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INTRODUCTION 
Most sonar or radar receiving systems operate by measuring 

the energy received as a function of such parameters as time, 
frequency, range, or direction of arrival and comparing this 
measurement against a decision threshold for each combination 
of parameters.  A detection is considered to occur whenever 
the measured energy exceeds this threshold.  The threshold Is 
chosen so that only a United number of false detections (false 
alarms) occur due ^o random fluctuations of the energy measurement 
when only background noise and no target is present at the Input. 
Unfortunately the required value of the decision threshold 
for a given false alarm rate depends on the level of the background 
noise, and this level is seldom known a priori. Thus most actual 
recei r.i.ng systems also contain some means for measuring the background 
level and adjusting the decision threshold according to this 
measurement to provide a "constant false alarm rate" (CFAR) system 
independent of background level. This measurement is usually made 
by averaging the energy values in a number of neighboring cells 
(in the sense of having nearly the same range, frequency, etc. 
parameters).  If the background noise is not expected to be 
perfectly uniforr. over the entire range of the measurement parameters, 
it is desirable co make the region over which the background 
average is taken as small as possible.  However, once the number 
of points used In the average becomes small, the statistical 
fluctuations in the background measurement become significant and 
degrade the performance of the receiver compared to one with 
a fixed decision threshold. The purpose of this report Is to 
evaluate this performance degradation for several different types 
of detector and background compensation. A general model is first 
developed which is applicable to a wide class of systems, and then 
specific results are obtained for several commonly used techniques. 
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GENERAL MODEL FOR BACKGROUND COMPENSATION 
'The specific form used for a background compensation system 

depends soirewhat on the statistical behavior of the detector output 
as a function of the background level.  If only the mean value 
of the detector output changes with changing background and the 
variance and other moments remain constant at a known value (as Is 
true In certain systems using clipped data and In "logarithmic" 
receivers), the background compensation usually takes the form 
shown In Figure la.  Here an averager of some sort estimates the 
mean, based on samples taken from the detector output, and this 
estimate Is subtracted from each output of the detector.  The 
resulting zero-mean function has a known distribution and can 
be tes^?d against a fixed threshold to make the detection decision 
with a constant false alarm rate.  A second common case Is the one 
In which the shape of the detector output distribution remains 
constant, but Its scaling varies In direct proportion to the 
mean output. This Is true for systems such as the square-law 
deteotor and various linear envelope detectors. In this case 
normalization can be done by dividing the detector output by the 
estimated mean rather than by subtracting the mean as was done 
when the higher moments remained constant. An entirely equivalent, 
but easier to analyze, approach Is shown In Figure lb. If the 
desired decision threshold Is G times the mean (corresponding to 
dividing by the mean and comparing the result to G), then the 
same test can be performed by multiplying the mean estimate by G, 
subtracting this from the detector output, and comparing the result 
to zero.  Finally In some systems there Is no definite relationship 
between the mean and the higher moments of the detector output 
distribution, but measurement of the variance Is sufficient to 
characterize the rest of the distribution. This Is true In certain 
systems which average a number of samples before a detection decision 
Is to be made and where the mean may be fluctuating.  In this case 
both the mean and the mean square may be estimated as shown In 
Figure 1c, and the sum of the mean estimate and G times the 
estimated standard deviation Is subtracted from the detector 
output before comparing with zero. 

All of the above forms may be characterized by the model shown 
In Figure 2a, where the background compensation system forms a 
function Au + Bo + C, subtracts this from the detector outputs, 
and compares the result to zero.  If the estimates u  and a of the 
mean and standard deviation were perfect, this would perform the 
desired normalization without degradation. However, with a finite 
number of data samples used to form these estimates, fluctuations 
will appear at the output of the background estimator and these 
appear as additional noise which Is passed to the decision element. 
Several assumptions will be made about the nature of this estimation 
noise throughout this report.  These are 

(a) The estimators of u and o are unbiased so that the errors 
In estimation havt zero mean. 
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(b) The noise In the background estimation has a Gaussian 
distribution by virtue of the central unit theorem and the 
fact that a reasonable number of samples are used in estimating 
the background.  The variance of this estimate is a. This 
assumption clearly becomes suspect for small numbers of samples 
averaged if the Jnput ncise is non-Gaussian. 

(c) The background estimation errors are uncorrelated with 
the output of the detector for a given cell in the measurement 
space (range, frequency, etc.) of the system.  This should be 
true for any properly designed background estimator and can be 
accomplished by pre-whitening the inputs to the averager. 

(d) The amount of smoothing used in the background estimator 
is equivalent to that obtained by using N independent samples of 
the detector output in forming the estimate.  When the samples 
used are correlated, this serves as a definition of N. 

Under t 
as shown in 
functions as 
of the detec 
threshold T 
of the detec 
it may be sh 
the detector 
convolution 
the density 

n equivilent system may be dre'-"~ 
is seen that the estimation noise 

an fluctuation added to the output 
ctor output is compared to the 
e y and o are the true parameters 
Under the assumption of indeptadence 
lllty density function Pz(z) of 
d by the estimation noise is the 

of the detector output density function Px(x) and 
function Py(y) of the estimation noise.  Thus 

hese assumptions, e 
Figure 2b.  Here it 
a zero-mean Gaussi 

tor before the dete 
= Au + Bo + 
tor distribution, 
own that the probab 
output as ccrrupte 

C, wher« 

PZ(Z)  =  /   PX(
X)  PyU-X)  dX 

_00 

■ / px(z-y) Py(y) 
dy 

.00 * 

(1) 

The probability of a false alarm PFA Is equal to the probability 
that z exceeds the threshold or 

PFA = /  p^(z) dz 
T   Z 

(2) 

Combining these integral expressions and reversing the order of 
integration gives 
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PFA  =  /"f/00 px(x) PyC?-x)  dxl 

[/•py(«-x)  dzj 

■  /" Px(x)     J"      py(z')  cz'dx     . (3) 

/* PY(X)     I" Pv(z-x)  dz    dx 

Since  the  estimation  noise  was   assumed  to be  Gaussian with zero mean 
and  a variance  of  ae^,  the  density function  p   (z1)   is 

