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AN ILLUSTRATION OF THE VALIDITY OF THE SIMULATION APPROACH
FOR SOLVING PROBLEMS FOR THE EFFECTIVENESS OF
CHEMICAL MUNITION SYSTEMS
CHAFPTER 1
L INTRODUCTION.

‘ It is obvious that the most accurate way of deriving the theoretical effectiveness of a
chemical munition sys‘~m is by analytic means. The complicacy of the functioning of many such

PSR,

systems, however, negates the ability of developing purely mathematical models in closed form -

to represent these systems. The most widely used alternative to the mathematical model in
recent times has been the simulation. Advances in computer technology and the related advent
of computer techniques for approximating both mathematical and physical systems have
provided the analyst with an excellent tool for evaluating the effectiveness of a chemical
munition. Again, however,. a2 problem has arisen. Unless empirical data are available to validate
simulated results, decisions (which involve large resources of both money and manpower) must
often be made soiely from the outputs of unverifiable computer models. At the present timz,
this problern can not be totally resolved. One means of partially circumventing this problem,
however, is by showing the validity of a total simulation of a complex munition system by
subdividing the functioning of the system into subunits, each of which can be veriried
independently by either analytic or empirical means. Inferences conzerning the validivy of the
total simulation model can then be made from the proven verification of these subunits. This
paper develops one such computer simulation mode! for a weapons system that was analyzed at
Edgewood Arsenal. It then proves the validity of the effectiveness cutputs of the computer
program by constraining the simulation to a case that can be proven analytically. The verification
of the total simulation is then inferred from statistical procedures that are applied to that
portion of the program which was eliminated in order to obtain a subunit to which an analytic
solution existed.

It is hoped that this model will serve as an example to those who might doubt the
ability of complicated simulation models to truly represent the systems they are designed to
emulate. It must be noted that the wvalidity of outputs from simulation-type programs is
extremely dependent upon the parameters used as inputs. These inputs are often either empirical

in nature or are outpuss of other computer models. In either eveintnif imprecisions are

indigenous to the inputs, inaccuracy will result in the output even if the most perfect model is
used. This paper is concerned solely with the modeling of the functionin{;"of a munition system
and does not attempt to deal with the ability of the analyst to obtain acciytate inputs

.- -A.— The Weapons System. -

The XM99 riot-control rocket, develcped by the Department of the Army to
supplement helicopter asrmament, is used to temporarily disorganize and disorient an enemy. It
consists of a warhead mounted on a 2.75-inch folding-fin aircraft rocket. Inside the warhead, 32
wedge-shaped XM 100 canisters are arranged around a fuze-activated central burster. The rocket is

designed to airburst at about 300 feet, thus scattering the submunitions which bum from 8 to

26 seconds after impact. While burning, these submunitions disperse o-chlorobenzy!malonortitrile

~(commonly called CS), a white, crystalline, sensory irritant, which at medium concentrations

produces immediate lacrimation and respiratory effects.!




Before the development of the XM99 system advanced beyond the experimental
stage, it was necessary to ascertain whether the rocket would be able to deliver the desired
amount of chemical agent inside a target. Before additional monetary outlays were made for
production and testing of the system, an effectiveness study was initiated to evaluate its
accuracy. This study determined that a computer program capable of simulating the impact
patterns produced by the rocket would be the best means of accomplishing this evaluation. The
computer program developed simulates the workings' of the XM99 system, provides the
percentage of target impacts that the system is expected to pmduce, and includes in its output a

~ diagram of the simulated impacts.

B, The Background.

In July 1969, in anticipation of a request from the Weapons D'evelopment'and
Engineering Laboratory, the Systems Analysis Office at Edgewood Arsenal undertook an
effectiveness study of the XM99 system. The intent of this stud; was to determine the effect

that variations in aircraft speed, target size, and aiming error would have on the accuracy of the =~~~ &

system. To form conclusions concerning this effect, it would be necessary to find the average

percentage of submunitions that the system would be able to impact inside a specified target -

using these variations in system conditions. This percentage was not obtainable from field trials
because the testing of as many variations as would be necessary would require an excessive
outlay of capital. It was evident that a theorct:cal means would have to be found for obtaining
the desired percentage. . ‘

Initially, it was believed that the target impact percentage could be derived by either
of two methods. An analytic solution for the percentage could be formulated using mathematical
models to represent the different parts of the system, or the percentage could be obtained from
impact patterns produced by a computer program capable of simulating the system under
practical conditions. A subsequent analysis of the feasibility of deriving an analytic solution
indicated that considerable difficulty would be encountered if that method were employed.
From this analysis it was found that impacts from the same munition could not be regarded
from a probability viewpoint as independent occurrences. The positions of these impacts were
dependent upon the points at which the submunitions were dispersed (the munition function
points). Using known technology, an analytic solution could be derived for the probability that
any submunition would impact inside the target. Unless the impacts were independent
occurrences, however, this probability did not equal the mean percentage of target impacts. This
finding proved that the derivation of the analytic solution should not be used to obtain the
desired percentage.

- C.  The Methodology.

The development of the simulation can be divided into writing of the computer
program and its subsequent verificaticn. The procedural steps which comprise thie methodology
of each of these parts will be developed and explained. These steps are summarized in the
following paragraphs.

The first consideration to be made in the preparation of the computer program is
the designation of its input and output. The input will consist of those parameters that are
necessary to accurately describe a system that is- to be simulated. It will include launcher speed,
target size, aiming error, submunition effects pattern size, trial number, number of munitions per
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trial, number of submunitions per munition, and the nuraber of replications for each set of
system conditions. The basic output will include the target impact diagram, a printout of the
input, and a printout of the percentage of target impacts for each trial. After all trials have been
simulated, the fir:l mean percentage for the test will be computed and printed.

After the forn:at for each part of this input and output has been designated, each
phase of the weapons system must be represented by a precise mathematical model. There are
three phases of the XM99 system for which these models must be formulated: the shifting of the
aiming point on the target due to the movement of the launcher, the distribution of the
munition function points, and the distribution of the submunitions dispersed by each munition.
The mathematica! models that will emulate these phases are models based upon probability
distributions. In the program, they will be simulated by means of pseudo-random number
generators that will produce thz coordinates necessary in each of the phases according to that
distribution to which each phase has been associated.

When the total mathematical model for the system has been assembled, a
micro-flowchart will be prepared to outline the sequence of general steps that the program must
contain. Each of its macro-steps will then be broken down into individual mathematical and
logical operations. From these, a micro-flowchart will be prepared depicting the final logic and
step sequence of the program. Each step from this flowchart will finally be programmed to
produce the finished simulation.

The simulation will be coded into FORTRAN V. The version that will be used is
that dev:'oped for the UNIVAC 1108 by the Sperry hand Co: poratior..2

When the simulation has been completed, the resulting sutmunition patterns must
accurately represent those produced by the simulated system. This will be verified by comparing
the values of the percentage of target impact: obtained from the simulation with the same values
obtained from the analytic solution. The analytic solution that vill be derived for this puspose is
the same one that was disregarded as the method for obtaining the percentsge of target impacts.
It can be used to verify the simulation if sight restrictions are placed upon the simulated system.

