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FOREWOPD

The Eighteenth Conference on the Design of Experiments in Army Research,
Development and Testing was held 25-27 October 1972 at the Aberdeen Proving
Ground, Maryland. The U. S. Army Test and Evaluation Command served as its
host. This is the second conference in this series tc be held at the
Proving Ground. The first one, called the Sixth Conference on the Design of
Experiments, was held in October 1960 with the Ballistic Research Laboratories
serving as the host. The father of these meetings, Professor S. S. Wilks,
was 1in charge of arranging the program, and the undersigned served as the
Chairman on Local Arrangements., Having served once in this capacity, one
has a better appreciation of the work-load faced this year by the Local
Chairman, Mr. Gerard T. Dobrindt. Let me thank Mr. Dobrindt for his excellent

.handling of the many prcblems with the physical arrangements as well as the

problems presented by the attendees. Thanks are also due to Dr. William
McIntosh for his guidance and assistance in many phases of the on-base
arrangements,

Professor John Tukey, the first invited speaker, got the conference off
to an excellent start with his interesting and informative treatment of the
tooic "Exploratory Data Analysis'. ‘He was followed on the program by one of

"his colleagues at Princeton University, Progessor G. S. Watson. Dr, Watson
-discussed some recent developments in the interesting field of "Orientation

Analysis", At the Second General Sessicn members of the audience had the
pleasure of hearing Professor J. S. Hunter discuss one of his papers on
"Sequential Factorial Estimation' and Professor G. E. P. Box present some
of his work on "Forecasting and Control". It is interesting to note that
both Drs. Box and Hunter served on a panel discussion entitled "Common
Pitfalls in the Design and Analysis of Experiments" at the Sixth Design
Conference. The fifth invited speaker was Professor Raymond H. Myers who
enlightened members of the audience on some recent and important
developments in the field of '"Dual Response Surface Analysis'. The recipient
of this years Samuel S, Wilks Memorial Awards was one of the above-mentioned
invited speakers, namely Dr. G. E. P, Box. We are pleased to be able to
include in these prcceedings his acceptance remarks.

The Army Mathematics Steering Ccmmittee sponsors these conferences
on behalf of the Chief of Research and Development. Members of this
committee would like to thank the many Army scientists who contributed to
the success of this meeting. Without their dedicated efforts these meetings
would not be repeated year after year. Scientists in other government agencies
have also lent their talents to the programs. This year we were pleased to
have three contributed papers presented by members of the National Bureau of
Standards, and also to have Dr. Churchill Eisenhart of the Bureau serve as a
member of the Program Committee. The Food and Drug Administration was
represented on the agenda by Dr., Clifford Maloney, His services as a member of
the Program Committee were also appreciated., One or two Canadian scientists
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usually attend and contribt to the discussion at these meetings. This year i
we were pleased to have one .. our Canadian friends, Mr. 6. J. McLaughlin, §
of the Defense Reﬂearch Eseablishment Valcartier, present one of the clinical S .
< . papers. o AR SR
!

In addition to the two members of my Program Committee already mentioned
the following individuals served: Robert Bechhofer, Norman Coleman, Gerard
Dobrindt, Francis Dressel, Walter Foster, Boyd Harshbarger, William MciIntosh,
Herbert Soloman, Grace Wahba, and Geoffrey Watson. Those gentlemen and one
.. lady were charged with the rcsponsibility of outlining the general character
of the conference, and to select the invited speakers, My thanks to them
for preforming this task in a fashion that again led to a successful
sclentific conference, It seems in order at this time t3 give special mention ,
to Dr. Walter D, Foster, w-o is the Chairman of the AMSC Subcommittee on ‘
Probability and Statistics. In this capacity Dr. Foster can be looked upon .
as the one generally responsible for initiating the advanced and overall
planning for each conference. He serves in the conduction of many other
phases of these meetings; in particular, he serves as the Chairzan of the ,
committee that organizes the final form of the agenda. He makes the report : ;
to the AMSC on some of the accomplishments of each Design of Experiment i
Confererce. On behalf of all attendees at these meetings, let me express ?
our thanks to Dr. Foster for his dedicated efforts to rhese scientific
conferences. | 2 ‘

Finally, we desire to express our sincerest appreciation to Dr. Francis
G. Dressel whose many significant contributions make the Army Desizn of
Experiments Conferences a success from year to year.

[ U

Frank E. Grubbs
Conference Chairman
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Professor G. S. Watson, Princeton University, Department of
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CLINICAL SESSION A - Library Conference Room, Bldg. 330
CHATRMAN:

Norman P. Coleman, Jr., HQ, US Army Weapons Command,

Rock Island, Illinois

PANELISTS:

A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia
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Special Projects Division, U. S. Army Construction Engineering
Research Laboratory, Champaign, Illinois

TECHNICAL SESSION 1 - Conference Room B, Building 314

CHAIRMAN
Jerome R. Johnson, US Awmy Materiel Systems Analysis Agency,
Aberdeen Proving Ground Maryland

ORTHOGONAL ESTIMATES.IN WEIGHING DESIGNS S 6
William G. Lese, Jr., US Army Materiel Systems Analysis Agency,
‘Aberdeen Proving Ground, Maryland

WEIGHING DESIGNS FOR MASS CALIBRATION
J. M. Cameron and R. C. Raybold, Office of Measurement Services,
Institute for Basic Standards, US Departmeat of Commerce,
Natfonal Bureau of Standards, Washington, D. C.

COMPUTER CONSTRUCTION OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS
Malcolm S, Taylor, US Army Aberdeen Research and Development
- Center, Aberdeen Proving Ground, Maryland

TECHNICAL SEZSION 2 - Conference Room A, Building 314
CHAIRMAN:

Vernon V, Visnaw, Materiel Testing Directorate, Aberdeen
Proving Ground, Maryland

PRV AR Y .t

. e e
i

i
'
}
]

O

e L £t ok

v
I



1445-1515

1515-1700

L TR BT

WEDNESDAY

REGRESSION ANALYSIS APPROACH TO INTERPOLATION ALGORITHMS
E. L. McDowell, Structural Concepts Branch, Construction
Systems Division, US Army Construction Engineering Research
Laboratory, Champaign, Illinois

ON SPURIOUS CORRELATIONS FOR PARTIALLY RELATED VARIATES
Oscar M. Essenwanger, Physical Sciennce Directorate,
Directorate for Research, DNevelopment, Engineering and
Missile Systems Laboratory, US Aruy Missile Command,
Redstone Arsenal, Alabama

THE LEAST SQUARES ANALYSIS OF DATA GENERATED BY A "PIECE-WISE"

 GENERAL LINEAR MODEL :

Robert L. Launer, Procurement Research Office, US Army
Logistics Management Center, Fort Lee, Virginia

BREAK

CLINICAL SESSION B - Library Conference Room, Building 330
CHATRMAN:
Paul C, Cox, White Sands Missile Range, New Mexico

PANELISTS:
A, Cliiferd Cohen, Institute of Statistics, University of
Georgia, Athens, Georgila

Bernard Harris, Mathematics Research Center, The University
of Wisconsin, Madison, Wisconsin

Boyd Harshbarger, Department of Statistics, Virginia Polyteczhnin
Institute and State University, B3lacksburg, Virginia

Herbert Solcmon, Department of Statistics, George Washington :
University, Washington, D. C. i

EXPERIMENTAL ESTABLISHMENT OF ACCURACY OF RANGE-TO-FUNCTION
MEASUREMENT FPOR ARTILLERY PROJFCTILES
1LT L. Dave Clements, Data Reduction Section, Yuma Proving
Ground, Yuma, Arizona

AN IMPROVED METHOD OF ESTIMATING THE CRITICAL VELOCITY OF A
PROJECTILE IN PENETRATION BALLISTICS

G. J. MrLaughlin, Defence Research Establishment Valcartier,
Courcelette, P. Q., Canada

xi

o

s Sl

.....




1515-1700

1515-1700

1830~

0900-101%

¢ 77 e. - WEDNESDAY © *° Ce o0

TECHNICAL SESSION 3 - Conference Room A, Building 314

CHAIRMAN: ,
COL L. Ponder, US Army Test and Evaluation Command, Aberdeen

Proving Ground, Marylaad

EVALUATING AND SCHEDULING PROTOTYPE REQUIREHENTS FOR SUITABILITY

TESTING
Majors Richard B, Cole and Wiiliam J. Owen, US Army Infantry
Board, Fort Benning, Georgia

STOPPING RULES FOR SCHEDULING WITH PARTICULAR REFERENCE TO
MISSILE RANGE SCHEDULING
Paul H, Randolph, New Mexico State University, Representing-
Instrumentation Directcrate, White Sands Missile Range,
New Mexico

TECHNICAL SESSION 4 - Conference Room B, Building 314

CHAIRMAN: : h
John S. Hagan, Materiel Testing Directorate, Aberdeen Proving
Ground, Maryland

A ROBUST CONFIDENCE INTERVAL FOR LOCATION
Alan M. Gross, Princeton University, Department of Statistics,
Fine Hall, Princeton, New Jersey

"APPROXIMATE CONFIDENCE LIMITS FOR P(X<Y)

J. R. Moore and M, S, Taylor, US Army Aberdeen Reseat;h and
Development Center, Aberdeen Proving Ground, Maryland

STATISTICAL EVALUATION OF FLIGHT TEST PERFORMANCE OF THE
HELICOPTER LIFT MARGIN SYSTEM (HLMS)
Erwin Biser and Ronald Kurowsky, Avionics Laboratory, US
Army Electronics Command, Fort Monmoutii, New Jersey

SOCIAL HOUR FOLLOWED BY THE BANQUET. PRESENTATION OF THE

SAMUEL S. WILKS MEMORIAL AWARD
Dr. Frank E. Grubbs, Chairman of the Conference

% % % % * Thursday, 26 October * * * % *
TECHNICAL SESSION 5 - Library Conference Room, Building 330
CHAIRMAN:

Royce W. Soanes, Jr., Benet R&E Laboratory, Watervliet
Arsenal, Watervliet, New York

xii

N



THURSDAY

AUTOMATED RADAR DATA PROCESSING AT WHITE SNADS MISSILE RANGE
FEATURING ADAPTIVE FILTERING WITH BIAS ESTIMATION

W. A. McCool, Analysis and Computation Division, White
Sands Missile Range, New Mexico

ALGORITHM FOR EDITING BIVARIATE DATA FILES WITH RANDOM !
SPACING IN THE INDEPENDENT VARIABLE

1LT L. Dave Clements, Data Reduction Section, Yuma Proving
Ground, Yuma, Arizona

0900-1015 TECHNICAL SESSION 6 - Conference Room B, Building 314 §

CHATRMAN:

SP/4 Ray Petérson, Frankford Arsenal, Philadelphia,
Pennsylvania:

STATISTICAL ANALYSIS OF H. F. OBLIQUE AND VERTICAL INCIDENCE
INOSPHERIC DATA APPLICABLE TO FIELD ARMY DISTANCES
Richard J. D'Accardi US Army Electronics Command, Fort
Monmouth, New Jersey

Chris P, Tsokos, University of South Florida, Tampa Florida

COMPARISON OF THE TRANSMISSION THROUGH FOG OF THE 3~5 AND
8-12 MICRON SP?CTRAL REGIONS AS A FUNCTION OF THE VISIBLE
TRANSMISSION

James E, Perry and Stuart Laymar, Night Vision Laboratory !
USAECOM, ForT Belvoir, Virginia

0900-1015 TECHNICAL SESSION 7 - Conference Room A, Building 314
\
CHAIRMAN : l
Col. George T Morris, Jr., US Army Test and Evaluation ‘
Command, Aberdeen Proviig Ground, Maryland i o
; } s
MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES IN RELIABILITY ] ?
GROWTH i
Larry H, Crow, US Army Materiel Systems Analysis Agency, i
Aberdeen Proving Ground, Maryland ;
%
‘ i
MODIFIED PROPAGATION OF ERRORS WITH APPLICATIONS TO MAINTAINABILITY i
AND AVAILABILITY i
Paui C. Cox, White Sands Misgsile Range, White Sands, i
New Mexico // '% ~
1015-1045  BREAK | /
/
10145-1130  TECHNICAL SESSION 8 - Conference Room A, Building 314 —
. T~
x1i1 !
- ‘\J
< oo Lo A &~




o ©

1045-1130

1045~1130

1130-1300

! 1300-1415

< ' THURSDAY

CHAIRMAN:
George L. Kinnett, HQ, US Army Aviation Hateriel Laboratories,
- Port Eustis, Virginia o e X

" WIND TUNNEL MODIFICATION AND EVALUArion

E. G. Peterson, C., E. Sperry and E, Coveit, Deseret Test
Center, Building 100, Soldiers' Circle, Fort Douglas, Utah

TECHNICAL SESSION 9 - Library Conference Room, Building 330

CHAIRMAN:
E.ward Fiske, Product Assurance Director, Edgewood Arsenal,
Maryland

TECHNIQUES FOR TAIL LENGTH ANALYSIS
James J, Filliben, Statistical Engineering Laboratory,
Institute for Basic Standards, National Bureau of Standards,
washington, D. C.

LI

CRITERIA FOR A BIOCELLULAR MODEL - BIOCELLULAR COMMUNICATION

George I, Lavin, Vulnerability Laboratory, BRL, ARDC,
Aberdeen Proving Ground, Maryland _

TECHNICAL SESSION 10 - Conference Room B, Building 314

CBAIRMAN

< Boyd Harshbarger, Virginia Polytechnic Institute and State'
University, Blacksburg, Virginia

EQUATION-GF~STATE AND SHOCK INITIATION éXPERIMENT ON EXPLOSIVES
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EXPLORATORY DATA ANALYSIS AS PART OF A LARGER WHOLE®*
John W. Tukey

-Princeton University, Princeton, New Jersey. e

o
3

(4) Most data analysis should be investigzative

. It is not enough to:look for what we antieipate. The greatest gains e
from data come from surprises, We will usually not be very surprised,

but we should try to be.

(AA) Data analysis is well thought of in three phases

As we come to think over the process of analyzing data, when done well,
we can hardly fail to identify the unrealism of the descriptions given or
implied in our texts and lectures. The description I am about to give
emphasizes three kinds of stages. It is more realistic than the description
we are accustomed to but we dare not think it (or anything else) the ultimate

in realism.

The first stage is exploratory data analysis, which does not need
probability, significance, or confidence,and which, when there is much data,
may need to handle only either a portion or a sample of what is available.
That there 13 still much to be said and that there are new simple techniques
to be developed is testified to by 3 volumes of a book now in a limited
preliminary edition (Tukey 1970-19/1) which deals only with the simpler
questions, leaving multiple regression and related questions for later treatment.

The second stage is probabilistic. Rough confirmatory data analysis
asks, perhaps quite crudely: "With what accuracy are the appearances already

3 o

found to be believed?" Three answers are reasonable:

- The appearances are so poorly defined that they can be forgotten
(at least as evidence though probably not as clues).

- The appearances are marginal (so that crude analysis may not suffice
and a more careful analysis is called for),.

- The appearances are well-determined (when we may, but more often
do not, have grounds for a more careful analysis).

Among the key issues of such a second stage are the issues of multiplicity:
How many things might have been looked at? How many had a real chance to be
looked at? How should the multiplicity decided upon, in answer to these
questions, affect the resulting confidence sets and significance levels? These
are important questions; their answers can affect what we think the data

has shown.

*At the Eighteenth Conference on the Design of Experiments, Professor Tukey
issued this outline of his address. It contains several references for

those interested in pursuing this topic.
.
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It will only be after we have become used to dealing with the
issues of multiplicity that we will be psychologically ready to deal
effectively with correlated estimates, to Tecognize in particular (a)
that the higher the correlatiov the less the chance -- NOT THE GREATER -~
of one or more accidental significances and (b) that correlation of
fluctuations need impiy nothing as to whether the real effects measured
by one calculated quantity will in any way "leak” into other calculated
quantities. Leakage of fluctustion and leakage of effect NEED NOT
go together, though they sometimes do.

: When the result of the second stage 1s marginal, we need a
third stage, in which we wish to muster whatever strength the data

before us possesses that bears directly or the question at issue -~ and in
which we often also want to borrow strength from either other aspects of
the same body of data or from other bodies of data. It is at this stage
of "mustering and borrowing strength” that we require our best statistical
techniques. Medians may be quite good enough for our rough confirmatory
analysis, but if we have guod robust measures of location they are needed
in mustering and borrowing strength.

To argue, as we have implicitly done so often in the past, that
~- (1) all data requires mustering and borrowing of strength and (2) this
can — nay should -- be done without any exploratory data analysis —- is
surely at least one of the minor heights of unrealism. Trying to make
what needs to be data investigation into data processing that really meets
our needs involves many new ideas, and ideas come slowly.

(AAA) Novel ad hoc analyses need not bar us from confirmatory analysis

To be clear that this is so, we must be prepared to face up to two’
points:

- questions of multiplicity are not going to be avoided.

- approximate confidence and significance procedures are quite
good enough.

Once we do, the jackknife+ will give us adequate confirmatory
assessment; our only struggle will be with assessing degrees of multiplicity.

(Waiting for specific statistical theory for specificvanalyses is
unsound. We fkave to wait too long, and -- what 18 worse -— we get theory
based on too narrow assumptions.)

4+ For an introductorv account see:

Mosteller, F. and Tukey, J.W. (1968). Data analysis, including statistics.
Bandbook of Social Psychology, 2nd edition, vol. 2. C. Lindzey and E. Aronson,
editors, Addison-Wesley, h2ading, Massachueetts, 80-203.
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i/ SOME PRINCIPLES

e

TEAT SHOULD GUIDE

c.‘:“

!XPLORATORY DAIA ANALYSIS

(A) Walk first, run later ‘ e e

. "It is well to underatand vhat you can do bcforo you learn how to
messure hov vell you seem to have done it",

; (44) Don't wait for running shoes, start now

(444) Data analysis should be investigative

i "Exploratory data analysis is detective work -~ numerical detective
work -- or counting detective work — or graphical detective work".

(AAAA) Resistant techniques should be the usual beginning

i ‘A technique is resistant if changing a small part of the data will
' have only small effects on the result, no matter what is done to the small
part. (Means are not resistant, but medians are.)

(AAAAA) Analyses should come b:fore summaries

Before we summarize, we should analyze, and look at the analysis.
Here an analysis is:

a8 conversion -- usually a breakdown -- of numerical data into
other numbers that is both reversible and relevant.

Reversible means that you can get all the data back IN DETAIL
from the results of analysis. Relevant means that some, at least, of the
results of analysis illuminate each of the questions most likely to arise. _
We will come to examples a little later. !

vt

%AAAAAA) In routine analysis the client should be presented with at
least two different versions

If the two versions "agree", fine. Let some summary of one be
prblished. -

' I1f the two versions "disagree'", the client must think —— very
painful, but forcing this may be the best thing the statistician can do.

;
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(4484484) "Looking at the data" implies both MORE NUMBERS and BETTER
PICTURES

-

The unexpected is best brought to our attention by pictures.
Failing this, as is alwvays to some extent necessary, more numbers can
and do help. '

¢

(A28A85A8) Implicitly defined -~ and hence iteratively calculated -—-
analyses are inevitable

We have been frightened too long by some mixture of the apparent
difficulties of hand calculation and the inaptness of mathematical
.formulas. Some implicitly defined, iterative calculations are "as easy"

. aad "at l:zast as safe from error” aes those that use arithmetic means.

(*+metex¥) Not only mathemstical statistics, but slso date anelysis,
is going to have to beccme more like bicchemistry.
added March 1972)

The greatest danger of an spplied mathematical science 1is the
tacit essumption ¢f

OMNIFERENCE

of the assumption that both users snd bystandars, from knowing exactly
what is done, will te atle to draw --and will, in fact, draw-- the relevant
inferencez concerning the tehavior of every technigu=> at hand. To have
direct omniference by as many users as possible sbout as many technigues

" as possible 1s s very good thing. But to avoid e technique, because
omniference is hard or impossitle, can bte very unwise. .

We ought all tc expect that users are to be told the best
informatinn stout dats anslysis techniques thst is availasbtle --whether
or not they cun afford the effort *o understand how that informeation was
gained-- and whether or not the information is proved, provetle, or even
sutject to confidence statements.

4=
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EXPLORATORY DATA ANALYSES c
ST CINRELATION TO . L. Ceoe -
i _ . PROBABILITY MODELS .

M

N :

e R N i o s °
E . i~

B E () Probability aocdels are to give results for guidance.

: st As statisticians we nuut takn thc major share of tespon-ibility
here. We ought to make the existence, nature, and details of probability
models openly available to all —- encouraging their perusal. But we
ought not shove them down throats in the early stages of learning.

e e v el meew e o s

Mathematics i{s the only possible scientific discipiine in which
responsibility can bc completely avoided -- by teaching every student
all the prcofs, thus saking him responsible for the validity of all the
mathematics he has thus learned. No one else can avoid responsibility
this way. If, as statisticians, we are concerned with the analysis of data,

! ve camnot escape.

Understanding what comes of carefully formulated probability
situations is of the essence. Rarzly will it be directly and precisely

applicable to our problems. Caly as we carefully broaden the bases on
vhich it is built will we bring it closer and closer to direct application.

i (84) In Exploratory Data Analysis, SOZ efficiency is plenty

If 50% efficiency will not reveal an effect, 95% will nc’ nmake
it significant,

(AAA) Singlicitz and flexibility outweigh efficiency

‘ o xecall Church111 Eisenhart's definition of the "practical power" ) h ¢
of a statistical test: o

T T G s e Moy s st s+ 1 o et

B O

The product of the probability that the test will be applied and
the mathematical power when applied.

e mae e
~

Nt

(0AAA) As we learn from broader probability models, we will be

better guided in Exploratory Data Analysis

.

s
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TWO-WAY TABLES
OF

RESPONSES

We have analyzed many hundreds of thousands (at least) of
two-way tables of responses by fitting something of the form

+ B8, + hash

a, 7

Almost all of this has been done by explicit arithmetic meanas.

These are really used as algorithms to meet implicit conditions
that certain arithmetic means of residuals and effects are zero.

The results are very NON-resistant, — and hence very NON-robust

of efficiency. We can no longer live with them as the only approach.
Implicit medians do quite well, and are not hard to apply.

As an example, let us look at data from page 103 of the
Rothamsted Field Experiments of 1969. The analysis by means hardly shows
that anything is going on among the residuals. The analysia by implicit
medians calls at least two things to our attention.

I ol
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i DATA, weight of sugar beet roots in 0.0l ton ﬁ
|
t " n3 1 %7 (Means)
< . ... DG 1468 1597 =~ 1670 1687 (1596) . FU e e
j ST 980 1237 1379 1449 (1260) o
@ ' P %7 us6 19 1511 (273) % |
; (-1 1304 1611 1470 1444 (1415) ‘
r 912 1234 1325 1374 (211
. 963 1234 1351 1367 (1228) . §
(Mesns) (1104)  (1311) (1442) (1462) \1330) {
| |
} ANALYSIS 1, by explicit or impiicit means _
; DG 9 20 -38 -83 266 }
| ST -s2 14 3 s =10 P
PT 80 -98 72 104 57
™ 145 15 -57 -105 85
) 3} -73 A2 2 29 -119
( rs -39 25 R L 2 . -102
(eff) -226 = ~19 ©o112 - C 132 1330
" ANALYSIS 2, by implicit medians
DG 176 22 =21 67 . . 289 !
ST - -32 6 & 17
PT -53 ~147 62 73 17
oM 230 22 -21 -80 103
PJ -25 6 -5 11 -58
rs 6 -6 7 -11 -41
(eff)  -334 51 51 8 1337

Note: N1, N3, N5, N7 are four levels of added nitrogen.
, . -7
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OTHER KINDS

OF ANALYSIS

CONSIDERED BRIEFLY

(A) When regression is for residuals, as usually in the analysis
of covariance, for example, we often need siructural regression, rather than
predictive regression.

Stripping out An effect can be much more important than minimizing

residuals.

(84) Almost all applications of spectrum analysis are exploratory
in nature

Where spectrum analysis has helped, it has been because of what
it has shown to us. '

(AAA) Numerical classification (numerical taxonomy, cluster analysis,

etc.) has been an unrecognized battleground between explanatory: and
confirmatory data analysis

The techniques of steadily increasing effectiveness pushed onward
by W.J. Williams ard G.N. Lance are essentially exploratory in nature.
The views of N. Jardine and R. Sibson, to pick an antithesis, are basically
confirmatory. (Rather than facing the multiplicity problem ((see, for
example, Day, N.E. (1969) Biometrika 56, 470-473)) the most usual reaction
has been one of fear and retreat to axioms and abstract criteria.)

(AAAA) Almost all of multivariate analysis has suffered from an
emphagsis on confirmatory data analysis, to the concealment of what might

have been seen

(The nearly complete book of R. Gnandesikan on multivariate data
analysis is a valuable first step forward.) (Canonical analysis, in the
sense of M.J.R. Healy et al, 1s an outstanding example of improved data
ingight by exploratory methods.)

(AAAAA) Contingency tables can often be analyzed, not just summarized

It is their analysis that offers an effective foothold for their
exploratory data analysis.
(##*%¥*) Effoctive local technigues in multivariste analysis seem
likely to Jepend on near-volume indicators. (added March 1972)

Cells and grids are useful in one-dimension from moderate smounts of
data up, in two-dimeusions from moderstely large smounts up, and in three
dimensions from quite large amounts of data up. To work in four or more
dimensions with any feasitle emounts of data, or to work in three or two
with lesser smounts of dats, we have to do something else. kth nearest
volume, for sn spprcpriete shape of neightorhood, seems likely to fill this
gap. T

~
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EXAMPLES *

ﬂop - i; o
BETTER PICTURES

1) to &) - Sten-énd-leaf " “
3) to 7 Schematic plots

8) to 9 Residuals from lines

10)° to 13) Row-PLUS-colurm fits

14) Bar diagrams may need bow legs!

15) to 19) Rootograms for amounts or balancas
20) to 22) Rootograms for counts
23) to 24) Rank-size-log plots

25) to .9) Counting-in

There needs to Le a
GOOD P1CTURE
A ° in respomse to
r !Yﬁ!!' |
type of question
FREQUENTLY ASKED

* Taken or adapted from Johr W. Tukey, Exploratory Data Anzlysis.
Limited preliminary edition (3 volumes). Copyright 1970, 1971,
Addison-Wesley Publishing Company.
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CLOSE

o Some would call — out loud, or in their minds -— exploratory
data analysia "Just descriptive statistics". Those who take this view
must believe that "descriptive" statistics is a horrible misnomer. For
I hope I have shown that exploratory data analysis is actively incisive
rather than pnuiﬁy descriptive, with a real emphasis on the discovery
of the unexpected ~— 1f necessary by figuratively knocking the analyst's
head against the wall until he notices it.

Data snalysis should customerily, 1if not routinely, be
investigative. Quantitative detective wo-k has to be a professional
responsibility,

Undoubtedly, the swing to exploratory data analysis will go
somewhat too far. However:

It is better to ride a damped pendulum

than to be stuck in the mud.

~10-
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THE STATISTICS OF DIRECTIONS

G. S, Watson
« < Princeton University = - i;;- oroe .

INTRODUCTION, An analysis of directional data {s required in many
fields of research, The writer's work was stimulated first by studies
of the direction of permanent magnetization of ancient rocks (palaeo
magnetism - see Irving (1964)) and then by studies of bird navigation,
These yield examples of directions in three and two dimensions respec-
tively, Like so much of statistics, the developement of the required
theory and methods owes much to a paper by Fisher (19<3), The literature
has been recently summarized in a book my Mardia (1972).

The subject not only has practical interest -- it has theoretical
interest, The tools of statistics -- means, medians, variances, distri-
bution functions, etc, = are all fashioned for the real line on which
the observations are points, When they are points on a circle or a
sphere, one must start afresh -- none of the tools just mentioned make
sense any more, Creating a new get, although a simple job, has given
the writer more pleasure than any of his other statistical work, Other
interest stems from the compact nature of the circle and the sphere
which makes things simpler than the line —— but this aspect is not
appropriate for further discussion today. .

2, Data and its summarv descriptions. In two dimensions, a
direction may be thought of as an angle, a point on a circle or a unit
vector, To display data in angles one could show it on a straight
line of length 360° and find the mean, median, variance, etc. But this
is surely wrong since it supposes that observations of 1° and 359° are
far apart. 1If all the data is concentrated around 180°, no great harm

‘1s done, of course. If it is shown on a circle no such problem arises

but new tools are required. If we think of it as -

El""’EN ’

a bgnch of unit vectors, rhe new concepts immediately suggest themselves.

The direction of the mean vector % L r, 1is suggested as a center of the
1
sample. ~ = Ir 1is the vector resultant of the sample and we define the

sample 1 .n direction to be a unit vector in the direction of R, Thus

instead of having e.g. the mean of directions 1° and 359° as 18C° (!!),
it comes out sensibly as 0° = 360°,

=11~
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The graphical display of directional data is shown in Figure 1 a,b,
Figure l,c shows how undirected lines are plotted -—— these are called
axes and need a different treatment than directions. Figure 1l's b and ¢
together indicate the axes of slump folds tend to be parallel with the
palaeo current direction.

Given a aample of directions with a single center, how might one
describe the scatter or dispersion of a sample of directions? If the
bunch of vectors is very tight (i.e. none of TisesesTy make much of an

angle with R) the dispersion is small and R, the length of R, is almost
as large as "N, If the r L point in many directions, the dispersion is

large and R will be small, Hence
Diaperaion of sample = N-R (1)

would be a sensible definftion., This needs to be reduced by a factor
like N to get it on a per-~observation basis so we might define

- R R . : ’
-l_ﬁ » (2)

Scatter =

It is clear that we have found analogues of §, 2(xi-§)2 and 52!

If we turn to directions in three dimensions the above arguments
and definitions still make sense, To visualize such data, we must look
at points on the surface of a sphere, To show them on a two dimensional
page, some projection must be used, Different projections are used in
different subjects. The Lambert projection projects a hemisphere so
that areas are preserved, Thus the density of points is not distorted,
Hence it is usually best for statistics, Special paper 1s available for
doing this manually, The point with spherical polar coordinates (6,¢),
0 < ¢ <n/2, is made to correspond to a point (p,¥) using planar polars,

where y = ¢ and p = Y2C sin ¢/2,

Thus the upper hemisphere is mapped on

a disc of radius C. Figure 2 shows plots of some sets of geological

data, Efforts are often made to
generalization of histogramming,

"contour" the density of points -~ a

The paper by Watson (1970) gives more

details and references and relates all the ways different subjects have
used to define a direction in three dimensions,

The definitions of mean direction, dispersion and scatter are only
useful for data like that in Figure 2.a, It will be noted that they are
related to the center of mass of the points, each of unit mass. By con-
sidering the moment of inertia (M. I.) of the set of points we can sort
out other configurations e.g. bipolar distributions, gird1e distributions.
Let the vector r, have components x and z, so that x < + yi + zi2 =

i X425 i 1
1., Define

-12-
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The matrix M is symmetric and definite., Its eigenvalues,l1 > 12 > 13

say, are positive and add to n = trace M. . They are the stationary values

-of d'Md where d is a unit vector and the eigenvectors are the veccors d

yielding these values. The eigenvalues and eigenvectors of M may be
interpreted, Consider the M. I, of the unit mass at point 51 about an

axis through the origin parallel to a unit vector d,

5-1 .
o~ T — . m— (E.ig-

Figure 3

: ' ' )
From FPigure 3, it is 1 ~ (54 g)z =1-drxr dso that the M, I, of all

the points is »
. N L ' '
H.I. - N - 1-1 g- Ei 'E'd. d - N - _M_ dc

Suppose now the points are fairly uniformly distributed around a
great circle. The direction of greatest M. I. is perpendicular to the
great circle, The M, I. is about the same around any orthogonal direc-
tion. Thus this distribution corresponds to one small root and two
nearly equal larger roots. One large and two small corresponds to a
uni- or bi~polar distribution --~ and these can be distinguished by the
length of R (large in one case and small in another), If all three roots
are ejual, the distribution of points must be uniform on the sphere.

And so on,
It is possible to write a simple program to draw Lambert projections

of gamples and to calculate R , R , M and its eigenvectors and values,
These quantities give one a good feel for the data,

' 3. Parametric distributions and tests, If the observations are
symmetrically arranged about a single center with a density falling off
as one moves away from the center, one will not go far wrong in assuming

~13-
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they are a sample drawn a distribution with density proportional to
exp k cos 8 where k > 0 18 an accuracy parameter and & is the angle
between the center and the observation.

We will now, because of time, stick to three dimensions. There
this distribution is called the Fisher distribution, If the center is
the unit vector p and x the observation, the density is

t

k Iy L )

4nreinh k L L . c

With data IysecasIp 1t is easily seen that the maximum likelihood (m.1l.)

estimates of k and u are
u = the direction of R = R/R ‘ (5)

and k, the solution of

Ao .
Cothk -3 =& (6)
- kk
If k is greater than 3,
E e N
ko )

Now k is an "accuracy" parameter, the opposite of scatter, so this
matches our intuitive formula (2). This fortifies our belief that (2),
(5) and (7) make sense even if (4) is not quite true,
If u is known, the m,1, estimate of k is
o
N/(N-X), X =R u (8)

Thug N-X is evidently the dispersion of the sample about u, just as
N-R is the dispersion of the sample about u,

When k = 0, (4) is the uniform distribution. It is often necessary

to test whether this is so, For single cluster alternatives, we will
naturally reject if R is too large. It 1s easily shown that

2
N X3 (9

so the test 1s easy to make, (For more complex alternatives, other tests

are appropriate.)

To test whether a sample comes from (4) with a given mean or polar
direction, one may consider the analysis of dispersion

14—
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8o that the test is
Rl + Rz - R

¥ ) T -2 ) (17)
e ?.2(N ?) N N RkL R2 - o :'z: ) < .

© ¢

The logic of (16) is seen from the triangle
R
-2

- ¢ ‘, _R.l
R
It has been shown that these tests are robust against quite severe

changes in the parental law of Fisher, The extreme outliers that play
havoc on the line cannot occur here.
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, :
; Fisure ] {a) Raw Jntn plotted on circle,

(b) Rose diagram of some pelaeocurrent directions,
(c) Rose disgram of some axes of slump folds.

{Redrawn from Pott.r and Pettijohn(1963))

-17-

et S ar iy | & T

A PSP J R

I~

T ol




S

Yigure 2 rotlern:; ol preferred orientation (median girdles shown by broken
j _ lines). (a) Maximum (symmetric): 150 linestions from Loch leven,
Scottish Highlands. (b) Girdle: 1,000 poles of foliation from /o
Turoka, Kenya. (¢) "crossed girdle": 390 [0001] of quartz from / i
quartzite, Barstow, California. (d) Small circle or "cleft" girdle: '
140 [0001] of quartz from Orocopia schist, California. (After .J. M. /
Christie; redrawn from Turner and Weiss (19€3)) : /
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AN INVESTIGATION OF WIND FREQUENCY RESPONSE ON THE M50 ROCKET

Bernard F, Engebos and Abel J. Blanco
Atmospheric Sciences Laboratory, US Army Electronics Command
White Sands Missile Range, New Mexico

ABSTRACT

The wind frequency response for the M50 rocket was studied using

quadrant elevation angles of 200, 400, and 800 miles. The wind profile

was assumed to be of the form of finite Fourier series with statistically
determined amplitudes obtained through a random number generator.

Impacts were simulated using a 5-degree—of-freedom trajectory model

using 100 randomly generated wind profiles. Correlations between the
randomly generated amplitudes and the simulated displacements were then
computed. So far the results are inconclusive and improvement is necesrary,

INTRODUCTION

The main reason for this study is to delineate the degree of fidelity with
which the wind field must be known to achieve acceptable rocketry
accuracy. Jpecifically, how high must a space frequency of wind be before
the flight path of the rocket is essentially unaffected by that frequency?
An exact answer to this question would involve exhaustive studies into
meteorological data collection, data analysis, and the aerodynamics
involved in treating wavelengths of wind. Several preliminary studies
[1-5] concerning this type problem have been reported. The objective of
the study is to find optimal wind layers so that relatively accurate
impacts can be achieved. To accomplish this end, a 5-degree-of-freedom
ballistic simulation model was used [6].

The Honest John M50 rocket is approximately 8 meters long. The
mathematical ballistic model (linear aerodynamics) used to calculate
theoretical trajectories assumes a net aerodynamic force acting through
the center of pressure of the rocket, which is equivalent to assuming

a constant angle of attack over the surface of the rocket, i.e., the
wind is invariant along the rocket's length. Thus, it is difficult to
speak of the effect of wind oscillations when the wavelength is the same
order as the length of the rocket. As a result, the highest space
frequency considered corresponds to a wavelength of 16 meters (twice
the length of the rocket). For all trajectory simulations considered,
all atmospheric and aerodynamic data on the rocket but the wind were
held constant,

The remainder of this article was reproduced photographically from the
authors' manuscript,
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DISCUSSION

The input wind conditions were components of the horlzontal wind =

as functions of the alititude z.

-‘The first approach consisted of letting

¢ ¢

m

we (z) = 5 I (A jcosuz + B sine.z)

J J J
J=1

m

cosw.Z + D, .sinw,2)

wyf(z) = 5‘ L (CU ; i j

j=!

where wx, (z) is the east-west and wy,(z) the north-south component of
the I-th'wind profile (m/sec), w. répresenfs m wind space frequencies
with wavelengths in intervals of Yi6 meters up to the burnout altitude
of the rocket, It should be noted that m Is equal to the greatest
intager value of the quotient of the burnout altitude and 6.

The various coefficients of the trigonometric functions were generated
by a random number generator, assuming a normal distribution of mean
zero and standard deviation of one. The multiplier of 5 was chosen

to ensure representative wind magnitudes. This yields a finite
Fourier series for the wind components. |

.

<

Associated with the i-th wind profile is the simulated impact
point (x., v.). This point was obtained by using the above wind
profile Buriﬁg the power on and power off portions of flight. Let
{xo, Yo) be the nowind impact point. Setting

Dxi = xI -~ Xgq

oyi =y, = X

1
™o, = (Dxiz + Din)

-~20»
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2 2 2 2
P' = E(AIJ + B + Cij + DiJ Y]

J i

one then can compute correlation coetficient: as fol lows:

Dx

i J
Dxl Vs B;J C ‘
Dy, vs € V1,2, .00 ,m,
Dy' vs Dij
TDI vs PIJ ),

Only the latter correlation coefficient is shown, since the others are

similar., Figure | shows this correlation coefficient versus the wave-

length of the space frequency for a quadrant elevation angle of 200
.mils, 100 wind profiles, and m equal to 12, One should note here

that this correlation coefficient is low in value, This may be caused

by too few cases considered and/or by the Doppler effect on the space

frequency due to the rocket's changing velocity.

Figures 2 and 3 show similar results for quadrant elevation
angles of 400 and 800 mils, respectively,

Another approach involves holding the amplitude of wind constant
and varying the space frequency, mj; l.e., set

wx.(z) = Scosuw.z
J J

'}

(2) S5sinw,.z
"] ®

Figure 4 is a plot of total displacement versus the various wavelengths
of the space frequency for 200, 400, and 800 mil trajectory simulations.
As the wavelengths increase, the tota! displacement of the simulated
impact point from the nominal impact point also increases. This is
quite logical since the low frequency wind occurring during the

powered portion of the rocket's trajectory (most of the wind weighting
ef fect [7] occurs here) appears more as a trending wind. In the "real
world situation,” higher frequencies have smaller amplitude and thus

can be neglected. Generally frequencies with wavelengths less than ‘ﬁ
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50 meters long can be ignored for the M50 rocket, as can be seen by
Figure 9.‘ .

Combining aeveral wind space frequenries into a single wind profile
seems to bear out the fact that space frequencies are relatively
independent of one another in influencing the rocket's flight path.

: . . . . CONCLUDING REMARKS
Several questions still are unanswered:

(1) Will the statistically derived wind profile technique described
herein be successful when the sampling size is increased?

(2) What about wind measurements as a function of horizontal range?

(3) At what altitudes do wind space frequencies most effect the
rocket impact accuracy?

(4) Is there a "best” way to determine optimal wind layering to
ensure relatively accurate impacts?

A solution to the above questions is extremely difficult., Any possible
suggestions on how to solve this overall problem would be greatly appreciated.

C .
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PROBLEMS IN DESIGNING EXPERIMENTS WITH
LARGE NUMBERS OF VARIABLES
Roger 'L, Brauer and Charles C, Lozar
Special Projects Division Architecture Branch
Construction Engineering Research Laboratory
Champaign, Illinois

o

The performance of buiidings is of primary concern to architects. The
designer desires to produce a bullding for human occupancy that not only
achieves high performance of materials of construction but also achieves
high quality for the user. The designer wishes to achieve a high degree of
user satisfaction and support for user performance,

The problem we wish to present at this clinical session occurs in the
evaluation of buildings for users and in measurement of the quality of the
constructed space., In completing such evaluations and designing experiments
which will measure comparative differences between buildings there is a
tremendous number of variables that can contribute to user satisfaction and
performance within buildings. We are faced with a problem in measuring and
accounting for this wide range of factors and in putting them all together
in an experimental design. The results of such experiments are intended to
help establish design criteria that will increase the satisfaction of users
and meet their needs, as well as satisfy the requirements of management,

Briefly the evaluation of buildings must include the assessment of:

a., Physical conditions,

b. Functionality,

c., Attitudes of users about conditions,
d. Behavior and performance of users,
e, Cost,

The physical conditions include space, heat, light, sound, color, furnish-
ings. Functionality includes such things as traffic flow, productivity of
workers, etc, The attitudes of building users can be influenced not only
by the physical conditions but also by organizational climate, personal
factors, and demographics. The behavior of people within a building can
be social or nonsocial and their performance can be in terms of sickness,
absenteeism and productivity. Finally, cost is important to determine the
cost effectiveness of designs.

Consider the case of family housing as an example of the large num-—
ber of variables that can influence uger performance and satisfaction,
Many of these are shown in Figure 1. Everyone has some idea of what
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FAMILY HOU

PHYSBICAL CONDITIONS
BEORCOMS: NUMBRR

L ]
sTOonRsou
LIBMTING
TEMPERATUNS
GTATE OF RaErPAIR

L e LI
<

OTHER CONDITIONS:
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SEOBRAPMICAL

. s e e
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INTERVENING FACTORS:

PREVIOUS EXPERIENGSE
PERBONAL COMPOSITION AND
ATTITUDES: TOWARD PKYBICAL

ARMY (ORSANIZATIONAL CLIMATH)

.. NEMHEORMOOD ANG COMMUNITY
" BEMAVION: TR IN Ues, NTC.

Figure 1.

T

END RESULTS:
SUALITY OF SPACI!

PEAFCGRMANCE
BEMAVIOR

UBER SATISEACTION

An Example (Family Housing) Showing the Many Variables

That Have Some Influence on the Quality of Design
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contributes to making a house acceptable, pleasant, desirable, and satis-.r

. _fying to its occupants and how well the design of the house supports the
“activities that occur there.

In describing the physical condition of the house it is clear
that the various rooms in the house individually and collectively contri-
bute to the quality of the house. Each room can be described in several
ways. The number of bedrooms would be important, as would the size of
the bedrooms, the amount of storage space, the lighting, the temperature,
the state of repairs, room color, type of wall and woodwork finish, type
of flooring, the kind of windows, the arrangement of one bedroom relative
to the others, the arrangement of bedrooms relative to the rest of the
house, the distance from the bedrooms to the bathroom, and so on. Each
of the other rooms in the house could be described similarly. Each con-
dition in each room contributes in some degree to the overall quality of
the house.

Beside physical conditions, other factors can also have an in-
fluence on the quality of the house. It could be the overall cost of the
house. If a house is too cheap, it may not be durable; if it is too ex-
pensive, it may place other constraints on family finances. The geographical
location may be important to members of the family. Because the house is
located in the wrong part of the country, no house would be good enough to
satisfy the user. Geographical location might include distances to shops
and stores, convenience to schools and convenience to work. Again each of
these factors contributes to some degree to the quality of the house and
to the satisfaction of its users.

Furthermore, each of these conditions may not contribute directly
to the quality of the space or user satisfaction but are usually affected
by intervening factors. The intervening factors could include previous
experience with other houses, differences in personal composition--personal-
ity factors, age, level of income, social status, and other demographics.
Attitudes are also important. There can be attitudes towards the physical
conditions themselves, attitudes about one's job, general attitudes towards
the Army and attitudes towards neighbors, the neighborhood, the community,
the geographical location. In addition, behavior can have an effect on how
the physical conditions relate to quality of the space or user satisfaction.
If Tittle time is spent in the house, the occupant may not be as critical
about conditions. On the other hand, the occupant may prefer to do activ-
ities at home for which the design of the house is not very accommodating.
The design of the house may directly impact the health and safety of the
occupant. A1l these intervening factors in some way mediate the effect of
physical and other conditions on the quality of the space and on user satis-
faction and performance.

In designing an experiment which is intended to evaluate the
quality of the house and how satisfied the user is with it, all these factors
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must be measured and the effect that each one has on the quality of the
space or on user satisfaction must be determined. To complicate matters,
it is clear that interactions or interrelations between the physical con-
ditions, attitudes, behaviors, previous experience, and personal composi-
tion exist. The strength of these interrelationships, as we]l as their
effects must also be determined.

‘Other buildings could similarly be described and evaluated in

" terms of user satisfaction and performance as a measure of quality of de-

sign. Some buildings need to be evaluated on a more micro-scale basis.
Here the problems of all of the other variables mentioned still exist,
with one additional parameter attached. In order that the designer be
able to make decisions about the physical character of the space he pro-
vides, he needs the psycho-social data to be location-specific. He re-
quires that the data be connected to an fdentifiabie physical location

in a room, or a specific room in a building. Much of the psychological
literature to date ignores this need and therefore is regarded as "unusable
theory" by many designers. We find a need to quantify the behavioral suc-
cess of a building and relate these data to specific locations in the en-
vironment. Therefore the problem under examjnation in this part of the
discussion is the quantification of the degree of "fit" between man and
his environmental setting and the identification of behavioral "units" of
designable environment.

A basic "chunk" or unit of man-environment interaction called a
behavior setting has been identified in the psychological literature (Barker,
1968) and applied to such contexts as housing (Bechtel, 1970) and hospitals
(LeCompte, 1972). This unit shows great promise for analyzation of micro-
scale architectural environments. Barker states that this "chunk," the

- behavior setting, is characterized by a standing pattern of clearly iden-

tifiable behaviors regardless of participants. Examples might be classes

of behaviors in restaurants, libraries, and supermarkets. In each of

these contexts, patterns of behavior are similar for participants, and are
independent of individuals. The behavior setting analysis technology de-
veloped by Barker provides a system for identifying chunks of location
specific behavior and notating activities and attitudes to these. Just as

a Tanguage has a vocabulary, syntax, and rules of grammar, the behavior set-
ting has unifts, qualities, and degrees of independence and interdependence.

. Now, the problem of using these "chunks" of man-environment interaction be-
- comes more difficult when structured into an experimental situation to pro-

vide information usable for the designer.

An example of a military dining hall might serve to develop the
concept of behavior and attitude relationships related to specific units
of environment. In the normal dining process of food acquisitinn, respon-
dents experience physical and social environment in a linear sequence
(Thiel, 1961). Each of the activities subjects engage in can be differ-
entfated by the nature of the behavior mechanisms employed, i.e., gross
motor, manipulative, motion, etc. On the basis of this differentiation,
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we can identify some ten, distinctlyv different key behavior settings such

~.as sign-in desk, silverware pick-up, path to table, etc. Now the behavior

in the physical space of one setting will affect the attitudes of respon-
dents at another setting elsewhere in the dining space. We know that re-
spondents will rate the concept of "privacy” lower at the dining table as
the number of persons standing in line at the sign-in desk increases (Gibbs,
1972). The behavioral data in this case is location-specific. The designer
can make decisions of a physical nature to change the attitude rating. He
can shield the check-in desk from view, provide two desks for faster pro-
cessing, or more the check-in desk elsewhere, all with the intent of in-
creasing the sense of privacy at the dining table. In this example, be-
havioral data (number of persons in 1ine) and attitude (rating of privacy)
have been made location-specific (sign-in desk, table) and the designer

can make decisions based upon this information. However it is not quite
that simple.

From our previous discussion, we realize the great number of
variables interacting in any social setting. Obviously privacy and popu-
lation at sign-in desk are not independent of other factors in the environ-
ment. Not only would the dining "privacy" experience be affected by popu-
lation movement, but also by physical conditions, noise level, and the
management climate. To some degree, all of these affect the rating of
privacy. It is the combination of factors that cumulatively make up the
concept of privacy and the problem is again one of a large number of vari-
ables. It is, of course, possible that the designer could not solve them
all, but certainly a knowledge of what amount of the total variance could
be accounted for by changes in physical design would be useful in develop-
ing a measure of cost effectiveness for changes in the environment.

We have presented two kinds of problems in environmental analysis
each involving a great number of variables. The first involved the range
of parameters and variables existent in any environmental setting, and the
second problem addressed the need for identifiable “"chunks" of behavior-
environment interaction which the designer might address to begin his ar-
chitectural translation process, with the intent of improving the performance
of the building. From the standpoint of the designer, he realized that be-
havior and environment interaction is not a one-valued concept, but rather
multi-dimensional and interactive. The behavioral scientist would certainly
beli2ve that interactions between the many variables suggested in this paper
are probably more complicated than simple correlation coefficients would
describe, yet he would not suggest a priori a series of interrelated factors.
The question is then, what kinds of research designs and analytic techniques
will lend themselves to discovering major components of human interaction with

environment. Multiple linear regressipn (Brauer, 1972), factor analysis
(Canter, 1972), and cluster analysis f%eéhte], 1972) g&&e been suggg;ted.
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o Since 1t is seldom possible to experimentally control varjables
in building designs and comparative demonstration projects are far too

expensive, suggestions for handling a large number of varfables in a semi-

controlled, real world situation are needed. Are there other techniques
more responsive than tnose suggested to discovering relations and major
factors in large data matrices? Can they also relate disparate data from
attitude and behavioral investigations to location-specific chunks of
environment? Will these techniques be more or less responsive than
present ones to investigations in the real world context, and what sort
of experimental controls are necessary? These are the questions we ask in
order to build a firm scientific basis for the design of buildings that
are compatible with human behavior and needs.
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“° " ORTHOGONAL ESTIMATES IN WEIGHING DESIGNS

William G. Lese, Jr. '
US Army Materiel Systems Analysis Agency, APG, Maryland

and
K. S. Banerjee
University of Delaware, Newark, Delaware
ABSTRACT
A new tecﬁnique has been developed for modifying all balanced incomplete
block designs (BIBD) to provide orthogonal estimates when the modified BIBD

are to be used as a weighing design. Previously, K. S. Banerjee developed a

¥’

method for modifying BIRD to ﬁrovide orthogonal estimates, However, for a
certain class of BIBD, Banerjee's method failed to provide orthogonal estimates.

A comparison of the relative efficiencies of the new procedure with that of

Banerjee's procedure is also presented. In addition, under the new procedure
it is shown that the covariance matrix of the estimators obtained by the least
squares procedure is identical to that obtained by the maximum liklihood
procedure, even when the design matrix X is not square. Several examples of :
the utilization of the new technique, along with a historical development of
the weighing problem from its origin in a casual example by Yates through the
work of Hotelling, Mood, Kempthorne, and Banerjee as relative to the problem

of providing orthogonal estimates, is also presented.
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CHAPTER I

ORIGIN OF THE WELGHING PROBLEM

In an article, "Complex Experiments”, Yates [10] considered the
following problem: A chemist i{s given the task of determining the'
wejghts of seven light objects, and the scale the chemist must use
réquires a zero correction. The customary tgchnique would be to
weigh each of the seven objects individually and then make an eighth
weighing with ho objects on the scale. This eighth weighing would be s

used to determine the zero correction factor.

Mathematically, the customary weighing technique for the
chemist problem would be as follows: The seven objects will be

denoted as a, b, ¢, d, e, f, and g. The §ca1erbias will be denoted

by z.
: Weighing Number Object Weighed Scale Reading
| .
- £ ] { a+z Y] s
- ‘ : S .
; , 2 b+z Y, 7
3 c+2 Y3
4 d+2z Y4
5 e+z Y5 X
6 f+2 Y6 %
7 g+z Y7
8 2 Y8 i
|
ﬂ34-
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Using this notation the weight of any object can be determined by

taking the difference between the scale readings when carrying the
object and the scale readingrﬁhen no object is on the scale. For this
example, the weights of the seven objects would be determined as
follows:

b‘YZ'YB

o

c= Y3 - Y8
d= Y4 - Y8
e = Y5 - Y8

fSYG-Y

8 : | o
9=1Y;-1g

—

Assuming that systematic errors are non-existent and that the
] errors are random, the variance of each weighing may be denoted by
I o2 and the standard error by o. With these assumptions, the variance
% of the estimated weights using the customary weighing technique is 242

and the standard error is o/2 .

1]
~v-

For an improvement over the customary weighing technique,
Yates suggested that the objects should be weighed in combinations
with each other instead of being weighed individually. For example,
Figqre 1 presents Yates' technique for the determination of the weights

- of seven objects.




We notice that in Yatesomethod. each object is weighed four

i times in combination with the other objects. In the four weighings of

‘ L .- a given object, every other object is included twice. In the remain-
VF/‘. » ing four weighings, {.e. the weighing without the object, every other
"‘ object is also included twice. Thcrefore, the weight of anx:object

‘ cén be determined by addihg the scale readings containing the object,

i subtracting the scale readings not containing the object and dividing
this result by 4. Using this procedure, the weights of the seven

objects would be determined as follows:

(
1
; b =
X

+Y

]
-
|
-
L}
-
]
-<

Yp+Y¥3+ Y+ Y,

c=

Y tY v Y+ Yy

]
-~
1
-
]
-
]
-
(=4}

-
-
+
-
+
-
+
-
'
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-
W
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ﬂeighing Number Objécts weighed Scale Reading
1 ° a+btcHdre+f+g ~ Y

2 a+b +d Y2

4 a +f+g Yy

5 b+c +f Y5

8 d+e+f Y8

Figure 1. Yates Weighing Design
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and )

f= -
5

4

g=

‘It should be noted that the bias (1.e.uthe zero scale correc-
tion) cancels out in the above expressions. Since the variance of a
sum of independent observations is the equal to the sum of the vari-
ances, the variance of an estimated weight determined by Yates fech-
nique isvazlz and the standard erfor is o//2 , whereas the variance and
standard error using the customary technique was‘Za2 and o/2 , respec-
tively. Therefore, Yates weighing technique improved the precision of
the estimated Qeights as compared to the customary weighing technique
without increasfng the number of weighing operations (both techniques

required eight weighing operations).

N

This illustration by Yates, whereby the precision of an S

‘estimated weight'was‘inéreased (without additional weighings) by

weighing the objects in combinations rather than individually, was

the origin of the weighing problem.
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CHAPTER 11
© HOTELLING'S ENUNCIATION OF THE WEIGHING PROBLEM

Hotelling [5] presented a furthér improvement by suggestihg
that Yates' procedure be modified by placing in the other pan of the
scale those objects not included in each weighing as specified by Yates.
For example, in Yates' procedure (see Chapter I)lone weighing of the
seven objects had the combinafion of atb+d= Y2 which represented‘.
the objects a, b, and d being weighed on the scale. Hotelling suggested
that in addition to objects a, b, and d being placed in one pan for
weighing, thé remaining objects, i.e. ¢, e, f, and g, be placed in the
other pan. Hotelling's weighing design for the determination'of the
weights of seven light objects is presented in Figure 2. Using
Hotelling's procedure, the estimated weights of each of the seven
tight objects would be given as follows: |
H] + ”2 + H3 + H4 - We - NG - H7 - W

a= 3
8

g + W - N3 - W

8

N, + W, + W
S I

c= 2
8

=39
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Weighing Number Objects Welghed Scale Reading
e | c/a‘+_,br+'c+d'+e+'f vg "1»'
2 a+b-c+d-e-f-g - .NZ
‘3 a~-b+c-d+e-f-g ‘ H3
4 a-b-c-d-e ; f+g Wy
5 ~at+b+c-d-e+f-g "5
6 ~a+b-c-d+e-f+g Ws
7 ~a-b+ct+d-e-f+g Wy
8 -a-b-c+d ; é +f-g Wg

Figure 2. Hote]1fng's Heighing Design
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f=

The variance of each unknown weight by Hotelling's method is therefore
02/8 and the standard error is o//8 . This standard error is half that
of Yates method and a fourth of the value determised by the customary
method. Also in Hotelling's method, as in Yales' method, the scale

bias (zero correction) gets subtracted out in the equations for the

determination of the unknown weights.

