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INTRODUCTION
Most sonar or radar receiving systems operate by measuring
the energy received as a function of such parameters as time,
frequency, range, or direction of arrival and comparing this
measurement against a decision threshold for each combination
of parameters. A detectlion 1s considered to occur whenever
the measured energy exceeds this threshold. The threshold 1is
chosen so that only a linited number of false detections (false
alarms) occur due ‘o rardom fluctuations of the energy measurement d
when only background noise and no target 1s present at the input. _
| Unfortunately the required value of the decision threshold ]
for a given false alarm rate depends on the level of the background |
i noise, and this level 1s seldom known a priori. Thus most actual
b recelsing systems also contaln some means for measuring the background
level and adjusting the decision threshold according to this
measurement to provide a "constant false alarm rate" (CFAR) system
independent of background level. This measurement 1s usually made
by averaging the energy values in a number of neighboring cells
(in the sense of having nearly the same range, frequency, etc.
parameters). If the background noise is not expected to be
perfectly unifor:. over the entire range of the measurement parameters,
it 1s desirable to make the region over which the background
average 1is taken as small as possible. However, once the number
of points used in the average becomes small, the statistical
fluctuatlons in the background measurement become significant and
degrade the performance of the recelver compared to one with
a fived decisionr. threshold. The purpose of this report is to
evaluate this performance degradation for several different types
! of detector and background compensation. A gereral model 1s first
developed which is applicable to a wide class of systems, and then
specific results are obtained for several commonly used technijues.
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GENERAL MODEL FOR BACKGROUND COMPENSATION

The speciflc form used for a background compensation system
depends sorewhat on the statistical behavior of the detector output
as a function of the background level. If only the mean value
of the detector output changes with changing background and the
variance and other moments remaln constant at a known value (as 1s
true in certain systems using clipped data and in "logarithmic"
receivers), the background compensation usually takes the form
shown in Figure la. Here an averager of some sort estimates the
mean, based on samples taken from the detector output, and this
estimate 1s subtracted from each output of the detectoi'. The
resulting zero-mean function has a known distribution and can
be test=2d against a fixed threshold to make the detection decision
with a constant false alarm rate. A second common case 1s the one
in which the shape of the detector output distribution remains
constant, but 1its scaling varies in direct proportion to the
mean output. This 1s true for systems such as the square-law
detentor and various linear envelope detectors. 1In this case
normalization can be done by dividing the detector output by the
estimated mean rather than by suEEracting the mean as was done
when the higher moments remained constant. An entirely equivalent,
but easier to analyze, approach is shown in Figure 1lb. If the
desired decision threshold is G times the mean (corresponding to
dividing by the mean and comparing the result to G), then the
same test can be performed by multiplying the mean estimate by G,
subtracting this from the detector output, and comparing the result
to zero. Finally in some systems there is no definite relationship
between the mean and the higher moments of the detector output
distribution, but measurement of the variance 1is sufficlent to
characterize the rest of the distribution. This 1s true in certain
systems which average a number of samples before a detection decision
is to be made and where the mean may be fluctuating. 1In this case
both the mean and the mean square may be estimated as shown in
Figure 1lc, and the sum of the mean estimate and G times the
estimated standard deviation 1s subtracted from the detector
output before comparing with zero.

All of the above forms may be characterized by the model shown
in Figure 2a, where the background compensation system forms a
function Ay + Bo + C, subtracts this from the detector outputs,
and compares the result to zero. If the estimates u and o of the
mean and standard deviation were perfect, this would perform the
desired normalization without degradation. However, with a finite
number of data samples used to form these estimates, fluctuations
will appear at the output of the background estimator and these
appear as additional nolse which 1s passed to the decision element.
Several assumptions will be made about the nature of this estimation
nolse throughout this report. These are

(a) The estimators of y and o are unbiased so that the errors
in estimation have zero mean.
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(b) The noise in the background estimaticn has a Gaussian
distributicn by virtue cof the central 1limit theorem and the
fact thata reasonable number of samples are used in 5stimating
the background. The variance of this estimate is o.¢. This
assumption clearly becomes suspect for small numbers of samples
averaged 1f the Input ncise 1is non-Gaussian.

(¢c) The background estimation errcrs are uncorrelated with
the ocutput of the detector for a given cell In the measurement
space (range, frequency, etc. cof the system. This should be
true for any prcperly designed tackground estima‘or and can be
accomplished by pre-whitening the inputs to the averager.

(d) The amount of smoothing used in the background estimator
is equlvalent to that obtalined by using N independent samples of
the detector output in forming the estimate. When the samples
used are correlated, this serves as a definition of N.

Under these assumptions, 2n equivalent system may be dre--
as shown 1n Figure 2b. Here 1t 1s seen that the estimation noise
functions as a zero-mean Gaussian fluctuaticn added to the output
of the detector before the detector output is compared to the
threshold T = Ay + Bo + C, where y and o are the true parameters
of the detector distribution. Under the assumption of indepe.idence
it may be shown that the probability density function p_(z) of
the detecter output as corrupted by the estimation nois& is the
ccnvolution of the detector output density function pyx(x) and
the density function py(y) of the estimatilon noise. Tnus

p,(2) .£: Py () py(z-x) dx

I” py(z=y) py(y) dy (1)

The probability of a false alarm PFA 1s equal to the probability
that z exceeds the threshold or

PFA = (7 p,(z) dz (2)
T

Combining these integral expressions and reversing the order of
integration gives

S
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PFA = [© [f' Py (x) p, (2-%) dxw dz

o -

= | px(X) IT py(z-x) dz | dx

= [T, )| [ p (2" éz]dx . (3)