If the submunition impacts are assumed to be independent occurrences, it can be
shown that the probability that any submunition impacts inside the target equals the average
percentage of target impacts over repeated trials. If a system is simulated assuming that each
munition disperses only one snbmunition, the resuiting submunition irnpacts can be regarded as
independent occurrerices. The percentage of target impacts obtained from this restricted
simulation should, therefore, equal the probability obtained from the analytic solution.

The derivation of the analytic solution will be the major step in the verification of

 the simulation. After :ne sclution has been formulated, the values of the percentages obtained

from it using variations in system conditions will be compared with the same values obtained
from the simulation. Statistical tests will then be utilized to test for significant differences. The
lack of such differences in the two sets of percentages will show that the program is accurately
simulating both the movement of the target aiming point and the dispersion uf the munition
function points. '

At this point, one portion of the simulation will remain to be verified. The relative
equality of the two sets of percentages will not prove that the simulation accurately represents
the dispersion of the submunitions by each munition. This portion of the program will have been




omitted when the assumption was placed upon the systern that there could be only one
submunition per rocket. Tne dispersion will be verified by iesting the pseudo-random number
generator, which is used to simulate the dispersion, for gnodness of fit with respect to the

"~ numbers it produces. A Chisquare test will be used for tiis part of the verification. The results
of these final tests will be the last proof that is needed to show that the simulation is producing
patterns which accurately represent thoss produced by the actual system.

D.  Additional Applications for the Simulation.
“In addition to the analysis of the XM99 rocket, the simulation can be useful in the

analysk of other weapons systems having the same general characteristics as the XM99 system: a
moving firing mechanism which launches submunitions dispersing projectiles towsrd a stationary

< e~ target. Single-round systsms and systems with stationary launchers will become applicable for the

program by merely adjusting the input parameters. This adaptability should prove useful bccause
similar studies on different types of weapon systems will be required in the futum '

, In addition to determining the accuracy of a weapons system, the program will be
used in other types of weapons effectiveness studics. Systems can be simulated to determine the
number of rounds required to place a specified number of submunitions inside a target area. This -
information is necessary in studies. comparing the effectiveness of different systems. and in
studies determining the number of munitions necessary to place a designated dosage of chemical
agent over a target. The impact points produced by the pattern sirulation can be used in future
programs as the generation points for the chemical agent clouds released by a svstem. The
diffusion and travel of these clouds over various system conditions would then be simulated, and
analyses of the resulting dosages of chemical agent would fumnish information concerning the
casualty effects and the area coverage that the system can be expected to produce.

CHAPTER 2
IL. THE ASSUMPTIONS.

The development of the simulation and the derivation of the analytic solution each

require that the XM99 system be linked to a mathematical model. This model must be such that

- its compone .8 can be precisely emulated by programming methods to produce a computer

program that accurately imitates the workings of the weapons system. As stated in the first

cuapter, the parts of the system that must be incorporated into the model include: the

movement of the target aiming point caused by the motion of the launcher, the distribution of

the munition function points, and the dispersion of the submunitions by each munition. Before

each of these are dealt with, however, the system must be oriented to a frame of reference so
that a clear descripiion can be given as to what is being done.

A. - The Frame of Reference. ~ —— —— —

The target will be assumed to be centered at the origin of a Cartesian coordinate
system. The x-axis will extend in its negative direction from the center of the target through the
launcher. The positive direction of the x-axis away from the launcher will be referred to in this
paper as the direction of the range. The direction which is perper.dicular to the range will be
designated the direction of deflection.




The target will be assumed to be rectangular. Its sides will lie parallel to the axes of
the coordinate system. The length of the rectangle in the direction of the range will be referred
to as LL. Its width in the direction of deflection will be WW.

Using this coordinate system, the assumptions cait now bc made for the formulation
of the mathematical model. Each of the three parts of the system which must be incorporated
into this model will be indp idually dealt with ir the follcwing paragraphs.

B.  The Aiming Point.

While it is firing its munitions, the launcher travels a distance p toward the center of
the target. This motion causes the abscissa of the aiming point, which lies inside the target, to
also shift a distance p in the positive direction. To simulate this motion, the program will place
the initial aiming point at a distance p/2 in front of the target center on the negative x-axis.
After the first munition has been launched, the aiming point for iie next munition will shift a
distance. beyond the first aiming point equal to that which the launcher has moved between the
two firings. This procedure will be repeated for each subsequent munition launching. Since tiue
launcher is considered to fire its munitions at equal tirae intervals and is assumed to be rioving
at a constant velocity, the subsequent aiming points will lie at equal intervals along the x-axis.
When the final munition is released, the aiming point will lie on the axis, a distance p/2 beyond
the center of the target. ‘

In the simulation, the movement of the aiming point will be imitated by physically
adding the incremental distances travelcd by the launcher to each successive range function point
coordinate. In the analytic solution, the coordinates of the aiming point will be considered to be
distributed according to a uniform distribution. This distribution has a probability density
function j such that

i=1/p

where p is the tctal distance traveled by the launcher while firing its munitions. The interval over
which this distribution will occur is the interval from p/2 to -p/2 on the x-axis.

C. The Munition Function Points.

The munition function points for each trial will be assumed to be distributed
according to a normal distribution. In the computer program the function point coordinates will
be generated by a pseudo-random number generator that will produce a coordinate when given
the specified mean and standard deviation.> The mean for the placement of each range
coordinate will be the aiming point for the munition. It will be designated u,. The mear for
each deflection coordinate will be assumed to be zero. The standard deviaticns for the two
normal distributions will be constant over each firing and will tv referred to as s, in the
direction of the range and as s, in the direction of deflection. These deviations will correspond
to the aiming errors associated with the system in each direction.

The analytic solution requires that a mathematical formula be found to represent
this dispersion. According to the preceding paragraph, it was assumed that the probability
density for the function point coordinates in the direction of the range is the normal density
function

(P U R U S S
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where x is *he random variable denoting these coordinates. Similarly, 4the probability densxty‘,

function for the random variable y, which denotes the coordinates of the function points in the

" direction of deflection, is the normal density

i y2
—“—Eﬂ( ) i
, ﬁf% %2 ;

The independence of the variables x and y penmts the jomt probablhty dermtyM )
" function of both variables to be expressed as the multiple of their resﬁctnve densxtxes‘t

-(x-u)‘, w2
1 ) X . /

21rsysx 23x2 2"y2

This is the expression that will bc used in the analytxc solutxon to emulate the dispersion of the
function points.

D.  The Submunitions.

At its function point, the munition disperses its submunitions over the target. These

submunitions are assumed to impact within a rectangular effects area that is centered at the -

munition function point. The sides of the effects rectangle are paraliel to the sides of the target
and, thus to the coordinate axes. The length of the effects area in the direction of the range will
be referred to as L, and its width in the direction of deflection as W.