The design principle inherent in both Yates' and Hotelling's
method may be illustrated even better with reference to a simpler
example. Let us suppose that it is required to find the unknown
weights of two objects a and b, and that the scale to be used is
already corrected for bias. If the two objects are weighed together
in one pan of the scale, and also in opposite pans, the equations for
the unknown weights will be

a+b=Y, a-b=Y,

where Y] and Y2 denote the readings from the scale. From the above,

b et




we get

and v Y
.ba" 2

If az is the variance of an individual weighing, the variance of a and
b, by tals method, is obtained as 02/2. The error for both the esti-
mates, therefore, is o/72. Thus, with only 2 weighing operations. it
has been possible to obtain the standard error for both the objects

as o//2; whereas if the objects were weighed separately twice each,

4 weighing operations would have been needed in all to obtain this
standard error for both. Weighing the objects in combination has,
therefore, saved the trouble of making weighing operations by half

the number.

The above, therefore, amply illustrates the following quotation
due to Hotelling: “When several quantities are to be ascertained
there is frequently an opportunity to increase the accuracy and reduce
the cost by suitably comb1ning 1n one experiment what m1ght ordinar11y

be cons1dered separate operations"

In addition to the improvement in Yates' method, Hotelling
also gave a precise formulation of the weighing design prob]em This

formulation, as later pointed out by Banerjee [1], may be interpretated

as follows:

Results of N weighing operations to determine the individual
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Qeiéﬁts of pm11gﬁ£4objects £1t 1n to the geneeaiilineaf'hypotheeis
model, Y = X8 + ¢, where Y is an N x 1 random observedcvector of the
recorded weights; X = (xij)' f=1,2,...NJ5J=1,2,...,p, 18
an N x p matrix qf known quantities, with T +1, <1 or 0, if, in
the 1th weighing operation the Jth object 1s placed respectively in the

' ’left pan, right pan or in none; B is apx 1 vector (ps N) represent-
‘1ng the weights of the objects; ¢ 1s an N x 1 unobserved random vector

- such that E (¢) = 0 and E (ee') = ale.

Consistent with the signs that the elements X4 can take, the

th

record of the i~ weighing is taken as positive or negative, according

as the balancing weight is placed in the right pan or left.

The matrix X is called the "design matrix". When X is of
full rank, that is, when [X'X] is non-singular, the leasf squares
estimates of the weights are given by 8 = [X‘X]'] X'Y, where X' is the
transpose of X. The covariance matrix of the estimeted veights is

given by COV (8) = o2C. The ith diagonal element of C, Ciy° represents

<the variance factor for the ith object. The objective of the Weighing

Design Problem is to cbtain the design matrix, X, such that the Cij

are a minimum,

In this connection, Hotelling [5] proved the following Lemma:

Let A= [X'X] = (aij)’ i,j=1,2,.. ., p. Then, if 355
a3 - - s Ay (= 310 3310 - - s 3 respectively) are free to

vary while the other elements of A remain fixed, the maximum value of
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Al/Ayy is ayy, and 1s att%ined when and only when 3y % Ay T . . -
N " ; 12 13

a;, * 0, where A, is the minor of A obtained by deleting the first

p
row and colum.

From the above Lenwa. it is evident that the variance of 51.
namely °2A11/IAI. cannot b; less than °2/a11' and that the variance
would reach this value only if the experiment is so arranged that the
elements after the first r?w and column of A are all zero. Thfs
minimum value, ozla]j. wi]i be attained, when the first column of X
is orthogoné] to all the o#hers. It will also be clear that the
minimum minimorum [ 5] of fhe variance will be reached, if the first
column of X is not only oréhogonal to all the otﬁers, but also if it
consists entirely of +1's %nd -1's as its elements, so that a = N.

|
N is the maximum possible ﬁalue that a;; can take. The value of this

minimum minimorum will thus be equal to o2/N.

|
1

It is evident from the Lemma and the aone discussion
that this minimum minimorum%of the variance would be reached in respect
of all the‘éstimétes éi’ (f?= 1,2, . . ., p).fif the design matrix X C
is orthogonal in the sense %hat [X'X] is diagonal with N on the
diagonal.

~44~
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CHAPTER 111
TWO TYPES OF WEIGHING PROBLEMS (SPRING AND
- CHEMICAL BALANCE) AND ILLUSTRATIONS OF EACH
In general, there are. two distinct types of weighing problems.
These problems have been designated as the spring balance weighing

problem and the chemical balance weighing problem. In the spring

i balance problem (only one pan is used) the design matrix X is composed

of elements'xij which can assume only the values of +1 or 0, where

e

+1 denotes that the object is to be plased in the pan and a 0 denotes

that the object is not to be placed in the pan. In the chemical

balance problem (two pans are used), the design matrix X is composed
: of elements xij which can assume values of +1, ~1, or 0, where +1

i denotes that the object be placed in the left pan, -1 denotes that
the object be placed in the right pan and 0 denotes that the object
not be placed on either pan. It is evident that the design origi-

! " nally proposed by Yates (see Chapter I) was a spring balance design,

E and the improved design proposed byrHotelling was really a chemical

balance design (see Chapter II).

Example of a Spring Balance Yeighing Design

As an example of a spring balance weighing design, consider

the problem of determining the weights of three 6bjects (a, b, and c).

~45-
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A spring balance weighing design matrix wouldkbe:

110
X=1101
011
Where the columns refer to the objects and the rows refer tp the
weighing cperation. For this example the first weighing would have

objects a and b on the scale. Object ¢ would not be used in the first

- ‘weighing operation. The second weighing operation would have objects

2 and ¢ being weighed together. Object b would not be used in the
second weighing operation. Likewise, the third weighing operation
would have objects b and c being weighed together. Object a would not

be used in the third weighing operation.

The least squares estimates of the unknown weights are given
by 8 = [X'X]'1X'Y and the covariance of the unknown weights are given
by Cov (B) = (X'X)"oz. where X is the weighing design matrix and Y
is the matrix of recorded weights of’each we{ghing‘operation. _For

[

‘this éiample

[x'x] = |12

46=
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(xx3t = [-1/4 3/4 -1/8
-1/4 -1/4 3/4

For the least squares estimates,

2 2 a2 |y,
xex) Iy = § 12 <2 12 Y,
W2 2 /2] |y,

We therefore have, as least squares estimates,
2
2

as

b=

and
'Y] + Yz + Y3.
2 -

c=

The variance of each unknown weight is 3/4 o> (as given by the diagonal

elements of (X'X)']).

Example of Chemical Balance Weighing Design

As an example of a chemical balance weighing design consider
the problem of determining the weights of four objects (a,b,c, and d).

A chemical balance weighing design matrix would be:

. abh




1111
REERREE
K=laa 11
141411

As in the spring balance example, the columns refer to the objects to

be weighed and the rows refer to the weighing operation. In this case, .

the first weighing operation weculd have all four objects (a, b, ¢, and
d) placed in the left pan.  The second weighing operationAwou1d have
objects b and d placed in the left pan and objects a and ¢ in the

right pan. The third weighing would have objects a and b placed in
the right pan and objects ¢ and d in the left pan. Likewise, the
fourth operation would have objects b and ¢ placed in the right pan
and objects a and'dvp1aced in the left pan. Using fhe same notation

as in the spring balance example, we have

X'x1=1lo040

and

-48-
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17406 0 o
ey lowva o of
XXT" = 1o o0 14 0

0 0 0 1/4

[x'x3x'y =

(-}

haacse

| For the least squares estimators,

174 -1/4 <178 /8] [y
74 /4 -1/8 28| Y,
1/8 <174 /4 -1/8] Y
174 174 /4 /80 Y,
- -

We therefore have, as least squares estimates,

~Y] - Yz‘- Y3 +Y, .
4
4
4

[~ 283
L]

W+ Y+ Y34+,
4

d =

} The variance of each unknown weight is 02/4 (as given by the

. diagonal elements of (X‘X)'])-




CHAPTER IV .

MOOD AND KEMPTHORNE'S CONTRIBUTIONS

, Mood [ 7] has indicated that if N weighing operations are made
to determine the weights of N objects, the minimum variance that the

estimated weights could have is ¢2/N; and further, this minimum vari-

ance will be reached only when the design matrix is crthogonal
(orthogonal in the sense that (X'X) is diagonal) with elements con-
sisting entirely of +1's and -1's. Thus, Mood [ 7] showed that the
problem of finding the best chemical balance design is related to

Hadamard matrices and the Hadamard determinant problem.
The theorem that Hadamard proved is as follows:

If the elements xij of a square matrix X are restricted to
the range -1 ¢ X{5 € 1, the maximum possiblg(yalue of the determinant

J
N/Z, and when this maximum value is achieved, all X5 = 1. -

“of X is N j
The matrix X also will be orthogonal in the sense that (X'X) will be

diagonal with all non-zero elements equal to N.

Such matrices are denoted by HN. If HN exists fof‘a given
N, HN is the best chemical balance design for N = p. If the number of
objects, p, to be weighed is less than N, the best design is one which

=50~
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s derived from HN by selecting a number of columns equal to the

number of objects to be weighed.

Mood has further pointed out the work of Paley [8] and

UﬂHamson [9] and showed that H4k xists for the range of 0 < 4k < 100

with the possible exception of 4k = 92, The solution for 4k = 92 was
later found by Baumert. 'Golomb, and Hall Jr. [3].

c ¢
[ o

In summary, for those chemical balance designs where an HN
exists, the determination of the optimum design is completely solved;

{.e. the optimum chemical balance design will be HN’ if HN exists.

- For the remainder of this dissertation we shall devote our
attention to the spring balance problem. As mentioned before, the
spring balance problem differs from the chemical balance problem in
that the elements of the design matrix X can only assume values of +]
or 0, whereas, in the chemical balance design the elements of the

design matrix X can assume values of +1, -1,-or O.

We notice that Hadamard's theorem does not directly apply to
the spring balance problem since the design matrix, X, can only
assume values of +1 and 0. For the spring balance problems, where
N=pand N =3 (mod 4), Mood showed that the best possible spring

balance design is determined by H , if HN + 1 exists. Mood's

N+1
method of construction of these best possibie designs is as follows:

Let KN +1 denote a matrix formed from HN + by adding or

51
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subtracting the elements of the first row of HN +1 from the correspond-

ing elements of the other rows in such a way as to make the first

element’ of each of the remalning rows zero. Obviously,

lKN+]'=iIHN+]"
Except for the first row, the e]ements of KN 4 1 are 0 and 2 with (
the signs of the non-zero elements being the same for elements in the
same row. Let LN be the matrix obtained by omitting the first row
and column of KN +1 by changing a1l non-zero elements to +1, and by
permuting two rows, if necessary, to make the determinant of LN

positive. Then

N
Ity 4 g1 = 2"yl
It is clear that, given LN’ one could reverse the procedure and»deter¥

mine an HN In the same manner, there is a correspondence in

+1°
general between square matrices with elements *1 and square matrices
of one 1ess order with elements 0 and 1. The ratio of the vaIues of
correspond1ng determinants is always 2N if their detennlnants do not
vanish; hence the (0, 1)-determinant will always have its maximum

value when its corresponding (+1, -1)- determ1nant has its maximum

possible value. Thus, |L | s the max1mum va]ue possible for a deter-

minant of 0's and 1's of order N, and the value of [Ly] is

iyl = e 1y B+
ZN

The variances of the estimated weights will be aH = asz)(N+])g We

i

knew in advance that a ~ would be greater than 1/N, since an optimum

-52~
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deéign cannot exist uoléos the'designrmafrix has {ts elements eral

+1 and the spring balance design is restricted to elements +1 or O.

For the spring balance problems when N>op, Mood has presentedr” )

5 the following approach for obtaining optimum spring balance des1gns

‘ Let P be a matrix whose rows are a11 the arrangements of r
ones and (p - r) zeroes (0 srsp. (The symbol should also have a
subscript p but that is omitted because any specific value for p will
always be olear from the context.) The matrix will have p columns and

(g) rows. Let X be a matrix made up of matrices P, arranged in verti-

cal order. Let n. be the number of times Pr is used in constructing X.

rl

The matrix X is then a weighing design for p objects and N = ¢ nr,(p)
r
Using these notations, Mood has proven the following two theorems giv-

ing the best spring balance designs:
Theorem (1): If p = 2k - 1, where k is a positive integer, and if N
contains the factor (E) then laij, (det. |A[) will be maximized when

= p - o=
K N/(k) and all other e 0.

Theorem (2): If p = 2k, where k is a positive integer, and if N con-
tains the factors (? I }), then 'aijl (det. |A]) will be maximized

+

+

when Mg =My = N/(ﬁ }), a..d all other n_ = 0.

r

When p is odd, Mood observed that Pk is a design which not
only minimizes the confidence region for estimating the weights, but

also minimizes the individual variance factors. When, however, p is

53—
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even, Mood observed that the variance factors may not be the minimum,
and makes a surmise that the best design from the point of view of
minimum variance factors would be made up largely from Pk and a sma'll

‘ proportion from Pk +1°

Kempthorne [ 6] discussed the weighing problem from the point
of view of factorial experiments and in [é] has given rules by which
the fractional designs may be constructed. Kempthorne has indicated

that the fractional designs have the following properties:

(1) The design automatically takes care of any bias in the
balance. |

(2) The effects or weights may be easily computed.

(3) The effacts or weights are uncorrelated.

(4) Al7 the weights are measurod with the same precision.

(5) An estimate of the experimental error which is independent

of the effects may be computed from the results. |

-Kempthorne also compared his fractional designs with the designs

proposed by Mood and has found that the fractional factorial designs
will yield estimates which have a somewhat higher variance than Mood's
‘ designs Kempthorne also indicated that the increase in precision: in
Mood's designs had been obtained at the expense of having correlated
estimates which are subject to any bias that the measuring instrument
may have. For these reasons, Kempthorre doubted whether tha use of

Mood's designs for any practical problem could be justified.
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incomplete block designs and that the LN designs could bg easily modi-

\fied to prbw)i&e orthogonal estimates.as was feferred to by Kempthorne.

§ . e .
- ©
© < <

Subsequent to th1§ remark by Kempthorne, Banerjee [1] showed
that the LN designs of Mood are a special class of symmetrical balanced

In addition, since the LN designs are a subset of symmetrical balanced

incomplete black designs, Banerjee [2 ] developed a general method to

show how BIBD's in general could be made to provide orthogonal estimates
when used as weighing designs. A detailed description of Banerjee's

method is presented in the next chapter. |

" alh
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" CHAPTER V

BANERJEE'S METHOD OF MODIFYING BIBD TO PROVIDE
ORTHOGONAL ESTIMATES IN WEIGHING DESIGNS
As was mentioned in Chapter IV, Kempthorne noted that although
the optimum designs for the spring balance problem suggested by Mood
furnish somewhat smaller variance than that given by fractional repli-
cates, Mood's designs have the disadvantage that the estimates are
correlated, whereas the estimaies furnished by fractional replicate§
are orthogonal. Banerjee [ 1] has shown that the optimum designs of
Mood may alse be made to furnish orthogonal estimates when the designs
are adjusted to suit estimation in a biased spring balance. Since the
~optimum designs, LN’ of Mood are a special class of a symmetrical
BIBD's a question arises if it would be possible to provide by a
similar type of an adjustment, orthogonal estimates when BIBp'sygre‘:;
used as spring balance weighing design. A complete detailed procedure
indicating how balanced incomplete block designs, in general, may be
made to furnish orthogonal estimates in weighing designs was presented

" by Banerjee [ 2]. Banerjee's procedufe is presented ip theffollowing:'

Usually v denotes the number of varieties and b denotes the num-

A/ber of blocks in a balanced incompiete block design. However, in weigh-

/ ing designs, v will be used to denote the number of objects to be weighed

v e —_
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- and b will denote the number of weighings’tb be made. The parameter

r will be used to denote the number of times eachoobJect is weighed,
A Qill denote the number of times each pair is weighed together and k
will denote the number of objects weighed in a combination. Let X be

t the design matrix where a BIBD is usedtas a weighing design. The.

matrix [X'X] will have the form,

L]
L ]
> e 3 |

> > = |
> o >
> e 3
.l“
.
.

[x'X] is of order v x v.

For the determination of the variances and covariances, we need
to determine the inverse of [X'X]. The diagonal elements in the in-
-1
verse matrix, [X'X] ', represent the variance factors and will all be

equal to

r+a(v-2) 2

r-A[r*+x(v-11] o

The off-diagonal elements represent the covariance terms and will all

be equal to

- 2

(r-a)[r+a(v- 17] o
Since these off-diagonal elements are not zero, we see that the esti-

mates are correlated.

-57=
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Banerjee [ 2] has suggested the following procedure for modify-

ing -the BIBD to provide orthogonal estimates. Taking the bias as an
additional object to be weighed, a colum of ones and only one row of

zeroes in that order may be added to the BIBD design matrix to corre-

spond to the bias assumed as an additional object. The modified deéign"

will then be suitable for the estimation of the weights. This really

- means to make one additional weighing to obtain an estimate of the bias

and in the subsequent weighings the bias will automatically be included.

If, however, a column of ones and t rows of zeroes are added to the
design matrix, this implies that t weighings will be devoted to the
estimation of the bias. In such a situation, the matrix [X'X] will

be of the form, ‘
b+t rr s o T
x . L ] L] l
x r » L] L] x

xx1=| .« ...,

r
-

.
. <

Because of the inclusion of the bias, the order of this matrix is

(v +1) x (v+1).

We would like to obtain the inverse of this matrix in the

following manner:
The determinant, [X'X|, = (r-2)Y "V [(b+t) {r+alv-1}-r2v 1.

-58~-
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On simplifying we obtain,

[x'x] = (r-2)¥" ! [t{r+a(v-ND}+b{r+a(v-1}- rl v]

-f’(r'- N T fefrea(v-1)+b{r+r (k- 1) .2 v]

-(r x)v'1[t{r+x(‘v-l)}+bkr-f2v]

= (p ~x)"'] [t{ri’x(v-])}]

st(r-2Y " T{rea(v-1)} (1)

In a similar fashion, the value of the determinant obtained

after suppressing the first row and the first column of [X'X] can be

shown to be
- T Nrea -} - @

The value of the determinant after suppressing the second row and

second column of [X'X] is

(e-0""20b+t){r+ear(v-2)}-r{v-1)] (3)

The value of the determinant obtained after suppressing the first row

and second column of [X'X] is
rir-nY] (4)

The value of the determinant obtained after suppressing the second

row and the third column of [X'X] is-
_(r-x)v'z{x(bi-t)-rz} : (5)

For any two estimates to be orthogonal, the off-diagonal
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~ elerents of [X'x]"! corresponding to those estimators must be equal to

" zero. Keeping the bias out of consideration we would Tike expression

(5) to be equal to zero. That 1s, to obtain orthogonal estimates the
value of t must be chosen such that e
(r-a)¥- {A(b +t) - r= 0

Since r cannot be equal to A, the expression

A(b + t) - r2 =0,

or

2
t =5-b
Using this value for t, the matrix [X')(]'1 becomes:
1 a1 g 17 | :
t & "% " "% i

X | | 1]
‘ "wovex 0 ... 0

1 ]
- - 0 * o o 0
[xlx] 1 c tk r-a

» . , , :
! LS .-EE' 0 0 « o o q
.' This expression shows that, except for the bias, the other estimates ; ?}

are‘mutuélly orthogonal. The estimates given by é = [X'X]'] X'y wi]]

be given as:
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Given a baianéed incomplete block design with parameters v, b,

r, k and A, it is always possible to obtain another balanced incomplete
block design with parameters

VoV

by = b

tg=b-r

ko =y -k

Ag = b-2r+2.
The two balanced incomplete block designs derived in such a fashion

are said to be complementary to one another.

When an integral value of é (t = %§ - b) s available it is
also possible to obtain orthogonal estimates in the complementary
design. This is done by adding a column of ones and t rows of ones
in that order to the design matrix X. The matrix [X'X] will then have

the form,

-f1-
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E; +t ro +t r0(¢ft e e o rb + tn
o +t To +t Ao +t ... xo +t
ro + ¢t *0 +t o +t ... Ao +t

,([X'XJ'-g'.y.:-....'..L."...‘...c'-

. L] L] . [ ] Ll L4 » . L] . L] . L Ll L] . L[] * .

ro*t Ao+t 1°+t o« o . |'0+t

The value of the determinant after suppressing the second row and the
third column of [X'X] in this case will be given by:
lrg + ) - (g 0172 g+ 1) (5 + ) - (ry 817

To have orthogonal estimates, for all the weights except for the bias,
this quantity must be zero, i.e. ‘ ,

[rg =391 "% Og+t) g+ t) - (rg+ 002 =0 :
or |
2 2

which 1s satisfied. The matrix [X‘i]'] then-becomeé

—

g §”

] ] .1
¢ B r
1 1
"F r-a 0
1 L]
- = 0 — 0
] 1
"F 0 0 . r-ﬂ
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where ¢ = %-{1 + 3—5—1§—:—ll}. The estimated weights of the objects

"Qf‘ 111 be given by
__,"c» < k — g( i
¢ - %; ¢- %é $-% ¢- !;! ¢ - 'él T
- ] 1 1 I R
?E EE E r r ¢ e
R R 1 1 1 1 ]

H

It

i

{

]

‘ |

t [] . . . L] L] * L 2 * [ ] . L[] ® L] L] * . * L ] L L] LB L ] (]
‘ Ll ® * . » . L[] . * L] -* L] . L] L] * L] * . L) L ] ®

. L4 L] L L) * o o L * o . . * @ L * . * L4 . *

|
|
i
I
!
|
I
i

. ; It may be noticed that the variance factors for the objects in
. 1 .

' the complementary designs are the same as those of the original design.

It may be further noticed that for the designs LN suggested by Mood,

t = 1, as was pointed out before. This means that orthogon§1 estimates

|
may be obtained for LN’ by adding one column of ones and only one row
- of zeroes to the design matrix. As Banerjee [ 1] has shown, this
modified Ly design is 1den£ica11y the same as given by Kemp&hdrne's

t

fractional replication designs.

I ot

The above procedure will fail to furnish orthogonal estimates

when rZ/A is not an integral number, i.e. when t will not be an inte-

gral number. For these situations Banerjee has suggested the following
procedure for determining orthogonal estimates. Let & be the least
. positive integer such that (r + 5)2 is divisible by (x + £). Then, if

a column of ones and £ rows of ones and n rows of zeroes in that order :

3
~63- ‘i
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‘are added to the design matrix to suit the estimation of the bias in a

biased spring balance, the matrix [X'X] will become:

b nt
b+n+g r+g r tg ... rtEl
“I'reeg  reg atg ... AtE

[X'x] = r+g A+E r+Eg ... At

* L . L4 * * L * L3 L) L] * L4 . . . [ ] L] L] . *,

L4 * L] L] L] . . . * * L] . . . . . L] L] L] . .

r+g A+ A+ ... PHE
s -

The value of the determinant |X'X| is given by
[xX[ = (r =2} (b+g+n)

The value of the determinant obtained after suppressing the

first row and first column of [X'X] is given by

(r - X)v}' L {r +a(v-1)+ 5'v} .

The value of the determinant obtained after suppressing the

second row and second column of [X'X] is given by

(r-2Y " T(b+e+n).

The value of the determinant obtained after suppressing the
first row and second column is given by

(r+g) (r-2)"""

The value of the determinant [X'X] obtained by suppressing the

second row and third column will be equal to

A g i A e e e g A e st . 5 e A e 7

B Sl
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[rve)-(+0)1 " 20becen) eg)-(r+ 2
Setting this expression equal to zero, we obtain

(bretn) B+g)=(ree? or

A
= r*
berem s o

. 2 ‘
neltd s L peg .

Hence, the value of n {s determined.

Using these values the matrix [X'X]'1 will reduce to the

following form,

— —
A -C -VC e o @ -C
1
-C r-x 0 * s o 0
-1
xexgt = | 1
cC 0 = ... 0
¢ 1
;c 0 0 o o o r_a
where
A=l tA (v-1)+cv
(b+¢+n)(r-21)
and

€= r+e
(b+¢g+n) (r-1)

This procedure shows that a more general class of BIBD designs may be

o e . e e i, e—. g e i te
LI B R RS mataisa L DTN AL G B L e Y N
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made to furnish ortthonal estimates as 1nd1c;ted by the off-diagonal

elements of [x'x]" being zero except for the first row and column

which corresponds to the bias, and not the objects.

As an fllustration of the above development, Banerjee [2 ]
presented the following example. The design matrix X in an L, (i.e.
a symmetriéal balanced incomplete block design which has v = 7, b = 7,
r=4, k=4, and 2 = 2) is given by

o 1 0 1 0 7
01 1 0 0 1 1
00 0 1 1 1 1
X*h 1 0 01 1 0
6 1 1 1 1 0-0 ""
1 01 1 0 1 0
1101 00 1|

where the rows refer to the weighing operations and the co]umns refer

to the obaects b], b2, . . ey b7 to be weighed.

Seven small copper pieces have been arbitrari]y chosen for this

i1lustration. The results of weighings (in grams) of the comb1nat1ons _ g .

r.
of objects as g1ven in the above des1gn matiix are: ?
10.76251 = Y1
7.83798 = Y2
6.11380 = Y3
12.07808 = Y4
8.90452 = Yg
-66—
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and

Using these values, and the normal equations, the estimates of

10.63856 = Y6

12.80768 = Y

the seven objects are given by:

and

For this example the matrix

as follows:

[x'x] =

b, = 5.85763
b, = 3.52835
hy = 1.78600
b, = 1.94650
b = 1.64367
bg = 1.04843

b7 = 1.47520

o v o o o )
[ R SO N OO )
DO N B N
ORI OO OO SO SO )

-67=
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[X'X] is of order 7 x 7 and is given
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The inverse of this matrix, f.e. [x'x]" is

7 1 1 1 1 _1- 1]
1 T8 T8 o "% " T16 T6
1 7 .1 ! 1.1 .1
16 16 ¥ 16 76 16 T6
1 <1 7 ] 1 1
"% 716 T 16 168 "1 ~718
- 1 ] 1 7 ] ) 3
XxJ'=1-v%¢ "% "6 1 "1 "% "T6
1 ] 1 1 7 1 1
"6 V76 T8 "T16 w 16 716
1 ] 1 1 1 7 1
"6 "% 1% TV "T6 o 18
1 1 1 1 7
“Ye¢ "Te 18 "T6 T T8 Tél

This matrix shows that the estimates furnished by this design are corre-

lated (i.e. the off-diagonal elements are not zero).
By utilizing Banerjee's technique previously presented the BIBD
(may be modified to provide ortho§0h31 estimates. For this example t =

2
%f - b= %?- - 7 = 1, therefore one column of ones and only one row

of zeroes (in that order) must be added to the SIBD design matrix (L7)

to obtain orthogonal estimates.

This modified matrix is given as follows:

-68-
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P m e s mas eein e

?. 0 0‘ 0000 'E
) 11010101
“ 101100011
10001111
ST 11T 160110
10111100
11011010
1110100 Ed
The results corresponding to these eight weighing operations
are: |
—b.OOId; '
10.76379
7.83990
6.11580
e 12.08000
8.90543
10.63998
12.80998

The first reéding (0.00101) cokresponds to a measurement with no

objects on the scale.

The inverse of the matrix [X'X] is given as:

S ACTRETRE - L

vt




o\~

4,'
- -
S R N A T R
| IR S B 5 B I ;
= -3 3} 0 0 0.0 0 o 1
! ) 1
% o 7 o 0 0 0 o0
-t 0o 0.} o 0 0 o
-1
3=k 0o 0o 0o } o o o
-3 0 0 0 0 F 0 0
1 1
-x 0 0 0 0 0 I o
| . |
| f 0 0 o o o o 3
! e ’ -—

This matrix shows that under the modified BIBD, the estimates are
uncorrelated (i. e. the off-diagonal elements are zero), except for the §
first row and f1rst column which correspond to the scale bias.

The estimaies of the scale bias and the seven weights under ; .
this mod1f1ed set up are: f
50 = 0. 00101 (sca]e b1as) SR 54 = 1.94662 :
by = 5.85790 b = 1.64354
| lzz = 3,52868 t b6 = 1.04887 ‘ w
b = i “ . ..= ) ;c
b3‘ 1.78558 b7, 1.47576 A f

This example demonstrates how a BIED can be modified to produce

: 2
orthogonal estimates when t = (1%- - b) is an integer.
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As an example of how a BIBD may be modified in a more general

situation (whenever t is not an integer), consider the BIBD where v =

"8, b=14, r=7, k=4, and A = 3. This BIBD will not, in its present

form, provide orthogonal estimates. However, orthogonal estimates may

- be obtained as previously mentioned. For this example t = %T" b --%

(not an integer). The least integer £ such that (r + 5)2 is divisible

by (A +¢) is 1. The value of n, f—%—% - (b + ¢g), also equals to 1 for

this example. Using these values, the modified weighing design is

given.as:

i1 11 11 1 1 T
1 0 0 00 0 0 0 0
111 19 G 0 0 0
1 1 100 00 1 1
1 101 0 0 1 0 1
1 1001 01 1 0
1 0000 1 1 1 1
1 0 0 1.1 1 1 0 o0

o101 101 o
1 01 10 1 0 0 1
1 1100 1 v 0 0
1 101 0 1 v 1 0
1 1 0 0 1 1 0 0 1
10 01 1 0 0 1 1
1010 1.0 1 0 1
to1 100110

71-
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The results of the 16 weighings as specified by this design

are represented by the vector Y and are given as:

— —
18.91670
o ‘ - 0.00101
o | 13.12036
o : B  |rz.a9m9
' - |10.32320
10.32997
5.79780
6.42631
8.59500
8.58860
12.07940
10.76320
; 11.08093
b 6.83861
’ - 8.15469
| 7.83958)

~—
e v ew e

e =

e A A A oetaS Wm - e 1 ot i Pt e Lo

The matrix [X'X], corresponding to the modified BIBD, will have

the form: .

EL

O N R S S G

.

[x'x] -

R O Y A I N
A A I O
N N - N -GN
N S Y N G G O

8
4
8
4
4
4
4
4
4
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i( The inverse of this matrix is given as:
j 91 1 1 1
, % "% "% "% "%
3 ‘ ,, |
: -‘5 } o o o
-5 0 ¥ 0 0
-% 0 0 ;‘f 0
'-13 _1 ‘
: ‘[XX] g 0 0 0 T
? ] o o o0 o0
"8 -
/ |
: -3 0 0 0 0
i ] 6o 0 0 ¢
: ]
? 1 6 0 0 0
)
-

o

]
8

o=

3 -
o o
o o
0 o
0o 0
6 0
0 o
%\., :
o

We notice from this matrix that the estimates furnished by this design
N

wi]]‘be'uncorrelated since the off-diagonal elements arekzero'(except

for the first row and first column which correspond to the scale bias).

Solving the normal equations we get, therefore, the following

estimates of the weights of the objects:

o
o
L}

5.85791

o O O
W n ot
n n "

3.52807
1.78583

~73=

0.00132 (scale bias)

S n e g e = e s
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and

b4 = 1.94731

bS f 1.64365

'bs = 1.04861

b7 = 1.4747

-

bs = 1.62960
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CHAPTER VI

A GENERALIZED PROCEDURE FOR MODIFYING BIBD TO PROVIDE
ORTHOGONAL ESTIMATES IN WEIGHING DESIGNS

For some balanced incomplete block designs the procedure
developed by Banerjee [ 2] fails to provide orthogonal estimates when
these modified BIBD are used as weighing designs. For example, in
Fisher and Yates Tables [ 4], the BIBD with reference number 15 has
ve10,b =30, r=9, k=3, and A = 2. These values produce n = - 7
For these situations, i.e., whenever 3 negative value is obtained for
h. no procedure yat exists for medifying the corresponding BIBD to

provide orthogonal estimates when the BIBD is used as a weighing design.

° “The remainder of this dissertatincn will be devoted to obtaining
a general procedure for modifying all BIBD designs to provide orthog-
onal estimates. Several theorems that are directly related to this
development will also be presented. In-addition, a comparison of the
merits of this generalized procedure with those of Banerjee's procedure

will be made.

As was noted by Banerjee [2], if a column of ones and t rows
of zeroes in that order are added to the BIBD matrix, the matrix

/
(X*X] will be of the form:/

R e 1 R

E'&.}?ﬁ\rM.-ul“é—-uﬂ P

o

\v [




[x'x] = . )

r x A . . . r .

. -J' ‘

For this matrix Banerjee obtained the following: %
1. [x'%| = t(r - a)¥ ~ 1 {rﬂ(v-”}- ;

!

2. Value of the determinant obtained after suppressing the
first row and the first column of [X'X] is ,
(r -2)¥ -~ ! {r +2a (v - 1)}
3. The value of the determinant obtained after suppressing the

second row and the second column of [X'X] is

(r-nY "2+ {rea -2} -2 (v- 1l

“4, The value of the determinant;dbtained after §uopressing the

Lo

first row and the second column of [X'%] is

r(r - ;)V -1
5. The value of the determinant obtained after suppressing the

second row and the third column of [X'X] is

(r-2)¥- Z{A(b +t) - rz}.

Banerjee suggested that 5 above (which would correspond to the off-diag-

onal elements in [X'X]'1) should be identically zero (except for the

~
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first row and first column) for the estimates to be orthogonal, i.e.

(r-x)"'z{x(b-»t)-rz}-o : |
or‘ g . 2 ) L L § e ‘ B
r
B e @ b i
t=5 | %
Therefore Banerjee suggested adding one co]umn of ones and t rows of -
zeroes in that order to the BIBD to obtain orthogonal estimates. For
this procedure t must always be positive. This will be shown in the !
following lemma:
Lerma: For balanced incomplete block designs characterized by v, b, r, :
k, and A, and the two well known fdentities bk = vr and A(v - 1) = ;
2 |
r(k - 1); the quantity t = %T" g will always be positive. .
We wish to show proof that t = !%- - b > 0, or substituting for r and A
(k)
—_— . b>20 .
bk :
TveT §
{
!
, ;
bk (v - 1) £
v - -b20
. ,
pkv - bk - bvk + bv T
vik-1 - >0 iy
3
ey O
3
The quantity 8 s k) will be greater than zero if v > k and E
-77- 4
- . ) :%
- Rk Sl S Y PR whr s, e wiertar e
. T oA
P J Vr L. : 2




N ’ i k > 1. These conditions hold for BIBD'S. Therefore the lemma {s

2
shown to be valid, i.e. t = %t-- b will always be positive.

The above lemma guarantees t to be positive. However t does

not necessarily have to be an integer. For these sjtuations Bgnerjee,

as was noted in Chapter V, suggested adding one column of oneg. n rows
of 2eroes, and £ rows of ones in that order to the BIBD to provide

; ' 2
—_— orthogonal estimates, where n = %;—;—%}— - (b+¢) and £ is the

a least positive integer such that

2

is an 1nfeger value. This procedure, however, does not guarantee
' n to be positive and in fact we have shown at the beginning of this
A chapter where n is negative. We shall now present a methoa for ;
\ modifying all BIBD'sS to produce orthogonal estimates in weighing
designs. C
If Banerjee‘s hefhodAiszhodffiéd by add%ngfohe co]umh df ones o
and only one row where the first elemant of the row is /& and all
other elements are zeroes, we obtain the modified BIBD design as

- | . follows: / CoT : A A

4
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' | ‘
L i : -
%. | Klo o 0o ... 0
.'-"{ |
: |
\‘ ‘ H ] o
" ! . | i
{ |" } x xO ) < v *3 ¢
,(t , f 1 f
i 1 :
Uﬁv ! , 1 !
: _ — - (b+1)x(v+1)
f i, L where X0 is the original design matrix given by the balanced incomplete |
ﬂ,‘{’f ‘ block design. This is consistent with the assumption as made with S -
?,? respect to a spring balance design. We would make only one weighing
P f operation on empty pans and multiply the corresponding reading on the
i scale by /t. It may, however, be remarked here that the structure of )
-/ the variance-covariance matrix for e will also underge a corresoonding
’ ! change, i.e. under Banerjee's procedure E(ee’) = ozln whereas under ﬁ
/ .
g this new procedure E [ee'] = Vo2. V
R . E - ' t ° {
:>.N Using this modification, the matrix [X'X] becomes:
"\ = —
. b+t r r ... r
A rox ... oal .
r r .. A ¥
[x‘x] - . . 0 * o o . ‘1
. . . . !
r 3
which is identically the same as that when t rows were added instead {%
.~{/ *. . . T o e e N W
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R R

of the row, (/£ 000 ... 0). Since the [X'X] matrix is the same,
[x'x]" will also be the same and therefore will provide orthogonal

estimates as before. The advantage of adding only one row (/too. ..

0) to the BIBD 1s that iess weighing operations are required and that

this hethod will provide orthogonal estimates for all BIBD's since t

ddes not have to be an integer. For example, the BIBD with reference

no. 15 in Fisher and Yates' tables [4 ] is given by
vse 10..b =30, r=9,k=3,and 1 = 2,

Previously for this BIBD there was no method for modifying this design
to provide orthogonaT estimates. Using the new technique we get

.2‘

el 58320

We would now add a column of ones and a row of4g/%; 00...0)in
that order to the original BIBD and obtain the matrix [X'X] as follows:

Bl 9 9 9 9 9 9.9.9 99

9 9 2 2 2 2 2 2 2 2 2

9 2 9 2 2 2 2 2 2 2 2

9 2 2 9 2 2 2 2 2 2 2. o

9 2 2 2 9 2 2 2 2 2 2 L
[XXI=19 2 2 2 2 9 2 2 2 2 2 ’

9 2 2 2 2 2 9. 2 2 2 2

9 2 2 2 2 2 2 9 2 2 2

9 2 2 2 2 2 2 2 9 2 2

9 2 2 2 2 2 2 2 2 9 2

9 2 2 2 2 2 2 2 2 2 9

-80-
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The inverse of this ma*rix will be given as:

2 ] !
-&Z L 0o 0o 0 0 0o 0o 0o o0
2 1 ‘
-5 0 7 0 0 0 0 0 0 0 0
2 9o o X o0 o o o o0 0 o0
63 7
-2 o0 0o o L o o0 0o 0o o0 o0
53 7 |
0'1--_2- ] :
-&% 0 0 0 0o 0o T o 0o o of
-2 0 0o o0 o0 o o L o o ol
€3 7 |
-& 0o 0 0 0 0o o 0o + 0o of
-2 0 0o 0 6 o o0 o o L o
83 7
-2 0 ¢ o o 0 o0 o0 o o0 |
& d

This matrix, [X'X]'], shows that under the new procedure, tie

modified balanced incomplete block designs do provide orthogonal

‘estimates when used as weighing desions (i.e. the estimates will be {

orthogonal since the off-diagonal elements of [X'X]'], except in the:
first row and first cclumn which correspond to the estimate of the |

scale bias, are equal to zero).

It shoulZ be noted here that the hasic difference between

e I

ST et e B e ey L3
‘:"‘,?'q“‘32‘;;.‘3,-‘,&:'-'5ii':m"ii;t&n#bﬁ-i“'i""'"‘”""" -
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B.nerjee's method and the new method is that Banerjee's method requirzs
t additional weighing operations whenever t is an integer and £ + g
"aéﬁifional‘weigh§ﬁgs whenever t s not an integerjwhe}éés‘fhemhéw ’
method requires only one additioha1 wéighing operation. In addition,
the variance-covariance matrix for e will be slightly different for
Banerjee's method and the new method. Several questions arise concérn-
in§ these differences, such as, "What is the relative efficiency of

the new procedure as compared to that of Banerjee's procedure?" "What
implications arise since the variance-covariance matrices are differ-

ent?" These quéstions will be addressed in tne following.

Under Banerjee's previous method (adding t rows) the weighing
design model had the form Y = X8 + e with E [e] = 0 and E [ee'] = oI,
Under the new method (adding one row, Yt 0 0 . . . 0) the model becores
Y=X38+ewithE[e]=0andE [ee'] = V32 where V has the form:

ftoo... 0]
010...0

W X R T,

‘ loco...af
— o

Since, as noted above, the covariances have different forms, it is
appropriate to compare the relative efficiencies between the two
methods. Relative efficiency is defined in this case as the ratio of

the reciprocals of the variances.

First to aid us in this development, the fo:ilowing theorem

-82.
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will be proven:

Theorem: In the estzmatzan procedure undér conszdératzon, when

E [ee'] Vo2, the covariance of the estzmators, COV(B), obtazned by
the least squares procedure is identical to the covariance of the
estimators obtatned by the maximum likelihood procedure even when X

i8 not square.

(We know that for the estimation procedure under consideration, when

the design matrix X is square the covariance of the estimators obtained

by the least squares procedure is identical to those obtained by the

maximum 1ikelihood procedure. )

Proof: HWe wish to show that L.S. Cov(B) = M.L. Cov(g)
or

f = M.L. Cov(8) [L.S. Cov(é)]'1
We shall now determine the Cov(3) by fhe least square method
and also by the maximum 1ikelihood method.
1. By Least Squares.
8= (xn!
Cov(d) = € L( - 8) (5 - )]
= E{[(X'X)'] XY - 81 [0 X'y - e]'}
{0 1 06 + ) - BN X 08 + ) 8T}
= E{[(x'x)“ x*e][(x'x)"! x'e]'}
= £ [(x'0)7! x'e e'x (X071

or finally = 62 [(x'0)"7 x'vx (x'x)°13

-83-

« v L, L e e S e S S e g, W g s e

o~

N e U

4 o 2 e

v f




2. Maximum likelihood approach.
o The maximum 1ikelihood estimatqr of 8 (assuming e'is normally |
| digtribuéeh).is° | i . (;'v“x)"’xlv"v R | N
- - Cev(B) = EL(8 - 8)(5 - 8)'] o
| = eftoevho xv Ty - w3 coevoT xv v - 61

- E{[(x'v"x)’1 x'v1 (xs +e) - 8]

v v (s + o) - 81} | g ,

= E{F(x'v“x)“ xv T xg + (v xv e - 6]
Toev) T v xe + (v )T v le - s]‘} | %, y

. E{[(x'v"x)'1 x'vle] [(xtvinT x’v"e]-}
=g LvT0 xv ey (vl

(4

=02 (X v N

B R T eonue S B

or. finally = ozv(X‘V']X)'1 S et s e e

We would now like to show that | B

Lo xv T = 02 [0 xvxen

g

or
| =000 xvx(e ) v

Under the new procedure the matrix X is determined by adding
one column of ones and one row, vt 00 . . . 0, in that order to the

BIBD design where t =-%— - b, 1i.e.

-84=
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e =

OV,

~1

1

R

where Xq correspends to the BIBD used as a weighing design. Also

o

v/t 1

1

—

1]

X = .

0

Using this notation, the matrix X‘X will have the following form:

b+t

-

X'X = ) :

=85-
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‘The inverse of this metrix will

—
1.,

- a b

[X')(]'1 =-a 0
-a 0

ve given as:

]
[+7]

o o

D ese

wnere 0 and I

where

¢

have the appropriate dimensinn. Writing V in another form,

~86~
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“‘c, .

The inverse of V is given as:

0
11 :
or alternatively,
— -
-(t-1) ! 0
t
vli=1+ :
0 l 0
=1-1
1 T M.

Using this notation, the maximum likelihood covariance, (X'V"’X)'T, '

becomes ool 1 -
. (x'v'x)"" = [x*(1 - '3 M) x]
or
v = (e - L

The least squares covariance becomes

' -1 ' ] -1 - ] "1 ' t -1

(X'X) " x'vx(x'x) ' = (x'X) X'(I + M) X(X'X)
= 00V e s e xem) e

and finaﬂy)
e (x0) + x”! emx)xr !

-87-~
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To prove equality we ngw rmust show that

1= Lo e (o0 xene N oo - mg

. [(X'X)"i(X'X) . {- reex)? xemx + (e xemx(xex)!
) - Lo xoaee T xma
1
=1 +[- %f(x'x)“ XX+ (07T XMK - £ (x'X)7T Xt
(x%)”7 x'mxl.
We now need only show that the tenmn in brackets is zero, i.e.

- % ex)7 X o+ (k)7 XM - ‘f (xex) " xomx (xx)”! x'mx = 0

To simplify this exprejsion, we obtain X'MX as:

F;E 1 ee s i‘ r;.’ ] 0 cese 0 /t_ O 0
0 ’ 0 1
] = . ' ' . .
| X' MX : Xo ! : 0 : X0
0 d Lo i 1 i
- | - -
— -
T(t-1)]0 0 E;E 10 Eﬂ
: ]
0 ; 1
= 0 xo
0 1 /
b - — ol /
and finally, P
/
; ~88~
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[}

- (X'MX)

Now,

(x )" xmx = |-

[

. _ '! _ ~
where a = 13 and b = * T

or,

(x'x)"V xmx =

-1- -a - a co e - a
~al b 0 ... 0
a 0 b ... 0
a 0 U » e e b

0o0...

&t - 1)

ces

=3

at(t
at(t

at(t
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Further
= o
¢t po... o[ (¢ 10...0
-at(t-1) -at(t-1)
. St -at(t-1) -at(t-1)
Lo xemarex)Txemd = | L 0 . o
-at(t-1) -at(t-1) |
or
— -
(t-1%10...0
-at(t-'l)i |
‘l _] 'at(t".') ;
(X*X)TIXUMX(X'X) T XIMX = 0 (2)
’at(t'])z ’
. — -
a Substituting equations (1} and (2) into our original exoression we get  * °
¢ 0.0 1 10..0 (t-10% [0...0
-at(t-1) ~at(t-1) —at(t-1)2
‘, SRETCUNES -at(t-1) ©{-at(ten)? (
. - f i t 0 + | 0 - % 0
-at(t-1 -at(t-1 -at(t-1)°
- (t-1) 1 (t-1) ] __at(t1) ]

and we need only to show that this expression reduces to a zero matrix.

On simplification we obtain the following expression
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1) 4 (go) itt—”E lo...o

2
at(:-l) - at(t-1) + at(z-‘l)

- --——lat(f,‘“' - at(t-1) + ———)—at(t']z

t

.
] .
.

2
atltl) . gp(eer) + 2D |

Reducing these expressions we get

2 2

-t-t

+2t-1_0_
t 't‘o

2
- (t-1 gy (- -t + 1+t
T + (t-1) T :

and
at(t-1) | Lpreoq) + 2EDE | at(ee)) - at?(e1) + ar(e)?
t t t

at{t-1) (-t + t-1) _ at(t-1) (0) _ 0 _ 0
t t - t, ‘
Therefore exprassion (3) in fact reduces to the zero matrix and the ' ,

theorem is proven. :

&

As an exakple of this theorem consider the BIED’given by v = 4,
b=6,r=3,k=2,adx=1., For this example the design matrix X, :}
the transpose of this matrix, X', and the matrices V and V'1 are given

as follows: :
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b - ¥, ¢
e o —
and ;
i
L6 000 0 o )
3
0 1 0 0 0 0 O
0o 0 1 0 0 0 o
vi={0 0o 0o 1 0 o0 o
0 0 0 0 1 0 O
0 0 0 0 0 1 0
0 0 0 0 0 0 1
| - ~ o
The covariance obtained by the maximum 1ikelihood method is given by a
[ —- - - - =11 . 1
grii1111 N 0 30000 :
: 0111000 {3 W6 | 1100 ,
vy t={lor00110 11010 |
0010101 {%x1 ] T6x6l {11001
0001011 — —J1o0110
- - 10101
10011
= b —‘-_J
[ —_ - =141
gl 11111 (30000
| : 11100 :
MILARREER: 11010 .
0100110 11001 1)
0010101 10110 )
(0001011 10101 ;
REFERR !
- / S -il ’ \.
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~
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\' \\\ /
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Finally the maximum likelihood covariance is given by:

B 1

1 -7

12

Z 3

vy Tyy=1 1 1
1

Z %

1 1

A

The least squares covariance is given by [(X'X)'1X'VX(X'X)'1], To

]
A
1 1
3%
1 1
T F
2 1
I
] 2
§ 3

(4)

evaluate this expression the matrix (X'xf" is determined as follows:

. o

0111000
0100110
0010107
0001011

(xx)7! =

On simplification we obtain:

-
111111

w—
3

/50000

11100
11010
11001
10110
10101

10011
L -

-1

Lo /;-....,A

e oo e vttt N



— -1
9 3.3 3 3
33111
: e l-31 311
| 31131
1
BTy
1.1 .1 .1 1
378 "% "6 °F%
-+ + 0 0o o
-3 0 1 o o %
3
1 ] |
-3'002-0 ;
{
1 1 5
g 0 0 0 2 o s

The matrix X'VX is determined as follows:

111117 3000000 [Foo0)
. Joritooo| lovooooo] [11100 .
X'VX=10100110 [0010000/ |11010 i
0010101 0001000/ [11001
0001071 0000100/ {10110
~ o+ T Joocooo10| |10101

0000001 10011
L - :

-,

d

R
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rd h;’, v
¥I111111] |Soooo
S o111000 11100
x'yx=] 01001710 11010
00710101 11001
00010711 10110
T “J1o0101
10011
e - 7
153333
33111}
={3 1311
31131
31113

Therefore the expression (X')()'.lx'\(X(X'X)'1 is given as:

1 .1 1 1
I8 "6 "% "8
-2} o o o
-3 0 7 0 0
-3 0 0 1 o
-3 0 0 o é
Or upon multiplication,

1533 3 3
33111
31311
31131

3111ﬂ

P -

—

LR
5 1 0
Fo
-3 0 o
-3 0 0

o Oil-‘

O N= o

[~}
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I 1

7 °2°7 "2

212z 1 1

Z T & 6 %
e eweaent =<1 2 02011 (5)

11 1 2 1

"Z 8§ &8 3 %

111 1 2

Z & & ® 3

- -

We can see that expression (5) is identical to expression (4).

Therefore for the sftuation under consideration, the covariance

obtained by maiimum Tikelihood method is the same as that obtained by

the least squares method even when X is not square.

Having established that the coveriance matrix obtained by
either the least squares approach or the maximum 1ikelihood approach
are identical for BIBD designe mudified to be’weighing designs to

produce orthogonal estimates, we can proceed to compare the relative

Veffic1enc1es of BanerJee s previous method with the new method We

‘would tike to determine thc covariance matrix, Cov(a), for both

Banerjee's method and the new method. Cov(8) under Banerjee's method

was given in Chapter V as
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" Cov(B) = . 0

.ooo-ﬂ%oo

.crc:oof"‘a

0
- 0 6o 0 0 0
w® O w

e

for those BIBD's that cculd be modified, i.e. either t was integer or

a positive value for n was obtairable.

For the new procedure (adding on row, YT 0 0 ... 0) the Cov(8)

as given by the method of maximum likelihood (which was previously shown

to also be equal to that derived by the method of least squares) is:’ o

Cov(d) = (x'v 1) lo2 (6)

where V" has the form

Substituting this expression into equation (6) we get
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i

e ———

[/ e A o R
S ’ . / i ¢ L R
ST e AN AN LU N e
T;\ N - o M
: 1 )
A
2 '
Cov(B) = {X X| o2
b -

or
=[x (- D amglez |

where

t-1]0
01)0

M=

We see that

—_
111...1

oo:hl

X'MX = | .

—

ot

00... Eﬂ

1

L

- wed

where xo and X6 are the original BIBD and transpose of the original

BIBD respectively.

Simplifying we obtain

e |7 [

E
KX Lo ]o lL.‘ X
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or

Using the formula,

we have for

=(x'%)"1-(x'x)"]

Ol',

I+

t(t-1) | o]’
X'MX =
0 0
Substituting back into the original expression, we get
Writing this in another form and letting Z = X'X, we obtain
-1 :
- "(t"]) 0 2 ‘]
Cov(g) = |(X'X) + 1 o = [+ W] o2
0 0
@+ o=z -z e wz e
s _:’ 1‘1‘;]2/ MR
Cov(g) = (X'V°'X) a2 |
=11 N -
F%]) a(t-1) ... a(t-1) E'I a(t-1) ... a(t-1)
0 0 0 10 6 ... O
0 o ... 0 ] 0 ... O
e _J_j = J’
-~
/o
o 100~
WL ey e T - TETTE T T

o
N i e S e o e
a

e et A e A R A e




13
I S

B ate T

. . .
! . . .
. ! . L
. < B P ' . Y
- \ — c . : !, . |
< < . : .

1 st g B VR L T ¥ AT

—-1

a(t-1) ... a(é-l) [Eilll a(t-1) ... a(t-1;1~

O |erl=1]

= (xlx)‘] - (xnx)"1

o

To invert the matrix

a(t-1) ... a(t-1)

.
see
.
.

o o= 1

.

we use the result that the inverse of a matrix of -the form

efgh.. .l

o
0
0

is given by
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1 f 7]
- = -q - 1]
7 d1d d ~d 0
0
0 I
;
; to obtain
i ?( 11
T a(t-1) ... a(t-1)
0
\ {0 I .
0 _
t e 1~ alt-1)(t) - a(t-1)(t) ... -a(t-1)(t)
' . o . N |
0
1
I's ( 0
— e

Substituting into the original expression we get for Cov(é):

n102~
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A

P » amy r— —
t]-at(t-1) -at(t-1) _(%1_)_ a(t-1) ... a(t-1)
L o o < -
xx! - e, I 0 0 0
0 ’ L d * O:. . V
— — 0 0 o e 0
- (t-1) [ at(t-1) at(t-1) ... at(t-1)
0 ] 0 0
= (e - et : : :
0 0 -0 0
To further simplify this expression we obtain (X‘X)'] as:
B 7]
-a
iyl .
(X)) =f s bl
' -a
wherea=1andb= ! =T
13 r-ai  tkx °
Substituting this matrix for [X'X]", we get Cov(g) =
- T r n
% -ca...-a % a ... - (D at(en) .. at(te)
0 0 0
-a -a
) bI -1 . bl : P :
] ' 0 0 0
-a -a - -
-103-~
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On further simplification,

; r.%- -a .

or substituting for a and b we get

Cov(g) =

This expression represents the Cov(3) for the situation where a BIBD is

modified to produce orthogonal estimates in weighing designs by adding

. r‘l ey

KX
1 rk+a(t-1)
3
tk™a
_1 t-1
oW

T .
e -a —ifill- a(t-1)

-a -a(t-1) —azt(tjl)
f Cov() = | . bl - . )
; [ -2 e -aieay
| Finally,
f ' B 1 - at vee - at
; i) - | % bralt(t-1) ... a2t(t-1)
: visl=1 . : 3 :
f . . o ‘oewe .
, -at  alt(t-1) . b+at(t-1)

1
see F
IO

LI "
LI .
ceoo L

rkea(t-1)1
ow

cve a(t-1)
tae -azt(t’])

LX)
”ese »
LR ]

v =a%t(t-1)
ad

one column of ones and one row where the first element in the row is

TN s
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J/E and al1 other elements are zerces.

