
Neyman of the University of California, Berkeley (1968), Jack Youden
(1969) retired from the National Bureau of Standards and deceased, George
W. Snedecor (1970) retired from Iowa State University, and Harold Dodge!
(1971) retired from Bell Telephone Laboratories.

With the approval of ASA President William H. Shaw, the 1972 Wilks Medal
Committee consisted of:

Professor Robert E. Bechhofer - Cornell University
Dr. Fred Frishman - Army Research Office, Washington,D.C.

ýProfessor J. Stuart Hunter - Princeton University
Professor Oscar Kempthorne -,Iowa State University
Dr. Badrig Kurkjian - US Army Materiel Command,

Washington, D. C.
Professor Fred Leone - The University of Iowa
Dr. William R. Pabst, Jr. - Washington, D. C.
Major General Leslie E. Simon - Retired
Dr. Frank E. Grubbs, Chairman - US Army Ballistic Research Labs

Aberdeen Proving Ground, Maryland

As many of you conferees are aware, our process of selecting the Wilks
Memorial Medalist each year turns out to be a statistically significant
event, having to screen 25-30 ncminees, fighting out the basic purposes of
the Wilks Medal (including what statistics have found wide application to
government work and are highly relevant to the Army), and committee
members occasionally exchanging insults as the situation demands! Again,
however, we certainly got the right man.

The 1972 Samuel S. Wilks Memorial Medalist is an internationally recognized
authority on statistics and has contributed greatly to the design and
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analysis of scientific ex.?eriments. He was born at a place that sounds a
bit "redundant", Gravesend, Kent, England. in 1919. He began his career
as a Statistician during World War I1, and completed his formal education
in statistics with a Bachelor of Science Degree (1947) and a PhD (1952)
from the University of London. Now as I go along, the Wilks Medalist
for 1972 should be shown to be above or go beyond the 95% statistical
level of significance, so to speak! So, we will begin accumulating the
points. Now this man, during World War II. amd as a consequence o: ,ais
cleaver use of experimental design in the analysis of enemy toxic materials,
was awarded the British Empire Medal in 1946. For that we will give him
15 percentage points. After obtaining his PhD in Statistics from the
University of London, he left to work for Imperial Chemical Industries Ltd.,
where he had the opportunity to come into contact with real world experi-
mentation. For that we will give him 10 percentage points and he is up
to 25. On leave of absence from Imperial Chemical Industries, he spent
the year 52-53 at the Institute of Statistics, Raleigh, North Carolina,
and of all things on a research grant supported by the Army Research
Office - Durham (ARO-D). Now anyone who would take on some of the statis-
tical problems of the Army deserves special recognition, so we will give
him 20 percentage points for succeeding at that. My word, we are already
up to 45 percentage points. While working for ARO-D, a famous expository
paper on the Explorati a and Exploitation of Response Surfaces appeared,
along with ideas of "robustness" in the analysis of variance, and also
those important rotatable designs. On his return to Imperial Chemical
Industries, our 1972 Wilks Medalist delved into statistical methods for
the elucidation of basic mechanisms and advanced the concept of Evolutionary
Operations. In 1957, he became the Director of the Statistical Techniques
Research Group at Princeton University, sponsored also by the Army
Research Office, and during the years at "Gauss House" at Princeton he
came to know Sam Wilks quite well and established a vigorous statistical
center there. Papers on design for non-linear models, simplex sum and
three-level designs, the generation of random normal deviates, and papers
on adaptive optimization and rebustness to non-normality of regression
were completed. For all of this work, most of which was very useful to the
Army and others as well, he must be given a significant number of points,
anyway, say 20. It seems we just hit 65 percentage points and still
counting. In 1960, our 1972 Wilks Medalist left Princeton to become a
member of the then Army Mathematics Research Center (now just the Mathematics
Research Center since that place was bombed out!) at the Univeroity of
Wisconsin. At Wisconsin, he immediately took the lead in establishing the
Department of Statistics. His research interests while at Wisconsin have
steadily broadened and in addition to further contributions to fractional
factorials and sequential designs for non-linear models, he became concerned
with problems of non-linear estimation, the dynamic control of industrial
processes and he "Joined the opposition" in contributing the Bayesian
methods (!), and finally parametric time series analysis. In fact, last
year our 1972 Wilks Medalist was elevated to the R. A. Fisher Chair of
Statistics at Wisconsin. Furthermore, we are reminded that back in
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1964 he was awarded the Guy Medal of the Royal Statistical Society,
London. Now for all this we must give him 30 points and oops we hit the
95% level. But wait a minute! In 1968, our 1972 Wilks Medalist got the
Shewhart Medal of the American Society for Quality Control for his
contributions there. Now that is a fine honor indeed, but I am reminded
that a couple of Army Statisticians got that too, so we will deduct five
percentage points bringing him back to only 90 which is not quite enough.
Oh my, I have nevertheless forgotten somethinC important. A former
summer student employee of mine 20 years ago here at Aberdeen Proving Ground
had enough inherent capability in statistics to work with our Wilks
Medalist during the year (1952-53) he was turning out all that fine statistical
work at the Institute of Statistics, Raleigh, N. C., for ARO-Durham.
Furthermore, that former summer student employee of mine, with such excellent
training has become a famous statistician in his own right. Now with all
of this good work going on and hopefully as a result of some well chosen
Army contacts we must add more points, but one can't throw in too many more
points, so we will settle for a final 8 points, and award George Box the
1972 Samuel S. Wilks Memorial Medal at 98 percentage points! Congratulations,
George Box, and'I'll now call on Churchill Eisenhart, Past President of
ASA, to present the 1972 Wilki Medal.

GEORGE E. P. BOX RECEIVES THE 1972 SAMUEL S. WILKS MEMORIAL MEDAL

The Presentation of the Award Made by Churchill Eisenhart,
Past President of the ASA

The following citation was read:

"To George E. P. Box, in recognition of his many significant
contributions to experimental design, robustness, Evolutionary
Operations, Bayesian methods and time series analysis, and
for his leadership in reI. '.n, thieoretical re.;Llts to
practical problems."

ACCEPTANCE REMARKS. OF GEORGE E. P. BOX ON RECEIVING THE
- •SAMUEL S. WILKS MEMORIAL MEDAL FOR 1972

General Koster and fellow Statisticians: -

You do me especial honor in presenting me with an award commemorating
Sam Wilks. Wilks as you all may know was a wise and greatly loved man,
who also was a distinguished statistician. He made fundamental contri-
butions to statistical theory, but he was also a man who believed in
statistics as a key to solving practical problems. This was evidenced
especially by his work beginning in World War II for the National Defense
Research Committee, his setting up and his direction of the Princeton
Statistical Group, his work on Quality Control, his originating of the
unique yearly Princeton Conference and his initiating of the Army
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Conference on the Design of Experiments, the Eighteenth of which we
presently celebrate.

It has sometimes seemed to me a great pity that his very proper attitude
towards the complimentary functions of theory and practice has not been
more widely understood. Practice alone uses a too little cook book to
produce dishes which are oO'.en stale, tasteless and inappropriate to
the occasion. Theory alone is directionless and can wander into labyrinths
of pointless abstraction. But practice inspiring new theory and theory
tested with new practice can produce wonders.

I have sometimes heard member- of the statistical profession avow in
voices that admired their own liberalism that yes! There should be some
schools of applied statistics as well as some concerned with mathematical
statistics. The implication was that there really could be no harm in
this so long as they remained far enough apart!

It is rather like trying to produce a fine race of children by encouraging
the development of a healthy group of men and the separate but equal
development of a corresponding group of wom-on, and at the same time
taking precaution to ensure that they never see each other.

Sam Wilks was very conscious of these communication problems and it was
by instituting such conferences as the present one and by many parallel
efforts, some of which I have already mentioned that he contributed to
their solution.

One of the difficulties that gets in the way of fruitful interaction
., between scientific experimenters and statisticians is intellectual arrogance.

* The fault can lie on either or both sides, but I blush to confess that most
often it is the statistician who is in error.

There are various levels of knowledge and ignorance which have been
recognised by philosophers. Among these are knowing that you know, not
knowing that you know, knowing that you don't know, and not knowing that
you don't know. The tragedy of the last category is that once you are
in it you remain in it.

Perhaps one story of near disaster will serve as illustration. Twenty
some odd years ago I remember being involved in the design of an exper-
iment to compare two treatments A and B from a batch chemical process. I
made up my mind early on (too early on as it turned out) that what they
needed was a standard paired design in which batches consecutive in time
would constitute a pair, and the order (AB) or (BA) would be randomly
assigned within each pair. It was quite clear that the chemists thought
this was a bad idea. Without further thought I attributed their objection

* ,to laziness. I more than hinted that they couldn't be bothered to do the
job right! It was only after much argument that I allowed myself to hear
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what was the real nature of their objections. The process was one where
what is called "carry over" occurs. In these circumstances, the most
efficient design is not a paired arrangement but one in which several B's
follow several A's which is what they had proposed!

The technical explanation is of course that the carry over phenomenon
produces a time series in which successive observations are negatively
correlated. The usual assumption that propinquity produces high positive
correlation which leads to pairing breaks down. Once I understood this,
I was not slow in explaining it to them. In discussion, I pointed out its
implications in terms of spectral analysis and the insights it provided
on randomization theory. They were very polite about it; they said they
didn't know anything about all that but they seemed glad that I had at
last seen sense.

I accept this medal aware of my luck in having had patient scientific
colleagues and acknowledge the debt I owe them for taking the time to
educate a statistician. I know I would have learned more if I had
listened better.

,/

I
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AUTOMATED RADAR DATA PROCESSING AT
WHITE SANDS MISSILE RANGE FEATURING

ADAPTIVE FILTERING WITH BIAS ESTIMATION

W.A. McCool
Analysis and Computation Division

National Range Operations Directorate
White Sands Missile Range, New Mexico

ABSTRACT. This paper describes the automated system for radar data
/ processing now being implemented at White Sands Missile Range. Such a

system will significantly reduce the average delivery time of the data
reports containing the processed data and, in priority situations, will
provide such data reports essentially on-line, i.e. within minutes after
mission completion. Furthermore, the number of instrumentation radars
generating data to be processed has been steadily increasing as a result
"of Range modernization and special radar projects (AMRAD, RAMPART, and
others). The automation has become feasible with the availability of:
(1) large-scale third generation computing facilities (three UNIVAC 1108
systems); (2) the capability to record all radar data at the central
com-uting site; and (3) software containing new data editing techniques
and adaptive digital filters which are based on Kalman filter concepts
and, at the same time, are computationally efficient. Feasibility of the
autotated system has already been demonstrated and its implementation
has now advanced to the point of developing operating procedures.

I.... - INTRODUCTION. As its major mission, the White Sands Missile Range
(WSMR) provides instrumentation, air-space, and supporting facilities
for testing missile weapon systems and conducting scientific experiments,
e.g. the Army's PERSHING missile system, the Air Force's ATHENA missile
system for re-entry research, and the Air Force's Project 621B for proving
out a new satellite navigation system. This mission requires a total of
18 precise instrumentation radars for tracking missiles, satellites, air-

* " craft, bombs, balloons, parachutes, and any other flying objects and
generating corresponding trajectory (metric) data. During the past year
WSMR radars, sampling observed target positions 20 times every flight second,
generated more than 250,000,000 space-point measurements. The expeditious
processing of this huge lume of radar data is critical to acceptable
project support. At th. resent time, the average delivery time of the
standard post-flight reports containing the processed metric data is about
ten days. "Quick-look" radar data reports, with a limited number of
processed metric parameters, are usually delivered in less than one working
day after mission completion. The major objective of the automated radar
processing system is to reduce the average report delivery time by an
order of magnitude and, in priority situations, to an on-line situation.

•-273-

1, , ' /



- N•

WSMR DATA PROCESSING FACILITIES. The Department of Army has
provided WSMR with large-scale third-generation multi-processing,
digital computing facilities consisting of two systems (denoted as
the A and B systems) each containing two UNIVAC 1108 main-frames and
another system (C) containing a single 1108 main-frame. The A system
is devoted primarily to real-time mission support, the B system to
remote terminal support and normal batch processing of unclassified
data, and the C system to batch processing of classified data. The
automated processing of radar data will be handled as "background"
workload in the A multi-processing system. There is a possibility that,

• iat some future time, part or all of the automated processing will be
"transferred to the C system. At the present time the WSMR UNIVAC com-
puters are: (1) processing about 16,000 jobs per month producing more
than 100,000,000 lines of listing; (2) supporting about 25 real-time
missions per month; (3) producing between 800 and 1200 data reports
of all types per month; and (4) supporting about 30 remote terminals
(a total of 66 terminals is planned).

Figure 1 depicts the basic functions comprising the "Real-
Time Data System" (RTDS) at WSMR which was instituted on a very
small scale in 1961 and through the Range modernization program
has become a highly sophisticated system for satisfying current
and future real-time mission support requirements. In addition to
the UNIVAC computer A system with its real-time interfaces, the
RTDS has a very flexible and reliable data communication sub-
system which transmits data from 39 sensors, including radars, to
the real-time computer via a Data Control subsystem and from the
computer to 44 sensors requiring acquisition (pointing) data. The
Data Control subsystem includes a central recording facility which
"is capable of simultaneously recording/playing-back the data from
all the transmitting sensors as well so from the computer when it
is generating acquisition data to all the receiving sensors. All
WSMR instrumentation radars, when so scheduled, transmit their
data in real-time to the central recording facility. The play-back
capability not only provides a permanent mission data record but
also is an essential component of the automated radar data
processing system because, in general, the processing will not be
accomplished during missions. Figure 2 indicates how data are
transmitted between a sensor and the central data control site.
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The modulation-demodulation process is employed to allow sensor
* data to be efficiently and reliably two-way transmitted over

relatively inexpensive first-class telephone lines without
distance limitation. The transmitting-receiving devices which
are called MODEMIS, one at each end of the line, utilize tone-
modulated "carriers". Recording these carriers with an instru-
mentation recorder, similar to a home type recorder, is an
extremely simple and reliable technique (called analog recording)
which has been standard practice at WSMR since 1964. On playback,

* each carrier is demodulated by a MODEM to reconstruct the original
digital data, generated by the sensor, to be received by the
real-time computer.

The standard vendor-supplied executive program for the LNIVAC
1108 computer is called EXEC-8 which has been auganented at 'S?!R
for efficient real-time data processing. This augmented iiXEC-8
along with specific real-time applications programra can support
six missions concurrently in a wide variety of mission tynes,
being limited primarily by the number of available input/output
data channels from and to Range sensors. The average number of
concurrent missions requiring real-time support at any given time

* •during a typical Range day for the next several years will be no
more than two. This means that plenty of computing capacity will
be available for back-ground processing required by the automated

A 'system.

i\ Real-time data processing utilizing a large-scale digital
computer began at WSHR in 1962. Because of the computing time

. constraints.inherent in this type of data processing, there has
"been a continuing evolution since that time in the development of

* more efficient data handling, editing, selection, and filtering
techniques as well as a wide variety of mathematical procedures,
algebraic equations, computation of Kepplerian orbital trajectories
for instantaneous impact prediction, coordinate transformations,
and command generation.

It should be clear from the foregoing discourse that WSMR
now has the necessary facilities to automate its radar data
processing, i.e. the third generation digital 1108 computer system

.with real-time interfaces, the Real-Time Data System with a
versatile central recording capability, complete operational soft-
ware for supporting real-time multi-processing, and a vast exper-
ience and "know-how" in real-time data processing techniques
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and procedures. This picture would not be complete without
clearly emphasizing an operational constraint around which
this automated system must be designed: conduct of every Range
mission has unqualified priority over all post-flight automated
system requirements. More specifically, there are two areas in
which this constraint will occasionally arise; suspension of
background computing during real-time mission support and data
communication problems which would preclude real-time recording
but not mission support. The impact of the first situation
would merely be a short, insignificant delay; the impact of the
second situation would incur the delays involved in physically
transporting radar data tapes recorded on-site to the Data
Control area in the Range Control Center.

"" DESIGN OBJECTIVES OF THE AUTOMATED SYSTEM. The design of the
automated system for processing radar data has four major objectives.