The submunition impacts will be distributed within the rectangle according to a
uniform distribution. The joint probability density function for the positioning of the
sabmunitions is thus

. l , »
(W' L) ’

This formula does not take into account anything tha. has previously happened within the
system. The mathematical combination of this formula with those of the other parts of the
system, using principles of dependence and conditional probability, will be dealt W1th when the
analytic solution is derived.

S In the computer simulation, the submunition coordinates will be dispersed over the
effects rectangle by means of a pseudo-random number generator. This generator produces
numbers accordmg to a uniform distribution when it is given the interval over which that

distribution lies.? The abscissa of each submunition impact will be generated on an interval lying
in the direction of the range. This interval is centered at the munition function point and has a
length equal to that of the effects rectangle in the x direction. This length has been previously

10




designated L. The ordinate will be gencrated on an interval lying in the direction of deflection. Tt
is also centered at the function point and has a length equal to W, the length of the effects
rectangle in the y direction.

E.  Summary,

These are the basic assumptions that will be used in the formulation of the
computer simulation program and the analytic solution. There are additional assumptions and
alterations that must be made to the system in order to simplify iis programming. These,
however, will not affect the mathematical models which emulate the system; they will be
explained as they occur in the development of the program. -

CHAPTER 3

III.  THE SIMULATION,

This chapter deals with the development of the computzr program that will simulate
the XM99 system. To aid in explaining the theory behind the steps that will be incorporated
into the simulation, the program variables will be referred to in this chapter by the mnemonic
ncmes that will be used to describe them in the progmm. A table of these mnemonic names and
their meanings appears later in this chapter A copy of the finished program and its output
appear in appendix A.

A. The Input.

There are several conditions associated with each trial that affect the final
distribution of submunition impacts. The variables which represent these conditions must be
consolidated into the program so that they will affect the computer results in a similar manner
to the way the conditions affect the actual munition fising. These variables make up the major
portion of the input to the program. T -y are listed alphabetically in table I according to their
mnemonic names. Included in this table is a brief descripticn of the meaning or use of eacn
variable and a separate listing of its units. Aiso included are variables which have t ci added to
the input during pros.. mming. These variables either activate the random number of gencrators
. used by the program or aid in converting the target area to a grid system.

B. ° The Output.

The first portion of the program output will display the conditions under which
each system is being simulated. These conditions remain constant over eaca test, and thus only
their initial printout is necessary. The remaining output wili be printed for each trial. It will
consist of the trial number, the pat*em diagram, the regiona! totals, and the trial impact
percentage.

The pattern diagram will display the submunition impacts which occur inside the
target. It will differentiate between points at which ouie submunition has landed and points at
which more than one landing has octurred. For points receiving multiple impacts, it will display
the number of landings at each point.

11
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Tabie I. Input Variables

Variable Description Units
DT The distance between grid lines in both directions across the target | Meters
L The length of the effects rectangle m the direction of the range Meters
LL The length of the target rectangle in the direction of the range Meters
NMUN The number of submunitions to be dispersed by each munition
NOREP | The number of trials to be replicated per test using the same
77 | system conditions
NUMIN | The number of munitions to be fired per trial *
SIGX The standard deviation of the distribution of the function pbint Meters
coordinates in the direction of the range. This corresponds to the
ainting error associated with the system.
SIGY The standurd deviation of the distribution of the function point | Meters
: coordinates in the direction of deflection. This corresponds to the
aiming error assoicated with the system. '
T . - The time interval between the first munition firing and the last Seconds
A\ The velocity of the launcher in the direction of the range Knots
w The width of the' effects rectangle in the direction of deflection Meters
ww ;I'he width of the target rectangle in the direction of deflection ~ Meters
XD The positive integer primer for the normal pseudo-random number
— -} | generator ————— - - : :
XM(1) The positive integer primer for the uniform pseudo-random number
' generator :

12




For impacts outside the target, the exact position of each impact will not be
printed. ‘The relative locations of these impacts will be shown by dividing thie area surrcunding
the target into zones. The total number of impacts that occur in each zone will then be listed to
indicate the relative positions of submunitions missing the target.

In order to eliminate the enormous amount of output produced by a large numbter
of trials, the printing of the impact diagrams and of other trial information, except for the initial
printir g of the input cnnditions, will be suppressible by removing from the card deck the four
necessary printout instruction' cards. This modification should decrease tum around tune to a
substartial degree as it will eliminate much of the time that is wasted by the slowness of
peripheral output equipment. In this situation it is also inconvenient to compute by hand the
average percentage of target impacts over all trials. The program will thus compute and print this
final mean percentage after all simulated trials have been completed.

. As mertioned previously, a sampie of the program output appears in appendix A.
C.  The Impact Zones.
The area outside the target is divided into zones into which the submunitions

missing the target fall. These zones are formed by extending the sides of the target rectangle
infinitely in all directions. This produces eight zones which are in figure 1.

RBOT RMID RTOP
TARGET
_ LCEN TCEN
RANGE =p
LBOT LMID LTOP

Figure 1. Diagram of the Impact Zones
D.  The Programming Model

As discussed in chapter 2, there are three phases of the workings of the XM99
system that must be emulated by mathematical and programming models. The first of these ic

13




the effect of the movement of the launcher oa the target aiming point. If the launcher moves a
distance p during the time period in which it launches NUMIN munitions, the aiming pcint
inside the target will shift along the x-axis from a distance p/2 in front of the target center to a
distance p/2 in back of the center. This inovement will occur in increments of p/(NUMIN-1).
Each shifted 2iming point will subsequently serve as the mean for the normal distribution
according to which the range coordinate of the munition function point is dispersed.

The actual firing of the munition is simulated with the use of a pseudo-random
number generator. This generator produces a set of pseudo-random numbers which follow 2

normal distribution with specified mean and standard deviation.’ Two sets of NUMIN random

numbers are generated. One set is used to produce the abscissas of the munition function points,
and the other set, the ordinates. The following explanation describes the simulation of one
munition and one of its submunitions. Any number of munitions and submunitions can be
simulated by merely repeating the following procedure.

"The normal pseudo-random number generator p@um a number RX for each _

munition using a mean of -pf2. RX, when transformed, becomes the range coordinate X of the
munition function point. The necessary transformation entails adding RX to the distance the
launcher has moved prior to the firing of the munition and subsequent to the firing of the first
munition. If the munition is the ith munition launched

X; = RXj + G [p/(NUMIN-l)l.

This transformation produces the range coordinate of the munition function point. Because the
mean of the normal distribution, according to which the deflection coordinates of the function
points are dispersed, has been assumed :0 be zero, the deflection coordinate Y is equal to a
second normal pseudo-random number which the generator has produced using a mean of zero.

The coordinates of the munition function point have now been determined.
Centered at this point is a rectangular effects area over which the submunition impacts are
uniformly dispersed. The means of simulating this dispersion is a pseudo-random rumber
generator which produces two sets of NMUN numbers for each munition. These numbtars are
uniformly distributed on the interval (0,1).3

For each submunition, the generator produces two numbers, RUX and RUY. They
are transformed into the impact coordinates in the directions of the range and deflection,
respectively. Because the effects pattern is centered at the munition function point, each
generated number must first have .5 subtracted from it to produce a coordinate that can lie on

-either side of the effects pattern center. The numbers are then adjusted to the size of the effects

—rectangle by -multiplying each by the length of the rectangle in its respectrve direction. The

expression for the submunition impact rangc coordinate is

Abscissa = (RUX-S)L + X.
Similarly, for the deflection coordinate
Ordinate = (RUY-5)W + V.