Since the diagonal elements of the covariance matrix rzpresent

- the variance factors we have for Banerjee's previous method the

variances of the estimates for i additional weighings equal to TET

whereas in the new method the variance for the estimates for only gne

addi tional weighing (V£ 00 ... 0} is given by ZE#i—%LE:ll . Using
tk™a ‘
these values we obtain the relative efficiency (defined as the ratio

“of the reciprocal of the variancies) as follows:

1
rk+a(t-1]
tk“2

1
r

Y

Relative Efficiency =

= : rk

P

Using this definition, the relative efficiencies of the new

method as compared to Banerjee's method for those BIBD listed in

" Fisher and Yates Tables [4]:fb}(which t is an integer is inen in’

Table I. For those BIBD were t is not an integer the relative

‘efficiencies are presented in Table II.

=105-
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TABLE I

'RELATIVE EFFICIENCY OF THE NEW METHOD AS COMPARED ~
TO BANERJEE'S METHOD WHEN T IS AN INTEGER

‘ , o - Reference ok r2 - ... Relative
; Number t =5-b Efficiency
3 3 0.857}
; 5 2 0.9474
| 7 14 : 0.6176
: 13 14 0.71M
17 3 0.9000
‘ 18 24 0.5400
; 20 2 : 0.9643
; 21 18 0.6792
i 24 12 0.8308
: 25 30 0.5085
; 29 18 0.7463
g 36 22 0.7237
\ 42 15 0.6316
; 43 6 0.8276
é 44 3 0.9231
' 46 4 0.9000
v 49 3 0.9600
3 61 7 0.7447
i 64 5 0859
’ 66 14 0.7636
- . 67 12 . .0.8167 .
c ‘, : 71 20 0.4412
< . 72 6 0.7500
; - 75 5 0.8182
: 77 10 0.7692
1 78 3 0.9375
g . B - | ‘ : 2 0.9783
o ST 82 ' 6 0.9091
o : ‘ <L 83 5 0.9375 _
L } 0.9615 ;‘

*
t indicates the number of additional weighings required by
Baneri‘ee's method. The new metnod requires only one addi-

tional weighing.
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‘ TABLE I1 |

RELATIVE EFFICIENCY OF THE NEW METHOD AS COMPARED
TO BANERJEE'S METHOD WHEN t IS NOT AN INTEGER

Reference 2 * ** ; Relative

r ek
Number t=3-b n E (ntg) ' Efficiency
1 2.50 1 1 2 | 0.8333 -;
2 1.50- 0 1 1 \ 0.9615 C
6 2.33 1 1 2 . 0.8753 ;
9 1.33 0 1 1 0.9802
11 3.33 0 2 2 0.8207 )
16 2.25 1 1 2 0.9000
19 1.25 0 1 1

| 0.9878
| |

i

n denotes the number of additional weighings with no obJects on the

scale. _ |
|

g denotes the number of add1t1ona] woighxngs with a11 the obJects on

the scale. - - .

‘ ’ F

n+t indicate the total number of additional weighings required to

provide orthogonal estimates by Banerjee's method.

*k®
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Tables I and II indicate the fo]lowing: -

a. Whenever t is an integer Banerjee s methoa produces

- smaller variances than the new method (In all situations in Table I

the relattve efficiency was less than 1.0, )

*.li

\

b. Hhenever t is not an integer and ; along with a positive
n could be found, Banerjee's method again providgd smaller variances.
(In all situations in Table II the re]attve'effjtjéncies were less

than 1.0.) | R
However, whenever Banerjee's ﬁethod produces é‘ﬁsgative n, e.9. refer-
ence numbers 15, 22, 23, 26, and 27 in [4]..oé;h§§hever a value for

% could not be determined e.g. the design giéeﬁ;is v=4,b=4,r=3,
k = 3, and A = 2, the new method is the only ;yajiable method for

modifying BIBD to provide orthogonal estimates fn weighing designs.

It is of interest to note that in the dég{gn given as v = 4,
b=4,r=3 k=3, and ) =2, the value of t is 0.5. For. these
s1tuations, i.e. whenever t is less than 1.0, the relative efficiency,
when compared to Banerjee's method, is greater than 1. That is for
those designs when t is less than 1.0, the new method prov1des

smal1er variances than BanerJee s method.

Before we compared the relative efficiency of the new method
to Banerjee's method we had shown that the covariance matrix, for our
estimation procedure, obtained by the least squares approach was
identical fo that obtained by the maximum 1ikelihood approach. Since

these covariance matrices for the least squares and maximum likelihood

-108-
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approach are the seme;'pne may wonder if the estimators of g for

| the 1east squares and max1mum Iikelihood approach are 1dentica1 i.e
does (x* x) x Y (least sduares estimator) = (X' V X)~ x V Y (maximum
likelihood estimator)? " This will be shovm in the following theorem.
Theorem: In the estmatian pmcea.tre under constderatwn, with
E(ee') = Vo2, the estma.tors, B, chtained by the least squares pro-

cedure ig identical to thc estzmators obtained by the maximum likeli-

.*}I-

hood procedure. SN

IS
L N

s'- .
.,

Proof: We uish to shou kat (X x)“x Y (the least squares estimator
of 8) = (X' v! X)~ x V ’Yathe maximum 1ikelihood estimator of 8), 1.e.

we wish to show that
(X'i)"x = vl vy,

\-"

or '.;f"f.
i , f(ti&)“x' = (xvTxyxev! )

‘-

The method of proving equahty is to show that the left and right

sides of expression (1) reduce to the same expression. The left side

o s ama—

of expression (1) reduces to

5 — S s o S : -
; Jt' -2 -a ... o-alitlyovoLny o 3;*{
z /
-a c 0

‘ - a 0 ¢ .e 0 ;

: (xx)Txe = . . . . X' §

i’_ L] 6 6 LR N ] 6 . %

i -a L Y N

1 r :
where a = ¢, ¢ = Tk and X, is the original BIBD. On multiplication

3
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i G
————— -

we get,

Y ] 1. |
/t -t- ka -f-l:a e §-ka,
. r of these terms* b-r of these terms*

o -at c-a...¢c-a -a .. -a

(X'x) x'=

r of these terms* b-r of these terms*

-a/t c¢c-a...c-a -a .. -a

ST —

.

(2)

*The arrangerent of these terms is determined from the X'g matrix i.e.
e

(3)

for every 0 and 1 in all rows of X'o there will respectiVely be (c-a)
and (-a) in all rows of (2).
Substfthting for a and ¢ we get
{§~ 0 0 o . cae 0
r of these terms b-r of these terms
Lt r- r-2 _d 1
-1 Tk tka  °°° Ttka & " Ttk
(XfX) X' = ‘ o . ‘. PR
r of these terms b-r of these terms
Yt r-a r- A _ 1 2
¢ tk Ttk kX tk Ttk

The right side of expression (1) reduces to

~110=

e s PO A 17
’ ¥ v
s .
>

. AL t J




, o T .;v"r,
(xev-lx;
A - —

xl

-—
erj— |
o

o
° .]
8

(vl eyt = |-

kK| 4 d..

N o

X'O

[=}

J° -

where e = &7\_53'_1), , d= ﬁ‘z » and XO {s the original BIBD. On multi-

tk™a
plication, we get

-
1
3

ol !

vy v -

- %n d d
~11]l~

S

P
<

o

X'
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} .' l ‘/Al' ) h » s - . . I R /;’ ) i -C /// ? © . o, v ’lf
! ;‘ ':,:: // I ’ , . ,,i;/ .'_,-x/ h . '—/z./,' —s/ _ . ' - -1 - . Lo ', ) . _»‘v:" © }
L ee— T T — T -,
N - - “
- k k _k
//, F l - 'E' ' - 'E' .. o o I E
. r of these terms* b-r of these terms*
‘ / —AN —\ / A \
-5 -{-+e+(k-1)d...-%+e+(k1)d -Lend. - f ek
r of these terms* b-r of these terms* x
SE Tl ekl e - L r e 4k gtk - L4k f;
L. - |
The arrangement of these terms is again determined from the X' matrix.
. Therefore the arrangement of these terms will be identical to those
in the matrix given in expression (2).
Substituting for e and d, we get '{
’ . ,
r— -—
it
! t 0 0 0 0 )
r of these terms b-r of these terms
A
R I A U T 1
(xiv‘]x)"]xuv‘] = ?E tkx  °°°  tka EE R tk ) (4)
O : coor |
) { ( “ <. rof tl}sse terms  b-r of these terms ) BE i
L o : _v’f'r-x ro-a ] 4 ,;
; é * Ttk tka ke Ttk I 4
t el d
t ./
/
We see that expressions (3) and (4) are identical, therefore !
for our estimation orocedure (X'X)"X' = Cx‘v"x)"x'v" and the theorem o /
{s proven.
|
s oo T«“"ﬂ // 7
. . e



As an example of the above theorem, consider the BIBD given

asv=4 b=6,r=3,k = 2, and A= 1.

The least squares estimator of g is given as:

8= (x'x)Ix'y = -% 0 % 0o o

M1 .11 7
-6 "% "% "8
-3 7 0 0 o

- 0 0 o %
"g 0 0 0 0 0
11 1.1_1
"% 3 3 38" F®
g1 1 1 1 1
=1~ 5 3I°6°6 3 3
AL 11 1T
86 3°6 3°%
31 1 1 1
T®T°8°86 36 3

Teo o o © Zm1
‘wml
(=]

o

o=,

OV —
‘-<'
————t

of =~

L=

The maximum 1ikelihood estimator of 8 is given as:

<.

L PP
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1
i

8 = (x'v”lxj"x'v"v .

[~ - r- -1y -
1 -%-%-%-% /3 111 |1 ocaoao
=11 0 100110
1oz yff 3 10t18g 610000
Z 3 8 & 8| omn|o cotooo
| 1ilo ooot00|
2101 2 0 ) 0 000010
2 6§ 3 % & 0 000001 [Y]
111 2
Z 8§ 8 3 %
1111 2
2 8 8 % fj
B ~1 I 7]
-fg%%%-%-%-% 0100000
R foo10000
111 1
= - 2'3'-3“'6"3-'3‘"5 000]000 Y
. 1 0000100
111 11
0000001
BN U NN | I g
7°%°6 378 33 c
— -
73
,,5,C°,,°:° 0 .0
A1 1 11,11
8 3 3 T°65°6"%
1101 01 1
"% 3-¢-% 3 5'5/[\‘] 2)
A1 1.1 1.1 3
8°% 3°8% 3°% //'3'
1.1 1 1 1 9
" T°8F°%F 3" 3 §K
- T~
~114- \‘“ _
~_
, ..._Aum_rwmwm-..ﬂ e v ity ...\_.;.“.,..w., . \\
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We sec that expressicns (1) and (2}, i.e. the least squares

° ° and maximum likelihood estirators for g, are identical,
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_COMPUTER CONSTRUCTION OF BALANCED INCOMPLETE BLOCK bESIéNS
Malcolm S. Taylor '

US Army Ballistic Reseaxch Labcratories
Aberdeen Proving Ground, Maryland

ABSTRACT. Numerous papers on construction of BIBD's (Balanced Incomplete
Block Designs) appearing in the literature consist of derivations of a set
of base blocks with symmetrically repeated differences. The inherent
properties of the algebralc or geometric structures that are employed
lead to sharply constrained values of the design parameters. There would
appear, therefore, to b~ some interest in a more efficient computational
scheme to discriminate readily between a set of blocks which have symmetri-
cally repeated differences and those which do not. This is the topic of

. this paper, and although the values of the parameters are limited in
magnitude by computational considerations, no restrictive parameter rela-
tionships are involved, and a number of new design configurations are
presented,

INTRODUCTION., A BIBD is an arrangement of 'y distinct elements (varieties)
into b sets (blocks) of exactly k distinect members, each element occurs
in exactly r different blocks, and every pair of distinct elements occurs
together in exactly A blocks. The parameters v, b, r, k, A which charac=
terize a BIBD satisfy the fundamental relations

bk = vz a.1)

and ) .
(1.2)

S s e p(kel) = A(u-1)

For eoxample,

-

Py ey oy ey gy gy gy
PN WLWN=O
»

O AW & W
-
NFFOOWBW

-

-
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¢ .

- .
v w

-

is a BIBD with parameters v= b = 7, r=k = 3, A = 1,

Notice that if the block [ 0, 1, 3 ] was specified, the eatire design could
be generated by successively adding {(rodulo vu) the non-zero residue classes
to each element of the specified (or base) block.

Bose [1] presented a technique for generating a BIBD directly from a set of
blocks, called base blocks, when a sufficient condition known as symmetrically
repeated differences 1is satisfied, Within the scope of this investigation
symmetrically repeated differences means that the totality of the inner-
block differences of the base block elements modulo v results in the occurence
of every non-zero element exactly A times,

Preceding pags hiank -117-
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The k(k-1) modular differences of [ 0, 1, 3 ] are

0-1 1

0-3

6 1-0
4 1.3

e

S

o 3-0

Ny

53-1

and so [ 0, 1, 3 ] is a base block for a BIBD with A = 1.

Since each block gives rise to k(k-1) modular differences, it is

desirable to discriminate readily between a set of blocks which have

symmetrically repeated differences and those which do not.

N W

One can characterize a block of a BIBD with parameters v, b, r, k, A.

as a vector of dimension v with elements 0 or 1, where the presence of a

variety 7 is indicated by a 1 in the Z+1th position, and zero otherwise.

For example, thr

uniquely represen: - .y the vector x = (1, 0, 0,1, 1, 0, 0, 1, 0).

Notice that the varieties are represented by the residue claése's‘nbchslq v..

0,3,4,7) in a design withv = 9, k = 4 is

et

A NECESSARY AND SUFFICIENT CONDITION FOR SYMMETRICALLY REPEATED DIFFERENCES

If we consider the v x v matrix

0
01 1 0 .. 0
0 0 1 1 vee 0

"1+ vee 11
1 0 0 ... 1

-118-
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and form the product M;x = b, to every pair of elements a;, a; in the block
represented by z whose difference a; - a; =1 (mod v) the,re: occurs e 2 in \
the resultant vector b. Converseley, the number of 2's in the vector b is

precisely the number of differences congruent to l(mod v) that would occur

if the totahty of dlfferences modulo v of the elements of the block were

computed.

Sindlarly the matrix

M=10 0 1 0o 1 ... (2.2)

upon multiplying the vector x will cause a 2 to occur in the resultant » for
every difference of elements of the block a, - “j z 2(mod v).

<« Su ) A

"~ It is now apparent how the construction should procesd. We form sm:céssively

the products MZ::, Mgxy wuey M[v /2] %> and if exactly A twos occur in b at each
Stage, then the block dlfferences are symmetrically repeated This constltutes
a necessary and sufficient condition for a block to have syrmetrlcally repeated

differences.

One nced never proceced further than [v/2] steps, since the existence of a
pair of elements ag, g, a; - a; z n(mod m) implies a; - a zm-n. The
generalization from a single block to a set of blocks consists merely of

replacing the vector z in the product Mz, where X = (€75 Xy oue, z, J} denotes a
o
partitioned matrix, each colum of which is the rcpresentative of a block.

We procecd to summarize this obseivation as

-119-
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THEOREM 2.1 Consider a block B, = [ail’ @rgs vees aik]' with elements
represented by the congruence classes modulo v, and its representative T

A necessary and sufficient condition that B, satisfy the property cf

symmetrically repeated differences is that the products M X;53d =

1, 2, ..., [v/Z] each contain the same number, A, of two:, in the resultant

vector.

Generalizing from a single block B, to a set of blocks {Bi} we obtain

the immediate

- CORROLLARY 2.1 A necessary and sufficient condition that a set’ of blocks

{Bi} constitute a base for a (v, b, r, k, A)-design is that the products

M

matrices.

x, Mz Xy eeey M[v/Z] X contain exactly ) twos in each of the resultant

Observe that the matrices 112, 35 2es M{ v/2] may be obtained from MZ
in the following fashion: row ¢ of matrix Mo 2 <m < [v/2], is precisely

the vector sum, modulo 2, of rows £, i+1, ..., i+m-1 (nod v) of matrix My

This observatlon is quite useful when mplcmentmg this technmue for
automatic computation, since matrices My, Ms, seey M[ v/2) can be generated

intermally. . , : . c

P B e
¢ . . : . BN R 5
3 - e < B

If onc considers a block as a set of k beads on a necklace cof v positions

we have, for example, for the block [0, 1, 3] the following representation:

Awy B R A RN PP e aeas (’V

e s < e - <

e g

-t n
J "‘




- R

TN E bl AT T

e

gt
o

am o

-

Notice that in computing modular differences what is important is not the
labels we have attached to the varieties, but their positions relative to each

other. In other words, blocks [0, 1, 3] = [1, 2, 4] = ... = [6, 0, 2]] are

all equivalent since each gives rise to the same set of modular differences,

and as suchu eath could serve‘ as a base block¥for the BIBD. These blocks are

all members of the same equivalence class, or orbit.

Clearly, when constructing designs from base blocks, we want to consider

as candidates only blocks in distinct orbits. Toward this end a convenient

way to characterize an orbit is to notice the 1-1 correspondence between an

orbit and the circular partition of an integer v; e. g.,

0, 1, 3] v 1 +2+ 4

where the summands are simply the ''distance’” between adjacent beads (varieties).

If one generates distinct circular partitions, a task to which the computer is

well suited, we are equivalently generating representatives of distinct equiva-

4 .
. s &

lence classes. . , COt e
~ - A COMPUTATIONAL ALGORIT:M
If we denote the Zth rcw of the matrix X as a; = (aii’ Qrgs ooy aibo)’

then X can be represented as

¢
< c
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In this compact notation (
2. +a.
o Y
+a.;
o IR
-
A.‘o x = L4
i
+ a.
T 7 i

where a. + a.
i in

0 . .
vectors az, at "

represents the usual component-wise addition of the row

. Notice thac if the subscripts £ +n > v in (3.1) then

it+n=1714+ n'(mod‘ v). We compute successively MX, i= 1, 2, ..., [v/2]

and terminate the procedure as soon as the required number, A, of twos fail

(3.1)

to appear. Otherwise, completion of the process, indicated here by 7 taking

its maximum value [v/2] without rejection, i$ sufficient to establish the

"blocks represented by X as base blocks, generating a BIBD.

Since addition can be lierfonmd much more rapidly than rrultiplicétion

by the computer, in practice we campute M.X additively as expressed in the

right-hahd side of (3.1) rather than performing the actual matrix multiplication .

indicated in Section 2. (By a judicious selection of candidates for base blocks“,

it may be possible to determine a set of blocks generating a (v, b, r, k, 1) -

design. Some solutions for BIBD's with large replicates determined in this

manner are prescnted im-Fable.l..

B S e
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TABLE 1 :
~ Parameters S Base Blocks
(v, b, r, k, 1) !
(7, 68, 16, 4, 3) [0, 1, 2, 4], [0, 1, 7, 10], (0, 2, 6, 11], [0, 3, 7, 12] ’
Qo, s7, 18, 6, 5) [0, 1, 2, 3, 5, 10], [0, 1, 3, 7, 12, 14], [0, 1, 5, 7, 11, 14]
(11, 44, 20, 5, 8) [0, 1, 2, 3, 5], [0, 1, 2, 4, 7], [0, 1, 3,6, 7], [0, 1, 4, 6, 8]
a1, ss, 20, 4, 6) [0, 1, 2, 3], [0, 1, 3, 61, [0, 1, 4, 7],[0, 1, 5, 71,{0, 2, 4. 7]
az, es, 20, 5, 5) [o, 1, 2, 3, 6], (0,1, 3,8, 1], (0, 1,5,9, 12],
[o, 2, 6, 10, 12].
t
J
: ';
?
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/i ‘.. ON SPURIOUS CORRELATIONS FOR PARTIALLY RELATED VARIATES
E Oskar M, Essenwanger
Physical Sciences Directorate e

US Army Missile Research, Development
and Engineering Laboratory
‘ US Army Missile Command
Redstone Arsenal, Alabama

ABSTRACT. The spurious correlation coefficient between related objects
such as a(a £ b) 1is well known, although sometimes overlooked., Mostly

unnoticed goes the spurious correlation, however, when only a subset of
the material variates is identical.

The respective formulae for the spurious correlation coefficient are
being developed in the case of correlation between wind profile
characteristics of the lower tropospheric layers and the atmosphere up
to 25 km. Significance testing of the (linear) correlation coefficient
against these spurious correlations is described and demonstrated by the
wind profile analysis for four typical climatic zones,

AT R T e

Although the method has been developed primarily for the analysis of
wind profiles and its physical interpretation, the statistical method=-
ology has general validity.

INTRODUCTION, It is well known that a spurious correlation coefficient is
« produced when the correlated variates are related such as x, = a and

X, = a * b, where Xy and x, represent the first and second éata sets,

réspectively. It is overlooked sometimes that a spurious correlation

also appears when a subset of the data is related from which x, and x

are formed. We may call this case a "partial" spurious correlation.

The particular instance arises in the correlation between characteristic
‘coefficients of wind profiles from overlapping layers when x, is taken,

* e.8., for the surface to 3 km profile and x, would be comput&d for the
surface to 25 km layer. Although the variages may apparently not be
directly related in the sense of an a(a * b) multiplication, the param-
eters are based on material data of which one part i1s a subset of the
total. The appropriate equations will be developed in the following
-sections.

et s

It should be pointed out that the partial spurious correlation coefficient
is not automatically useless for practical applicatiocns. Its merit

depends on the problem to be solved. When significance of the coefficient
is tested against the hypothesis of zero correlation one must be aware that
significance may be caused by the interrelation between the two variables

e

.
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and not by physical cause. When the independent additional correlation

is the question, the test basis should be the spurious correlation’

) ( coefficient rather than the zero value. This may not preclude the

/& o ~ utilization of the spurious relationship for inter- or extra-polationm,
N\ prediction, etc., but the user should be aware that probably no new

information is gained in addition to the one already available from the

lower layer. This can be checked as discussed later.

The following pages have been reproduced photographically from the
author's manuscript,
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II. PARTIAL‘SPURIOUS CORRELATION
' 1. Correlation Between Hean;.

This partial spurious correlation is not restricted to
the application in the wind profile analysis where it originated, Cor-
relations between parameters which are mean values rather than
individual observations can be found in the literature frequently.
When one mean is calculated from a subset of the data we have
a cagse of partial relation.

In the parameterization of the wind profile (see
Essenwanger 1970, 1971} the characteristic coefficient for the

representation of the windspeed W, as function of the altitude

" (surface to 25 km) is the mean speed Ao. Assume the characteristic

coeffic;ent for the surface to 3 km layer windspeed profile is the A

mean of that layer, too. Then we have

hy
x-(f v in = v, = A r(l)
nd (“2 y +t°;2 T °
and y = {: "h)/“y" }1: vy hFL vy /ny =3B (2)

It is evident that h1 < ha. Further, n and'ny are the respective

number of points in the computation of the means, n, < ny.

-127-
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- We have denoted

R . . ¢ f - P
. - ; - .
. - - o ¢ L

L] ) ¢
¢

k

We have now the choice of notation for the term L Vo We may
. +1
select either one of the subsequent expressions eqn., 3a or b,

First we state

? w/n =V &
5 w/ny = Yy - (3a)
‘ 1 .
which provides
+
y= vlnxlny v, (2b}
or
+ .
y=wyv, +V, (2c)
Then we define
h
P v/fn -n)=v (3b)
h1+1 iy x 2 . s
wvhere vy i3 the regular average of the top layer. Accordingly "
y= wlvl + (ny - nx)vp_/ny | (Zd) ) 1:

3

“w- nx/ny and w, = (ny - nx)/ny.:

The two forms (eqn. 3a and 3b) are equivalent, but the subsequent

- development has been written for the Vo Th’e';quatiohs can (be 

teadily brought into the first form by aset:t::l.ngv2 =,1‘.

The definition of the x and y can be expanded to x and y, the

mean values, with

\ y= '1;1 g WA (La)

or- y = u1‘71 + ‘.72 (4b)

) x= Ao (ke)
—~
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As customary, the lineat correlation coefficient can be written

[

rxy Cov /c oy = rA_°B° L _ ' , (5)
with - , .
Cov,o = _Z(x - x)(y - §)] mo - o (62)
o = -)ix - i)“-’] /N . (éb)
o;' rﬂy - :7)2] /N, (6¢)
Now ) » _ .
G My - ) e (62)
2
oy = 8[1 vp - 9y vy, - ‘-'2)] N
- "Pi 1 ¥ 2 vryp00, * o (6e)

where r1 is the true correlation between Y1 and Vs and 0é the
2

2
variance of the layer h1+1 through ha name%? °V2°

Noovyy = vy - 7,’1’,["1("1 I URE” "2)]

2, Tl : . :
= V01 ¥ Vo007, (65)

Finally, the linear correlation coefficient becomes

©

(5a)

In order to detive the spurious correlation we assume that there

is no correlation between v1 and v2, 12

Typ1” 101/("201 + Wz )* (5b)

is the spurious correlation. Since the weight Y1 and standard

f.e., r.,. = 0, Then

deviation o are positive this cefficient will be positive, too,

2%
‘r - [vlai> + v2°1°2t12] / [0’1( "ic » 2 v1w2r12°‘102 wg ) ]
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© of the spurious correlation would be advantageous, In order to

It may be confusing to think in the first moment that for v, = 1

we have the second form of the sﬁutious coefficient, ‘and the expression looks

different. It should be noted, however, tﬁat now o’Z = o:g and this
compensating change makes the new form identical with the first
expression,

The o‘;‘;a or azva is usually not known when the correlation
of Ao and Bo is calculated. When a, must be obtained from the data
there may be no need for the computation of the spurious correlation

since probably the coefficient r A v, can be calculated at the same
o2 '

time, When data sets of Ao and Bo are available with Op » O and
o ]
Tap? the establishment of A (or V2) and subsequent determination
oo

of T, o DAy be costly or time consuming, Then the examination
o2

©

replace 05 in eqn., 5b, we go back to eqn, 2, After some arithmetic’

we find
2 2 2 2
."’;"v; (°§ * WO, - 20,05 Tap) " viop (68)
] o o o oo , o

The second form appears with v, = 1, from which we can deduct that
the same terms replace the second term in the denominator of eqn. 5b.
Consequently, the spurious correlation may be written as

r. .=wg, (2vg° + .2 -2w0,Qgq T )!“ (s¢)

spl 1 Ao 1 Ac’ oBo 2ul Ao Bo AoBo

It should be pointed out that t'PI < erBo.
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If we take the equal qighvif can be shown that

2er® - F(2c2 + 1)+ 2 =0 (n
. Lyhere c= "101/031
This equation can be used to study the behavior between spurious

correlation, O and og-

We find the two solutions

e, =r : (72)
or r = '1°A/°h (v)
and ¢, =r/(1 - 2r%) .v (7¢)
Ihe latter must be discarded since 0 <« r'pl:s 1.0 and < > 0,

Equation (7a) represents the maximum value the spurious cor-
relation could assume when all the correlation between Ao and Bo
would be spurious., Since the empirical correiation comprises
the spurious ;nd tﬁe added part, we must state

The independent contribution in the empirical coefficient is not
known a priori. It should be added that eqn. Td is symbolic and
a.lipear addi:ion of the two parts is not applicable, i.,e. the
r; is not identical with the‘tA ;2 (see eqn. 8 and 9 laﬁef).

We may also 1nterpreto this spurious correlation co-
efficient for partially related variables as a weighted correlation,
When v =¥, the weights cancel out in eqn. 5b and the notation of
the familiar spurious correlation remains.
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We may test the significance of the difference between two

correlation coefficients by the transformation to Fisher's z

(e.g. see Hald, 1952 Browniee, 1960,‘etc.). We find

z =05 -6[(1+)/(1-1) (8)'

and ‘
Az - zrl - zt . (9)

2
The z is approximately Gaussian distributed and the standard
error of z can be written as

e, ~(N - 3707 (10)

The null hypothesis that two correlation coefficients
came from the same population can be tested by

-0.5
- + -

€y, = [1/(h) - 3) + 1/(n, - 3)] | (1)

vhich {8 again normally distributed.

In our case n, = n, as both samples have the same number

2 <
of observations. Hence - | _
-0, \

gz J/E (N-3"07 /7 ¢ (11a)

At the 95% level of significance ve accept the null hypothesis

when

<

[82] < 11.96 ¢, | | (11b)
z

Table 1 illustrates the testing procedure with the surface

to 5 km versus surface to 25 km windspeed profiles and the 3 km

versus 25 km system. The headings should be self explanatory.
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“ Table 1. Correlation Between Lower and Upper Syétems'(Ab vetsusrno)

a) Surface to 5 km versus surface to 25 km

-Spring

Winter 95%' ‘ 95¢
L 4 r.p Az €12 m T r'p Az €Ag 1
Albrook | 204" 179 | -.026] .092 | .26 206" | 203 | -.002| .001 ] .27
Montg. |.619 |,197 | -.524 | .109 | .62 .77% | .74 | -.855] .096 | .79
Chat.. |.675 |.,201 | -.615]| .098 | .67} .759 | .213 | -.776| .087 | .76
Thule [|.351* a7 | - 1011 .2 | ke ll kg6 1 216 | -.3251 .0651 .53

Sumner . Fall
Albrook |.223% |.208 | -.019] .113 | .27 || .eo%* ] .191 | -.o1k]| .096 | .23
. Montg. |.hok {.218 | -.320| .08% Lol s | 176 | -84 .08T | LTS
Chat. |.785 |.218 | -.837| .089 | .79 |l .765 | .205 | -.799| .092 | .76
Thule .698 |.290 -.575 | .057 70 1 Jbo6 .168 ..514-3 087 | .50
b) Surface to 3 km versus surface to 25 km
Winter Spring
Albrook | .186% [tk | -.ou3 | .092 | .21 .199*| .163 | -.037]| 091 | .23
Montg. | 446 [.105 | -.375| .109 | .k5|l .613 | .085 | -.628] .096 | .61
Chat. .55% |.119 | -.502| ,098 561 .s87 | 118 | -.5%4] .087 | .59
Thule .295 1,102 -.201 § 142 351 0396 | .115 | 3041 L065 | b2
, ’ Sumhef « vFall ‘

Albrook | .136% |.133 ,-.ooe 075 1 a8l L1s3®] 136 | -.008] .096 | .20
Montg. |.370 |.132 | -.255| .08 | .37 .588 | .091 | -.583| .087 | .60
Chat. 6195 | .119 ' -.605| .089 62 |l .620 JA19 | -.605] .092 | .62

Thule | .504 |.172 l -.381| .057 | .50 .277 | .116 | -.167] .087

.28

*Not significantly different from spurious correlation coefficient.
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It can be concluded from Table 1 that in the éropics close to.the
equator ( Albrook 9°N) the correlatiqn between the two coefficients

has the same magnitude as the spurious correlation, but for all

other regions the linear relationship goes beyond the one expected
merely by a spurious relationship. Since the expectation in

zero correlation is the mean value, we could interprete the tropic region
result as a justification that the most likely windspeed profile

above the lower layer in the tropical region 1is the mean prdfile.

When the (spurious) correlation coefficient is utilized for

extrapolation from the lower layer to the 25 km altitude then only

for reason of continuity of the speed profile at the top of the

¢ ° €

- lower layer, There 18 no apparent physical cause to associate c

"the lower and upper layer. This conclusion agrees with the present

facts about the general circulation in the tropical zones,

Inféonirast to the tropical regién midlatitudes and sub-

:tropiés appea} with one closed system from surface to the upper

layers. The upper boundary of this system reaches far into the
stratosphere but cannot be exactly determined from this wind profile
analysis. The top of 25 km was chosen by other considerations and
should not be taken literally for the dominance of the wind regime

up to that altitude, The question about the upper boundary would

~134-~
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have to be investigated by different techniques, From other .

correlation analysis (see Stewart and Esseﬁwanger, 1968) 20 km
appears most likely. In this article the point of interest is

a correlation beyond the spurious relationehip.

The columns next to the 95% value of €y, display the

correlation ratio 7 (see Mills, 1955, etc.) which includes a
non-linear relationship. As illustrated by this last columm
in the parts of Table 1, there is virtually no addition to the

linear correlation.
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2, Correlation Between Siope and Means.

| In the development of the characteristic coefficient cf the
windspeed profile for the layers surface to 3 km and surface to
5 km the élope is a Dbetter representation than the mean.
Hc.ace, correlation coefficients between A1 (slope) of the lower
and B, (mean) of the total altitude range have been computed,
Since again the windspeed in the lower layers is the same for

both profiles the question arises how much of it is spurious

contribution,
We assume ,
1 ,
x = (f Vh ) /ng = A _ (12)
wvhere ¢1h is a linear polynomial term and ng the respective

deviser, The y remains the same as defined by eqn's (2). Let

us»introduce instead\of vy in eqn (2c)rthe Ao’ then we

can write

+
y = '1Ab vV, (13)
(The w, and w, were defined previously.)
" With X and y as customary we derive S S
2 ‘ 2 2 ‘
N, = zul Al) - NcAl (1ha)
2 o wzf + 2 + Ve 2 ( 4
o w.w,r 2, O o 14b)
y 17A, 17274 v, A0 v, 2%,
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and NCov ,,z(Al Al)[w(A - A) + v, - V)T Tk
vith Cov =wur, ,0.0, * W (1ke)
1 AlAb Al Ao "2 Alva A1 V2
<« We denote p, = s P and R . Then the
1 Abve - Al 2 A

correlation coefficient follows as )
‘ E
"’['1R1°A1°A+"2°2° a, :l/[aAl(‘f"’cJ2 2wV, 2°1°A v 2‘7v) ]
o .

(15a)
We can now again require for the determination of the spurious
correlation that wind profiles in the lower layer are independent
from the upper layer, This postulation makes N and Py zero.

The third correlation coefficient R1 stems from the lower layer

alone, Thus the spurious correlation is .
- 2 L. 2%
Tap2 " 1M1 0a / ("ivo “20,) (150)

We find by comparison with eqn. (5b)tthat now the spurious

correlation comprises the same terms except the added factor

rape = rspl : R1 (15¢)

It in evident that the spurious correlation is produced again
A £

based on the existence of the variances alone as in rspl o Ce

which will slways be positive., The change is now
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_the multiplication by the second factor, Rl' " It modifies the size

and determines the sign of this spurious coefficient, One could
call rspe a spuriousccPrtelggiqn cqffficient ofcgegond kin{. It
deéends on the relationship Setween the Ab ;nd Al Eoefficient iq
the lower layer, or in other words the mean and slope and their
association, Whenthese two characteristics are independent
the R1 is zero and the spurious relationship, too, becomes zero.
Tgble 2 lists the actual correlations, the spurious
correlation and the correlation between Ao and Al of the lower
layer (Rl)' The checking procedure was the same as for Table 1
and is not repeated here,
We notice that the spurious correlation in all cases is
virtually zero. The remaining correlation should, therefore,
be due to the relationship between the lower layers and the one
above, One would now expect that the correlation coefficient
between Al and Bo has been‘adjuSCed b& excluding the spuriols‘
part from the 1 Aono and thus the new rAIB:OUId include this
correction., This leaves the optimum correlation between lower

and upper layer. This can be confirmed by inspection of Table 2,

especially for Albrook, where r . O.
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) of Lower Layer Windspeed

N Table 2. Correlations Between Slope (A
. : Profile and Mean (Bo) for Surtace to 25 km,
2) 5 km versus 25 km system
) C Winter Sﬁringq: Sumer » Fall
r t'p Rl r r:.p R1 T rspP Rl 4 rsp Rl
»
Albrook ‘-.Olh* .006 |.110 —.043' .003 |.060 |[.230 |.017 {.380 {;.102 [.010§ .230
Montg. .684 |.023 |.610 || .787 | .023 |.710 |[.k28 |.018 1430 [{.721 [.016 ] .510
Chat. .587 |.019 [.610 || .690 | .02k | .60 {|.747 | .024 |.660 }|.668 ;.020| .620 ;
Thule 321 |.026 [.780 || .ueu 1,030 |.700 [I.607 | .02k |.h70 [[.516 l.oe3 | .s6c|

b) 3 km versus 25 km system

T Tsp Rl r Tsp Rl r Tsp R1 r Tap R1 —'%‘

, Albrock .000" |.003 |.120 |}.032"}.003 |.110 ||.136 | oot |.180 |}.007" [.003 | .120
;;Montg". .536 |.010 |.650 || .592 [.007 |.620 [.249 [.009 [.h20 [.5h6 |.007 {.bTO
ot |0 |.007 |.610 [|.533 |.008 | 560 |[.597 |09 |.560 .89 |.008 | 630
;Thule .268 .006V 430 |; 531 |.009 |.560 §1.333 1.005 {.230 {l.302 |.005 | .300

c L : ) c
g - Not significantly different from spurious correlation,

T
a
s
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Since the correlation in the other regions is based on physical
cause, however, the reduction is not very large. In fact, some
of the correlations have even increased slightly. This result
is not contradictory as we are dealing with a different para-
meter, the slope.

Repiacement of Gs from eqn. 15b follows by eqn. 6g as

2
discussed.
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3. CORRELATIONS BETWEEN SLOPES,
In this phase we treat the problem that both x and y h
represent a slope of windspeed profiles. The determination of

the spurious correlation becomes more difficult than in the

previous cases,

o
x -‘1 vbﬁlh/n¢ = Al (16a)

o
y = :1: v m/n' = B, (16b)

. where ¢1h and 15 are linear polynomials of range h1 and h2 with

dividers na < n,. We split y again into a lower and upper layer

|

part .
y vy ‘+ ?Vf n 16c‘
= .

(1 h'1lh ht1 hlh)/t ( )

Invorder to formulate the correlation in terms of lower and full

layer let us replace the i in the first term of y by an orthogonal

cz . © < s o &g

‘pblyﬂomial ékpfeésion

3

vh-Ao+A1¢1h+A2¢2h"" (17)

This éubstitu;ion 1s merely a representation of the lower layer

vindspeed profile by polynomials and can be expanded to hfgher

order if necessary, Then

h
1
= + +
y [_{ (A, + 4100+ A0 ¥,/ “¢]+ A (164)
with the abbreviation V, = hx+ vhhh/n' (16e)
1+l
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n
( 2 The y can be further developed into
- : |
h, ;1 h,
i + + +
; | y = Ay Thnfny T A DOty T Al fantin/™y * T2
‘ + + +, .+ |
or i y=aA taA tah t. T, (16f£)
| hy | :
vith & = 1{ ¥1n/7 | (18a) .
' | by - |
* z |
3 =7 ¢1h'1h/n¢ » (18b) f
: | 1
/ | BRI SN o (18¢) j
vhere the summation is carried out over the range of the lover i
! t
layer only. ;
i i
1

By anal&gy we derive x and ; by the usual operation.'
. . ..., Finally we calculate = . - l‘ e T
. 2 . B “ N N ° . C{
T o ™ (19a)
=T
2
Yo, = 7a (4, -A) + a4 A1)+a(A2A2)+..(v2-v,‘JJ |
o= + + a2,2 + s
- o§ ) 02 ‘1011 aaa ses o% 2a a1 1°A Al aaoaszaA 012 +2a 52R3GA 0‘2 . . /
""Eapgc + 2a.p,0, 0, * 2a.p 0‘0’ (19b)
ol Ao V2 172 A1 Vé 2 3 A2 V2
where the o, are correlation coefficients between lower and upper

layer, . .
/ ~

w2 \\
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The covariance becomes
Cov = a %A, ><A1~A1> ¢+ A,
+. 2)(A1 Al)
Cov = a RIGA A’ ‘1°A1 ‘2’3"4\1 A2 * P,
(19¢)
Again we derive the correlation coefficient ' |
re= (alcfil + a RIUA Al + azljoAl A2 ...+ PO, V )/UA 0'
(20)
In the spurious. correlation‘crzoefficient we assume that no relation-
ship between lower and upper layer exists, Hence, P = Pp = p3 = Q,

T3 " (a;oi a RIOA Al 2&50A1°A2+';')/°A1

(20a)

CVitFV? = [a 02 20§1+ 20§2+..- 2& f IQA ohlr 28 a REOA OA2A>

+ 231 2&50‘1 A, o4 of, o (20w
We determine gsafrom
“32 ";"1?31 7 (a3 °’A * ?."il * "3"7'\2 T agay0y % R1
* 2 o"20A Azkz 2aja 2% A2R3) s o%A 031 AB,
+ achlf.rBlr A 4 aacAch r AQB ) (20c)
o = [24 Q’A + aaiail + 2a “2 +2(aa a cA A1R1

+ 22 a0, 0A2R2 + 2a,a @ A 52%) -2(a A UB], A,
+
2,0 %, A B, t a0, oB,"AB )78 (204)
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When no correlation between the coefficients of the lower layer

exists, 1i.e. Rl =R, = Kj = "'Ri = 0, cthen

i T /G, R, ety (20
or with o‘z,areplaced |

P 2 2 2
Tyo3 ™ aloAIIEandio + aalcil + 2a2°2"2 + 0‘2’1 -2 aocAoaneros

1
+ a0 °h1rA131 tag aherEBl)]% (20f)

This is the logically expanded form of rspl and tapa‘ Usually

some correlatioms Rl’ R2 or &5are not zero, and the computation

must be based on (20a).

The actual 1:'.1’5 can again assume positive and negapive values

depending on the a.

The analysis results ?f the surface to 3 km and surface to S km
wind profile system (slopes) is illustrated in Table 5 This table
dépicts the correlation between the slopes and the a'p'utious cor=-
relation 1n‘ the uppér part. 'i‘he correlation betweeﬁ A(’,, Aa of the

lower layer and theslope B, of the entire layer up to 5 km is added

1
~ in the middle part, while the lower part qontaix;s the inter-
correlations of the sﬁrface to 3 km layer.

It proves again that the spurious correlation is close to

zero in the subtropics, midlatitudes and polar regions, while it is

significantly different from zero in the tropical region. In contrast

=144~
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" to the previbu; result#, howeQer, the ;cfﬁalv(linear) cofielatibnc
coefficient displays significant difference from the spurious
Céorrelation at the 95% level. Although the possibility exists

that thé additional information between spurious and actual cor-
relation in the tropics could be attributed to physical cause, the
suspicion of identity between spurious and actual correlation remains,
Two factors may contribute to produce significance,

Since N > 1000 in all cases, already smaller differences
between spurious and actual correlations render significant
dissimilarit&. Since eqn. (17) is an approximation, the inclusion
of a third order term may bring both coefficients closer together,
Whether the actual spurious correlation is underestimated, however,
cannot be readily predicted, There i{s no doubt that the correlations
in the other climatic regions are real,

[“ngain;rthercorrelgfi;ﬁ r;tié‘did nsé prove bf any>p;ac§i£al
value beyond the linear relationship and has been omitted from

publication,
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Table 3. Correlation Between Slope (Al) of 3 km Windspeed Profile
oo - and Slope (Bl) of 5 km Windspeed Profile.
Winter Spring Summer Fall
r sp r r‘p T sp r ( t!’p )
Albrook | .46 .27 .61 42 .8 .23 .5h .28
HOntg. 078 ".% ‘TT '.w . -62 .05 -78 001
Chat, T2 -.13 ) ' -.05 .T8 -.0 15 -.1k
Thule .67 .09 .8 -.01 .66 .11 .68 .09
Correlations Between A , A  and B
o’ 2 1
r r r r r, r r r
AB1 ARl AP AR | AR AR A8 AR
Albrook | -.43 39 | -.50 RTI IR V- 31 |-.26 .38
Montg. R .39 .53 33 .12 .28 RS | .28
Chat. .33 .}7 .28 .31 37 .28 33 .2h
Thule 15 .33 b2 28 o7 .30 |ar o
Intercorrelations, surface to 3 km Windspeed Profiles,
r T r r r r, , r o 5 r, . | T r T,
AoAl AoAE A1A2 AoAl A°A2 A1A2 AoAl AoAZ A1‘52 AoAl Aoéz AIAZ o
Albrook 12 -5 .05 (-.11 -0 .12 | .18 -.21 -.09 A1 2036 OO
Montg. 65 =37 5| .62 -.38 .11 | b2 -47 .00 A7 o-b9 15
Chat, 61 -.53 -.17| .56 -5 O | .56 -43 07| .63 -.9% -.05
Thule 33 =43 -2 .56 -.27 .00 | .23 -.37T -.02 30 =31 .03
~146~
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© CONCLUSION. It has been demonstrated that the linear correlation
coefficient may be spurious when the data are only partially related.
The investigated case in this article deals with the particular problem
in which one parameter is computed from a subset of the total data.

Three cases were examined., The first case was based on the condition
where two mean values are computed, and one mean is calculated from a
subset of the data. As the example for windspeed profiles in four

- different climatic regions shows (Table 1), a spurious correlation

different from zero emerges in all four zones, but only in the tropical
zone does it appear that the actual correlation is identical with the
spurious one as tested at the 95% level of significance. '

The study is expanded to examine the spurious correlation between slope

in the lower layer and mean of the entire altitude range. Th=z spurious
correlation must be modified by the inclusion of a correlation term,

The example for windspeed profiles from four climatic zones displays that
this time the spurious correlation is approximately zero. Adjustments

to reflect this reduction of the spurious correlation appear in the
correlation coefficients, especially in the tropical zone.

The last case deals with the problem of two slopes. The spuriocus corre~

- lation assumes a more intricate form containing varicus correlation terms.

The empirical example for windspeed profiles exhibits spurious correlation
different from zero only in the tropical zone. Present tests indicate,
however, that in this zone spurious and actual co.:elation coefficients
are different, too, as tested at the 95 level of significance.

The spurious correlation has been largely developed in this study to check
correlation coefficients between characteristic coefficients of windspeed
profiles which were established in the analysis of wind data for missile
design and operational purposes. The consequences go far beyond this
limit, however, and the method has application in various fields of
statistical analysis. One of the main goals was further to illustrate in
this article that spurious correlations can arise in cases where only
parts of the data are related. It is, therefore, advisable tc examine the
parameters to be correlated for any source of possible spurious rela-
tionship before conclusions are drawn about physical causes of any
existing correlation.
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THE LEAST SQUARES ANALYSIS OF DATA GENERATED BY
A "PIECE-WISE" GENERAL LINEAR MODEL

Robert L. Launer

Army Procurement Research Office
Fort Lee, Virginia

This study was motivated by the frequent appearance of economic data
which can be described as piece-wise linear with certain "end-point" or
"cross-sectional” constraints. (Figure 1 depicts several examples of this.)
The study is intended mainly for the field analyst who 1is confronted with
this type of data and insufficient time to work out more than the barest
details,

All of the models in figure 1 can be expressed as straight lines
within each of several intervals with a linear constraint on the parameters.
For example, the broken line can be represented as follows: .

*
g a; + blx s X <X

atbyx , x>,
subject to the constraint:

a, + blx* +d= az{+ bzx* .

The "bent 1line" model is just the "broken line" with d = o, and the third
L. : . o« ; o

example in figure 1 has the same form of representation except that the

auxilliary condition is just b

1" b

v
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3

: Exémbaeé of models which follow this broken line pattern, but which
are not linear within each interval, also exist. For example, a corpora-
tion's stable economic growth might be suddenly interrupted by an external
factor such as a war or merger,” after which its §rowth {s again stable
but progressing at a different rate. 1f the growth equation contains
only line-r'parameters and the exact time of the change in growth is
known, then this model .can be analyzed with the methods outlined in this
paper. |

The theory of least squares and regression analysis subject to
parametric constraints has been treated extensively. In this paper,
the theory subje¢t to linear parametric constraints fs presented and
cast in a form which allows easy adaptation to “"piece-wise" general
Tinear models. A test for linearity of data is proposed and finally,

the theory is illustrated with data obtained from US Army cost-incentive

‘contracts. A general faﬁi]iaritﬁ with the theory of linear hypothesés -

will be assumed.
1. Regression Analysis with Linear Constraints. .

_ Let it be required to estimate the elements ofg =(8),82 »...,%),
from the n dbservation§ 1f=(y]; yz;...,yn) which are generated by the
general linear model y=X g+€. If 9_"(6,, veeo €y ) is the error vactor
and the matrix X is known, of dimension nxp and of rank p<n, then the

least squares estimate of g is § = (x’x)flez. (1.1)
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Sum;ose now that the elements of _g are constrained by the kep
known 1inearly independent relationships: '

te Byttygfzte gy By o
P (1.2)

tk1 Bl+tk282+' . '+tkpBP.dk

asy

If T-(tu) and d'=(d;,dp,...,dy). equations (1.2) may be written.

T ged. ,
, (1.3)
Note that T is of full rank k< p. :
In order to minimize (y-X8)'(y-xg) with respect to g subject to the
constraint (1.2), the method of LaGrangian multipliers immediately suggests
ftself. Let A'=[A;,..., X ). It is necessary then to find the extreme
value of (y-xg)'(y-xs)+A[Tg-d]  (1.4) with respect to g andA.
Differentiation of (1.4) with respect to g and A yields the "constrained”
normal equations: .

x'x§ + ¥ T A = x'y f,
(1.5)

\-v" .

TE=d
Solving (1.5) for & yields: ‘
~ - ' =T 0 ; 3_ 1ey=le’ | ) . b
8= (x'x) “'x'y z(xx) TA , (1.6)
where,
ZA <1 )Ty - ¢ (1.7)
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Thas from (1.1):
B2 el tTITE- . (18

Notice that ¥ is a 1inear combinatfon of the components of 3 and therefore,

e e - o

is unbiased for g (as it must be.) Furthermore, Eis normally distributed

with .
eov (= 20 - e T Ty, (L9)

and the rank of cov (Zs') isp-k.

e s Y

The remafning distributional properties of 3_ and the tests of linear

hypotheses are not difficult to establish. First, recall that

2
‘b (y-x8)'(y-xg) ~ X - - (1.10)

~. Furthermore, 1f M is an nxn matrfx, then

& %

(y-x8)' (y-xg)=(y-xs)" (!-M)(z-xs)**(x-x 8) "M(y-x _) : (1.;11)~'

Fina'lly, from 1.3 it may be observed that

<

R Tt P . Sl M iy <8 a4 e e

3-_))! (x-x_) (TB-__) [T(x'x)" T ]'1 [18-d1= o and it fo'l]ows that v

(-x8) ' (y-xg)=(y-xB) *(y-xg) + (B-gyx'x(3-8). (1.12)

If
- l"l L L) FYPES PP I
Mo ox(x'x) x'-x (x'x) TIT(x'x) T'77'T(x'x)""x (1.13)
- 1t also follows that
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- hypothesis on a second set of constraints, T 8= d » given the first set

. v/é’ i o
I S . 7 G &3
(8-8)'x'x (8-8) = (y=xg) 'M(y-x8). (1.14)
Notice that M is idempotent of rank p - k. Therefore (1.14) is distributed ? o

22 :
as ox so long as y~ N(Xs, o21). Finally, from (1.12), (1.14) and

- K

Cochrans Theorem,the distribution of the residual or error estimate 32 is:

R PR YT, (Y
o (X)) X n=(p-k). (1.15)

The error Sum of squares(1.15) is related to the “unconstrained” error

sum of squares which can be shown by direct substitution of (1.8) into (1.15):

(y_—xg)'(y_-xg)a (y_-xg)'(rx_'a:) ' , ‘ ,
f184) * [Tx') 7 ). '

This formula leads to computational efficiencies later.
"+ “rTests of hypotheses regarding the elements of 8 must be conducted
w1th slightly more care than is usual. Evidently, any test of hypothes?s

on g subject to the given constraints Ta=d may be regarded as a test of

Since 8 contains p elements and the rank of T is k< p, then the o o )
test of hypothesis may be expressed as no more than p-k linearly
independent equations. .In other words, the rank of To may be no more

than p-k.
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Suppose that tﬁe matrix T° referred to in the preceding paragraph is

m x p of full rank m, and that the rows of To are linearly independent

of the rows of T, Then define the augmented matrix T* of dimension

‘(k¢m)xp and rank (k+m) and the augmented vector g¢* of dimension k+m

as follows:

T d
T’. o8 i‘ = ooe
To [

The null hypothesis, Ho, is T, gyg, and the alternative is T g*d,.
Then the sum of'squares due to 8 subject to T*, Ss* (g), is given by
(1.13) with T replaced by T*,

SS* (8) = (y-x8)' M*(y-xs) © (1.16)
()T xex) T e e e e ()

c

‘1f Ho 1s true then,

ss* (8) » o 2x 2 | (1.18)
p-k-m

. Note that M* is idempotent of rank ﬁ-k-m. The "corrected” sum of;squsres

(Graybili) to test Ho is the difference (1.14) and (1.16)
(y-xg)* (M-M*) (y-xs) (1.19)
For computational purposes, this may be written as
(T#8-d#1' [T#(x*x) " 11% -1 [1#8-0#] = [T6-a) [T (x'x) "' 3 (184 (1.20)
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In order to investigate the properties of (1.20), introduce the

notatfon:
A.-T(x'x_)"x'
Ao-To(x'x)']x'
A*-T'(x'x)"]x‘- f]
Ao

Then the sums of squares (1.15) (through (1.13), (1.14), and (].ﬁl))

and (1.19) can be written respectively as:
(y=xg) '[1-x(x'x)"Tx*-A'[MA' T (y-xg)

and

(x:xg)'[A*'[A*A"]"A*-A'[AA']-]A] (y-x8)

Now, notice that both A'[AA']-IA and A*[A*A*']"A' are idempotent

Furthermore, x(x'x)qx‘A'sA' and x(x'x)'lx'A"‘-A*". Since the inverse

of [A*A*'] 1is

] ¢ ] "'1 l‘ - o | ’ -‘ il ] 1] 0\
[AAT-AA " (Aho") A AT ~(AA")T Ak [AGAy " -AGA (AA")

'[AOAQ.]-‘AOA'[M"AAO'(AQAO')-'AOA.]-1 ) [AOAO."AOA",(AA‘»')-‘MD']-." 1

then A**[A*A*' ] 1A+ s

. | -
[A*-0" (A" AA"] [AA" A" (g8, ") " AgA"] v
+A°'[A°A°'-A°A'(AA'3"AA°']“[A°-A0A'(AA')']A]

The matrix (1.24) is symmetric, from which fact one can show that each of

the two terms of (1.25) is symmetric. Therefore,
A%t pAsA* 1 TAAY (AR ] TAsA T [AR T TA

156~
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.’-'A,

(1.21)

)

(1.22)

(1.23)

-

-]Mo']-]

(1.25)

(1.26)

(1.24)

A, o Sieg AT s
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Thetse"fa:cts‘tdgether:with the trecnspd's.e relationship derived from

M:~Wd_ oy A -

(1.26) allow one to show that the matrices of the two quadratic forms

(1.22) and (1.23) are fdempotent and that the two quadratic forms are
_1ndependent of ranks m and n-p+k., respectively,

~ Therefore, to test the hypothesis

Ho: Ty 8 = dg (given T g = d)
use the upper tail F statistic F=Fp, n-p+k,1

[re8-ae oo T (1B -L180) 1T [1-) (h-ptk)
Ls”

(1-27)

F
Ly-x8)' [y-x81+ (7801 [an*T - 4

where,

]
A=7 ATAASAA T T M T & for Ty g =d, + A

[T

e

S,

2. " éectional Models; ,\
Suppose that y =5(x;tg?.- is a "plece-wise" general linear model described 5
earHer Since the functiona] form 1tself depends on the independent

variable ‘one may write:

- -

51(;351) xsx* | | o : ? .‘
{olx382) N*sxcxt (2.1)
ye { | :
. ”
qu(x.gq) MR B
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subject tc the constraints:

hemd,

(2.2)

o Rl g

subject to the constraints:

Tg=d.

-1
It 1s clear that x, x'x, and (x'x) may be written as partitioned matrices

- ‘with zero in every non-diagonal b16ck.'