1. An average delivery time of one working day after
mission completion for all standard data reports

Achievement of this objective will effectively combine the post-
flight and quick-look types of reports now being provided to
the Range users in ten and one days, respectively. Priority
delivery may be provided with "on-line" processing, the reports being
computer listings generated almost immediately after missions.
Reports requiring precise plots will be delivered in two days until
an on-line high-speed plotter is acquired. A standard data report limits
the user to prescribed options which have been established by frequency
of use. Delivery of non-standard reports, i.e. those having unique
requirements, must be considered on a case-by-case basis. This objective
is motivated by the fact that, in many cases, the value of missile test

,data to the user decreases rapidly with every passing day after a mission.
It should be clear that this objective could not be achieved without
central recording and real-time data processing capabilities.

2. Use of Kalmanl, 5 filter concepts and real-time
editing techniques to optimize the quality of
the processed radar data and the computing
"efficiency of the processing.

This objective has already been accomplished with the proven editing
and filtering techniques described later on in this paper. Historically,
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radar data at WSMR has been processed using typical classical procedures
(e.g. moving-arc least-squares smoothing) which are computationally in-
efficient and less effective compared to the performance of some of the
more modern recursives methods, such as the QD digital filter. 3 ,4,6 The
latter, for example, is employed in all the programs which have been
generating quick-look radar reports.

3. Providing multi-station trajectory and bias estimates
and all required types of error estimates on a point-
by-point basis.

These estimates are included in the automated processing computer program
with very little expense in computing time. In the past, multi-station
trajectory estimates (sometimes called an N-station solution) have been
provided with an average delivery time of 20 days; bias estimates, based
on radar data only, have not been provided at all; an6 the variety of
error estimates has been limited by computing time to a few available
types. Quick-look data reports, for example, have never provided any
error estimates.

S/ 4. Simplification and standardization of data report
formats.

"Current data formats have been established by user specification and
historical development. In the automated system, the formats of the data
listing, the explanatory information, and plots are being standardized
with a variety of available options.

FUNCTIONAL DESCRIPTION OF THE AUTOMATED RADAR DATA PROCESSING SYSTEM.
The essential functions of the automated system are shown in the data flow
diagram, Figure 3. The system naturally divides into two areas, Data Con-
trol and the UNIVAC 1108-A computer. Data Control accepts the radar data
from the Range data communication network and other pertinent data; the
computer generates the radar data reports.

The radar dat4 entering Data Control is contained in the modulation of
the modem carriers, as indicated by the broken lines in Figure 3. The
data in this analog form are recorded along with timing data and simul-
taneously transmitted to the modem receivers for demodulation into digitalform. Transmission to the modem receivers is often delayed with a playback

"of the recorded data. At this point the digital radar data are monitored
by Data Control personnel to evaluate data quality and equipment performances.
One of the major functions of the Special Interface equipment is to simul-
taneously accept, reformat, and store the digital data from as many as 32
radars (or other sensors) and transmit the data to the computer. Prior
"to accepting radar data during a mission or a play-back in Data Control,
radar calibration data (i.e. corrections for tilt, beam misalignment, etc.),

-279-

/

;/i

r-4

X1



r

32 SPECIAL CRT BATCH

r MODEMS CONTROL
II l , NTrERFACE

DAT :0DS ET/CAL
ANALOG' DADAAARECORD ONITOR QUIPMENT DATA IN

(SIE)PROCRAM
OPTIONS

TIMING 1

R OUTPUT
LISTINGS

DATA CONTROL

,.108 CPU/CORE .

RTEXEC/ PUT R THEROC. REPORNT PYIEXEC-8 Q...ST 
PRIN TE, .

f MICRO-

PRGRIDRIVER/EXEC-8 FL

EUNtILOGf
TAPE FASTRAIND-MASS STORAGE ITAPES

AUTOMATED RADAR DATA PPOCESSINr SYSTEM

FIGURE 3

-280-



/

ýradar meteorological data for refraction corrections, radar identification
data, and program and report parameter options must be fed into the SIE by
a system controller via a CRT terminal (U-10G) keyboard and/or punch-cards
(1004 card reader-punch-printer).

When the radar data and the pre-processing information are accepted
by the computer from the SIE, they are recorded on a log tape (UNILCG)
and/or magnetic drum mass storage (FASTRAND) under control of RTEXEC, the
real-time monitor. In other words, the data logging is a real-time process.
After logging is completed, a batch job with high priority is automatically
initiated to process the logged data and generate a data report. As in-
dicatcd in Figure 3, the processing consists of three phases under the
control of a Driver program (in turn controlled by EXEC-8, cf course);
QDKMST (which is described in the later chapter) concurrently edits and
filters the data from several radars and generates derivative parameters
and error estimates; "further processing" software consists of a variety
of optional sub-programs to generate ancillary parameters as required by
the Range users; report generation consists of conversion of parameters to

specified engineering units, setting up data report formats, paging, etc.;

and interfacing with one or more of the selected output devices, line
printer, microfilm printer, cathode ray tube (CRT) display, or magnetic
tape transports.

From the functional description, it should be clear that generating
a data report for a single Range mission involving several radars is a
straightforward process. The question may be raised, however, as to
the effectiveness of the automated system under a heavy workload. In
response to this question, it should be emphasized that the automated
system may be viewed as a "next generation" version of the quick-look
system which is now generating about half of all WSMR radar data reports.

As noted before, the average delivery time for quick-look radar
data reports is one working day after mission completion and this has
been accomplished with an IBM 709411/7044 Direct Couple System (DCS)
whose job stream execution is sequential, i.e. one job at a time.
In contrast, the automated system has a dual 1108 multi-processor
(A system) whichi excautes six jobs and supervises all input-output
activity concurrently. Even though System A is dedicated to real-time
mission support, it has more than ample capacity to satisfy the automated
system's computing requirements. Thus, the major bottleneck will be
the manual time and effort to set up each job in accordance with user
requirements and options and collecting and inserting pre-processing data.
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REVIEW OF THE QDK7 FILTER/SMOOTHER THEORY. There has been a
long-standing, urgent need for a process to filter radar data which
would be significantly superior to those currently in use with
respect to computing speed and filtering effectiveness. It was
recognized that such a process would have to adaptively effect an
optimum trade-off between noise suppression (attenuation) and best
fit (minimum distortion of the true signal) in accordance with the
characteristics of the noise content and the kinematics cf the
input data. It was also recognized that the increased computing speed
constraint would almost surely dictate the use of a recursive procedure.
The QDK filter 7 was developed to satisfy this need. The basic QDK
structure is identical to that of the discrete Dalman filter but its
detailed formulation is greatly simplified using the QD filter theory
(hence, the QDK acronym) for rapid computation without seriously
degrading the Kalman optimality. In order to indicate how these
simp'.ifications are applied we begin with the computational step-
by-step formulas for the discrete Kalman filter.

o x* + ru - state prediction (1)

Jo -p 4 t + YQytQj state covariance (2)

prediction

W - PHt (HHt + R)-I - weighting matrix (3)

x - i + W(z - HiL) - state estimation (4)

P - (I - WH)P - state covariance (5)
estimation
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where:

x - predicted state vector

- current estimated state vector

x - precedinq estimated state vector

/
/

z - input data vector

- transition matrix

r - control coupling matrix i

Q uncertainty matrix of the plant-procesq model

I model uncertainty coupling matrix
I/

H, - input/state Jacobian

- predicted covariance matrix of the plant-process model

P - current estimated model covariance matrix

- preceding estimated model covariance matrix
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The data from instrumentation radars at W.Mr are p7enerated at

20 samples per second in spherical coordinates, i.e. Na,(,

azimuth (A), and elevation (E) in the local radar reference syste-s.

Each system is established by the local tanent niane !:it* zero

azimutl" being true or grid north. It is common practice to trars-

form these data, prior to filterin', into an Prhitrarily located an,

oriented Cartesian coordiuate system, with components z a, z.,, and ze.

For Kalman filtering the za, z, ,zc data from a single ra,*ar, the

dimensions of tli vectors and matrices in the computational formulas

(1) through (5', are identified as follows:

x,x,x - 6xl -
6 x 6

u - 6xl r - 6x 6

P,P,P - 6x6 Q - 6x 6

- 6x6 if - 3x 6

R 33 1 - 6X6 (1n'L)

W - 6x3 z - 3xl

The elements of each of the state vectors x, x, arc x Pre t'-ree

position and three velocity components while the elements of the

z vector are the three filter "inputn:. The u vector an-d the
matrices are corresnondinln1- diO-e.nsionefl. It is clear from these

dilensional data that the strai;ghtfor-ward computations, includin?

the matrix inversion, involved in usin-, the Kalman formulas (1)

through (5) for each computing stet would be prohibitive, particu-
larly when the plant process parameters in 0, r, and Y', as well as

in H are time-varying.

The first 7implifications in our application of Kalman filterin.

to radar data sefment the basic formulas into three independent

/ filters, one corresnondinv to each Cartesian component. -0 achieve
these simplifications, the followine reasonable assumnticns and

approximations are made:
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(1) The plant process Is the radar target whose mathematical
model represents a point ma- wit'i accelthration components being
independent and slowly varyirq witii tiP'e. Thus, each acceleration
component is assumed to he constant &;rinf any Integ-ration interval.
This assumption effects indenendenrc' of the comnonent models so that
all of the model matrices and vectors of the basic Kalman formulas
can be suitably partitioned and separated.

(2) The R matrix, which describes the noise characteristics
of the input data components z , z, and z has non-zero cross-
correlation elements due to the non-linearitv of the R,A,r to za
z z coordinate transfornation. In practice, these elements are
so small that the variances of the Input data comnonents can be

assumed to be independent, i.e. R is a dia7,onal matrix.

(3) The foregoinp assumptions and approximations allow parti-
* tioning of all the vectors and matrices so that each component of

input data can be independently Kalman filtered. In each of these
three filters it is convenient to aucZment the ) matrix, which is the

* same for each filter, increasing its dimensions from 2x2 to 3x3 in
order to eliminate the u vector and the r matrix.

With the above simplifications the dimensions of the component
Kalman filters are:

x,x,x - 3xl - 3x3

PPP - 3x3 Q - '3x3

R - Ixl H - lx3

W - 3xl - Ixl
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which are defined as follows:

X1X p p p
11 12 13

X x2 x p (26 2•2 p p (7)

732 1 221 233

x, x, P, P are analogous to (6) and (7), respectively. If Taylor
series integration is used to generate the augmented 0 matrix from
the model differential equation, i.e.

- x(t) = constant, (8)

then

1 h h 2 /2

*- 0 1 h

L0 0 1 
l

001

where

h A At sampling inverval, .05 sec.

Also,

R - r (10) w1

z z (11) W - w2  (13)

H 1l0 01 (12 v
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When (7), (10), and (12) are substituted into (3), it 'reduces to the

simple formula,

p

1121= 1(14)

in which the matrix inversion in (3) becomes a scalar division

operation.

A further dramatic reduction in connutatlors is achieved by

app: •ing the M) filter theory to formulas (2) and (5) of the component

Kalman filters. This is the. fir . step in the evolution of the nDK

formulas from the basic Kalman formulas (1) throuc-h (5). Startir(
with (1), in which r and u have been eliminated in the componert
filter, we have the simplified state prediction formula:

x = •x, (15)

in which (P is given by (9) and x anad x by (6). Thus, (15) and (4) are
the second-order OD filter formulas if, in (4) and (13),

1 3lO + 33:,2 + 23M - 6 '(6)

w2 w 2w,/h, (17)

w3 w 2wl/h 2  w w2 /h, C (18

in which the development of w, in (16) is based on a second-degree
curve fitting an arbitrary spar of the last " innut data ralues in a
constrained least-squares sense. TI•e intercent and slope of the fittede
curve are constrained at the time point correspondinft to the last input
data value iinrlicitly' dronped from t 1•e snan. !s.nf thoe nD theorv,
approximate functional relationships amenon, the elements of t.e P matrix
have been developed and applied to formula (2) to obtain the scalar
recursive formulas:
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P - 8 + q, (19)

11 1

p 21 2a(138 + q), (20)11

P 3 m 2ca2 (8 271 + q) (21)

where:

a 1 (22)
,Hh'

+ - 1 +" (23)

and q is the model uncertainty scalar rorresnonding to 0 in (2).
(19), (20), and (21) are required In (14) to compute the elements
of the ODK weighting vector. The value of M, the equivalent OD filter
spin, in (22) nnd (23) Is retained from the nrerndlno conmutine .nep In
which H is estimated with a polynomial inversion of (16) for the
corresponding computed value of wl, i.e.

H a- + a2 wI + a 3wl 2 + a4w1
3 . (24)

The value of P1l in (19), (20), and (21) is retained trom the precedine
computing step as ! which is estimated with the scalar formula

p - (1 - iw) P (25)

derived by substituting (7), (12), and (13) into (5).

From the forevoing exnosition we can now summarize the ODK
computational formulas. The first three are the nrediction formulas
obtained by usine (6) and (9) in (15). The estimation Formulas (32),
(33), and (34) are obtained by using (6), (12), and (13) in (4).
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- x + 2x+ (26)
S 2

x x + hx (27)

x x (28)

- lI(Hb), (22)

+ - 141/M, (23)

Pi'1 = pll + q, (19)

S~3
P21 " 2a (S p1l + q) (20)

2 2
P31 2a (B pl, + q), (21)

W2 + r), (29)

V2  " P--z/('Cpi +-r), (30)

w3  7 P31 /(1 + r), (31)

+ - "+v,(z--, (32)

x + W 2 (z (33)

x x + W3 (z -X) (34)

2 3
M - a, + a 2 w1 + a 3 w1  + a 4 w 1 v,. (24)

-•! (1 -w1Y)•. (25)Pi I
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The QDY formulation for independently filtering each data
component is simply extended to the multi-station formulation.
To do this, the inverse variance weighted average for each of the
Cartesian components in a common reference system is used as the
input to the single component QDK filter. These weignted averages
z for N radars are corputed with

z - ( zi/ri/, *l/ri (35)

in whirh the zi are the corresponding component bias-free inputs
with their respective variances r . In practice, the z are not
bias-free. If bi are the bias estirates then (35) is modified as

z ((z b/)/r, l/ri. (36)

Thus, the QDK multi-station formulation must include bias estimation
procedures. In the development of the bias estimation formulas,
which are also based on Kalman and QD theories, the biases are
assumed to b't slowly varying and independent of each other as well
as the multi-station estimation. The bias computation formulas are:

S" + kq,, i - 1,2,---N ý37)

UP ii/(*i + ri), (38)

b - + w ¢ - (39)

S(l -vi)-i" (40)

where:

~±' ~I~, - bias model variance scalars,

qi- model ,ncertainty scalars,
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k - q, weighting factGr,

- bias veighting coefficient3

- arbitrary bias reference.

zb may be optical data components krown to be essentially bias free,

the component inputs of one particular radar, or the unweighted
average of the zi

Zb - . (41)
b 

zi-i
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THE QDKMST PROGRAM FOR THE AUTOMATED RADAR DATA PROCESSING
SYSTEM. QDKMST employs the QDK filter described in the preceding
chapter and is modularized into ten subroutines one of which con-
tains three QDK filter/smoothers for each set of radar data.
QDKMST includes pre-execution, initializing, and data subprograms.

In addition to concurrently generated trajectory and deriva-
tive estimates for each set of radar data, QDKMST also optionally
provides corresponding multi-station estimates along with relative
trajectory bias estimates at the R, A, E level for each set of
radar data. An alternate option consists of estimates selected,
on a point-by-point basis, from those of the "minimum total
variance" radar whose data have been bias corrected.

QDKMST employs a total of 354 zero, first, and second order QD
filters3 , 4 , 5 in addition to the 33 QDK filter/smoothers to generate
the estimates for ten sets of radar data and a multi-station solution.

Execution time per set of observed data per radar for QDKMST
on any of the UNIVAC 1.108 computer systems is less than 4.0
milliseconds. For ten sets of radar data the multi-station estimates
per sample time require approximately 15 milliseconds. If the
radar data are edited at the R, A, E level at 20 samples per second
and then averaged down to five samples per second prior to
transforming the data to the common Cartesian coordinate system,
then the data from ten radars can be reduced, including the multi-
station or minimum variance estimates, in less than 40 milliseconds,
allowing 160 milliseconds for data handling, executive overhead,
other batch processing, and a reasonable safety margin within the
200 millisecond on-line execution period.