- T-x

Since the estimation noise was assumed to be Gausslan with zero mean
and a variance of °e2’ the density function py(z') is

py(2') = (1//Z o) exp(-2'%/20,%) (W)

and the inner integral becomes

[® p,(z') dz' = (1//2n o) [7 exp(-z'2/2 ¢_°) dz'
y € 1 e

T-x -X
= (1//™ " exp(-t2) dt
(T-x)
2 o
e
= (1/2) erfe((T-x)/V2" o) (5)

where erfc represents the complementary error function defined as

erfe(x) = (2//™ [° exp(-t%) dt . (6)
X

This function is defined by equation (6) for all x and ranges from
2.0 at x = -=» through 1.0 at x = 0 to 0 at x = «, The probabllity
of false alarm can thus be written as a single integral
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PFA = (1/2) [” p, (x) erfe((T-x/V26 ) ax  (T7)

and for any p_(x) is a funct%on of the threshold T and the
estimation no¥se variance CPRa

The above equation can be used tc evaluate the effect of
| estimation noise on the false alarm prouvability (or the required
| change in T to maintain a constant PFA) for any given distribution
Py (x) from the detector. This function varies with the type
of detector used 1n the system, and the following sections use
this general result to evaluate the effects of background
estimation for each of several common detectors. Numerical
integration is required in most cases to evaluate equation (7).
The Fortran programs in Appendix A were developed for this purpose.

A S ——" —




DETECTOR + Z | DECISION o) ! FORZ>T
outpPUT r ELEMENT OFORZ <T

MEAN |
ESTIMATOR[ ™~ &

FIG, 1 (o) BACKGROUND MEAN ESTIMATION

DETECTOR DECISION o 1FORZ >0
OuTPUT ELEMENT OFORZ <0
MEAN
ESTIMATOR
FIG. 1 (b) BACKGROUND MEAN (T = Gu ) ESTIMATION
DETECTOR

OUTPUT

DECISION e 1FORZ >0
ELEMENT }0 FORZ <0

MEAN
ESTIMATOR

STANDARD
L9 DEVIATION
ESTIMATOR ¥

FIG. 1 (¢) BACKGROUND MEAN PLUS STANDARD DEVIATION (T=u+Go ) ESTIMATION
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OUTPUT ELEMENT [ T OFORZ < T
BACKGROUND T
ESTIMATOR |
T=Au+Bo+C .

(IDEAL THRESHOLD) *

FIG. 2 (b) EQUIVALENT MODEL FOR BACKGROUND COMPENSATION
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GAUSSIAN CASES

In many systems the assumption that the input to the
decision element has a Gaussian probability density function may
be Justified. This is true particularly when some averaging
has been performed on the output of the detector, as is the
case in a spectrum analyzer or a multibeam sonar with a low-pass
filter following the energy detector in each channel output. Coherent
processors or matched filters for detecting signals of known waveform
and known phase also tend to have Gaussian output statistics.
A major advantage of the Gaussian assumption in this instance 1s that
analytical expressions can be obtained for the loss due to background
estimation, thus avoiding the need for numerical integration.
Three cases are studied in the following sections, depending on
the relation assumed between the mean and the standard deviation
of the input to the decision element. In the first case the
standard deviation is assumed to be constant and known, in the
second case 1t is assumed to be in known proportion to the mean,
and in the third case both the mean and standard deviation are
assumed to be unknown and separately estimated. Each of these
three cases has application in signal processing systems, and the
effects of background estimation are somewhat different in each.

’ . . . - - 2 ——— n— i e T
’ . s B " — —— . eI . i - ”
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GAUSSIAN DETECTOR WITH CONSTANT STANDARD DEVIATION

The detection of a shift In the mean of a Gaussian random
variable 1s one of the classical problems in detection theory.
It is also a reasonable approximation to physical systems in
which strong AGC (such as hard clipping) has been applied at a
point which keeps the output variance constant and in which a
substantial amount of averaging has been performed (as in wideband
correlation systems) before a detection decision is made.
Since background compensation for such systems consists simply of
subtracting an estimate of the mean and comparing to a constant
threshold (as in Figure la), the appropriate functional form for
T in Figure 2 is T = 1.y + 00 + C. If the input variance from
the detector 1is 02, the variance in u resulting from averaging N
independent samples !s gg© = 02/N. Inserting the Gaussian

distribution with mean y and variance o2 for pPx(x) in equation (7)
then gives

PFA = (1/2/2 o) [” exp(=(x-1)2/20%) erfe((u+C-x)/(/2 a//F"))dx

(8)

whicii may be simplified to
PFA = (1/2/27 ) [° exp(=x2/2) erfe(VN/2* (c-x) )dx’ (9)

where ¢ = C/o is a normalized threshold value and the resulting
expression 1s independent of u and o as expected.

A second, more direct, way exists for obtaining the PFA in
this specilal case of Gausslan 1input distribution. Since the
sum of two independent Gaussian variates 1s also Gaussian and has

a varlance equal to the sum of the variances of variates belng added,

the detector output after background compensation 1s Gaussian with
zero mean and a variance of (1 + 1/N)o2. This is compared with
the threshold C = co, and the probability of exceeding this
threshold is simply

PFA = (1/2) erfc(c//2(N+1)/N") (10)

This direct result in this case permits analytical evaluation of
the degradation due to background estimation and also provides a
means of confirming the accuracy of the numerical approach.

P, =
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Figure 3 shows the resulting PFA as a function of the
threshold parameter c, plotted for a number of values of N. The
curve for N = «» represents the case where the mean is perfectly
known and the estimation noise is zero. As one would expect,
any reduction in the number of samples used in estimating
the mean results in a higher false alarm rate for a given threshold
or a higher threshold for a given false alarm rate.

If the threshold is adjusted to maintain the desired false
alarm rate, in spite of the background estimation noise, a larger
signal (change in the mean) 1s required in order to reach a desired
probability of detection. In particular if a 50% probability of
detection is desired, the mean of the detector output must change
by an amount just equal to the threshold C = co. It 1s traditional
in A1scussions of this problem (detecting a change in the mean
of a Gaussian variate) to define a detector output signal to noilse
ratio (SNRO) in which the "signal" 1s equal to the square of the
required change in the mean and the "noise" 1s equal to the varilance
at the detector output. Suppose ¢y is the normalized threshold
required for a given false alarm probability with N = «, Then
the threshold ¢ required for the same false alarm probabillity with
a f nite N 1s given by

(1/2) errc(co/lﬁ‘) = PFA = (1/2) erfc(c/VY2(N+1)/N) (11)
or cy = c//(N¥ 1) /W (12)
SO (c/co)2 = (N+1)/N (13)

This ratio represents the increase in detector output signal-to-noise
ratio required because of the background estimation noise, and it
may be expressed 1n decibels as

8(SNRO) o, = 10 log[(N + 1)/N] (14)

This degradation (increase in required SNRO) 1is plotted as a
function of the number N of independent samples in Figure 4.