'Fx] 0 ... 0]
x={0 x 0
0 0

g e (2.9)

0 o X
L 9

-1
and simflarly for x'x and (x'x) .
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A glance at equations (1.8), (1.16) and (1.20) indicate that the
calculation involved in obtaining Eand the F statistic are simplified

‘ sincé _’B_vis a linear combination of the Ej,and _'B:j = '(xj‘xj)'ij" Y.

3. The Broken Line Example. i
Suppose it is necessary to estimate the parameters in the broken !

line model | |

-X. * =
-{ald»b](x’ X)) xgex*, o l.2,...,m‘

S

- (3.1) .
- * o
az‘bba(x1 xz) » XP<X, 1=ml+l,...,n ‘ !

*_— = _-
where a]+b1(x x]) +d a2+b2(x* "2)’ // (3.2)

1
x.= m Z Xx; and X, = 1 X,.
T 1 xexe 2 E'-E] oxv |

- ;
i

- _The subscr'lptsk'lc and 2 refer to the elements of the model and their
*  estimates which 1ie to the left and right hand side, respectively, of‘the

discontinuity point x*. x* and d are known, and mz-n-m.l.

. Let »
Ty oz
X] = .
] X ';]
L m
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‘and similarly for xz‘. Then

x= |7 r ] I < (3.3)
0 . ‘xz .
T=[1 .x*i'] .-l.-(x*-'fz)] and (3.4)

8' = [a ,b1 2, )]s S0 that the broken 1ine model can be written in
matric nolation, '
Y*XBt € subject to Tgd.
The matrix (x'x) is
[m 0 oo
0s .00
xx] and
(x'x)= o o m, ©

00 o0 s
L T “XX2]
1

, . . X 2 : . _ = 2
-] (x"f-xI } 1 (x*-x! )
Tlx'x] T'- mj+s m.

xx] tmyt oS0

. The results of section 1 give:

S S,
¥ Hxr-xy) w1 - Yp-lxr-ky) _ M2 4 g

xx1 xx2
7" =2 ’
1 (x*-x,)2 1 (x*-x,)
m o+ 1 + mp+ e
~160~
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~ S
« XY1
bl S';;{' - A (x*-xl)
sxxl

y
~
a7y, + 2,

It 1s interesting to note that, if

A -
?1*-3]41:1 (x*—x] ), ?2*'

then

yy*+d- yzi

A
a

A
2+b2 (x "Xz)

.3
2

It s importart to note, that if d 1§ not known, then (from (1.4)) it
follows that A = o and the least squéres estimate ofléis merely :3:- E_’.
This means that the constraint is unknown and must be estimated with the
unconstrained estimate 8. If d contains at least one known element and

at least one unknown element then this is not always true.

CDarly)warby M1

~ o~

|
i
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A test of hypothesis which seems potentially very useful is a test for

"Iinearity” of data; i.e., a test to determine whether or ngt the data
is generated by a single straight 1ine model over the ent{re ranéerof the
{ndependent variable. The test s easily conceptualized. |
First, the bent line model, eq. (3.1) and eq. (3.2) with d=o, is
assumed. The "bend* point (x*,y]*) is then one point in common to the
straight line segments which compose the model. ‘Then the hypcthesis
is either, Hol, that the two sl~pes in question are equal or, Ho2,
that a point different from the bend point is common to the 1ine segments
or their extensions. |
Formally, the two hypothes@s are:
Hol: by=b, , | (3.7)
Ho2: a1+b](x°-§})-az+b2(x°-§é)

p Tﬁe stétiﬁiics fo; both tests areibrésénﬁethere:CV(Hééi1h;ol§é§ ¥9=o).
Unfortunately, both tests involve unwieldly formulae and can be recmnnen&ed
only by the possible savings in degrees of freedom. The F-statistics are
of the form (1.27). To facilitate writing, let B=(Tg-d)? [AA']"!(T8-d)
and ‘ci-[ﬁﬁ—g*]’ [A*A*117}[T#g-d*] where C, and C, refer to Hol and Ho2,
respectively, and let SSt refer to the denominator of the F-test(1.27).

Then, 2 »
¥ S“]) (x*-x))" + 3 ’(S"Yz 2 (xex,)°
1 LIy
xx1 XX
B= s
11
L -2 _
(m]"ﬂz)#» (x*-x]) + (xa-xz) 2
Sxx] Sxx2
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4. A Procurement Example.

:
{
i
!
e
|
{
i
;
;

By law, a corporation which is desirous of selling goods or services .
to the Department.of Defense, must become a party to:a[contract'w{th the »
US Government. The contract includes, among other things; an agreed
upon price (cost plus profit) which the Government is obl%jated to pay for
the product. When the cost of satisfying the contract is uncertain or
technical uncertainity is high, an incentive feature and a "target" cost
and target profit are intreduced. If the contractor’s cost is lower
than the target cost, then a (previously established) percentage of the
savings are returned to the contractor as an fncreased profit. - If, however,
the actual cost exceeds the target cost, then a percentage of this cost u i
growth §s subtractad from the contractors' profit. ‘
This study concerns only the Cost Plus Incentive Fee (CPIF) type
contracts. The CPIF contract type must always state a maximm fee and

usually‘a minimum fee while the Government pays for all allowable costs.

. Figure 2 {1lustrates the relationship between cost and profit for this

contract type. Notice that the sum of cost and profit is called the price
(or total price) so that a broken line relationship also exiéts between

price and cost.
The following symbols will be used throughout:

= greatest lower bound of all costs

= target profit c
u which should yield profit » n

T

w" maximum profit

CL = Jeast upper bound «f all costs
" minimum profit

which should yieid profit » M
cT = target cost

-164~
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‘ RELATIONSHIP BETWEEN COST AND
e ‘ : ‘. PROFIT FOR A CPIF CONTRACT
Profit

)
"™
n T J»
ﬂ'm +

1 ’ /3 -

© < FIGURE 2 ‘

The datum set consists of 29 randomly selected CPIF contracts with

target price $375,000 or more which were definitized after 1963 and :’i

completed pr1br to September 1971. The data were normalized to unit targét

cost and target profit and unit difference between the maximum profit and
target profit and between the target profit and minimum profit. The costs
were similarly transformed. These transformations are linear or strictly
plecewise 1inear {f the original relationship is not symetric with respect
to the point (CT. " T). The normalized data is presented in Figure 3,
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~ Normalized ,
Profit - NORMALIZED SAMPLE DATA
) /
L ‘--\\
“
-
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\-\‘. -‘
1 Lo ,
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N
\ L]
Do
. oN
N
\
A Y
0 1 hd \\__‘ ® . 0‘:_~_ - --
0 1 2

FIGURE 3

Each data point should (theoretically) 1ie on the dashed line, but

for various reasons, variation 1{s introduced into the system. If the

o ———

contract incentive feature is to properly motivate the contractor then
;atlleést th; aexpected norﬁé]ized profit‘would céinéidé with ;he déshéd‘
line. To iest this hypothesis, the pizcewise general 1inear model proce-
dure outlined in the preceding sections was used.

" Notice that the two points in figure 3 which lie to the left of the
origin exhibit no variation. There is (apparently) reason to believe that Tt
this will always be the case for points to the left of the vertical axis
and to the right of the vertical line at X=2 in figure 3.

There is however, considerable variation for the points to the right.
Expert advise could not resolve this issue. Therefore, the two leftmost

points were discarded in this analysis.
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The modei ixsed in this section 'tl;en, is: h
2 + by (x-x}) +€ y X <2
2, +b, (x-X,) +€ , x>2
and a; + by (2-3?]) = 3y + bZ (2 - ;2);
where y = normalized profit.
x = normalized cost. : 3
The null hypothesis is:
Ho: ] by = -1 *
. i
"0
In the notation of the previous section the notation is: f
n=29, p=4, k=1, m3 and, y = X 8 + € subject to T g =d:
where T= (1, 1.12, -1, .65), d'=(0) and
1, 1.2, -1, .65 | (0]
, 01 0 0 ' -1 .
Tk= ; de ;
0 o 1 0 0
0 0 0 1 0
| - I
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TH(x'x)"1T#'.

!

[T*(x'x)"‘T*]]-1a

N
N=1.08, by=-.88, 3-.38,

-
1.45

.29
-.2
-1.352

e

22.5
-25.2
22.6

-14.6

™
b

.29
.26

-25.2
32.2
-25.4

16.4

, ’, »
| Finally [Tg-g*] = [.189, .12,

and (1l'g_-d)' () (Ta-d)=.036 and

--2

2

22.6
-25.4
27.7
-14.7

AP ol

S e

A
z'.42. Z=.,13375. Also:

j

R | A . A ., A A
The data yields the following: @ay=1.09, by=-.84, az=.35, by=.6,

T(x'x) 1005

:35, .6] and F3 5, = 3.68%*
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EXPERIMENTAL ESTABLISHMENT OF ACCURACY OF .
RANGE-TO-FUNCTION MEASUREMENTS FOR ARTILLERY PROJECTILES

1LT L.D. Clements
Data Reduction Section
Yuma Proving Ground
Yuma, Arizona

FIELD MEASUREMENT OF AIRBURST LOCATION. An accurate means of deter-
mining the range-to-function (slant range) is a necessity in testing of
artillery fuzing mechanisms, Precise location of ground impacts is not
particularly difficult, but exact measurement of airbursts is often a
definite problem. Various means are available for locating airbursts
directly. The most common is the use of observers and some form of tran-
sit to locate the smoke signature by triargulation (digital transit or
cinetheodolite being the most accurate), Another direct location method
which has been proposed is the use of acoustic sensors to locate a point
sound source but the reliability of the acoustic method is questionable,

An indirect means of obtaining the slant range to function is to use
the time-velocity record from a Doppler velocimeter and numerically inte-
grate to get slant range, Although the numerical techniques involved are
explained more fully in Brittain (1966) and in Clements (1973), briefly
the process is this, During the time interval when the Doppler is locked

onto the round, successive radial velocity readings are averaged and multi-

plied by the time interval between readings. The resulting distances
traveled in each time increment are summed up to give an estimate of the
distance traveled during the locked-on perfod., The distance the shell
traveled before the Doppler locked on 1s estimated using the muzzle veloc-
ity, the first Doppler measured velocity, and the time interval between
tube exit and lock-on. Since the Doppler break-track coincides with shell

 function, the sur of the distances traveled before lock-on and from lock-

on to function is the slant range to function, This direct numerical
integration is quite good at low gun elevations and a mathematical routine
to calculate actual shell tangential velocities for use in integratiom has
been developad.

At Yuma Proving Ground use of observers is the most common means of
acquiring slant range data, with use of the Doppler enjoying an increasing
interest. Unfortunately, with both acquisition methods, the precision of
measurement 1s known but rhe actual accuracy of measurement 1s unknown,
The observers only occasionaily are able to catch the flash of 1light

accompanying the function, and more generally are sighting on the tell-tale

puff of smoke, The relation of the event measured to the actual fuze
function is not known, Similarly, the function point on the Doppler
record is evidenced by a relatively sudden loss of track. Again, tche
relation of this break-track point to tbe actual function point 1is
unknown,
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PHOTOGRAPHIC AIRBURST REGISTRATION, In order to obtain an accurate
standard against which the other slant range determinations could be com-
pared, photographic techniques were employed. The method used was to
emplace a bank of cameras at a point down range such that each camera could

- look at a rectangular window along the line of fire (see Figure 1). The

nominal center of bursts was obtained by plotting data from previous tests
and locating the ground range where most of the functions took place.
The cameras were located along a line parallel to the nominal line of
fire, at a distance of 750 meters from the line of fire. A bank of four
cameras was used, Each camera, a Milliken 35mm framing camera with a 40
inch lens, was aimed normal to the line of fire. The cameras were spaced
at 17 meter intervals to insure overlap in the fields of view and the aim-
points were stairstepped upwards to follow the trajectory. The "windows"
described by the cameras appeared as shown in Figure 2, Time correlation
among the several acquisition media was provided by the Proving Ground
range timing facility,
Actual data collection was extremely simple., As indicated above,
the cameras were prepositioned based upon previous experimental data so
no major adjustments were possible, The round-by-round collection sequence
consisted only of listening for the sound of the firing over the intercom
system, delaying for an appropriate time, and starting the cameras. The
cameras were allowed to run for two to three seconds after the sound of
the burst was noted, For maximum contrast high speed color film was used.
Physical operating limitations consisted of a need for clear skies, prefer-
ably with the sun in a position to provide back lighting, and minimal wiads,
Dats from the cameras were reduced by locating the smoke puff on a

frame and backing off until either the puff was no longer visible, or the

flash from the fuze function was observed, The location of the function
point relative to the center of optics was calculated by ratio and pro-
portion (see Figure 3). Then, knowing the location of the burst along the
nominal line of fire and the deflection of the round (from cbservers), the
coordinates of the burst can be calculated. Observed slant range was then.
calculated from the burst coordinates and gun coordinates.

DATA ANALYSIS, Sample data comparing observer and camera values are
given in Table 1. "Extrapolated" data are those events where the actual
burst was not within the view field, but was close enouvgh to be estimated
from the smoke pattern., The mean error for each of the quantities gives
some idea of the overall accuracy of the measurement, while the unbiased
estimate of the standard deviation can be taken to indicate the precision.

Similar statistics for the Doppler data may be developed ta provide i
some basis for comparison between the two methods, perhaps through an F-
test, Also, as more data are acquired, the mean errors and estimated f
standard deviations may be refined and the basis fcr comparison between
acquisition methods strengthened,
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SUMMARY, This short clinical paper is intended to show an approach : /
to fulfilling an ever present need in testing operations, that of assigning
reliable accuracies to experimental data. The example cited is a real one,
The analysis of the data, though simple, allows realistic bounds to be

placed on data accuracy requirements and comparison of redundant data
acquisition methods for future applicationms.
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Example of Camera Windows

Figure 2
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AN IMPROVED METHOD OF ESTIMATING THE CRITICAL
VELOCITY OF A PROJICTILE IN PENETRATION BALLISTICS

* G, Jo. McLaughlin . ‘

DEFENCE RESEARCH ESTABLISHMENT
VALCARTIER, CANADA

ABSTRACT, In recent years, many studies have been done on the rela-

. tive merits of several methods of fitting the logistic and specially the

normal distribution functions as dosage response curves, Most assessments
have been made only for sensitivity experiments where the stimulus had no
random fluctuations around the chosen test levels. The purpose of this
study is to assess the relative effiriency of some of the methods based on
the "up and down' sampling technique in an experiment where the stimulus
has random variations around some fixed levels. One of those methods has
been found more efficient than the one currently used to determine the
critical velocity of a projectile,

NOTATION,
Ve The dosage or stimulus in general; the striking velocity in the case
~ of tests to determine ballistic limits,
gt A parameter weasuring the spread of tolerances in the response curve,
°  usually called standard deviation.
D: Step by which the stimulus (veiocity) is increased or decreased de-

pending on whether the previcus urial was a fa! lure or a success
(in units of o).

K: ' Error of estimation for the sta: ting value of V (in units of 7).

S: Standard deviation of the stimulus at each level (in units of o).

N: ° Minimum number of observations required for one determination of
the 50% point, V50,

NR:  Number of determinations of the 507 point for a given sec of

‘ . conditions, <

R: Allowable spread for N/2 successes and N/2 failures according to

Method B (in units of o).

RMS: Root mean square error of the NR determinations of the 502 point.

G: A random value from a normal distribution with mean 0 and variance 1.
u A random value from a uniform distribution between 0 and 1,

N 2 Average number of observations used to approach V50 in Method A, but

not included in sample of N,

1.0 INTRODUCTION, In the last twenty years, there has been much discus-
sion of the relative merits of several methods of fitting the normal inte-
gral or the logistic integral response curves to sensitivity data, {,e, to
data obtained from experiments in which an increasing proportion of items
either fail, explode or die as the severity of the test is increased. 1In
such an experiment the severity of test which would barely produce a failure
cannot be measured exactly; one can only observe whether an applied severity
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produces a failure or not. Sensitivity data involve responses which can be
either positive or negative, and which are observed at different levels of
some variable of interest. The response is said to be "quantal” because it
is measu:red not in terms of a continuous scale such as weight or length but °
in terms of the observed proportion that is positive., The main purpose in
analyzing sensitivity data is to estimate the 50% point, {,e. the level of
the variable for which the positive and negative responses are equally
likely.

‘ In some methods of sensitivity testing, like the Probit, Normit or Logit
methods, the experimenter chooses in advance the stimulus levels to be
applied and the number of observations at each level, In other methods,
"like those based on the 'Up and Down'sampling technique, the choices are
made sequentially, as the experiment progresses., Up to now, most methods
have been applied and their efficiency tested only in the case where the
stimulus levals are free of random errors., The object of this study is to
assess the relative efficiency of the various methods of sensitivity testing
when the dosage or stimulus is subject to random errors around the levels
chosen,

‘After a brief descripticn of the general sensitivity problem, two
methods of estimating the 50% point of the stimulus variables are described
together with a Monte Carlo simulation procedure used to assess their rela-
tive accuracy. The two methods described here use the 'Up and Down' sampling
technique to gather the data, but they involve different estimation proce-
dures of the 50% point.

2,0 THE PROBLEM OF SENSITIVITY TESTING. The cumulative normal distri-
. bution function has heen used extensively in bioassay and in other sensiti-
vity experiments because the probability of some all-or-none response is a
monotonic non-decreasing function of a quantity V which measures the potency
of the agent producing the response, The occurrence or non-occurrence of
the response in a particular individual depends on whether or not the Jose
exceeds the tolerance value for that individual, Individual tolerances are
assumed to have a normal frequency distribution in the population. There-
fore the probability that a subject chosen at random from tﬁe population

will resgspond to a dose V is given by’ . R
W ' ) ”
P [ 2072 exp (-t%/2) a. ey

where W = (V-V50)/c, V50 is the value of V corresponding to P =,5 and o

is the standard deviation of tolerances in the response function. In a
sengitivity experiment, a two-category response is observed to determine

the effect of different levels of the dose or stimulus V, Each experiment
has the gcal of estimating the value of the variable for which the two
responses occur with equal protability, i,e. the V50 which is also the mean
in a normal distribution, The estimation of the 50% point is more desirable
than that nf other percentage points for two main reasons, It can be more
accurately determined with a reasonable number of observaticns, Furthermore,
it provides the most satisfactory basis for comparison, because for two
distribution curves with the same mean but with different values of g, the
only percentage point in common is the 507 one,
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3.0 PURPOSE OF THE STUDY. In recent years, many studies have been done

on the relative merits of several methods of fitting the logistic and espec-
ially the normal distribution functions as dosage response curves, The
first standaru techniques of a .alysis were those called Logit or Probit
methods depending on whether the assumed response curve was the legistic or
the normal distribution functions. They are fully described in References

1 and 2 respectively., Several alternative methods for estimating the 50%
point were later suggested, either because they involve less computation or
because their validity may depend to a lesser extent on the choice of response
curve, Most of these recent methods are based on the 'Up and Down' sampling
technique, They are purely arithmetical processes that use the observed res-
ponses independently of what the true functioral form of the response curve,
P, may be., Their merits for any given set of data depend upon the particular
form of P that applies. These alternative methods have been described and
evaluated In References 3 to 6. Unfortunately all assessments have been made
only for sensitivity experiments where the stimulus had no random fluctuations
around the chosen test levels, _

The purpose of this study 1Is to generalize two of the methods mentioned
previously and to assess their efficiency in an experiment where the stimulus
has random varlations around some fixed levels, This is the case in tests to
determine the critizal velocity of a projectile to defeat a target since
sampling variations in velocity occur for a fixed weight of propellant, Two
methods to determine the critical velocity of a projectile or equivalently
the ballistic limits of its corresponding armoured target are described herein
and their efficiency is assessed for various combinations of the parameters
involved. o

As far as the authors are aware, Reference 7 is the only existing study
on the efficiency of sensitivity testing methods for obtaining the critical
velocity, However most of the methods suggested in it are a subset of Methoad

B given in the present study and were evaluated for some particular cases

only-

4,0 THE METHODS OF SENSITIVITY TESTING USED FOR DETERMINING CRITICAL
VELOCITIES

4.1 General. In experiments to estimate the sensitivity of armour
plate to projectile velocity, a common procedure 1s te fire a given type of
projectile at various velocities against a given armour plate. Obviously,
there are velocities at which some projectiles will perforate the armour and
others will not, It is assumed that those which do not defeat the plate
would do -0 were the projectiles fired with a sufficiently larger velocity,
It is therefore assumed that there is a critical velocity, V50, over which a
success (defeat of the plate) 1s more likely and under which a failure is
more likely, This critical velocity is the velocity corresponding to 50%
succesgses and 502 failures, On account of the symmetry of the normal distri-
bution, the median velocity, V50, is the same as the mean of the normal inte-
gral response function of Section 2, In the case of tests to determine the
critical velocity, the parameter o in the response function measures the
spread of tolerances of a type of armour with respect to the striking velo-
ciries of a given type of projectile. It should not be confused with the
parameter S which measures the spread in striking velocity corresponding
to a fixed weight of propellant.
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It is assumed that the probability of response (defeat ur target), P,
to the stimulus (striking velocity), V, is given by an integrated normal
curve with parameters V50 and o, According to Reference 7, this assumption
is supported by results of tests involving the firing of a considerable
number of rounds at one target.

4,2 DESCRIPTION OF THE METHODS., The purpose of the two methods studied
here is to estimate V50 under the assumption that the norizal response func-
tion is valid. .

For the two methods, an attempt is made, by adjusting the weight of pro-
pellant, to fire the first round at a velocity which is the best estimate of
the V50 known to the experimenter, say VTj, Each subsequent round is fired
according to the 'Up and Down' firing technique, increasing the velocity by D
(in units of ¢) for any round following a failure, and decreasing it by D for
any round following a success. The series of velocities used in this 'Up and
Down' experiment form a stochastic process, whose main feature is that the
velocities tend to have a distribution concentrated around the V50. Method A

"uses the fact that an initial run of responses of the same sign is an indi-
cation that the first velocity was tadly chosen. If the initial run of con-
stant sign contains Ny+1 rounds, another N-1 rounds are fired. In this case,
the estimator 1s '

.y NotN
B ——— 7 14
VA g [ LV Vgt D] (2)
1=J°+l o

where the sign associated with D is positive if the last round was a fail-
ure and negative if it was a success. Method B requires that firing
should continue until N/2 successes and N/2 failures are achieved within a
range of velocities of R units. The estimator VB suggested by this methed

is the arithmetic mean of the N velocities corresponfing to the N/2 successes
ana N/2 failures,

4,3 SIMULATION COF THE METHODS. No attempt was made to assess the rela-
tive merits of those methods from actual firing data because such a procedure
would have involved a tremendous number of rounds besides loosing its general-
ity through its association with specific weapons, The error inherent in
each method of estimating the 50% point was evaluated using Monte Carlo tech-
niques, A program was written to simulate on a computer the complete firing b
procedure for the two estimation methods, "

Without any loss of generality for tue present studv, the variables were
scaled in such a way that V50 = 0 and ¢ = 1 in the response function, The
velocity of the jth round for the two methods can therefore be simulated
using the following equation:

. Ci for j=1,2,...(N+No) (3)

[/ 3 < K

V.=K+G, S+0D
3 b 1

where K = error of estimation for the starting value of V
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G, = a random value from a normal distribution with zero mean and : -
unit standard deviation
=0 for j=1 .
. "1 fot Uj 1 < PJ l andj = 2,.-0(N+N ) ) . . P ‘ CoL R e

+1 for Uj-l > Pj—l and j = 2,...(N+N°)

Uj = a uniformly distributed random real number between 0 and 1

‘Pj = value of response function when V = V , I g ) fi

.

Each group of (N+N,) velocities thus calculated ylelds one estimate of
V50 which is obtained by averaging according to the appropriate formula of
Section 4.2. This process is repeated as many times as required to allow
the computation of a RMS error for each method and for each combination of
parameters. A complete description of the simulation programs is given in
Appendix A of Reference 8,

4,4 RANGE OF PARAMETERS AND TYPE OF RESPONSE FUNCTION. A RMS error
based on 3500 determinations of the 50% point has been computed for each . : .
method and for all conbinations of the following values of the parameters: )
D=,5, 1., 2., S=0, .5, 1., K=0, 1,2,4, The values of N were 6, 9, 12, 15
for method A, In the case of method B, which is based on the first X suc-
cesses and X failures within a velocity spread of R, the RMS error has
been evaluated for the following pairs of (X,R) values: (2,2), (3, 2), (s, 2),
(2,3), (3,3), and (5,3). ‘

The most frequently used functional forms for the probability of res-—
ponse tc a stimulus are the normal and the logistic distribution functioms.
Since the curves corresponding to those functions are almost identical, only
the normal integral has been used as response function throughout this study.

The RMS error calculated with the simulation program has been expressed
in units of o as were D, S, K, and R, The RMS error of each method is given
in the first two Tables for the combinations of parameterq mentioned pre- .
"~ viously. ’ o

The RMS errors of method B for D=1, (X,R)=(5,2) and (3,3) check with
those of Figure 10, Reference 7, when interpolating over S in Table Bl,

5.0 DATA REDUCTION AND ANALYSIS.

o e s s
B Sl

5.1 " WEIGHTING OVER THE PARAMETERS, Since the purpose of this study is
to find the best method of sensitivity testing for critical velocity deter-
mination, the RMS errors have been averaged over the various parameters using
the weighting system which appeared the most realistic in critical velocity
estimation problems.

The right portion of Tables Al and Bl gives for each method the RMS
error averaged over K according to normal distributions with a common mean
K=0 but different standard deviations og=l.5, 2.5 and 4.0. This means that -
the initial velocity estimate 1s assumed to follow a normal distribution 5

centered on the true V50 with standard deviations of 1.5, 2.5 and 4.0 times i
the basic parameter o, The value of og=2.5 is believed to be more appropri- s
ate for most applications, unless a preliminary "feeler'" round 1s fired to 1

improve the accuracy of the initial estimate of V50, in which case the value

-181~

S 5 e
2
.

L R N L RI'EE)

e s



ox=1,5 appears more realistic, This is in agreement with the set of starting
velocities used in Reference 7, which corresponds to values of oy ranging
between 1 and 2 in units of 5, with one "feeler" round to improve the starting
velocity,

The average number of observations used in approaching V50 for Method 4,
but not included in the sample of N, is designated Ny and given in Table Al,

The average sample size, N+d,, on which each RMS error of Method B is
based, is given in Table Bl,

The best distribution for S to cover the range of weapons is not knowm,
but since it is definitively heavily concentrated around 0.5, a triangular
distribution between 0 and 1 and centered at 0,5 has been assumed realistic
for S. Therefore the RMS values of Tables Al and Bl already weighted over
K according to normal distributions with og=1.5,2.5 and 4,0 have been aver-
aged over S anrcording to the set of weights corresponding to a triangular
distribution of S between 0 and 1 with center at 0,5, that is 0,125, 0.75,
0,125, for S=0, 0.5, 1., respectively, The resulting RMS errors weighted
over K and S are given in Tables A2 and B2,

5.2 SELECTION OF THE OPTIMUM STEP LEVEL, On account of the variable
sample size, it is not obvious from Tables A2 and B2 which level of D 1is
optimum for the two methods. A graphical comparison of the RMS error asso-
clated with each level of D is made in Figures 1 to 6. The curves indicate
that the optimum level of D is 1 for Method A and Method B, whether oy 1s
2,5 or 4,0, From Figures 1 and 2 of Reference 8, this is also true for
Method A when og is 1,5, but not for Method B where D=0,5 is better. There-
fore a value of one ¢ for D should be aimed at, since it is associated with
"~ a greater accuracy for both methods over the values of og likely to be
met in practice, ‘

5.3 COMPARISON OF THE METHODS. The curves plotted in Figure 7 indicate
clearly that Method A is superior to Method B with R equals to either 2 or
3 when 0g=2,5 and the step level D is one. The same conclusion can be drawn
from Figures 8 and 9 for og=4.0 and 1.5 respectively. Therefore Method A
is definitively more accurate than Method B for og=1.5, 2.5 and 4.0 when
the step level D is at its optimum value of one o,

In a critical velocity test, unfortunately, the parameter ¢ is not
known in advance. It is therefore necessary to use for ¢ a reasonable esti-
mate, O based upon experience. If no such estimate is available, the value
of 50 ft/s which is recommended in Reference 7, appears to be realistic,

It is assumed here that & has a normal distribution with mean ¢ and standard
deviation o/4. Therefore, the step D being taken equal to o it also has a
normal distribution with mean ¢ and standard deviation o/4. The RMS error
values of Tables A2 and B2 were averaged over D using the set of weighting
factors corresponding to this distribution, and the resulting RMS values

are given in Tables A3 and B3, The weights were .16, .82 and .02 for D equal
to 0.5, 1.0 and 2,0 respectively, The confidence that the V50 estimate is
between the true V25 and V75 is also given in Tables A3 and B3, for Methods
A and B respectively, The RMS error and the confidence in the V50 estimate
are plotted in Figure 10, for both methods when og is 2.5 and D is normally
distributed with mean 1 and standard deviation .25, The curves on Figure 10
illustrate again the superiority of Method A over illethod B,
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5.4 ACCURACY vs SAMPLE SIZE FOR METHOD A, The authors are not aware
of any agreed level of accurar rtequired from a sensitivity testing method.
However, a level of accuracy »». 1 that one is 907 confident that a V50 esti-
mate is between V25 and V75 {s considered desirable and realistic. Assuming
that the error, K, in the initial value of V is normally distributed with
“mean 0 and standard deviation og=2.5 (an acceptable assumption when no pre-
liminary "feeler" round is used), a confidence level of 90% would require
a total sample size of 16.48 on the average with Method A, This total sam-
ple is made up of N +1 = 2,48, which 18 the average length of the initial
run of identical responses, and N-1 = 14, which is the fixed number of obser-
vations after the run of N +l. In this case the average number of observa-
tions used in approaching VSO but not included in the sample of N, is N,
1.48 and the subsequent sample on which V50 is based has size N = 15, Such
a sample would yield a confidencz of 90,9% according to Table A3,

An interesting feature of Method A is that it ignores any initial run
of identical responses (an indication that the initial V was badly chosen)
and therefore produces an estimate of V50 which has a guaranteed accuracy
independent of the error K in the initial V, Of course, the greater K or
og for a fixed N, the longer the initial run of rejected values N, and
therefore the greater the total sample size, N+Ng, required to achieve a
given accuracy,

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS, Two methods A and B to evaluate the 507 point in a
sensitivity test when the stimulus has random variations have been assessed
by Monte Carlo simulation, and Method A has been found superior to the other
over a realistic range of error in the starting value of the stimulus, It
is more accurate and therefore more economical than Method B which 1is cur-~
rently used in critical velocity determination,

The optimum step level D by which the stimulus is increased or decreased
was determined to be around lg, However the accuracy provided by Method A 1is
not too sensitive to variations up to 50% in the size of this step level,
Therefore the performance of the estimate of V50 provided by Method A is not
sensitive to errors in the guessed value of g.

Method A requires on the average 16,48 observations to insure a 90%
confidence that the estimate of V50 lies between V25 and V75, This number
is made up of an average of 1,48 observations that are rejected, followed
by a sequence of observations with a predetermined length of 15.

6.2 RECOMMENDATIONS., It is recommended that Method A be used to evaluate
the critical velocity required from a given projectile to defeat a target,
since it is more accurate than Method B and also can be handled more quickly
and more easily than Method B during a field trial to determine the V50, 1In
an experiment using Method A, the steps are:

a) Select from past experience an estimate, 0, of the parameter ¢ in

the response function. Otherwise, use @ equal to 50 ft/s as an esti-
mate since the procedure requires that o be known within rough limits,

b) Choose N in advance. A value of N=15 will yield a 90.9% confidence

that the V50 estimate 1s within V25 and V75,
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c) Fire the first shot at a velocity as close as possible to an 1nitial
guess of V50,

d) Carry out a series of trials, 1ncteasing the velocity by o ft/s fol-
lewing a fallure and decreasing it by § ft/s following a success.
This is done by regulating carefully the weight of propellant for
each step,

e) Coutinue firing until the chosen nominal sample size N is reached,

If Ny+1 responses are alike at the beginning, the total number of
trials is N +N,

£) Use as an estima.e of V50 the average,

N,+N

Va 1 °c V. +vV + g
IR em—— __o
ML e b N

wherv the plus sign is associated with a failure in the last trial and the
minus one with a success,

REFERENCES

1, Finney, D,J., "The Estimation of the ED 50 for a Logistic Response
Curve"”, Sankhya, Vol, 12, Parts 1 and 2, 1§52,

2, Finney, D, J., "Probit Analysis - A Statistical Treatment of the Sig-
moid Response Curve', Cambridge University Press, 1952,

3. Dixbn, W.J., Mood, A.M,, "A Method for Obtaining and Analyzing Sensiti-
vity Data", Journal of the American Statistical Association, Vol, 43, 1948,

4, Brownlee, K,A,, Hodges, J.L., Rosenblatt, M,, "The "Up and Down" Method
with Small Samples", Journal of the American Statistical Association,
Vol. 48, 1953,

5. Tsutakawa, R;K., "Random Walk Design in Bio-Assay", Journal of the
American Statistical Association, Vol., 57, 1962,

6, Brown, B.W,, "Some Properties of the Spearman Estimator in Bio-Assay",
Biometrika, Vol. 48, Parts 3 and 4, 1961,

7. Feroli, J.A., "The Accuracy and Reproducibility of Several Methods for
Obtaining Ballistic Limits of Armor', Aberdeen Proving Ground, Develop-
ment and Proof Services, Report No. DPS/TB4-10/9, July 1957, (UNCLASS)

8. McLaughlin, G.J., and Labbé, J.C., "An Improved Method of Estimating
the Critical Velocity of a Projectile in Penetration Ballistics', DREV
Report668/72, August 1972, UNCLASSIFIED,

~

T




1e0- 6%°0] s5°0 98n0 €Ln"0 [ Zh°T  TZS°0 0S°0 | MEN'0 61°0 . Z9%°0 . 90°0 O09n°0 ~mﬂ .0%3 ~o.~
08°0 $55°0 | SS°0 Ias°0 925701 On> 1 SOS°0 : 05°0 | #v5°0 81°0  €Z$°0 60°0 66%°0 !ZtT o0°% 10°2
10°0 ~«.o.o 3°0 . §29°0 §09°0 | Z%°Y : €49°0 | 05°0 | Lu9°0 '0Z°0 | %6S"0  80'0 ££5°0 |6 o0°% ~o.u
08°2 ! %6¢°0 ! §S°0 €9L°0 92L°0 ) Ta"1 ; 968°0 [ 64°0 | t6L°0 ‘uﬁ.o_ $69°0 | 800 4L9°0 |9 10°t 102
sL°t mmo,.o_ w2t ' gano 6Cn°Q | 66°Z ' L6170 [ ST T [ 690°0 {05°0 | 9Tn"0  92°0 18C°0 st ot ot
9Lt 'zesto i wet 1 L0§°0 HLN'O0 ) 86°2 | 9660 ; »T°T [ 91$°0 [ 06°0 | 990°0 , 92°0 O0c€h°0 |21 ‘o't _o.n
LL°T %Z9°0 . SZ°1 - 06$°0 06$°0 ] ¥0°€ | 269°0 [ n1"1 ) €190 .om.o. 0€S°0 1 LZ N §(%*0 i6 .0°'t _o.~
te"t 68L°0 ' SZ't 9cLo ;L9°0 1 66°C | n68°0 | n1°1 | 0LL 0O mam.o ”sno.o 18272 "0ar) g o't lo'g
: H H ' i i ! ! i ,
LT°C  ONS°0 i LT°Z {8600 Inh"0 | €9°6 { ZZ9°0 | S0°L {92570 i nB"0 TZN°0 ; tn > ANEg0 51 0°% 's°0
6Z°% 529°0 8I°2Z ‘:am.o , SO0S°0 | L9°S | SEL°0 [ $0° [ Z19°0 :98°0 ; €9n"0 ;5 "0 6LE°0 "% L 0"t ;S0
*Z°C €9L°0  9Z°Z ; 989°0 , L6570, 9S°S ) 6060 | Z0°Z | 6ZL"0 06'0 ZES'0 Sh°0 SIN'0- B 0T I§°¢
90T . 22670, 8272 | LERO F0ZL°0 ]| $3°S im60°T | €0°Z | 068°0 '£8°0 ﬂnnu.o L 8"°0 ZOS*0 3 le°t {s°0
| : ' ' : '
AN EEAIM BRI EETI I [ EEHTO 1 90T 1 €5070 | £S°0 | €AN"0  ST'0 9ZN"0 ' €00 wEh'0 ST ‘5°¢ o'e
80 _‘on.ow #5'0 | Z6n'0 08470 | 9%°T , 025°0 1 05°0 | €05°0 . mL°0 CLn"0 , €£0°0 6Sn°0 ZT :%°0 |o0°2
Z8°0 " TLS 0§ %S0 [ £55°0 ; InS70 { 9471 | B6S°0 | 05°0 | 0LS°C ' ST°0 6ZS°0 %0°0 1z$°0 .6 |s'0 |o'z
Z8°0 %0L°0 i §5°0 | 089°0 | £59°0 1 9%°T 1 0SL°0 { 15°0 | %04°0 'ST°0 O%3'0 : w00 c65°0 t9 [s*0 qo°C
. . 1 ! o .
99°1 ' Zow 0| 0c“g | 06€°0 M 9LE0 | 6T°C | LIn"0 [ LL"T | L6€°0 . 0S°0 0LE'0 8870 Cs€"0 (st {s’0 {0t
L8°T 1 6nn°0 ! 0c": | wen°oO “ BIn"0 | 61I°C _ BLN"0 [ ET°T | EN%""0 8n°0 8In‘0 1 61°0 LL$°0 .ZT $°0 jo'1
L9°1 ' 0ES°0 | 0" | Z¥S°0 ! 8860} 1€ “wom.e SZ'T 1 0nS°0 0S°0 €Ln"0 [ 6TI°0 SEw"0 !¢ $°0 jo°t
48°T 659°0; 1€°1 12290 '9L°0 |9ts70 ! 61°¢ TZELTO [ nZ T | nS9°0 - 69°0 #S55°0 102°0 #new'0 |3 Js-0 lo°g
*3°¢ cna.o~ €52 [ 9000 $Le°0 | €29 mnh,.o [ ARITN ] hna.o _ncn.o 0%"°0 n0€°0 [ST (5 0 (§°0
9"t aa:.o_ 96°2 | 29870 0Zn"0 | SZ°9 1 Z295°0 | wn"L 1 66%°0 | £6°0  €On°0 | 6€°0 sC€'0 |LT |§*0 | §°0
L9°€ 065°0 ) 952 | 9ns°0 Zs%°0 ! 82°9 | 899 0 | ez | s65°0 , 2670 mnor.u "0 BSE°0 6 $°0 [ $°o
89°C 6€.°01] 95°¢ | 089°0 009°0 | 4Z°9 | gnB°0 [ sn°Z | 85L°0 T h6°0  nss0 [€cc0 osco s [g0 ;870
.

{ s .
€8°0 CEm°0 | w50 | 1Zm"0 [ ¢2°0 60n°0 | 6n"T ~hm=.o €0 | LIN"0 I w10 _,on.o T0°0 s0m°0 {5t (070 jo0°r
Z0°0 [ 68n°0: %S°0 | 94%°0 1 £2°0 €9%°0 | wn1 ' gI5°0 |05 0| €Lnc0 'c1o0 ! s9nvp 20'0 6€n°0 lzy [0°0 [0°¢
Z0°0 1 Zn5°0 w50 | 1€5°0 | 22°0 :615°0 ] en1 L S9S°0 11§70, LES°0 1 £1°0 ) L0S"0 ) €E0°D 60S°0 |6 J0'0 |o-L
8°0 | 8#99°0 «5'0 | 1$9°0 {£2°0 ; ¢29°0! ¢n*1 00L0 6%°0 | €89°0 “n~.o“ 0Z9°0 | €0°0 8$$°0 |9 (0°0 |0°z

i , . i _
T6°1 1 64€°0 o 1 ) 0L€°0 270 {09€°0 | 92°¢ ' (6€°0 | 1c*1 | 9ec°o "o0s°0 ! 6se'0 | L7170 9ccvo is1 {0%0 {07
67 , LIN'0 wC T ' €00 9L°0 ' 16€°0 | 6Z°C : 6Z%°0 | 6Z°T | 9Tn°0 [6%°0 s9c"0 ) L1°0 €9c70 [Z¥ [o0°0 D ¢
C6°1 | 16%°0 . w1 1 3L%°0 1 9L°0 . GS%"0 | LZ°C . 1ZS°0 | 6Z°L ) €05°0 ' &%°0 ; SEN"D LI'C NIN°0 16 100 10°1
16°1 1 609°0! €t°1 1 005°0 |92°0 . 915 0| 92°¢ , x$9°0 | 92°¢ 141970 w0 Mona.o 170 w9%°0 |9 |00 ‘ot
i t : : ; . i
8L : 96€°0 9972 ' tec0 les v {zscco) ewv9 ! tenco |09 ¢ ,90%°0 | 66°0 _oan.o 9€°0 z8Z2°'0 {st lo°0 ﬁm.o
*8°C . 6nnc0 | 89°Z i mZw 0 €St [ 16C 0 | 959 | 6% 0 | ¢5°2 ;19970 S 00°T ; 9¢€°0 {mc°0 ¢€0e°0 [y |00 ‘570
€8°C 0£5°0| ¢9°2 ,66%°0 |€S"T {s5n°0 | c5°9 | 985°0 | BS 2 1 W55°0 - 66°0 ¢ ER"0 [ SE°0 BZE'0 |6 10°0 ;50
I8°C , 9%9°0] 99°Z 509°0 [ Z$°% | 9ns 0| 25°9 | 0z2"0 |55 2 j £L9°0 {8670 | L15°0 { 8E°0 T£6°0 |9 |0°0 |S°0
o o o ] * I o [
ki SHY N SN N SHY N . sWw N S N SHY
3 ! — N]s a
s znt0 yi~y 125 T3y 0=x

)
V OOHLIN 30 N ONY ¥Ow¥3 SIHu

v Feve

-

)

.

3
|
%
i




Ly AW

%8°ST I nTRTO | TE'SZ | STN'0 | B6HZ ! 9Tn0 | Tn'9Z | €Tn 0 | 82°5Z | 0Tn 0 ' T0°5z | 0th0 |scnz | zznto zls
29°ZZ |STh"0 ] LE"TZ [ 9Tn 0 | €T°ZZ | 9Tn"0 | 0Z°€Z | €1n°0 | SC°ZZ | 810 0 !S5 zZ | 6Tn"0 |ZTI°TZ | OTh'0 z|s
£6°ST | €95 0| 8C ST | 84S 0 | SL nT | 825°0 | BO*LT | €65°0 | YT 9T | 965°0 [ Zn €T | 9EE"0 | S0°ST | #L9°0 tls
t8°0Z [0Tn 0| 12°0Z | 80w 0 | S5 6T | con* JBe 2z | stn 0|5z 0z [son0 !9c 61| 0tno |L5c8t | zon'o zis
®6°9T | ZTn 0] BZ°9T { ZT2°0 | 6S°ST | €In*0 | nn 8T | Ztn 0 | €n"ST | TIn-0 [ Zh ST ! nin'0 |tn'nt | zin‘0 z|s
z8 €t |gzw 0| 9t et [ 6Zn 0 | e Tt | temc0 jze st {9zmc0o | Zeter |cznto | ZetzT | 9%nt0 (8L TT | nin'o zis
s€°0C |tinco]| zve6r | zInco | esciv !l vinc0 | cv€z |otn 0 | mztsr | Lm0 [6EcLT tTnt0 |0c 9T | mon'o tls
08°91 | Ttn 0} . 6n ST | TTn 0 | Zr nT | TTn 0 (B2 6t | vin-0 [ wevsT |6onc0 | Le Er ! nEnto ze TT | z6Et0 zls
t9°st | azn 0] ne nt {cen'o | 96 2t | BEN 0 | £9°BY | OTH"0 | €9°nT |Bzn'0 | LS Z% | cent0 | 20T | nocco zls
nn st [ses°0) 0t st | ces 0 | 9s wt | zes o |oz-or | 6es 0| nt st lazs o lor wt| nesro levome | ceseo z |t
oLttt bES" O on"¢c1l ohS°0 OT° €Y Ihs°0 ge°"nt teso 6E°ET 0s§s§°0 [ X ¢ LES®O hE'TY ons°0 4 £
1s°6 [ 269°0l z1°6 | me9°0]l69°8 | 1s9°0 [se ov |czec0|se'6 |9zevo |[wszte | wento [9cc8 | isico zle
o01°¢t | czs o] ontzr | cesto | 6 vt | szs 0 [ ms wt | 9zs0 |s9oczt |9esco | es tr] ezsco leccor| Busco Tie
n8°0t |ses 0| B1'oT | 8€s 0| 8n'6 | tns 0 | we 2zt [ 62570 {S€°0T |Tcs 0 {62°6 | €550 |€c'8 | ses°0 zle
LT % $96°01{ 85°8 TLs*o 68°L SLS"°D ZL°01 9n5°0 LY ] 68S°0 e L zes°o L9 $§s°0 4 €
€9°¢cv [ nzs o twezr [ 6ts o | crvv{crs o | snror | cescofinezt {ors 0 [zetor] svsto [este | oos-o e
T6°11 [ 965°0) 19°01 | 5€5°0 | s2°6 | 1es°0 | 68wt | €50 | so-0r {9ns 0 |28 | €ss'0 |1z |einco tle
05°11 | n9s 0] oz*01 | 9L5°0 ] s8°8 | 185 0 |sn nt | tes o |8nor |€65°0 [sn8 | 8590 |trc9 | zzeto zle
I%°0% [ 0590} 80°0t | 259°0 | ce°6 [ 55970 | cr 1t ] 05970 | nt-0t [6€9°0 {£9°6 | cs9°0 {nr°6 | 699°0 Tt
€2°6 |[859°0] 06°8 | 859°0 | 85°8 | 659°0 | 96°6 | 859°0 {€6°8 |859°0 |€£5°8 | %59°0 {Zo'8 | 899°0 tle
15°9 | €z870| LT°9 | €18°0 | 18°S | 0080 | 6Z°L |Zw8°0 | LZ°9 {980 [99°5 | 969-0 |8z S | weB'0 e
€26 |159°0) #s°8 [ o0s9°0 | zer |ensto{ocror| vseco[99°s {0990 les e | 0s9t0 {69 | cLz90 tie
98°L Jot9rof oz*e | te9°0|zs'9 | o0c9c0 |se's | 99970 |¢cere |8r9v0 |scro | 9290 [1ns | ce9co tle
00°¢ [€69°0| 9¢'9 | £69°0 | 89S | t0s°0 |cn 8 | z89 0 [8n 9 [zeg o {zs s | encco [sscw | zm9co tle
2z-0% | te9°0| 10°6 | z€9 0} 6s°¢ | 5290 | 00T | nnoc0 ot 6 [9w9c0 |9z e | 6z9°0 |9z°9 | zesc0 zle
on'6 !859°0] tr°8 | 859°0 6.°9 | 6%9°0 [ze*2v [259'0 |€cc s |s690 |ne'9 | 890 lse'n | wes-o tle
6Z°6 |969°0| 66°¢ | 81L°0 | 99°9 | LTL°0 | mz-zv | 9z9'0 618 |zie'o | €29 | s8cc0 |89 n | 9swco tlz
° o ) 0 o o o
NN Swi NN WY N+N S NeN SHY NeN SHY NeN Swy NN Sy
3 3 S S — ¥ [Z/N
0-v="o g-z='o st 1o p3ex Zaex 5wy 0=x

6 GOHIIH 40 (PN+N) ONV dO¥¥I Swi

18 318Vl

-186-




< . 3
L1781 | 65%°0 | 6.°LY [ 6S%°0 [SE*6T |ssn-0 |9z*8T |con'0 |99°cT | 95w 0 [cc it |6sh 0 |0t |0z |€ s :
T6°ST | 66n°0 | en°ST | 9870 | €E°LT | 925°0 | ZE 9T | 825°0 |0L° %t | BOn*0 |ce-ST |owg 0 |50 |o'z |6 |¢ :
n0°ST 1 905°0 | 65°hT [ €05°0 [OT°LT |S65°0 | B09T [z65°0 |6E°CT | 9zE*0 |cTST | §99°0 |0°0 |0z |6 | :
cz°s1 | sem 0 [ 1o nt | osn 0 [ec st [ msn-0 | werst |zenco t5n'0 Js9°tt | esnto Joot ot fe]s §
9Z°ET | nS%°0 [9S°2T | SSu°0 |Zn*ST | snn0 |BE°CT |€Sn'0 |scozt | Zom 0 |9n-TT | Ben0 |€°0 |o0°% |¢ |s ;
THZT | 69870 | ELTTT | Ln0 [€§ M 9EN0 | 4§°ET [Ten0 |65 Tt | €050 w90t | eznto |00 |0t |6 | s i
57 ST l9onnt0 [ ez nt [ o0 |96 | tun-0 | n9°st |canc0 [®act | 2snv0 [ontzs [senc0 [0t |80 |6 ls
sh°nt LE L] L0°¢Cs L1 LA ] 9.0t 8tn°0 SL°nt boao.o L9°tt L2 L] 880t €6E'O $'0js°0 [ 4
0wt | 9€6°0 | Z6°2T | £L25°0 [8S-8T [96C*0 | 09w |0T4'0 |25°2% | zen 0 sz 0% | wse'o {00 |80 |¢€]s
£6°01 | %090 | ¥9°0% | 509°0 |80°Z% |665°0 | n0"TT {909°0 |6n-0t | 9090 |80°01 | 5080 |0t |0z ¢ |¢
65°6 [ €n9°0 | TZ°6 [ €€9°0 |SL°0T [€99°0 | #nL°6 [0.9°0 |66°8 | 29570 |Ti'8. | 98970 €0 |0z |6 |¢
$1°6 | 5L9°0 | €8 95970 [6€°0% |1ze'0 |8c 6 [tzeto |€e'8 | o6ne0 |6c*s | 16c'0 |00 |o%c |6 |6
69°6 .1065°0 | n0°6 | 165°0 | 64" |6.5°0 | 826 |c09°0 |s8°8 [e8sto [90s |ses o |0t |ot|c|e —i
£9°8 | 46570 | 66°C | 965°0 | 18701 |085°0 | 6.8 |879°0 |18°¢ | 0190 |06°9 | esso |so o't |6 |e . v
9€°8 | 029°0 ;89°¢ | ¥29°0 |6n'0T | 195°0 |15°8 |649°0 |8n'¢ | 9w9°0 |rs's |sisc0 |00 ot le e S
€5°0T | 285°0 | wZ°6 | €85°0 |OL*we [195°0 | 90T |965°0 |06°8 | 909°0 |6n-z |seso |o°t|s0lc|e -3
S°0T 1 829°0 | 68°8 | 529°0 |ns a1 | 925 0 {0s*0r |9ns'0 [8n8 | omoto |szs |eswo {50 |so|e|e j
¢ ot | 2ze70 | 98°9 | €0L"0 |An“wT [0Zs 0 |6n 0T {686°0 |¢h'8 | cc90 |ti'9 |Binto |00 |0 ¢ e ; -
9L | 9%L°0 | 0T'¢ [8nz°0 | 658 |cnito [€S'C |€ne'0 [46°9 | snevo [85°9 |cscto |0t |ozle |z :
8n°9 | 96,°0 | €1°9 |6.L70 |85 L |c08°0 | 959 [c64'C |20°9 | 9cct0 |ists |czzeo |sc0 lo'z|e |z
81°9 |508°0 | Z8°S | T6L°0 | 62" |80 629 |8€8'0 |L8°S | me9to |szts | zes'0 |00 |0z |6 |z
89 | wEL'0 | zc9 | €zL'0 |80°6 [nreco |80z |tweto [ev'9 | szcco |eets. [e69c0 joct oot |z ] .
¢h'9 | Lm0 | et | Zseto [ss°8 890 |4st9 [s6cc0 [ws°s | tecco |es'n | s9sco |50 o T|e|c
€E"9 | m6L°0 f $9°S | T6L°0 |94°8 [593°0 | Sn"9 |Om6'0 [en'S | tveco |9s-m |cesco |00 |o T |c |z . .o
6 |o1c70 | meo 1 80cc0 [s6c vt |zoc o |sote |wicco |9z's | stito |tr's |zzoto |ovr |sto e |z P
66°L | 99¢°0 | ¢9°9 |25L°0 |0Z°ZY |ns9°0 [zz 8 |sc6'0 |2zz°9 | 09s°0 |t1z°n | 96w0 |s0|s0l¢c |z v
00°9 | $98°0|59°9 |9c8°0 |sz°2T |€s9°0 [tz e |uet % [2z'9 | €csc0 | w9 n | mmm0 |00 |50 ¢ |z )
»
o o 0 [+ -
NN | SWY NN o CNeN | sw | ONen | ot | Onen | oW NN | swa
- . i s | a |ufenw
s z="p g 1='o . pEey 3=y CTEex o=

(P.3u0)) 14 T18VL




z8°0 | enn'o | ssvo | tnmco | sz-0 | zemeo | amr | conco | 050 | sasto , sto : szwto | w00 | BInto . sT | o°c
280 | £0s°0 | ws=o | oen-0 | 820 | wenco | sa't | szso | osto | sosto | wr'o | scno | moto | zowro | zx | o°¢
280 | 9es*o | ss*o | t9sto | 8270 | zas o | 9n'% | w036 | osco | 9cs5°0 | stvo | mesto | woo | czsto [ 6 | oz
z8'0 | 11c°0 | wsto | 889°0 | 82°0 | 65970 | snov | ssic0 | 050 | ereto | ste0 | smovo [ woto | oosto | 8 | o
98°1 | son*0 | 6z°1 | seeto | scto | 180 | c1'€ | eento | zzor | momeo | osto | sceto | st-0 | sceto | st | o°%
98°1 | 9sns0 | oc t | ownco | weco | ezno | erc | como | ezt | oswto | eato | ozwto | oz-o | zeteo | zr | o°%
98*t | scs*o | ocrt | ovsto | scro | zenro | 9v-e | sesto | werv | swsto | osto | 9umco | ozto | senco | & | o°t
9e*tv | 0c3'0 | oc'tv | gesto | seto | 9850 | eloc | sweco | €2°T | s99'0 | ewo | zesto | 1zco | zewo |9 | ot
zovc | tneco | zsez | stnto | swev | zocto | s1t9 | zento | secz | tanto | meo | ssco | onto | socto | st | svo
w9°¢ | 805°0 | ws*z | cewco | enct | sewco | 1279 | eesco | wwcz | costo | 9670 m gon-0 | sc-o [ oceto | zt | s*0
%9°¢ | ¢09°0 | €57z | 19570 | 9nv¥ [ zosto | zz*9 | €69°0 | cevz | troto | t6°0 | sanco | tnto | wecto |8 | s°o
s9°¢ | mseco | mstz | zeso | swet | oveco | zzes | essto | etz | 990 :m.oxw €950 | onco | cono | 9 | s°0
° o o s % S o S % . o 1w o Sy ) .
o' r="o s-ze'o st1eto viux z3ex T3 S o=

V¥ GOHLDY 0 °N GNV YOWZ SWi

v I19VL

o o o

2k U

F

-




o

605°0 | 60°9T | S6n°0 ) Z9°ST | s8n°0 | 55 st | LTS'0 1 €5°9% | 625°0 | T6°wT| SOn'0 | n5 Gt T§s°0
CSH°0 | Tn"ex | osn'0 | 12°Z1 | asno 9§°sSt _ Loh 0 L S ET | 9Sn°0 | 0S°CTX | Lon‘o "E9°TIT | 9an-0
09%°0 | LS°»T | TLn"0 | 02°S3 | T2n°0 | sp'6t “ BIn°0 | #B°nT | 62S°0 | 6L ZT| Z0%'0 ] LO°TT | nBc 0O

059°0 | 1L°6 Th9°0 | ZE°6 ~Z€9°0 { LB 0T | €99°0 { 98°6 699°0 [ 60°6 €950 mn.o. 069°0

woo
..
Owee
oo™
VI 0

—— e S,

[PPSR

o*zjiec | ¢
%6S°0 | 9¢°9 | 6650 8089 665°0 | 06°0T | 8LS"0 | 88°8 | n29°0 | 06°L | z19*0| 10°z | ess°0] 0"t |¢c | ¢
€19°0 | 82°0% | 5€9°0 | €6-8 0€9°0 | 95 m¥ { 0es'n | 16 0% | %9270 [zs'8 | 9¢c9°0| z8°9 [ mem'0|{ s°0 ¢ | ¢
06L°0 | £5°9 | €8l 0} 1279 LLL®O | L9°L | %00°0 [ $9°9 |26L°0 |60°9 | oecvo] 99 ool orzie | ¢
SEL°0 [ 8n°9 | 05L°0] 08°S €5L°0 | 09°8 989°0 | 9°9 | 908°0 {09°S | 8LL°0( %c°n | 099°0| o't l¢ | ¢
€SL°0 [ 66°L | cLL 0] ¢9-9 ¥9SL°0 j L1°ZT | 099°0 | 0z°8 €56°0 | €2°9 | 95L°0 | sL°w | oS0 s'0olc | ¢z .
9EN"0 | LB TZ | wEN"O| 9S°TL [ ZEn0 | €8°2Z | Onn'0 | 98 12 | ennv0 | Le 12 80n°0 | L.°0Z ] esw o) 0ozl ¢ BN ;
hTh 0 1 BE 9T [ wTh 0] 69°ST | ntn'0 | ns 8y | nTn 0 | zs 9T | ztn0 | Ecgt LIn°0 | wSs wT | TIn"0]| 0°t|C | ¢ i
ETN°0 | 0B°ST | wT1n 0| SH nl | GTH°0 | £0°0Z | Ttn"0 [ o9t | 2tn 0 | Lo 4t ten’0 | tetzy | osccofscofe | s
095°0 | 80°¢€T } 85570 | 92°T% | s55°0 | 1t-ny | 1950 | or et | 2es 0 | 0wzt 8ZS°v | Lo"Zv | 9cso] otz it | ¢
8€S°0 [ 92°0T | Ta§ 0| (5°6 NHSTO | THTZT | 1ES°0 | €atOF | 6€5°0 | cc°6 | €55°0( wnc8 | ses'0] o'tz | ¢
6€S°0 | 82701 , 8E5°C ) #%°6 | S€5°0 | €2°57 | 9¢5°0 | 00* Ty | 8ns°0 | 106 €9S°0 | av*L JOLn0| s'0fz | ¢
089°0 | 12°8 | 61970 sLcvp 84970 ) BL*6 | €89°0 | S.°0 ) Z89°0 | ve'e | 099°0] i85z | oos'o| 0o'zlz | ¢
149°0 | ¢2°¢ (2Zio°0| 65°9 1L9°0 | Ta"6 1 999°0 j6c's | 04970 | In°9 | €890 0s°s | wevcol o't | ¢
¥99°0 | 1Z°8 €99°0( 069 S59°0 ; On°ZY [ 6%9°0 [ Tm*® [ 504°0 | 4%"9 ! 189°0] 10's | zecvo] 5°0 t ¢
o . o ] [+ - [ [+]
SHY NN WY NeN SWY N*N . SWd | NN ¢ swy NeN S NN SHY
- a {4 jz/N
- | . | e X . ,
0'p="0 §°ZI="0 §'[="0 =X m TF=) i T7=) 0*X

o

8 aoHLaN 40 (°NeN) ONV WOWSE SWH - :

28 J1AVL

-



8706 ] ZI'Z | wI%0 [ 6706 | 8T | 00n°0 | z'z6 | sB'o | zse'o | ¢t
6798 | €1 | 99%°0 | 6798 | 8T | Lwn'0 | 8'88 | 80 | szn'o | g1
0708 | zT'z | vssto | 0'08 | en't | 9zst0 | s7z8 | 980 | senco | 6
9'0L | €¥'Z | $89°0 | 9°0L | 8%t | €n9'0 | swe | ss'0 | 1650 | o
. o (o] o

4NGD N SWe | d4NOD N S 4NOD N SWY

3 . N

0°p='o §+z="o s 1="o

V GOHIIW 40 SALVWILSI 0SA NI IONIAIINOD anv JB ‘s

£V 319Vl

-190-

-~




‘ T
€798 | OhTHT | SSn°0 | 8758 | S9'€T | 640 | LS8 | $8°ZT, 09n'0 £ | g w
0°nL | LL°6 | B6S°0 | w €L | 20°6 | 909°0 | S°cL | nz°s lso9r0re | ¢ M
. : _ S
6°€9 | Lh°L | 6EL°0 | 6°29 | ZL'9 | S5L°0| 6729 | s6°¢ 1 S§SLT0j e |z

J ' ' !
£°68 | 9T'LT | nIn‘0 [ 9768 | 0n* 9T | nih'0 | 9 68 19°stlsnnl g ! g |
0°6L | 9T'TT | 8E5°0 | 8764 | On"0T | Tns°0 | 9°82 | 19°6 ,n:mﬁo z | ¢
9°89 | 02°8 | 699°0 | 9°89 | snz | 0s9%0 £e8g L9°9 | 899‘0 |z | ¢z

1 ! ' :

]
R o o | o
2NOD N+N SWi ¢ dNOD N+ SWd | dNOD | - NN SWY
. e ¥ Z/N
0" p="o §*z="o - 1=

.0 «
8 GOHLIW 40 SFLVWILSI 0SA NI IONIAIINOD ANV *( N+N) “doyya swy -

€9 3719Vl




P H | | et

3]
¥ QOHITH UOZ ( 4M1). SA UORMT G - T FunOLi

nv~|m¢.~H
91 L1 (A . 0t 8 4
! one
N _
NN / che
///. //

/n,/ /

// // sge
N

\

NN
NN
szl | \ \ o
\

) i " 0L°

i(2:01c e

~192-

B Y e

R e d R




o ] ;
€ QOAITL ¥O4 ( 1+X) €A HOMH S - 2 FLnOIL

-- e Onisy e
ST - 4t b ot . 8

g f”

#o

#o

I N\

N \

“.