QDKMST contains the same radar error model for calibration
corrections as that described in the WSMR Data Reduction
Handbook 2 . The same refraction index computation is also used.
The refraction correction, however, with spherical earth geometry
is the same as that used in the real-time programs which support
ATHENA and PERSHING.
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QDKHST itself is the calling routine for each of its sub-
routines whose functions are outlined as follows. The FORTRAN
source program includes definitions of all the parameters and
variables of the CCMMON statements.,

INTQDK

a. Initializes QDL'1ST variables.

EDIT

a. Accepts range, azimuths and elevation observations from
each tracking radar;

b. Initializes QD editing filters when several consecutive
4th differences of the R, A, E data are less than some limit;

c. After initialization, the QD editing filters test for
spikes, and when spikes are detected, substitute predicted filter
values;

d. Reinitializes the editing process after total data drop-

outs;

e. Estimates variances of edited R, A, E data;

f. Generates acceptable data flags for each set of radar data;
and

g. ,Optionally averages edited data from 20 samples per second

down to five samples per second.

RCXFRH

a. Corrects edited range and elevation data for refraction and
applies calibration corrections; and'

b. Transforms edited R, A, E data for each radar to an arbi- P
trarily selected common Cartesian reference system.

MS aBS (Optional)

a. Estimates R, A, E biases for each radar relative to one of
three references, optionally selected;

/
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b. Generates a variance we.ghted average of available sets
of bias corrected data in the common Cartesian coordinate system,
and

c. Identifies the minimum total variance radar.

QDK

a. Generates smoothed trajectory and derivative estimates
for each set of radar data and the multi-station set of data
(optional);

b. Estimates varilnces of QDK Cartesian coordinate input
data and generates point-by-point scalar quantities corresponding
to the Kalman R, Q, z.d P matrices; and

c. As an alternate to the multi-station estimates, optionally
selects trajeLtory and derivative estimates from the minimum total
variance radar on a point-by-point basis.

STAT

a. uenerates error estimates (variances) of the QDK smoothed
Cartesian component positions, velocities, and accelerations.

b. Estimates the means of the Cartesian component residuals as
a measure of smoothing distortion.

c. QDK noise attenuation factors.

d. Generates the means of the R, A, E residuals and bias esti-
mates.

e. All estimates are generated on a point-by-point basis.

BLOCK DATA

Contains all of the input parameters and constants which are
compiled into QDKIMIST.

PREMIS

a. Computes a variety of parameters and constants not contained
in BLOCK DATA;
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b. Computes QD filter coefficients;

c. Computes parameters for refraction corrections.

INTCAL (called by PREMIS)

a. Computes parameters for calibration corrections and applies
tilt corrections to rotation matrices.
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ALGORITHM FOR EDITING BIVARIATE DATA FILES WITH
RANDOM SPACING IN THE INDEPENDENT VARIABLE

LT L.D. Clements
Data Reduction Section
Yuma Proving Ground

Yuma, Arizona

Methods for smoothing equally spaced, bivariate data have been
under development for the past one hundred years. A wide variety of
techniques have been adopted for this purpose (see Whittaker and Robinson,
The Calculus of Observations, Dover, 1967). A special case within the
larger problem of data smoothing is ihe need to remove points which are
grossly in error with respect to the surrounding data. Again, techniques
are available for use with evenly spaced data (see Handbook of Data
Reduction Methods, White Sands Missile Range, 1964). In the literature
available to the author, however, there appears to be no method available
for directly editing gross values out of a bivariate data file with uneven
spacing in the independent variable. The intent of this paper is to
introduce such a technique.

DEVELOPMENT OF TECHNIQUE. Consider first the equally spaced string
of numbers given in Table 1 and plotted in Figure 1. It is obvious from
the figure that point number 11 is in error, as are points 21, 22, and 23.
The question then becomes, does a single "bad" point or series of "bad" I
points generate a discernible pattern in the derivatives (actually dif-
ferences) which may be taken? The tabl~e and figure show that indeed there
-is a definite pattern of anomalous difference values generated by erroneous
points.

The approach used was then to say, if in the sequence of derivativles
a given pattern of anomalous values is present, then the point(s) generating
this pattern must be incorrect. Symbolically, let us define for a datum
pair (xi,ti), the first difference pair (vi,i+lvti,i+l), where

vi~i+l -Xi+l-Xi (1)

ti+1-ti

and

ti+l+ti
ti,i+l 2 ____ (2)

and the second difference

Preceding page blank
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vi+l,i+2-vi,i+l
ai,i+l,i+2 - 2ý + (3)al~il 12 "ti+l,i+2_ti,il+

Now if the point xi is bad, then vi_l i, vi,i+l, ai-2,i-1' ai-li,,i+l,
and ai i ..... are abnormal with respect to surrounding values.

,I Similarly, if points xi, Xi+l, ... , xi+n are offset in the same direction
"such as points 21, 22, 23 in Figure 1, vi.li and vi+ni+n+l and

ai_-2,0ili, ai-lii+l, ai+nl,i+n,i+n+l, and ai+n,i+n+li+n+2 are

abnormal. Although to carry out this sequence of calculations by hand is
ridiculous, a digital computer may rapidly use this pattern identification
technique to locate bad points in an unevenly spaced bivariate data stream.

FEATURES OF THE COMPUTER ALGORITHM. The key feature in determining
a suitable algorithm for editing using the pattern recognition scheme
outlined above is answering the question: When is a point grossly in error?
Erroneous points on a graph stand out only if they are far outside of the
normal spread of the data. In the algorithm described above, editing is
dependent upon identifying anomalous values of Ax/Lt and A2 x/At 2 . The
test used Is if Ax/At or A2 x/At 2 is greater than 2.5-3.5 times the pre-
viously established values, then the derivative magnitude is excessive.
The choice of this constant multiplier is necessarily arbitrary, but
dependent upon the level of noise present in the bivariate data stream.

If an isolated point is identified as being bad the program user can
either drop the point out of the file, or it may be replaced. When the
replacement option is exercised, a quadratic equation is fit to eight
points surrounding the point in error and a corrected value calculated.
However, among the eight points, if more than two have been identified as',
bad points themselves, the fit is not made and the point in question is
dropped from the file. A sequence of erroneous points, once identified
is dropped from the file.

TESTING OF THE ALGORITHM. Noisy data were generated from two
analytical equations in the following manner. A starting value of the
independent variable was decided upon and a standard increment size. A
uniform distribution random number generator then was used to calculate a
fraction of the increment size to be used and either -

ti+i " i + fi At (4)

or

tti+1 = i +At + f, at (5)

was used to calculate a new value of the independent variable. A
second random number was generated and the ratio
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A - fl/f 2 ; if f 1 <.5,A - -A (6)

was used to generate the noisy dependent variable from the relation

SdF (7)
-ti+-t

1

where F(t ) is the bivariate functional form being used. The two
"analytical equations used were

x-i t 100. - 10.2ti - 0.5t 2  (8)

/ and,

Xi =O.itsisn(ti/70 (9)

Fluation (8) was used as a crude simulation of a terminal trajectory
record, while equation (9) was of interest to study the effects of low• ~order oscillations on the algoriltFm,

.• ;The noisy input data from equations (4) and (8) are shown inFigure 2 and the edited data in Figure 3. Note there is a difference

of an order of magnitude in the x i scale which accounts for the apparentincreased spread of the data. Simnilar results from e- .:-.ions (5) and
(8) are shown in Figures 4 and 5. As is evident from Figures 6 and 7,
generated by equations (5) and (9), oscillations in the data file do
degrade performance somewhat. Overall results are encouraging, however,
because, as is evident, the algorithm does identify and remove most of the
gross points. Data files, once edited may then be passed on to more
refi ned smoothing routines to eliminate inherent noise.

CONCLUSIONS. Grossly erroneous points in a varyingly spaced, bi-
variate data file may be identified and either corrected or removed
using the algorithm described in this paper. Data screened in this
manner are then suitable for further smoothing and/or processing.
Note: Copies of the algorithm described here in FORTRAN IV are
available upon request from

Commander
Yuma Proving Ground
STEYP-MTS (C., Data Reduction Section)
Yuma, Arizona 85364

/1/
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Table 1: Patterns of Anomalous Differences in a
Bivariate Data Stream

Ax x

Data No. Ax AtxAt at
9 1.0 - 9.5 - 6.5 491.5

10 1.2 -10.8 -106.0 -987.511 1.4 -32.0 91.5 -420.012 1.6 -13.7 - 7.5 - 2.5

18 2.8 -22;.7 7.5 "7.5 !19 3.0 -24.2 9 .0 245.20 3.2 -26.0 40. -250.
21 3.4 -18.0 -10. - 50.
22 3.6 -20.0 -20. -227.523 3.8 -24.0 -65.5 260.24 4.0 -37.1 -13.5 - 7.5
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STATISTICAL ANALYSIS OF H. F. OBLIQUE AND VERTICAL
INCIDENCE IONOSPHERIC DATA APPLICABLE TO FIELD ARMY DISTANCES

Richard J. D'Accardi
Chris P. Tsokos*

U. S. Army Electronics Command
Fort Monmouth, New Jersey

ABSTRACT. The object of this paper is to present a statistical approach

for the analysis and interpretation of short-path oblique incidence and

vertical incidence ionospheric soundings over typical field army distances.

Univariate spectral analysis is performed on the non-stationary

stochastic realization of the oblique and vertical incidence data taken over

the 60 Km path between Fort Monmouth, New Jersey, and Fort Dix, New Jersey.

Estimates of the power spectrum are obtained using three "lag windows,"

namely, those of Bartlett, Tukey, and Parzen, respectively. A specific

truncation length has been obtained for each of the above windows so that,

regardless of which one is utilized, the same approximate estimate of the

power spectrum will be obtained. In addition, bivariate spectral analysis

of the vertical-and oblique incidence data is given.

Sii

* Department of Mathematics, University of South Florida, Tampa, Florida
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1. INTRODUCTION

The deployment of a Field Army necessitates many means of comnunication,
especially those not limited by line-of-sight, extended distances, and inter-
vening terrain obstacles. High frequency (HF) communications systems are not
so stringently limited, and provide excellent back-up for higher frequency
and high density systems. It, too, has limitations, foremost of which is the
ionosphere, a medium which is time variant, random, and to say the least,
highly unstable. Although much attention has been given to developing and
fielding superior equipment, far less attention has been given to improving
the use of the propagation media. It is in this regard that the Communica- -

tions/ADP laboratory, of the U. S. Army Electronics Command, has sponsored
three experiments aimed at developing media-system parameters to provide
tactical (HF) communicators with propagation predictions, in near real-time,
for a typical Field Army area of influence. Specifically, both vertical
incidence and short-path oblique incidence ionosonde data were taken over
60 K1m, 200 Km, and 500 Km paths and analysed.

Work by D'Accardi-Tsokos-Kulinyi [1971J was the first in dealing with
short-path ionospheric data as a stochastic realization as opposed to
analysis and forecasting on the basis of specific 'blocks" of time of day,
Ames-Egan [1958], each being considered as independent and homogeneous.
Their results introduced a new statistical concept to the estimation of short-
path oblique incidence (01) ionospheric data, and provided statistical models

* to forecast either oblique or vertical incidence soundings over specific paths.
With respect to their first objective, regression techniques were used to
relate vertical incidence (VI) soundings to 01 soundings as the first part of
the forecasting problem. This was a practical alternative to the widely
accepted secant c law, which, due to the lack of mid-path data, to the
assumption of a stratified ionosphere, and to the difficulty in scaling
virtual height at the critical frequencies, yielded poor results when applied
over the longer path experiments. With regard to their second objective, the
actual forecasting, they have shown that both the vertical and oblique

Isoundings are non-stationary stochastic realizations; that is, they form a
discrete time series that is not in statistical equilibrium. Their data was
characterized by autoregressive, moving averages, and combination processes.
This approer'b has pc.nted out that more information can be obtained from the
data with respect to the development of system par-'meters, Krause et al E1970].
As a continuation of this effort, the aim of this paper is to utilize the
information gained by D'Accardi, Kulinyi, and Tsokcs in the analysis of the
power spectrum. That is, to describe in detail how the variance of the
stochastic realization (non-stationary ionospheric data) is distributed with c
frequency.

In section 3, we shall give some basic concepts of time series analysis,
defining stationary and non-stationary processes. The procedure for fore-
casting is also given, including the difference equation for forecasting the
average oblique incidence soundirgs for the 60 Km experiment. The model is
used in the spectral analysis of the oblique incidence series.

Section 4 is devoted to basic concepts and a systematic procedure for
the spectral analysis of 0I soundings. The theoretical spectrum, r, 7 (f), is
shown for the general discrete autoregressive (ar) process, and it is shown
specifically for a third order ar process. Estimates of the spectral density
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function using the lag windows of Bartlett, Tukey, and Parzen are given
including the criteria for choosing the best one for estimating r,,(f). For
various truncation lengths, L, the bandwidth, 95% confidence intervals, and
degrees of freedom are given for each window. The bivariate behavior of the
oblique and vertical incidence ionospheric soundings for the 60 Km experiment
is discussed in section 5. More specifically, we obtain estimates of the
smoothed coquadrature, phase, and cross-amplitude spectra using all three lag
windows. Estimates of the coherency spectrum are also given.

2. DESIGN OF THE EXPERIMENT

The experimental distances of 60 Kim, 200 Kim, and 500 Km were zhosen to
fall within the idealized 300 x 300 kilometer tactical Field Army area of
responsibility. The diagonal distance of such an area is approximately
440 Km, and represents the longest distance of an internal communications
path. With Fort Monmouth, N. J., as a base station, mobile ionosonde
terminals were set up at Fort Dix, N. J. (60 K1m), Aberdeen Proving Ground,
Md. (200 Kin), and at Camp Drum, N. Y. (500 Kin), as shown in Figure 1. The
analysis presented herein, is based upon the 60 Km path data, but similar
results were achieved over the other paths and will be presented at a later
time.

Each ionosonde terminal of the 60 Km path, operating in the 2-16 MHz

twenty-one day period. While the Fort Monmouth terminal was transmitting and

receiving its own signal, the Fort Dix terminal would simultaneously receive
the same transmission; likewise for the Fort Dix to Fort Monimouth station
(see Figure 2). Both ionosndes* were synchronized so that the "remote"
sounder scans would be precise with the fixed station. The number of days
that the experiment was performed has so significance with respect to the
results obtained, but was a matter of funding.

The frequency range of the sounders spanned three "octaves," 2-4 MHz,
4-8 mHz, and 8-16 MHz, each of which contained 400 discrete channels. Trans-

missions consisted of successively "stepping" through the channels of each
octave with 100 ps pulses. The resulting data is a recording of these pulses,
as they return from the ionosphere, parametric in frequency and time delay.
The time delay is a measure of virtual height of reflection from the iono-
spheric layers. Figure 3 shows an ionogram record of frequency vs. time
delay. These records were taken on 35 mm. film at Fort Monmouth and on light-
sensitive oscillograph paper at the remote terminal. After collection and
development, the ionograms were scaled for the extraordinary critical frequen-
cies, f2F, (see Figure 3), and the resulting data was compiled for computer
analysis. Some data (ionograms) were unreadable due to man-made noise, and
solar and geomagnetic activity. For those records that were unreadable
(though signal was detected), simulated data was prepared. The occurence of
obscured data was negligible over the experiments.