In these equations, X and Y are the respective coordinates of the munition function point.
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The entire impuct pattern is generated by simply repeating the above procedure for
the desired rumber of munitions and submunitions.

E.  The Prognm.

It is quite difficult to plot individually submunitions which impact very close to one
another. To remedy this situation, the simulation was modified so that impacts occurring within
a close distance of each other will be considered to occur at the same point. This modification
entails forming the target rectangle into a grid. In the direction of the range, lines are drawn
perpendicular to the x-axis across the targst, a constant interval apart. The distance between the
grid lines will be an input variable and will depend upon the size of the target. It will generally
be less than 10 meters. The range coordinate of each impact point now assumes the value of the
grid line nearest it. For example, if grid lines were drawn at 3 and 6 meters on the coordinate
axis, and the range coordinate of an impact is 4.4, the cocrdir “*e would assume the value 3.
This same procedure is used in the direction of deflection so that a checkerboard pattern is
formed on which the impacts lic at the intersections of the horizontal and vertical grid lines. A
nicely spaced pattem, which can be neatly printed, is the result. '

In the output diagram, the impact points will be displayed in alphanumeric
characters. This alleviates the confusion that would arise if 10 or more impacts should be located
at one grid intersection. For example, if 11 impacts occurred at a sirigle grid point, using
numerals to represent the number of impacts at a point, confusion would exist as to whether
there were two adjacent points with one impact each or one point with 11 impacts. This will be
especially helpful in trials where a large target allows no blank spaces between intersections. It
will permit large pattern diagrams to be printed ‘on one computer sheet because each space on
the sheet can represent one intersection on the target grid.  Grid intersections at which no impacts
occur will be displayed as blank spaces. Only the impacts inside the target will be displayed by
the target diagram. Outside impacts will appuar in their regional totals.

The next step in the development of the simulation program is the formulation of a
macro-flowchart.. This flowchart is presented in figure 2. The purpose of the flowchart is to
outline.the general sequence of steps that will occur within the program.

Each of the steps in the macro-flowchart is next broken down into mathematical
and logical operations which can be directly coded into the computer language. A
micro-flowchart is prepared to show the sequence of these operations. This flowchart is
presented in figure 3. In this chart, the reading of input and the printing of output are not
displayed in detail as they have previously been explained.

Table 1I lists all variables used in the simulation, along with a brief description of
their use and meaning. The variables are pres:nted in approximately the order in which they will
appear in the program. As the input variables have already been presented in table I, they are
omitted from the list.

The final coding of the program can be observed in appendix A along with a copy
of the program output. .
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Table II. Program Variables

Varisble Description
TOT The mean percentage of target impacts for the test
Ul The value of the mean used to normaily generate the munition
function point range coordinates
U2 The value of the mean used to normally generate the munition
' function point deflection coordinstes
. U3 The distance in meters that the launcher travels between successive
munition firings .
XM __ An array used to store the range function point coordinates
Y™ An array used to store the deflection function point coordinates.
Bii Integer variable used by the randem number generators to make
sure that the last number produced will be used as the next prime
M Integer index which specifies the trial number
LJK,N Integers used as array indexes
" FIELD Two-dimensional integer array who:ss elements represent the
possible impact points inside the target
LBOT
LCEN
RBOT — , ’
RMID }'Zones outside the target in which impacts car occur
RTOP
TCEN
LTOP
LMID
| Nu____ | . Integerindex equal to NUMIN-1 .. _{ ... ..
IXIY Variables used to shift from coordinates to the grid system
NO,NI1 Total impacts outside and inside the target
P The percentage of target impacts for the trial
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} CHAPTER 4
IV. THE ANALYTIC SOLUTION.

To show the validity of the simulated impact patterns, a comparison will now be
made between the mean percertage of target impacts produced by repeated trials of the
simulation and the same percentage derived analytically. The analytic percentzge will be
calculated by integrating over the target limits the joint probability dens’ty function for
submunition impact position. The result of this integration will be the probotility that any

individual submunition lands inside the target. In the following peragraph, this probablhty is

proven mathematically to be identical to the desired analytic percentage.

If each submunition impact is treated as the result of an independent repeated trial,
the orobability of impact incidence inside the target can be computed using a binomial
distribution. There are tv/o states of nature for each submunition firing: hitting the target and
missing it. The probability of hitting the target is P, which will have been found analytically, and
the probability of missing it is 1-P. The total number of target impacts in n repeated trials will
be simply the mean of a binomial distribution with n observations and probability P for an
individual target impact. The value of this mean is n-P.* The mean percentage of submunitions
that land inside the target area per trial is thuc the total number of target hi‘s over all trials
divided by the number of trials

mean percentage = (—nnf)--l’
-

A. The Density Function.

~ The joint probability density function for submunitions impact position will be
designated F(U,V). U is the random variable denoting the range coordinate of the submunition
impact point, and V is the randoin variable denoting the coordinate in the direction of the
deflection.

Thc ccordinates of the submunition impactx are dependent upon the coordinates of
the munition function point. F(U,V) is thus a marginal probability density produced by
integrating out the random variables for munition funct)on point position from the total joint
density ,

FUV) = [J f(UV.X,Y)dX dY

_ In this expression, X and Y are random wariables deroting the range and deflection coordinates, -

respectively, of the function point.

It has been assumed that X and Y are distributed normally with means u, and zero,
respectivaly. As uy is itself a mndom variable on which X is dependent, the above expression for
F(U,V) must be extended to include u,. Thus

FUV) = [ff RUVXYu)X dY du,
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Using a theorem of conditional probability,* the expression for the density function
f becomes

AUVXY.u,) = MUVXY,0,) © §(XY.)

In this equation, g(X,Y,u,) is the joint probability density function for the mumtxon function
point coordinates and the mean of X, and h(U,V/X,¥,u,) is the joint conditional density
function for submunition impact position given the munition 'function point position and the
mean of X.

Reapplying the same theorem to the jointdensityg

BXYu) = dXY/ug) * ()

Here, d(X,Ylux) is the joint conditional density function for the position of the munition
function point given the mean of X, and j(uy) is the probabnhty density function for the mean
of X. , e

4 Because of the independence of the random vanables X and Y, d can be expressed
as the product of two simpler density functions .

dXYfug) = d(Xfuyg) * V)

where d(X/uy) is the conditional density function of X given uy, and e(Y) is the density
function for the random variable Y

Assembling the components of the joint probabxhty function yxelds the equation for
f in its final form

AUV.X,Y.u,) = hUV/XYu) © d(X/uy) © eY) * j(uy)

Each of the individual functions on the right side of this equation must now be represented by a
mathematical model. These models are derived in the following paragraphs.