Pv(z')  = il//2? a  )   exp(-z'2/2 o   2) (1) 
jr Q " 

and the  inner integral becomes 

.2/3 . 2 i /   P^Cz') dz' = (l//2^ a ) /  exp(-z'V2 a/)   dz 
T-x y T-X 

■ (1//^)  J*    exp(-t2) dt 
(T-x) 

(1/2) erfc((T-x)//roa) (5) 

where erfc represents the complementary error function defined as 

erfc(x) = (2//?) /" exp(-t2) dt  . (6) 
x 

This function is defined by equation (6) for all x and ranges from 
2.0 at x = -» through 1.0 at x = 0 to 0 at x = «. The probability 
of false alarm can thus be written as a single integral 
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PFA  =   (1/2)     J00 pv(x)  erfciiT-x//? a)  dx       (7) 
_oo       X e 

and  for any p   (x)  Is   a  function of the  threshold T and the 
estimation noise variance a  ', e 

The above equation can be used to evaluate the effect of 
estimation noise on the false alarm probability (or the required 
change in T to maintain a constant PFA) for any given distribution 
Px(x) from the detector.  This function varies with the type 
of detector used in the system, and the following sections use 
this general result to evaluate the effects of background 
estimation for each of several common detectors. Numerical 
integration is required in most cases to evaluate equation (7). 
The Fortran programs in Appendix A were developed for this purpose. 
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GAUSSIAN CASES 
In many systems the assumption that the input to the 

decision element has a Gaussian probability density function may 
be Justified. This is true particularly when some averaging 
has been performed on the output of the detector, as is the 
case in a spectrum analyzer or a multibeam sonar with a low-pass 
filter following the energy detector in each channel output.  Coherent 
processors or matched filters for detecting signals of known waveform 
and known phase also tend to have Gaussian output statistics. 
A major advantage of the Gaussian assumption in this instance is that 
analytical expressions can be obtained for the loss due to background 
estimation, thus avoiding the need for numerical integration. 
Three cases are studied in the following sections, depending on 
the relation assumed between the mean and the standard deviation 
of the input to the decision element.  In the first case the 
standard deviation is assumed to be constant and known, in the 
second case it is assumed to be in known proportion to the mean, 
and in the third case both the mean and standard deviation are 
assumed to be unknown and separately estimated.  Each of these 
three cases has application in signal processing systems, and the 
effects of background estimation are somewhat different in each. 

8 

J 
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GAUSSIAN DETECTOR WITH CONSTANT STANDARD DEVIATION 
The detection of a Lhlft in the mean of a Gaussian random 

variable Is one of the classical problems In detection theory. 
It Is also a reasonable approximation to physical systems In 
which strong AGC (such as hard clipping) has been applied at a 
point which keeps the output variance constant and in which a 
substantial amount of averaging has been performed (as in wideband 
correlation systems) before a detection decision is made. 
Since background compensation for such systems consists simply of 
subtracting an estimate of the mean and comparing to a constant 
threshold (as in Figure la), the appropriate functional form for 
T in Figure 2 1sT = l'ii + 0«a+C. ^If the input variance from 
the detector is a2, the variance in u resulting from averaging N 
independent samples is ae = o2/N.  Inserting the Gaussian 
distribution with mean w and variance a2 for px(x) in equation (7) 
then gives 

PFA = (1/2/5? o) /" exp(-(x-u)2/2a2) erfc ((u+C-xJA/rVvT ) )dx 
— 00 

(8) 

which may be simplified to 

PFA = (1/2/27 ) /" exp(-x'2/2) erfc (/N7^ (c-x*) ^x'       (9) 

where c = C/o is a normalized threshold value and the resulting 
expression is independent of u and a as expected. 

A second, more direct, way exists for obtaining the PFA in 
this special case of Gaussian input distribution.  Since the 
sum of two Independent Gaussian variates is also Gaussian and has 
a variance equal to the sum of the variances of variates being added, 
the detector output after background compensation is Gaussian with 
zero mean and a variance of (1 + l/N)o2. This is compared with 
the threshold C = co, and the probability of exceeding this 
threshold is simply 

PFA = (1/2) erfc(c//2TN+T77FP) (10) 

This direct result in this case permits analytical evaluation of 
the degradation due to background estimation and also provides a 
means of confirming the accuracy of the numerical approach. 
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Figure 3 shows the resulting PFA as a function of the 
threshold parameter c, plotted for a number of values of N. The 
curve for N « - represents tho case where the mean Is perfectly 
known and the estimation noise is zero. As one would expect, 
any reduction in the number of samples used in estimating 
the mean results in a higher false alarm rate for a given threshold 
or a higher threshold for a given false alarm rate. 

If the threshold is adjusted to maintain the desired false 
alarm rate, in spite of the background estimation noise, a larger 
signal (change in the mean) is required in order to reach a desired 
probability of detection. In particular if a 50%  probability of 
detection is desired, the mean of the detector output must change 
by an amount Just equal to the threshold C ■ co. It is traditional 
in discussions of this problem (detecting a change in the mean 
of a Gaussian variate) to define a detector output signal to noise 
ratio (SNRO) in which the "signal" is equal to the square of the 
required change in the mean and the "noise" is equal to the variance 
at the detector output. Suppose c0 is the normalized threshold 
required for a given false alarm probability with N ■ «. Then 
the threshold c required for the same false alarm probaollity with 
a f nite N is given by 

(1/2) erfc(co//D - PFA - (1/2) erfc (c/^N+D/N1)    (11) 

or      c0 • c//(N+l)/jr (12) 

so  (c/c0)
2 - (N+l)/N (13) 

This ratio represents the increase in detector output signal-to-noise 
ratio required because of the background estimation noise, and it 
may be expressed in decibels as 

A(SNRO) . « 10 log[(N + 1)/N] (14) 

This degradation (increase in required SNRO) is plotted as a 
function of the number N of independent samples in Figure 4. 
It varies from an extreme of 3 db if only one sample was used in 
estimating the background, through Just less than 1 db with 
N « 4, to less than l/k  db if more than 16 samples are used in the 
background average. It is interesting that in this special case 
the degradation depends only on N and is not a function of the 
desired false alarm rate. 