*These instruments were Granger Associates Model 3905-5 systems, matched with
wide-response delta antennas.
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3. BASIC PROCEURE FOR FORMUIATIMl THE FORECASTING M.DEL

3.1 Basic Concepts in Time Series Analysis:

Any phenomenon such as the oblique incidence soundings, which
changes with time, and any collection of data that measures the aspects of
such a phenomenon can be considered as a time series. A time series can
either be a deterministic function or a non-deterministic function of an
independent variable, usually time; but, in most physical situations, it will
be a non-deterministic function. A non-deterministic function exhibits random
or fluc. ;sting properties and, hence, it is not possible to forecast its
future values exactly. Thus, a non-deterministic time series can only be
described by statistical laws or models. We begin by assuming thp.t one can
describe a time series at a given time, t, by a random variable and its associ-
ated probability distribution function. In this manner, we may describe at
all instances, the behavior of a time series by an ordered set of random vari-
ables and the associated probability distributions. Such an ordered set of
random variables is called a stochastic process. Thus, an observed time
series, y., can be considered as one realization c' an infinite ensemble of
functions that might have been generated by a stochastic process. Such a
process is said to be strictly stationary, is a Joint probability distribu-
tion of any set of observations, and is not affected by shifting all times of
the observations ahead or backward by any integer amount, k. A stationary
stochastic process can be described in terms of its mean, p, which is
estimated by:

- A
S" y, , (3.1.1)

tal

its variance, 02, which is estimated by:

s a~ (y, 5)32.2
niax

its sample autocovariance function, which measures the extent to which two
random variables are linearly independent, estimated by:

€,,(k) .. ( y, (3.1.3)
n t,

where k . 0, 1, 2 ...... , n-l, "

and its sample autocorrelation function, which acts like a correlation i
coefficient and is estimated by:

r, (k) - J, k a O, .1 , n-i (3.1.4)

3.2 Stationary vs. Non-Stationary Time Series:

A stationary time series is a series that is in statistical
equilibrium in the sense that its properties do not change significantly with
respect to time. A non-stationary time series is such that its properties
change with time. The information with which the present study is concerned,
namely, ionospheric soundings, is non-stationary in nature. In general,
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non-stationary phenomena can be divided into three basic classes:

(a) Those time series that exhibit stationary properties over a
long period of time.

(b) Those that are approximately stationary over short periods of
time.

(c) Those time series that exhibit non-stationary properties; that
is, their visual properties change continuously with respect to time.

In the present state-of-the-art, there exist techniques to analyze
stationary time series information; however, the techniques available for the
analysis and interpretation of non-stationary time series information, such
as ionospheric data, are inadequate and do not lend themselves to meaningful
interpretations of physical situations. It is possible, however, to adjust
non-stationary time series so as to be able to apply the existing techniques
of stationary time series analysis. This adjustment takes the form of apply-
ing a proper filter to the observed non-stationary time series to filter out
the non-stationary components.

The search for a mathematical function to transform the non-
stationary time series into a stationary series is in some respects a
trial-and-error procedure. One of the most popular and most efficient
methods of accomplishing this purpose is the application of a difference
equation (see Jenkins and Watts [1968]; Box and Jenkins [1970], among others).
A first order difference equation is defined by:

=t Y-, 1 -Y , (3.2.1)

where:
y- observed non-stationary series,

. the first difference series.

Similarly, a second order difference equation is defined by:
w% y, - 2y,_ + y•_. , (22.2)

and so on. In practice, a fist or second order difference equation is
usually sufficient to transform most non-stationary time series.

To identify whether or not the observed time series exhibits
stationary or non-stationary properties, we make use of the following three
basic concepts:

(a) Visual interpretation of the series.

(b) A plot of the sample autocorrelation function of the observed
series.

(c) Application of various trend tests to the observed series.

-316-

"" " .. . . ... .... Ii .. ! ..



The graphical representation of the observed series can be of practical
help. However, for a more rigorous classification of the series, we must
rely on the latter two concepts. For the observed series and its first and
second differences, one computes the sample autocorrelation function using
equation 3.1.4, and conducts trend tests, such as Kendall's tau, Kendall and
Stewart [1966]. The sample autocorrelation function of a stationary
phenomenon has the basic property that it dampens out fairly rapidly; that
is, It approaches zero. Also, a stationary series will be such that it
contains no trend. Following this procedure, one can obtain sufficient
Infortion to determine if the observed series exhibits stationary or non-
stationary components; and if it exhibits non-stationary components, whether
or not afirst or second order difference equation would filter them out.

Having reduced the given information to a stationary time series,
our aim is to fit a parametric model to this series, either an autoregressive
a*m averages, or a combination of the two. These stationary sthiE'c
models assume that the process (series) remains in equilibrium about a con-
stiant mean level and they are of great value in modeling stationary time
series. The general autoregressive process is given by:

Y% c, * - I -s + ....- + 06(,- + Z% , (3.2.3)

where j is the mean of Yt, Z, is a purely random process (Jenkins and Watts
[1968], and m is the order of the process. The general moving average
process is given by:

, - ... - PZ,.q, (3.2.14)

where P and Z. are as defined above, and q is the order of the proeess. The
general mixed autoregressive-moving average process is given by:

t -r. z .-- M) q ... ,+ C6 (Y.,-) + Z-lZ,.. - ..- qzt-,

where q is indepmdent of m. (3.2.5)

In a recent paper, D'Accardi, Kulinyi, and Tsokos [1971], working
with ionospheric information, have outlined a procedural approach for fitting
the above models. They discuss in detail the criteria for selectingthe
process, its order (which gives the best fit to the observed series), the
"procedure to esti'mate its parameters, diagnostic check of goodness of fit,
and how the model can be employed in forecasting ionospheric soundings.

3.3 Forecasting Model for the Average of the Oblique Incidence Soundings
for the 60 Km Path:

Following the above procedure, we have fitted a third order auto-
regressive model to the average oblique incidence soundings of the 60 Km path
series. The model which best characterized this series is given by the
following difference equation:

. -0•5987 Y._ -0.20314 7t. + 0.1608 y,_. (3.3.1)

In formulating this model, we utilized a second order difference filter,
given by equation (3.2.2), for t - 3,...,85, and the estimates for the above
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model were found to be:

-0 -0.5986T
fr,--0.20345

-o.1608o

Figure 4 gives a graphical display of the average of the original oblique
incidence soundings of the 60 Km experiment, and the predicted values of the
series. Note that we began predicting the average oblique soundings after
having observed the first four observations, and utilizing this information,
we continued to forecast until a difference of 0.5 units occurred between
actual and predicted information. Even though our last observed average
oblique soundings was recorded at time slot 85, we continued predicting up to
time slot 99.

The above model, equation (3.3.1), will be used in a later section
where we will be concerned with the spectral analysis of the oblique
ionospheric series.

4. SOME BASIC CONCEPTS OF THE SPECTRAL ANALYSIS OF OBLIWUE INCIDENCE
SOUNDIUS

In this section, we shall present a spectral analysis of the oblique
incidence soundings of the 60 Km experiment. We shall be using some of the
basic concepts of spectral analysis given by Jenkins and Watts t1968, and
Box and Jenkins [19711.

4.1 The TheoreticRl Spectrum:

The fo. .,dform of the autocovariance function is called the
pmer spectrum or eetr- n of the time series, ed its plot shows how the
variance of the stocnastic realization is distributed with respect to
frequency (time). The theoretical spectrum, denoted by r,),(f), can be written
by the following equation:

r,,(f) -aag H(f)I, - f(4.1.1)

where:
H(f) frequency response function,
"a12 - the variance of a purely random process,

a = incrementation interval between observations.

For the general discrete autoregressive process, equation (3.1.1),
the theoretical spectrum is given by:

r,,(f) - bs I l-C6eTrrA 1 - (4.1.2)

For the oblique incidence soundings, we have formulated a third order (m=3)
autoregressive process. Thus, equation (4.1.1) can be written as follows:
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H(f) a I 1+cl+Cd+o+(2 ,;-2a4+2CL 1a)Cos 217f +(2C 1qG-2a )Cos 4wyf-

2% Cos 6rrf (4.1-3)

Substituting a, a., and ce for;, c•, and a. respectively, and obtaining
a r, estimate (assuming A&1), we obtained an estimate of the theoretical
spectral density function,* r,,(f)/a2  for the filtered process Y. 1,- ,65,
as seen from equation (3.3.1). From the process, we obtain:

a2 - Var(Z,) = -

= a,,a+; 3a,a + a22ay2 + a62 a 2 - 2CLCov(Y,Yt..) -2 CaCov(Yt,Y,_)
<I

-2oaCov(Yt,Yk-) + 2caýa2 Cov(Y,,Y..) + 2%%~Cov(Y,,Y,..x

+2a 1Cov(Yt ,y,-2 )

a a2 £l+c~a1 +oi 2+C.' 2acp,(l -2%p, 7 (2)-. 2ipYY(3)+2a1 %pYY(l)

+2 a•ap,% (l) +2 0t% p,, (2)] (4.1.14)

Hence, the estimate of a2,, substituting the a,, i 1,2,3, and r,,(k), the
estimate of p,7(k) is given by:

-0 c 2 (2.69387)

Therefore, the estimate of the theoretical spectral density of the autoregres-
sive process fitted to the filtered data is:

r,, (f) 2,6933 44

at2 1.425 + 1.375 Cos 2rrf + 0.214 Cos 4Trf - 0.322 Cos 6tf ,

where: - ½ :Z

(4.1.5)

A smoothed estimate of the theoretical spectral density function can
be obtained using the following equation:

) -Q 2 1 1+ 2Z r,,(k)w(k)Cos F-j (4.1.6)

1- 0,1,...,F, where F = 2L, L being the truncation length, and w(k) is thelag window. In the above equation, the lag window plays a major role in
obtaining a good estimate of the spectral density function. In practice,
*Frequently in practice, we have to compare time series with different scales

of measurement. In order to do this, it is necessary to normalize the spec-
trum, that is, simply divide the tbeoretical spectrum by the variance of the
process.
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there are three basic wind os that are commonly used, namely thcse of

Bartlett, Tukey, and Parze . We shall briefly define these windows, and for
more specific details and he properties concerning them, see Jenkins and
Watts [19681. Bartlett's wJndow is given by the following expression-

: ".%0-0 ~~ -r 1 ""'u l(...r

0 otherwise

Tukey's lag window is given by:

-, ", I ui "M (ug.l.8)

0 otherwise

Parzen's lag window is given by:

Vp ( U) {l( UI) + 6( ) l
- {2((Jll))Jul :4-

M M

"{ 0 otherwise (4.1.9)

A rectangular window is another alternative not mentioned above, which is
defined by:

wR) ~ 0  otherwise (I.1.IO)

where M is a truncation pont.

Scientists who have been involved in choosing the proper shape of a
lag window, w(u), have taken into consideration the fact that the spectral
window, W(f), that is, the fourier transform of the lag window, should be
concentrated near the zero frequency. Blaciuawn and Tukey r19591, looking at
the problem from the comnunications engineering point of view, almost identi-
fied it with that of choosing the intensity distribution along an antenna, so
that the variation will ;all in a narrow beam. The principal maximum and the
subsidiary extreme of W(f) are called, respectively, min and side lobes. A
window should be an even function so that it can equally treat positive and
negative values of the spectral density function on both sides of a given
point of the time series. It should integrate to unity, that is, Z

zoo W(f)df =. /
/

and shculd achieve a maximum value at the frequency f - 0. That/ is,

w(f) " w(o), for all f.

It should be concentrated as much as possible about f = 0 in order thatt-he-
behavior of the spectral density function be reflected as much as possible in-
that neighborhood..



N
1  

/..:1

There has been no agreed valid criterion for comparing the degree
of concentration of any window. One criterion could be the ratio of the size
of the second largest pek to the size of the largest peak. However, again
this would be powerful only In the case where the second largest peak would
occur at the same point. This fact explains why one has to consider all the
different windows, not the most popular, .in one's search for the most approp-
riate case.

For the main lobe of W(f) to be concentrated, the graph of w(u)
should be flat due to the way the two concepts are rela.Led. Also, for the
side lobes to be small w(u) should be smooth and should not change rapidly
as in the case of the rectangular window. Therefore, one should compromise.
The authors' analyses have been done along these lines, and this is the
reason why we have, as a result, numerous windows aong which we should
choose.

Taking Bartle-tt's spectral window, w (f), as an example, we find that
when it is graphed against frequency, it is 4zeric about the origin and
has zeros at f , +

We shall call base width the distance between the first zeros on
either side of the origin. The base width for Bartlett's window is equal to

SIt is inversely proportional to M and the variance. By increasing the

se width, the bias, B(f), increases as well. Thus, we are forced to
ccmprcomise between bias and variance in choosing a particular window.

The rectangular window is more concentrated about the center
frequency than any other of the windows under consideration. Nevertheless,
although it has the smallest bandwidth, which implies small bias, it also
has the largest side lobes. This makes it very impractical. The first side
lobe is about 1/5 of the height of the main lobe which shows an unrealistic
characterization of the estimate of the power spectrum.

. Thu, in.view of the above remarks, for the density function of the
oblique incidence soundings, we shall utilize the Bartlett, Tukey, and Parzen
lag windows in search of the best estimate of the spectral density function.

4.2 Estimate of the Spectral Density Function Using Bartlett's Leg
Window-.

The values of the estimate of the spectral density function using
Bartlett's lag window, equation (4.1.7), were calculated and plotted versus
frequency for L - 8, 12, 16, 20, 24, 28, and 32 units. As a basis of compar-
ison, we plotted our estimate on the same set of axes for L = 8, 12, 16, 24,
and 32. For these values of L, we calculated the bandwidth, the confidence
intervals, and the degrees of freedom which are shown in the following table:
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TABLE I: TRUNCATION POINT, BANDWIDTH,
MDEES OF FREEDOM, AND CONFIDENCE

T LS FOR BARTLETT'S IAG WINDOW

I, Bandwidth d.f. 25% C0.113.f

8 .185 31 .63 1.56

12 .125 20 .58 2.10

16 .094 15 .54 2.35

24 .063 10 .49 3.00

32 .047 7 .42 4.1o

The formula used for the bandwidth of the estimate of the spectral density
function is given by:

b,b' 1* 1.5
La L

and the equation for the degrees of freedom is given by:

v 2~(b 2Tb - 2(83)b
- 166b.

Note that since we have chosen 1 - 1, we have L = M.

Figure 5 gives a comparison of the theoretical spectral density
"function of the autoregressive process and its smoothed estimate for the
various truncation points, along with the 95% confidence intervals.

It is a known fact that increasing the bandwidth of the estimate of
the spectral density means increasing the amount of bias and decreasing the
variance; thus, a compromise has to be reached as to the best value of L.
In making such a decision, we should take into consideration the confidence
interval, the degrees of freedom, and the visual appearance of the plot of
our estimate. For L = 8, the plot is very smooth and has a shape very similar
to the theoretical spectrum with the bandwidth being wide enough to conceal
any peaks that may be present. By increasing L to 12, we obtain an indica-
tion of another peak that appears at f = 3/16 cycles per second, in addition
to the major peak in our theoretical spectral density. The plot is still
quite smooth and the bandwidth is wide enough to give a great deal of faith
in our estimate. Increasing L to 16, the bandwidth seems to be in a very
shaky range. However, the curve has changed very little from the one for
which L = 12. It displays the peak in the theoretical spectral density and
also the extra peak at f = 3/16 cycles per second. Since larger values of L
produce many small erratic peaks, we chose L = 16 to estimate the spectral
density using Bartlett's lag window.
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4.3 Estimate of the Spectral Density Function Using Tukey's rag Window:

Using Tukey's lag window given by equation (4.1.8), the smooth
spectral density estimate R,,(f) was calculated for L = 8, 12, 16, 20, 24,
28, and 32 units. In Figure 6, we display the spectral density estimates
along with an estimate of the theoretical spectrum of the third order auto-
regressive process. In addition, we display the 95% confidence intervals,
and the bandwidths which correspond to the various truncation lengths. It
is clear that for L = 8, the sample spectrum has the Aame general shape as
the theoretica& spect.rum, and the curve is very smooth. Increasing the
truncation value to 12, the plot is still fairly smooth, but a peak appears
at about f a .186 cycles per second. At L = 16, the peak is slightly more
pronounced, and as L is increased to 20 and above, more peaks appear at
higher frequencies. This indicates that the variance is increasing and, thue
the sample spectrum is becoming more erratic for L $N 20. On this basis, we
decided that for L = 12, 14, or 16, we would try to obtain better estimates
than those calculated for other values of L. We computed the spectral
density estimates for L = 14, 18 units, respectively.

Table II displays, for the various truncation points, the bandwidth,
degrees of freedom, and confidence intervals using Tukey's lag window.