It varies from an extreme of 3 db if only one sample was used in
estimating the background, through just less than 1 db with

N =4, to less than 1/4 db if more than 16 samples are used in the
background average. It is interesting that in this special case
the degradation devends only on N and 1s not a function of the
desired false alarm rate.

10
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It is important to note that A(SNRO)gg+ as defined above refers
to a signal to nolse ratio at the output o} some sort of detector,
and not at the processing system input. Relating this correction
back to the system input to determine the amount of additional signal
required for a given performance requires knowing the input/output
relationship of the detector. In general this 1s a rather complex
step, requiring one to determine the amount of signal input

required to produce the deflectlion c¢_ and again for the deflection
¢, then to determine the SNR correctfon from the ratio of these

two required signal powers. Generally the relationship between

the A(SNRO)egt figured at the detector output and the equivaleat
degradation A%SNRI)eSt expressed 1n terms of the input signal
required depends on several factors such as the amount of post-
detection averaging done and the false alarm and detection
probabilities. However or the square law detector,and for most de-
tector functions when the SNR at the detector 1s small, the
deflection at the detector output is directly proportional to the
input signal power. Thus the ratio of 1input signal powers is

simply c¢/co rather than the square of this quantity, and the
correction A(SNRI)egt expressed in decibels at the system input

1s Jjust half of the A(SNRO).q¢ at the detector output. The vertical
axis of Figure 4 1is marked ¥R terms of both 4(SNRI)egt and
A(SNRO)ggt» but it must be remembered that the A(SNRISest scale

is 1imited in application to square law or equivalent detectors
while the A(SNRO)egt scale 1s applicable in the general case.

11
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GAUSSIAN DETECTOR WITH PROPORTIONAL STANDARD DEVIATION

Another common situation 1s a detection system whose output
distribution is Gaussian but with a standard deviation proportional
to its mean output. This occurs (or is approximated) whenever a
substantial amount of post-detection averaging (or non-coherent
processing) is performed on the output of a square law or a linear
detector before a detection decision is made. Suppose the
standard deviation o is known to be equal to K times the mean u
of the detection system output, on the basis of the amount of
non-coherent averaging being performed. With this ratio known,
a measurement of u 1is all that is required to completely
characterize the distribution and set the decision threshold.
If a threshold of ¢ standard deviations above the mean 1s required
to give the desired false alarm probabllity, then the general form
of Figure 1lb can be used with l+cK times the mean subtracted
from the detectcr output and the result compared to zero.
Thus the function to be formed by the background estimator is
(14cK)+u + 0:0 + 0, as shown in Figure 2a. When this function
is broken into an 1dea1 threshold T and a nolre component as
shown in Figure Sb the no%ss due to estimation of the mean has
a variance of % = (1+cK)<o¢/N. Note that this is larger by the
factor (1+cK)2 than the estimation variance when the variance of
the input was constgn If the sybstitutions o = Ky,
T = (l4cK)u, and oe€ = (1+cK)2K2u2/N are made into equation (7),
the result for the probabilility of false alarm is

PFA = (1/2/27 Ku) [ exp(-(x-y)2/2k°,2).

erfc (((1+cK)u=-x)/v/2* (1+cKXKu//N')) dx (15)

or by simplifying

PFA = (1/2V2%) [° exp(-x'%/2) erfe(vN/2 (c-X)/(14cK)) dx’

(16)

This result again 1s independent of u and may be evaluated numerically

to find the PFA as a function of the threshold parameter ¢ for any
desired K and N.

Again because of the additive property of Gaussian distributions,

a more direct means is available for finding the false alarm

14
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probability without requiring a numerical integration. The 1input
to the declsion element 05 Figure 2b 1s Gaussjian with a mearn of u
and a variance of o< = (Ku)2(1 + {1l+cK)é/N, , and a false :
alarm occurs whenever this exceeds a tireshold of T = (l+cK)yu. ]
This probabllity 1s given directly from the error function as

PFA = (1/2) erfc(c//%(l + (l+cK)2/N)‘) (17)

This PFA as a function of ¢ depends on both the number of samples
i N used in the background average and on the ratio K between the

‘ standard deviation and the mean of the input data. Figure 5
gives a plot of this function with N as a parameter for K equal
to .03 and .3. The dependence on K is seen to be strong only for
fairly large c¢ (small PFA). 1In the 1limit as K approaches zero

the function approaches that given in Figure 3 for the constant
variance case.,

Again we can defline a signal tc noise ratio as the square of
the change in mean required to zive 50% detegtion probability
divided by the input variance, or (cKu)2/(Ku)c = c2, If co 1s the
threshold parameter required to givc the desired PFA for N = =,

then
9
]
/ 20 |
(1/2) errc(co/@‘) = PFA = (1/2) erfc(c/v2(1 + (14cK)</N))
(18)
or
A\ ;
¢, = /(1 + (14eK)?/N) (19) *
This equation may be snlved for the ratio c/co to give the expression ?
)
\
¢ K + N1 + (1-c_2k2)/N
c/co = 5> (20)

N - co K

This ratio of thresholds required for the same false alarm
probability can be interpreted as an increase in required signal-
to-no’se ratio at the detector output, where the signal is again

15
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defined as the square of the change in mean required to reach
50% probability of detection and the noise 1s the variance of the
detector output in the no-signal case. Expressed in decibels,
this increase 1is

a \
R e K + N/ + (1-c02x2)/N
A(SNRO)est = 10 log(c/co) = 20 log

2,2
N - co K

(21)

This expression has several interesting properties. First is that
the reauired SNR increase is a function only of the product cgoK

of the threshold parameter c, and the ratio K between the mean and
the standard deviation, rather than depending on these two parameters
individually. Figure 6 shows how A(SNRO)e varies with N for
various values of coK and also contains a Egble giving values

of coK for a number of false alarm rates (which defines cg)

and K values. The curve for coK = 0 is identical to the curve in
Figure 4 for the case with constant standard deviation, indicating
that the SNR change 1s always larger when the standard deviation
changes in proportion to the mean.