§°z <

g~y

n.._n/ m.d/% , | 1=

no

A

W'

HOURZ sy

~193-

P

‘--‘-4-)“,.‘ ».h;’.)%’www.:‘;wdz I M e Kl
o
¢

- a




B i e | i £ 3 22

..«h,,’

© e . F

€ qonzmi wod (%) sA womm S - € muasIa

Oiter .
81 it 41 ot ot 8

sq°

132

gz ) /
s NN \

09°

$9°

0l*

B . L RN, -

s o e a m ca

YOMET SIf

-194~=

Ry e T T o s R

T

R

-—




.-,W‘(

< e PR

S NS 4 e swmas AT e P — X R

IOPPRYE s> RSN

o g )
Y QOHIT oL ( H4I) SA HOMZ SWN - & TunDId

o

e
£

SPEARATONN

g.

13 M

NE

AN

0s*

112

N

09°*

™=

=q

s9°

(VA

HOMYI S

~195-

T 3 S P R 8 . W‘»"zn*hwﬁﬁwﬁ,ﬁ -"f,‘(, . .

I

D

PR



¢

c

i e e e

P,

, ;
g QOHITA ¥OZ ( 1) SA WOULS SWY - § TU0OLE

0
e

0t

oy

11 M

05°

11

09°

s9*

T

wona st

~196~

POV . 2

et |




€ QOHITY ¥oi now.:c A YoM SI - 9 HUNOIA

N

“men
gt 91 1 2t ot - g 9
(1]
~ “#l
N
N\
//
< < 0s*
N N

NN N\

N AN G-
N
\

//rv 09°

4 )

€-u N\
nJmDV Nlﬂ. ™ ¢9°

A \
//

f X / \ oL

i S

. (o2

-197-



.7 A

[ Y

o N 0
9% V QOHIZ{ ¥od ( a+) SA HOWUT STy - £ TuADLL

O~'n+.z . -
8t 91 5t 2t o1 g . 4
‘ one
7 "
/ /
\N
N\
//
N
\ 115
AN
(E=~w)sgqomqy ~~~"°"°°° \
CTUUE@e Wy R tommm T T T -
, Y aonTy u 09*
s*z =l \ \
r-q \
\ / ¢o*
Y _ - / [T

YouT SHY

-198-




, -1 9t #t

o \_
(&*H) sA vom= sty - 8 Funoza
oﬁ+n,

2 ot -

oy®

11 M

!
[=¢ v|qonxa

0s*

1194

09*

c9°

Nt

HomE SHA

_19q_

s e o, e e
.

M Al
A

i

L]

'

[} Y

. -

4,

3



[}
( x+1) sA ¥OME® SWH = 6 TXOILI

L5 AW

o.mé
91 41 3 01 8 8 ®
B ge
oh*
(1M
N o
Z=y) R
fl %?:W.u //» / om
/ i
N\ g
¥ QORLEHL .
/ ““0
gt =y ! ///
t-aq |
i / N
| ,
-] 09°
_ (€m)
m g qoIral
| N\
| A\ so°

=200~




ke Rt

v o S U

frmr— s ——

Y. .

e ANA
éfth\.nmﬂqdi.auxm..,\ el

o
o
( *R) SA 2OQIANCO @Iv WOWNA S ~ OT Tundid
et
ot 9t 4t zt ot c€ -
09 oy*

£9

w
|
|
_
|

N
NN
NN\
N\

0l

IS

Sye

0s*

i S
T rd.%ﬁ\.

| 5 N 7%
m / \\ .. i
| B s f\\ cce .m A
MY/ 8 S

$8

(2=3)
a QTN >

g e
~

09°*

1354

oL®

ML .
PRI T,

@&:‘ﬁ.ﬁ;&i};ﬁ;.

X WPYS,
P

R ey i

o . v -

b Bl R e b e an B - - sm—— e AR A e we e e o L e



-
e er———r e e 1i

EVALUATING AND SCHEDULING PROTOTYPE
REQUIREMENTS FOR SUITABILITY TESTING

- Major Richard B, Cole & Major William J. Owen
U, S, Army Infantry Board
Fort Benning, Georgia

ABSTRACT, This paper addresses the problem of developing a schedule ,
for suitability testing of the prototype of a complex item. The sequential
approach discussed involves ordering the requirements against which the
prototype 1s to be evaluated and then using this ordered set of require-
ments as a basis for sequencing the subtests included in the suitability
test, Emphasis is placed on developing the ordered set of requirements,

A model based on the criteria recommended by Fishburn and by Moore and
Baker is developed for mapping the requirements from a randomly arranged
set to an unconstrained test sequence, A linear model is developed which
is determined to be an acceptable normative model, Based on the results.
of this model a method is proposed for partitioning requirements into sub-
tests and for sequencing subtests into a constrained test schedule,

PURPOSE. The purpose of this presentation is to develop a method use-
ful in scheduling a suitability test for the prototype of a complex item.
A sultability test is a test designed to evaluate the prototype in order
to determine if the item represented by the prototype is suitable for pro-
duction., The overall test of the prototype will usually involve evaluating
the prototype against many, often related, requirements. Generally, a
separate test is required for the evaluation of one or more related require-
ments, Consequently, the suitability test will actually consist of a
geries of individual tests, or subtests., The specific problem to be addressed
is to determine a method of scheduling the subtests to maximize the rate in
which information, relative to the potential suitability of the item, is
genetated during the suitability test,

BACKGROUND. In the development of a complex item of equipment, it is
common for the equipment to undergo a research and development (R&D) cycle
of several years in length and to incur R&D costs of several million dollars,
One of the last phases of the R&D cycle is the development and test of a

“prototype of the item. The actual test of the prototype can be quite expen-

sive and time-consuming and can directly affect the final cost and final
availability date of the end item, Consequently, if this phase of the
cycle could most efficiently serve its purpose, then an important portion
of the cost and developmental time of the end item could be minimized, ‘

The purpose of the suitability test of a prototype is to provide in-
formation upon which a decision of item disposition can be made. The deci-
sion usually will be to determine whether the item represented by the proto-
type should be accepted and placed ints production, accepted contingent
upon certain modifications, retained for further development, or rejected
from further consideration. This decision may have to be made prior to the
completion of the gyitability test: thus it is essential to maximize the
flow of information,

Preceding page blank  -20%-

ol




op

e A TR e ek e M AL A BT S %7 n e by o

_iate tests each designed to evaluate the prototype against one or more

The overall suitability test will consist of a series of intermed- :

specifications or operational requirements., Each of the subtests derives’
specific information about the prototype. The information accumulated
from all subtests then serves as a basis for the decision relating to the
final disposition of the item,

The time required to make the decision on equipment disposition
directly relates to the time required to accumulate sufficient informa-
tion upon which the decision can be based, Consequently, it is desirable
that the subtests he scheduled so as to maximize the rate of information
generated, This is obviously a particularly important criterion in the
scheduling of prototypes of items required for an immediate need. On the
other hand, care must be exercised so as to prevent a premature decision
on item disposition., Obviously, an incorrect decision could result in
accepting an expensive but unsatisfactory piece of equipment, or it could
result in delaying the production of a suitable item,

The problem of developing a test schedule which will maximize the rate
of information generated is compounded and made more important by the fact
that there is frequently no predetermined stopping rule upon which the
decision on item disposition can be made. For example, it may be undesirable
to decide before the test that if a certain per cent of the operational re~
quirements are not met, then the testing will stop and the item will be
rejected. This type of stopping rule may be unsatisfactory since the per-
formance of the prototype against other requirements may be so outstanding -
as to overshadow its failures, or the degree of failure may be more impor-
tant than the failure itself,

CONCEPT., There are multiple factors relating to a suitability test
which influence the desired sequencing of its subtests., These factors must,
of course, relate to the amount of potential information which could be
gained from executing the subtest, An 1llustrative factor pertaining to
the amount of information is the importance of the requirements tested.
For example, the information gained from evaluating the prototype against
an essential requireaent would coatribute more information upon which to :
base the decision of item dispositicn than would evaluating against a
relatively minor ' equirement, However, there may be several factors which
warrant consideration. 1In the tests considered in this research, five
factors were identified as influencing the desired relative placement in
the testing sequence, and these factors were found to be of varying degrees
of relative importance. : ‘ ;
In addition to the factors, the degree to which each factor would
apply to each requirement must be considered, The possible degrees of appli-
cability of a factor to the requirements in the suitability test are defined
as the categories of the factor. In this research, methods were developed
for identifying, weighting as to relative importanc=2, and categorizing each
factor applicable to the suitability test of a prototype. The factors,
factor weights, and factor categories are considered to be suitability
test dependent,
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Once the factors, factor weights, and factor categories have been
determined for a prototype, each requirement is described in terms of
the degree to which the factors apply to the requirement and to the sub-
test needed for the evaluation,

Obviously there are trade-offs to be made between the desire to place

_essential requirements early in the test sequence and the desire to main-
tain the prototype in testable condition., These trade-offs become unmanage-
able when several factors of several categories each must be considered.

A model 1s developed for mapping the requirements from a randomly
ordered collection of requirements to an ordered set of requirements. This
model maps the requirement against which the prototype should first be
evaluated to the first place in the ordered set,

When the requirements are ordered, they are in the proper sequence for
unconstrained testing of requirements. However, in developing the actual
test schedule, there may be constraints which require that several require-
ments be grouped into one subtest, or which prevent the bests being sequenced

! as desired, or which affect the test schedule in other ways. Consequently,
; -a second model is then needed to map the requirements from their positions
! in the ordered set to their final position in the test schedule. The con-
' cept upon which this research was based is shown in Figure 1,
. Three vital tasks must be accomplished to execute this schematic con-
f cept, First, for each prototype to be tested, the appropriate factors,
categories and weighting values must be determined. Secondly, a model must
be developed which will map the set of random requirements according to the
parameters determined, The third task to be accomplished is to develop a
re scheduling algorithm to transform the set of ordered requirements into a
: constrained sequence of ordered subtests,
The first two tasks were accomplished by experimenting with actual

suitability tests that were being conducted in the US Army R&D community.

A brief summary of this portion of the research will be given. The third

task of developing a scheduling algorithm has been partially accomplished
i and is included for future consideration, However, it should be noted that
¢ this algorithm has not been used on an actual suitability test as of this
g date,
P S ‘ ST - .
: ‘ - DETERMINATION OF MODEL PARAMETERS, The primary concern is to develop
a model to maximize the flow of information upon which to base the dispo-
sition decision. It is desired to place the most important requirements
first in the testing sequence., The desired placement is a function of the
requirement importance and the effect that the testing of the prototype
against the requirement may have on the overall rate of information flow,
If a model can be constructed which develops a measure that represents the
"Requirement Importance vs Effect on Overall Information Flow" tradeoff for
each requirement, then these measures can be used in specifying and sequenc-
ing subtests. This measure of criticality will be indicated as Ci.

The next task is to identify the factors which are relevant to measuring
Ci‘ These factors will be applicable to any suitability test, but will be

in varying degrees for each prototype. This phase of the research was con-
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ducted by extensive interviews and group discussions with experienced test
officers at a test installation., As a result, five major factors were
identified for consideration and for inclusion into the model, These fac-
tors are shown in Figure 2,

) These five factors should not be considered as being an exhaustive

{ list applicable to all suitability tests. There should be a flexible
method for selecting the factors appropriate to each test analyzed., Conse-
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quently, it is proposed that
test is to present the ahove
and ask them to consider the
considering applicability of

the first step in analyzing a suitability

five factors to the test supervisory personnel
applicability of each factor. In additfon to
these five, it is also essential that they be

N e & g e

given the opportunity to add other factors if needed.

Once the factors applicuble to testing a prototype have been identified,
the importance of each factor, j, relative to the other factors must be
determined. These are simply factor weights and will be indicated by W,,

3

In their ciscussion of scoring models, Moore and Baker (1) stress the impor-
tance of assigning weights to factors in order to insure that the model

-

being developed, it
relative importance
! Numerous means
include simple rank
successive ratings,

reflects the priorities of the decision makers.

Similarly, in the model

is essential that weights be determined to reflect the
of the factors.

are available to determine relative imnortance, These
ordering, correlated simple rankings, ratings, and

The method of successive ratings was selected for this

research because:
a, It is a simple and fast method;
b, It will allow the decision-maker to determine the weights consi-
dered appropriate by each judge as well as the overall group

p weights;
: c. It forces each judge to develop ratings which he feels to be
A . ¢ consistent and;

d.  The method is intuitively appealing. )

For this portion of the research, test supervisory personnel ranked
the factors applicable to the test of a prototype by a simplified version
of the Deiphi Technique. This simplified ranking scheme converged rapidly
§ to a ranking acceptable to each judge. Once the factors had been ranked,

g the method of successive ratings was used to assign weights to each factor,

This portion of the research used two major suitability tests as experi-
mental vehicles. The rankings and weizhts assigned in one test differed
from those assigned in the other, Whether these differences are due to dif-~
ferences in the prototypes for the two tests, or due to differences between
the groups is an unanswered question. However, it appears that the prototype
tested is the most important factor since the members of both groups agreed
that they could rank and weight the factors for any particular test,

After the factors which were considered to be important for inclusion
into the model have been selected and weighted, the next task is to cate-
gorize each of them. Categorization is merely the partitioning of each
factor into levels,

.
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PROBABILITY OF FAILURE The estimated probability that the .

' prototype will not meet the specific
requirement. (Relates to the importance
of the requirement.)

CONFIDENCE LEVEL The estimated accuracy of the estimated
probability of failure. (Relates to
the importance of the requirement.)

IMPACT The importance of the requirement to
the potential suitability of the {tem.
(Relates to the importance of the
requirement.)

DESTRUCTIVENESS The potential destructiveness of the
subtest required for testing the
prototype against the requirement.
$$ela§es to the effect on information

w. P . -

&

CONSEQUENCE The effect that the results of the
subtest evaluating the requirement
would have on the test schedule {f
the requirement is not met, (Relates o

to the effect on information flow.) 'i
' | - /
FACTORS, J
Figure 2
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The categorization of the factors in this research was accomplished
by two test project groups and was generally based on the guidance found
in the US Army Test and Evaluation Command Regulation 70-34 on Risk Analysis
(2), The categories shown in Figures 3, 4, and 5 were agreed upon by both
test project groups., It must be emphasized that these categories are merely
suggested and may in fact be prototype dependent,

In categorizing the estimated probability that a requirement would not
be met, the test groups indicated a preference to use the point estimate of
the probability, This same technique was also used in categorizing the con-
fidence level with which the estimate of probability of failure is made,

Now with each factor partitioned into categories, it is necessary to

. welght the categories of each factor, This portion of the research again

used a modified Delphi Technique to order the categories of each factor.
Then each member of each test panel weighted the categories of each factor
on a scale from one to ten with ten being applied to the most important
category and one being applied to the least important category, The other
categories were scaled between one and ten. The category score was assigned
as the average score for each category.

The net category weight for each factor was then computed as the pro-
duct of factor weight and category score. An example of this is shown in
Figure 6.

It was found during this portion that the categories of Impact and
Probability of Failure were constant in both tests, This may be a random
occurrence or it may be true for all suitability testing, The categories
for the other factors were not so clear and this indicates prototype
dependence. ‘ '

The result thus far has been the determination of the parameters which
may be included in the model, The next task is to determine the parameters
applicable tc each requirement., The results of this portion of the research
indicate that each member of the test group should categorize each require-
ment, Then a composite of these is given to the test project officer for a
final determination as to the category of each requirement. This step in
the procedure i1s seen as a simplified version of the Delphi Technique.

A summary of the parameter development is shown in Figure 7.

CONSTRUCTING AND TESTING THE MODFL, The problem now is to develop a
model using these parameters to transform the random requirements into a

gset of ordered requirements, It is hypothesized that such a model would
be of the form . - - : :

. . K ok ' k
€ =GN Y W), N5 1, ., @, .., N

where C1 is the meagure of criticality (i.e., a number which reflects the

"Requirement Importance vs Effect on Overall Information Flow" trade-off
of requirement 1) and Nj (1) 1is the importance of category k of factor j

relative to the other categories of j for requirement i.
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DESTRUCTIVE

DAMAGING

SENSITIVE

STABLE

Testing against the requirement is potentially
destructive to the test item.

Teéting agafnst the requirement is potentially

damaging to the test item or to components not

under test.

The requirement relates to a component which
is delicate and which could be easily damaged
during the course of unrelated tests.

The requirement does not require potentially
destructive testing and does not relate to a
delicate component.

4

CATEGORIES OF THE FACTOR DESTRUCTIVENESS
ngure 3
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CRITICAL Failure to meet the requirement is sufficient
for declaring the 1;em unsuitable.

IMPORTANT Failure to meet the requirement is not suffi-
cient for declaring the item to be unsuitable
but the requirement will be given major con-
sideration in making the final determination
of suitability.

ROPURINIIUEN N

DESIRED The requirement will be given some considera-

tion in making the final determination of
suitability.
MINOR The requirement will be given 1ittle or no

5 consideration in making the final determina-
. . _ tion of suitability.

% CATEGORIES OF THE FACTOR IMPACT
‘ Figure 4 e
‘ y 7
/
-
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If the requirement is not met, the consequence to the test plan may be:

STOP TESTING
SUSPEND TESTING
TEST DELAY

DEGRADE TEST

OVERTIME REQUIRED

RESCHEDULING
REPEAT TEST
WAIVE

NONESSENTIAL

The test will be stopped for an undetermined
length of tim2 or will be terminated.

The test will result in a slippage of more than
5 days in the test schedule.

There will be a test schedule slippage of from
1 to 5 days.

Testing may continue in a degraded mode while
the deficiency 1s being corrected. There will
be no test schedule slippage nor significant
effect in the determination of suitability of
the {tem under test.

Retesting or additional wark will be required
but there should be no test schedule slippage.

Testing will continue but rescheduling of sub-
sequent requirements will be required. However,
neither rescheduling nor retesting should result
in test schedule slippage.

Testing will continue, but the failed require-

- ment will require re-evaluation ‘during other
‘planned tests. ’

The requirement will probably be waived due to
being overly stringent or beyond the current
state of the art. Failing the requirement
will have no effect on the test schedule.

The requirement will not affect the determina-
tion of suitability and failing the.requirement
will have no effect on the test schedule.

CATEGORIES OF THE FACTOR CONSEQUENCE

Figure §
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FACTOR CATEGORIES CATEGOR NET
_ WEIGHT W, ok SCORE WS ~ CATEGORY,
FACTOR(J) (1,10) 3 (1,10)3  WEIGHT Ny

Destructiveness 3.0 Destructive 1.0 3.0
' Damaging 5.8 17.4
Sensitive 10.0 . 30.0
Stable 6.1 18.3

- EXAMPLE OF FACTOR DESTRUCTIVENESS
V Figure 6 L
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Identify the appropriate factors through test

group discussion.

Rank the factors in order of relative impor-
tance by a modified Delphi Technique followed
by group discussion. Weight the factors by
the technique of successive ratings.

|

Identify the appropriate categories of each
factor through group discussion. -

|

Weight the categories by a 3-step procedure:
(1) Use a modified Delphi Technique to order
the categories within each factor.

(2) Weight the categories within each factor
on an interval of one to ten.

" (3) Compute the net category weight as the
¢ (M

W) and category

product of factor weight
g z (w)J(K

score (HJ) i.e..

[

Categorize each requirement using a simpli-
fied Delphi Technique.

DETERMINATION OF MODEL PARAMETERS
Figure 7
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In determining G, only linear and simple multiplicative functions are
evaluated, Disjunctive and conjunctive functions described by Einhorn (3, 4)
and logarithmic functions were considered but not included in this research,
The primary reason for not investigating these forms fs that the potential
benefits from the more complicated model would be offset by its computational
difficulties, It must be stressed that this research was oriented towards
the suitability test planner who cannot be expected to have an operations
research or other strong mathematical background. _

Six models were evaluated during this research, Models 1 and 2 are

- formulated as: o

n Kk .
C,= I N 3 (1) : (1)
j-l .
n k .
c, = Ei N 3 (1) , (2)

k i . . '
C,= T N (1) . . (3)
1 yu1 3
m
c,= T N § (1) (4)
j=1

where the factor confidence level is not included in the set j = (1,2,...,m).
Models 5 and 6 are respectively formulated as:

k
C,= L N, (1) : (5)
i jo1 i
C Ce gl . .
: k .
. C, = 1 N, )y . . : ; S
i j=1 b (6)

where j denotes the three factors of Impact, Probability of Failure and
Consequence as specified in TECOM Regulation 70-34,
This phase of the research involved designing an experiment in which

‘'significant indications of the relative desirability of adlitive and multi-

plicative models could be determined. Models 1 and 2 are included since it
is hypothesized that one of them is the desired model. Since Model 6 was
proposed by the US Army Test and Evaluation Command for identifying "high
risk" requirements, it was included. Models 3 and 4 were considered since
the factor Confidence Level was not deemed appropriate in one of the test
projects considered in this research, Models 3 and 4 are essentially com-
promises between Models 1 and 2 and Models 5 and 6,

Each model was used to compute the measures of criticality for each
requirement. For ease of reading, the term "score" is used as being
synonomous with the term "measure of criticality,"
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Based on the scores computed by the six models, six sequences of
requirements were generated, The requirement placed first in each sequence
was the one receiving the highest score by the corresponding model. The

. other requirements are then sequenced in order of decreasing scores, As

expected, the sequences were not identical,

Procedures were developed for identifying the most desirable sequence.
These procedures were developed for determining a ranking of the sequences
and consequently a ranking of the models, The purpose was to ldentify the
better function (linear or simple multiplicative) and to identify whether
the model should include the five factors identified earlier or only the
three factors identified by TECOM, It is assumed that since the sequences
are determined by the models, the sequence identified as being the most
desirable must be the output of the best model, Three procedures were
used in attempting to identify the best model,

The first procedure involved the test officer's attempting to rank
the sequences generated by each model, This procedure was found unsatis-
factory since it required him to considier too many variables. For example,
one test had 59 requirements, 5 factors and 7 categories per factor. This
i3 more than 2000 decision variables in comparing just two sequences.

The second procedure involved the test persounel discriminating between
sequences indirectly, The technique used was to have the test officers com-
pare requirements which had received appreciably different rankings in
linear and multiplicative models, The orocedure appeared feasible but no
significant results were obtained, There was no detectable fault in the
procedure used so it was concluded either the results indicate none of the
models is a particularly good predictive model or that the judges were not
consistent in their evaluations,

The third procedure involved simulating the actual results which would
have been experienced if tests had been conducted according to each model.
This simulating procedure addressed the normative side of model building in
that the results of the rankings rather than the rankings themselves are
considered, This approach was found to be successful in that a ranking of

-, sequences (and ccnsequently a ranking of models) is generated with a signi-'

ficant level of concordance among evaluations,

In this procedure, it was hypothesized that if the judges could identify
the simulated tests which they considered to be better scheduled and if these
tests could be ranked in order of desirability, then an ordering of the rela-
tive desirability of the models would result, For this procedure a seventh
sequence based upon randem placement of requirements was generated and was

e S athd

‘identified as Model 7. .

Based upon the simulations for one of the prototype tests (Test A),
the test sequences were ranked by test personnel judges, The tesults are
shown in Figure £,

The judges on this test agreed that each of the models produced sequences
superior to Model 7, It was also concluded that the additive models (i.e.,
1, 3, and 5) were respectively superior to the multiplicative models (i.e.,
2, 4, and 6). It was further concluded that the five factor models (i.e.,
1 and 2) were superior to the three factor models (i.e., 5 and 6). These
conclusions were reinforced by the results of simulations on another proto-
type test (Test B).
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) MODEL
JUDGE 1 2 3 4 7 W
A 3 2 4 1 5 6 7
] 1 5 2 4 3 6 7
c 2 6 ] 4 3 5 7
Correlated i1 s 2z 3 4 '8 1 .686
W* {s the concordance coefficient described by Kendall (5). The
value shown indicates agreement between judges significant at the
.05 Tevel.
RANKING OF MODELS BASED ON TEST A
' " Figure 8 ' < 3
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Based on these conclusions, Models 1, 2, 5, and 6 were simulated for
Test B and presented to a new panel of judges (i.e., mew test supervisory
personnel). These judges ranked the models as shown in Figure 9,

The judges concurred that the sequence generated by Model 1 produced
a test schedule superior to that generated by the others, This sequence
was so obviously superior that further opinions were not obtained.

Test A was ready to begin, so no rescheduling was allorwed for that
prototype based on model results., Test B had sufficient planning time to
make use of the model results, The test officer for Test B was given the
requirement seyuence of 58 requirements for his test as generated by Model
1. He was asked to use this ranking in any way he saw fit in scheduling
the test. ‘ '

In scheduling the test the test officer first identified the consttaints
active for Test B, As it turned out, only technological constraints were

required and these dictated that the test consist of four subtests of multi-
ple requirements, Three of these subtests were required to be conducted -

B T i ST S

‘sequentially and the fourth subtest consisted of requirements which required

evaluation throughout the entire testing period. The requirements which
were required to be placed in each subtest were identified and grouped within
their appropriate subtests. The ranking of requirements generated by Model
No, 1 were then used to order the requirements within each subtest to form
the final test sequence, The ordering of requirements in each subtest was
rank order consistent with the ordering of the requirements in Sequence No.l.
Finally, the time and personnel requirements for the subtests were identi-
fied and a tentative test schedule which required four personnel and 2 weeks
was established, The test officer found the ranking of requirements gener-
ated by Model No, 1 to be of appreciable assistance when establishing the
order in which the requirements would be addressed within each subtest, He
alsn considered the resulting test schedule to be "optimum™, or as nearly
"optimum" as he could determine,

- Prior to the conduct of this research, a tentative test schedule for
Test B had been developed. According to the previously developed schedule,
a planning figure of 16 weeks was established for the time required to
complete the suitability test, Of course, this planning figure is a pessi-
mistic estimate, A most likely estimate of the time required had not been -

‘determined,

Through the application of the me:hods and model described herein,
test schedule was developed with a most likely estimate of the time required
being established at 2 weeks., The test officer did mot wish to establish a
new planning figure, or pessimistic estimate, until he had re-evaluated all 3
possible contingencies, However, he was confident that the new planning ’

.-

. figure would be no more than 4 weeks., No claims are made that through the

use of the procedures and model developed in this research a test schedule

.will be developed which will require less than one-fourth of the time which:

would otherwise be required., However, it appears that the procedures can
result in either a substantial savings in test time or a more accurate
estimate of the test time required.
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RANKINGS OF MODELS BASED ON TEST B
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Finally, the authora and the test officer discusspd the resulting test
schedule, Without benefit of the sequence geneﬂéted by the model or of the
categorizations of the requirements established earlier, the test officer
was asked to justify his test schedule based only upon the verbal descrip~
tions of the requirements and his knowledge of the overall te3t, He was
able to justify convincingly the relative placement of each requirement
‘and found the schedule to be, somewhat to his own surprise, "optimum" from
his point of view., Of course, this determination of optimality 1is based
unog subjective judgment and the validity of che conclusions is only as
valid as the judgment of the officer making them, However, this officer is
an experienced test officer and could reasonably be considered to be an ex-

“pert in his field. Until a constrained oprimization model is developed
which will replace expert judgment in qualitative analysis, the opinions of
the experts in the field will have to be used in the determination of optimality,

Based on the apparent success of this method, it was conciuded that
Model 1 was applicable in developing an ordered set of rejuirements for use
in echeduling suitability tests for a prototype irem, Model 1 is a simple
linear model and ircludes all factors considered important by the decision
mokers involved,

To recap the research thus far, we have determined the parameters deemed
important for inclusion in the model and we have selected an acceptable norma-
tive model to map a set of randomly placed requirements into a set of ordered
requirements, This set of crdered requirements represents an ordered uncor~
strained test sequence of requirements, If we could evaluate each requir:ment
sequentially we would maximize the rate of information flow by the meassure of
criticality, However, this unconstrained testing is not practical since it
does not consider time and personnel constraintson the testing sequence,

This brings us to the third task outlined in the: resear"h concept,

SCHEDULING PROCEDURES. The problem under cénsideration now is to deter-
mine a procedure for developing an actual test schedule which will result ir
the optimum rate of information being generated during the test. The possjoil-
ities of evaluating each requirement simultaneously and evaluating the require-
ments individually and sequentially are considered infeasible and are nut
addressed, This portion of the research assumes' that there are technological,
precedence or proximity constraints which make these type tests impractical,
The following discussion of scheduling ptocedures raquires the adoption of
the assumptions shown in Figure 10, i

Three approaches were investigated in developing test schedules., The
first two approaches considered situations in which the requirements coald
be easily partitioned into logical and practical subtests. The last approach
investigated a precedure to quantitatively assign the requirements to sub-
tests and then order the subtests into a constrained test sequence.

The first approach considers unconstrained test schedulinz where one or
more requirements have already been assigned to each subtest, The value of
each gubtest is determined from the model previously developed and the assump-
tions shown in Figure 10, The time required for each subtest must be esti-
mated by the test planner. These time estimates are presently being accom-
plished so there is no new requirement for the evaluating organizatioen.
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The measure of criticality, C;, is the same
as the value of the 1nformat13n which will
be gained from evaluating the prototype
against the requirements

The value of the requirement is the same
as the value of the information to be

. gained from evaluating the prototype

against the requirement.

"The value of a subtest is the sum of the
values of the included requirements.

There is a linear relationship betwean
the value of the information obtained
from a subtest and the length of time
which will be spent on the subtest.

The time required to complete a subtest
is the same as the time required totest
the prototype against the most time con-
suming requirement included in the subtest.

The personnel required to conduct a sub-
test is the sum of the personnel required

« - to individually evaluate each of the
requirements.

SCHEDULING ASSUMPTIOHS
Fiqure 10
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Procedure A is a two-step algorithm recommended for determining a test
schedule under these conditions. This procedure is shown in Figure 11, )
" ¢ This procedure is a direct application of Theorem 3-10 stated and proved by~
Conway, Maxwell and Miller in their book, The Theory of Scheduling (6).

In situations where the subtests have been established and where prece-
dence constraints are active, a second procedure is recommended, Procedure
B is recommended under these circumstances. This procedure is an applica-
tion of the constrained least cost testing sequence described by Mankekar
and Mitten (7). See Figure 12, )

Basically this procedure involves isolating those subtests for which
the precedence constraints are active and then systematically satisfying
the constraints, After this is done, Procedure A is applied in a manner
which does not violate any of the constraints previously satisfied.

Set 1 consists of those subtests for which precedence constraints are .
active and Set 2 consists of those subtests for which there are no prece-
dence constraints, The matrix R is an m x m matrix,

R = {rij} where m is the number of subtests in Set 1 and o ;
. . : ;
rij = ] if gubtest 1

must precede subtest j; otherwise i

rij = 0, (rii z 0). |
The matrix R reflects all precedence constraints on Set 1, The matrix R'
is identical to R and 18 merely used as a working matrix, With these defi-
nitions in hand, the procedure will lead to an optimal least time test
sequence under the assumptions noted. The develnpment, proof of finiteness )
‘and proof of optimality were developed by Mankekar and Mitten (7). A '
computational algorithm for using this precedure is shown in Appendix 1, :
In these two approaches at scheduling, it was assumed that the subtests
were predetermined., The next approach attempts to quantitatively assign
the requirements to apprupriate subtests, ¢
It is assumed that the only constraint is personnel where only N person-
nel are available for commitmeat to a subtest, It is further assumed that
Vi, Pi and Ti are known where these variables are the value, personnel re-
quired and the time required for requ‘remenc i, respeccively. Vi can be
determined from the model previously developed and Pi and T1 can be esti-
mated as they are presently being done. The problem now becomes one of
designing the best set of subtests which can be sequenced by Procedure A,
This problem is analogous to the n/m job shop problem where the n jobs
(test requirements) are assigned to m machines (subtests), Procedure C,
shown in Figure 13, is presented here only for consideration as a solution
to the problem, Tt draws heavily from the work done by Conway, Maxwell and
Miller., It has received very little testing and has not been applied to an
actual suitability test. However, it 1s simple, intuitively appealing, and
it can be carried out by hand or coded for computer use.
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- Compute Ty/Vy for all {

Construct Sequence S(A)

S(A) = (Sl’ Sz’ooo’ Si’o.o, S H

S(A) is the desired test sequence

T1 = time required to conduct subtest i for each i ¢ {1,n}

Y. = value of subtest i for each 1 ¢ {1,n}

i
n = number of subtests

PROCEDURE A
UNCONSTRAINED SCHEDULING

Figure 11
=223~
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Procedure B

Form Set 1
]

Apply Procedure A to Set 1
‘ |

Form Matrices R and R'

k=1
l
For all i and j for which rij = 1 and for
“1 which si precedes sj, set r{j =2
Is there an i and j for " Label current
which rij = 1 o saquence S(A)'
T R .
‘=Y$s
No Is there an 1 for Apply Procedure A to
| which r{, =1 Set 2 formin
ik ' Sequence S(Ag"
] Yes I
Set k equal 1
to index of Form Set T, of all Integrate S(A)"
next subtest subtests 1 such into S(A)'
in the current T that ryp = 1 - T
sequence T :
Label this sequence
Apply Procedure A s(8)
‘to set T, to form |
ordered set Ti
T ) s ,S(B) is the
i ~ | desired sequence
For a1l {1 and j Place T' : < [
for which rij = 2 4 immediately Co
and s; now prior to Sk END
precedes sq, set .
rij = 1 )
I ' PROCEDURE B
Set k = to index of first COﬂSTRAINED SCHEDULING
subtest in the current sequence o Figur2 12
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Procedure C

Start
1

A |

N
rorm Sequence 1
where T,/V, < T,/V,
[

L
Form Sequence 2

where P, < P,

equence 3
where T, 2 T,

equence 4
where V, ¥V,

of Form BT from Sequence 3 |

L]

—
Add require-

| Add requirements from 1 |

‘| ments from 4

|
{ Add require-
ments from 1

dd require-
ments from 2 g

Add require-
ments from 4

dd require-
ments from 2

errm subtest BT, .

—

r
[?bnm subtest BT;}
!

1
dd requirements
from 2

[Form Subtest BT3J

e — L
| From BT,, BT,, and BT, select the one with max V |

Delete from Sequences 1, 2, 3, and 4 those requirements in
the subtest selected above

[Are all requirementsAglgced into selected subtests? |

Yes

‘ ]
.~ [Apply Procedure A lo-

LIs there a subtest for which pers%nne1 constraints are not activer |
‘ ' ’ ' - Yes

o Label the first such subtest k|

No —_ Is there a requirement, R,, in a subtest below -

. < d -
’ subtest k such that TJ < VT, and Pj <N-P2?

Is there another subtest
Yes+ for which personnel con-
straints are not active

Yes

e

No|

L 11
P?acg Rj into LA
subtest k

/

No———s [ The current sequence is tie desired sequence j————

(]

LV
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ST2: B,D,F Unconstrained

ST1: AE sequence of
A *’5FEEZEEFZ’ ST3: C subtests
A
: |
c ST3: E,F Sequence of
ST1: A,B subtests with
D Procedure | ST2: D,C precedence
B constraints
E
F ST1: A,C Sequence of
“-—-‘-"“* ST2: B ordered subtests

constraints

Procedure | ST3: D,E,F with personnel
c

L .Set of randomly Set of ordered
.+ placed require-  requirements
. ments :

-

. CONCEPT SUMMARY -~ = = =~ -
Figure 14 L
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Basically, Procedure C involves forming four sequences of require~
ments and alternately drawing from the sequences to form trial subtests,
The subtest which contains the most value is then selected as the best
of the trial subtests and the procedure is repeated until each require-
ment 1s assigned to a subtest, A computational algorithm for using Proce-
dure C 1in included in Appendix II,

SUMMARY, The three procedures used during this research can be put
into perspective by relating to the original concept of the research., See
Figure 14. The model developed mapped a set of randomly placed require-
ments into a set of ordered requirements, Procedure A maps this set into
an unconstrained sequence of subtests when the requirements have already
been assigned to subtests, Procedure B maps the set of ordered require-
ments into a constrained sequence of subtests when the requirements have
already been established and there are active precedence constraints,
Procedure C maps the set of ordered requirements into subtests and then
develops the order or sequence for these subtests when there are active
personnel constraints,

None of the scheduling procedures used during this research are com-
pletely satisfying. Each procedure is only a partial answer. What is re-
quired is a procedure which will map a set of ordered test requirements
into an ordered sequence of subtests when there are active precedence,
proximity, personnel, time and economic constraints. This is an area for
future research,

However, it is felt that the portions of the research dealing with
parameter identification and model development are a worthwhile basis for
further research into the problem of test scheduling when there are multi-
ple active constraints,
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" APPENDIX A
COMPUTATIONAL ALGORITHM FOR PROCEDURE B

STEP 1: Form two sets of subtests. Let Set 1 consist of those
subtests for which precedence constraints are active. Let

! Set 2 consist of those subtests for which no precedence i

i : constraints are active. Steps 2 through 15 refer to

! Set 1 only.

? STEP 2: Order the subtests in Set 1 by Procedure A. Index the
! - subtests according to their relative position in S(A)
with the first subtest in the sequence being denoted 51

SO

STEP 3: Form anm x m matrix R = {rij} whare
rgy 2 §f.subtest i must precede subtest j, 3
otherwise rij = 0; and

0; and

i
rij = 1 implies r

ji ® 0; and |
1f rij = 1 and er = ], then T‘ik = ].

e

STEP 4: Form a matrix R’ = {r;j} identical to matrix R.

<

" STEP 5: Set the index k = 1.

< ;' : STEP 6: Consider each pair of subtests i and j. If r,. = 1 and
’ subtest i precedes subtest j in the current sdduence, §
- set riy = 2. ' ‘ - &

STEP 7: I ry} # for all i and j go to Step 15.

STEP 8: Scan R' to determine if rip = 1 for any i. [If there exists
an i such that rjp =1, go to Step 9. If ryf £ 1 for all i,
set k equal to the index of the next subtes% in the current
sequerce am) repedt thio step.

STEP 9: Form set T, of all subtests i for which rik = 1.
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STEP 10:
STEP 11:
STEP 12:

STEP 13:

STEP 14:
STEP 15:
STEP 16:

STEP 17:

Apply Procedure A to set T, to form the ordered set T&.

Place the ordered set T} immediately in front of subtest Sk:

Consider each pair of subtests i and j for which r13 = 2,
If subtest J now precedes subtest i, set rfj =1,

Set k equal to the index of the firét subtest in the current
sequence of subtests in Set 1.

Go to Step 6.

Label the current sequence S(A)'.

Apply Procedure A to Set 2. Label the resulting sequence
S(A)". S(A)" = (S§}. .

Form sequence S(B) from sequences S(A)' and S(A)" by ftera-
tively integrating the Sg into S(A)' such that

TINV] < TIVY < Ta/V43. S(B) is the desired

sequence 4or testing. '

SV ST

[y,
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L APPENDIX B . |
/ ? COMPUTATIONAL ALGORITHM FOR PROCEDURE C !

——

STEP 1: Apply Procedure A to the requirements to form Sequence 1,
For those requirements in which Ti/Vy = T3/V5 place the
more time consuming requirement first {in the sequence.

STEP 2: Construct SequenceRof requirements with the requirements
being ranked in order of increasing value of personnel
required. Resolve ties by placing the more time consuming
requirement first.

STEP 3: Construct Sequence 3 of requirements witn the requirements
~ being ranked in order of decreasing value of T} Resolve
ties by placing the more valuable requirement first.

STEP 4: Construct Sequence 4 of requirements with the requirements
being ranked in order of decreasing value of Vj. Resolve
ties by placing the more time consuming requirement first.

STEP 5: Construct a base-subtest by including in the subtest the
first consecutive requirements from Sequence 3 until the
inclusion of the next requirement in the sequence would
;}olate the personnel constraint. Call this base subtest

§TEP 6; Construct three tentat1ve subtests as fo]lows

a. Add the first consecutive requirements from Sequence 4
to BT until the inclusion of the next requirement in
the sequence would violate the personnel constraint.
Next add the first consecutive requirements from
Sequence 1 to the current subtest until the inclu-

- sion of the next requirement would violate the per-
- sonnel constraint. Finally, to this subtest add the . K
" first consecutive requirements from Sequence 2 until R
the inclusion of the next requirement would viglate '
personnel constraint. Label this subtest BT;.

.
oo

b. Construct subtest BT, in a manner similar to con-
structing BTy. HoweVer, in forming BTy requirements . !
were added to BT from Sequences 4, 1, and 2 in that
order. In forming BT, add requirements to BT from :
Sequences 1, 4, and 2 i~ that order. 1
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STEP 7:

STEP 8:
STEP 9:
STEP 10:

STEP 11:

STEP 12:

STEP 13:

STEP 14:

c. Construct subtest BT3 by adding the first consetutive
requirements from Sequence 2 until the inclusion of
- the next requirement in the sequence would violate
the personnel constraint.

From subtests BTy, BT2, and BT select the subtest with
the greatest value. Note that the time required for each
subtest is the same as the time required for each of the
other subtests since each subtest is based upon BT. Con-
sequently, this step invoives selecting the subtest with
the minimum value of T/V.

Delete from Sequences 1, 2, 3, and 4 those éequifements
included in the subtest selected in Step 7.

1f each of the requirements has been included in selected
subtests, go to Step 10. Otherwise return to Step 5.

Apply procedure to the subtests generated to form Test
Sequence S(A).

Scan S(A) until the first subtest is found in which the
personnel constraints are not active. Call this subtest k

with test time required being Ty and personnel required

geinglzk If no such subtests are located, then go to
tep

Continue to scan S(A) until the first requirement R, is
found such that Ty < Ty and P; < N - P,. Place Ry “into
subtest k. If no such requirbment is located, then return
to Step 1. Scan 1nnmdiate1y be1ow subtest k

Return to Step 10.

Stop. The current sequence is the desired sequence which

; should be the basis of the testing schedule.
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STOPPING RULES FOR SEQUENCING WITH PARTICULAR
REFERENCE TO MISSILE RANGE SCHEDULING*

* Paul H. Randolph
Department of Mathematical Sciences
New Mexico State University
Las Cruces, New Mexico

- ABSTRACT., Monte Carlo methods have been proposed for finding solu-
tions to scheduling problems, One deficiency of these methods has been
the absence of appropriate rules for stopping the sampling processes. Thisg
paper presents stopping rules that not only have been found effective for
a variety of sequencing problems, but algso provide a measure of the quality
of the sequence chosen, Reference to missile range scheduling is made.

MISSILE RANGE SCHEDULING., At a missile range a set of missions are
requested each day, One way to schedule these missions is to take a per-
mutation of the missions and schedule the missions as early in the day as
possible in the order of the permutation, but with no conflict in the re-
sources required for each migsion., Because of the nature of the standard
work day, it may not be possible to schedule some missions when using the
given permutation. Different permutations will give schedules with
different sets of missions that are scheduled and not scheduled.

With each mission there is associated a payoff, so that a schedule pay-~
off 1s the sum of the payoffs of the scheduled missions., If a permutation
is selected by a random procedure, then the corresponding schedule payoff
can be considered a random variable. By taking a sequence of random per-
mutations, a sequence of random variables of schedule payoffs is obtained,
1f "enough" of these random payoffs are obtained, the random schedule
generation can be terminated and the schedule corresponding to the best

of the observed schedule payoffs can be used for the set of missions requested

for the day. The problem, of courre, is to determine how much is "enough"';.
or, in other words, when to stop the random generation of schedule or
sequences, ¢ :

STOPPING RULES FOR INTEGER PAYQF®S, Let xl'XZ"" denote the random

variable of the payoffs associzted with generating successive sequences by
a Monte Carlo sampling process. For the present, assume that each sequence
payoff is an integer and that the objective of the sequencing problem is to
find 4 sequence for which the payoff is maximized. Furthermore, without
loss of generality, assume that all payoffs are positive and bounded above
by the known integer 2. Also, let Yo denote the maximum of the payoffs,

XypesesX s obtained from the first n sequences; that is ¥, = max(xl,...,xn).

Thus, it i3 assumed that sampling will be with recall.

Land ‘ ~

_*Research for thig paper was partially supported under AROD Contract No,

DAHCO4~(-0011 at the Instrumentation Directorate, White Sands Missile
Range, New Mexico.
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" probability function is given by P(X - k]e) = 0

. The probability function for each sequence payoff is the multinomial °
characterized by P(X=k) = p(k), k = 1,...,2. When the values of p(k) are

———

 known, then Chow and Robbins [1], [5] have shown that the optimal stopping

rule is obtained by calculating the expected increase in gross payoff
asgsociated with generating another sequence,

L
T(yn): - kz (-k—yn)p(k)’ T
et 4

o

and comparing this with the relative cost, ¢, of generating a single se-
quence on the computer; that is, 1if T(y ) > ¢, concinue for another obser-

va:ion, if T(y ) < c, stop., The function T(y ) is sometimes called the
stopping rule Tfunction,

Note that this stopping rule states that at each stage of the process,
the experimenter computes the expected gain from taking exactly one further
observation and then terminating the orocess. If the expected net gain
from taking this observation is not positive, then the process is terminated,

- Otherwise, the next observation is taken, and a similar computation is again

performed. This procedure is called the myopic procedure because at each
stage the experimenter does not look beyond the possible outcomes of his
very next observation when making his decision, and for sampling with a
known distribution this myopic procedure is optimal,

Unfortunately, for sequencing problems the values of P(X=k) = p(k),
k= 1,,..,4, are almost never available, However, even though these pro-
babilities are not known, it 1s possible to obtain estimates of these pro-
babilities through a Bayesian analysis, and then substitute these Bayesian
estimates for the p(k) into the above myopic stopping rule function to ob-
tain what might be called a Bayesian stopping rule for multinomial obser-
vations [4].

To obtain these estimates define the %-dimensional vector G-(Ol,...,Oz)

of probabilities such that for the n~th observatior, Xn, the conditional

K® k=1,..., 2, where 0 is
an element of the simplex - . L I < oe ] o E ’ =
- 2 ) 2 “
'S = {0 € E: kzl Gk =1, Gk >0, k= l,eees2}.

jﬂ'\w'"

Since the conjugate prior density [3] for the multinomial is the Dirichlet,
the initial prior densitv of © can be written as e e

-1
£.(6) = I'(m) II mk /F(mk)
0 k= 1
This is the Bayesian prior density of © for observation Xn+1.
=234~
| A _h




X e men v

e r———r < o

e —— e .

Furthermore, since the joint density function for xn+1 and ek is ekfn(e),

then the matginal‘distribution

pn(k) - (mk+nk)/(m+n). k= 1,.00,2,
1s the probability that X  , will take on the value k. o
This value of P(Xn+1-k) = pn(k) can be substituted for p(k) in the
stopping rule function, T(yn), to obtain what might be called the "Bayesian

stopping rule function”, which will be denoted TB(yn), and is given by

, 1
TB(yn) = I

£
z (k-y ) .
& o (keydmy

(k=y )b, (K) = (awrn) ™"
n k yn

Comparing the value of this function with the value of ¢ will determine a
stopping point; that is, if TB(yn)‘i c, the sampling of sequence payoffs

should be stopped. Since n is a monotonically non-decreasing function of
n, then TB(yn) is a decreasing function of n, which approaches zero as n

increases. Thus, sampling always will eventually stop. ‘

This Bayesian stopping rule function depends on the specification of a
set of parameters associated with the Dirichlet prior density function. 1If
these parameters, Dyseeesdy, are examined, it will be noted that they can

be written in terms of the initial probabiiities as m = mpo(k), k=1,...,2.

Since the p,(k) are essentially normalized values of the m , it may be pre-
ferable to Specify these initial probabilities, po(k), k= 1,000s2, (of

which only 2-1 are independent) and the parameter m, rather than to estimate
the mkdirectly. This can be done by an arbitrary selection of probability

values, by specifying a discrete probability function, or even by integrating
a continuous function over a unit interval containing k.