TABLE II: TRUNCATION POINT, BANDWIDTH,
DEGREES OF FREEDOM, AND CONFIDENCE
INTERVALS FOR TUKEY'S LAG WINDOW

L b d.f. 95% C.I. r,.(f)

8 .166 27 .61 1.58

ip .112 18 .57 2.25

14 .095.- 16 . .54 2.35

16 .083 13 .51 ',2.50

20 .067 3 .49 2.85

32 .o49 6 .41 4. t3`0

Table II is quite helpful in deciding that for L = 14 units, we will have
the best estimate of the spectrum using Tukey's lag window. The degrees of
freedom, v = 15, are sufficient for fairly small 95Z confidence intervals,
and this gave a bandwidth of .095 so that peaks in the time spectrum of
bandwidths larger than .095 will be detected. Decreasing the bandwidth to
.083, that is, L = 16, causes a loss of two degrees of freedom and a slight
increase in the confidence interval width. For L = 12, the bandwidth is
considerably larger (.112), and there is not much change in the confidence
interval even though there are eighteen degees of freedom. Therefore, for a
truncation length of 14 units, we obtain the best estimate for the spectrum
using Tukey's lag window. Figure 7 shows the spectral density estimates of
the filtered data using the Tukey lag Vindow for truncation lengths L = 9,
12, 14, 16 and 32, along with the 95% confidence intervals and the various
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bandwidths associated with these truncation points. As we mentioned previ-.
ously, the plot of the estimate of the spectral density is given in the
logarithmic scale to show more deteil in the spectrum over a wider amplitude
range.

4.4 Estimates of the Spectral Density Function Using Parzen'sW
Window:

Using Parzen's lag window, given by equation (4.1.9), we obtained
estimates of the spe tral density function for various truncation points. As
before, we shall let A x 1, so that L a M, the truncation points of the
smoothed spectral estimator. We varied L from 8 to 32 in intervals of four
units.

Figure 8 shows the spectral density estimates of the filtered data
for the various truncation points along with the theoretical spectral density
of the third order autoregressive process. In addition, a 95% confidence
interval and the corresponding bandwidths are displayed. The bandwidth using
Parzen's lag window is given by:

1.86 1.86
LA

The degrees of freedom for the confidence intervals were found using the

following relationship:

V =2 (In b1

where b. = 1.86 for the Parzen window and T - total number of observations,
which in our case, is 85 oblique incidence soundings. Table III gives, for
the various truncation points, the corresponding bandwidths, degrees of
freedom, and a 95% confidence interval for the theoretical spectrum, r,,(f),
for the Parzen lag' window.'

TABLE III: BAN3?=, DEGREES OF FREEDOM,
AND 95% CONFIDENCE INTmEAw FOR SELECTED
VAUE OF L FOR PARZEN'S WI==W

L Bandwidth d.f. 95% C. I. r,(f).

"8 .233 38 .65 1.54

16 .16 19 .58 2.20

20 .093 15 .54 2.35

24 .078 12 .50 2.75

32 .058 9 .48 3.30

In selecting a proper value for L for our spectral density, we want
to be able to detect peaks in the spectrum, have a reasonable confidence
interval, and a bandwidth which affords us a reasonable bias. For an L value
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S Of 8 units, the spectral density was too smooth, and we 'were unable to
detect peaks less than 0.233 wide. Increasing the L values from 16 to 20
units, gives a fairly reasonable display of the spectral density, that is,
two major peaks occur which are quite similar to those of the theoretical
density. For a truncation point of 24 units, very small peaks begin to
appear which indicate that the variance may be influencing the density.
This was also seen at L = 28 and 32, where the peaks became very erratic,
and very noticeable. Thus, our choice was narrowed very quickly to choosing
L a 16 or 20 units. The confidence intervals for L = 16 ond L = 20 units
are almost identical. The bandwidth for L = 20, however, has been reduced by
about 20% from that of L = 16. Therefore, the spectral density corresponding
to L a 20 units was selected as the most reasonable truncation point. The
spectral density estimate clearly shows that most of the power is concen-
trated at high frequencies. A mjor peak is located at f = .375 cycles per
second with a smaler peak located at .18 cycles per second. The bandwidth
for L - 20 units is .093, which means that we can detect peaks with a width
of this value or greater. The above remarks are graphically verified in
Figure 8 where the theoretical spectral density for the third order auto-
regressive model is compared with the spectral estimate for L = 8, 16, 20,
24, and 32 units. In addition, the 95% confidence interval and the corres-
ponding bandwidths for the truncation points are given.

5. BIVARIATE SPECTRAL ANALYSIS OF THE 01 SO~NDINGS:

In this section, we shall be concerned with analyzing the bivariate
behavior of the oblique and vertical incidence ionospheric soundings for the
60 Km experiment. More specifically, we shall obtain estimates of the smooth
c oqundrature, phase, and cross-amplitude spectra using the three lag windows
we discussed in Section 4. In addition, we shall obtain estimates of the
coherency spectrum.

With respect to the aims of the present study, we will only give the
-equations (estimates) which characterize the above concepts and we will not
discuss the theoretical implications. For complete details of these concepts,
see Jenkins and Watts [1968] and Box and Jenkins [19713.

The sample cross-correlation function is defined by:

7 (k) - c,.(k) (5.1

where: 1 N-K
c7,(k) = E., ) , 0 k L- 1 (5.1.2)

As in the univariate case, the sample cross spectrum is obtained by taking
the fourier transform of the sample cross covariance function. The
cospectral estimate is given by:

.I -,.(o) + 2 LE 2 (k)w(k)Cos J o i sF
(5.1.3)
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where:
(k) [c, (k) + c (-k), 0 c k, 1 (a.1.L)

The equation used to calculate the quadrature spectral estimate is given by:

- E q ,(k)w(k)sin T , & I Pi-I (5.1.5)

kol F

where:I qq1.(k) = ½c,,(k)-c,,(-k)] , 0 :g k:% L-1 .. )

Note that Q,1 (O) - ., 1 (F) - 0. The smoothed cross-amplitude spectral
estimate was calculated using the following equation:

A,(i) 0 - , O , (5.1.7)

where the smoothed phase spectral estimate is given by:

4 (i)

E, (i)

and •, 1 (i) and t, 1 (i) are as previously defined. The smoothed squared

coherency spectral estimate is given by:
& 2

, ((5..9)

where: .A--,(i) is the smoothed cross-amplitude spectral estimate and

C,,(I) is the smoothed spectral estimate given by:

.L-1

•,,(i). {c (o)+2 • cz ,(k,.(k)Cos!-- },Qoi£F

(1 2 {cý 3 (0). 2 1:J c,3 (k)w(k)Cos 17k , 0 S i. F
kol

Having calculated and plotted the cross amplitude spectrum, we can
detect whether or not frequency components in the vertical incidence sound-
ings are associated with large or small amplitudes at the same frequency in
the oblique incidence series. The estimate of the phase spectrun of the two
stochastic realizations helps us in determining whether or not frequency
components in the vertical incidence series are in phase or out of phase
(lag or lead) with components, at the same frequency, in the oblique
incidence series.

-331-

• ' I II i I I a



An estimate of the cross-amplitude spectrum and the phase spectrm
would suffice to provide a complete description of the behavior of the two
series. The square coherency spectrumn is the plot of the R (f) vs.
frequency. The cross amplitude spectrum, A, (f), is a measure of the
covariance which exists between the oblique and vertical incidence soundings
at frequency, f. In general, the coherency spectrum plays the role of a
correlation coefficient with respect to frequency. Its usefulness lies in
the fact that dimensions do not enter the picture when the correlation is
measured with respect to frequency. Unlike the square coherency spectrum,
the cross amplitude spectrum depends upon the dimensions of the oblique and
vertical incidence soundings. This is the reason why the square coherency
spectrum is scmetimes preferred over the cross amplitude spectrum, and
together with the phase spectrum, will give a crmplete picture of the cross
correlation behavior of the oblique and vertical incidence soundings.

We shall, in what follows, obtain estimates for the coquadrature,
phase, and cross amplitude spectral estimates using Bartlett's lag window.
These smoothed estimates were obtained using the truncation points L M = 8,
12, 16, 20, and 24 units for the cross spectral estimate and L = M = 8, 12,
16, 24, and 32 units for the smoothed coquadrature spectral estimate. These
truncation points correspond to decreasing the bandwidth to b = b1/L 1.5/L.

Figure 9 shows the smoothed cospectral estimate. Similarly, Figure
10 shows, on the same axes, the various smoothed quadrature spectral esti-
mates. It is clear that for L) 20 units, the estimates in both cases, i.e.,
vertical and oblique, become very erratic. As we mentioned previously,
ccmpromising between bias and variance, it appears that for L = 16 units, we
have the best estimate using Bartlett's lag window with b - .094 and v = 15
degrees of freedom. The smoothed phase spectral estimate and the smoothed
cross spectral estimate, plotted for L = 16, each on separate sets of axes
to enhance the details of the series, are shown in Figures 11 and 12,
respectively.

The smoothed coquadrature, phase, and cross amplitude spectral
estimates were similarly obtained using Tukey's lag window for truncation
points L - 8, 12, 14, 16, and 32. Figure 13 displays the smoothed cospectral
estimates. The smoothed quadrature spectral estimates are plotted in
Figure 14 for the same truncation points. For both of these cases, the
estimates become more erratic as L is increased beyond 20 units. Taking the
bandwidth into consideration, we choose the estimate for which L = 14 units
as the best compromise between bias and variance. Thus, the bandwidth
resulted in b = 1.33/L = .095 for L = 14 and v = 15 degrees of freedom for
the Tukey lag window. Decreasing b to .083, the degrees of freedom are
decreased considerably, therefore, having chosen L - 14 units will give the
best estimate of the co- and quadrature spectra for the Tukey lag window.
The smoothod phase and smoothed cross amplitude spectra werE then plotted
for L = 15 units to enhance the details. Figures 15 and 16 display the
smoothed cross amplitude spectral estimate and the smoothed phase spectral
estimate respectively, using the Tukey lag window for L - 14.

A similar analysis was performed to obtain smoothed estimates for
the co- and quadrature spectra using Parzen's lag window for L = 8, 16, 20,
24, and 32 units. Figures 17 and 18 display the above smoothed estimates.
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The bandwidths for the Parzen lag window are given by b = 1.86/L and the
degress of freedom can be obtained from v = 166 b. For values of L t 24, the
estimates become quite erratic and the bandwidth and degrees of freedom are
decreased. However, the decrease in bandwidth from .093 to .078 for L = 20
and 24 units, respectively, is not worth the decrease in variance. Hence,
we choose L = 20 as our best estimates of the co- and quadrature spectra.
This gives a bandwidth of b = .093. Figures 19 and 20 show the smoothed
phase and cross amplitude spectral estimates, respectively, for L = 20, using
the Parzen lag window, along with their corresponding bandwidth.

To compare the estimates obtained for the Bartlett, Tukey, and
Parzen lag windows, the estimates corresponding to the best value of L (chosen
for each window) were plotted on the same axes, see Figure 21. The
estimates for the co- and quadrature spectra coincided almost exactly. Each
estimate has 15 degrees of freedom for the autospectrun analysis. The Parzen
lag window has a slightly smaller bandwidth than the others. It was difficult
to choose the best window, but since Parzen's lag window for L = 20 units gave
a bandwidth of .093, we chose it as the best smoothed estimate of the cc- and
quadrature spectra. The smoothed estimates for the phase and cross amplitude
spectra are also best represented by this lag window for L = 20 units. The
smoothed sample cospectral estimate estimates the covariance due to the in-
phase components. There is a peak at about 0.2 cycles per second which
corresponds to the peaks in the autospectra due to the fact that the variance
is a special case of the covariance. At frequencies less than 0.125 cycles
per second, the covariance between the vertical and oblique incidence realiza-
tions is reasonably small and constant over the frequency range 0 to .125
cycles per second. The variance at most frequenclos in the autospectra is
fairly large. However, the covariance distribution of the in-phase components
of the filtered ionospheric series is small, end therefore, the series in-
phase components are not very dependent. The larger value of the sample
cospectrum is near .375 cycles per second corresponding to variance values of
autospectra of about 10 at the same frequency for the Parzen lag window.
L a 20 units, and hence, the correlation is small as will be verified by the
square coherency spectral estimate.

The smoothed quadrature spectral estimate estimates the covariance
of the out-of-phase components of the two filtered time series. This also
shows that there is small covariance between the out-cf-phase components of
the two filtered series and,hence, that they are not very correlated. The
largest value is 0.041 for the chosen lag window (Parzen, L = 20) and the
smallest value is -. 025. There is little or no covariance exhibited at all
in the range 0 to 0.25 cps., but the out-of-phase components begin to vary in
a sinusoidal manner at high frequencies.

The smoothed phase spectral estimate estimates the phase angle in
radians by which one filtered time series leads 'or lags the other. At
frequencies 0 to .0625 cps., the phases are approximately the same (phase
spectral estimate is near 0). At frequencies between .0625 cps. and 0.13 cps.
the in-phase components of the two time series lag the out-of-phase components
very slightly. From 0.13 cps. to approximately 0.27 cps., the out-of-phase
components lag the in-phase components. From 0.27 cps. to 0.35 cps., the in-
phase is lagging, and from 0.35 cps. to 0.5 cps., the out-of-phase components
lag the in-phase components of the two time series. Since the phases alter-
nate leading, there is no reason to assume or conclude that one time series
leads or lags the other at all frequencies.
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The smoothed cross amplitude spectral eatimate shows whether or not

the amplitde of the components at a particular frequency in one time series
is associat.ed with a large or awl, amplitude of the sawe order at the same
frequency I•n the other time series. The spectral density of the autospectra
shows that ahe variance is about 10 in both filtered 3, and j. series so that,
at frequencies from 0.3 cpa to 0.4 cps, the amplitude of the components of
one time series is associated with corresponding large or small amplitudes at
the sawe frequency in the other. Again, this seems to indicate that covari-
ance between the component amplitudes is near zero at other frequencies. In
Figure 21, the best smoothed cospectral estimate is displayed and, in Figure
22, the best smoothed quadrature spectral eatimate is shown.

6. SMj.HY AND CO~NCLUSIONS

A plot, see Figure 21, is given for the selected best estimates of
the spectral densities for each of the three lag windows, namely, those of
Bartlett, Tukey and Parzen. Although the truncation is different for each
lag window, the bandwidth, degrees of freedom, and confidence intervals are
almost identical. Thus, it is quite difficult to choose which lag window
gives the best smoothed estimte of the spectral density function. However,
calculating the approximate bias for each of the above lag windows, we found
that the bias for Parzen's lag window is somebat smaller than that for the
Takey and Bartlett lag windows. That is:

B1,(f) r, l 2r Mr

Furthermore, the variance ratio, that is, the proportional reduction in vari-
ance as the result of using the smoothed estimator as compared to the sample
spectrmu estimate, is approximately equal to 0.128. On the basis of these
two criteria, we choose the best estimate of the spectral density using
Parzen's lag window. In addition, the bandwidth of this lag window is
slightly smaller than that of the Tukey and Bartlett lag windows. Therefore,
the best estimate of the spectral density of the average oblique incidence
soundings was obtained using Parzen's lag window for L a 20 units. This
value of L resulted in a 95% confidence interval width of 2.25 with 15 degrees
of freedom, and a bandwidth of b a .093. The bandwidth is less than 1/5 of
the total frequency range over which the spectral density function is esti-
mated. Since we are detecting peaks with widths of .093 or more, the two
peaks appearing in the estimated spectral density at frequencies f - 3/16 cpa
and f . 3/8 cps are valid peaks, and they should be taken into consideration
in interpreting the behavior of the average oblique incidence soundings. The
process generat:ag the resultant soundings exhibits large variance around
these two frequencies for the filtered data. Such information should be
taken into account in the design of the system. Frequencies below f - .125
cps on the spectral estiates gives the lowest pover, that is, the least
variance.

The Parzen lag window for L w 20 units and b .093, was used to
obtain smoothed estimtes of the co- and quadrature spectra. The smoothed
eatimates of the phase and cross amplitude spectra"vere also obtained using
the same lag window and L - 20 units.