10 
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It is important to note that A(SNRO)es^ as defined above refers 
to a signal to noise ratio at the output of some sort of detector, 
and not at the processing system Input. Relating this correction 
back to the system Input to determine the amount of additional signal 
required for a given performance requires knowing the Input/output 
relationship of the detector.  In general this is a rather complex 
step, requiring one to determine the amount of signal input 
required to produce the deflection c  and again for the deflection 
c, then to determine the SNR correction from the ratio of these 
two required signal powers. Generally the relationship between 
the A(SNRO)est figurtd at the detector output and the equivalent 
degradation A(SNRI)est expressed in terms of the input signal 
required depends on several factors such as the amount of post- 
detection averaging done and the false alarm and detection 
probabilities.  However Tor the square law detector, and for most de- 
tector functions whfn the SNR at the detector is small, the 
deflection at the detector output is directly proportional to the 
input signal power. Thus the ratio of input signal powers is 
simply c/c0 rather than the square of this quantity, and the 
correction A(SNRI)est expressed in decibels at the system input 
is Just half of the A(SNRO)est at the detector output.  The vertical 
axis of Figure k  is  marked in terms of both A(SNRI)est; and 
A(SNR0)est, but it must be remembered that the A(SNRI)est scale 
is limited in application to square law or equivalent detectors 
while the AtSNRO)est scale is applicable in tne general case. 

11 
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GAUSSIAN DETECTOR WITH PROPORTIONAL STANDARD DEVIATION 
*"  Another common situation is a detection system whose output 
distribution Is Gaussian but with a standard deviation proportional 
to Its mean output.  This occurs (or Is approximated) whenever a 
substantial amount of post-detection averaging (or non-coherent 
processing) Is performed on the output of a square law or a linear 
detector before a detection decision Is made. Suppose the 
standard deviation a Is known to be equal to K times the mean u 
of the detection system output, on the basis of the amount of 
non-coherent averaging being performed.  With this ratio known, 
a measurement of u Is all that Is required to completely 
characterize the distribution and set the decision threshold. 
If a threshold of c standard deviations above the mean Is required 
to give the desired false alarm probability, then the general form 
of Figure lb can be used with 1+cK times the mean subtracted 
from the detector output and the result compared to zero. 
Thus the function to be formed by the background estimator is 
(l+cK)'ii + 0«a + 0, as shown in Figure 2a.  When this function 
is broken Into an Ideal threshold T and a noire component as 
shown in Figure 2b, the noise due to estimation of the mean has 
a variance of ae

2 ■ (l+cK)2avN.  Note that this is larger by the 
factor (1+cK)2 than the estimation variance when the variance of 
the input was constant.  If the substitutions a ■ Kp, 
T - (l+cK)ii, and ag2 - (l+cK)2K2»i2/N are made into equation (7), 
the result for the probability of false alarm is 

PFA - (1/2/27 Ky) /" exp(-(x-M)
2/2K2y2) • 

-mt» 

erfc(((l+cK)p-x)//2> (I+CKXW/NM) dx (15) 

or by simplifying 

PFA •  (1/2/2?)  /" exp(-x'2/2)   erfc(/N72v (c-*V(l+cK)) dx7 

(16) 

This result again is Independent of u and may be evaluated numerically 
to find the PFA as a function of the threshold parameter c for any 
desired K and N. 

Again because of the additive property of Gaussian distributions, 
a more direct means is available for finding the false alarm 

■    • ■"■"■*■ 
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probability without requiring a numerical Integration.  The Input 
to the decision element of Figure 2b Is Gaussian with a mean of v 
and a variance of a2 + ae

2 =   (Ku)2(l + (l+cK)2/N", and a fr.lse 
alarm occurs whenever this exceeds a threshold of T =» (l+oK.'^i. 
This probability Is given directly from the error function as 

PFA = (1/2) erfc(c//2(l + (l+cK)2/N) )      (17) 

This PFA as a function of c depends on both the number of samples 
N used In the background average and on the ratio K between the 
standard deviation and the mean of the Input data. Figure 5 
gives a plot of this function with N as a parameter for K equal 
to .03 and .3.  The dependence on K is seen to be strong only for 
fairly large c (small PFA). In the limit as K approaches zero 
the function api "oaches that given in Figure 3 for the constant 
variance case. 

Again we can define a signal to noise ratio as the square of 
the change In mean required to give 50/J detection probability 
divided by the input variance, or (cKw)2/(Kv)2 ■ c2. If c0 is the 
threshold parameter required to give the desired PFA for N = », 
then 

(1/2) erfc(co//2
N) = PFA » (1/2) erfc(c/*4(l + (l+cK)2/N)) 

(18) 

or 

c  = c//(l + (l+cK)2/N) X' (19) o 

This equation may oe solved for the ratio c/c to give the expression 

c K + N/l + (1-c 2K2)/N 
c/c. = -2  0  (20) 

0        N - c^ir 

This ratio of thresholds required for the same false alarm 
probability can be Interpreted as an Increase In required slgnal- 
to-no'se ratio at the detector output, where the signal Is again 
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defined as the square of the change in mean required to reach 
5035 probability of detection and the noise is the variance of the 
detector output in the no-signal case. Expressed in decibels, 
this increase is 

A(smo) est .0 log(c/c0)' 20 log 
coK + N/T* (1-c 

2X2 
0 

)/N 

N - c0-K 

(21) 

This expression has several interesting properties. First is that 
the required SNR increase is a function only of the product CQK 
of the threshold parameter c0 and the ratio K between the mean and 
the standard deviation, rather than depending on these two parameters 
individually. Figure 6 shows how A(SNRO) t varies with N for 
various values of CQK and also contains a table giving values 
of c0K for a number of false alarm rates (which defines c0) 
and K values. The curve for c0K ■ 0 is identical to the curve in 
Figure ^ for the case with constant standard deviation, indicating 
that the SNR change is always larger when the standard deviation 
changes in proportion to the mean. 