Another interesting property of the above result 1s thas She
required increase in SNKO goes to infinity when N equals c,<K<.
This represents the minimum value of N for which the desired
false alarm probability can be achieved while estimating the
background in this manner. Fortunately this minimum value of N
is near unity, since co in any practical case is less than about
6 and K generally is appreciably_smaller than unity. Whenever

N 1s appreciably greater than c°2K2 an approximate form can be
derived for the SNRO change of the form

2
B(SNRO) o, & 20 log[1 + (l+c_K)2/2N] N »> c02x2 (22)

This form lends some insight into the behavior of the SNRO change
in the reglion which is usually used in practice.

A second scale in terms of the equivalent degradation
A(SNRI)egt at the processing system input 1s again provided in
Figure 8, for use only in the case of square-law detectors or
low signal to noise ratio at the detector itself. Limitations on
the use of thls scale are discussed in the previous section,

16
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GAUSSIAN DETECTOR WITH UNKNOWN STANDARD DEVIATION

A third common situatlon when deallng wlth Gaussian inputs
13 that where the relationship between the mean u and the variance
0¢ of the detector output 1s not known. In this case the background
estimator must estimate both the mean and the variance. If a
threshold ¢ standard deviations above the mean 1s necessary for the
desired false alarm probability, thern the function generated by
the estimator in Figure 2a 1is (1)u + (c)o + 0. Expressing this
operation as in Figure 2b, the 1deally estimated threshold would
be T = y + co, and the variance °e2 of the estimation noise 1is
the variance of the estimate of u p.us c? times the variance of
the estimate of o(if p and 62 have uncorrelated estimation errors).

Unblased estimators for u andc2, based on N independent samples,

are
o N
=171 x/N (23)
i=1
and
Z x - Nu2
02 s i=] (2“)
N -1

The varlances of these estimates are o /N and 2¢ /(N 1) respectively,
and the errors can be shown to be uncorrelated. The estimate ¢

of the standard deviation, obtalned by taking the square root of

02, is not necessarily unbiased nor is 1t easy to show that its
errors are uncorrelated with those in u. However we will ignore
these difficulties here. Assumlng N >> 1 so that the standard
deviation of 02 i1s small compared to o2, the variance of ¢ may be
shown to be ¢2/2(N-1). This estimate of ¢ is also not quite Gausslan
because of the nonlinearity of the square root operation, but we

will ignore this problem too.

Based on the abovs, we find that the variance on the threshold
estimate § + co is (0°/N) + c2(02/2(N-1)) or

oe2 = (02/N)(1 + Ne2/2(N-1)) (25)

Adding this estimation variance to the variance of the 1nput
from the detector gives a total variance of 92(1 + (1/N) + ¢ 2/2(N-1)),

19
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and the detection process then becomes equivalent to testing a
zero-mean process of this variance against a threshold co. As
shown in previous sections, this leads to a false alarm
probability

PFA = (1/2) errc(c/lé(l + 1/N + 02/2(N-1)‘) (26)

The threshold ¢, required for perfectly known y and o (that is,
N = =) is obtained from PFA = (1/2) erfc(co/v2'), so for the same
false alarm rate

¢, = e/ + 1/N + c2/2(N-1) (27)

or, solving for (c/co)2

(c/cg)? = —L g2 (28)
1 - c,"/2(N-1)

Again we can define a detector output signal-to-noise ratio
required for detection as the square of the shift in the detector
mean required to reach 50% detection probability divided by the
detector output variance. Since the required shift in the mean
is just equal to c, the increase in signal-to-nolse ratio required
because of imperfect estimation of u and ¢ is given 1n declbels as

- 1+ 1/N
A(SNRO) o = 10 log;g [1 - c2/2(N-1£ (29)
o]

This increase in required SNRO 1s plotted in Figure 7 as a function
of N for several values of co, where the values of c¢_ are identified
by their corresponding values of the false alarm progability.

The dashed curve in Figure 7 is duplicated from Figure 4 for
reference and is the result for constant standard deviation.

This is the curve which would be obtained above by setting co

equal to zero, and all cases where the varlance must be estimated
involve a larger SNRO correction than the constant varlance case.

It is also interesting that for any value of co there 1s a minimum
permitted N,

N

2
s 1l + ¢, /2 (30)

20
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Decreasing N below this limit causes the variance in the
estimate to rise faster than can be compensated by increasing c.

As in the previous two cases a second scale showing the
equivalent degradation A(SNRI)egt at the system input is provided
in Figure 7, but its use 1s limited to square law detectors
or systems in which the signal to nolse ratio at the detector
itself 1is small.
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NARROW BAND SYSTEMS WITHOUT POST DETECTION AVERAGING

In a wide class ol radar and active sonar applications the
receiver must be designed tc detect a signal of known waveform
modulating a carrier of unknown phas:. These are generally
termed narrow-band systems, and the statistics of the detector
outputs may be derived from a narrow-band Gaussian assumption for
the noise on each of the two orthogonal carrier phases. Often no
further averaging is done on the detector outputs before the input
to the decision element, and the statistics of these detector outputs
are distinctly non-Gausslan. Three common detector types are
studied in the following sectlions, and the probability density
functions of their nolse-only outputs are shown for reference
in Figure 8. The first 1s a square-law detector whose output
is equal to the instantaneous input power. The second is an
envelope or linear detector whose output 1s equal to the envelope
amplitude of the narrow-band input. The third system 1s a logarithmic
detector whose output is equal to the measure in decibels of the
narrow-band input. While these three detector types have simllar
performance in the absence of further averaging or background
estimation, they are affected somewhat differently when their
outputs must be used to estimate the background level.
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NARROW-BAND SYSTEM WITH SQUARE-LAW DETECTOR