The parameter m has 'some interesting characteristics.. A lewer bound
for m is zero, and this can be a greatest lower bound only when po(k) -

1/2, k = 1,.,.,2, As m -+ 0, then TB(yn) + 0, and the Monte Carlo process
stops with the first observation, implying no confidence in the initial

probabilities., On the other hand, as m + =, then .
‘1 I o L ;o
T 41 ,) = mlam) L (k=y Jpy(k) » I (k=y Jpg (k) = T(y)
. k-yn k=yn c

which is the expected improvement for a known multinomial distribution, in-
dicating a complete confidence in the initial probabilities., Thus, the
parameter m can be iInterpreted as a coefficient of confidence in the initial
probabilities. In fact, it can be considered as being analogous to the

sample size that would be needed to obtain through a random sample the same
quality ~f estimate of po(k) as those given by the specified prior probabilities.
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. STOPPING RULES FOR CONTINUOUS PAYCFFS, In missile range scheduling
the schedule payoff can be taken to be the sum of the payoffs of scheduled
missions, Each mission payoff is assumed to be a quadratic function of
the mission priority, weighted by a "project readiness" factor, Project
readiness is the probability that the contractor will not cancel the mission
after it has been scheduled. If the priority for mission 1 is given by r,

and the probability of noncancellation is LI then the schedule payoff is

2

x’ Zqiri
where the summation is over all missions that can be scheduled when using a
given permutation., Since 9y is a number between 0 and 1, it is evident that

the payoffs will not be integers, Furthermore, the number of different
possible values of the payoffs is large and also the values of these pay-
offs are unknown, Thus, for missile range problems the payoff can ewsen-
tially be considered a continuous random variable,

To determine the prior distribution of 8 for discrete payoffs, it was
proposed that values of o be obtained through the specification of the

initial probabilities po(k). One way of estimating these initial probabili~-

ties is by integrating a continuous function over a unit interval that con-
tains the point k., This suggests that a limiting procedure could result in
a stopping rule for continuous payoffs,

Suppose that the sequence payoffs can assume arbitrary values in the
interval [0,2], and let A],...,Av be any partition of this interval, where

A, is defined as A= (xﬂ_l,xi), k= 2,3,...,v, A - [O,Xi]. Suppose H(x)
is a distributicn function of [0,%2] such that

Poa) = fﬁk dH(x) = H(x}) - H(x;_;)

_c Lo ek

" reflects the experimenter's prior 1ntﬁition for the initial probabilities

for each partition Ak' k =1l,...,2, regardless of the method of partition-

ing. 1If x; is any point in Ak’ then the integral defined by
e . i e ’ \) o - . . . .
‘mGeny T | ey JAHGO = Lim m@) Tl £ (e ) H(x) - HO! DTG 3 y),
n k ’n k-1 Tk —
Yo ] k=1

is the expected gross improvement in payoff for an additional observation,
and is denoted by TB(yn)' I(x) is the usual indicator or characteristic
function, _ -

As an example, assume the normal distribution reflects the experimen-
tor's beliefs for a particular set of initial probabilities, If ¢ denotes
the standarized normal distribution function (zero mean and unit variance)
and ¢ 1ts corresponding density function, then the stopping rule function
becomes
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vhere 1 and ¢ are the mean and variance, respectively, for the prior dis-
tribution, It is suggested that a set of iricial observations be used to
estimate the parameters u and o,

EXAMPLE, In Figure 1 i{s given the results when 40 missions were re-
quested, and where the total number of different resources for these missions
was 116, 1If all 40 missions had been scheduled, the schedule payoff would
have been 189,5. o .

By scheduling via a Monte Carlo procedure, a total of 19 schedules
wvere generated, The corresponding schedule payoffs, X, are indicated in

the second column, with the maximum payoffs, Ya? given in the third column,
In the next column are the expected payoffs, Tl(yn)' In this problem the

value of c was 0,001, Three missions, all of low payoff value, were not
scheduled,

It should be noted that the expezted payoff from continued sampling
is 0,00090, That is, if the computer were permitted to continue generat-
ing schedules, the amount of expected improvement of schedule payoff would
be only this much over the maximum of 186.88 that was obtained by stopping
wich the nineteenth observation. This, of course, is s measure o the
quality of the schedule finally chosen.

CONCLUSIONS AND LIMITATIONS. Myopic stopping rules have been applied
to missile range scheduling at White Sands Missile Range with very satis-
factory results, It is possible to generate a schedule in one-twentieth
of a second and thus in a few minutes hundreds of schedules can be observed,
and the Bayesian stopping rules are very effective in determining the
stopping point in the sampling procedure,

However, there exists one problem, It has been shown that the myopic
procedure is optimal for random variables with known distributions., When
the probability values are not known, then the myopic rule is not appropri-
ate, The fundamental distinction is that when the distribution is completely
specified, the observations are independent; that is, knowledge of the
values of some of the observations provides the experimenter with no addi-
tional information about the values of the other observations., On the other
hand, 1f the distribution involves the value of one or more parameters that
have prior distributions, the observations are dependent under their joint
marginal distribution. Hence, knowledge of the values of some of the obser-
vations will, by providing information about the value of the parameters,
also provide information about the values of the other observations. This
difference between independent and dependent observations distinguishes
these two types of problems, The observations in a random sample from a
distribution involving unknown values of parameters will no longer be
independent,

In general it is felt that myopic rules applied to the random variable
with unknown probabilities, using a Bayesian analysis, will provide stop-
ping rules that are "near-optimal", Preliminary analysis for the multi-
nomial indicates that such a rule may be conservative, that is, requiring
more observations than necessary before stopping, but this is not certain.
So, until more accurate results are available, the myopic rules will be
used as good approximations that will vield "near optimal™ sequences,
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Computer Printout of
Monte Carlo Scheduling
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REFERENCES

P

PAYOFF SO FAR

<

189,500

FXPECTED IMPROVEMENT
- 1e0NIN00

© Je0O1IQNYQ
1enNNL00D
f¢001000
1001000
1001000

013012
003502
«0N3LIN
e(1N2458
eN0201 2
oNAL6Y4Y
«NN1354
o001151
e001148
eNOI10D49
«00110}
«00105s6
¢ 000900

Chow, Y. S. and Robbins, H., "On Orciral Stopping Rules," Ziet,

Wahrscheinlichkeitstheorie, 2:33-49 (1263).

’<1DeGroot ‘M., "Some Problems of Optimal Stopping,

30 108-122 (1968).

Jour, of Roval

Raiffa, H. and Schlaifer, R,, Applied Statistical Decision Theory,
Harvard Business School, 1961,

Randolph, P. H., "Optimal Stopping Rules for Multinomial Observa-

Metrika,

14:48-61 (1968),

Robbins, H., "Optimal Stopping," Am. Math Monthly,

2.
- Stat. Soc.,
3.
6.
tions",
5.
(1970).
\\\
~
\\\\\\\;:1 ./
—_— Sl e
e
AN

-238-

77:333-343

O o

T e o b M

~~ vt




APPROXIMATE CONFIDENCE LIMITS FOR P(Y < X)
J. R. Moore and M. S. Taylor

U. S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

ABSTRACT

A procedure is given for constructing approximate confidence limits for
P(Y < X), where X and Y are independent random variables; the distribution of
Y being known and normal and the distribution of X being unknown and positively
skewed. A problem of determining the probability that the sidewall of a
combustible cartridge case will not be burned through prior to firing an
artillery round in an automatic firing cycle, given that it is ignited by
smoldering residue after chambering, is used to illustrate the technique. A
listing of a computer subroutine for the procedure is also given.

INTRODUCTION

An artillery round with a combustible cartridge case is fired from a
weapon using a control system which loads the round, aims the weapon and fires
the weapon, all automatically. At least two rounds of ammunition are fired
in this fashion and some smoldering residue from the preceding round may
remain in the chamber of the weapon when a round is loaded. Let R be the
conditional probability that the sidewall of the cartridge case of the chambered
round is not burned through prior to firing, given that it is instantaneously
ignited by smoldering residue, The problem is to find both a point estimate
and a 95% lower confidence limit for R, using information concerning the
gun cycle time and data on cartridge case burn-through time obtained from
laboratory tests. '

There was sufficient gun cycle time data available to justify the
assumption that the elapsed time between chambering and firing a round is
normally distributed with (true) mean p, = 2.9 seconds and standard deviation
o, = 0.13 seconds.

An experiment was conducted to estimate the statistical distribution of
cartridge case sidewall burn-through times. One hundred and fifty samples of
sidewall material were taken from several cartridge cases and tested. Each
sample of sidewall material was ignited and the elapsed time between ignition
and burn-through was measured by three observers using stop watches. No data
were obtained for two samples and there were some missing data for some of
the item under consideration, it was necessary to sample cartridge cases
from only one lot and assume that this sample was randomly selected from the
conceptual population consisting of all such cartridge cases which will be
manufactured. It was suggested that the validity of this assumption should
be verified by further testing when a sample which i1s more representative
of the production item can be selected.
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PRELIMINARY STATISTICAL ANALYSIS

The burn-through data were analyzed assuming a one way
classification, components of variance (random effects), analysis of
variance model with unequal number of observations per cell. The
component of variance attributable to observers was much smaller than
* the among samples component of variance (0.08 sec.? vs. 2.23 sec.2) ;
and was not statistically significant at the « = 0.001 level of significance.j
It was concluded that the precision of measurement resulting from the
use of observers with stop watches was adequate.

The data were used to test the hypothesis of normality of the
distribution of burn-through times, a requirement of the Church-Harris
procedure used for estimating R. A chi-square goodness of fit test
rejected this hypothesis at the 0.05 level of significance but
accepted it at the 0.01 level. Since the chi-square test, which
is relatively insensitive to departures from normality in the region
of the tails of a distribution was inconclusive, the statistic
by = n[z(x1 - i)3]2[z(x1 - %)21°% was calculated and used to test
the hypothesis that the distribution 1s not skewed. This hypothesis
was rejected at the 0.02 level of significance (a two tail test with
0.01 probabiiity in each tail was used) so it was inferred that the
‘d1§tr1bufion is positively skewed. Next, Craig‘s'procedhrexfzj was
used to determine which member of the Pearson system of frequency curves
best describes the data. It was found that the Pearson Type III curve
(a gamma density function) fits the data best. From Carver's table of
the standardized Type III function [3], it was verified that the Tower

tail of the Pearson Type III curve contains less area in the interval "
“» < X < u+ a than a normal curve with the same mean and variance.

This indicated that a normality assumption would leave to conservative

point and interval estimates of R, 1. e., 1f the estimatos are biased,

the bias will be such that R is underestimated.
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for the purpose of estimating R, it was assumed that cartridge
case sidewall burn-througn time is normally distributed with estimates
of the mean and standard deviation of the distribution being X=9.7
seconds and, S ~ 1.49 seconds, respectively.

APPLICATION OF A MODIFIED CHURCH-HARRIS PROCEDURE

“" The procedure used for estimating R is based on the work of Church
and Harris [1]. Let the random variable X be the cartridge case sidewall
burn-through time in seconds and the random variable Y be the gun cycle
time in seconds. Assume that X and Y are statistically independent and
both normally distributed. Introducing the notation

E(X) =
VAR(X) = o2

CE(Y) =y,
VAR(Y) = o2

and defining the random variable W = Y - X, it follows that W is nommally
distributed with E(W) = u, - u; and VAR{W) = o2 + o2. Then

2
R=P{Y <X} =P(Y-X<0}=PW<O0}

W= (up - u) ‘ '
We next make the transformation Z » ——— —— 5o that Z is
9a + % ‘.

distributed norma‘l'ly with El(Z) = 0 and VAR(Z) = 1. Tﬁen

Hy - U
R'P{H<0}'P ZMaz,,,G% +u2'\l]<0f 'P{<l 2}.
. ) 1

, i . , . .- a% + qg j
WL )
()

i+
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(‘(uhere o(+) 1s the standard normal cumulative distribution function.:

Substituting the known values u, and ag and the estimated values
W1 = X and 62 = 52 into (1) yields the point estimate

N ( x_uz)
R o} ——e
ST+ oZ
- Now, having a point estimate of R, we proceed to approximate
the probabi1ity distribution of the random variable R and use this to
construct an approximate 100(1 - y)¥ lower confidence 1imit for R.
In doing so, we make use of the fact that X is normally distributed
with E(R) = u;, and VAR(R) = o?/n; $2 1s asymptotically normally
distributed with E(S2) = o and VAR(S2)s20}/(n-1); and that X and $2

are statistically independent. . : !

2 3

Let T = 52 - of so that E(T) = O and VAR(T) = ﬁ' o

z

and define §
X - Y2 i ) ] §

Expanding V in a Taylor's serfes about the point [E(R), E(T)] * (41, 0)
we obtain
o Reup oyl s )T

v‘azl +oZ "2 ("c.vl2 +o? '

‘ .
with probability one.
Because of the indenendence of R and T, the dlstribution of V is T

© " " asyasymptotically normal with

RTERTY

/2 + o2
1 %

E(V) =
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and

2
a2 -~ ofluy - ug) :
I R

a§ \n-1) (o2 + 02)?
Using S2 to estimate o? and X to estimate u1 we obtain as an estimate

of the standard deviation of V

, 1/2
- S [1 1 SZ(x - UZ) ]
oy ——| 5+3 >
T olaaglt st at)
Since R = 0(2-.—3 )- o[E(V)]
o2 +.02
and
: -1
p{V_;_‘;.E_Q’).< e (1 -7)}'1 -y
it follows that”
P R>o[V-0-l ('l--y)av]}m‘l.Y s T2y

We use {2) to obtain the 100( 1 - v) % Tower confidence Hm‘it for R as

-1 .
oo =elv -0 (1 -v)3 ).

T l-y
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COMPUTATIONAL RESULTS

For the combustible cartridge case problem we want a 95% lower
confidence 1imit for R. Since ¢ 1(.95) = 1.645, this limit is given

LCL g5 = o(V - 1.6455,).

A computer program (Appendix A) was prepared to calculate V.VR{ a

and a 95% lower confidence 1imit for R. In this particular problem a
95% lower confidence 1imit of 1 - 10”% was considered satisfactory to
assure the margin of safety required. The 95% lower confidence limit
was determined to be 1 - 0.2 X 10-%, |

Next, the question of how much the mean gun cycle time can be
increased and still leave a 95% lower confidence limit of 1 - 10-%
for R was considered. To answer this question it was assumed that the
coefficient of variation of the random variable Y, o2/uj, remained
constant as u, increased, from 2.9 seconds to 3.9 seconds, in steps of
0.1 seconds. V, R, Gv and the 95% lower confidence 1imit for R were
calculated at each step. It was found that the mean gun cycle time
can be increased as much as 0.5 seconds without the 95% lower confidence
1imit for R falling below 1 - 107%,

SUMMARY AND CONCLUSIONS

‘" The application of the Church-Harris technique to the combustible :
. cartridge case problem can be summarized as follows: The analysis

depended on two critical assumptions; a) the sample of cartridge case
sidewall mater1a1 used to obtain burn-through time measurements was a

random sample'from'the conceptual population consisting of all cartridge
cases of the same type which will be manufactured in the future andrb) -

the distributions of X and Y are normal. Assumption a) seemed

‘questionable and it was suggested that further testing be done to

verify it. Assumption b) was not satisfactorily established by the
data but the analysis indicated that, if the assumption is not valid
the inferences drawn from the study will be on the safe side, i. e.,
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R will be underestimated. The conditional probability that the sidewall
of a cartridge case of a chambered round will not be burmed through prior
to firing, given that it is instantaneously ignited by smoldering residue

o remaining from a round previously fired, was estimated to be 0.9999971 with

a 95% lower confidence limit of 0,9999779., It was also determined that the
mean gun cycle time can be increased as much as 0.5 seconds (a 17% increase)
without the 95% lower confidence limit exceeding O. 9999, provided that the
coefficient of variation remains constant. . . :
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from Stress-Strength Relationships". Technometrics 12, 49-54.
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APPENDIX A

The following is a listing of a subroutine CHARv(Gmnth-ﬂARris) and
a representative driving program writtem for this study. Notice that CHAR

‘requires as input X(a vector of data), Hoy O%N Y, N and outputs X S R av,
D

and LCL. Surboutine CHAR calls subroutines and FINVND to evaluate
the normal distribution function and the inverse of the normal distribution

function respectively.

The output of the sample program is formatted as appeats helow. The
dimension statements (DIMENSION X(500)) appearing in the driving program
may be modified to accommodate the data available.
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STATISTICAL EVALUATION OF FLIGHT TEST PERFORMANCE
OF THE HELICOPTER LIFT MARGIN SYSTEM (HLMS)

A . _Erwin Biser and Ronald Kurowsky
Avionics Laboratory, USAECOM
Fort Monmouth, New Jersey

ABSTRACT. An item urgently needed by utility aircraft is a measurement of
1ift margin, Lift Margin i1s defined as the maximum available 1ift minus
the effective gross weight of the aircraft. It is the intent of this
program to define a method whereby this value is automatically presented
to the pilot at all times.

Such a system is presently being designed and built under the auspices of
the Joint-Army-Navy-Aircraft-Instrument-Research (JANAIR) program. This
system will also have the added capability of forcasting Lift Margin (L.M.)
to and at a given destination if altitude and ambient air temperature are
known. The factors that are most likely to affect the performance of

HLMS are torque, air temperature, altitude, fuel weight, and aircraft weight.

The flight test evaluation of HLMS will be performed at US Army Systems
Test Activity (ASTA), Edwards AFB, California; and data collected on a
pulse-code-FM modulated (PCM) system will be reduced to digital format for
evaluation. A reference air density system, corrected for humidity and
calibrated by the National Bureau of Standards will be used to define errors
caused by calculating air density directly from pressure and temperature,

A statistical analysis of the performance of the entire HLMS and its

subsystems (components/sensors) is being undertaken by means of error
models to determine and validate the effectiveness of HLMS. The objective
is to obtain regression equations of 11ft margin as a function of torque,

* temperature, pressure, etc.

Lift Margin (L.M.) = Maximum Available Life (MAL) - Effective Gross Weight
(EGW) LM=O=the point at which the aircraft carnot hover at a higher alti-
tude under 1ts present loading conditions.

. INTRODUCTION. The present work was undertaken because it was realized that

the safety and utility of helicopters would be substantially improved if.

the pilot knew at all times the 1ift capability of the vehicle. There have
been a number of accidents wherein the major cause was attributed to the
inability of the pilot to accurately assess the lifting ability of the
vehicle and the helicopter "stalled". This phenomenon, usually referred

to as "settling—with power", typically occrrs when the helicopter attempts

to take off or land at high vehicle gross weights and high density altitudes.
If a helicopter should land in the early morning when the air is cool and
relatively dense, it might be impossible for the helicopter to ta.e off

with the same load in the afternoon when the air is warm.
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Theoretically, it is possible to account for temperature, pressure,
humidity and varying loads by the use of slide rules and charts supplied
in aircraft handbooks or manuals but such is simply not convenient or

fast enough to be practical im most operating situations, In additionm,
there is the tendency to feel that once the computation has been made, the
results will hold for a substantial length of time. Changes in ambient -
conditions over a period of just a few hours may completely alter the
capability of the helicopter.

For these reasons a Helicopter Lift Margin System is extremely. desirable,

‘Such a system will indicate to the pilot the present potential 1ift in

excess of the weight of the helicopter.  Therefore, before slowing down
and landing the pilot can check the helicopter's 1lift margin and determine
i7 it is safe to hover and complete a vertical landing, or if a rolling -
landing (STOL type) should be made, or if in fact it is totally unsafe to
lad in a restricted space.

The major objective of the Helicopter Lift Margin System is to demonstrate
the feasibility of continuously computing helicopter lift margin with a
desired accuracy under varying operational conditions. Other objectives
such as determining the 1lift variations due to air density measurements
with and without humidity inputs and the empirical use of torque to
measure fuel consumed will be studied.

DEFINITIONS OF PRINCIPAL PARAMETERS:

Helicopter Lift Margin = Maximum Available Lift - Effective Gross Weight

Maximum Available Lift (MAL)- The maximum left that can be generated by
the rotor under ambient conditions of air temperature, air density, alti-
tude, air speed, ground effect and engine characteristics.

Effeqﬁige Gross Weight (EGW)- The apparent veight of the helicopter as
"geen'" by the rotor under hover conditions considering air demsity, ground

effect and engine characteristics.

< o5

‘UNDERLYING CONCEPT A concept by which lift margin may be obtained is

illustrated in Figures 1 through 3.

As shown in Figure 1, 1ift margin is obtained by generatiﬁg a current
proportional to "Potential Lift"., A second current that is proportional

to weight is subtracted from potential 1lift. The remainder represents lift
margin, L e

Figure 2 illustrates that available lift is obtained from the computation
of potential horsepower multiplied by the ratio of 1ift to horsepower.
Potential horsepower 1s that horsepower that can be obtained from the
engine under the existing ambient conditions. 3Similarly, the ratio of 1ift

to horsepower is that ratio which holds for the existing ambient conditionms.

Figure 3 shows the general concept for obtaining helicopter weight, The
horsepower actually being used is measured and converted to weight by
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multyplying with the lift-to-horsepower ratio appropriate for the existing
ambient conditions. This ratio is identical with the ratio used for the
potential 1ift computation,

The weight of the helicopter is not computed continuously but is computed
under flight conditions suitable for the measurement. At other times the
weight servo stores the weight so that it is available continuously. The
weight may be measured while the helicopter is hovering, with or without
wind, with its wheels within a few feet of the ground, i.e., within a
fraction of the rotor diameter of the ground or in-ground effect (IGE).
The other suitable flight condition is hovering out-of-ground effect
(OGE) at zero-indicated air speed; i.e., the helicopter is hovering in
the air mass, not necessarily with respect to the ground.

The rest of this article was>reproducéd photogfaphiéally ffém the
authors' manuscript, .
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ITI. SYSTEM DESCRIPTION

-FLIGHT TEST CONSIDERATION:

Question: Can the feasibility of the helicopter 1ift margin system be

demonstrated with a meaningful flight test program which avoids the com-

plexity, cost, and time requi;ed to implemenf the complete system?
Answer: Yes, £he basic system feasibility can be demonstrated by flight
testing the simplified version of the helicopter 1lift margin system as
shown in Figure L.

Figure 4 illustrates a method of representing the system required to
determine MAL and EGW. It is noted that the amount of fuel consumed is
obtained by means of an empirical equation based on Torque (Q). The effect
of IGE/OGE increases 1ift by approximately 15% in-ground effect.

Another item is destination 1ift margin. An attempt to obtain a measure

of this parameter consists of mechanically inserting altitude and temperature

into the system with the readout presenting the expected 1lift méfgin.

- Implementation: To simulate the helicopter/engine characteristics in a-

ébmputer.

To apply inputs to the computer representing engine torque, rotor speed,
alr temperature, altitude, air speed,'fuel yeight,_load changes and ground
effect. - - S |

To compute and dispiay continucusly and automatically helicopter 1ift

margin and/or effective gross weight.

To prove feasibility, three bssic concepts of the helicopter 1ift margin

system must be verified.
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1. The helicopter/engine dynamic characteristics can be simulated in

a computer such that maximum availeble 1ift can be dynamically computed.

2. The effectivq;grbss weight of a helicopter can be accu;ately

measured during a hover maneuver.

3. The difference between maximum available lift and effective gross
velght is helicopter 1ift margins o
Flight test of ﬁ hover 1lift computer will verify the above basic concepts.
Lift is derived from the basic equations of helicopter performance

(Gesson & Meyers, "Aerodynamics of the Helicopter").

L = Crﬂkzp(wR)z Lift

Q = canzp(wR)za Torque

Py = Canzp(wR)3 Horsepower
where:

R = rotor radius -

P = air density

w = rotor angular velocity

Cp = 1.k cb2/3M‘ S S T )
M = {Figure.of merit of rotor sy;tem ‘ 7 v

By operating the aircraft engine at a constant speed (maximum rpm) and

using charts available in’UH-IB helicopter manual we obtain 1ift as

Lift - vmo(kll’)u:;ol/3 + bp - - c
Mo = gr/p)?/3
bo = -997 (a constant)
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By proper manipulation 6! this equation and charts from the cperator's §
handbook ;

: P e . : 'P b ¢ -
ML = KgliQnePo (Ky + KT) + Kgfo (K5 + KDt

P
BV = KK+ KgPo (K v DT
4 -1
ams = Qg|F, (K, + xzr)]

It is these equations that will be used to compute Lift Margin in the HIMS.
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III. OBJECTIVE OF EXPERIMENT

Helicopter Lift Margin 1is defined as the difference between Maximum
Available Lift and Effective Gross Welght. The éccuracy of system 1s

dependent upon the accuracy of Maximum Available Lift and Effective Gross

‘Weight. The objective of the experiment is therefore to measure the errors

in Maximum Availasble Lift and Effective Gross Weight.

INDEPENDENT VARTABLES OF THE SYSTEM:

1. Ambient temperature (T)

2. Compressor Inlet Temperature (CIT)
3. Absolute Pressure (P)

4. Relative Humidity (RH)

5. Torque (Q)

DEFPENDENT VARTIABLES:

1. Effective Gross Weight (EGW)

2. Maximum Available Lift (MAL)

‘ Lk ¢
4 R < - < B Cov

3 Fuél Flow :
4. Alr Demsity (0) . L
EGW =  f(Puel Flow, Hover Torque, Air Density)
CMAL- = g{Fuel Flov, Maximun Available Tqrqué, Air Density) ,j
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IV. OPERATIONS AND PROCEDURES

Below 1s described a typical operation of the HIMS, including the

_ initial elements of acquiring the aircraft effective gross welght and air-

craft engine potential.

1.1 TOPPING.

To store the engine potential, the pilot will, after
the aircraft is airt;ome and the HIMS is turned on,
operate the engine at maximum take-off powerv, putting
the craft into a sufficient climb angle to limit the
airspeed to a suitable value. The (ENTER DATA) switch
is operated along with the out-of-ground effect (0GE)
end (EXISTING) switches, the (TOP) pushbutton depressed
to enter the engine maximum availeble torque, Qy. When
the (TOP) pushbutton becomes illuminated, Qy has been
stored in the Qyg memory, correction of QM to the
maximum standard-condition torque, Qug, being performed
automatically. At this point the (TOP) pushbutton may

be relegsed and engine power reduced, and the (ENTER

. DATA) switch jrestorgd'( to the‘(DISPLAi DATA) condition

K :attex-ntion being given (automati

1.2 WEIGHING.

If the (TOP) pushbutton is operated after the (DISPLAY
DATA) switch is activated, Qg ¥i11 be displayed, proper
limit. ‘ L
To store the aircraft effective gross weight (EGW),

the aircraft is brought to a hover in level flight out-
of-ground effect, the (ENTER DATA), (OGE), and (EXISTING)

switches all being activated. The hover pushbutton is

T~ -260-
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 depressed until it becomes 1lluﬁiheted,iindieaﬁing

that the aircraft weight has been stored in the EGW
memory. This weight 1s automatica;ly updated fo? fuel
censumption, as eay be demonstrafed by operati;g’the
(DISPLAY DATA) and (HOVER WEIGH) (weight) switches

'upon which the steadily-decreasing gross Qeight vill

be displayed.

1.3 Lift Margin. Once the topping (Para 1.1) and weighing (para 1.2)

operations have been performed, the HIMS will reed out
1ift margin continuously in pounds of 1lift capability

for the ambient conditions surroundiﬁg the aircraft.

This data will be qualified appropriately by the operation

of three switches whose functions are described below.

1.3.1 (COMP DENS/DIR DENS) PUSHBUTTON. This switch selects either a

computed or externally-supplied value of ambient air

density for calculation of rotor 1ift. The selection

is specific to this model of HIMS only, and is used to

‘compare the two methods of deriving air density as applied -

to the computation of rotor 1lift.

1. 3.2 (OGE/IGEQ PUSHBUTTON. This switch is used to increase the

<

computed maximum available lift (MAL) by about 15 per-

cent to epproximate the effect of the ground (2-foot skid -

height only) in 1ift margin and weighing operations.
For irstance, an OGE 1ift margin can be computed from
an in-ground-effect (IGE) weight determination. The
manually-controlled Hover Lift Computer was not so

arranged ,

i T St va O e s ot A o8 i 1 ©
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In order to develop error models over the entire operational range of
the Lift Margin System, altitude should vary from sea levgl to 10,000 feet;
temperature from 0°C to +25°C and relative humidity from 10% to 100%. To

accomplish these variations, four test locations are to be used:

1. Oxnard, Calif. © Sea level
2. Edwards, AFB, Calif. 2300 feet
3. Bishop, Calif. 5300 feet
4. Coyote Flats, Calif. 9lo0 feet

Eleven flights per location will be flown. The first flight to check
MAL and engine performance, flights 2-10 wili consist of three fligﬁts per
day; one in early morning, one in late morning, and cne in early evening for
3 days. The eleventh flight will again check engine degradation over this
period. - '

By use of these locations It 1s expected that a suitable variation in
all these parameters may be achieved.t

" Another hypocthesis to be tested is that relative ﬁumidity will have

little or no effect on Lift ﬁargin; By use of the m;dified alr density ‘

equations given by the National Bureau of Standards, error models will be

-developed to show the effect of air density measurements made with and

without the relative humidity input on the performance of the Lift Margin

¢

Syétem.
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V. EdROR MODELS AND REGRESSTION EQUATIONS

It 1s assumed that the data, the output of the flight tests, will permit

of the construction of regression equatiqns. These equations will establish -

: : i
(probalistic) functional relations between Lift Margin, air density and f

Torque; and pressure (a subsystem relationship)

It is also assumed that in view of the anticipated complexities of the - !

system and the difficulties of obtaining independent estimates of the effects

of the control variables, a predictive linear model will yield the salient

characteristics of the behavior of the Lift Margin System response.

The selected independent variables will be tried and testeli in the
regression equetions. Confidence Intervals about the coefficients will be

determined. This type of model will provide insight as to the resﬁonse of

the 1ift margin system; and suggest guidelines for more meaningful

experimental design in this area. The model will test the stability of

the parameters over the sample space, i.e. the operative range of the
controliled (and uhcontrolled) variables.

1. Types of Linear Mcdel

O

a. ECM) = a 4+ “ ‘
) o T Xt X

+Q3x+a XZ

3t Xy i

%2 o

Foos Xy g x1X3 o o g

+ et b

3

7

This 1s a linear model, linear in the parameters a3 i=20,1,..... »8. %

W

The highest power of an independent variable is called the order of the model.

It is to be noted that the linearity of a model refers to the linearity (or

. Lk
e A R SR
AR e ke
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non-linearity) of the coefficients.

The test data will enable us to obtain estimates of the <true coefficients

s

ar LX)
o’ 01. ’ » 38

X Torque
Xé = Air density

x3 = Pressure

Estimation theory will be applied to obtain estimates of these coefficients:
by, by, b2, etc. with tolerable confidence limits. The ultimate purpose it

to obtain an "optimal" regression equation.

ERROR MODELS

The error models are of significent impact in that they will establish
criteria for measuring the performance of'the Helicopter Lift Margin systen.
The efror models will also enatlie us to compare the performance of the ‘
system with respect to the standard reference provided by a strain gauge.
Distributions 6f errors for vario;s levels of torq;e, pressure (and altitude)

. will be obtained. Estimates of the means and the respective standard errors

1

* (of the means) will be obtained.

The error model comparing the effect of air density as computed by the

v

NBS Air Density Equation (on the Helicopter Lift Margin System) with that

‘ computed by the algorithms qf thé Transonics Computer is of séecial iméortance.
It‘will be uéed to validate the equations developed by the National Bureéu
of Standards (NBS). One of the error models will compare the air density

computed by the NBS equations with that computed Ly ASTA.
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Lift Margin

Maximum Availuble Lift
Effective Gross VWeight
Temperature

Comprescsor Inlit Temperature
Pressure

Alr Density

Torque

Maximum Standard Torque
Static Pressure (absolute)
Out of Grcund Effect

In Ground Effect

1.0834

~0.00555

0.94G90

Engine rpm

.0003472

.000352

6.493,Kg = 225 (Set 1)
T.639,K8 = 1325 (Set 2)
Torgue at weighing (psi)

Standurd pressure 25.921 (in Hg.)

1 Report for Helicopter Lifi‘Margin Systen"

elicopter"”. Frederick

o

Evaluzticn Flights of Helicopter Lift Margin System Feesibility
Model", Draft report, July 1970.
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BOX AWARDED THE 1972 SAMUEL S, WILKS MEMORIAL MEDAL

Introductory Remarks Made by Frank E, Grubbs, Conference Chairman

Again, 1t is so nice for all of us to be together at another Army Design
of Experiments Banquet, and it 1s a pleasure to see all of you once again
this year for the Eighteenth Conference, This 1s not the first time we
have had the Army Design of Experiments Conference at Aberdeen Proving
Ground. In fact, our Sixth Conference was held here twelve years ago, and
Sam Wilks was with us then. As I recall, George Box, Churchill Eisenhart,
Stu Hunter, Boyd Harshbarger and Bill Cochran were present for that
meeting, but John Tukey was unable to attiend, although we are glad to have
him back for this year's couference.

0f all things, the program for the Sixth Army Design of Experiments
Conference at Aberdeen Proving Ground had a 10 X 10 Graeco Latin Square
on its cover! Thus, our first conference at Aberdeen Proving Ground
occurred just a year or so after the so-called "Euler-Spoilers' came
along. Way back, the great mathematician, Euler, conjectured that it was
not possible in general to comnstruct Graeco Latin Squares of even sizcs
(2n + 2) for the Greek and Latin letters. (I might say, parenthetically,
that even though Tukey, Box and others present, are thinking about that
statement it is of sufficient accuracy for 90X to 95Z of us present
anyway!) In any event, with high speed electronic computation capability
available, an attempt was made in the late 1350's to construct 10 X 10
.Graeco Latin Squares on a computer. A program was set up to generate

10 X 10 Latin Squares, attempting to pair them up to satisfy the Graeco
Latin Square condition. For geveral hundred hours of running time, the
unfortunate computer tried to "marry" a Latin Square to a Greek Square
and failed to do so. The "Euler-Spoilers" (R. C. Bose, S. S. Shrikande, ‘
- and E. T, Parker of the University of North Carolina) om hearing about i
this computer failure proved with the help of advanced group theory that ‘
‘Euler's conjecture was wrong, and if the computer had been left to run the
way. it was set up, it might have had a 50:50 chance of constructing a

10 X 10 Graeco Latin Square in tco many years! Thus, we were just in time
for the correct construction of a 10 X 10 Graeco Latin Square and one
appears on this cover of our Sixth Army Design of Experiments Conference.
Anyone who cares to may check it out! 1I'll pass it around.

J T
.

We now turn to the Samuel S. Wilks Memorial Medal.

The Samuel S. Wilks Memorial Medal Award, initiated jointly in 1964 by
the U. S. Army and the American Statistical Association, is administered
by the American Statistical Association, a non-profit, educational and
scientific soclety founded in 1839, The Wilks Award is given each year K

Preceding page blank 267~ i
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to a statistician and 1s based primarily on his contribution to the
advancement of scientific or technical knowledge in Army statistics,
‘ingenious application of such knowledge, or successful activity in the -
fostering of cooperative scientific matters which coincidentally benefit
the Army, the Department of Defense, the U, S. Government, and our
country in general.

The Awards consists of a medal, with a profile of Professor Wilks and the
name of the recipient on the reverse, and a citation and honorarium related
to the magnitude of the Award funds, The annual Army Design of Experiments
Conferences, at which the Award is given each year, are sponsored by the
Army Mathematics Steering Committee on behalf of the Office of the Chief
ot Research and Development, Department of the Army. |

The funds for the S, S. Wilks Memorial Medal Award were donated by Philip
G. Rust, retired industrialist, Thomasville, Georgia. ;
Previous recipients of the Samuel S. Wilks Memorial Medal include John
W. Tukey of Princeton University (1965), Major General Leslie E. Simon
retired (1966), William G. Cochran of Harvard University (1967), Jerzy !
Neyman of the University of California, Berkeley (1968), Jack Youden ‘
(1969) retired from the National Bureau of Standards and deceased, George
W. Snedecor (1970) retired from Iowa State University, and Harold Dodge |
(1971) retired from Bell Telephone Laboratories.

|
|
With the approval of ASA President William H, Shaw, the 1972 Wilks Medal
Committee consisted of: |

Cornzll University

|
Professor Robert E, Bechhofer {
Army Research Office, Washing?on,D.C.
§ .
|

Dr. Fred Frishman
Profegsor J. Stuart Hunter
Professor Oscar Kempthorne

Princeton University
-Iowa State University

I3

Dr. Badrig Kurkjian = US Army Materiel Command,
Washington, D. C,

Profeasor Frad Leone - The University of Iowa

Dr. William R. Pabst, Jr. - Washington, D, C, i

Major General Leslie E. Simon - Retired o .- |

Dr. Frank E. Grubbs, Chairman - US army Ballistic Research Labs

: . o : Aberdeen Proving Ground, Maryland

S jd

As many of you conferees are aware, our process of selecting the Wilks ;

Memorial Medalist each year turns out (o be a statistically significant
event, having to screen 25-30 ncminees, fighting out the basic purposes of
the Wilks Medal (including what statistics have found wide application to
government work and are highly relevant to the Army), and committee
members occasionally exchanging insults as the situation demands! Again,
however, we certainly got the right man,

The 1972 Samuel §. Wilks Memorial Medalist is an internationally recognized
authority on statistics and has contributed greatly to the design and

-268-
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analysis of scientific exjeriments. He was born at a place that sounds a

bit "redundant', Gravesend, Kent, England, in 1919, He began his career

as a Statistician during World War 1I, and completed his formal education

in statistics with a Bachelor of Science Degree (1947) and a PhD (1952)

from the University of London. Now as I go along, the Wilks Medalist

for 1972 should be shown to be above or go beyond the 95X statistical

level of significance, so to speak! So, we will begin accumulating the

points, Now this man, during World War II, amd as a consequence o' ais

cleaver use of experimental design in the analysis of enemy toxic materials,

wvas awarded the British Empire Medal in 1946. For that we will give him

15 percentage points. After obtaining his PhD in Statistics from the

University of London, he left to work for Imperial Chemical Industries Ltd.,

where he had the opportunity to come into contact with real world experi=-

mentation. For that we will give him 10 percentage points and he is up

to 25. On leave of absence from Imperial Chemical Industries, he spent

the year 52-53 at the Institute of Statistics, Raleigh, North Carolina,

and of all things on a research grant supported by the Army Research

Office = Durham (ARO-D). Now anyone who would tzke on some of the statis-

tical problems of the Army deserves special recognition, so we will give

him 20 percentage points for succeeding at that., My word, we are already

up to 45 percentage pouints, While working for ARO-D, a famous expository

paper on the Explorati a and Exploitation of Response Surfaces appeared,

along with ideas of “robustness" in the analysis of variance, and also

those important rotatable designs. On his returr to Imperial Chemical

Industries, our 1972 Wilks Medalist delved into statistical methods for

the elucidation of basic mechanisms and advanced the concept of Evolutionary
Operations. In 1957, he became the Director of the Statistical Techniques

Research Group at Princeton University, sponsored also by the Army

Research Office, and during the years at "Gauss House" at Princeton he

came to know Sam Wilks quite well and established a vigorous statistical

center there. Papers on design for non-linear models, simplex sum and

three-level designs, the generation of random normal deviates, and papers

on adaptive optimization and rebustness to con-normality of regression

were completed, For all of this work, most of which was very useful to the

Army and others as well, he must be given a significant number of points,

anyway, say 20. It seems we just hit 65 percentage points and still

counting. In 1960, our 1972 Wilks Medalist left Princeton to become a

member of the then Army Mathematics Research Center (now just the Mathematics
Research Center since that place was bombed out!) at the University of . ;
Wisconsin., At Wisconsin, he immediately took the lead in establishing the .
Department of Statistics. His research interests while at Wisconsin have

steadily broadened and in addition to further contributions to fractiomal

factorials and sequential designs for non-linear models, he became concerned

with problems of non~linear estimation, the dynamic control of industrial

processes and he "joined the opposition" in contributing the Bayesian

methods (!), and finally parametric time series analysis. In fact, last ,
year our 1372 Wilks Medalist was elevated to the R. A, Fisher Chair of }
Statistics at Wisconsin, Furthermore, we are reminded that back in !

B o A
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1964 he was awarded the Guy Medal of the Royal Statistical Society,
London, Now for all this we must give him 30 points and oops we hit the

< 95% level, But wait a minute! 1In 1968, our 1972 Wilks Medalist got the

Shewhart Medal of the American Society for Quality Control for his

contributions there, Now that is a fine honor indeed, but I am reminded
that a couple of Army Statisticians got that too, so we will deduct five
percentage points bringing him back to nnly 90 which is not quite enough,

‘Oh my, I have nevertheless forgotten something important. A former

summer gtudent employee of mine 20 years ago here at Aberdeen Proving Ground
had enough inherent capability in statistics to work with our Wilks

Medalist durlng the year (1952-53) he was turning out all that fine statistical
work at the Institute of Statistice, Raleigh, N. C., for ARO-Durham.
Furthermore, that former summer student employee of mine, with such excellent
training has become a famous statistician in his own right. Now with all

of this good work going on and hopefully as a result of some well chosen

Army contacts we must add more points, but one can't throw in too many more
points, so we will settle for a final 8 points, and award George Box the

1972 Samuel S. Wilks Memorial Medal at 98 percentage points! Congratulations,
George Box, and ‘1'll now call on Churchill Eisenhart, Past President of

ASA, to present the 1972 Wilks Medal. -

GEORGE E. P. BOX RECEIVES THE 1972 SAMUEL S. WILKS MEMORIAL MEﬁQL

The Presentation of the Award Made by Churchill Eisenhart,
Past President of the ASA

The following citation was read:

"To George E. P, Box, in recognition of his many significant
contributions to experimental design, robustness, Evolutionary .
Operations, Bayesian methods and time series analysis, and ‘
for his leadership in rol: " 'ny theoretical results to
practical problems."

ACCEPTANCE REMARKS OF GEORGE E, P. BOX ON RECEIVING THE
SAMUEL S. WILKS MEMORIAL MEDAL FOR 1972

’ Gener;; Koster éndrfellow Statisticians: -

You do me especial honor in presenting me with an award commemorating

Sam Wilks. Wilks as you ali may know was a wise and greatly loved man,
who also was a distinguished statistician. He made fundamental contri-
butions to statistical theory, but he was also a man who believed in
statistics as a key to solving practical problems. This was evidenced
especially by his work beginning in World War II for the National Defense
Research Committee, his setting up and his direction of the Princeton
Statistical Group, his work on Quality Control, his originating of the
unique yearly Princeton Conference and his initlating of the Army

=270~
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< Conference on the Design of Experiments, the Eighteenth of which we
' presently celebrate.

It has sometimes seemed to me a great pity that his very proper attitude
towards the complimentary functions of theory and practice has not been
more widely understood. Practice alone uses a too little cook book to
f h produce dishes which are o¢.en stale, tasteless and inappropriate to
4 the occasion. Theory alone is directionless and can wander into labyrinths
! of pointless abstraction. But practice inspiring new theory and theory
tested with new practice can produce wonders,

{ 1 have sometimes heard members of the statistical profession avow in
voices that admired their own liberalism that yes! There should be some
schools of applied statistics as well as some concerned with mathematical
statistics. The implication was that there really could be no harm in
this so long as they remained far enough apart!

It is rather like trying to produce a fine race of children by encouraging
the development of a healthy group of men and the separate but equal
development of a corresponding group of women, and at the same time

taking precaution to ensure that they never see each other.

Sam Wilks was very conscious of these communication problems and it was
by instituting such conferences as the present one and by many parallel
efforts, some of which I have already mentioned that he contributed to
their solution.

One of the difficulties that gets in the way of fruitful interaction

e - ‘between scientific experimenters and statisticians is intellectual arrogance.
b : The fault can lie on either or both sides, but I blush to confess that most
o often it is the statistician who is in error. , v

There are various levels of knowledge and ignorance which have been .
recognised by philosophers. Among these are knowing that you know, not T
. “knowing that you know, knowing that you don't know, and not knowing that
- you don't know. The tragedy of the last catngory is that once you are . , i
1o it you remain in 1:. . ‘ . , }

Perhaps one story of near disaster will serve as illustration. Twenty
some odd years ago 1 remember being involved in the design of an exper-
iment to compare two treatments A and B from a batch chemical process. 1
made up my mind early on (too early on as it turned out) that what they
needed was a standard paired design in which batches consecutive in time
would constitute a pair, and the order (AB) or (BA) would be randomly 3
o , assigned within each pair. It was quite clear that the chemists thought . ;
e this was a bad idea, Without further thought I attributed their objection '
' : to laziness. I more than hinted that they couldn't be bothered to do the
job right! 1t was only after much argument that I allowed myself to hear
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what was the real nature of their objections. The process was one where
what is called "carry over" occurs. In these circumstances, the most
efficient design is not a paired arrangement but one in which several B's
follow several A's which is what they had proposed!

The technical explanation is of course that the carry over phenomenon

produces a time series in which successive observations are negatively
correlated. The usual assumption that propinquity produces high positive
correlation which leads to pairing breaks down. Once I understood this,

I was not slow in explaining it to them. In discussion, I pointed out its
implications in terms of spectral analysis and the insights it provided
on randomization theory. They were very polite about it; they said they
didn't know anything about all that but they gseemed glad that I had at
last seen sense,.

I accept this medal aware of my luck in having had patient scientific
colleagues and acknowledge the debt I owe them for taking the time to
educate a statistician. I know I would have learned more if I had
listened better,

\-v"
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.craft, bombs, balloons, parachutes, and any other flying objects and

AUTOMATED RADAR DATA PROCESSING AT
WHITE SANDS MISSILE RANGE FEATURING
ADAPTIVE FILTERING WITH BIAS ESTIMATION

W.A, McCool
Analysis and Computation Division
National Range Operations Directorate
White Sands Missile Range, New Mexico

ABSTRACT, This paper describes the automated system for radar data
processing now being implemented at White Sands Missile Range. Such a
system will significantly reduce the average delivery time of the data
reports containing the processed data and, in priority situations, will
provide such data reports essentially on-line, i.e. within minutes after
mission completion, . Furthermore, the number of instrumentation radars
generating data to be processed has been steadily increasing as a result
of Range modernization and special radar projects (AMRAD, RAMPART, and
others)., The automation has become feasible with the availability of:
(1) large~scale third generation computing facilities (three UNIVAC 1108
systems); (2) the capability to record all radar data at the central
comouting site; and (3) software containing new data editing techniques
and adaptive digital filters which are based on Kalman filter concepts
and, at the same time, are computationally efficient. Feasibility of the
autonated system has already been demonstrated and its implementation
has now advanced to the point of developing operating procedures.

INTRODUCTION, As its major mission, the White Sands Missile Range
(WSMR) provides instrumentation, air-space, and supporting facilities el
for testing missile weapon systems and conducting scientific experiments,
e,g. the Army's PERSHING missile system, the Air Force's ATHENA missile
system for re~entry research, and the Air Force's Project 621B for proving
out a new satellite navigation system, This mission requires a total of
18 precise instrumentation radars for tracking missiles, satellites, air-

generating corresponding trajectory (metric) data. During the past year
WSMR radars, sampling observed target positions 20 times every flight second,
generated more than 250,000,000 space-point measurements. The expeditious
processing of this huge < lume of radar data is critical to acceptable
project support, At th resent time, the average delivery time of the
standard post-flight reports containing the processed metric data is about
ten days. ''Quick-look" radar data reports, with a limited number of
processed metric parameters, are usually delivered in less than one working
day after mission completion, The maior objective of the automated radar

b T
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processing system is to reduce the average report delivery time by an
order of magnitude and, in priority situations, to an on-line situation,
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WSMR DATA PROCESSING FACILITIES., The Department of Army has
provided WSMR with large-scale third-generation multi-processing,
digital computing facilities consisting of two systems (denoted as
the A and B systems) each containing two UNIVAC 1108 main-frames and
another system (C) containing a single 1108 main-frame. The A system
is devoted primarily to real-time mission support, the B system to
remote terminal support and normal batch processing of unclassified
data, and the C system to batch processing of classified data, The
automated processing of radar data will be handled as "background"
workload in the A multi-processing system, There is a possibility that,
at some future time, part or all of the automated processing will be
transferred to the C system, At the present time the WSMR UNIVAC com—
puters are: (1) processing about 16,000 jobs per month producing more
thun 100,000,000 lines of listing; (2) supporting about 25 real-time
missions per month; (3) producing between 800 and 1200 data reports
of all types per month; and (4) supporting about 30 remote terminals
(a total of 66 terminals is planned),

Figure 1 depicts the basic functions comprising the "Real-
Time Data System" (RTDS) at WSMR which was instituted on a very
small scale in 1961 and through the Range modernization program
has become a highly sophisticated system for satisfying current
and future real-time mission support requirements. In addition to
the UNIVAC computer A system with its real-time interfaces, the
RTIDS has a very flexible and reliable data communication sub-
system which transmits data from 39 sensors, including radars, to
the real-time computer via a Data Control subsystem and from the
computer to 44 sensors requiring acquisition (pointing) data. The
Data Control subsystem includes a central recording facility which
is capable of simultaneously recording/playing~back the data from
all the transmitting sensors as well sd# from the computer when it

) fis generating acquisition data to all the receiving sensors, All
" WSMR instrumentation radars, when so scheduled, transmit their

data in real-time to the central recording facility, The play~back
capability not only provides a permanent mission data record but
also 1s an essential component of the automated radar data
processing system because, in general, the proceseing will not be
accomplished during missions, Figure 2 indicates how data are

. transmitted between a sensor and the central data control site,

¢ -
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. with real-time interfaces, the Real-Time Data System with a

The modulation-demodulation process is employed to allow sensor
data to be efficiently and reliably two~way transmitted over
relatively inexpensive first-class telephone lines without
distance limitation., The transmitting-receivine devices which
are called MODEMS, one at each end of the line, utilize tone=
modulated "carriers", Recording these carriers with an instru~
rentation recorder, similar to a home type recorder, is an
extremely simple and reliable technique (called analog recording)
which has been standard practice at WSMR since 1964, On playback,
each carrier is demodulated by-a MODEM to reconstruct the original
digital data, generated by the sensor, to be received by the
real-time computer,

The standard vendor-supplied executive prosram for the UNIVAC
1108 computer is called LXEC-8 which has been auemented at WSMR
for efficient real-time data processing, This augmented ¥XLC=3
alonp with specific recal-time applications programs can support
six missions concurrently in a wide variety of mission tvnes,
being limited primarily by the number of available input/output
data channels from and to Range sensors. The averace number of
concurrent missions requiring real-time support at any given tinme
during a typical Range day for the next several years will be no
more than two, This means that plenty of computing capacity will
be available for back-ground processing required by the automated
system,

Real-time data processing utilizing a large-scale digital
computer began at WSHR in 1962, Because of the computing time
constraints inherent in this type of data processing, there has
been a continuing evolution since that time in the development of
more efficient data handling, editing, selection, and filtering
techniques as well as a wide variety of mathematical procedures,
algebraic equations, computation of Kepplerian orbital trajectories
for instantaneous impact prediction, coordinate transformations,

and command generation.

DA ek rabaiem s -

A

It should be clear from the fofegoing discourse that WSMR
now has the necassary facilities to automate its radar data
processing, i.e. the third generation digital 1108 computer system

versatile central recording capability, complete operational soft-

ware for supporting real-time multi-processing, and a vast exper-
ience and "know-how" in real-time data processing techniques
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and procedures, This picture would not be complete without
clearly emphasizing an operational constraint around which

this automated system must be designed: conduct of every Range
mission has unqualified priority over all post-flight automated
system requirements, More specifically, there are two areas in
which this constraint will occasionally arise; suspension of
background computing during real-time mission support and data
communication problems which would precluds real-time recording
but not mission support, The impact of the first situation
would merely be a short, insignificant delay; the impact of the
second situation would incur the delays involved in physically
transporting radar data tapes recorded on-site to the Data
Control area in the Range Control Center.

DESIGN OBJECTIVES OF THE AUTOMATED SYSTEM. The design of the

automated system for processing radar data has four major objectives,

1, An average delivery time of one working day after
mission completion for all standard data reports

Achievement of this objective will effectively combine the post-
flight and quick-look types of reports now being provided to
the Range users in ten and one days, respectively, Priority

delivery may be provided with "on-line" processing, the reports being

computer listings generated almost immediately after missions.

Reports requiring precise plots will be delivered in ¢two days until

an on~line high-speed plotter is acquired. A standard data report limits
the ugser to prescribed options which have been established by frequency

of use, Delivery of non-standard reports, i.e. those having unique

requirements, must be considered on a case-by-case basis, This objective
is motivated by the fact that, in many cases, the value of missile test

It should be clear that this objective could not be achieved without

central recording and real-time data processing capabilities.

2., Use of Kalmanlsd filter concepts and real-time
editing techniques to optimize the quality of
the processed radar data and the.computing -
efficiency of the processing, :

This objective has already been accomplished with the proven editing

..data to the user decreuses rapidly with every passing day after a missiomn.

and filtering techniques described later on in this paper, Historically,
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radar data at WSMR has been processed using typical classical procedures
(a.g. moving-arc least-squares smoothing) which are computationally in-
efficient and less effective compared to the performance of some of the
more modern recursives methoda, such as the QD digital filter.31%0 The
: latter, for example, is employed in all the programs which have been
| generating quick~look radar reports.

3., Providing multi-station trajectory and bias estimates
and all required types of error estimates on a point-
by-point basis,

These estimates are included in the automated processing computer program
N with very little expense in computing time, In the past, multi-gtation
v ’ trajectory estimates (sometimes called an N-station solution) have been

' provided with an average delivery time of 20 days; bias estimates, based
R i on radar data only, have not been provided at all; and the variety of

KRR 4 !
: error estimates has been limited by computing time to a few available
! : ‘ types. Quick~look data reports, for example, have never provided any
j error estimates,
j _/ ‘ 4, Simplification and standardization of data report
b , formats,
';?Vﬂﬂ Current data formats have been established by user specification and
Mt historical development. In the automated system, the formats of the data
3f o listing, the explanatory information, ard plots are being standardized

with a variety of available options,

% ‘ ‘ FUNCTIONAL DESCRIPTION OF THE AUTOMATED RADAR DATA PROCESSING SYSTEM,
e ) The essential functions of the automated system are shown in the data flow
. ' diagram, Figure 3. The system naturally divides into two areas, Data Con-
trol and the UNIVAC 1108-A computer., Data Control accepts the radar data
from the Range data communication network and other pertinent data° the
computer generates the radar data reports, o

e The radar data en:eriug Data Control is contained in the modulation of
A _ the modem carriers, as indicated by the broken lines in Figure 3, The )

S A data in this analog form are recorded along with timing data and simul~ 5
Y/ ; taneously transmitted to the modem receivers for demodulation into digital : S 4
P ‘form. Transmission to the modem receivers is often delayed with a playback

’ j«f, ‘ .of the recorded data, At this pcint the digital radar data are monitored

‘ " by Data Control personnel to evaluate data quality and equipment performances,
One of the major functions of the Special Interface equipment is to simul-
taneously accept, reformat, and store the digital data from as many as 32
M radars (or other sensors) and transmit the data to the computer. Prior
AR to accepting radar data during a mission or a play-back in Data Control,
radar calibration data (i.e. corrections for tilt, beam misalignment, etc.),
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AUTOMATED RADAR DATA PROCESSING SYSTEM

FIGURE 3
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* ‘radar meteorological data for refraction cofrcctions, radar identification
data, and program and report parameter options must be fed into the SIE by
a system controller via a CRT terminal (U-10G) keyboard and/or punch-cards
(1004 card reader-punch-printer),

When the radar data and the pre-processing information are accepted
by the computer from the SIE, they are recorded on a log tape (UNILCG)
and/or magnetic drum mass storage (FASTRAND) under control of RTEXEC, the
real-time monitor, In other words, the data logging is a real-time process.
After locgging is completed, a batch job witk high priority is automatically
initiated to process the logged data and generate a data report. As in-
dicatud in Figure 3, the processing consists of three phases under the
control of a Driver program (in turn controlled by EXEC-8, cf course);
QDKMST (which is described in the later chapter) concurrently edits and
filters the data from several radars and generates derivative parameters
and error estimates; "further processing” software consists of a varlety
of optional sub-programs to generate ancillary parameters as required by
the Range users; report generation consists of conversion of parameters to
specified engineering units, setting up data report formats, paging, etc.;
and interfacing with one or more of the selected output devices, line
printer, microfilm printer, cathode ray tube (CRT) display, or magnetic
tape transports,

From the functional description, it should be clear that generating
a data report for a single Range mission involving several radars is a
straightforward process. The question may be raised, however, as to
the effectiveness of the automated system under a heavy workload. In
response to this question, it should be emphasized that the automated
system may be viewed as a "next generation" version of the quick-look
system which 13 now generating about half of all WSMR radar data reports,
As noted before, the average delivery time for quick~look radar
data reports is one working day after mission completion and this has
been accomplished with an IBM 70941I/7044 Direct Couple System (DCS)
whose job stream execution is sequential, i.e. one job at a time.
In contrast, the automated system has a dual 1108 multi-processor
(A system) whichi executes six jobs and supervises all input-output
activity concurrently. Even though System A is dedicated to real-time
mission support, it has more than ample capacity to satisfy the automated
system's computing requirements, Thus, the major bottleneck will be
the manual time and effort to set up each job in accordance with user
requirements and options and collecting and inserting pre-processing data.
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REVIEW OF THE QDK7 FILTER/SMOOTHER THEORY., There has been a
long~standing, urgent need for a process to filter radar data which
would be significantly superior to those currently in use with
respect to computing speed and filtering effectiveness, It was
recognized that such a process would have to adaptively effect an
optimum trade~off between noise suppression (attenuation) and best
fit (minimum distortion of the tvue signal) in accordance with the
characteristics of the noise content and the kinematics of the
input data, It was also recognized that the increased computing speed
constraint would almost surely dictate the use of a recursive procedure.
The QDK filter’ was developed to satisfy this need. The basic QDK
structure is identical to that of the discrete Dalman filter but its
detailed formulation is greatly simplified using the QD filter theory
(hence, the QDK acronym) for rapid computation without seriously
degrading the Kalman optimality. 1In order to indicate how these
simp.ifications are applied we begin with the computational step-
by-step formulas for the discrete Kalman filter.