Another interesting property of the above result is that the 
required increase in SNHO  goes to infinity when N equals cQ^K2. 
This represents the minimum value of N for which the desired 
false alarm probability can be achieved while estimating the 
background in this manner. Fortunately this minimum value of N 
is near unity, since CQ in any practical case is less than about 
6 and K generally is appreciably smaller than unity. Whenever 
N is appreciably greater than c0

2K2 an approximate form can be 
derived for the SNRO change of the form 

A(SNRO)   % 20 logCl + (1+c K)2/2N]     N >> 2 2 
O (22) 

This form lends some insight into the behavior of the SNRO change 
in the region which is usually used in practice. 

A second scale in terms of the equivalent degradation 
A(SNRI)oSt at the processing system input is again provided in 
Figure 0, for use only in the case of square-law detectors or 
low signal to noise ratio at the detector itself. Limitations on 
the use of this scale are discussed in the previous section. 
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GAUSSIAN DETECTOR WITH UNKNOWN STANDARD DEVIATION 
A third common situation when dealing with Gaussian Inputs 

is that where the relationship between the mean p and the variance 
a2 of the detector output is not known.  In this case the background 
estimator must estimate both the mean and the variance.  If a 
threshold c standard deviations above the mean is necessary for the 
desired false alarm probability, then the function generated by 
the estimator in Figure 2a is (l)y t  (c)a + 0.  Expressing this 
operation as in Figure 2b, the Ideally estimated threshold would 
be T » n + ca, and the variance oe

2 of the estimation noise is 
the variance of the estimate of y p.'.us c2 times the variance of 
the estimate of o(if y and a2 have uncorrelated estimation errors). 

Unbiased estimators for y and a , based on N independent samples. 
are 

N 
I 
1 = 1 

xi/N (23) 

and 

i x.2 - N;: 

1=1 i 

N - 1 
(24) 

2 k The variances of these estimates are a /N and 2o /(N-l) respectively, 
and the errors can be shown to be uncorrelated. The estimate a 
of the standard deviation, obtained by taking the square root of 
a2, is not necessarily unbiased nor is^lt easy to show that its 
errors are uncorrelated with those In y. However we will ignore 
these difficulties here.  Assuming N >> 1 so that the standard 
deviation of a2 is small compared to a2, the variance of o may be 
shown to be a2/2(N-l).  This estimate of a is also not quite Gaussian 
because of the nonlinearity of the square root operation, but we 
will Ignore this problem too. 

Based on the above, we find that the variance on the threshold 
estimate y + ca is (o2/N) + c2(o2/2(N-l)) or 

oe
2 » (a2/N)(l + Nc2/2(N-1)) (25) 

Adding this estimation variance to the variance of the input 
from the detector gives a total variance of o2(i + (I/N) + c2/2(N-l)), 
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and the detection process then becomes equivalent to testing a 
zero-mean process of this variance against a threshold ca. As 
shown In previous sections, this leads to a false alarm 
probability 

PPA - (1/2) er fc(c/»4(l + 1/N + c
2/2(N-l) )        (26) 

The threshold c0 required for perfectly known v  and a   (that Is, 
N - -) la obtained from PPA - (1/2) erfc(c0//5

x), so for the same 
false alarm rate 

co - c 

or, solving for (c/c ) 

//l + 1/N + c2/2(N-l) (27) 

2 

(c/02 * * VN (28) 
O' 1 - c */2(N-l) o 

Again we can define a detector output slgnal-to-nolse ratio 
required for detection as the square of the shift In the detector 
mean required to reach 50%  detection probability divided by the 
detector output variance. Since the required shift In the mean 
Is Just equal to c, the Increase In signal-to-nolse ratio required 
because of Imperfect estimation of v  and o Is given In decibels as 

A(SNRO)  . - 10 log10C 
1 V/N ]        (29) est        10 1 - c0V2(N-l) 

This Increase In required SNRO Is plotted In Figure 7 as a function 
of N for several values of c0, where the values of c are Identified 
by their corresponding values of the false alarm prooabllity. 
The dashed curve In Figure 7 Is duplicated from Figure 4 for 
reference and Is the result for constant standard deviation. 
This Is the curve which would be obtained above by setting CQ 
equal to zero, and all cases where the variance must be estimated 
Involve a larger SNRO correction than the constant variance case. 
It Is also Interesting that for any value of c0 there Is a minimum 
permitted N, 

"nln ■ l *  0o2/2 (30) 
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Decreasing N below this limit causes the variance In the 
estimate to rise faster than can be compensated by Increasing c. 

As In the previous two cases a second scale showing the 
equivalent degradation A(SNRI)egt at the system Input Is provided 
In Figure 7, but Its use Is limited to square law detectors 
or systems In which the signal to noise ratio at the detector 
itself Is small. 

21 
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NARROW BAND SYSTEMS WITHOUT POST DETECTION AVERAGING 
In a wide class of radar and active sonar applications the 

receiver must be designed tr detect a signal of known waveform 
modulating a carrier of unknown phases. These are generally 
termed narrow-band systems, and the statistics of the detector 
outputs may be derived from a narrow-band Gaussian assumption for 
the noise on eaoh of the two orthogonal carrier phases. Often no 
further averaging Is done on the detector outputs before the Input 
to the decision element, and the statistics of these detector outputs 
are distinctly non-Gaussian. Three common detector types are 
studied In the following sections, and the probability density 
functions of their noise-only outputs are shown for reference 
In Figure 8. The first Is a square-law detector whose output 
Is equal to the Instantaneous Input power. The second Is an 
envelope or linear detector whose output Is equal to the envelope 
amplitude of the narrow-band Input. The third system Is a logarithmic 
detector whose output Is equal to the measure in decibels of the 
narrow-band Input. While these three detector types have similar 
performance in the absence of further averaging or background 
estimation, they are affected somewhat differently when their 
outputs must be used to estimate the background level. 
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NARROW-BAND SYSTEM WITH SQUARE-LAW DETECTOR 
Narrow-band systems may bo"defined as those in which the bandwidth 

of the signal to be detected is small compared to its center frtnuency. 
Most radar and sonar systems fall into this category. The usual noise 
model for a random narrow-band process consists of a low-pass Gaussian 
random function modulating each of the two orthogonal phases (sine 
and cosine) of the carrier.  If a square-law detector is used to measure 
the power in this signal (or if coherent detection is performed on 
each carrier phase, as in detecting a known pulse waveform of unknown 
phase, and the squares of the two results are added) the detector 
output statistics may be shown to be chl-squared with two degrees 
of freedom.  This density function is of the form 

Px(x) = \  (1/P) exp(-x/P)    x >. 0 

* 0 x < 0 (31) 

where P is the average power in the noise process.  The mean of this 
distribution is P and the variance is P2.  The shape of the 
distribution is shown in Figure 8a. 