Narrow-band systems may bc defined as those in which the bandwidth
of the signal to be detected 1s small compared to its rentier freciuency.
Most radar and sonar systems fall into this category. The usual noise
model for a random narrow-band process consists of a low-pass Gaussian
random function modulating each of the two orthogonal phases (sine
and cosine) of the carrier., If a square-law detector is used to measure
the power in this signal (or if coherent detection is performed on
each carrier phase, as in detecting a known pulse waveform of unknown
phase, and the squares of the two results are added) thre detector
output statistics may be shown to be chi-squared with two degrees
of freedom. This density function is of the form

p,(x) = { (1/P) exp(-x/P) x >0
0 x <0 (31)

where P 1s the average power in the noise process. The mean of this
distribution is P and the variance is P2. The shape of the
distribution 1is shown in Figure 8a.

Since the mean and the standard deviatlon are proportional 1n
this type of detector, the estimate of o is usually derived from the
estimate of u in constant fa;se alarm rate detectors so that the
decision threshold T = (l4c)u. Written in this form, the decision
threshold may be thought of as being c standard deviations above
the estimated mean, since ¢ = j§. Putting this system into the context
of Figure 2b, *he 1deal threshold is T = (l+4c) P and an equivalent
noise of variance oo = (14c)2P2/N 1s added to the detector output
if N independent samples are averaged in forming the background
estimate.

2
With the above information of Px(x), T, and d, we can now use
equation (7) to evaluate the probability of false alarm as

PFA

% {” p, (x) erfc((T-x)//E\oe)dx

= %? f: exp(-x/P) erfc(((1l+c)P-x)//2/N(1+c)P)dx
= (1/2) [° exp(-x') erfc((l+c-x')//2/N(14c))dx" (32)
0
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where the substitution of variables x' = x/P shows that the resultant
false alarm rate 1t inderd indepencent of P as expected. The above
expression for PFA nust be evaluatecd numerically as a function of

¢ and N, and the res.lt 1s shown in figure 9. The curve for N=e
represents the case where the thresho)d is perfectly determined and
the false alarm probabillity reduces to

PFA = [  exp(-x)dx = exp(-(l+c)) (N==) (33)
l+c

For any finite N, a larger value of ¢ 1s required for the same false
alarm probability. This is further shown by Figure 15, in which the
same data used in Figure Jare replotted to show the dependence

of ¢ on N for several false alarm rates.

This increase in the required decision threshold due to background
estimation may be related to an increase in signal to noise ratio
required at the system input in the following manner. If a signal
with bandwidth comparable to the narrow-band noise is added to the
noise input, the resulting output of the detector 1s still chi-squared
but with a total power parameter P(1+SNR) where SNR is the signal to
noise power ratio.* The median outpuc M of the detector can be obtained
by integrating the distribution and setting this integral equal to
1/2 as follows

[ (1/P(1+SNR)) exp(-x/P(14SNR))dx
M

= exp(-M/P(1+SNR)) = 1/2 or

quuare = P(1+SNR)(log, 2) (34)

If the decision threshold is set at this median value M, then a

50% probability of detection occurs. The probability of detection may
be modified slightly from 50% by the fluctuation in the threshold

due to background estimation, but this 1s only a second order effect.

¥Note that thls result is slightly different from that obtained
if the signal 1s assumed to be a sinusoid. In that case the
resulting distribution i1s a non-central chi-square and the
mathematics is considerably more involved. 1In actual systems
the processor bandwidth should approximate the signal bandwidth,
and it 1i1s rather a tossup as to which model 1s more realistic.
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Once c is determined fcr the required false alarm probability
we can equate the decision threshold T = (l+c)P with the median M
and solve for the SNR which results in 50% detection probability.
This ylelds

(1+c)P = P(1+SNR)(log,2) (35)

or

SNR (1 - loge2 + c)/loge2 : (36)

Now 1in order to determine the increase in SNR required due to
estimation of the background, the SNR can be computed as above both
with cg for perfect estimation and with the ¢ required due to finite
N. Taxing tne ratio of the resulting values of SNR and converting
the result to decibels ylelds

(1 - log, 2 + c)

A(SNRI)est = 10 loglo decibels . (=7)
(1 - log 2 + c)
e 0

Flgure 11 shows this increase in SNR as a functlon of N for several
values of false alarm probability. Note that the behavior 1is similar
to that for the Gaussian case with proportional standard deviation

in that the correction for a given N 1s larger for smaller

allowed false alarm probabilities and that for any given PFA the

loss increases rapidly as some critical value of N is approached.

In using the results for small N (below about N=16) it must be
remembered that the assumption of Gaussian statistics for the
estimation nolse begins to fall because of the non-Gaussian 1inputs to
the detector. The error 1s 1n the direction of over-estimating the
loss, so that actual system degradation 1s not as bad as that shown in
Figure 11.

It is important to note that the definition of signal to
noise ratio 1is different in this and the following sections than that
used in the Gausslan cases. In each of the Gausslan cases a signal
to noise ratio loss was defined at the detector output, and it was
shown that this could be related to an equivalent loss at the
processing system input only for a limited set of cases. However
in this cxample the characteristics of a square law detector operating
on narrow band information are known and it 1is possible to relate
the effect of background estimation directly to a change in reouired
signal to noise ratio at the system input.

27
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NARROW-BAND SYSTEM WITH ENVELOPE DETECTOR

Many narrow-band systems use llinear detectors, such as full
or half wave rectifilers or envelope detectors, in place of the
square-law detector assumed in the previous section. This is
done either for convenlence in detector design or to reduce
the dynamic range which must be handled beyond the detector.
Since the instantaneous detector output 1s related in a known
way to the output of the square law detector, a system which
makes detection decisions directly on the detector output (that is,
with no further smoothing) using a perfectly selected threshold
can have 1identical performance to a similar system using a square-
law detector. However when the background must be estimated
by averaging samples of the detector output, some differences
in performance occur.