X = ¢x + Tu - state prediction ’ 1)
P = oPot + WQWt - state covarilance 2)
.prediction
W= iﬂt(Hfﬂt +R)-1 -~ weighting matrix (3)
~ -
x =X+ W(z - Hx) - gtate estimation (4)
P= (I ~WH)P - state covariance (5)
estimation
~282~
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where:

*1

®p

ha -

- 1

" input/state Jacobian

predicted state vector

3

current estimated state vector

precedine estimated state vector

input data vector

transition matrix
control coupling matrix

uncertainty matrix of the plant-process model
c R : < ' e » Ee

model uncertainty coupling matrix

[

predicted covariance matrix of the plant-process model
current estimated model covariance matrix

preceding estimated model covariance matrix
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Tﬁe data from instrumentation radars at WSMP are generated at
20 samples per second in spherical coordinates, i.e. rvarve (M),
azimuth (A), and elevation (E) in the local radar reference systems.
Lach system is established by the local tantent nlane witi- zero
azimuth beine true or erid north. It is common practice to trars-
form these data, prior to filterine, into an arbitraril: lecatec and
oriented Cartesian coordinate system with components s z., and zc.
For Kalman filtering the z_, z,, 2 data from a sinecle raclar, the
dimensions of tic vectors and matrices in the computational formulas
(1) through (5 are identified as follows:

;;;,;' - 0Ox1 ¢ - 0x6
u - 6x1 r - 6x6
F.p,P - 6x6 o~ 6x6
¥ - 6x6 H - 3xb
R - 3x3 | 1 - 6x6 {unil)

) = 6x3 .+ oz .- 3xl

<

a -

The elements of cach of the state vectors ;, v, anc¢ v are t“ree
position and three velocity components while the elements of the
z vector are the three filter "inputs'. The u vector and the
matrices are corresnondinalv di-ensioned. Tt is clear fron these
dimensional data that the straightforward cormputations, includine
the matrix inversion, involved in usine the Kalman forrulas (1)

- through (5) for each computing steo would be prohilbitive, particu-

larly when the plant process parameters in ¢, I', and Y, as well as
in H are time-varying.

The first simplifications in our application of KXalrman filterins
to radar data serment the basic formulas into three indeperdent
filters, onc corresnondine to each Cartesian component. To achieve
these simplifications, the followine reascnable assumnticns and
approximations are made:
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(1) The plant process 1s the rada- target whos~» mathematical
model represents a point mass with accelvration components being
independent and slowly varyirg witn tiwe. Thus, each acceleration
component 1s assumed to he constont durins any inteeration interval,
This assumption effects indenendenze of the comnonent medels so that
all of the model matrices and vectors of the basic Kalman formulas
can be suitably partitioned and separated.

(2) The R matrix, whicn describes the noisc characteristics
of the input data components z , 2, and z_has non-zero cross-
correlation cicments due to tké non-linearitv of the RA,E to z ,
z,, 2 coordinate transformation. ' In practice, these clements are
so small that the variances of the input data comnonents can be
assumed to be independent, i.e. R is a dianonal matrix.

(3) The foregoinn assumptions and approximations allow parti-
tioning of all the vectors and matrices so that cach component of
input data can be independently Yalman filtered. In each of these
three filters it is convenient to aucment the ¢ matrix, which is the
same for each filter, incrcasing its dirensions from 2x2 to 3x3 in
order to eliminate the u vector and the I matrix.

With the above simplifications the dimensions of the componernt
Kalman filters are:

XoX,x = 3x1 ¢ - 3x3 ) ‘
P,P,P - 3x3 L Q - 3x3 |
|
R - 1Ix1 : H - 1Ix3 5
W - 3x1 . (z - “Ixl £ P
3
g
1
i
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~ which are defined as folious: _

Xl

-

[T

4 L

- e ey

x

o
x

, (6

x i

ol
"

|

13

p23

P33

-

X, X, P, P are analogous to (6) and (7), respectively, If Taylor
series integration is used to generate the augmented ¢ matrix from
the model differential equation, i.e,

then

where

Also,

x(t) = constant,

at

L

h h2%/2
1 h
0 1

sampliag iaverval, .05 sec.

(10)
(11) W o=

0 0] (12
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When N, (iO), and (12) are substituted into (3);-it ‘reduces to the
simple formula, .

‘ ' 14
P *r P ’ ( )

in which the matrix inversion in (3) becomes a scalar division
operation.

A further dramatic reduction in comnutatiors is achieved by

app: ving the OD filter theory to formulas (2) and (5) of the component

Kalman filters. This 1is the fir 1 step in the evolution of the ADK

formulas from the basic Kalman formulas (1) throueh (5). Startire
with (1), in which T and u have been eliminated in the cemponent
filter, we have the simplified state prediction formula:

in which ¢ is given by (9) and X aud x by (6). Thus, (15) and (4) are
the sccond-order 0D filter formulas if, in (4) and (13), ' ,
. ; N2 B
VI® o ¥l Fm-6 oo o (16)
wy = 2wy /h, Qan
w3 = 2ui/h? = wy/h, S < e T (s

N .
Wt ¢
N o "
<
4

in which the development of w; in (16) is based on a second-degree
curve fittinp an arbitrary spar of the last ‘' innut data values in a
constrained least-squares sense. The intercent and slope of the fitted

curve are constrained at the time point correspondine to the last input
data value imnlicitly dronped from the span. Usina the ND theorv,

approximate functional relationshipe amonn tlie clements of tte P matrix

have been developed and applied to formula (2) to obtain the scalar
recursive formulas:
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Y - W + 19
p" 8 PLat o (19)
5 e 2a(8% 4. (0
P a( " v : (20)
T = 2a2(8% + 21
pu pn ), (21)
where:
8 - 1+% (23)

and q is the model uncertainty scalar corresnonding to @ in (2),

(19), (20), and (21) are required in (1l4) to compute the elements

of the NDK weizhting vector, The value of M, the equivalent 0D filter
span, in (22) and (23) 1s retained from the nreseding computine step in
which M is estimated with a polynomial inversion of (16) for the
correspondinpg computed value of w;, 1i,.e, :

M = a; + ;é wy + a3w12 + ;9413. | - -:&éA;a
The value of ;}x in (19), (20), and (21) 1is retained trom the precedine
computiﬁg step és ?11 wh%ch is esfiﬁatgd’witthhe scalar‘formu;a
5 - a-wEn e
detivea by substituting (7), (12), and (13) iﬁto (5).

From the foresoing exnosition we can now summarize the NDK
computational formulas, The first three are the nrediction formulas
obtained bv usine (6) and (9) in (15). The estimation formulas (32),
(33), and (34) are obtained by usine (6), (12), and (13) in (4).
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The QDX formulation for independently filtering each data
component is simply extended to the multi-station formulation.
To do this, the inverse variance weighted average for each of the
Cartesian components in a common reference system is used as the
- ‘{nput to the single component QDK filter. These weignhted averages
z, for N radars are corputed with

z 121 zilri/z 1/r, (35)

in which the z, are the corresponding componenﬁ bilas-free inputs
with their respective variances r,, In practice, the z,6 are not
biag~free. If b1 are the bias es%ivates then (35) 1s modified as

z = [ (z,-b )/r\/z 1/r (35)
i=1 .

i=1

Thus, the QDK multi-station formulation must include bias estimaticn
procedures, In the dzvelopment of the bias estimation formulas,
which are also based on Kalman and QD theories, the biases are
assumed to be slowly varyinpg and independent of each other as well
as the multi-station estimation, The bias computation formulas are:

- N R N <
K S oe

p1\ . F; + kqy, 1= 1,22t R | (37

v, = P/ +r)), | (38)

l::l. - %1 +w (g - z'b‘ ' _{’;i)»’ - (3'9):“

p, = (-w)F. (40)
where:

;;, Py Py - bias model variance scalars,

q, ~ model vncertainty scalars,

-290-

r



k - q, welghting factcr,
w - bias veighting coefficients

arbitrary bias reference.

Zb

z, may be optical data components known to be essentially bias free,

the component inputs of one particular radar, or the unweighted
average of the 2z

i

N

1
z - <] oz, (41)
b N oL
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THE QDKMST PROGRAM FOR THE AUTOMATED RADAR DATA PROCESSING
SYSTEM. QDKMST employs the QDK filter described in the preceding
chapter and is modularized into ten subroutines one of which con-
tains three QDX filter/smoothers fer each set of radar data,
QDKMST includes pre-execution, initializing, and data subprograms,

In addition to concurrently generated trajectory and deriva-
tive estimates for each set of radar data, QDKMST also optionally
provides corresponding multi-station estimates along with relative
trajectory bias estimates at the R, A, E level for each set of
radar data., An alternate option consists of estimates selected,
on a point-by-point basis, from those of the "minimum total
variance" radar whose data have been bias corrected.

QDKMST employs a total of 354 zero, first, and second order QD
filters3,4,5 in addition to the 33 QDK filter/smoothers to generate
the estimates for ten sets of radar data and a multi-station solution.

Execution time per set of observed data per radar for QDKMST
on any of the UNIVAC 1108 computer systems is less than 4,0
milliseconds, For ten sets of radar data the multi-station estimates
per sample time require approximately 15 milliseconds. If the
radar data are edited at the R, A, E level at 20 samples per second
and then averaged down to five samples per second prior to
transforming the data to the common Cartesian coordinate system,
then the data from ten radars can be reduced, including the multi-
station or minimum variance estimates, in less than 40 milliseconds,
allowing 160 milliseconds for data handling, executive overhead,
other batch processing, and a reasonable safety margin within the
200 millisecond on-line execution period,

QDKMST contains the same radar error model for calibration
corrections as that described in the WSMR Data Reduction
Handbook2, The same refraction index computation is alsc used,
The refraction correction, however, with spherical earth gecmetry
is the same as that used in the real-time programs which support
ATHENA and PERSHING,
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QDKMST itself is the calling routine for each of its sub=-
routines whose functions are outlian as follows, The FORTRAN
source program includes definitions! of all the parameters and
variables of the CCMMON statements,:

INTQDK
a, Initializes QDKMST variakles.,
EDIT

a8, Accepts range, azimuth, and elevation observations from
each tracking radar;

b, Initializes QD editing filters when several consecutive
4th differences of the R, A, E data are less than some limit; . ,

' c. After initialization, the QD editing filters test for
spikes, and when spikes are detected, substitute predicted filter

values; I

e en A

d. Reinitializes the editing érocess after total data drop-
outs; ; . ;

e. Estimates variances of edited R, A, E data; , i

f. Generates acceptable data flags for each set of radar data; o

and

_ Be ‘Optionally averages edited data from 20 samples per second
down to five samples per second. i
|
RCXFRM |

a, Corrects edited range and elevation data for refraction and

ﬂ
\0‘" .

» b, Transforms edited R, A, E data for each radar to an arbi=-
trarily selected common Cartesian reference system,

MS1BS (Optional)

a, Estimates R, A, E biases for each radar relative to one of -
V
three references, optionally selected; /
//
/
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b, Generates a variance weipgnted average of available sets
of bilas corrected data in the common Cartesian coordinate system,
and

¢s Identifies the minimum total variance radar,
QDK

a. Generates smoothed trajectcry and derivative estimates
for each set of radar data and the multi-station set of data
(optional);

b, Estimates variances of QDK Cartesian coordinate input
data and generates point-by-point scalar quantities corresponding
to the Kalman R, Q, ead P matrices; and

C. As an alternate to the multi-station estimates, optionally
selects trajectory and derivative estimates from the minimum total
variance radar on a point~by=-point basis,

STAT

- 8., wvenerates error estimates (variances) of the QDK smoothed
Cartesian component positions, velocities, and accelerations.

b, Estimates the means of the Cartesian component residuals as
a measure of smoothing distortion,

¢. QDX noise attenuation factors. .

@ <

d. Generates the means of the R, A, E residuals and bias esti-
mates,

e, All estimates are generated on a point-by-point basis,

'BLOCK DATA .

Contains all of the input parameters and constants which are
compiled into QDKMST.

PREMIS

a, Computes a variety of parameters and constants not contained
in BLOCK DATA;

~294-

\;““ o

g e

ROV WS

PO ST 2




b, Computes QD filter coefficients;

¢. Computes parameters for refraction corrections,

INTCAL (called by PREMIS)

a. Computes parameters for calibration corrections and applies

tilt corrections to rotation matrices,

1,

2,

5.
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ALGORIfHM FOK EDIfING BIVARIATE DATA FILES WITH
RANDOM SPACING IN THE INDEPENDENT VARIABLE

1LT L.D, Clements
Data Reduction Section
Yuma Proving Ground
Yuma, Arizona

Methods for smoothing equally spaced, bivariate data have been
under development for the past one hundred years, A wide variety of
techniques have been adopted for this purpose (see Whittaker and Robinson,
The Calculus of Observations, Dover, 1967), A special case within the
larger problem of data smoothing is the need to remove points which are
grossly in error with respect to the surrounding data. Again, techniques
are available for use with evenly spaced data (see Handbook of Data
Reduction Methods, White Sands Missile Range, 1964), In the literature
available to the author, however, there appears to be no method available
for directly editing gross values out of a bivariate data file with uneven
spacing in the independent variable. The intent of this paper is to
introduce such a technique.

DEVELOPMENT OF TECHNIQUE., Consider first the equally spaced string
of numbers given in Table 1 and plotted in Figure 1. It is obvious from
the figure that point number 11 is in error, as are points 21, 22, and 23,
The question then becomes, does a single '"bad" point or series of "bad"
points generate a discernible pattern in the derivatives (actually dif-

ferences) which msy be taken? The table and figure show that indeed there
‘ia’a definite pattern of anomalous difference values generated by erroneous

points. :

The approach used was then to say, if in the sequence of derivatives
a given pattern of anomalous values is present, then the point(s) generating
this pattern must be incorrect, Symbolically, let us define for a datum

pair (x4,ty), the first difference pair (Vi,i+1tti,i+l)’ where

' S 2 e | : .
Vi, i+1 T ;‘;‘1‘_‘;’; 69
and
tip1tty
t1,141 7 —— (2)
and the second difference
Preceding page blank
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. . Vi1, 4427V, 141 3) o
¢ 1, 441,i+2 = " : '
it Ti+1,1+27%1, 141

Now if the point x; is bad, then v,y _ -1,1° Vi, 1410 21-2,1-1° ai—l 1,1+1°
and a are abnormal with respect to surrounding values.

o141,
Similarly, ’1f points Xi, Xi+l, eees Xy4n 8re offset in the same direction
such as points 21, 22, 23 in Figure 1, v, _ -1,1 and Vi4n,1+n+l and

a4_2,1-1,1* 31-1,1,1+1> 3i+n-1,1+n,i+n+ls 304 314y g4n4] f4ns2 3TE
abnormal, Although to carry out this sequence of calculations by hand is

ridiculous, a digital computer may rapidly use this pattern identification
technique to locate bad points in an unevenly spaced bivariate data stream,

FEATURES OF THE COMPUTER ALGORITHM, The key feature in determining
a suitable algorithm for editing using the pattern recognition scheme
outlined above is answering the question: When is a point grossly in error?
Erroneous points on a graph stand out only if they are far outside of the
normal spread of the data, In the algorithm described above, editing is
dependent upon identifying anomalous values of Ax/At and A2x/At2, The
test uesed is 1f Ax/At or A2x/At2 is greater than 2,5-3.5 times the pre-
viously established values, then the derivative magnitude is excessive.
The choice of this constant multiplier is necessarily arbitrary, but
dependent upon the level of noise present in the bivariate data stream,

If 2n isolated point is identified as being bad the program user can
either drop the point out of the file, or it may be replaced. When the
replacement option is exercised, a quadratic equation is fit to eight
points surrounding the point in error and a corrected value calculated.
lowever, among the eight points, if more than two have been identified as
bad points: themselves, the fit is not made and the point in question is =
dropped from the file, A sequence of erroneous points, once identified
is dropped from the file.

TESTING OF THE ALGORITHM, Noisy data were generated from two ;

analytical equations in the following manner. A starting value of the
independent variable was decided upon and a standard incremeant size, A

uniform distribution random number generator then was used to calculate a }'

fraction of the increment size to be used and either L . . S

=t +f1°A: ) | 1

tis1 ™ Y

or

t =t +At + f] ° At (5)

i+1 i

was used to calculate a new value of the independent variable. A
second random number was generated and the ratio
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was used to generate the noisy dependent variable from the relation

|
S . dF -
t-ti

where F(t

) 18 the bivariate functional form being used, The two
analyticai equations used were
- - - 2
x, = 100, 10.2:i 0.5¢, (8
and .
g x; = 0.1tisin(ti/n) (9

Fjudtion (8) was used as a crude simulation of a terminal trajectory
recard, while equation (9) was of interest to study the effects of low
ordér oscil’ations on the algorithm.

| The noisy input data from equations (4) and {8) are shown in
Figure 2 and the edited data in Figure 3. Note there is a difference
of an order of magnitude in the x, scale which accounts for the apparent
increased spread of the data, Similar results from e~ ...ions (5) and
(8) ‘are shown in Figures 4 and 5, As 1s evident from Figures 6 and 7,
generated by equations (5) and (9), oscillations in the data file do
degrade performance somewhat, Overall results are encouraging, however,
becéuse, as is evident, the algorithm does identify and remove most of the
gross points. Data files, once edited may then be passed on to more
refﬁned emoothing routines to eliminate inherent noise.

' CONCLUSIONS. Grossly erroneous points in a varyingly spaced, bi-
variate data file may be i1dentified and either corrected or removed
using the algorithm described in this paper. Data screened in this
manner are then suitable for further smeothing and/or processing.

Note: Copies of the algorithm described here ir FORTRAN IV are
available upon request from

Commander

Yuma Proving Ground

STEYP-MTS (C., Data Reduction qection)
Yuma, Arizona 85364 P

s
/
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Patterns of Anomalous Difference

Table 1:
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STATISTICAL ANALYSIS OF H. F. OBLIQUE AND VERTICAL
-INCIDENCE IONOSPHERIC DATA APPLICABLE TO FIELD ARMY DISTANCES

Richard J. D'Accardi
Chris P. Tsokos*

U. S. Army Electronics Covmand
Fort Monmouth, New Jersey

ABSTRACT. The object of this paper is to present a statistical approach
for the analysis and interpretation of short-path oblique incidence and
vertical incidence ionospheric soundings over typical field army aistances.
Univariate spectral analysis is performed on the non-stationary
stochastic realization of the oblique and vertical incidence data taken ovér
the 60 Km path between Fort Monmouth, New Jersey, and Fort Dix, New Jersef.
Estimates of the power spectrum are obtained using three "lag windows,"
namely, those of Bgrtlett, Tukey, and Parzen, respectively, A specific

truncation length has been obtained for each of the“aboVérwindows'sd:that,

(4regard1ess‘of which one is utilized, the same approximate estimate of the

power spectrum will be obtained. In addition, bivariate spectral analysis

of the vertical and oblique incidence data is given.

* Department of Mathematics, University of South Florida, Tampa, Florida
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1. INTRODUCTION

The deployment of a Field Army necessitates msny means of communication,
especially thosz not limited by line-of-sight, extendedl distances, and inter-

vening terrain obstacles. High frequency (HF) commumications systems are not

s8o stringently limited, and provide excellent back-up for higher frequency
and high density systems. It, too, has limitations, foremost of which is the
icnosphere, a medium which is time variant, random, and to say the least,
highly unstable. Although much attention has been given to developing and
fielding superior equipment, far less attention has been given to improving
the use of the propegation media. It is in this regard that the Commmica~ _
tions/ADP laboratory, of the U. S. Army Electronics Command, has sponsored
three experiments aimed at developing medias-system parameters to provide
tactical (HF) communicators with propegation predictions, in near real-time,
for a typicel Field Army area of influence. Specifically, both vertical
incidence and short-path oblique incidence ionosonde data were taken over

60 Km, 200 Km, and 500 Km peths and analysed.

Work by D'Accardi-Tsokos-Kulinyi [1971] was the first in dealing with
short-path ionospheric date as a stochastic realization as opposed to
analysis and forecasting on the basis of specific "blocks" of time of day,
Ames-Egen [1958], each being considered as independent and homogeneous.

Their results introduced a new statistical concept to the estimation of short-
path oblique incidence (0I) ionospheric data, and provided statistical models
to forecast either oblique or vertical incidence soundings over specific paths
With respect to their first objective, regression techniques were used to
relate vertical incidence (VI) soundings to OI soundings as the first part of
the forecasting problem. This was a practical alternative to the widely
accepted secant ¢ law, which, due to the lack of mid-path data, to the
assumption of a stratified ionosphere, and to the difficulty in scaling
virtual height at the critical frequencies, yielded poor results when applied .
over the longer path experiments, With regard to their second objective, the
actual forecasting, they have shown that both the vertical and oblique
.soundings are non-stationary stochastic realizations; that is, they form a
discrete time series that 1s not in statistical equilibrium. Their data was
characterized by autoregressive, moving averages, and combination processes.
This approerh bas pcinted out that more informetion can be obtained from the
data with respect to the development of system parcmeters, Krause et al [1970).
As a continuation of this effort, the aim of this paper is to utilize the
information gained by D'Accardi, Kulinyl, and Tsckcs in the analysis of the

. power spectrum. That is, to describe in detail how the variance of the

" stochastic realization (non-stationary ionospheric data) is distributed with
frequency. ’ . ‘

In section 3, we shall give some basic concepts of time series analysis,
defining stationary and non-stationary processes. The procedure for fore-
casting 1s also given, including the difference equation for forecasting the
average oblique incidence soundirgs for the 60 Km experiment. The model is
used in the spectral analysis of the oblique incidence series.

Section 4 is devoted to basic concepts and a systematic procedure for
the spectral anslysis of OI soundings. The theoretical spectrum, T, (f), is
shown for the general discrete autoregressive (ar) process, and it 1s shown
specifically for a third order ar process. Estimates of the spectral density
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function using the lag windows of Bartlett, Tukey, and Parzen are given
including the criteria for choosing the best one for estimating I, (f). For
variocus truncation lengths, L, the bandwidth, 95% confidence 1ntervals, and
degrees of freedom are given for each vindow. The bivariate behavior of the
oblique and vertical incidence ionospheric soundings for the 60 Km experiment
is discussed in section 5. More specifically, we obtain estimates of the
smoothed coquedrature, phase, and cross-amplitude spectra using all three lag
windows. Estimates of the coherency spectrum are also given.

2. DESIGN OF THE EXPERIMENT

The experimental distances of 60 Km, 200 Km, and 500 Km were zhosen to
fall within the idealized 300 x 300 kilometer tactical Field Army area of
responsibility. The diagonal distance of such an area is approximately
L4O Km, and represents the longest distance of an internal communications
path. With Fort Monmouth, N. J., as a base station, mobile fonosonde ‘
teminals were set up at Port Dix, N. J. (60 Km), Aberdeen Proving Ground,

. (200 Kam), and at Camp Drum, N. Y. (500 Km), as shown in Figure 1. The
analysis presented herein, is based upon the 60 Km path data, but similar
results vere achieved over the other paths and will be presented at a later .

time.

Each ionosonde terminal of the 60 Km path, operating in the 2-16 MHz
range, made scheduled soundings every 10 minutes for eighteen days over a
twenty-one day period. While the Fort Monmouth terminal was transmitting and
receiving its own signal, the Fort Dix terminal would simultaneously receive
the same transmigsion; likewise for the Fort Dix to Fort Monmouth station
(see Figure 2). Both ionosndes* were synchronized so that the "remote"
sounder scans would be precise with the fixed station. The number of days
that the experiment was performed has so significance with respect to the
results obtained, but was a matter of funding.

The frequency range of the sounders spa.nned three "octaves," 2-h MHz,

4.8 MHz, and 8-16 MHz, each of which contained 40O discrete channels. Trans- .
missions consisted of successively "stepping" through the channels of each
octave with 100 us pulses. The resulting data is a recording of these pulses,
as they return from the ionosphere, parametric in frequency and time delay.
The time delay is a measure of virtual height of reflection from the iono-
spheric layers. Figure 3 shows an ionogram record of frequency vs. time
delay. These records were taken on 35 mm. film at Fort Monmouth and on light-
sensitive oscillograph paper at the remote terminal. After collection and
development, the ionograms were scaled for the extraordinary critical frequen-
cies, f,F, (see Figure 3), and the resulting data vas compiled for computer °
ana]ysia. Some data (ionograms) were unreadable due to man-made noise, and
solar and geomegnetic activity. For those records that were unreadsble
(though signal was detected), simulated data was prepared. The occurence of
obscured data was negligible over the experiments.

¥*These instruments were Granger Associates Model 3905-5 systems, matched with
wide-response delta antennas.
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3. BASIC PROCEDURE FOR FORMUIATING THE FORECASTING MODEL

3.1 Basic Concepts in Time Series Analysis:

".Any phenomenon such as the cblique incidence soundings, vhich

changes vith time, and any collection of data that measures the aspects of

such a phenomenon can be considered as a time series. A time series can
either be a deterministic function or a non-deterministic function of an
independent variable, usually time; but, in most physical situations, it will
be a non-deterministic function. A non-deterministic function exhibits random
or fluc’ .sting properties and, hence, it 1s not posesible to forecast its
future values exactly. Thus, a non-deterministic time series can only bve
described by statistical laws or models. We begin by assuming thel one can
descridbe a time series at a given time, t, by a random variable and its associ-
ated pirobability distribution function. In this manner, we may describe at
all instances, the behavior of a time series by an ordered set of random vari-
ables and the associated probability distributions. Such an ordered set of
random variables is called a stochastic process. Thus, an cbserved time
serles, y,, can be considered as one realization ¢ an Infinite ensemble of
functions that might have been generated by a stochastic process. Such a
process is said to be strictly stationary, is a Joint probability distribu-
tion of any set of cbservations, and is not affected by shifting all times of
the observations ahead or backward by any integer amount, k. A stationary
stochastic process can be described in terms of its mean, y, which is

estimated by:

Y=

S

®
21 Yy » (3.1.1)

its variance, g2, which is estimated b

» ‘ - .
%’-%'ﬁ (v - %2, (3.1.2)

its semple autocovariance function, which measures the extent to which two

random variables are linearly independent, estimated by: )
2=k - -
cyy(k) = % T (% -F) (Nx-7¥) (3.1.3)
=1

where k =0, 1,2, .....; n-1,

and its sample autocorrelation function, which acts like 8 correlation
coefficient and Is estimafed by:

) y .01, ..., ne1 (3.1.4)

l',,(k) = W

3.2 Stationary vs. Non-Stationary Time Series:

A stationa-y time series is a series that is in statistical

equilibrium in the sense that its properties do not change significantly with

respect to time. A non-stationary time series is such that its properties
change with time. The information with vhich the present study is concerned,
namely, ionospheric soundings, is non-stationary in nature. In general,

-315-
— S g g s




time.

. 'and 0 on. In practice, a first or second order difference equation is .
usually sufficient to transform most non-stationary time series, ) i

N . o — . - o vnm
e bt a s e 1’ .
¢ c B .
. . R . e 3

non-stationary phenomena can be divided into three basic classes:

(a) Those time series that exhibit stationmary properties over 8
long period of time.

(b) Those that are approximately stationary over short periods of

(¢) Those time series that exhibit non-stationary properties; that
is, their visual properties change continuous],y with respect to time

In the present state-of-the-art, there exist techniques to a.naLyze
stationary time series information; however, the techniques available for the
analysis and interpretation of non-stationary time series information, such
as ionospheric data,are inadequate and do not lend themselves to meaningful
interpretations of physical situations. It is possible, however, to adjust
non-stationary time series so as to be able to apply the existing techniques
of stationary time serles analysis. This adjustment takes the form of apply-
ing a proper filter to the observed non-stationary time series to filter out
the non-stationary components.

The search for a mathematical function to transform the non- ;
stationary time series into a stationary serles is in some respects a :
trial-and-error procedure. One of the most popular and most efficient
methods of accomplishing this purpose is the aprplication of a difference
equation (see Jenkins and Watts [1968]; Box and Jenkins [1970], emong others).

A first order difference equation is defined by:

X, = Y, "Y41 » (3.2.1)

where:
: ¥, = observed non-stationary series,

and: . co :A' < :”C‘ . ) . SRR < R ~ o R o
. ©. X = the first difference series. o T

Similarly, a second order difference equation is defined by:

Wy =Y, = 2yg..1 + Yi-2 s (3 2 2)

- - - " -, . ) 1

B S

To 1dent1fy whether or not the observed time series exhibits
stationary or non-stationary properties, we make use of the following three
basic concepts: ]

(a) Visual interpretation of the series.

(b) A plot of the sample autocorrelation function of the observed
series. .

(¢) Application of various trend tests to the observed series.
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The graphical representation of the observed series can be of practical
help. However, for e more rigorous classification of the series, we must
rely on the latter two corcepts. For the cbserved series and its first end
second differences, one computes the semple autocorrelation function using
equation 3.1.4, and conducts trend tests, such as Kendall's tau, Kendall and
Stewart [1966]. The sample sutocorrelation function of a staticnary
phenomenon has the basic property that it dampens out fairly rapidly; that
is, it aporoaches zero. Also, a stationary series will be such that it
contains no trend. Following this procedure, one can obtain sufficient
information to determine if the observed series exhibits stationary or non-
stationary components; and if it exhibits non-stationary components, whether
or not a Tirst or second order difference equation would filter them out.

Having reduced the given information to a statiopary time series,

our aim is to fit a parametric model to this serles, either an autoregressive,

a moving averages, or a combination of the two. These stationary stochastic
models assume %Et the process (series) remains in equilidbrium about a con-
stant mean level ard they are of greaet value in modeling stationary time
series. The general autoregressive process is given by:

Y, ~p=a (Y ) + oo+ o (V) + 5, (3.2.3)

where y 18 the mean of Y,, Z, is & purely random procéss (Jenkins and Watts
[1968], and m is the order of the process. The general moving average

process is given by:

N = Zy-By2q- -o0 = Bolanq »

(3.2.4)

vhere y and Z, are as defined above, and q is the order of the process, The

general mixed autoregressive-moving average process is given by:
T = o (Yya ) + oo+ o (Yoy ) + Zy-PiZicy = oo BoZiog s
‘ ‘ (3.2.5)

vhere q 18 indepondent of m.

In a recent paper, D'Accardi, Kulinyi, and Tsokos [1971], working
with ionospheric information, have outlined a procedural spproach for fitting
the ebove models. They discuss in detail the criteria for select the
process, its order (which gives the best fit to the observed seriésg , the
procedure to estimate its parameters, disgnostic check of goodness of fit,

< and how the model can be employed in forecasting lonospheric soundings.

3.3 Forecasting Model for the Average of the Oblique Incidence Soundings
for the 60 Km Path:

Following the above procedure, we have fitted a third order auto-

regressive model to the average cblique incidence soundings of the 60 Km path

series, The model which best characterized this series is given by the
following difference equation:

¥, = -0.5987 ¥,_, -0.2034 y,_o + 0.1608 y,_4 (3.3.1)"

In formulating this model, we utilized a second order difference filter,
given by eguation (3.2.2), for t = 3,...,85, and the esiimates for the above
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model were found to bde:

a4--059867

= -0.20345
&--0160& o

Figure L gives a graphical display of the average of the original cblique
incidence soundings of the 60 Km experiment, and the predicted values of the
series. Note that we began predicting the aversge oblique soundings after
having cbserved the first four observations, and utilizing thie information,
ve coantinued to forecast until a difference of 0.5 wits occurred between
actual and predicted information. Even though our last observed average
oblique soundings was recorded at time slot 85, we continued predicting up to
time slot 99.

e ¥+ e A T vt S narn

The above model, equaticn (3.3.1), will be used in a later section
where we will be concerned with the spectral analysis of the oblique
ionospheric series.,

4, SOME BASIC CONCEPTS OF THE SPECTRAL ANALYSIS OF OBLIQUE INCIDENCE
SOURDINGS

In this section, we shall present a spectral analysis of the oblique
incidence soundings of the 60 Km experiment. We shall be using some of the
basic concepts of spectral analysis given by Jenkins and Watts {1968], and
Box and Jenkins [1971].

k.1 The Theoreticel Spectrum:

The fou. .aform of the autocovariance function is called the
power spectrum or . . ectrum of the time series, aend its plot shows how the
variance of the stocnastic realization is distributed with respect to
frequency (time). The theoretical spectrum, denoted by 1‘" (r) , can be written
by the following equation- i L ‘ ‘

1 1
Ib&)-MJHUNﬂ-ﬁsfsiz, (4.1.1)

where: . o 4 . N
' ‘ H(f) = frequency response functionm, e '
0,2 = the variance of a purely random process, , N
4 ° = incrementation interval between observations.: -

\v"‘

For the general discrete autoregressive process, equation (3.1.1),
the theoretical spectrum 1s given by:

Try(2) = a0, | (4.1.2)

1
PRl it S——— L b . O

For the oblique incidence soundings, we have formulated a third order (m=3)
autoregressive process. Thus, equation (4.1.1) can be written as follows:
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| B(£)| 2 = '1+¢g+q;+a§+(2aaq°-241+2qlq,)¢o§ ont +(2a,ae-2q,)Cos byt -
. | o 2q4Cos 6rrf| o (’f-l-3)‘

Substituting G,, &, and Gy for o, a,, and q, respectively, and cbtaining
a 0,2 estimate (assuming p=1), we obtained an estimate of the theoretical

spectral density function,* I,, (£)/0,2 for the filtered process Y, =1,...,85,

as seen from equation (3.3.1). From the process, ve cbtain:
0,? = Var(z,) = Var(Y,-o,Y,_,-q,Y, _o-agY¥,_s)
= a’3+a130,3 + %30’3 + gg°0,2 - 2q,Cov(Y,,Y,_,) -2a,Cov(Y,,Y. -a)

~2aaCov(Y,,Yy_5) + 2a,a,Cov(Y,,Y,_,) + 2q,a5Cov(Y,, Y, ,)

+28, @y Cov(Y, , Y, _,)
= g,° [1+¢13+qz’+a°’-2q1p,,(l)-au,p"(fe)- 2 pyy (314205 agp,, (1)
+20,04 p,, (1) +2a, a5 py, (2)] (b.1.4)

Hence, the estimate of a:’, substituting the a i=1,2,3, and r,,(k), the
estimate of p . (k) 1s given by:

.3 = 5,2(2.69387)

Therefore, the estimate of the theorétical spectral density of the autoregres-
sive process fitted to the filtered data is: )

STy 2.633 o
o,? 1.425 + 1.375 Cos 2nf + 0.214 Cos hnf - 0.322 Cos 6mf ,

where: -dst<i

[

- (b.1.5)

A émodthéd ésfiﬁnte of the theoretical spectral density function can

 be cbtained using the following equation:

R, (R)=2 { 1+ zg:r"(k)w(k)Coa E—%,E} , (4.1.6)

f=0,1,...,F, vhere F = 2L, L being the truncation length, and w(k) is the
lag window. In the sbove equation, the lag window plays a major role in
obtaining a good estimate of the spectral density function. In practice,

*Frequently in practice, we have to compare time ceries with different sSoales
of measurement. In order to do this, it is necessary to normalize the spec-
trum, that is, simply divide the theoretical spectrum by the variance of the
process.

~320-

[

e T P




R VPR

Bt e s

e e

e gk ek

R T T S

TE e sy

there are three basic windows that are commonly used, namely thcse of
Bartlett, Tukey, and Parzen. We shall briefly define these windows, and for
more specific details and the properties concerning them, see Jenkins and
Watts [1968]. Bartlett's leg window is given by the following expression-

i

_lu
VB(u) - { 1 j Iwrl » u M i ) (l“.l.'r)c
: 0 otherwise ) '

Tukey's lag window is given by:

v (u) - {%(1+Cos yul =M (h.1.8)
(o) vcrtherwise :

Parzen's lag window is givgn by:
2 a
LR LU IR (DN
! M M

{( '“I) B<lulsn

{ O otherwise : (4.1.9) 3

A rectangular window is a.nother alternative not mentioned above, which is
defined by:

o

wp(u) = l,ilu]su .
¢ othe*'wise o T Y ¢ 5 15 [ ) B S

‘where M is a truncation poin

Scientists who have been involved in choosing the proper shape of s
lag window, w(u), have taken into consideration the fact that the spectral
window, W(f), that is, the fourier transform of the lag window, should be
concentrated near the zero frequency. Blackman and Tukey {19597, ilooking at
the problem from the communications engineering point of view, almost identi- _

v !

fied it with that of choosing the intensity distribution along an antenna, sc
that the variation will /all in a narrow beam. The principal meximum and the
subsidiary extreme of W(f) are called, respectively, main and side lcbes. A
window should be an even function so that it can equally treat positive and
negative values of the spectral density function on both sides of a given
point of the time series. It should integrate to unity, that 1s,
oo /
w(t = .
_ .[ o (E)af =1 //
and shculd achieve a maximum value at the frequency £ = 0. That/ is,
| ()| < W(0), for all £. /
/ R
It should be concentrated as much as possible ebout f = O in order that’ “the_
behavior of the spectral demsity function be reflected as much as possible 17
that neighborhocd. —
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" There has been no agreed valid criterion for comparing the degree
of concentration of any window. One criterion could be the ratio of the size
of the second largest peak to the size of the largest pesk. However, again
this would be powerful only in the case where the second largest peak would
occur at the same point. This fact explains why one has to consider all the
different windows, not the most popular, in one's search for the most approp-
riate case,

For the main lobe of W(f) to be concentrated, the graph of w(u)
should be flat due to the way the two concepts are rela.ed. Also, for the
side lobes to be small w(u) should be smooth and should not change rapidly
as in the case of the rectangular window. Therefore, one should compromise.
The eauthors' analyses have been done along these lines, and this is the
reagcn why we have, &8 a result, numerous windows among which we should
choose.

Taking Bartlett's spectral window, w_(f), as an example, we find thet
vhen it 1is graphed against frequeccy, it is s?metric about the origin and
haazerosatf::l:l‘:!,*_, £h, oo o

We shall call base width the distance between the first zeros on
either side of the origin. The base width for Bartlett's window is equal to
3, It is inversely proportional to M and the veriance. By increasing the
Base width, the dias, B(f), increases as well. Thus, we are forced to
compromise between bias and variance in choosing & perticular window.

The rectangular window is more concentrzted about the center
frequency than any other of the windows under consideration. Nevertheless,
although it has the smallest bapdwidth, which implies small bias, it also
has the largest side lcbes. This makes it very impractical. The first side
lobe is about 1/5 of the height of the main lobe which shows an unrealistic
characterization of the estimate of the power spectrum

< Thus, in view of the above remrks, "for the density func‘cion of the
\ o'blique incidence soundings, we shall utilize the Bartlett, Tukey, and Parzen
lag windows in search of the best estimate of the spectral density function.

h.2 Estimate of the Spectral Density Function Using Bartlett's Lag

b The va.lues of the estimte of the spectra.l density function using
Rartlett's lag window, equation (%.1.7), were calculated and plotted versus
frequency for L = 8, 12, 16, 20, 24, 28, and 32 units. As a basis of compar-
ison, we plotted our estimte on the same set of axes for L = 8, 12, 16, 24,
and 32. For these values of L, we calculated the bandwidth, the confidence
intervals, and the degrees of freedom which are shown in the following table:

~322-~




v e b e vmg A ey - o,

B e

A —

TABLE I: TRUNCATION POINT, BANIWIDIH,

DEGREES OF FREEDOM, AND CONFIDENCE
IRTERVALS FOR BARTLETT'S IAG WINDOW

L Bandwidth ‘a.f. 95% C.I. i,,(r)
8 .188 31 63 1.56
- I © 125 20 ’ 58 2.10
16 .09k - 15 | .54 2.35 .,
24 .063 10 b9 3.00
2 oar T 42 k.10

The formila used for the bandwidth of the estimate of the spectral density
function is given by:

bsbi = 1.5

La L

and the equation for the degrees of freedom is given by:
Ve 2©b - - 2(83)b
= l bo
Note that since we have chosen A=1, ve have L = M.

Figure 5 gives a comparison of the theoretical spectral density
function of the autoregressive process and its smoothed estimate for the

_various trumcation points, along with the 95% confidence intervals.

It is a known fact that increasing the bandwidth of the estimate of
the spectral density means increasing the amount of bias and decreasing the
variance; thus, a compramise has to be reached as to the best value of L.

In making such a decision, we shculd take into consideration the confildence
intervel, the degrees of freedom, and the visual appearance of the plot of
our estimate. For L = 8, the plot is very smooth and has a shape very similar
to the theoretical spectrum with the bandwidth being wide enough to conceal
any peaks that may be present. By increasing L to 12, we obtain an indica-
tion of ancther peak that appears at £ = 3/16 cycles per second, in addition
to the major peak in our theoretical spectral density. The plot is still
quite smooth and the bandwidth is wide enough to give a great deal of faith
in our estimate. Increasing L to 16, the bandwidth seems to be in a very
shaky range. However, the curve has changed very little from the one for
vhich L = 12. It displays the peak in the theoretical spectral density and
also the extra peak at f = 3/16 cycles per second. Since larger values of L
produce many small erratic peaks, we chose I = 16 to estimate the spectral

density using Bartlett's lag window.
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4.3 Estimate of the Spectral Density Function Using Tukey's lag Window:

Using Tukey's lag window given by equation (4.1.8), the smooth
spectral density estimate R ,(f) vas calculated for L = 8, 12, 16, 20, 2L,
28, and 32 units. In Figura 6, we display the spectral density estimates
a.long with an estimate of the theoretical spectrum of the third order auto-
regressive process. In addition, we display the 95% confidence intervals,
and the bandwidths which correspond to the various truncation lengths. It
is clear that for L = 8, the sample spectrum has the same general shape as
the theoretica_. spectrum, and the curve 1s very smooth. Increasing the
truncation value to 12, the plot is still feirly smooth, but a peak appears
at about f = ,186 cycles per second. At L = 16, the peak is slightly more
pronounced, and as L is increased to 20 and above, more peaks appear at
higher frequencies. This indicates that the variance is increasing and, thus
the sample spectrum is becoming more erratic for L $ 20. On this basis, we
decided that for L = 12, 1k, or 16, we would try to obtain better estimates
than those calculated for other values of L. We computed the spectral
density estimates for L = 14, 18 units, respectively.

Table IT displays,for the various truncation points, the bandwidth,
degrees of freedom, and confidence intervals using Tukey's lag window.

TABLE IT: TRUNCATION POINT, BANDWIDTH,
DEGREES OF FREEDOM, AND CONFIDENCE
INTERVALS FOR TUKEY'S IAG WINDOW

3 <

Table II is quite helpful in deciding that for L = 14 units, we will have
the best estimate of the spectrum using Tukey's lag window. The degrees of
freedom, v = 15, are sufficient for fairly small 9%% confidence intervals,
and this gave a bandwidth of .095 so that peaks in the time spectrum of
bandwidths :larger than .095 will be detected. Decreasing the bandwidth to
.083, that 1s, L = 16, causes a loss of two degrees of freedom and a slight
increase in the confidence interval width. For L = 12, the bandwidth is
considerably larger (.112), and there is not much change in the confidence
interval even though there are eighteen degees of freedom. Therefore, for a
truncation length of 1l units, we cbtain the best estimate for the spectrum
using Tukey's lag window. Figure 7 shows the spectral density estimates of
the fiitered data using the Tukey leg window for truncation lengths L = §,
12, 14, 16 end 32, along with the 95% confidence intervals and the variou.s

L b d.f. 95% C.1I. Ty, (2)
8 .166 27 . .a 1.58

?» g 18 .57 2.25 4, ‘
Cooa . L095 S 16 . sk 2.35 .
16 .033 13 - .« 51 ©.2.50
H
20 067 1 R 2.85 ,
32 B 'S W W o
‘ ‘ : k ~ c.c S . ;
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c

bandwidths associasted with these truncation points. As we mentioned previ-
ocusly, the plot of the estimate of the spectral density is given in the
logarithmic scale to show more deteil in the spectrum over a wiler amplitude
range.

b4 Estimates of the Spectral Densitx Function Usin&?men s lag
Window:

Using Parzen's lag window, given by equation (4.1.9), we obtained
estimates of the spe “ral density function for vaerious truncation points. As
before, we shall let A = 1, so that L = M, the trumcation points of the
smoothed spectral estimator. We varied L from 8 to 32 in intervals of four
units. .

Figure 8 shows the spectral density estimtes of the filtered data
for the various truncation points along with the theoretical spectral density
of the third order autoregressive process. In addition, a 95% confidence
interval and the corresponding bandwidths are displayed. The bandwidth using
Parzen's lag window is given by:

1.86 1.86

L el ' | ‘

The degrees of freedom for the confidence intervals were found using the
following relationship:

: : -
vna(_ 'b1 I

where b, = 1.86 for the Parzen window and T = total number of observationms,
which in our case, is 85 ocblique incidence soundings. Teble III gives, for
the various truncation points, the corresponding bandwidths, degrees of 3
freedom, and a 95% confidence mterv'a.l for the theoretical spectrum, I‘,,(f), ;
fortheParzenlagwindow. N S \ W e 0 o, e
) ' o
{

'IA.‘BLE III: | BANIWIDTH, DEGREES OF FREEDOM,
- AND 95% CONFIDENCE INTERVALS FOR SELECTED
VALUES OF L FOR PARZEN'S WIRDOW

~——

L - Bendwidth Sdf. 958 C. I.. - T,(f)
& . ® 6 L%
¥ .16 19 S8 2.20
20 : .093 15 .54 2.35
2l 018 12 .50 2.75
32 .058 9 .48 . 3.30

In selecting a proper value for L for our spectral density, we want
to be able to detect peaks in the spectrum, have a reasonable confidence
interval, and a bandwidth whicl, affords us a reasonable bias. For an L value

=328~
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Of 8 units, the spectral density was too smouth, and we ‘were umable to
detect peaks less than 0,233 wide. Increasing the L values from 16 to 20
units, gives a fairly reasonable display of the spectral density, that is,
two major pesks occur which are quite similar to those of the theoretical
density. For a truncation point of 24 units, very small peaks begin to
appear vhich indicate that the variance may be influencing the density. -
This was also seen at L = 28 and 32, where the peaks became very erratic,
and very noticegble. Thus, our cholce was narrowed very quickly to choosing
L = 16 or 20 units. The confidence intervals for L = 16 and L = 20 wnits
are almost identical. The bandwidth for L = 20, however, has been reduced by
about 20% from that of L = 16. Therefore, the spectral density corresponding
to L = 20 units was selected as the most reasonable truncation point. The
spectral density estimate clearly shows that most of the power is concen-
trated at high frequencies. A major peak is located at f = .375 cycles per
second with a smaller peak located at .18 cycles per second. The bandwidth
for L = 20 wnits is .093, which means that we can detect peaks with a width
of this value or greater. The above remarks are graphically verified in
Figure 8 where the theoretical spectral density for the third order auto-
regressive model is campared with the spectral estimate for L = 8, 16, 20,
24, and 32 units. In addition, the 95% confidence interval and the corres-
ponding bandwidths for the truncation points are given. '

5. BIVARIATE SPECTRAL ANALYSIS OF THE OI SOURDINGS:

In this section, we shall be concerned with analyzing the bivariate
behavior of the cblique and vertical incidence ionospheric soundings for the
60 Km experiment. More specifically, we shall obtain estimates of the smooth
coquadrature, phase, and cross-amplitude spectra using the three lag windows
ve discussed in Section 4. In addition, we shall obtain estimates of the
coherency spectrum.

With respect to the aims of the present study, we will only giwie the

.equations (estimates) which characterize the above concepts and we will not
‘"discuss the theoretical implications. For complete details of these concepts,
see Jenkins and Watts [1968] and Box and Jenkins [19713. ‘ :

The sample cross-correlation function is defined by:
e, (k
- Tpe(k) =_Cya(K)

c" ° cxx °

= c o

‘where: . - 1 KK _ - o
e, (k) = § £, (¥34-Y M(Xgey-X ) , Os ks -1 (5.1.2)

As in the univariate case, the sample cross spectrum is obtained by taking
the fourier transform of the sample cross covariance function. The sample
cospectral estimate is given by:

Ly,(1) = _{r,,(o) +2 f:z: f"(k)w(k)COs Eip_k} »y0sisF

(5.1.3)
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where:

Bx) « 3 fo,, (k) + ¢, (-K)}, O kLl (5.1.4)
'.l'he equa.tion used to calculate the gmdmture spectral estimate is given 'by-
T, (1) =4 q"(k)w(k)s:l.n mk,i1c1cr1 (5.1.5)
k=l
vhere: : o o
Oy (k) = % {c,,(K)-c, (-K)} , Os ks I-1 (5.1.6)

Note that Q,,(0) = Q,(F) = 0. The smoothed cross-amplitude spectral
estimate was calculated using the following equation:

where the smoothed phase spectral estimate is given dy:
Fye (1) = arctan - 3, ,0<1<F (5.1.8)

.I.'ix(i)

and Q,,(1) and T, (1) are as previously defined. The smoothed squared
coherencx spectral estimate is given by:

A, (1)

By (308, (4)

x,,(i) - ,0<1<PF (5.1.9)

‘vwhere: _—A'"(i) 18 the smoothed cross-amplitude spectml estimate and

C“(i) 18 the smoothed épectral estimate given by:

g, (1) =2f e, (0h 2 ”:,:11 e, (en(k)cos B} 012

T,(1) =2 {exalon 2 T e, (kw(x)Cos 2}, os1sr
k=1

(5.1.11)

Having calculated and plotted the cross amplitude spectrum, we can
detect whether or not frequency components in the vertical incidence sound-
ings are assoclated with large or small amplitudes at the same frequency in
the oblique incidence series. The estimate of the phase spectrum of the two
stochastic realizations helps us in determining whether or not frequency
components in the vertical incidence series are in phase or out of phase
(lag or lead) with cormponents, at the same frequency, in the cblique
incidence series.
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An estimate of the cross-ca.mplittﬂe spectrum and the phase épectrum
would suffice to provide a complete description of the behavior of the two
series. Thc square ccherency spectrum is the plot of the X2 (r) vs.

frequency. The cross amplitude spectrum, A L(£), is & measure of the
covariance which exists between the oblique a.nd vertical incidence soundings
at frequency, f. In general, the coherency spectrum plays the role of a :
correlation coefficient with respect to frequency. Its usefulness lies in

the fact that dimensioans do not enter the picture when the correlation is
measured with respect to frequency. Unlike the square coherency spectrum,

the cross amplitude spectrum depends upon the dimensions of the oblique and

" vertical incidence soundings. This is the reason why the square coherency

spectrum is sometimes preferred over the cross amplitude spectrum, and
together with the phase spectrum, will give a cocmplete picture of the cross
correlation behavior of the oblique and vertical incidence soundings.

We shall, in what follows, obtain estimates for the coquadrature,
phase, and cross amplitude spectral estimates using Bartlett's lag window.
These smoothed estimates were obtained using the truncation points L = M = 8,
12, 16, 20, and 24 units for the cross spectral estimate and L = M = 8, 12,
16, 224 and 32 units for the smoothed coquedrature spectral estimate. These
tnmcation points correspond to decreasing the bandwidth to b = b, /L = 1.5/L.

Figure 9 shows the smoothed cospectral estimate. Similarly, Figure
10 shows, on the same axes, the various smoothed quadrature spectral esti-
mates. It is clear that for L» 20 units, the estimates in both cases, i.e.,
vertical and oblique, become very erratic. As we mentioned previously,
compromising between bias and variance, it appears that for L = 16 units, we
have the best estimate using Bartlett's lag window with b = .094 and y = 15
degreas of freedom. The smoothed phase spectral estimate and the smoothed
cross spectral estimate, plotted for L = 16, each on separate sets of axes
to enhance the details of the series, are shown in Figures 11 and 12,

respectively.
The smoothed coquadrature, phase, and cross amplitude ‘spectral

* ‘estimates were similarly obtained using Tukey's lag window for truncation

points L = 8, 12, 14, 16, and 32. Pigure 13 displays the smoothed cospectral
estimates. The emoothed quadrature spectral estimates are plotted in

Figure 1l for the same truncation points. For both of these cases, the
estimtes become more erratic as L is incresased beyond 20 units. Taking the
bandwidth into consideration, we choose the estimate for which L = 14 wnits

... us the best ccmpromise between bias and variance. Thus, the bandwidth
resulted in b = 1.33/L = .095 for L = 14 and y = 15 degrees of freedom for

the Tukey lag window. Decreasing b to .083, the degrees of freedom are
decreased considerably, therefore, having chosen L = 14 units will give the
best estimate of the co- and quadrature spectra for the Tukey lag window.
The emoocthcd phase and smcothed cross amplitude spectra were then plotted
for L = 15 units to enhance the details. Figures 15 and 16 display the
smoothed cross amplitude spectral estimate and the smoothed phase spectral
estimate respectively, using the Tukey lag window for L = 1%4.

A similer analysis was performed to obtain amoothed estimates for

the co- and quadrature spectra using Parzen's lag window for L = 8, 16, 20,
24, and 32 units. Pigures 17 and 18 display the above smoothed estimates.
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The bandwidths for the Parzen lag window are given by b = 1. 86/L and the
degress of freedom can be obtained from y = 166 b. For values of L 24, the
estimates became quite erratic and the bandwidth and degrees of freedom are
decreased. However, the decrease in bandwidth from .093 to .078 for L = 20
and 24 units, respectively, is not worth the decrease in variance. Hence,
we choose I = 20 a8 our best estiimates of the co- and quadrature spectra.
This gives a bandwidth of b = .093. Figures 19 and 20 show the smoothed
phase and cross amplitude spectral estimates, respectively, for L = 20, using
the Parzen lag window, along with their corresponding bandwidth.

To compare the estimates obtuined for the Bartlett, Tukey, and
Parzen lag windows, the estimates corresponding to the best value of L (chosen
for each window) were plotted on the same axes, see Figure 21. The
estimates for the co- and quadrature spectra coincided almost exactly. Each
estimate has 15 degrees of freedom for the autospectrum analysis. The Parzen
1ag window has a slightly smaller bandwidth than the others. It was difficult

" to choose the best window, but since Parzen's lag window for L = 20 units gave

a bandwidth of .093, we chose it as the best smoothed estimate of the cc- and
quadrature spectra. The smoothed estimates for the phase and cross amplitude
spectra are also best represented by this lag window for L = 20 units. The
smoothed sample cospectral estimate estimates the covariance due to the in-
phagse components., There 1s a peak at about 0.2 cycles per second which
corresponds to the peaks in the autospectra due to the fact that the variance
is a special case of the covariance. At frequencies less than 0.125 cycles
per second, the covariance between the vertical and oblique incidence realiza-
tions is reasonably small and constant over the frequency range O to .125
cycles per second. The variance at most frequencies in the autospectra is
foirly large. However, the covariance distribution of the in-phase components
of the filtered ionospheric serles is small, end therefore, the series in-

' phase components are not very dependent. The larger value of the sample

cogpectrum is near .375 cycles per second corresponding to variance values of
autospectra of about 10 at the same frequency for the Parzen leg window.