Since the mean and the standard deviation are proportional in 
this type of detector, the estimate of o is usually derived from the 
estimate of y In constant false alarm rate detectors so that the 
decision threshold T = (l+c)vi.  Written in this form, the decision 
threshold may be thought of^as being c standard deviations above 
the estimated mean, since o = y.  Putting this system into the context 
of Figure 2b, the ideal threshold Is T = (1+c) P and an equivalent 
noise of variance ae

2 ■ (l+c)2p2/N is added to the detector output 
if N Independent samples are averaged in forming the background 
estimate. 

2 
With the above Information of Px(x), T, and 

a
e we can now use 

equation (7) to evaluate the probability of fals-a alarm as 

PFA = i  r Px(x) erfc((T-x)//2^0e)
dx 

— 00 

= |p ^o exP(-x/p) erfc(((l+c)P-x)//27NU+c)P)dx 

«   (1/2)   J00    exp^x')  erfcUl+c-xM/Z^THd+c^dx' (32) 
o 
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where the substitution of variables x' ■ x/P shows that the resultant 
false alarm rate is indeod indepencent of P as expected. The above 
expression for PPA must be evaluated numerically as a function of 
c and N, and the res*. It is shown in figure 9. The curve for N«« 
represents the case where the threshold is perfectly determined and 
the false alarm probability reduces to 

PPA - /"  exp(-x)dx - exp(-(l+c))  (N—)      (33) 

1+c 

For any finite N, a larger value of c is required for the same false 
alarm probability. This is further shown by Pigure 10, in which the 
same data used in Pigure 9 are replotted to show the dependence 
of c on N for several false alarm rates. 

This increase in the required decision threshold due to background 
estimation may be related to an Increase in signal to noise ratio 
required at the system input in the following manner. If a signal 
with bandwidth comparable to the narrow-band noise is added to the 
noise input, the resulting output of the detector is still chl-squared 
but with a total power parameter P(1+SNR) where SNR is the signal to 
noise power ratio.* The median outpuc M of the detector can be obtained 
by integrating the distribution and setting this integral equal to 
1/2 as follows 

/*  (1/P(1+SNR;) exp(-x/P(l+SNR))dx 
M 

- exp(-M/P(l+SNR)) - 1/2 or 

Msquare " Pd+SNR) (loge2) (3^) 

If the decision threshold is set at this median value M, then a 
501 probability of detection occurs. The probability of detection may 
be modified slightly from 50%  by the fluctuation in the threshold 
due to background estimation, but this is only a second order effect, 

»Note that this result is slightly different from that obtained 
if the signal is assumed to be a sinusoid.  In that case the 
resulting distribution is a non-central chi-square and the 
mathematics is considerably more involved.  In actual systems 
the processor bandwidth should approximate the signal bandwidth, 
and it is rather a tossup as to which model is more realistic. 
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Once c is determined for the required false alarm probability 
we can equate the decision threshold T ■ (l+c)P with the median M 
and solve Tor the SNR which results in 50!? detection probability. 
This yields 

(l+c)P = P(l+SNR)(log 2) (35) 

or 

SNR = (1 - loge2 + c)/loge2 .        (36) 

Now in order to determine the increase In SNR required due to 
estimation of the background, the SNR can be computed as above both 
with c0 for perfect estimation and with the c required due to finite 
N.  Taking tne ratio of the resulting values of SNR and converting 
the result to decibels yields 

(1  -  log 2  +  c) 
A(SNRn =10  log,n       decibels   . (37) 

est       lü (1 - loge2 + co) 

Figure 11 shows this Increase in SNR as a function of N for several 
values of false alarm probability.  Note that the behavior Is similar 
to that for the Gaussian case with proportional standard deviation 
in that the correction for a given N Is larger for smaller 
allowed false alarm probabilities and that for any given PFA the 
loss increases rapidly as some critical value of N is approached. 

In using the results for small N (below about N=1D) It must be 
remembered that the assumption of Gaussian statistics for the 
estimation noise begins to fail because of the non-Gaussian Inputs to 
the detector.  The error is in the direction of over-estimating the 
loss, so that actual system degradation Is not as bad as that shown in 
Figure 11. 

It is Important to note that the definition of signal to 
noise ratio is different in this and the following sections than that 
used in the Gaussian cases.  In each of the Gaussian cases a signal 
to noise ratio loss was defined at the detector output, and It was 
shown that this  could be related to an equivalent loss at the 
processing system input only for a limited set of cases.  However 
in this example the characteristics of a square law detector operating 
on narrow band information are known and It is possible to relate 
the effect of background estimation directly to a change In reoulred 
signal to noise ratio at the system input. 
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NARROW-BAND SYSTEM WITH ENVELOPE DETECTOR 
Many narrow-band systems use linear detectors, such as full 

or half wave rectifiers or envelope detectors, in place of the 
square-law detector assumed in the previous section. This is 
done either for convenience in detector design or to reduce 
the dynamic range which must be handled beyond the detector. 
Since the instantaneous detector output is related in a known 
way to the output of the square law detector, a system which 
makes detection decisions directly on the detector output (that is, 
with no further smoothing) using a perfectly selected threshold 
can have identical performance to a similar system using a square- 
law detector.  However when the background must be estimated 
by averaging samples of the detector output, some differences 
in performance occur. 