The smoothed sample spectral estimate est te the covariance due
to the in-phase components. There is a peak at about .20 cpa and one at
.375 cps which correspond to the peaks in the autospectra.•Ancies

-347-

-$ < -

\N



U,0 0
-I-

71-

El
la,4 T,49 Tvj;oaS aj,;wprtbna-W

-348-



less than .125 cps, the covariance is reasonably small and approximately
constant over the frequency range of 0 to .125 cps. The variance at most
frequencies in the autospectra is fairly large. However, the covariance
distribution of the in-phase components of the two filtered series is small
and has, due to the soundings series, in-phase components that are not very
dependent. The larger value of the sample spectra is near .X75 cps, corre-
spoding to variance values of the autospectra of about 10, at the same
frequency, using the Parzen lag window for L = 20 units. Hence, the correla-
tion between the average oblique and vertical incidence soundings is small
as was verified by the squared coherency spectral estimate.

The smoothed quadrature spectral estimate estimates the covariance
of the out-of-phase components of the filtered oblique and vertical incidence
soundings. It showed that. the covariance between the out-of-phase components
of the two filtered series is small, and hence, that they are not very corre-
lated. The largest value is .041 for the chosen lag window, and the smallest
value is -. 025. There is little or no covariance exhibited in the range from
0 to .25 cps, but the out-of-phase components begin to vary in a sinusoidal
manner at higher frequencies.

The smoothed phase spectral estimate estimates the phase angle in
radians by which one filtered time series leads or lags eaotr-tr. At frequen-
cies 0 to .0625 cps, the phases are approximately the same; that is, the
phase spectral estimate is near zero. At frequencies between .0625 cps and
.13 cps, the in-phase components of the two time series lag the out-of-phase
components very slightly. From .13 cps to approximitely .2T cpc, the out-of-
phase components lag the in-phase components. From .27 cps to .35 cps, the
in-phase components are lagging, and from .35 cps to .50 cps, the out-of-
phase components lag the in-phase components of the two time series (the
average oblique and vertical incidence soundings). Since the phase is
alternately leading, there is no reason to asimae, or conclude that one time
series leads or lage the other at all frequencies.

The smoothed cross emplitude spectral estimate shows whether or not
the aaplitude of the components at a particular frequency in one time series
is associated with a large or small amplitude of the same order, at the same
frequency, in the other time series. The spectral density of the auto-
speotra shows that the variance is about 10 in both the filtered average
oblique incidence and filtered average vertical incidence soundings, so that,
at frequencies from .30 cps to .40 cps, the amplitude of the components of
one time series Is associated with corresponding large or small amplitudes
(at the sam frequency) of the other. Again, this indicates that the covari-
ance between the component amplitudes is near zero it other frequencies. In
Figures 21 and 22, we displayed the best smoothed estimates of the cospectral
and the quadrature spectral estimates.

In order to obtain a better representation of the important peaks
and a confidence interval, the square coherency was calculated and plotted
(see Figure 23) on the truncation scale, Jenkins and Watts [19681, given by:

Y(f uarctan j,(fj
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A 95% confidence interval was obtained using the following expression:

. . 1.96 VP72b 1 N

-k~ 1. 96 'To/2(l.&86)3_ + .499

and is shown on the graph of the smoothed squared coherency spectrum. This
squared coherency spectral estimate gives the correlation between the average
oblique incidence soundings and the average vertical incidence soundings for
the 60 Km experiment. At low frequencies, we have almost perfect correlation
between the two filtered series, but this dampens out near zero at about .25
cps, and again at .50 cps. Furthermore, it never becomes greater than .33
cps. This frequency range shows virtually no correlation. Between these two
frequencies, .25 cps and 50 cps, the squared coherency is near zero which
indicates that the noise level is high in the filtered series for components
of this frequency. This is consistent with the results obtained by the auto-
spectra analysis, that is, the distribution of power or variance is larger
at high frequencies (between .25 cps and .50 cps). At low frequencies, the
squared coherency is high, which indicates low noise or variance in the auto-
spectra for the corresponding frequencies and again, this is the same result
obtained in the autospectra analysis.
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MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES IN RELIABILITY GROWTH

SiL Larry H. Crow

Introduction

A development program is generally recognized as being a necessity for

most systems since they usually exhibit initial design and engineering

deficiencies. Attempts are made during the development program to find and

remove these deficiencies to a point where certain levels of performance with

respect to reliability and other requirements are met.

The development of a system usually evolves as a repeated process of

system examination and testing, determination of system failure modes, and

design and engineering changes as attempts to eliminate these modes. Because

of the scarcity of data, it is often a difficult task for one to obtain

directly good estimates of the progress of the development program and to

project future progress. In this regard, program managers generally need

specialized techniques and methodology which will allow them to evaluate the

I, - progress of the development program from a limited amount of test data. The I

area of reliability growth modeling is a management tool directed toward this

need of the program managers.

It is usually assumed that the system reliability will increase during

the development program and, thus, mathematical models describing this

phenomenon have come to be called "reliability growth" models. Most of the

reliability growth models considered in the literature assume that a math-

ematical formula (or curve), as a function of time, represents the reliability

of the system during the development program. It is commonly assumed, also,

that these curves are nondecreasing. That is, once the system's reliability

has reached a certain level, it will not drop beJow this level during the

remainder of the development program. It is inmportant to note that this is

equivalent to assuming that any design or engineering changes made during the

Preceding page blank -
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development program do not decrease the system's reliability.

The central purpose of most reliability growth models includes one or both

of the following objectives:

* Inference on the present system reliability;

* Projection on the system reliability at some future development

time.

This paper will consider a commonly used reliability growth model proposed

by Duane [1]. For this model maximum likelihood estimates of the unknbwn:

parameters will be given along with appropriate confidence interval and

hypotheses testing procedures.

Background

For a nonrepairable system let F(x) be the cumulative distribution function

of the time to failure. Let f(x) be the corresponding probability density

function. Then the system failure .rate is

{f(x)/l-F(x), F(x) < 1
r(x) x

- ,F(x) 1 .

Note that

r(x) dx

is the probability that a system of age x will fail in the interval (x,x+dx).

This probability is conditional on no failure during [O,x].

Examples

1. Exponential

FWx) a l-e0x x0 > 1  > O.

r(x) - A, x > 0.

2. Weibull

Ax!
F(x) 1-e0- x > 0, X > 0, B 0.

T(X M OX0-1 x>0
r(x) -Bx,-x4 O.
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Observe that for 0=1, r(x) is constant. If 0>1 (0<l) then r(x) is

increasing (decreasing) which implies that the system is wearing out (improv-

Sing) with age. c

The above definition of failure rate is appropriate when one is interested

primarily in time to first failure. However, during a development program the

system is repaired or modified after each failure and tested further.

The failure rate of a (complex) repairable system may be defined by

r(x)dx - (unconditional) probability
that a system of age x will
fail in (x,x+dx).

This probability is indep-adent of the failure history of the system diaring

[O,x]. Again if 0>1 (S<1) then r(x) is increasing (decreasing) which implies

that the system is wearing out (improving) with age.

Exampl es

1. Constant failure rate

r(x) -A, 1 0, x 0.

2. Weibull failure rate

r(x) - lBx 3, I 0 0, 0 > 0, x> 0.

The Duane Reliability Growth Model [1] is usually written as

r(x) W (1-)xx

X 0 O, X 0, 0 a < ' 1, where r(x) is the failure rate of a repairable system.

Replacing -a by 0-1, we see that the Duane Model and the Weibull repairable

system failure rate model are the same. For a system with a constant failure

rate for a fixed configuration, this model is equivalent to assuming that the

mean time between failure (MTBF) of the system at time x is

M(x) - [r(x)]" -
AS

That is, the NrBF is proportioned to x1 "•.
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Maximum Likelihood Estimates of I and S

Suppose K systems have each experient.ed T units of operation since the

development program began. Let Nr (T) be the random number of failures

observed for the r-th system, r=l,...,K. Let X. be the age of the r-th system
(regarding the age at the beginning of development as 0) at the i-th failure,

X 1 x 21 x 3x 41 • • • XNC (T)l T
I

0T
11 2  X2 2  32 42 2 . XN2 CT)2

1K 2K A3K o o . XN(,)K T

The maximum likelihood estimate (MLE) of 0 is

K
KNr(T)

r=l

K N r(T) T -C-° 2 ! log r-
rul ml

The MLE of A is

N ~ (T)

K r

(All logs are with respect to base e,)

Example

Suppose K=3 systems were tested for time T=200. This experiment was

simulated on a computer when A=0.6 and 5=0.5. These results are given in
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Table I where Xir is the age of the r-th system at the i-th failure.

From this simulation the MLE of B is

0. 0.61s

and the MLE of A is

-1 0.461.

The Duane Model states that if development of the system is stopped at

T=200 hours of testing, then the times between failures of the system there-

after will follow the exponential distribution

F(x) = l-ex/MCT)

x 0, where

1-0
M4(T) [rCT)]'l a (200)I8

X8

Based on 200 hours of .testing the ?4LE of M4(T) is

M(200) 27.12.

If development is stopped at, say, T=300 hours of testing the model

states that future times b..tween'failure will, also, follow the exponential
distribution but with mean

M4(300) 3 0 lj

Based on 200 hours of testing the projection of the MTBF at 300 hours of

testing is

(300)1(300) 31.70.

AsA
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TABLE 1

Simulated Data for K-3 Systems Operated For Time

T=200 when ) a 0.6 and I = 0.5

Sys. 1 Sys. 2 -Sys. 3
xil xi 2  xi3
4.3 0.1 8.4
4.4 5.6 32.5

10.2 18.6 44.7
23.5 19.5 48.4
23.8 24.2 50.6
26.4 26.7 73.6
74.0 45.1 98.7
77.1 45.8 112.2
92.1 75.7 129.8

197.2 79.7 136.0
98.6 195.8

120.1
161.8
180.6
190.8

NSlT) - 10 N2(T) - 15 N3 T) - 11

1015 11 TI0 •llog T.x log T

ilnioK i2i i-I i3

* 19.661 " 26.434 " 12.398

N(T) - NI(T).N 2 (T)+N3 (T) a 36

3 Nr(T)

T

S.ir

3 N r (T T

N z) .461
K To
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_Hotheses Tests on B

Let N(T) be the total number of failures for the K systems. That is,

N() - NI 2+NZ(T)+ .... +NKCT).

Conditioned on N(T) =n (n a fixed integer), the random variable

y N(T)

rul i-i ir/

has the Chi-Square distribution with 2n degrees of freedom.

This result may be used in the usual fashion to test hypotheses on the

true value of 0.

When n is moderate in size then one may use the fact that

Nr(T)

~K r

is approximately normally distributed with mean 0 and variance 1 to test

hypotheses on the true value of 0.
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Confidence Bounds on 8

To construct exact confidence bounds on 0 one may again use the result

that conditioned on N(T)=n

K Nr(T)
2Be• log(-r

rul i-i TirI

has the Chi-Square distribution with 2n degrees of freedom, Exact (l-a)xlOO

percent lower and upper confidence bounds are

2 ( n

(X2(1-in3

respectively, where 8 is the MLE of 0, and X2C*,2n) [X2(1- 7.2n)] is the 0

•--th [1.. l -th] percentile for the Chi-Square distribution with 2n degrees

of freedom. When n is moderate, however, the normal approximation may be

used. This approximation yields (1-a)xlOO percent lower and upper confidence bounds

/
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respectively, where 0 is the MLE of 8, and P is the -th percentile for
0/22

the normal distribution with mean 0 and variance 1.

Example

Consider again the simulated results presented in Table 1 when K=3 and

T=200.

The MLE of 8 was computed to be

B 0.61S.

Conditioned on N=36, 90 percent approximate confidence bounds on 8 are

I 164S
LCB 8Cl-" 1ý- - 0.446

IJCB 0 Bl -64S 0.784.

Hypotheses Tests and Confidence Bounds on X (8 known).

Suppose 8 is equal to some known value Bo, say, and that K systems have
operated for time T during development. Then the random number of failures,
N(T), for the K systems during [0,T] has the Poisson distribution with mean

6 KATso.

,.This result may be used to test hypotheses or construct confidence bounds

on A when 8 is known.

Example

Assume K-3 systems were operated for time T=200 and N(T)=36 failures were

observed. Suppose, also, that 8 is known to equal O.S. Two-sided 95 percent
confidence bounds on e are (25.1, 49.8). Consequently, two-sided 95 percent

-i
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confidence bounds on X are (A1 ,A 2 ), where

A " • =.348

A2  = -,, .691.

Confidence Bounds on Current Failure Rate and WTBF.

Let N(T)=n and let

X2 (f, 2nf)O . -------

2

and

X2 (I- ,2n÷2)
2 "

2 2

be (I- Y )xlOO percent lower and upper confidence bounds, respectively, on

9 KAT8 .

Also, let 0 and a2 be .I-a)xlOO percent lower and upper (conditioned on N=n)

confidence bounds on 8. Then (1-a)(l-y)xlO0 percent lower and upper

(conservative)* confidence bounds on the failure rate, r(T), at time T are

S KT

00
2 2

r2 K

*1That is, our assurance is at least, instead of exactly equal to, a specified
value that the parameter of interest will lie within the stated bounds.
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respectively. Consequently, (l-a)(l-y)xlO0 percent lower and upper (conserva-

tive) confidence bounds on the MTBF at time T, M(T), are

Ml~j.. =rr
M

r 2

Example

Consider again the simulated results presented in Table 1 when K=3 and

T=200. Approximate 95 percent upper confidence bound on 8 is

0 a 0.784.2

Also, based on N=36 failures, 97.5 percent upper confidence bound on

is

6 .49.8.
2

Hence, (9S.O)x(97.S) = 92.625 percent (conservative) upper confidence bound on

the failure rate

r(T) OOXTl1
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at time T is

r - .06S.
2

Consequently, 92.625 percent (conservative) lower confidence bound on the NTBF

M(T) =

at time T is

H 1m L- 15.385.
Sr

2l
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MODIFIED PROPAGATION OF ERRORS WITH APPLICATIONS
TO MAINTAINABILITY AND AVAILABILITY

Paul C. Cox
Quality Assurance Office

White Sands Missile Range, New Mexico

ABSTRACT. A modification of the conventional method of "Propagation
of Errors" is proposed. This modified method promises to have numerous
applications, is frequently more easily applied than conventional propaga-
tion of errors, and for a few functions of random variables which have been
studied, provides improved approximations of confidence limits over con-
ventional propagation of errors as well as over other well known methods.
Modified Propagation of Errors (MPE) is destribed, applications to "mean
time to repair" and "availability" are illustrated, and the extent of
error caused by using MPE is discussed. Finally, to illustrate another
application, MPE is used to approximate confidence limits for system
reliability from confidence limits for component reliability.

1. INTRODUCTION

a. The method of "Propagation of Errors," by which the variance of
a function of variables is determined from the variances of the individual
variable is well known. After obtaining the variance, it is then possible
to at least approximate errors, confidence limits, and levels of signifi-
cance for the function of variables. This discussion will be ceutered

.arOund.determining confidence limits for a function of variables.

b. In the event of a linear function of independent, random, normal
variables, the function is also normal; and there is no error in the
variance obtained by propagation of errors, assuming there is no er:r'r in
the individual variances. It follows that the concept of propagation of

-errors is very useful when evaluating a linear function of independent
sample means.-

c. Propagatio3 of errors'is frequently used when the function is not
linear and/or the variables are not normal. Since the application of
propagation of errors is usually followed by an assumption of normality
for the function, the procedure can be expected to result in an error in
the confidence limits approximated by this method. It is the purpose of
MPE to broaden the application of propagation of errors and to reduce
the error when certain variables are not normal. The procedure proposed
to modify the propa3ation of errors has the following characteristics:
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(1) Simple in concept and easy to apply.

(2) Can be applied to a large variety of functions of independent
variables--there are many functions in which MPE can easily be applied
but for some of these functions it may be extremely difficult to apply
conventional propagation of errors.