The submunition impacts have been assumed to be dispersed according to a uniform

distribution within an effects rectangle of length L and width W. The mathematical formula for
the joint conditional density function h is thus

1
@©-w

It has slso been assumed that the coordinates of the munition function points are
distributed normally with mean u, in the direction of the range and mean zero in the direction
of deflection. The conditional density function d is thus the normal density function with mean
u, and standard deviation s,. Similarly, the probability density function e is the normal density
function thh mean zero and standard deviation Sy- These expressions are
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and

. EXP =Y
e(Y) NE n sy 2‘y2

Letting p represent the distance the firing mechanism moves during the time period
in which it launches its munitions, the range coordinate of the mean of X also shifts a distance
p. As it is assumed that the firing mechanism moves at constant velocity and launches its
munitions at equal time intervals, the probability density function j for the random variable u, is
the uniform density function

1/p

The compohcnts of the mathematical formula for f can now be asserabled
L

: Olu,)2 - 2
WYX = i 2:, '!‘y e (L =

This joint density function must next be integrated with resvect to each of the five random
variables. The result of this integration will be P, the desired percentage.

B.  The Integration,

The joint density function f is first integrated with respect to u,, the range
coordinate of the aiming point. This integration will yield the joint marginal density of U, V, X,
and Y. The limits for the integration are p/2 and -p/2 where p is the total distance traveled by
the launcher during its firing time. As in the simulation model, the target is centered at the
origin of a Cartesian coordinate system. This and subsequent integrations use the same
coordinate system for the determination of limits.

The integration with respect to u, is simplified by the fact that X is the only
random variable dependent on u,. The joint marginal density of U, V, X, and Y is thus

GUVXY) = [ f(lUVX,Yu,) du,
which has been found to be

1 o [ Y2\ Fe2 1 (K
Ty (Z’yz)j 0 T (23,2 -
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If everything cuiside the integral 8 égardcd as a constant and the transformations
¢ = X-u, and dc = -du, are perfor.ned, the c<presvion for G becomes

| A
K ——— f WX pxp [ Ve
‘ msx p/2+X .2;)‘2

Reversing the limits of integration and separating the integral into the difference of two integrals
then yields

,,‘ l RN S . e _., 2 [ g [ i 2 R
- fx+ p/2 exp I——\sc - pr/2 Exp [~ 4

If a transformation is now made to G using the variable A = ¢/(/2 Sy)

_ 1-K2| rX+pf2 5 ) /“‘x"."”/}'”““ ® |
GUVXY) = x| [T, EXP (A7) dA fﬁr;_x_ EXPCAD) dA |

o)

This expression can be evaluated by using the error function evaluated at its upper limit. Th:
error function is defined and will be referred to as -

' X-p/2\ __2 X-pl2 2
ERF(E-;—)-J_'_ /ﬁsx EXP(-t%) dt’
t (0] .

The mathematical evaluation of the error function will be deferred until the final solution for P
has been derived. Until that time, the above integral will simply be referred to as ERF ( ).

»

Using the error function, the expression for G takes on its final form

_ 1’.’ 1 -¥2\ 1. (X+p/2\ _ -x-/z-
GUVXY) = TR Py Exr(—-—-—zsyz) ERF( ﬁsx) ERF (—-—!’—'J.2 SX)

The next step in the derivation of P is the calculation of F(UV), the joint marginal
density of U and V. F is derived by integrating G(U,V,X,Y) over the variables X and Y. X and Y
are independent random variables. This integration thus reduces to the product of two separate
integrations .

N -y? _ X+p/2) _ X-p/2
LW /ﬁffsy EXP(———zgyz)dY /ERF ( n ) Enp(k ) dx
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These two integrals will be evaluated individually,

Because the munition function point is the center of the effects rectangle in which
the submunitions are uniformly dispersed, the limits for the integration with respect to X are
U-L/2and U + L/2 wkere L is the ler th of the effects rectangle in the direction of the range.
Similarly, the limits for the integration with respect to Y are V-W/2 and V + W/2 where W is the
width of the rectangle in the direction of dcﬂection.

Separated from the total integration of G, the expression for the integration with

respect to Y is
v+w/2 __ 1 -y?2
fV-W/Z J—T—_fisy, EXP [—— dY'

Making the substitution A = Y/(J2 sy); this integral also reverts to a form of the error function
L erp (¥2¥0Y _ pgp (VHL2
2 /iy Vi,
The integral with respect to X is first separated into the difference of two integrals
U+L/2 ' ' -
j 205 (X+p/2) o _/u+;,/%RF X2\ 4 |
U-1/2 V2s U-L2 JZs, : !

When a transformation is made to each integral using the variables Q = (X + p/2) | (J2 2s,) and
R =(X-p/2) ] (S2 2 8;), the expression for the integration becomes

U+L/2+p/2 U+L/2-p/2
R pL x i
J2s,  ERF(QMQ - ERF(R)R t
U-L/2 4 p/2 U-L/2p/2 ;
/25y Vs

Using the relationship

A ‘ 2
/ ERF(t)dt = AERF(A) - (1<A%)
o Ir
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this sum is evaluated as

U+L/2+p/2 U+L/2+p/
e ( Vis, ) ( I,

-MERF -.;1‘12_12!_2..,._1.
T Vs 3

+L/2-p/

¢

+L/2-p/

Sl

D U-L2-p/2) 1
) (2222,

V25

1

J28y

_The final expression for the integration with respe

2 1
+ ————
2 T

/-(U +L/2 +p/2)
\ 22

")

! \LS

# ot
(e
(

2
- Exe U+L/2- p/2>> |

-(U-L/2 +p/2)?
2,’(2

- EXP

- (U-L/2- 2 _
'1,-1-:xr (‘ L/22P/2) ),
i

ct to X is produced oy adding together like

terms -
U+L/2+p/2 U+L/2+p/2) [UL/2+p/2 U-L/2 + p/2
T2 (‘T‘T)“’( 7 ,)f(ﬁsx )“"(7’;'")
) Y ] . \
_{UtLr-pn U+L/2-p/2) | [UL/2-p/2 U-L/2 - p/2
() o (2222 )+ ( ffk)m(“x )
U g (rrnep?) o (rnep?) <U+L/z'-p/z)2)
VT 2,2 2,2 w2
o
+ pxp (L2 ﬂ)
2‘x2
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All components of the integration of G have been derived. Assembling them ylelds
the final expression for F(U,V)

‘Esx ERF V+WR ERF'V-W/: U+L2+pR
4pLwW ffsy ) nsj 23,

ERF usrLzep)  (Ulnep2) oo (Ul2+p)  (LtLa-pn
J2s, J2s, JZ 8y J72 s,

. u+L2-p2) . [U-L2-p2 U-L/2-p2
ERF( sy >+< 25 )ERF< 25 >

k 2 -(U- 2 (U+L/2-p/2)
EXP (U+L2+p/D) . EXP (U-L2+p/2)" ) EXP ( /2 p/2)
) 2sx2 28,‘2 s

X

A=

2
. B (w-uz-p/z) )
2,2

The final step in the derivation of the analytic percentage is the integration of
F(U,V). F(U,V) can most easily be integrated if it is expressed as the product of twe separate
integrals. This can be done because of the independence of the random variables U and V. The
integration then takes the form '

| £ F(U)VIUAY = K Jg(VMV - [ h(U)U

F is being integrated over the target which is centered at the origin. The limits of
integration are thus half the target dimensions in the directions of the corresponding variatles.
The length of the target in the direction of the range is LL; therefore, the limits of integruion
with respect to the variable U are -LL'2 and LL/2. Similarly, the limits fer V are -WW, > an.
WW/2 where WW is the width of the target in the direction of deflection.