The instantaneous output of an envelope detector operating 
on a narrow-band signal may he related to that of a square-law 
detector by x' = /2x, where x' is the envelope detector output 
and x is the square-law detector output.  By using this 
transformation of variables and the previously found distribution 
for the square law detector, the density function at the envelope 
detector output may be shown to be (dropping the primes on the 
variable) 

PY(x) = / (x/P) exp(-x2/2P)        x > 0 

0 x < 0 (38) 

This density function is shown in Figure 8b and has a mean 
/7f72~  = 1.253 Jr    and variance (2-*)?  =  4292P 

Again the mean and standard deviation are proportional, so 
the mean alone can be estimated and the threshold set to T ■ (l+c)p. 
Note that c no longer represents the number of standard 
deviations the threshold lies above the mean.  According to the 
model used in Figure 2b. this corresponds to an ideal 
threshold of T = (l+c)/Tip/2 and an estimation noise whose 
variance is equal to (l+c)2 times the detector output variance 
divided ty the number of independent samples N used in estimation, 

or a  = (1+c) (2-»)P/N.  Now using equation (7) to determine 

the false alarm probability, including the effects of background 
estimation, gives 
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PFA ■ i/* p (x) erfc((T-x)//?a )dx 

(1/2P) /" x exp(-x2/2P) erfc(((l+c)/irP/üx)/ 
o 

(l+c)/T^-7r)P/N)dx 

(1/2) /" x» exp(-(x')2/2) erfc((l+c)/T7^x,)/ 

(l+c)/(^-Tr/N) ^dx1 (39) 

Again the substitution of variables x' ■ x//T shows that the false 
alarm probability is indeed independent of the background noise 
power P and depends only on the selected threshold ratio c and the 
number N of samples used in estimation.  For the case N— which 
corresponds to perfect background estimation this expression 
simplifies to 

PFA » f00   x exp(-x /2) dx 

(l+O/J 

exp(-(l+c)2(TT/4))     (N—) (^0) 

For finite N the expression must be Integrated numerically, and 
the results are shown in Figure 12. Again to maintain any given 
false alarm probability, an increase in the threshold ratio c 
is required to compensate for any decrease in the number of 
samples N used to estimate the background. This Is replotted in 
Figure 13 to show the dependence of c on N, with the PFA as a 
parameter. 

Following the same approach as In the previous section, we 
can relate the required increase In c to an increase in SNR 
required at the processor input.  Since the Instantaneous 
output x' of the envelope detector is related to the output x 

32 



NOLTR 73-53 

of the square law detector by x' = /5x", the median outputs 
are related In the same way.  Thus from equation (3^) we can 
obtain the median output of the envelope detector as a function 
of SNR as 

Menv = /2{> (l+SNR)(loge2) (41) 

Equating this to the threshold T = (1+C)/ITP/2 gives 

(1+C)
2
(7TP/2) = 2P (l+SNR)(loge2) 

or 

SNR = ((l*c)2ir - Mloge2))/('4(loge2)) (42) 

Again the Increase In SNR due to backgrouna estimation can be 
expressed In decibels as 

((1+C)
2
TT - 4(log 2)) 

A(SNRI)  . = 10 log.n  5 decibels   (43) 
eSt        lü ((1+C0)^TT - 4(loge2)) 

where c end c are obtained from Figure 13 for the desired 
PFA and the selected N.  This SNR correction la plotted in 
Figure 14 as a function of N for several values of false alarm 
probability.  It may be seen to have the same general properties 
as that for the square law detector in Figure 11.  The loss does 
not appear to rise as rapidly for small values of N as in the square- 
law detector case.  However this result is again influenced by the 
breakdown of the Gaussian assumption for small N (again over-estimating 
the loss), so no conclusions should be drawn about the relative 
loss for square-law and linear detectors without more careful analysis. 
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NARROW-BAND SYSTEM WITH LOGARITHMIC DETECTOR 
Another type of detector sometimes used In narrow-band 

systems produces an output proportional to the logarithm of 
the measured power (In other words, a measurement In decibels). 
This further reduces the dynamic range to be handled at the 
detector output and It has other Interesting statistical properties. 
The base of the logarithm is not Important (since It represents 
only a gain factor at the output), so we will assume here a detector 
characteristic x1 = 10 logiox = ^.3^29 logex, where x Is the 
instantaneous power as measured by a square law detector.  This 
choice  Is made so the detector output may be Interpreted directly 
in decibels.  Applying this transformation of variables to the 
density function given previously for the square-law detector 
gives a new density function for the logarithmic detector of 
(dropping the primes) 

PYCx) = (1/aP) exp(x/a) exp(-exp(x/a)/P) x 

a = 10 log10e = 4.3^29 (44) 

This may be written in the form 

pv(x') = (1/a) exp(x,/a) exp(-exp(x,/a)) 

a = 10 log1Qe  = 4.3429 (45) 

where x' = x - 10 log**?.  Thus the probability density function 
at the output of the  logarithmic detector is independent of P 
except for a pure translation equal to the measure of P in decibels. 
This distribution is plotted in Figure 8c.  The mean is 
a(logeP-Y) = 10 logioP - 2.5068 and the variance is constant 
at  _2 2 

2-^-    =   31.0247. 

Since  the variance  does not   depend on P,  only the mean must 
be  compensated to provide a constant  false alarm rate decision 
function.     Thus an appropriate  threshold  function is  T  =  y  + c, 
where  c   is  selected to give the  desired false alarm probability. 
The  ideal  threshold  in the model  of  Figure  2b  is thus 
T =  10  log^oP  - 2.5068  + c  while  the  estimation noise  variance 
for an average of N samples  is  oe2  =  31.0247/N.     Writing the 
false  alarm probability as  in equation   (7)  gives 
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PFA  = ^ 1* pj£x)  erfc((T-x)//2>oe)dx 
— 00 

1 oo s 2 I    d/a)  expCx'/a)  expC-expCx'/a)) 
— 00 

erfc((c-2.5068-x')//62.0294  N)dx (46) 

where    the  expression  Is written  in terms  of the  translated 
function x'   with the dependence on P removed. 

Again for the case N ■ • this expression can be evaluated 
in the  form 

PFA  ■  exp(-exp(-Y)   exp(c/a)) 

= exp(-0.56l5(10c/10)) N— (4?) 

For finite values  of N the  false alarm probability must  be computed 
by numerical  evaluation of equation   (lif>),   and  these results  are 
shown  In Figure   15  for  varioub  values  of  threshold c  and number N 
of samples averaged  in  forming the  background  estimate.     These 
same results  are  replotted  in Figure  16  showing the required threshold 
as  a  function of  N,   with the  false alarm probability as a parameter. 