(3) In almost all areas studied, MPE provided results which were as
good or better than those provided by conventional propagation of errors.
In numerous cases, MPE provided almost errorless estimates while large
errors were noted when using conventional propagation of errors.

d. While MPE is applicable to a wide variety of functions of indepen-
dent variables (the main requirement being that confidence limits can be
obtained for each variable), the extent of error must be determined on a
case-by-case basis. A number of applications have been studied. For
example, the old problem of obtaining confidence limits for a system if
the confidence limits for the components are known is discussed in
Section 10. However, this paper is primarily concerned with the application
of MPE to approximating confidence limits for mean time to repair (MTTR)
and availability (A). Fortunately certain recent reports, reference e-h,
have provided tables of exact confidence limits, thus providing a means
for determining the error when approximating confidence limits by MPE.

2. THE METHOD.

a. MPE is applicable to virtually any function of any type of random,
independent variables, as long a. confidence limits can be obtained for
all of the random variables within the function. The method of MPE will
be described and compared with conventional propagation of errors. The
two methods will be illustrated using a linear function y of three random,
normal variables (xI, x2 , and x3 ), and two sided 90% confidence limits for
the mean Uy

b., The method of conventional propagation of errors.

Let y - f(xl, x 2 , X3,..., xk)

and y - f(xj, X2 ,..-, ;k)

where y is some type of average

02 2 af 12 + ___ 2 2 2;f )2_a 2
y Hal! L(x2J 2 xk
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if y is a linear function:

y - aixi + a 2 x2 + akxk

aly all + a 2jx +-*.+ aixk and

y =al•1 + a 2 92 + .. + akk also

a 2 , a2a 2 + a 2 0 2 +-..+ 2 2
y 1 x1 2x2 8kxk

S2 a 2 s 2 + a 2 s 2 +..°+ a 2 s 2

y 1 x1  
2 x 2  k xk

af, 2 2
a! .a s22 + + ... + % s2
Y nI x1 n2 x2 nk xk,

and the values of 7, the appropriate variance, and the assumption of
normality are used to determine (or approximate) the desired confidence
limits.

c. The method of modified propagation of errors (MPE).

(a 2 9 122

d2  "h2 +...+ h2]

Z Vax 1 j 1 .aI2) raxk k

'where

hi - (iicl)j - 1 -

Ii = Xi - (Icl)i,

and where xi is the desired average (mean, ratio, median, etc.); (Ucl)i

and Clcl)i are the upper and lower confidence limits respectively

associated with the random variable xI.

lMPE replaces a with an interval in the propagation of errors formula.
Another example of the use of thIs concept may be found on P. 91 in
reference k.
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Then:

Upper confidence limits - y + dh

Lower confidence limits - d£.

d. An example of obtaining confidence limits for the mean when y
is a linear function of xl, x2, ... , Xk.

Given: y - 3xI + 4x 2 + 5x 3 . The x's are random normal

variables and mutually independent.

S1= 0 aa -4 n 1 - 9

x2 - 12 a a 5 n2 - 16S~X2

f3 - 16 -X3 6 n3 - 25

To find 90%, 2 sided confidence limits for vy

(1) Using conventional propagation of errors.

3.10 + 4.12 + 5.16 - 158

2- 9.16 + 16.25 + -36 77
y 9 16 25

a- - 8.7750
y

90%, 2 sided confidence limits:

158.- 1.645.8.775 < 158 + 1.645.8.775

143.565 :S U < 172.435

(2) Using HPE

h, - L1 - 1.645(4/3) - 2.1933

h2 - 12 - 1.645(5/4) - 2.0563
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h 3  13 - 1.645(6/5) - 1.9740

d= d- =(3.2.1933)2 + (4-2.0563)2 + (5.1.9749)2

- 08.3626- 14.435

90Z 2 sided confidence limits:

158 + 14.435

143.565 1 y 172.435.

e. In the above example, the confidence limits are exact and it
really made no difference whether the conventional or MPE method was
used. This is because y is a linear function of the x's and because
each x is normally distributed. The advantages of MPE become evident
when the variables are not normal, the function is not linear, and the
confidence limits are only approximated.

3. APPLICATION OF MPE TO OBTAIN CONFIDENCE LIMITS FOR AVAILABILITY.

a. Assume that time to failure is distributed as the expon atial,
then MTBF is distributed as the X2 . Assume that down time is distribi-ed
as the log normal.

b. There appears to be no known solution to the problem of obtaining
confidence limits for availability, using the above assumptions. The
following exceptions are known:

(1) References c and d provide tables and procedures for confidence
limits for availability under the assumption that a2 is known. The

* tables provided by reference c are brief and may require involved inter-
polation,

(2) Reference i provides a solution if time to failure is distributed
as the exponential.

c. From 2e, Appendix A.
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"B - exp[ln(l/Py) + (1/2)a2 + Uzi

B - exp[ln(l/y) + (1/2)s2 + i]

ln(lly) + (1/2)s2/2 + ! - -2.3026 + 0.3750 + 0.9163 = -1.0113

The first step is to obtain estimates and 901 2 aided C.L. for

ln(l/l!y) + (1/2)a/21+ Ut2

d. ln(1/7) - -2.3026

From 3b, Appendix A, 90% C. L.:

0.05217 S l/Py -< 0.16055; taking natural logs:

-2.9533 S ln(liy) S -1.8292

hl- -1.8292 -(-2.3026) - .4734

t1 - -2.3026 -(-2.9533) - .6507

e. N,2/2 - .3750 (if, Appendix A).

Using the X2 with 8 d/f, 90% -2 aided C.L.

0.1935 a 2/2 < 1.0977

h2 1.0977 - .3750 = .7277

P-2 0.3750 - .1935 = .1815

f. 1 - 0.9163, sz - 0.8660, z is normally distributed (le, f, App A).

t.05 (8 d/f) - 1.8595

h- 9.3 - (t.s)/An - 0.5368
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g- dh 0 V(. 4 7 3 4 )2 + (.7277)2 + (.5368)2 - 1.0207

do- 1V(.6507)2 + (.1815)2 + (.5368)2 - 0.8628

B exp(-1.0113) -0.3637

Upper C.L.: exp(-1.0113 + 1.0207) - 1.0094
/

Lower C.L.: exp(-1.0113 - .8628) - 0.1535

90% C.L. for B: 0.1535 1 B 1 1.0094

h. F•-tmate of Availability:

1 1 - .7332

1 + B 1 + .3637

902 -2 sided C.L. for availability.

1 -0.4977 <A 1 A.8669.
TT+1.0094 1+0.1535

4. CONFIDENCE LIMITS FOR AVAILABILITY WHEN A2 IS KNOWN.z

a. As stated In Section 3b(1), a solution may be obtained, using
tables provided by reference c, if a2 is known and if values for m and n

z
are within the scope of these tables. A small section of this table is
included in Appendix B, and the problem, illustrated in Section 3, will
be reworked by MPE using a2 - s2 - 0.75 and the results compared with the
exact values obtained by using the tables in reference c.

b. Solution by MPE.

(1) B - exp(-2.3026 + 0.3750 + 0.9163) - exp(-1.0113) - 0.3637 as
in Section 3g.

(2) h1 - 0.4734; t1 - 0.6507 as in Section 3d. i
(3) h 2 - 12 - 0, since does not vary.

(4) h 3 - - (t.1)/3 - (1.645.0.8660)/3 = 0.4749
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(Note that the normal t is used here instead of the student t
as in Section 3f).

(5) dh V(.4734)2 + (.4749)2 - .6704

d = V(.6597)2 + (.4749)2 - .8055

(6) 90% -2 sided C.L. for B:

Upper C.L.: exp(-1.0113 + .6704) - .7111

Lower C.L.: exp(-l.0113 -. 8055) = .1626

c. Solution using tables, reference c.

(1) C.L. for B exp(z•/ ).b*Ig
2mY

where the appropriate values for b are obtained from the tables of
reference c. (Note Appendix B for an extract from this table).

(2) 90% -2 sided C.L. for B:

"4 From Appendix B, b. 0 5 - 7.995; b. 9 5 = 34.852

Upper C.L. for B = (1.455) (34.853) (2.50) = 0.7043
2.9.10

Lower C.L. for. B - (1.455)(7.995)(2.50) 4 0.1616
2.9.10

d. 90% -2 sided C.L. for availability:

By MPE: .5844 1 A S .8602

By Ref c: .5868 S A 1 .8610

5. CONFIDENCE LIMITS FOR MEAN TIME TO REPAIR (,XTTR).

a. Frequently, the assumption is made that time to repair is
distributed as the exponential. If this be the case, -anfidence limits
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for •MR can be obtained in the same way as for .TIWF (Note 3b of
Appendix A). This is discussed in detail in refervnce i.

b. The usual assumption is that time to rep:tir *.s distributed as
the log normal. Using this assumption, the four rcports by Charles E.
.arnd, references e-h, provide the necessary procedures and tables for
obtaining the confidence limits. The lables listed under reference h are
necessary for computing the confidence limits and are extremely compre-
hensive. They are presently unpublished} and therefore are generally
unavailable. A brief extract is included in Appendix B.

c. If time to repair (x) is distributed as the log normal, and
z - Inx, then an estimate of MflR - exp(M + sW2)-exp(0.9163+0.3750)
exp(l.2913) = 3.6375.

d. Referring to the extract from Charles Land's tables in Appendix 2,
for sz - 0.866, using linear interpolation, -0.5725 is obtained for .0S
and 1.0431 for .95. These values are multiplied by s7, giVing -0.4958 and
0.9033.

e. Lower C.L. - exp(l.2913 - 0.4958) - 2.2155

Upper C.L. - exp(l.2913 + 0.9033) - 8.9770

f. The solution by MPE:

From Section 3e, h2 - .7277 and 12 " ,1815

From Section 3f, h 3 - Z a 0.5368

di - (.1815)2 + (.5368)2 - 0.5667

V (.7277)2 (.5368)2 0.9043

Lower C.L. - exp(l.2913 - 0.5667) - 2.0637
Upper C.L. - exp(l.2913 + 0.9043) - 8.9850

-.g. Comparing these results indicates a conservative error for MPE in
each case, and a negligible error for the more important case of upper r .

- confidence limits.

6. CONFIDENCE LIMITS FOR AVAILABILITY IF IS KNOWN.

a. Assume that MrBF - 10 hrs, as before, but this value was obtainadi
from long history instead of a small sample.
Then 1 0 and B - (0.10) MIYR).

IDr. Land is presently negotiating with certain statistical journals, and it
is expected that these tables will be published before the end of 1973, probably
considerably reduced in size. -
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b. B - (0.10)(3.6375) - 0.36375, as in Para 3f.

c. Multiplying confidence limits for MITR by 0.10, gives
90% -2 sided C.L. for B:

by Land's Tables, 0.2216 < B < 0.8977

and by MPE, 0.2064 < B < 0.8985

d. 90% confidence limits for availability by Land's Tables:

0.5270 < A < 0.8186

by MPE, 0.5267 < A < 0.8289.

e. The error resulting from using MPE is again negligible in
'the important (lower C.L.) case.

7. COMBINING LAND'S TABLES AND MPE TO OBTAIN CONFIDENCE LIMITS MOR
AVAILABILITY.

a. If the tables by Charles Land, reference h, are available, itappears that the error in obtaining confidence limits for availability
would be reduced to a minimum if Land's Tables we.e combined with WPE
,to obtain the confidence limits.

b. The problem of Section 3 will be reworked by combining these

two methods.

c. From Section 3d, h. - 0.4734 and £1 - 0.6507.

d. The application of Land's Tables in the solution of this
Oroblem, can be obtained from Section 5d.

ha 3 - 0.9033 and £2, - 0.4958

e., d - /'(,4734)2 - (,9033)T = 1.0197

( /C.6507)2 + (.4958)2 - 0.8180

f. From Para 3f, B - exp(-l.0113) - 0.3637

Then, 90% -2 sided C.L. for B:

exp(-1.0113-.8180) < B < exp(-l.0113 + 1.0197)

0.1605 < B < 1.0084'
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g. 90%, 2 sided C.L. for availability:

1 -0.4979 <A < 0.8617
I÷IUU4 -- _ 1010

8. COMPARISON OF CONFIDENCE LIMITS BY VARIOUS METHODS.

a. The following table sumnarizes the 90% - 2 sided confidence
limits for availability, obtained in the previous paragraphs.

- ...... 90" - 2 sided

9% -2 sided C.L. for B C.L. for Availability
CONDITIONS .rflHOD .SEC. L-rO1KR UPPER LOWER UPPER

SNone MPE 3g,h 0.1535 1.0094 0.4977 0.8669

__ NPE&LAND 7f,g 0.1605 1.0084 0.4979 0.8617

a MPE 4b,d 0.1626 0.7111 0.5844 0.8602

""Ref c 4c,d 0.1616 0.7043 :0.5868 0.8610

py Knopn MPE 6c,d 0.2064 0.8985 0.5267 0.8289

_" _ Ref h 6c.d 1 0.2216 [0.8977 0.5270 0.8186

Table 1. Comparison of 90% - 2 sided confidence limits, obtained by

various methods.

b. A study of'the above table suggests the following:

(1) The use of WE usually provides conservative approximations.
That is to say, MPE approximations appear to be a little larger for
upper C.L. and a little smaller for lower C.L. than the true value.

(2) If the root sum square of the differences between the WPE
approximations and the actual confidence limits is obtained, when
ci and I4 are known, the following is determixied:

RM, lower: '(.0024)2 + (.0003)2 - .0024

RSS, upper: /(.0008)z + (.0103)z - .0103,
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which suggests that the errors in the MPE approximations for the
problem of Section 3 may be less than .01 for the upper C.L. and less
than .0024 for the lower C.L.

9. ERROR IN THE USE OF MPE.

a. It is clear that the usefulness of MINE depends upon its
accuracy as well as its ease of application. In S.oction 8, certain
errors related to the specific example u1 this report were stated. In
this Section, MI'E values will be compared with exact values for a wide
spectrum of parameters, using data from references c, f, and h to
provide the exact comparison.

b. First, a comparison will he made for confidence limits for
availability for the special case in which az2 is known. For this study,
availability will be approximated by MPE, using the methods of Section 4.
These approximate values will then be compared with exact values obtained
by using the tables of reference c. Table 2 shows the error in using MPE
for select values of m - n, n/a2, xnd levels of probability and for the
special case of 7 43 .

"____ PROBABILITY

.0 9n .90 .75 .25 .10 0s5

5 .005 .007 .008 .004 .002 .0021

5 12 .003 .004 .004 .002 .000 - .002.

40 .001 .001 .002 .000 .000 -. 0021

9 S .004 .005 .007 .005 .003 .001

12 .002 .003 .004 .002 .002- .001

40 .001 .001 .001 .001 .001 .000'

13 S .003 .004 .OOS .005 .003 .002

12 .002 .003 .003 .002 .001 .001

40 .001 .001 .001 .001 .000 .000

Table 2. [A (exact)- AMPE)I, az, known gnd 7 "4'-.
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(l) From Table 2, it appears that under the conditions of this
paragraph, and if m and n both exceed 5, the error should not exceed .008
if availability is approximated by MPE. As n/a7 increases, the error
rapidly approaches zero. As m or n increases, the error approaches zero,
but rather s'.owly. Errors appear to be smaller when probabilities are
close to 0 or 1; and-for lower confidence limits, the error is conservative.

(2) T. investigate the error if 7 j 4, the worst case situation in

Table 2 was se.lected; i.e., m = n - n/aF = S and prob. - 0.75. Ifere it was
found that'for.soiie examples of Y < 4Xg, the error became as large as .009.

As the ratio of y to 47 increases, the error slowly decreases. For example,
when the ratio reaches tO, the error is .03.

(3) From the comparisons of this Section, it appears that the error
* resulting from the use of MPE when determining confidence limits for

availability is less than .01, in the special case in which a2 is known. MPE
has the following additional advantages.

(a) Can be used when the tables of reference c are unavailable.

(b) Can be used when parameters that are not included in
reference c. For example, these tables provide entrees only for
5 _ m :S 13; have no values for 2 sided -95% confidence limits; and provide
a limited selection of values for n/az.