The instantaneous output of an envelope detector operating
on a narrow-band iigpal may be related to that of a square-law
detector by x' = v¥2x, where x' 1s the envelope detector output
and x 1s the square-law detector output. By using this
transformation of variables and the previously found distribution
for the square law detector, the density function at the envelope
detector output may be shown to be (dropping the primes on the
variable)

Py(x) = { (x/P) exp(-x°/2P) x>0
0 x <0 (38)

This density function is shown 1in Figure 8b and has a mean
/ViP/2 = 1.253 /P and variance n
(2-§)P = ,4292P.

Again the mean and standard deviation are proportional, so a
the mean alone can be estimated and the threshold set to T = (l+c)u.
Note that ¢ no longer represents the number of standard
deviations the threshocld lies above the mean. According to the
model used in Figure 2b, this corresponds to an ideal
threshold of T = (l+c)VnP and an estimation noise whose
variance is equal to (l+c)2 times the detector output variance
divided ty the number of independent samples N used in estimation,

or °e2 = (1+c)2(2-%)P/N. Now using equation (7) to determine

the false alarm probability, including the effects of background
estimation, gives
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PFA =

-

I. px(x) erfe((T-x)/V/2' oe)dx

= (1/2P) [™ x exp(-x°/2P) erfc(((1+c)/7F/%ox)/
0
(1+¢)/{T=7)P/N)dx
= (1/2) [ x' exp(-(x')2/2) erfc((1+c)/7/2=x")/

o]

(14c ) (U=n/N) dx"' (39) ﬁ

Again the substitution of varlables x' = x//P shows that the false
alarm probabllity 1s indeed independent of the background noise
power P and depends only on the selected threshold ratio c¢ and the
number N of samples usedin estimation. For the case N==« which
] corresponds to perfect background estimation this expression
! simplifies to

PFA = [° x_exp(-x2/2) dx ;

(1+¢) %
: |
| '1
= exp(-(1+c)°(n/b)) (N=e) (40)

For finite N the expression must be integrated numerically, and
the results are shown 1in Figure 12. Again to maintain any given
false alarm probability, an increase in the threshold ratio ¢

1 is required to compensate for any decrease in the number of

] samples N used to estimate the background. This 1s replotted in

' Figure 13 to show the dependence of ¢ on N, with the PFA as a
parameter.

Following the same approach as in the previous section, we
can relate the required increase in ¢ to an increase in SNR
required at the processor Input. Since the instantaneous
output x' of the envelope detector 1is related to the output x

32
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of the square law detector by x' = /2Xx, the median outputs

are related in the same way. Thus from equation (34) we can
obtain the median output of the envelope detector as a function
of SNR as

Moy = V2P (1+5NR) (1og 2) (41)

Equating this to the threshold T = (l+c)/nP/2 gives

(14c)°(nP/2) = 2P (1+SNR) (log,2)
or
SNR = ((l+c)2n - 4(log,2))/ (4(1og 2)) (42)

Again the increase in SNR due to background estimation can be
expressed in decibels as

((14c)°m - 4(1og,2))

A(SNRI)est = 10 loglo -decibels (43)

((1+c0)2n - 4(log.2))

where ¢ cnd ¢ are obtained from Figure 13 for the desired

PFA and the s@lected N. This SNR correction is plotted in

Figure 14 as a function of N for several values of false alarm
probabllity. It may be seen to have the same general properties

as that for the square law detector in Figure 11. The loss does

not appear to rise as rapidly for small values of N as 1n the square-
law detector case. However this result 1s again influenced by the
breakdown of the Gaussian assumption for small N (again over-estimating
the loss), so no conclusions should be drawn about the relative

loss for square-law and linear detectors without more careful analysis.
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NARROW-BAND SYSTEM WITH LOGARITHMIC DETECTOR

Another type of detector sometimes used 1in narrow-band
systems produces an output proportional to the logarithm of
the measured power (in other words, a measurement in decilbels).
This further reduces the dynamic range to be handled at the
detector output and it has other interesting statistical properties.
The base of the logarithm 1s not important (since it represents
only a galn factcr at the output), so we will assume here a detector
characteristic x' = 10 logijgx = 4.3429 logex, where x is the
instantaneous power as rieasured by a square law detector. This
choice 1s made so the detector output may be interpreted directly
in decibels. Applying this transformation of varlables to the
density function given previously for the square-law detector
gilves a new density function for the logarithmic detector of
(dropping the primes)

Dx(x) (1/aP) exp(x/a) exp(-exp(x/a)/P)
a = 10 log e = h,3429 (44)

This may be writtern in the form

p,(x") (1/a) exp(x'/a) exp(-exp(x'/a))

a =10 logloe = 4,3429 (4s5)

where x' = x - 10 10810P- Thus the probabllity density function

at the output of the logarithmic detector 1s 1independent of P
except for a pure translation equal to the measure of P 1n decibels.
This distribution is plotted in Figure 8c. The mean is

a(logeP-y) = 10 logigP - 2.5068 and the variance 1s constant

at 22#.2

=== = 31.0247.

Since the variance does not depend on P, only the mean must
be compensated to provide a constant false alarm rate decision
function. Thus an appropriate threshold function is T = y + ¢,
where ¢ 1is selected to give the desired false alarm probability.
The ideal threshold 1n the model of Figure 2b 1s thus
T = 10 logjgP - 2.5068 + ¢ while the estimation noise varilance
for an average of N samples 1s oe¢ = 31.0247/N. Writing the
false alarm probability as in equation (7) gives
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PFA = % {:r&(x) erfc((T—x)//ﬁ‘oe)dx

= % |7 (1/72) exp(x'/a) exp(-exp(x'/a))-

erfc((c-2.5068-x")//62.0294 N)dx (46)

where the expression 1is written in terms of the translated
function x' with the dependence on P removed.