Using the  same  technique as  in the previous  sections,  this 
increase  in c   to  maintain a given false  alarm probability may be 
equated to  an  increase  in required SNR at   the  processor  input. 
The median  output   of the logarithmic  detector may be found by 
taking  10 log^Q  of t^6 median output  of the  square law detector, 
to yield 

Ml0     -   10  log10P + 10  log10(l+SNR)   +  10  log10(loge2)        (48) 

Equating this median output  with the threshold T ■  w+c  gives 

10 lcg10P -  2.5068  + c  = 10  log10P + 10  log10(l+SNR)   -  1.5917     (^9) 

or 
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10 log10(l+SNR)   =  c  -   .9151 (50) 

so that 

SNR =  10^no-.09151)  .  !  .   ,8100(10C/10)   -  1     (51) 

Is the signal to noise ratio required to reach 50%  detection probability 
for a given value of threshold c. 

The increase In SNR required for 505? detection probability as 
a result of background estimation can be determined from the ratio 
of the SNR's corresponding to c (for a given N) and c0 
(for N=«>) and may be expressed in decibels as 

A(SNRI)   = 10 log    •8l(10c /d'1 (52) 
est        10  .8l(10Co/10)-l 

where c and CQ may be obtained from Figure 16 for the chosen N and 
false alarm probability. 

The SNR correction for the logarithmic detector is plotted in 
Figure 17 as a function of N for several false alarm probabilities. 
Again it Is generally similar to that for the square law and envelope 
detectors except for seeming to Indicate a lower loss in most cases. 
However this result is also influenced by the non-Gaussian nature 
of the input statistics for small N, and the error is this time 
in the direction of under-estimating the loss (because, as may be 
seen from Figure 8, the extended tail of the logarithmic detector 
density function is on the opposite side from that for the square- 
law or envelope detectors).  Thus the results from the second moment 
analysis used in this report do not necessarily reflect the relative 
performance of the log, square-law, end envelope detectors in this 
respect.  In fact Hansen^- has shown through Monte Carlo analysis that 
the estimation loss for the logax'ithmic detector is actually somewhat 
worse than that for the square-law or envelope detectors, and the 
results shown here in Figure 17 fall fairly close to his results 
for the square-law or envelope detectors. 

Hansen, G. S. and Ward, H. R., "Detection Performance of the Cell 
Averaging LOG/CFAR Receiver," IEEE Trans. Aerospace and Electronic 
Systems, Vol. AES-8, No. 5, September 1972. 
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SUMMARY 
The estimation of the background noise level which Is 

performed In constant-false-alarm-rate detection systems has 
been shown to degrade the performance of the system.  This 
degradation can be determined analytically when Gaussian statistics 
are applicable, while a numerical Integration is required for other 
detector output statistics.  The amount of the degradation 
depends on the form of the detector and the parameters being 
estimated, and in general depends Inversely on the false alarm 
rate and en the number of samples used in the background estimate. 

In systems with Gaussian statistics at the detector output 
the degradation depends significantly on the relationship between 
the mean and the standard deviation of the detector output.  For 
example, in the case where sixteen samples are averaged to form 
the background estimate and a false alarm probability of 10"^ is 
desired, the loss (referenced to the system input) rises from 
0.125 decibels if the standard deviation is known to 1.5 
decibels if the standard deviation as well as the mean must 
be es-t/imated. 

The non-Gaussian cases studied (narrow band systems with 
various energy detectors and no post-detection averaging) showed 
results generally similar to those for the Gaussian cases, in that 
the system performance loss increases with a lowering of either 
the number of samples averaged or the false alarm probability 
allowed.  Generally once a degradation of about one decibel is 
reached, any further reduction in the number of samples averaged 
causes the loss to Increase rapidly.  Unfortunately the approach 
used here, using only the second moment of the input statistics 
to characterize the estimation error, is not sufficiently accurate 
to indicate the differences in performance among the various 
detector types correctly.  Thus the losses derived for the non-Gaussian 
cases iuust be considered approximate and a more elegant method, 
taking into account the higher moments of the estimation error, 
used to determine exact losses. 
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LIST OF SYMBOLS USED 

c 

c 

A(SNRI) 

A(SNRO) 

est 

est 

Y 

e 

erf( ) 

erfc(  ) 

exp(  ) 

K 

M 

M 

M 

N 

N mln 

Px(x) 

Py(y) 

Pz(z) 

SNR 

SNRI 

SNRO 

Normalized threshold parameter of decision element 

Normalized threshold parameter without background 
estimation 

System performance loss in decibels due to estimation, 
referenced to system input 

System performance loss in decibels due to estimation, 
referenced to detector output 

Euler's constant ■ 0.57721566 

Base of natural logarithms = 2.71828 

Error function 

Complementary error function 

Exponential function 

Ratio of standard deviation to mean 

Median output of detector 

Mean of detector output 

Estimate of mean of detector output 

Number of independent samples used in background 
estimation 

Minimum number of samples in estimation required for 
finite SNR 

Noise power input to narrow-band detector 

Probability density function for detector output 

Probability density function of background estimation 
noise 

Probability density function for sum of detector and 
estimation noise 

Input signal to noise ratio, expressed as a power ratio 

Signal to noise ratio at system input 

Signal to noise ratio at detector output 
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o Standard deviation  jf detector output 

o Estimate of detector output  standard deviation 

o2 Estimate of detector output  variance 

c Standard deviation of background estimator output 

T Decision element  threshold 
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APPENDIX A 

The following computer programs were developed for the 
numerical integration necessary to evaluate the previously discussed 
narrow band systems.     These programs model equation  {7)  of the 
text  as  shown below: 

MAIN 

CALLING 

PROGRAM 

AL 

ERFC 

FUNCTION 

(ERROR) 

INTEGRATION 

ROUTINE 

(INTEG) 

1 
INTEGRAND 

GENERATION 

(FCTN) 

PROBABILITY 

FUNCTION 

(PROB) 

A main routine initializes and varies parameters, contains formatting 
statements, and calls the integration subroutine, INTEG.  This 
subroutine calls the integrand generating subroutine, FCTN, which 
formulates the integrand required by INTEG. For the prescribed 
probability function FCTN calls the subroutine PROB and for the erfc 
function FCTN calls the local system library subroutine,ERROR. 