The integration of g(V) will be done first. From the previous integration
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. WW/2 _
V+W/2 V-W/2
fg(V)dV =f [ERF(‘ﬁly—)- ERF (7?;;')] dv
. -WW/Z

The form of this integral is first altered so that it is expressed as the difference ¢ f two integrals. A
transformation is then made to the arguments of the error functions using the variables

e e

The integral then becomes

OWeW QI3 wew /@2y

sy ERF(A)dA - ERF(B)dB
W-WW) /(225 WW-W)/(2J25)

Using the previously stated method for integrating the eitor function, the integral of
g(V) is now expressed as .

‘ WW+ W WW + W 1 -WwW WA fw-ww
T2y (2f§sy) ERF (zfz‘sy) " I'EXP( ) (2ﬁsy)

8$y2

The final expression for the integral is achieved by combining terms. Further
simplification is prmmitted by the relationship

"ERF(-A) = - ERF(A)
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The second half of the integration’ of F(U,V) entails the integration of h(U). The
“expression for this integration is

LL/2
_ U+L/2+p/2) ERF (U+L/2+p/2) ) (U-L/2+p/2) . ERF <U-L/2+p/2>
/LLIZ [( ﬁsx _ J2s, - V2 J28

(u+L/2- plz) (U +L/2-p2\  (fU-L/2- plg) -1/2- p/2>
(-——-—'—“——Ji . ERF ——\7=27x——/l + -712,:-—- ERF (————— fi—sx

\

2 2 2
+ Llexp (w+L/2-p/2) ) EXP (w-uz+p/2) ) - ExP (w+L/z-p/z)>
Ve 2.2 2,2 _ 25,2

' 1 a2
+ EXP ((U ;’:2 p/2) )]] dau

T =

The integral is first separated into the sum of eight integrals. When the following
transformations are performed

. . U-L/2-p/2,
+

- U+LE2+p_[2, - U+%2 L/2, c= U LEZZ p/2, 4D =
s)( ’x sx stx
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the expression for the integration of h(U) becomes

LL+L+p LL+p-L
2023, 242"
[ " J2 5, AERF(A)A - / J2 s,BERF(B)dB

-LL+L+p -LL+p-L

2472s, 2V,
LL+L-p LL-L-E .
247, ' 2073,

- / J2 s CERF(C)C + / "~ J2 s,DERF(DXD
-LL+L-p LL-L-p -
2V2s, 202s,

[ LL+L+ ' LL-L+p .
2723:( 22,
s P / EXP(-A2MA - / ~ EXP(-B2dB
b LL+L+p LL-L+p »
2475, S 2d3sy
LL+L-p : LL-L-p §
T T ST
: - / EXP(-C2)dC + / EXP(-D2)dD
AL+L-p L-L-p :
2J32s, 2[7%s,
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The first four integrals in this expression are evaluated using integration Ly parts. A

model for this

The relationshi
is such that th
used in each o
now: becomes

28y

nethod is

-B2ERF(B)
2

i

2

1

|
)

AZERF(A)
7

_-C2ERF(C)

' +D2ERF(D)

S owdt = st - [ tds

LL+L+p
2 /%,

‘-LL+p+L

2778,

LL-L+p
2/71,‘

-LL-L+p

273
._2_/ x
NE |

AL+L+p'2

‘LL+L+p

2J/7s,

LL-L+p

5 /_2\/73,‘
+ -—
VA 4

29

/2 .

-LL-L+p"'
2J7s,

LL+L-p

b of this model and the first integral in the expression for the integration of h(U)
b ERF(A) is associated with the s and the A with the dt. A similar association is
[ the other three integrals being evaluated. The expression for these four integrals

AZEXP(-AZ)A

B2EXP(-B2)dB
2

C2EXP(-C?)dC

-LL+L-p 2

27,

LL-LFp

242y

/-LL-L-p :

277y,

D2EXP(-D2)dD




In this expression, for each term in the form

A 2
2 M
= — EXP(-M2)dM
a2

there exists a term in the form
. -B 2
N .
2 f —EXP(-N2)N
- 2
-A
) which is equal in value. Thus, the two tcm\s add and the integ:v.‘.ion of the terms not containing

the errorAfunction reduces to

LL+L+p " LL-L+p
3 f AZEXP(-A2dA + = f . AZEXP(-A2)dA
LL+L+p AL-L+p ,
2428, C 22,
Thiséxpression is transformed using the variable F = A2
. : | '
. (LL+L+p)? (LL-L +p)2
2 1 : 2, 1
1 Sax 2 P 1 S 2
3 F EXP(-F)dF + = F EXP(-F)dF
/(1L + L + p)2 (LL-L+p)?2
ssxz o 83x2

~ ==~ ——— - — This two-term-sum can be evaluated when it is recognized that the integrals are a

form of the probability integral of the Chisquare distribution. This probability integral is
expressed in the form

1 X v-1 t
Prix2/v) = =
201 pevi2) f o A
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where v is the number of degrees of freedom.¢ When a transformation is made to Pr(lev) using
the variable R = t/2, the probability integral becomes

X%

Proch) = % ' __\EXP(-R)dR

I'(v/2)

Using this relationship, the expression for the portion of h(U) that is being evaluated becomes

L+p)?
P(j/:) [_Pr((LL+L+p) ) +\h((LL+l;+p) 13) g l,r((l.L L2+p) /3)
4,2 4ax . ot oo

The transformation F = Az introduces a complication into the integration. It deletes
the fact that A can be negative. To compensate for this omission, the sign of each Chi-square
term must be changed if . the value of A contained in its argument is negative. For example, if

" (-LL + L + p) is negative, the sign in front of the Chisquare term having that expression in its

argument will change from plus to minus. To show this condition in the final expressions, both a
plus and a minus will be placed in front of the Chisquare terms to show that th=ir sign depends
upon the sign of the A portion of their argument.

The values of the Chisquare probabilities are obtainable in most books of
mathematical tables. Their exact evaluation will be deferred until the final solution is derived and
then will be used orly when comparing the snalytically derived values against similar simulated
ones. The Chisquare probability functions will be referred to throughout the remainder of this
paper as Pr( ).