Agiin for the case N = » this expression can be evaluated
in the form

PFA = exp(-exp(-Y) exp(c/a))

= exp(~0.5615(10°710y) N=e (47)

For finite values of N the false alarm probability must be computed

by numerical evzluatior of equation (46), and these results are

shown in Figure 15 for various values of threshold ¢ and number N

of samples averaged in forming the background estimate. These

[ same results are replotted in Figure 16 showing tiie required threshold
as a function of N, with the false alarm probability as a parameter.

Using the same technique as in the previous sections, this
increase in ¢ to maintain a given false alarm probability may be
equated to an increase in required SNR at the processor input.
The median output of the logarithmic detector may be found by

taking 10 logyg of the medlan output of the square law detector,
to yleld

M)og = 10 logyP + 10 log,,(1+SNR) + 10 log ,(log,2)  (48)

Equating this medlan output with the threshold T = u+c gives

n 10 log, P - 2.5068 + c = 10 log; P + 10 log,,(1+SNR) - 1.5917 (49)
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10 log,,(1+SNR) = c - .9151 (50)

so that
SNR = 10(¢/10-.09151) _ 3 _ 8100¢10°/'%) = 1 r51)

1s the signal to noise ratio required to reach 50% detection probability 1
for a glven value of threshold c. L

The Increase in SNR required for 50% detection probability as
a result of background estimation can be determined from the ratio
of the SNR's corresponding to ¢ (for a given N) and cg
(for N=«) and may be expressed in decibels as ]

.81(10%710y_1
.81(10°0710y_4

A(SNRI)eSt = 10 log,, (52)

where ¢ and cg may be obtained from Figure 16 for the chosen N and
false alarm probability.

The SNR correction for the logarithmic detector is plotted in
Figure 17 as a function of N for several false alarm probabllities. 1
Again 1t 1s generally similar to that for the square law and envelope
detectors except for seeming to indicate a lower loss in most cases. I
However this result 1s also influenced by the non-Gaussian nature
of the input statlistics for small N, and the error 1s this time
in the direction of under-estimating the loss (because, as may be
seen from Figure 8, the extended tail of the logarithmic detector
density function i1s on the opposite side from that for the square-
law or envelope detectors). Thus the results from the second moment
analysls used in this report do not necessarily reflect the relative
performance of the log, square-law, end envelope detectors in this
respect. In fact Hansen+ has shown through Monte Carlo analysis that ]
the estimation loss for the logarithmic detector is actually somewhat ‘
worse than that for the square-law or envelope detectors, and the
results shown here in Figure 17 fall falirly close to hils results
for the square-law or envelope detectors.

1Hansen, G. S. and Ward, H. R., "Detection Performance of the Cell
Averaging LOG/CFAR Receiver," IEEE Trans. Aerospace and Electronic
Systems, Vol. AES-8, No. 5, September 1972.
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SUMMARY

The estimation of the background noise level which 1is
performed in constant-false-alarm-rate detection systems has
been shown to degrade the performance of the system. This
degradation can be determined analytically when Gaussian statistics
are applicable, while a numerical integration 1s required for other
detector output statistics. The amount of the degradation
depends on the form of the detector and the parameters being
estimated, and in general depends inversely on the false alarm
rate and cn the number of samples used in the background estimate.

In systems with Gaussian statistics at the detector output
the degradation depends significantly on the relatlionship between
the mean and the standard deviation of the detector output. For
example, 1n the case where sixteen samples are averaged to form
the backgrcund estimate and a false alarm probability of 10-4 1s i
desired, the loss (referenced to the system input) rises from
0.125 decibels if the standard deviation is known to 1.5
decibels if the standard deviation as well as the mean must
be gs{imated.

The non-Gaussian cases studied (narrow band systems with
various energy detectors and no post-detection averaging) showed
results generally simllar to those for the Gausslan cases, in that
the system performance loss increases with a lowering of either
the number of samples averaged or the false alarm probability
allcwed. Generally once a degradation of about one decibel 1s
reached, any further reduction in the number of samples averaged
causes the loss to increase rapidly. Unfortunately the approach
used here, using only the second moment of the 1lnput statistics
to characterize the estimation error, is not sufficlently accurate
to indicate the differences in performance among the various
detector types correctly. Thus the losses derived for the non-Gaussian
cases luust be considered approximate and a more elegant method,
taking into account the higher moments of the estimation error,
used to determine exact losses.,
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LIST OF SYMBOLS USED

e Normalized threshold parameter of decision element
s Normalized threshold parameter without background
estimation

A(SNRI)est System performance loss in decibels due to estimation,
referenced to system input

A(SNRO)est System performance loss in decibels due to estimation,
referenced to detector output

Y Euler's constant = 0.57721566

e Base of natural logarithms = 2.71828
erf( ) Error function

erfc( ) Complementary error function

exp( ) Exponential function

K Ratlo of standard deviation to mean
M Median output of detector

U Mean of detector output

>

Estimate of mean of detector output

N Number of independent samples used in background
estimation

N 1in Minimum number of samples in estinmation required for
m finite SNR ]

P Nolse power input to narrow-band detector

px(x) Probability density functior for detector output

p,(y) Probability density function of background estimation
y noise

p_(z) Probability density function for sum of detector and
2 estimation noise

SNR Input signal to nolse ratio, expressed as a power ratio
SNRI Sigial to nolse ratio at system input

SNRO Signal to nolse ratio at detector output

4y




Standard
Estimate
Estimate
Standard

Decision

NOLTR 7353

deviation »f detector output
of detector output standard deviation

of detector output varlance

deviation of background estimator outpuf

element threshold

45
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APPENDIX A

The following computer programs were developed for the
numerical integration necessary to evaluate the previously discussed
narrow band systems. These programs model equation (7) of the
text as shown below:

MAIN
CALLING
PROGRAM

{

INTEGRATION
ROUTINE
(INTEG )

T

ERFC INTEGRAND PROBABILITY

FUNCTION HGENERATION <___> FUNCTION

(ERROR) (FCTN) ' (PROB)

A main routine initializes and varies parameters, contains formatting
statements, and calls the integration subroutine, INTEG. This
subroutine calls the integrand generating subroutine, FCTN, which
formulates the integrand required by INTEG. For the prescribed
probability function FCTN calls the subroutine PROB and for the erfc
function FCTN calls the local system library subroutine, ERROR.