L = 20 units, and hence, the correlation is small as will be verified by the
square coherency spectral estimate. o e LS

‘ The smoothed quadrature spectral estimate estimates the covariance
of the out-of-phase components of the two filtered time series. This also
shows that there is small covariance between the out-cf-vhase components of
the two filtered series and,hence, that they are not very correleted. The
lergest value is 0.041 for the chosen lag window (Parzen, L = 20) and the
smallest value is -.025. There is 1little or no covariance exhibited at all
in the range C to 0.25 cps., but the out-of-phase ccmponent.. begin to vary in
a sinusoldal manner at high frequencies. . . g

The smoothed phase spectra.l estimate estimates the phase angle in
radians by which cne filtered time series leads or lsgs the other. At
frequencies O to .0625 cps., the phases are approximately the same (phase
spectral estimate is near 0). At frequencies between .0625 cps. and 0.13 cps.
the in-phase components of the two time series lag the out-of-phase components
very slightly. From 0.13 cps. to approximately 0.27 cps., the out-of-phase
components lag the in-phase components. From 0.27 cps. to 0.35 ¢ps., the in-
phase is lagging, and from 0.35 cps. to 0.5 cps., the out-of-phase components
lag the in-phase components of the two time series. Since the phases alter-
nate leading, there is no reason to assume or conclude that one time series
leads or lags the other at all frequencies.
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nle smoothed cross smplitude spectral eatimte shows whether or not
the uplit e of the componente at a particular frequency in one time series
is associa ed. with a large or small amplitude of the same order at the same
frequency the other time series. The spectral demsity of the autospectra
shovus that [the variance is about 10 in both filtered x‘ and y geries so that,
at frequencies from 0.3 cps to O. 4 cps, the amplitude of the componenta of
one time series is associated with corresponding large or small amplitudes at
the same frequency in the other. Again, this seems to indicate that covari-
ance between the component amplitudes is near zero at other frequencies. 1In
Figure 21, the best smoothed cospectral estimate is displayed and, in Figure
22, the best smoothed quadrature spectral estimate is shown.

6. SUMMARY AND CONCLUSIOKRS

A plot, see Figure 21, is given for the selected best estimates of
the spectral densities for each of the three lag windows, namely, those of
Bartlett, Tukey and Parzen. Although the truncation is different for each
lag window, the bandwidth, degrees of freedom, and confidence intervals are
almost identical. Thus, it is quite difficult to choose which lag window
gives the best smoothed estimate of the spectral demsity function. However,
calculating the approximate bias for each of the above lag windows, we found
that the bias for Parzen's lag window is scmevhat smaller than that for the :
Tukey and Bartlett lag windows. That is:

B, (f) = 222 1,3 (1)

Furthermore, the variance ratio, that is, the proportional reduction in vari-
ance as the result of using the smoothed estimator as compared to the sample
spectrum estimate, is approximatély equal to 0.128. On the basis of these

tvo criteria, we choose the best estimate of the spectral density using
Parzen's lag window. 1In sddition, the bandwidth of this lag window is
slightly smaller than that of the Tukey and Bartlett lag windows. Therefore,
the best estimate of the spectral density of the average oblique incidence
soundings was obtained using Parzen's lag window for L = 20 units. This .
value of I, resulted in a 95% confidence interval width of 2.25 with 15 degrees
of freedom, and a bandwidth of b = .093. The bandwidth is less than 1/5 of
the total frequency range over which the spectral density function 1s esti-
mated. Since we are detecting peaks with widths of .093 or more, the two
peaks appearing in the estimated spectral density at frequencies £ = 3/16 cps
ard £ = 3/8 cps are valid peaks,and they should be taken into consideration -
in interpreting the behavior of the average oblique incidence soundings. The
process generating the resultant soundings exhibits large variance around
these two frequencies for the filtered data. Such information should be

taken into account in the design of the system. Frequencies below f = .125
cps on the spectral estimates gives the lowvest power, that is, the least :
variance. - i
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The Parzen lag window for L » 20 units and b = .093, was uged to
obtain smoothed estimates of the co- and quadrature spectra. The smoothed
estimates of the phase and cross amplitude apectra were also obtained using ,
the same lag window and L « 20 units. i

The smocthed sample spectral estimate estimates the covariance due )
to the in-phase components. There is a peak at about .20 cps and one at
.375 cps which correspond to the peaks in the autospectra. At _frequencies
o \_ )
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less than .125 cps, the covariance is reasonably small and appraximtel&

copstant over the frequency range of O to .125 cps. The variance at most
frequencies in the autospect:a iz fairly large. However, the covariance
distridbution of the in-phase ccmponents of the two filtered series is small

- and has, due to the soundings series, in-phase components that are not very

dependent. The larger value of the sample spectra 1s near .375 cps, corre-
sponding to variance values of the autospectra of about 10, at the same
frequency, using the Parzen lsg window for L = 20 units. Hence, the correla-
tion between the average oblique and vertical incidence soundings is small
as was verified by the squared coherency spectral estimate.

The smoothed qmdra.ture spectral estimate estimates the covariance
of the out-of-phase components of the filtered oblique and vertical incidence
soundings. It showed that the covariance between the out-of-phase components
of the two filtered series is small, and hence, that they are not very corre-
lated. The largest value is .04l for the chosen lag window, and the smallest
value 18 -.025. There is little or no covariance exhibited in the range from
0 to .25 cps, dut the out-of-phase ccmponents begin to vary in a sinusoidsal
mammer &t higher frequencies.

The smoothed phase spectral estimate estimates the phase angle in
radians by vhich one filtered time series leads or lags eaoier. At frequen-
cles O to .0625 cps, the phases are approximately the same; that is, the
phase spectral estimate is near zero. At frequencies between .0625 cps and
+13 cps, the in-phase components of the two time series lag the out-of-phase
ccaaponents very slightly. From .13 cps to approximutely .27 cpe, the out-of-
phase components lag the in-phase components. From .27 cps to .35 cps, the
in-phase components are lsgging, and from .35 cps to .50 cps, the out-of-
phase components lag the in-phase components of the two time geries (the
aversge cblique and vertical incidence soundings). Since the phase is
slternately leading, there is no reason to assume or conclule that one time

series leads or lags the other at all trequencios.

The smoothed cross aapntule spectml eat:lmte uhm vhether or not

" the axplitude of the casponents at a particular frequency in cne time series

is associated with a large or small amplitude of the same order, at the same
frequency, in the other time series. The spectrsl density of the auto-
spe~tra shows that the variance is about 10 in both the filtered aversge
oblique incidence and filtered average vertical incidence soundings, so that,
at frequencies from .30 cps to .40 cpe, the amplitude of the components of
one time series is associated with corresponding large or smll amplitudes
{(at the same frequency) of the other. Again, this indicates that the covari-
ance between the component amplitudes is near zZero at cother frequencies. In
Pigures 21 and 22, we displayed the best smoothed estimates of the cospectral
and the quadrature spectral estimates.

In order to obtain a better representation of the important peaks
and a confidence interval, the square coherency vas calculated and plotted
(see Pigure 23) on the truncation scale, Jenkins and Watts [1968], given by:

¥(f) = sarctan | X, (1) |

=349~
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--Smoothed Squared Coherency, Arctan !ny( f)l

Frequency (cps)

Figure 23. SMOOTHED SQUARED COHERENCY ON ARCTAN SCALE
FOR THE PARZEN LAG WINDOW
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A 95% confidence interval was obtained using the following expression:
Tou(2) = & 1.96 /ITEN -
= + 1.96 /50/2(1.86)03 = + b9 , - o

and 1s shown on the graph of the smoothed squared ccherency spectrum. This
squared coherency spectral estimate gives the correlation between the average
oblique incidence soundings and the aversge vertical incildence soundings for
the 60 Km experiment. At low frequencies, we have almost perfect correlation
between the two filtered series, but this dampens out near zero at about .25
cps, and again at .50 cps. Furthermore, it never becomes greater than .33
cps. This frequency range shows virtually no correlation. Between these two
frequencies, .25 cps and 50 cps, the squared coherency is near zero which
indicates that the noise level is high in the filtered series for components
of this frequency. This is consistent with the results cbtained by the auto-
spectra analysis, thet is, the distribution of power or varlance is larger
at high frequencies (between .25 cps end .50 cps ). At low frequencies, the
squared coherency is high, which indicates low nolse or variance in the auto-
spectra for the corresponding frequencies and egain, this is the same result

obtained in the autospectra analysis.
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MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES IN RELIABILITY GROWTH g

Larry H. Crow

e % awrae

Introduction

A development program is generally recognized as Being a necessity for
most systems since they usually exhibit initial design and engineering
deficiencies. Attempts are made during the development program to find and
remove these deficiencies to a point where certain levels of performance with

" respect to reliability and other requirements are met. ;

The development of a system usually evolves as a repeated process of
system examination and testing, determinstion of system failure modes, and : | .
design and engineering changes as attempts to eliminate these modes. Because é '
of the scarcity of data, it is often a difficult task for one to obtain :
directly good estimates of the progress of the development program and to
project future progress. In this regard, program managers generally need
specialized techniques and methodology which will allow them to evaluate the
" progress of the development program from a limited amount of test data. The . . ¢ f el v
* area of reliabilitytgroﬁth modeling is a management tool directed toward this :

need of the program managers.

It is usually assumed that the system reliability will increase during
. the development program and, thus, mathematical models describing this
phenomencn have come to be called "re11ab111ty growth" models. Most of the

B Y o
ol

reliabil1ty growth models considered in the literature assume that a math-
ematical formula (or curve), as a function of time, represents the reliability

e

of the system during the development program. It is commonly assumed, also,
that these curves are noqdeéreasing. That is, once the system's reliability
has reached a certain I;Qel, it will not drop below this level during the
remainder of the development program. It is inportant to note that this is
equivalent to assuming that any design or engineering\sﬁ?nges made during the B
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development program do not decrease the systemis reliability.

The central purpose of most reliability growth models includes one or both
of the following objectives: ‘ o

. Infbrence on the present system reliability, §

. Projection on the system reliab;lity at some fhture development
time.

This paper will consider a commonly used reliability growth model proposed
by Duane [1]. For this model maximum likelihood estimates of the unknown:
parameters will be given along with appropriate confidence interval and
hypotheses testing procedures,

Background

For a nonrepairable system let F(x) be the cumulative distribution function
of the time to failure. Let £(x) be the corresponding probability density
function. Then the system failure rate is

£(x)/1-F(x), F(x) <1 .
- s F(x) = 1.
Note that
r(x)dx
is the probability that a system ofhage x will fail in the interval (x,xfdx).

" This probability is conditional on no failure during [0,x].

Examples
1, Exponential

1-e*%, x >0, 2> 0.

f(x)

r(x) =1, x > 0.

2. Neibull

2t

F(x) = 1-¢ ™, x>0, x>0,8>0,

r(x) = Aexe'l, x> 0.
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Observe that for 8=1, r(x) is constant. If 8>1 (8<1) then r(x) is
increasing (decreasing) which implies that the system is wearing out (improv-

‘ing) with age. ¢

The above definition of failure rate is appropriate when one is interested '
primarily in time to first failure. However, during a development program the
system is repaired or modified after each failure and tested further.

" The failure rate of a (complex) repairable system may be defined by

r(x)dx = (unconditional) probability
that a system of age x will
fail in (x,x+dx).

This probability is indepeadent of the failure history of the system during
[0,x]. Again if B>1 (R<1) then r(x) is increasing (decreasing) which implies
that the system is wearing out (improving) with age. '

Examples
1. Constant failure rate

r(x) =2, A>0, x> 0.

2. NWeibull failure rate

r(x) = 18x3°1, A>0,8>0, x>0,

< ) ¢

The Duane Reliability Growth Model [1] is usually‘ﬁfitten as

¢

r(x) = (1-a)ax" %

r

x>0,12>0,0 j.a 2 1, where r(x) is the féilure rate of a repairable s?stem.

LReplacing -a by 8-1, we see that the Duane Model and the Weibull repairable

system failure rate model are the same. For a system with a constant failure
rate for a fixed configuration, this model is equivalent to assuming that the
mean time between failure (MIBF) of the system at time x is

1-8
M(x) = [r(x)]}"} = 2—.
A8

That is, the MTBF is proportioned to 18,

=355~

Lva s e e . ’— T e e vl B batdh g R R L T f S e A e

e et e ¥ o ATt

e Ariten 2 AT e s e ©

Wikl b sl e« 0

~
i~




Rl ——

T N e e A et ey e o -

e e

Maximum Likelihood Estimates of A and 8

Suppose K systems have each experienced T units of operation since the

development program began. Let Nr(T) be the random number of failures

observed for the r-th system, r=l,...,K. Let Xir be the ége of the r-th syétém’
(regarding the age at the beginning of development as 0) at the i-th failure,

i-l,...,Nr(T).r*I,...,K.

D:. [ ] o
I X X5 X4 « e . "N1 (™,1 T
O x X X X X Xy T
12 X2 32 42 s2 0 ¢ *um,2
0 x X X T
ik K SN a MON

The MLE of A is

(A1l logs are with respect to base e.)

Example
Suppose K=3 systems were tested for time T=200. This experiment was
simulated on a computer when A=0,6 and B=0.5. These results are given in

~356-
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"Table 1 where xir is the age of the r-th system at the i-th failure.

From this simulation the MLE of 8 is

B = 0.615

and the MLE of A is
A = 0.461.

The Duane Model states that if development of the system is stopped at
T=200 hours of testing, then the times between failures of the system there-

after will follow the exponential distribution
F(x) = 1-¢ X/M(T)

x > 0, where

| | 1-8
M(T) = [r('r)]'1 . 2000 "

A8

Based on 200 hours of testing the MLE of M(T) is

1-8 ‘

M(200) = £200_ . 27,12,
18

If development is stopped at, say, T=300 hours of testing the model
states that future times bitween failure will, also, follow the exponential
distribution but with mean

o G001
M(300) = 8 .
Based on 200 hours of testing the projection of the MTBF at 300 hours of
testing is

-

) ~ 1'8
M(300) = $399 " . 3170,
A8

=357~
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TABLE 1 ’
Simulated Data for K=3 Systems Operated For Time
T=200 when A = 0.6 and 3 = 0.5
~ Sys. 1 Sys. 7 Sys. 3
X1 Xi2 X3
4.3 0.1 8.4
4.4 5.6 32.5
10.2 18.6 44,7
23.5 19.5 - 48,4
23.8 24,2 50.6
26.4 26,7 73.6
74.0 45.1 98.7
77,1 45.8 112.2
92.1 75.7 129.8
197.2 79.7 136.0
98.6 195.8
120.1
161.8
180.6
190.8
NICT) = 10 Nz(’l‘) = 15 NS(T) = 11
10 15 11
T T T
log — log — ! 10g
121 o %41 121 %2 = N3
- 19,661 = 26.434 - 12.398

NCT) = N (T)oN,(T)oNg(T) = 36

3 Nx' (™

I I 1log -;r—- 515.493 c

=1 421 Xyr

™

b o

N(T)

3 Np(T)

T
log —
): z ir

r=] i=]

XM, 0.461
X 'l‘B

= 0,615
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Hypotheses Tests on 8

Let N(T) be the total number of failures for the K systems, That is,

N(T) = NICT)+N2(T)+...+NKCT).
Conditioned on N(T)=n (n a fixed integer), the random variable

28 log ( -—)
rzl izl xir

has the Chi-Square distribution with 2n degrees of freedom.

This result may be used in the usual fashion to test hypotheses on the
true value of . |

: . - - - T - T - < oz c e e <
3 PR voe o . K © ¢ - f 4 v ~ < \ © © v

When n is moderate in size then one'may use the fact that

‘ S T\
z Z i (xir> !

r=] ju=l
"

is approximately normally distributed with mean 0 and variance 1 to test
hypotheses on the true value of 8.

-359-
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Confidence Bounds on 8

To construct exact confidence bounds on B one may again use the result
that conditioned on N(T)=n _ cet L ;

K N}(T) T
28 ] ] 1og Y—_)
r=] ixl ‘ ir

has the Chi-Square distribution with 2n degrees of frecdom. Exact (I1-a)x100

percent lower and upper confidence bounds are

a xz ('a'p zn)
LCB = 8 T

~ x2(1_ ':',211)
UCB = B} e <
2n

respectively, where 8 is the MLE of g, and x2(§,2n) [x2(1- 7,2n)] is the )

%--th [1;J%--th] petcentile for the Chi-Square distribution with 2n degrees

of freedom. Vhen n is moderate, however, the normal approximation may be

used. This approximation yields (1-a)x100 percent lower and upper confidence bounds :_

:LCBrtal--—-uﬁ
n

VAR
UCB = 81+ /2
Y n

T~
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| respectively, where E is the MLE of 8, and Pu/z is the %--th percentile for

, This result may be used to test hypotheses or construct confidence bounds

the normal distribution with mean 0 and variance 1.

e il 1

Example
Consider again the simulated results presented in Table 1 when K=3 and
T=200.

PN

The MLE of 8 was computed to be

8 = 0.615.

Conditioned on N=36, 90 percent approximate confidence bounds on 8 are
1cs = 8(1- 22385 < 0.446
.645.

UCB = B(1+ 3—17—9 = 0.784.

Hypotheses Tests and Confidence Bounds on A (8 known).

Suppose B is equal to some known value Bo. say, and that K systems have 4
operated for time T during development. Then the random number of failures,
N(T), for the K systems during [0,T] has the Poisson distribution with mean

8 = na7éo,

on A wvhen B is known.,

u.4*”,-_wy4M-~-.4M.~,m‘“”~‘,_
vt

Example

Assume K=3 systems were operated for time T=200 and N(T)=36 failures were ;
observed. Suppose, also, that 8 is known to equal 0.5. Two-sided 95 percent
confidence bounds on 6 are (25.1, 49.8). Consequently, two-sided 95 percent

PUPIEIE "R SR

e
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confidence bounds on A are (Al,lz), where

A = 25:1

e B .348
okt c
49.8
A, =328 . 6.
i Tl

Confidence Bounds on Current Failure Rate and MTBF.
Let N(T)=n and let

b
i
x2F,2n) E
1 ® 2 |
and i
x2(1- X, 2n+2) | \
-
2 2

be (1- Y )x100 percent lower and upper confidence bounds, respectively, on

8 = xath. | \

Also, let 8 and'B2 be {1-a)x100 percent lower and upper (conditioned on N=n)
. confidence bounds on 8. Then (1-a)(1-y)x100 percent lover and upper
(conservative)* confidence bounds on the failure rate, r(T), at time T are

}

*That is, our assurance is at least, instead of exactly equal to, a specified
value that the parameter of interest will lie within the stated bounds.
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respectively. Consequently, (1-a)(1-y)x100 percent lower and upper (conserva-
tive) confidence bounds on the MTBF at time T, M(T), are

KT

= F——-—-
262

M =
1

S

N!
+
s

Exgggle

Consider again the simulated results presented in Table 1 when K=3 and
T=200. Approximate 95 percent upper confidence bound on 8 is

8 = 0.784.
2

Also, based on N=36 failures, 97.5 percent upper confidence bound on

8 = xarf

ds0 - 2 < g Poees T Do T s

6 = 49,8,
z:

-
B

Hence, (95.0)x(97.5) = 92.525 percént (ﬁonservative) upper confi&én;e»bound on
the failure rate ’ '

£(T) = rert"l

~363~
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at time T is

r = .065.
2

Consequently, 92.625 percent (conservative) lower confidence bound on the MTBF

1
(T

M(T) =

at time T is

M =1 = 15.385.
1 1‘2

RFFFRE“CE

[1] Duanc J. T.,, Learnine Curv' Approach to Reliability Honltorzng,
IECE Transactlons on Acroqpace, Vol, 2, No. 2, 1964,

-364-

i A aemin

R

o o -

‘i" o



[

MODIFIED PROPAGATION OF ERRORS WITH APPLICATIONS
TO MAINTAINABILITY AND AVAILABILITY

) Paul C, Cox
Quality Assurance Office
White Sands Missile Range, New Mexico

ABSTRACT, A modification of the conventional method of "Propagation
of Errors" is proposed, This modified method promises to have numerous
applications, is frequently more easily applied than ~onventional propaga-~
tion of errors, and for a few functions of random variables which have been
studied, provides improved approximations of confidence limits over con-
ventional propagation of errors as well as over other well known methods,
Modified Propagation of Errors (MPE) is described, applications to "mean
time to repair" and "availability"” are illustrated, and the extent of
error caused by using MPE is discussed, Finally, to illustrate another
application, MPE is used to approximate confidence limits for aystem
reliability from confidence limits for component reliability.

1. INTRODUCTION .

a. The method of "Propagation of Errors," by which the variance of
a function of variables is determined from the variances of the individual
variable is well known, After obtaining the variance, it 1is then possible
to at least approximate errors, confidence limits, and levels of signifi-

cance for the function of variables, This discussion will be ceutered
“ arpund determining confidence limits for a function of variables,

b. In the event of a linear function of independent, random, normal
variables, the function is also normal; and there is no error in the
variance obtained by propagation of errors, assuming there 18 no erxer in
the individual variances, It follows that the concept of propagation of

. -errors is very useful when evaluating a linear function of independent
* sample means. - S T , ‘ S Lo -

¢

c. Propagation of errcrs is frequently used when the function 1s not
linear and/or the variables are not normal, Since the application of
propagation of errors is usually followed by an assumption of normality
for the function, the procedure can be expected to result in an error in
the confidence limits approximated by this method. It is the purpose of
MPE to broaden the application of propagation of errors and to reduce
the error when certain variables are not normal. The procedure proposed
to modify the propagzation of errors has the following characteristics:

-365~
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(1) Simple in concept and easy to apply.

(2) Can be applied to a large variety of functions of independent
variables-~there are many functions in which MPE can easily be applied
but for some of these functions it may be extremely ditficult to apply
conventional propagatioa of errors.

(3) 1In almost all areas studied, MPE provided results which were as
good or better than those provided by conventional propagation of errors,
In numerous cases, MPE provided almost errorless estimates while large
errors were noted when using conventional propagation of errors.

d., While MPE is applicable to a wide variety of functions of indepen~
dent variables (the main requirement being that confidence limits can be
obtained for each variable), the extent of error must be determined on a
case-by-case basis., A number of applications have been studied, For
example, the old problem of obtaining confidence limits for a system if
the confidence limits for the components are known is discussed in
Section 10, However, this paper is primarily concerned with the application
of MPE to approximating confidence limits for mean time to repair (MTTR)
and availability (A)., Fortunately certain recent reports, reference e-h,
have provided tables of exact confidence limits, thus providing a means
for determining the error when approximating confidence limits by MPE,

- 2 THE METHOD,

a. MPE is applicable to virtually any function of any type of random,
independent variables, as long a3 confidence limits can be obtained for
all of the random variables within the function, The method of MPE will
be described and compared with conventional propagation of errors. The
two methods will be illustrated using a linear function y of three random,
‘normal variables (x;, x3, and x3), and two sided 90X confidence limits for
the mean uy.

b, The method of convgutional propagation of errors;,
< Let y = f(x;, X3, X3,....ka) ) -
and § = £y, Rzpe0es £
where § is some type of average

2 2 2
02 = (QE-J 0.2 + {35—} 0.2 beeut [25-} 0 2
y laxl X1 axk x,
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if y is a linear function;

©

y = aix; +vazx2 + akxk

= a1y + asy_ teeed a and
My T AWy T 8y, k',

?-alil"'aziz'.‘ -oa“'a.kik also

2 2.2 22 $s0 0 2.2
°y - aloxl + a akc

. .
2z, *x

2 202 242 e 252
84 = alsx + a ax + + aks

2 2
2 2 2
a a |
: 1 2 i
8;- ;—8}2( +I—l—-s§ +-..+—..82 .
1 1 2 %2 " "kE

:

and the values of y, the appropriate variance, and the assumption of
normality are used to determine (or approximate) the desired confidence

limits, .

c. The method of modified propagation of érrors (MPE).

| |
af 12, ., (2£125 ..., (3£]1)2 >
i e s

d2 =
‘ .. h axy ax, .

[

af 12,  faf )2, - f 12,
2 (axl] i+ [Bxg] Bz oot o) %

'

o
[
[ ]

-where ) ) T o A S

hy = (ucl)y - X4 1

;1 - QCI)i,

13
-~
L}

and where ii ia the desired average (mean, ratio, median, etc.); (uel)y
and (lcl)4 are the upper and lower confidence limits respectively

assocjated with the random variable xy.

1MPE replaces ¢ with an interval in the propagation of errors formula,
Another example of the use of this concept may be found on P, 91 in
reference k.
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Then: .
‘Upper confidence limits = § + dh
‘ ‘ Lower confidence limits = § - dz.

d. An example of obtaining confidence 1imits for the mean when y
is a linear function of X3, X2, cee, Xy

{ , Given: y = 3x; + 4x; + 5x3. The x's are random normal

i variables and mutually independent,
X; = 10 OXI =4 =9
iz = 12 dxz =5 ny = 16

X3 = 16 st =6 nz =25

To find 902, 2 sided confidence limits for uy.
(1) Using conventional propagation of errors, é

¥ = 3010 + 4+12 + 5.16 = 158

2 - 2.0 !‘.6-0 -2—20 -
ay 9 16 + 1% 25 + 5 36 = 77

K ‘ | 0. = 8.7750
7

E 902, 2 sided confidence limits:

e b

158 - 1.645:8.775

A

Yy

AA

158 + 1,645.8,775

u 172.435

143,565
. Yy

A
A

(2) Using MPE

hy = 23 = 1,645(4/3) = 2,1933

hy = 8o, = 1.645(5/4) = 2.0563
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hy = 3 = 1,645(6/5) = 1,9740 ‘a

4 =d, = V(3¢2,1933)2 + (4°2.0563)2 + (5°1.9749)2 , i

3

= /208,3626 = 14,435

902 2 sided confidence limits:

N S - N

158 + 14.435

143,565 s'uy < 172.435.

A B A s e d £ e

e. In the above example, the confidence limits are exact and it
really made no difference whether the conventional or MPE method was
used, This is because y is a linear function of the x's and because
each x is normally distributed. The advantages of MPE become evident
when the variables are not normal, the function is not linear, and the
confidence limits are only approximated.

[ P

3. APPLICATION OF MPE TO OBTAIN CONFIDENCE LIMITS FOR AVAILABILITY,

a, Assume that time to failure is distributed as the expon atial, '

then MTBF is distributed as the x . Assume that down time 15 distribtvad
as the log normal, L oLk S

’ b, There appears to be no known solution to the‘problem of obtaining
confidence limits for availability, using the above assumptions. The
following exceptions are known:

(1) References ¢ and d provide tables and procedures for confidence'
limits for availability under the assumption that c% is known. The
tables provided by reference c are brief and may require involved inter-

(2) Reference i provides a solution if time to failure is distributed
as the exponential,

et g e AR

c, From 2e, Appendix A,

e el el . M s

5%
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. B = exp[ln(l/uy) + (1/2)0Z + u,]
B= exp(la(1l/y) + (1/2)s2 + Z]

1n(1/3) + (1/2)8%/2 + % = -2,3026 + 0,3750 + 0,9163 = -1,0113

The first atep 1is tb obtain estimates and 90Z 2 sided C.L. for
In(1/ug) + (1/2)0%/2-+ up

d. In(1/5) = -2,3026
From 3b, Appendix A, 90Z C. L.:
0.05217 s 1/uy £ 0,16055; taking natural logs:
~2.9533 £ 1n(1/ny) < -1.8292
h; = -1,8292 =(~2,3026) = ,4734
L] = -2,3026 ~(=2.9533) = f65°7

. e 82/2 = ,3750 (1f, Appendix A). .
Using the x2 with 8 d/f, 90X -2 sided C.L.
10,1935 £ o2/2 £ f.0977 R ;
hy = 1,0977 - ,3750 = ,7277
2 = 0,3750 - ,1935 = 1815
£, Z = 0.9163; s; = 0.8660, z is normally distributed (le, £, App Aj.

t o5 (8 d4/f) = 1.8595

hy = 23 = (tes)//n = 0.5368
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8- dy = V(.4738)2 + (.7277)2 + (.5368)2 = 1.0207

7(.6507)2 + (.1815)2 + (,5368)2 = 0.8628

B * exp(-1,0113) = 0,3637
Upper C.L.: exp(-1.0113 + 1.0207) = 1,009
Lover C.L.: exp(-1.0113 - .8628) = 0,1535

90% C.L. for B: 0.1535 £ B £ 1,009

h. Fe:imate of Availability:

. .33

148 1+ .3637

90X -2 sided C.,L, for availability,

l . 0.4977 S A <1

+1.009% 1901335 - -8669.

4, CONFIDENCE LIMITS FOR AVAILABILITY WHEN a% IS KNOWN,

L

a. As stated in Section 3b(1l), a solution may be obtained, using
tables provided by reference ¢, if oﬁ is known and if values for m and n
are within the scope of these tables, A small section of this table is
included in Appendix B, and the problem, illustrated in Section 3, will
be reworked by MPE using 02 - sg = 0,75 and the results compared with the
exact valuea obcained by using the tablea in reference c¢. ,

b. Solution by MPE,

(1) B = exp(-2.3026 + 0,3750 + 0,9163) = exp(~1.0113) = 0.3637 as
in Section 3g.

(2) h; = 0,4734; £; = 0,6507 as in Section 3d,
(3) hy = £; = 0, since o2 does not vary,

(4) hy = 23 = (te0)//n = (1.645+0.8660)/3 = 0.4749
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(Note that the normal t is used here instead of the student t
as in Section 3f),

(5) dy = V(.4734)2 + (.4749)2 = .6704

d, = 7(.6597)2 + (,4749)2 = .8055

(6) 902 "2 Bided COL. for B:
Upper C.L.: exp(-1,0113 + ,6704) = 7111

Lower C,L.: exp(-1,0113 - ,8055) = .,1626

c. Solution using tables, reference c.
exp(02/2) +beXg
2=y

where the appropriate values for b are obtained from the tables of
reference ¢. (Note Appendix B for an extract from this table),.

(1) cC.,L, for B =

(2) 90% -2 sided C,L, for B:
From Appendix B, b os = 7.995; b g5 = 34.852

(1.455) (34.853) (2.50) . . 7043
209410

Upper C.L., for B =

(1.455)(7.995) (2.50)_ » ¢.1616

Lower C,L, for. B =
. : ‘ 249410

d. 90% -2 sided C.L. for availability:
By MPE:  ,5844 S A S ,8602

By Ref c: ,5868 s A £ ,8610

5. CONFIDENCE LIMITS FOR MEAN TIME TO REPAIR (MTTR).

a, Frequently, the assumption is made that tlme tc repair is
distributed as the exponential, If this be the case, _onfidence limits
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for MI'TR can be obtained in the same way as for MIBF (Note 3b of !
Appendix A) This is discussed in detail in reicivace i. g

b. The usual assumption is that time to repair “s distributed as o
the log normal, Using this assumption, the four reports by Charles E. ?
vand, references e-h, provide the necessary procedures and tables for

obtaining the confidence limits. The tubles listed under reference h are

necessary for camputing the confidence limits and are extrcmely compre-

hensive. They are presently unpublished)! and thercfore are generally i
unavailable. A brief extract is included in Appendix B, !

c. If time to repair (x) is distributed as the log normal, and i
z = 1nx, then an estimate of MIIR = exp(Z + s3/2)=exp{0.9163+0.3750) = ‘ ‘
exp(1.2913) = 3.6375. ' : ;

d. Referring to the extract from Charles Land's tables in Appendix 2,

for s, = 0.866, using linear interpolation, -0.5725 is obtained for .05 ;
and 1.0431 for .95. These values are multiplied by s,» 8iving -0.4958 and i

£ 0.9033.

2. Lower C.L. = exp(1.2913 - 0.4958) = 2.2155
Upper C.L. = exp(1.2913 + 0.9033) = 8.9770

f. The solution by MPE:
From Section 3e, h, = .7277 and L, = .1815
From Section 3f, h, = L, - 0.5368

(g = /(.1815) + (.5368)% = 0.5667

& =~ /(.7277)% + (.5368)% = 0.9043

Lower C.L. = exp(1.2913 - 0.5667) = 2.0637
Upper C.L. = exp(1.2913 + 0.0043) = 8.9850

... -g. Comparing these results indicates a conservative error for MPE in
each case, and a negligible error for the more important case of upper -~ -
confidence limits. : : - ' i

el iy e

6. CONFIDENCE LIMITS FOR AVAILABILITY IF u; IS KNOWN.

R
et

a. Assume that MIBF = 10 hrs, as before, but this value was obtainnd

from long history instead of a small sample.
Then 1.5, = 10 and B = (0.10) (MITR).

1Dr. Land is presently negotiating with certain statistical journals, and it ,
is expected that these tables will be published before the end of 1973, probably o
*e

considerably reduced in size. :

PRSP
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b. B = (0.10) (3. 6375) = 0.36375, as in Para 3f.

c. M.xlnplymg conf1dence limits for MITR by 0.10, gives !
390% -2 sided C.L. for B:

. by Land's Tables, 0.2216 < B £ 0.8977 |
|  and by MPE, 0.2064 < B < 0.8985
d. 90% confidence limits for availability by Land's Tables:
0.5270 < A < 0.8186
by MPE, 0.5267 < A < 0.8289,

e. The error resulting from using MPE is again negligible in
t.he important (lower C.L.) case.

. COMBINING LAND'S TABLES AND MPE TO OBTAIN CONFIDENCE LIMITS FOR
AILABILITY.

i g

a. If the tables by Charles Land, reference h, are available, it
appears that the error in obtaining confldence limits for availability
would be reduced to a minimum if Land's Tables we:e combined with MPE
to obtain the confidence limits.

; b. The problem of Section 3 Wlll be reworked by combining these
0 methods.

) c. From Section 3d, h, 0.4734 and 2, = 0.6507.

d. The application of Land's Tables in the solution of thxs
roblem, can be obtained from Section 5d.

- *”___‘—

hz'a = 0.9033 and 2, , = 0.4958

93

e.. 4, = V(.4734)* + (.9033)% = 1.0197

- -
g ¢ S

d, = /(.6507)% + (.4958)% = 0.8180
£. From Para 3f, B = exp(-1.0113) = 0.3637
Then, 90% -2 sided C.L. fOr B: '

exp(-1.0113-.8180) < B < exp(- ;" 0113 + 1.0197)
0.1605 < B < 1.0084.
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g. 90%, 2 51ded C.L. for avallablhty

1. 1 08617
T00sT 04979<A < 771605 0.8617

8. COMPARISON OF CONFIDENCE LIMITS BY VARIOUS METHODS.

- a, The following table summarizes the 90% - 2 sided confidence |
limits for availability, obtained in the previous paragraphs.,

0% - 2 sided
90% - 2 sided C.L. for B |{C.L. for szulablllg
CONDITIONS| METHOD| .SEC.j~ LONER UPPER TOWER | UPPER
None MPE 3g,h | 0.1535 1.0094 0.4977 { 0.8669
"o MPESLAND | 7,2 | 0.1605 1.0084 0.4979 | 0.8617
o3 MPE 4b,d | 0.1626 0.7111 0.5844 | 0.8602
" Ref ¢ 4c,d | 0.1616 0.7043 '0.5868 | 0.8610
" Known |MPE 6c,d | 0.2064 0.8985 0.5267 | 0.8289
" Ref h 6c,d | 0.2216 0.8977 0.5270 | 0.8186

Table 1. Comparison of 90% - 2 sided confidence limits, obtained by
vanous methods.

b A study of the above table suggests “the followmg

(1) The use of MPE usually prov1des conservatzve approxmatmns.
That is to say, MPE approximations appear to be a little larger for
upper C.L. and a little smaller for lower C.L. than the true value,

, (2) If the";'oot, sum square'of the differences between the MPE
a?proximations and the actual confidence limits is obtained, when.
and u} are known, the following is determined:

RSS, lower: v(.0024)7 + (.0003)2 = ,0024

RSS, upper: /(.0008)% + (.0103)% = ,0103,
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which suggests that the errors in the MPE approximations for the
problem of Section 3 may be less than .01 for the upper C.L. and less
than .0024 for the lower C.L.

9. ERROR IN THE USE OF MPE,

a. It is clear that the usefulness of MPE depends upon its
accuracy as well as its ease of application. In Section 8, certain
errors related to the specific example ui' this report were stated. In
this Section, MPE values will be compared with exact values for a wide
spectrum of parameters, using data from references ¢, £, and h to
provide the exact comparison.

b. First, a comparison will he made for confidence limits for
availability for the special case in which cv2 is known. For this study,
availability will be approximated by MPE, usmg the methods of Section 4.
These approximate values will then be compared with exact values obtained
by using the tables of reference c. Table 2 shows the error in using MPE
for select values of m = n, n/oz, and levels of probability and for the

special case of ¥ = 42'3.

PROBABILITY :
f m=n | n/o} .95 .90 .75 .25 .10 .05 |
5 .005  .007 .08 .004 .002  .002]
s 12 003  .004  .004 .002 ,000 -.002f . -
40 001 .01 .00z  .000 .000 -.002] .
9 5 .004  .005  .007 005  .003 .00l
12 | .02 .003 .004 .02 .02 .00l
4 | .001 .01 .01 .001 .00l  .000
13 5 .003  .004  .005 .005  .003 002
12 .002  .003 .003 .002 .001 .00l
40 001 .00l  .001  .001  .000  .000

“Table 2. [A (exact) - A(MPE)], oi known and ¥ = ax.
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(1) From Table 2, it appears that under the conditions of this
paragraph, and if m and n both exceed 5, the error should not exceed .008
if availability, is approximated by MPE. As n/o? increases, the error
rapidly approaches zero. As mor n increases, the error aﬁproadxe zeT0,
but rather s.owly. Errors appear to be smaller when probabilities are
close to 0 or 1; and -for lower confidence limits, the error is conservative.

(2) Tc¢ investigate the error if ¥ # 4fg, the worst case situation in

Table 2 was selectad; i.e., m=n = n/oz = 5 and prob, = 0.75. Here 1t was
found that for 'safie examples of ¥ < 4x_, the error became as large as. .009.

As the ratio of y to 4%, increases, the error slowly decreases. For example,
when the ratio reaches 20, the error is .03.

(3) From the comparisons of this Section, it appears that the error
resulting from the use of MPE when determining confidence 11m1ts for
availability is less than .01, in the special case in which o is known. MPE

has the followmg additional advantages.
(a) Can be used when the tables of reference ¢ ai‘e unavailable.

(b) Can be used when parameters that are not included in
reference c. For example, these tables provide entrees only for
S < m < 13; have no values for 2 sided -95% confidence limits; and provide
a limited selectmn of values for n/o. .

(c) MPE may be applied when c can only be approximated from a sample,

c. The second study of this Section is to provide a comparison of the
‘data contained in the tables of reference h, and the corresponding values
if obtained by MPE. Furthermore, values obtamed by the method of minirum
variance unbiased estimators (MVUE) will be compared with corresponding exact
and MPE values. The technique of MVUE was developed by Dr. Land at the
suggestion of Prof. D. R. Cox. Dr. Land has compared his exact values with
several well known approximations, and generally MVUE provided better

. approximations than any of the other procedures. Furthermore, MVIE is

essentially equ1valent to the procedure of conventmnal propagatlon of errors.
(1 Tables 3 and 4 are adaptations of two tables prepared by Dr. Charles

Land and included in reference f. In this reference, Land compares exact
values of confidence limits for lnu, =y, + ) o with the MVUE approximation

IWUE uses 5w - s’/n + Sz/ Z(ml) conventional propagation of erro.. uses
s2 = si/n+ (n-l)s /2n?, where w = 2 +(})s3,
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as well as three .other approximations.
for exact and MVUE values and includes the values obtained by MPE Table 3
Table 4 is for 7 = 7.650 and s = 4.632.

1sfor2'-1219andsz-0208

— Y

Tables 3 and 4 copy Land's data

Table 3. One sided confidence limits for lnux -y, },
- exact values from Lard's Tables and MVUE. ) c

EVEL n = 11 n = 101 n = 1001 ;

AT WPE - WVUE T BT TE TWUE ] YOE iz
005 | .950  .883 .952 | 1.205 1.200 1.200 | 1.285 1.284 1.283
010 | .990 .938 .988 | 1.216 1.212 1.212 | 1.288 1.288 1.28¢
025 | 1,045 1.012 1.041 | 1.232 1.230 1.230 | 1.294 1.203 1.293
050 | 1.091 1.069 1.086 | 1.247 1.245 1.245 | 1.208 1.298 1.298
.00 | 1,142 1.130 1.139 | 1.263 1.262 1.262 | 1.304 1.304 1.304
250 | 1.227 1.225 1.226 | 1.201 1.201 1.291 | 1.313 1.313 1.313
.500 | 1.324 1.323 | 1.323 1.323 | 1.323 1.323
.750 | 1.431 1.432 1.420 | 1.356 1.356 1.355 | 1.333 1.333 1.333
900 | 1.546 1.541 1.507 | 1.387 1.386 1.38¢ | 1.343 1.343 1.342
950 | 1.629 1.619 1.560 | 1.405 1.404 1.401 | 1.348 1.348 1.348
975 | 1712 1.698 1.605 | 1.422 1.420 1.416 | 1.355 1.353 1.353
990 | 1.820 1.800 1.658 | 1.442 1.439 1.434 | 1.359 ° 1.359 1.3
995 | 1.925 1.900 1.727 | 1.456 1.455 1.446 | 1.363 1.362 1.362

z= 1.219 and s} = ,208,
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LEVEL n =11 n = 01 n = 100] |
TEXACT  MPE  MV\E | EXACT ~ MPE M EXACT ME T ]
.005 | 7.774 7.480 7.012 | 9.119 9.096 8.965 , 9.666 9.664 9.647
010 | 8.-62 7.576 7.298 © 9.191 9.173 9.062 . 9.693 9.692 9.678 |
.025 | 8.297 8.096 7.718 | 9.300 9.288 9.204 ; 9.735 9.733 0,723
.050 | 8.514 8,398 8.080 @ 9.397 9,300 9.327 | 9.771 9.770 .763
100 | 8.787 8.723 8.496 | 9.515 9.511 9.468 | 9.813 9.812 9.808
.250 | 9.319 9.312 8.193 f 9.724 9.724 9.704 | 9.885 Y.885 9.883
1,500 |10.083 9.966 | 9.977 9.966 | 9.967 9.966
.750 11,151 11.176 10.74C !10.257 10.258 10.228 | 10.052 10.052 10.050
.900 [12.555 12.568 11.436 {10.7%5 10.534 10.464 | 10.131 10.131 10.125
.950 {13,712 13.717 11.853 {10.716 10.712 10.606 | 10.179 10.179 10.170 !
975 {14.999 14.995 12.214 110.882 10.876 10.728 | 10.222 10.220 10.200
.990 [16.950 16.938 12.634 [11.086 11.077 10.870 | 10.272 10.271 10.254
.095 |18.658 18.634 12.920 [11.234 11.223 10.967 | 10.307 10.305 1o.zssj
Table 4. One sided confidence iimits for lny_ = b, +(%) g2, comparing the MPE

approximation with exact values from Land's tables“and .

Z = 7.650 and sg = 4,632,

(a) Table .3 provides comparative data for an example for which s2 = 0.208
is relatively small, and the foIlowing is evident:

1. For n = 100, either MPE or MUE should provide a satisfactory
approximation. :
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2
2, For n = 11 and the probab111ty level less than 0.25, MWE is
somewhat better than MPE,

.. 3. Forn=11 and the level greater than 0. 75, MPE provides a much
better fit than MWE. :

4. As w111 be shown soon, MWiE is generally under 0.25 and frequently
very poor at levels above 0.75. ‘TE is usually at its best at levels
above (.75. For most applications, the higher levels provide the more
useful levels of confidence.

(b) Table 4 uses much larger values for both T and s2 than table 3.

For this example, MPE provides better results than \RUE if almost all
instances. Specifically, for n = 11 and for levels > .750, MPE provides
excellent approximations while the use 6f MVWE results in large errors.

(2) Table 5 contains a sample o3 data for n = 3 taken from
reference h (Tables by Charles Land); and compares these data with
corresponding values obtained by tne ‘methods of MWE and MPE. Table 6
provides these comparisons in graphical form for levels 0.90 and 0.005.
From these tables, it appears that even for the very small sample of 3, MPE
provides a close approximation if the level > 0.25. MWE provides
acceptable approximations in some areas, frequently better than MPE.
However, MVUE generally does not provide satisfactory approximations for
any value of s for levels > 50%.

(3) Table 7 provides a graphical compar1son at 4 levels for exac ct, MPE,
and MVUE values for n = 11. These graphs suggest that for a sample of this
size, MPE is clearly superior to MVUE for almost all levels, and MPE should
be a reascnably satisfactory approximation for any level of probability
greater > 0,05,

¢ ©

2Levels under 0.50 correspond to lower confidence limits for maintainability
and upper confidence limits [or availability (note Sections 5 and 6).
Levels above 0 S0 correspond to the reverse. _ ‘

3Data in reference h are multlplled by s, and added to 2‘+(k)sz to obtaxn ‘

confidence limits for w, +(%4)oZ, assuming z is normal. Appendix B contains
an extract from these tables for n = 9.
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H | :
S g)ETHOD .00s .010 ,025 .00 .100 .250| .750 .%00 .,950 .975 990 .995|

JEXACT 4,104 3.126 2,113 1.506 1.012 457 ,491 1.102 1.945 3,088 5.880 IO.SGJi
0G1MPE 5.730 4.021 2.484 1,685 1.689 .471 ° ,487 1,168 1.921 3.134 7,589 11.482
MVUE 11.490 1.346 1.134 .951 .741 .390¢ ,390 .741 ,951 1.134 1.346 1.490

EXACT | 2,271 1.919 1.478 1.162 .858 .438; ,655 2.114 4,593 9.603 24.618 49.623
B 5.733 4.026 2.491 1.694 1.098 .477) .779 2.383 4.903 9.87Z2 25.410 50.079
MVUJE | 1,555 1.408 1,183 .983 .774 .407} .407 774 993 1.183 1.405 1.555

- JEXACT {1.753 1.546 1.269 1.055 .825 .453)1.150 4.211 9.231 19,240 49,297 99.248 |
a0 MPE 5.744 4.040 2,511 1.718 1.125 ,492] 1.326 4.377 9.362 19.269 49,833 99.649
MWE |1.744 1,575 1,327 1.114 .868 .457) .457 .868 1.114 1,327 1,575 1.744

EXACT {1.622 1.489 1,296 1.130 .926 .503| 2.429 8.474 18.488 38,494 98.495
00{MPE 5.787 4.096 2,589 1.813 1.227 .548) 2.523 8.548 18,494 38.296 99.167
MWE |2.351 2.124 1,789 1,501 1.170 .616f .616 1.170 1.502 1.789 2.124

EXACT | 2.381 2.264 2.086 1.865 1.568 ,789] 6,172 21,221
00 MPE 6.078 4.472 3.081 2.370 1.785 .841; 6.214 21.225 46.075 95.572
MWE {4.790 4.326 3.645 3.059 2.383 1.254] 1.254 2,383 3.059 3.645

:EXACT 3.277 3,140 2,898 2,632 2.224 1.107} 9.273 32.204

500 MPE 6.488 4.978 3,694 3.014 2.384 1.147] 9.305 31.814 69.086 143.33
MUE 16,990 6.313 5,319 4,464 3.478 1.830] 1.830 3,478 4.464 5.319

fEXACT | 4.233 4.068 3.768 3.431 2.905 1.440]12.371

CO:MPE 7.021 5.612 4,411 3,733 3.031 1.471|12.,400 42,407 92,103 191.095
IMRUE 19.227 8.334 7.021 5.893 4,591 2.416] 2.416 4.591 5.893 7.021

NEGATIVE POSITIVE

»le 5. Comparison of MPE and MVUE with exact values extracted from reference h (n = 3).
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¢ ] - v <
~ (4) Using the cr1ter1a that the relatlve error for MPE shall not
- exceed 0.1, the following table indicates generally safe areas for the

app11cat10n of MPE,

SAMPLE SIZE LEVELS OF PROB. GREATER THAN OR EQUAL

3 ; .250

6 . Cote - .100

11 .050

25 f, .010

50 | . .00s

Above 50 No reétrictipn

d. From the discussion of this Section, the following conclusions are
drawn about the errors resulting from the use of MPE.

(1) In the event that o7 is known and MPE is used to approximate the
methods of reference ¢ (note Section 4 and 9b of this report), the error can
be expected to be less than .01; for lower confidence limits, the MPE error
is conservative, thus the true lower confidence limit can be expected to be
slightly larger than the approximation. For uppe: confidence limits, the .
error is not’ conservative but is usually veryismall.

(2) If u, is known and MPE is used to approximate confidence limits for
availability,”as discussed in Section 6, both upper and lower approximations
will almost always be conservative, and in the very few instances in which
not conservative, the error will be small. If the regions in which the
relative error may exceed 0.1 are avoided [note para 9¢(4)], the method of
MPE should provide errors no larger than .02 in the approximate confidence
limits for availability. l

(3) If the RSS of the maximum errors, discussed in the two previous
paragraphs, is obtained, it would suggest "that the method of MPE, when applied
to the total problem of approximating confidence limits for avallablllty (as
described in Section 3), should provide an error which is conservative and
will not exceed 0.025S. :

\-v-l
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10. CONFIDENCE LIMITS FOR SYSTEM RELIABILIT'I; FROM COMPONENT RELIABILITY DATA.

a. MPE will be used to obtain approximate confidence limits for a system
which consists of three components in series and rel .bility estimates for
each component has been obtained in threce separate tists. It is not claimed
that MPE is the best method for obtaining these approximate confidence limits,

but it is offered to illustrate this method when the function is a product of
independent variables.

b, Assume the results o¢f the three component tests are these provxded
bv the following table.

¢

No. Tested (ni) - S0 40 30
Successes (si) 42 38 - 27
Est. of Comp. Rel(r;) 0.840 0.950 0.500

90% - 2sided C. L.  |.730 < p < .920

CaMP. ONE (C,) (COMP. TWO (C,) [COMP THREE (C,)

.851 < p,< 991 761 < p,< 973

L, .840 - .730=,110{ .950-.851=.099| .900-.761=.139
: hy .920-.840=,080 | .991-.950=.041| .973-.900=.073
{ESt. of Systems ReliaBility (K) = (.840)(.950)(.000) = .713

c. SinceR = 1Ty Ty, th2 formulas of para 2b,c become:
R " 1‘,’.1':.512.l + r:..ri.:sf-z * rfr:s,z.3
dﬁ‘ = r.rihi o r?.r3.h: + r? 12 h?
df = rj.ria? + ri.ry.12 + ri.r2 12

d. One question arises, when dealing with a nonlinear function, what

v

should be substituted for the r;, since they are unknown? The estimate may
be used or the confidence 11m1t itself might be substituted. Some studies
have indicated that substitution of confidence limits usually gives better

results. Both procedures will be illustrated.
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e. Using the estimate of rj. - | o é

df = (.95°,90-.08)% + (.84°.90°.041)? + :
(.84°,95°.073)% = .00904; d, = .095

df = (.95°.90°,11)2 + (.84°.90",041)2 +
- (.84:,95°.139)% = ,02675; d, = .164

o .

90% - 2 sided C.L. for the system:
718 - .164 = .554 < R < .718 + .095‘- .813

f. Using confidence limits for rj.

d2 = (.991%,973-.080)2 + (.920*,973*.041)% +
(.920-,991°.073)% = ,01172; &, = .1083

d} = (.851*,761°.11)% + (.730*,851-.139)2 +
(.730-,851+,139)2 = ,01556; dg = .1247

90% - 2 sided C.L. for the system:
.718 - ,125 = ,593 < R < ,718 + .108 = .826

g. An alternate approach, eliminating the dilemma of a proper value to
be substituted for r,, r,, and ry, is to use logarithms and thus transform .
the given function into a linear function.

log R=1log 1, + log r, + log r,.

est. of log K = -.0757 - .0223 - .0458 = -,1438.

.\‘vl'
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wk .




log of lower C.L. - " log of upper C.L.

log .730 = -.1367 log .920 = -.0362

log .851 = -.0701 log .991 = -.007)

log .761 = -,1186 log .973 = -,01.9

2 = -.0757+.1367=.0610;h,=-.0362+.0757=.0395
%, = -.0223+.0701=.0478;h =-,0039+.0223=,0184
Ly = -.0458+.1186=.0728;h,=-.0119+.0458=,0339
di = (.0610)2+(.0478)2+(.0728)%=.01130 d,=.1063

(.0395)2*6.0184)’*(.0339)z-.OOSOS dh-.OSSZ

"

lower C.L. = antilog (-.1438-.1063) = ,562
upper C.L. = anitlog (-.1438+ 0552 = .815
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1,

2.

APPENDIX A

SYMBOLS AND DEFINITIONS AND DATA FOR THE EXAMPLE

General Definitions and Data.

a.
b.
c.

d.

m.

n.

m = no. of failures = 9

n = no, of repairs = 9

t = total operating time = 90 hours

X = repair time

2 = 1n repair time--assume that z is normally distributed

T e S -
2 = 0,9163; s, 0.75; s, = 0.8660
fg = exp (Z) = geometric mean of the sample of x's = 2,50 hours

exp(s2/2) = exp(0.375) = 1.455

estimate of mean time to repair (MITR) = exp(z'+s§/2) = 3,6375 = X

y is time to failure, Assume that y is distributed as the éxponentia:
Yy = t/m = sample mean time between failure (MIBF) = 10 hours

W, = population mean time to repair = exp(u, * 02/2)

by = population mean time between failure

C.L.--confidence limits

Availability Formulas.

a,

b

c.

A=/ Gy + )
Est. of A = X =7/F+ %
A= 1/(1 + B), where B = g(/uy
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a < .

d. Est.’of B =B = X7 = (/7) exp(si/2 *+ D)
e. B = (1/u) exp(oy/2 *u;) = exp[In(l/wy) » 03/2 * 1,]
f. B = exp(In(1/y) * 572_/2 + 3]

'3, Relisbility (MIBF) formilas. ‘ O
a. Consider: 1/¥ = m/t = 9/90 = 0.10; 1n(1/¥) = -2.3026

b. Confidence limits for I/uy (m is fixed, t is variable)

X;m; a/2 5_‘1/uy < Xim; (} - a/7)

for 90% - 2 sided C.L. 9.39/180 < l/uy < 28.9/180

0.05217 < l/uy < 0.16055

c. 1f t is fixed and m is variable, then confidence limits for MTBF
become: _ .

Xims oz ¢ 1y ¢ X +2)°. 0 - afy) -
2T T
.,
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APPENDIX B

.1, Extract from table listed in reference 3. (n/cé =9 30,75 = 12):

<

g/m - 8 9 10
| .0s0 6.865 7.995  9.I71
.100 8.227  9.541 ~10.855
.250 '11.072  12.674 14,279
.500 15.211 17,201 19.191
.750 20.653  23.115 25.577
.900 26.960  29.941 32.910
.950 31.516  34.852 38.173

2. Extract from the tables of reference 8 (Charles Land). The extract is
for n-1 = 8 d/f.

025 - .05 .10 .90 95 975

K w

.501-.6783 -.5657 -.4404 .5763 .8050 1.047S
.60}-.6736 -.5646 -.4419 ,6115 .8620 1.1329

.70}-.6721 -.5658 -.4451 ,6508 ,9254 1,2264

.801-.6733 -.5691 -.4497 ,6939 9945 1.3272

- <90(-.6769 -.5743 -.4550 ,7402.1.0682 1.4340

1.00]-.6825 -.5811 -.4627 .7896 1.1452 1.5455
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