When the limits of the remaining terms in the'integration by parts are substituted in
and like terms are collected, the final expression for thc rst poriion of the integration of h(U)
results

e ! 2. X 7] :
Fis, (LL-+,L+p ERF (LL+L+J)> (LL L+p> ERF (LL+L+p>

278, 2J23, 22 2ﬁsx
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r/2) (LL + L +p)2 )* ((-LL+L+E)2
+ e [t Pr(—T‘x‘z—z)—‘\ﬁ \\‘ tPr 4&2 /3)

- 2 ((LL -
o (cbeal e

L + p)?
o /3)]]

The remaining four terms in the integration of h(U) can be evaluated using the

- relationship
. A |

x . ERF(A) = / EXP(-t2)dt" ' |

2 '

O
They beoome
X E-_t'-_t!) (_-U-.‘*L’fp) LL-L+p\ (.LL.L+p
/2 [ERF( Zﬁ*x ._ERF Zﬁsx o E#F(Z'fisx ) + ERF 2~fisx )

) LL+L-p -LL+L-p o (LL-L-p\ (—LL-L—p
ERF ("‘"’"’2&;, )+ ERF ('_"—"u'fsx )+.F.RF (_—Zﬁsx ) ERF —___2\/'5;1 )]

Combining terms reduces this expression to its final form

P [ (4787)- s (38.7) - o () o (359

The two halves of the integration are now assembled to yield the final expression
for h(U) , -

© 7z |(HLt Lt p) ErF (LL'+L+p _ <-1L-‘i;'+p) (-uuj;p)
fisx[(——ﬁ——z sx) , 7775, ) 2 77, ERF (=57 .

| ) (LL-L-I:p)z ERF (1.L-L+p>+ (—LL-L+p)2 ERF .LL-L{;;‘\)
2472, \2J2 2728, 2\753,
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Every component of the integration of F (U,V) has been derived. The integral had
been in the form

f / F(UVWUdV = K [ gVV [ h(UMU

Substituting the constant and the two integrals into the' left side of the equation yields the final
expression for the analytic solution P

2:’;; [(ww W) ERF (;%;y—) - (W-WW) ERF GJ;:)

2 (o (o) s ep)?

Jr 8,y2 s.yz znsx .

LL+L+p)  (-LL+L+p\2 (-LL+L+ ) ) (LL L+p)2 (LL-L+p>
ERF(_zm,) A e (5 - (5D we(3A

-LL-L + p\2 (-LL;I:+p) ra/2) ((LL+L+m2 )
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' LL+L+p). -LL+L+p\ LL-L+p (-LL-L+p)
+ ERF ('275;,— ERF ("m;‘) ERF (—m:,—) * ERF \S 75,

The probability that a submunition impacts inside a target area has been- derived
analytically. It has been shown mathematically that this probability equals the mean percentage
of target impacts during any set of trials. The purpose of deriving the analytic solution was to
verify the accuracy of the simulation. To accomplish this, a comparison must now be made

- between the results obtained from the substitution of similar parameters into each solution. A -

proof to substantiate a portion of the theory upon which the analytic solution was derived is

presented in appendix B. This proof tests the validity of the solution at one of its boundary

conditions.
CHAPTER §
'V. SUMMARY AND CONCLUSIONS.
A. Comparisons.

The comparison will now be made between percertages derived from the analytic
solution and those obtained from the simulation. Each simulated mean percentage is the result of
1000 replicated trials with the simulation. Twenty-six different cases were compared using
realistic extremes of system conditions. The compared valuu are listed in table III.

‘ For each pair of percentages, the null hypothesis being tested is that the simulated
percentage u equals the analytic percentage u,. A large sample test can be used when dealing

with a population that is not necessarily normal, but which has a finite variance. The variance of
the population is approximated by s, the sample variance*

' ZIOOO (ui.ﬁ)2'
8 =
bed i-y n-1
The null hypothesis will be tested against the composite alternative u #—'uo using the best critical

region of size a, | z| > 247 where
(vu,) +/ 1000

\/f
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For this test, a, the probability of commxttmg a type I error, will equal .05. The resuiting igf2
value is 1.96.¢

The z values for the 26 trials are presented in table IV. The fact that all but four of
these values are less than 1.96 means that the null hypothesis can not be rejected for 22 of the
26 cases.

An analysis of the four cases for which the null hypothesis is rejected finds that
each of the four are characterized by a very large p. This implies that inaccuracy could be caused
by a fault in the uniform pseudo-random number generator. In each of the four trials, the
distance the launcher travels while firing is much greater ‘than the target length in the direction

~of the range. If the generator is producing numbers within the interval (0,}) which have a mean -~~~
‘much greater than .5, the large p could cause an exccsmve number of submunitions to impact

around the periphery of the target rectangles .and thus land in front of or beyond the target.
Thus, hypothesis is further supported by the fact that all four cases possessed a simulated
percentage that was smaller than the mpecﬁve analytic oie.

A subsequent analysis was mtde on the uniform generator. Two thousand numbers
‘were generated using the same primer that was used in the simulation. The resulting
pseudo-random numbers had a mean of .5112 and a variance of .08421. When the large sample

. test was run on these numbers using a two-sided alternative, the resulting z value was 1.713. This

value is not high enough to reject the null hypothesis that the mean equals .5, but it is
sufficiently 'close to 1.96 (the z value for a = .05) so that an excess of coordinates could occur

outside the target when p is very large with respect to the target dimension in the dlrect:on of

the rangc

It appears that it is more than coincidence that the largest differences between pairs
of percentages occur at these same four trials. There are two other trials (4 and 13) for which p
is large; however, they both also possess large sx's. This large s, would cause fewer submunitions
to land inside the target, thus reducing the obvious effect of the iarge p The z values for these
caseswerestﬂlgreater than l .

The purpose of the effectiveness study was to ascertam the percentage of
submumtxons that the XM99 system would be able to impact inside a specified target using
variations in system conditions. Since not one difference between compared percentages was
greater than 1%, it can be concluded that the simulation accurately emulates the dispersion of
the munition function points and the movement of the launcher.

, To further substantiate the preceding conclusion, a second test will be applied to the
pairs of percentages. The sign test is a statistical test commonly used to compare pairs of
observations. For the test to be applicable, two conditions must exist. Each of the two
observations of a given pair must be made under similar conditions, and different pairs must be
observed under different conditions. The test is based upon the signs of the differences between
each two observations. Differences that are zero are excluded and the sample size is reduced. The
null - hypothesis will be rejected . when the number of positive and negative signs differ
significantly from equality.”
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Table IV. Statistical Test Values for Trial Comparison

;qr::l fg? Variance Z value
1 + 0.00193 1.022
2 + 00265 1.062
3 + 00379 5.003 -
4 + .00605 1.057
5 + .00421 2.529
6 + 00314 .203
7 Deleted .00000 .000
8 Deleted .00000 .000
9 + .00321 1.558
10 + 00642 " .904
I} - 00620 .060
12 + 00273 684
13 . .00345 732
14 + .00559 271
15 - 00577 375
16 + .00516 4.248
17 - .00585 232
18 - .00583 435
19 - 00284 1.139
20 + 00160 032
21 . .00144 1.083
22 + .00002 | 10.889
23 + 00127 | 1.242
24 - .00123 .009
25 . .00073 456
26 . .00546 265
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Setting 'a significance ievel of 25%, the critical value for this difference between
numbers of signs is 8 for 24 observations (two cases were deleted because of zero differences).
Table IV shows that therc are 10 positive and 14 negative differences in the 24 trials. Since the
number of times the less frequent sign occurs is greater than the critical value, the null
hypothesis can not be rejected.