To use the program for the three cases cited (square law, envelope
and logarithmic detectors) 1t 1s necessary to alter only the main
routine and the PROB subroutine. The former requires that the
limits of integration and appropriate constants peculiar c¢o the
case conslidered be varied and the latter requires entry of the
probability function of the particular case.

Routines 1 through 4 represent the program for the numerical
integration involved in the evaluation of the square law detection
system. Routines 5 and 6 contain the necessary alterations for
the envelope detection case. The final two routine., 7 and 8,
represent the changes in the initial program to provide for the
numerical integration in the logarithmic detection system.
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PROGRAM MATIMN

110
89

90

NOLTR 7353

COC €400 FTN V3,0=P3]16 UPTs2

PROGRAM MAIN(OUTPUT,TAPE6=OUTRUT)
COMMON/A/ AREA+STEPFPOLDsToSIGE
‘Nllo

STEP=,)1

SRT 3 SQRT(2,)

DO 90 NN=l,18

C=Q.

DU A9 NTs1e25
SIGES(1le+C)/SAKT (AN)

Tz]l,*C

FOLD=10,

CALL INTEG

WRITE(6el1lU) ANyC,AREA

FORMAT (1X9®PFA(#y16sF6,2¢0)884F20,10)
CICOI.

CONTINUE

AN 3 SKTeLN

CONTINLE

STOP

END

Routine 1

Main Routine for the Square Law Detector
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SUBRCUTINE INTFG CUC 6400 FTM V3,0=P316 CUPT=Z2 02/2

SUBROLTINE INTEG
CUMMON/‘/ AREAOSTEP.FOLUOT.SIGE
S=STEF
F=ABS (FOLD}
XOS/ao
DuXesz
SN 8 1.
AREA = FCTIN(X)
IF(FOLDLToUe) AREL = FCTN(=X)
10 ¥ = Xe§
IF (X,GE.F) GO TO 20
KaF##2/ (X#82a]))
IF(FOLD«LT.04) SN = =1,
AREA = AREASFCTN(SNoA) o aFCTN(SNaFang/Y)
GO TO 10
2¢ AREA = S*AREA ;
RETURN
END

Routine 2

Integration Routine for the Square Law Detector
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FuihCTION FCTn CuC 6400 FTN V3,0=P316 UPTm2 (2/2

FUNCTION FCTh({X)

COMMUN/ZA/ uREAISTEP«FOLD e TeSIGE
Z3(T=X)/({1,41421356P4%#SIGE)

RaABS (2)

CaLL ERROP(RQEHF.EQFC.EXEQFC)
IF(Z.L’IU.) ERFC = ERF o le

FCThN = U,

IF(ERSCaNEole) FCTIM = ,SRERFC®*PKOB(X)
RET RN

ENMD

SR ———

Routine 3

Integrand Generation Routine for the Square Law Detector i
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FUNCTION PROR CDC 6400 FT V3,0-P316 (PT=2 (2/2

FUNCTICN PROH (X)
PROBZEXP (=X)
KETURN

END

Routine 4

Probability Function Routine for the Square Law Detector
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PROGRAM MAIN (UUTPUT»TAPEESOUTPUT)
COMMON/A/ AREAYSTEP+FOLDsToSIGE
Ns]
STEP = ,004
DU 90 NN=1,44
AN = N
Css,
VU 89 NT=]1,6
SIGEm (1e+C)*,6551363774/SGRT (AN)
Tu(le.¢C)*],253314137
FOLD = S¢
CaLL INTEy
WRITE(6+110) NoCoAREA
FORMAT (1Ko ®PFA(®9]4sFQe2o*)m®yF20,10)
C = Ceu2
CONTINUE
NS2eN
CONTINVE
STOP
END

Routine §

CUC 6400 FTN V3,0-P316 OPTes2 03/01

Main Routine for the Envelope Detector




7
FUNLTION PROB NOLTATEED COC 640% FTN V3,0=P316 OPTe2 03/01

FUNCTION PROM(X)
PROB & X%cXP (=X®#9#2/2,)

RETURN
END

Routine 6
Probability Function Routine for the Envelope Detector
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PROCRAM MAIN CDC #4n0 FTN V3,0=P316 OPTL2 03/0

PRNOGRAM MATN (OUTPUIT.TAPES&=OUTPUT)
COMMON/A/ AREAISTEPGWFOLD s ToSIRE
‘Nll.
STEP =,0!
DO an AN=],.9
Cmas,
00 R9 ATa]l,17
T.C.?QSOOB
SIGE = SQRT(31,0247/AN)
FoLn=10,
CALL INTEG
AR = AKREA
FOLN = =l0,
CALL INTEG
ARFA = AR o+ AWEA
WRITF(6+11n) AN9CoAREA
110 FORMAT (1X 0PFA(®,F& 2,F6,2,0)a0,F20,10)
CaCeto
A9 CONTINUE
AN L § ZO.AN
9n CONTINUE
140 STnP
END

0OF FHANGES MANE BY THE OPTIMIZER
DS £F INVARTANT RLIST REMOVED FROM THE LOOF STARTING AT LINE 7

Koutine 7

lain Routine for the lLogarithmic Detector

A-8
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1n

COC 6400 FTN vV3,0=P316 OPTe2

FUNCTION PROH (X)

A = 4,3429

XA aX/A

PROR = 0,

IF(x8,6T.4,) GO Tn 10

PROA = (1a/7A)REXP (XA) ®EXP («EXP (XA) )
CONTINUE

RETURNM

END

Routine 8

Probability Function Routine for the Logarithmic Detector

A-9

03/s0'