To use the program for the three cases cited (square law, envelope 
and logarithmic detectors) it is necessary to alter only the main 
routine and the PROB subroutine.  The former requires that the 
limits of integration and appropriate constants peculiar co the 
case considered be varied and the latter requires entry of the 
probability function of the particular case. 

Routines 1 through k  represent the program for the numerical 
integration involved in the evaluation of the square law detection 
system.  Routines 5 and 6 contain the necessary alterations for 
the envelope detection case. The final two routineo, 7 and 8, 
represent the changes in the initial program to provide for the 
numerical integration in the logarithmic detection system. 
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PMOQRAM     MAIN CDC fe*00 FTN V3.0-P316 OPT-2  02/2' 

PROGHAf MA IN (OUTPUT tT4PE6»0ljTPUT) 
COMMON/A/ AHEA.STEPt^OLD.TtSIßt' 
AN>1. 
STEP«.01 
SRT ■ SQKT(2,) 
DU 90 KN«1.18 
c«o« 
DO «9 NT«1.X5 
SIQE«(l.*C)/SQKiT<4N) 
T»1.»C 
FOLD«1Ü. 
CAL_ INTEG 
hfllTE(etlli)) ANfCfAREA 

HO FORMAT (lX»«PFM(«,I*,F6,2,«)«»,FiO, 10) 
C-C*l. 

89 CONTIN0E 
AN ■ ShT^AN 

90 CONTINtE 
STOP 
END 

Routine 1 

Main Routine for the Square Law Detector 
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SOBK&UTINE      IMF« 

lü 

CUC fc400 FT" V3.U-P316 OPT»«»  0?/2 

2U 

SUBPOLTINE 1NTEG 
CUMrtON/A/ AHFAtSTEPiF0LLi«T.SI6E 
S«STEP 
F«ABS(FOLO) 
x«s/?. 

SN ■ I. 
AREA s FCTIM(X) 
IF(FOLU.LT.u.) APEA ■ FCTN(-X) 
t   *   X*S 
IF (X.üE.F) GO TO |« 

K»F«»?/(X«*2-Ul 
IF(FOLÜ.LT.Ü.) SN ■ -I, 
AREA « AHEA*FCTN(SN*A)*K»FCTN(SN«F»«2/X) 
PO TU 10 
AREA « S*AREA 

RETURN 
END 

Routine 2 

Integration Routine for the Square Law Detector 
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FCTN CUC  6*00  FT\   V3.0-P316  OHT«2     0?/? 

FUNCTION FCTMX) 
COMMUN/«,/   «.«tA.STEPfl-OLOtTtSItE 
Z» (T-X)/(!.'»1*21356?*»S IGE) 
R>ABS(2) 
CALL   EHKOPtRttHF.EfJFC.EXERFC) 
IFCZ.UT.Ü.) EWFC ■ EWF ♦ |, 
FCTN ■ U. 
IFtEK^c.NE.Ü.) FCTN ■ .b«EHFC*PWOB(X) 
«ET'JBN 

ENJ 

Routine 3 

Integrand Generation Routine for the Square Law Detector 
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F-UNCTION PROP CDC  6*00   FT».   V3.0-P316   OPT.2     02/? 

FUNCTICN   PPOb(X) 
PPOÖ»EXP(-X) 
hETÜHN 

Routine  ^ 

Probability Function Routine for the Square Law Detector 
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PROflRAM MAIN (ÜUTPUT»TMPE6»0UTPUT) 
COMHON/A/ ARbAtSTEP*FUL0,TfSI6E 
Hml 
STEP > .004 
UU 90 NN'lfd 
AN ■ N 

ÜU 69 «tJ'ifb 
SISEa (1. »C )♦.65513637 U/SÜRT( AN) 
T»<I.^C)*1,25331*137 
FOLD ■ 5» 
CALL IMLO 
WrtITE(6«llü) NiC*AREA 

HO   FORMAT (lA»«PFA(*»l4tF?^t»)"»fF20,10) 
C ■ C*.2 

89 CONTINUE 
i\ls2«N 

90 CONTINUE 
1*0  STOP 

UMO 

Routine  5 

Main Routine for the Envelope Detector 
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FUNCTION PKOMU) 
PROB • X#cXP(-X««2/2.) 
RETURN 
END 

Routine 6 

Probability Function Routine for the Envelope Detector 
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PR0RP1M    MAIN CDC «".400 FTN V3.0-P316 OPT^Z  03/0 

PPOfiRAM MAIN (OUTPUT.TAPfft,OUTPUT) 
COMHON/A/ ABE^fSTFP,FOLO»T.SlRE 
ANal« 
STEP »,01 
DO on NN"1,9 
C»*, 
00 09 NTal.l? 
T»C-?.5068 
STr,E a SQPT(31.0247/AN) 
roLn.io, 
CALL TKTEG 
AR ■ AHEA 
FOLD ■ -10, 
CALL I*«TEG 
APPA a AR * AWE* 
MPTTF(6fll0) AN»C*APEA 

IIP F0PMAT(lX,«PfA(«,F4,2,K6.2,»)B«,F?n.ln» 
C»C*1 • 

«9 CONTINUE 
AN a ?.«AN 

9" CONTINUE 
1*0 STOP 

END 

Or rHftNflES MAOE 8T THE OPTIMIZE« 
0^ ^F INVARIANT «LIST REMOVEO FROM THE L00r STARTINS AT LINE     T 

Routine 7 

Main Routine for the Logarithmic Detector 
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CDC MftO  FTN  V1,0-P316  OPT,2     03/0' 

PUNCTTON PHOHIX) 
A ■ 4.3429 
«A aX/A 
PPOH ■ n, 
IP(XA,GT.4,) fiO TO 10 
P«OH ■ (l./A)4EXP«XA)»EXP(-EXP(XA) ) 

1^ CONTINUE 
RETURN 
ENn 

Routine 8 

Probability Function Routine for the Logarithmic Detector 
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