(c) MPE may be applied when a2 can only be approximated from a sample.z
c. The second study of this Section is to provide a comparison of the

* 'data contained in the tables of reference h, and the corresponding values
if obtained by MPE. Furthermore, values obtained by the method of minimum
variance unbiased estimators (MVUE) will be compared with corresponding exact
and MPE values. The technique of NvUE was developed by Dr. Land at the
suggestion of Prof. D. R. Cox. Dr. Land has compared his exact values with
several well known approximations, and generally MVUE provided better
approximations than any of the other procedures. Furthermore, AULE is
essentially equivalent to the procedure of conventional propagation of errors.

(1) Tables 3 and 4 are adaptations of two tables prepared by Dr. Charles
Land and Included in reference f. In this reference, Land compares exact
values of confidence limits for 1n% - z ÷ a with the MVUE approximation

NiVE uses sý - s2/n + sl/2(n.l),, conventional propagation of erro. uses
s& M s /n + (n-1)sz/2n', where w - - ÷(4)s.
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as well as three ,other approximations. Tables 3 and 4 copy Land's data
for exact and MVUE values and includes the values obtained by MPE. Table 3
is for Z - 1.219 and s2 - 0.208. Table 4 is foi T - 7.650 and s2 - 4.632.

z

,LEnVEL n - 11 = 101 n - 1001
, EXAL" ' E ME I EXACT nE NIVU .... EXACT FIR S

.005 .950 .883 .952 1.205 1.200 1.200 1.285 1.284 1.284

.010 .990 .938 .988 1.216 1.212 1.212 1.288 1.288 1.288

.025 1.045 1.012 1.041 1.232 1.230 1.230 1.294 1.293 1.293

.050 1.091 1.069 1.086 1.247 1.245 1.245 1.298 1.298 1.298

.100 1.142 1.130 1.139 1.263 1.262 1.262 1.304 1.304 1.304

.250 1.227 1.225 1.226 1.291 1.291 1.291 1.313 1.313 1.313

.500 1.324 1.323 1.323 1.323 1.323 1,323

.750 1.431 1.432 1.420 1.356 1.356 1.355 1.333 1.333 1.333

.900 1.546 1.S41 1.507 1.387 1.386 1.384 1.343 1.343 1.3-12'

.950 1.629 1.619 1.560 1.405 1.404 1.401 1.348 1.348 11,48i

.975 1.712 1.698 1.605 1.422 1.420 1.416 1.353 1.353 1.3 533

.990 1.829 1.809 1.658 1.442 1.439 1.434 1.359 1.359 1.358S

.995 1.925 1.900 1.727 1.456 1,453 1.446 1.363 1.362 1.3621

Table 3. One sided confidence limits for Inux -z + 1 a•z, comparing MPE with
exact values from Land's Tables' and NVUE.

S- 1.219 and sl - .208.
zc
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LEVELI - n 11 n 01 n 1i001
SEXACT " MPE hivE ' EXACT WIE ... b'; " EXACT r W E "I r..,n

.005 7.774 7.480' 7.012 9.119 9.096- 8.965 9.666 9.664 9.647I I

.010 8.-62 7.576 7.298 9.191 9.173 9.062 9.693 9.692 9.678

.025 8.297 8.096 7.718 9.300 9.288 9.204 9.735 9.733 9.723

.050 8.514 8.398 8.080 9.397 9.390 9.327 9.771 9.770 9.763

.100 8.787 8.723 8.496 9.515 9.511 9.468 9.813 9.812 9.808

.250 9.319 9.312 8.193 t 9.724 9.724 9.704 9.885 9.885 9.883

.500 10.083 9.966 I 9.977 9.966 9.967 9.966

.750 11.151 11.176 10.740 110.257 10.258 10.228 10.052 10.052 10.050

.900 12.555 12.568 11.436 10.7XS 10.534 10.464 10.131 10.131 10.125

.950 13.712 13.717 11.853 10.716 10.712 10.606 10.179 10.179 10.170

.975 14.999 14.995 12.214 10.882 10.876 10.728 10.222 10.220 10.209

.990 16.950 16.938 12.634 11.086 11.077 10.870 10.272 10.271 10.254

.995 18.658 18.634 12.920 11.234 11.223 10.967 10.307 10.305 10.285

Table 4. One sided confidence limits for lnij - U +(Q)a., comparing the MPE
approximation with exact values from Land's tiblesZand M .

S- 7.650 and s' - 4.632.

(a) Table 3 provides comparative data for an example for which s2 0.208
is relatively small, and the following is evident:

1. For n - 100, either MPE or MVWE should provide a satisfactory
approximation.
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2
2. For n - 11 and the probability level less than 0.25, NUIE is

somehat better than MPE.

3. For n - 11 and thn level greater than (.75, MPE provides a much
bett•r fit than NUE.B

4. As will be shou, soon, Wji is generally under 0.25 and frequently
very poor at levels above 0.75. 'T-E is usually at its best at levels
above 0.75. For most applications, the higher levels provide the more
useful levels of confidence.

(b) Table 4 uses much larger values for both Y and s' than table 3.
For this example, NIPE provides better results than NNUE in almost all
instances. Specifically, for n - 11 and for level:; > .750, MPE provides
excellent approximations while the use of MMUE resul'ts in large errors.

(2) Table S contains a sample of data for n - 3 taken from
reference h (Tables by Charles Land), and compares these data with
corresponding values obtained by the methods of INME and MPE. Table 6
provides these comparisons in graphical form for levels 0.90 and 0.005.
From these tables, it appears that even for the very small sample of 3, MPE
provides a close approximation if the level > 0.25. MNVUE provides
acceptable approximations in some areas, frequently better than MPE.
However, MVUE generally does not provide satisfactory approximations for
any value of s for levels > 50%.

(3) Table 7 provides a graphical comparison at 4 levels for exact, MPE,
and MVUE values for n - 11. These graphs suggest that for a sample of this
size, MPE is clearly superior to MVIE for almost all levels, and MPE should
be a reascnably satisfactory approximation for any level of probability
greater > 0.05.

2Levels under 0.50 correspond to lower confidence limits for maintainability
and upper confidence limits for availability (note Sections 5 and 6).
Levels above 0.50 correspond to the reverse.

3Data in reference h are multiplied by sz and added to T +(½)s2 to obtain
confidence limits for iz +(h)a2, assuning z is normal. Appendix B contains
an extract from these tables for n - 9.
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S '.7TH D' .005 .010 .025 .050 .100 .250 .750 .900 .950 .975 .990 .9951

i -'iCT 4.104 3.136 2.113 1.506 1.01 .457 .491 .192 1.945 3.088 5.889 10.36.;
1C.cWE 5.730 4.021 2.484 1.686 1.089 .471 487 1.108 1.921 3.134 7.589 11 .4;2
.\MT 1.490 1.346 1.134 .951 .741 .390 .390 .741 .951 1.134 1.346 1.190

TX.\ACT 2.271 1.919 1.478 1.162 .858 .438 .6S5 2.114 4.593 9.603 24.618 49.623
!: Ic 5.733 4.026 2.491 1.694 1.098 .477 .779 2.383 4.903 9.872 25.410 50.0791

.:,N'JE 1.555 1.408 1.183 .993 .774 .407 .407 .774 .993 1.183 1.405 1.5*55

JaY.Acr 1.753 1.546 1.269 1.053 .825 .453 1.150 4.211 9.231 19.240 49.297 99.418
NIPE 5.744 4.040 2.511 1.718 1.125 .492 1.326 4.377 9.362 19.269 49.833 99.649
MJ.E 1.744 1.575 1.327 1.114 .868 .457 .457 .868 1.114 1.327 1.575 1.744

.iXACT 1.622 1.489 1.296 1.130 .926 .503 2.429 8.474 18.488 38.494 98.495
00IMPE 5.787 4.096 2.589 1.813 1.227 .548 2.523 8.548 18.494 38.296 99.167

I•VAE 2.351 2.124 1.789 1.501 1.170 .616 .616 1.170 1.502 1.789 .2.124

-XACT 2.381 2.264 2.086 1.865 1.568 .789 6.172 21.221
06,'IPE 6.078 4.472 3.081 2.370 1.785 .841 6.214 21.22S 46.075 95.572

\rtUJE 4.790 4.326 3.645 3.059 2.383 1.254 1.254 2.383 3.059 3.645

EXACT 3.2'7 3,140 2.898 2.632 2.224 1.107 9.273 32.204
00OMPE 6.488 4.978 3.694 3.014 2.384 1.147 9.305 31.814 69.086 143.33

MNUE 6.990 6.313 5.319 4.464 3.478 1.830 1.830 3.478 4.464 5.319

EEXACT 4.233 4.068 3.768 3.431 2.905 1.440 12.371
17t,:,PE 7.021 5.612 4.411 3.733 3.031 1.471 12.400 42.407 92.103 191.095

M1jE 9.227 8.334 7.021 5.893 4.591 2.416 2.416 4.591 5.893 7.021

I NEGATIVE POSITIVE

)le S. Comparison of WPE and MAJE with exact values extracted from reference h (n = 3).
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(4) Using the criteria that the relative error for ?N'E shall not
exceed 0.1, the following table indicates generally safe areas for the
application of MPE.

SAWLE SIZE LEVELS OF PRdB. GREATER THAN OR EQUAL

3 .2S0

-6 .100

11 I .050

2S .010

SO .005

Above 50 No restriction

d. From the discussion of this Section, the following conclusions are
drawn about the errors resulting from the use of MPE.

(1) In the event that a' is known and MPE is used to approximate the
mnthods of reference c (note Section 4 and 9b of this report), the error can
be expected to be less than .01; for lower confidence limits, the MPE error
is conservative, thus the true lower confidence limit can be expected to be
"slightly larger than the approximation. For uppe:r confidence limits, the
error is not conservative but is usually very small.

(2) If Py is known and MPE is used to approximate confidence limits for
availability,/as discussed in Section 6, both upper and lower approximations
will almost always be conservative, and in the very few instances in which
not conservative, the error will be small. If the regions in which the
relative error may exceed 0.1 are avoided (note para 9c(4)], the method of
MPE should provide errors no larger than .02 in the approximate confidence
limits for availability.

(3) If the RSS of the maximum errors, discussed in the two previous
paragraphs, is obtained, it would suggest that the method of MPE, when applied
to the total problem of approximating confidence limits for availability (as
described in Section 3), should provide an error which is conservative and
will not exceed 0.02S.

//
/
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1 10. CONFIDENCE LIMITS FOR SYSTEM RELIABILITY FROM COMPONENT RELIABILITY DATA.

Sa. MPE will be used to obtain approximate confidence limits for a system
which consists of three components in series and rel .bility estimates for
each component has been obtained in three separate t, •ts. It is not claimed
that WPE is the best method for obtaining these approximate confidence limits,
but it is offered to illustrate this method when the function is a product of
independent variables.

b. Assunme the results of the three component tests are these provided
by the following table.

CoMP. ONE (Cd) C . TW(C 2) CaH THREE (C)

No. Tested (n.) 50 40 30

Successes (s.) 42 38 27

Est. of Comp. Rel(ri) 0.840 0.950 0.900

90% - 2sided C. L. .730 < p,< .920 .851 < p < .991 .761 < p .973

1. .840 - .730-.110 .950-.851-.099 .900-.761.139

: h .920-.840-.080 .991- .950=.041 .973-.900-.073

ist. of Systems e ii (R) .43)(.950)(.900) .718

c. Since R - rl.r,.r3 , t1.3 formulas of para 2b,c become:

2 a r . r ÷s + r h rS2  + r2.r
3r 1  3r 2 2

Id-r2r2.h
2 + r2.r2r!.

1 2  3* 1r1 .3.2 2

d2 r. 2 .r2 12 r2. r2 12 + r2.r2.12
r;32 1 2 3

d. One question arises, when dealing with a norlinear function, what
should be substituted for the ri, since they are unknown? The estimate may
be used or the confidence limit itself might be substituted. Some studies
have indicated that substitution of confidence limits usually gives better
results. Both procedures will be illustrated.
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e. Using the estimate of ri.

SI (.95".90".08)2 + (.84".90'.041) 2 +

(.84".95".073) 2 
- .00904; dh - .095

dX2 (.95".90".1i)2 + (.84..90".041)2 +

(.84.95.139)2 - .02675; dI - .164

90% - 2 sided C.L. for the system:

.718 - .164 - .554 < R < .718 + .095 - .813

f. Using confidence limits for ri.

(- (.991..973..080)2 + (.920".973..041)2 o
(.920".991".073)2 - .01172; k w .1083

d2- (.851".761".11i) + (.730..851..139)2 +

(.730".851".139)2 - .01556; dL - .1247

90% - 2 sided C.L. for the system:
.718 - .125 - .593 < R < .718 + .108 - .826

g. An alternate approach, eliminating the dilemma of a proper value to
be substituted for r1 , r 2 , and r 3 , is to use logarithms and thus transform
the given function into a linear function.

log R - log r, + log r2 + log r,.

est. of log R - -. 0757- .0223 - .0458 - -. 1438.

-8
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log of lower C.L. log of upper C.L.

log .730 - -. 1367 log .920 - -. 0362
log .851 - -. 0701 log .991 - -. 00-'.)
log .761 - -. 1186 log .973 - -. 019

- -. 0757*.1367-.0610;hi--.0362+.0757-.0395

12 - -. 0223+.070l-.0478;h2 =-.0039*.0223-.0184
-3 - .0458÷.1186".0728;h 3 -. 0119+.0458-.0339

d- 2 (.0610)2÷(C.0478)2+(.0728)2_.01130 dp-.l063

dg - (.039)2+(.0184)2(.(0339)200305 d -. OSS2

lower C.L. - antilog (-.1438-.1063) - .562
upper C.L. - anitlog (-.1438+.0552) - .815
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APPEigIX A

SYMOLS AND DEFINITIONS AND DATA FOR THE EAMPLE

1. General Definitions and Data.

a. m - no. of failures - 9

b. n - no. of repairs - 9

c. t - total operating time - 90 hours

d. x - repair time

e. z - in repair time--assune that z is normally distributed

f. T - 0.9163; S2 - 0.75; s. - 0.8660
z

g. g exp nE - geometric mean of the sample of x's - 2.50 hours

h. exps( /2) - exp(O.375) = 1.45S

i. estimate of mean time to repair (ýMTT) - exp(-Z+s2/2) - 3.6375

j. y is time to failure. Assume that y is distributed as the exponentiaý

k. /- tm - sample mean time between failure (MIBF) - 10 hours

1. *x - population mean time to repair - exp(p2 + a2/2)

m. vy - population mean time between failure

n. C.L.--confidence limits

2. Availability Formulas.

a. A-U u x

b. Est. of A-A-+/(7÷•

c. A l/ /(1 + B), Aiere B, lj- y.
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d. Est. of B - - y (1/y) ex'p(s•/2 +

e. B - (1/u.1 ) exp(a/2 + p exp[ln(l/ls) o.2/2 + pz]

f. B - exp[ln(+/y) • s•/2 + -]

3. Reliability (MTBF) formulas.

a. Consider: 1/y- a/t = 9/90 0.10; ln(I/y) -2.3026

b. Confidence limits for 1/py (m is fixed, t is variable)

2X2M; (%/Z 2/y: ;(

for 90% - 2 sided C.L. 9.39/180 < 1/py 1 28.9/180

0.05217 j I//u, < 0.16055

c. If t is fixed and m is variable, then confidence limits for MTBF

become:

2T -- z
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APPENDIX B

1. Extract from table listed in reference 3. (n/fc - 9 ÷ 0.75 - 12):

89 10

.050 6.865 7.995 9.171

.100 8.227 9.541 10.855

.250 11.072 12.674 14.279

.500 15.211 17.201 19.191

.750 20.653 23.116 25.577

.900 26.960 29.941 32.910

.950 31.516 34.852 38.173

2. Extract from the tables of reference 8 (Charles Land). The extract is
for n-l - 8 d/f.

s .025 .05 .10 .90 .95 .975

.50 -.674.3-.5657 -.4404 .5763 .8050 1.0475

.60 -.6736 -.5646 -.4419 .6115 .8620 1.1329

.70 - .6721 - .5658 - .4451 .6508 .9254 1.2264

.80 -.6733 -.5691 -.4497 .6939 .994S 1.3272

.90 -.6769 -.5743 - .4S56 .7402 1.0682 1.43401
.....1.00 -. 68 ,-.5811 -. 4627 .7896 1.14S2 1.5455
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