B.  The Dispersion of the Submunitions.

One remaining portion of the simulation remains to be verified. When the restriction
was placed upon the system that only one submunition would be emitted per rocket, the
__uniform dispersion of submunitions over the effects patterns became so reduced that an estiniate
~ of its accuracy could not be seen. The uniform pseudo-random number generator has already
been tested using a large sainple test. The z value obtained (1.713) was within the critical area
with a = .05. Thus, the hypothms which stated that the mean of the generated numbers equals

.5 could not be rejected. )

e - —The generator will now be studied further to show that its random numbers are
cvenly dxstnbuted throughout their interval, here (0,1). The uniform distribution property w:ll be
investigated by dividing the interval into 10 subintervals and then counting how many fandom
numbers are produced within each subinterval® A Chi-square test is used to test the hypothesis -
that each subinterval contains equally many numbers. Using 10,000 random numbers, the value
of the Chi-square for this generator was 11.442. Compared with the table values, using 9 degrees
of freedom, it can be seen that this value will be exceeded 25% of the time.? The null
hypothesis, which states that an equal number of numbexs fall into each interval, thus can not be
rejected.

We would also like to assure that successive randem numbers in the sequence arc
statistically independent, that is, uncorrelated. A test for this is made by again dividing the
interval (0,1) into 10 equal subintervals. A count of the number of times a random number in
the ith subinterval is followed by one in the jth subinterval is kept in T where T is 10 %X 10
matrix. The Chi-square test is again used to test the hypothesis that al] Ty are equal.® The
Chi-square value computed using this test is 100.299 using 99 degrees of freedom.

Apprmlumatmg this value to a z value in the normal table yields .12766 which is well urder any

Conclusions.

T

: o * The su* nunition impact patterns produced by the XM99 riot-control rocket have
T‘ 7777 been successfully simulated with the use of mathematical models and programming methods. The
computer program resulting from this effort has been found to be capable of prediciing the
accuracy of the rocket over varying system conditions. The exactness of the patterns has been
shown to be dependent upon these conditions; however, in all cases tested, the resulting patterns
have given a good prediction of the average percentage of target impacts the system will be able
to produce when compared to the percentages obtained from the analytic model. This simulation
program will thus become a useful tool for analyzing the effectiveness of weapons systems which
possess characteristics lying within the scope of its application.
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In summary, this simulation reliably emulates the effeciiveness of the XM99 system,
at least with respect to the way it theoretically operates. It is true that there are a vast number
of techniques that can be used in computer simulation. For validation, each of these requires its
own individual method of verification. The compounding of these techniques makes verification
of the total simulation often approah the inpossible. However, this does not eliminate
simulation as a very valuable methadology for performing systems analysis. This paper has
presented an example of a simulation that can be shown to produce accurate results by verifying
its output in two stages. First, an analytic solution is derived for a constrained version of the
simulstion. Then that portion of the simulation that had to be eliminated in order to test the
analytic solution is tested separately. By inference, this method of verification can be utilized on
much more complicated simulation models by subdividing them into simpler models each of
which can be verified independently.
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APPENDIX A
THE SIMULATION PROGRAM AND ITS OUTPUT

SIMULATION OF THE EFFECTS PATTERN OF THE XM99 ROCKET
INTEGER RBOT,RMID,RTOP,TCEN,LL,WW

REAL L

INTEGER FIELD (300,300)

DIMENSION X(200),Y(200),XM(200),YM(200) R VP
“READ (5,1001) X(1),XM(1)

FORMAT(2F10.0)

WRITE (6,3001) X(1),XM(1)
FORMAT(1X,5HX(1)=,F10.0,5X 6HXM(1)=,F10 0)
READ (5,1000) V,SIGX,W SIGY,L

FORMAT(5F17.3) B
WRITE (6,3000) V SIGX,W,SIGY,L
FORMAT(1H1,2HV=F7.3,5X,5HSIGX=,F7.3,5X,2HW= = F7.3,5X,
ISHSIGY=F7.3,5X,2HL=F7.3)

READ (5,1002) NUMIN,NMUN,LL,¥W,INC,NOREP,T
FORMAT(615,F5.3) '

WRITE (6,3002) NUMIN,NMUN,LL WW, INC ,NOREP,T
FORMAT(1X,6HNUMIN=,15,5X,SHNMUN=,15,5X,3HLL= 15,5X,3HWW=,
115,5X,4HINC=,15,5X,6HNOREP=,15,5X,2HT=,F5.3) -

TOT=0. ’
UI=FLOAT(LL/2)9.266*V*T/36

U2=FLOAT(WW/2)

U3=9.266*V*T/(18. ‘(FLOAT(NUMIN 19))}

11=0

CALL RANDN(X,3,U1,SIGX II)

CALL RANDU(XM,3,II)

=6

DO 679 M=1,NOREP

WRITE (6,683) M

FORMAT(1H1,5HTRIAL,I3)

DO 676 K=1,WW,INC

DO 15 J=1,LL,INC

FIELD(J X)=1H
CONTINUE .

- LBOT=0

LCEN=0

RBOT=0

RMID=0

RTOP=0

TCEN=0

LTOP=0

LMID=0

CALL RANDN(X,NUMIN,U1.SIGX,I1)
CALL RANDN(Y,NUMIN,U2,SIGY,II)
NU=NUMIN-1

DO 20 I=1,NU
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80
81

82

17
16
30

2019

124

123

120

X(I+1)=X(I+1) I*U3

DO 30 1=1 NUMIN

CALL RANDU(XM,NMUN,II)

CALL RANDU(YM,NMUN,II)

DO 40 N=1 NMUN

XM(N)=(XM(N)-.5)*L+X(I)

YM(N)=(YM(N)-.5)*W+Y(])

IF (XM(N).GE.0.) IX=IFIX((XM(NH*FLCAT(INC)/2.-1.)/FLOAT(INC))
IF (XM(N).LT.0.) IX=IFIX((XM(N)-FLOAT(INC)/2.-1. )/FLOAT(INC))
XM(N)=FLOAT(IX)*FLOAT(INC)*1.

IF (YM(N).GE.0.) IY=IFIX((YM(N®*FLOAT(INC)/2.-1.)/FLOAT(INC))

~ IF (YM(N).LT.0.) IY=IFIX((YM(N)-FLOAT(INC)/2.-1.)/FLOAT(INC))

YM(N)=FLOAT(IY)*FLOAT(INC)+1.
DO 16 N=1 NMUN

J=IFIX(XM(N))

K=IFIX(YM(N))

'IF(LGT.L.LORJ.LT.1.ORK.GT.WW.ORK.LT.1) GO TO 21

GO TO 17

IF (J.GT.LL.AND K.GT.WW) RTOP=RTOP+1

IF (J.GT.LL.AND K.LT.1) LTOP=LTOP+1

IF (J.LT.1.AND K.LT.1) LBOT=LBOT+1"

IF (J.LT.1.AND K.GT.WW) RBOT=RBOT+1

IF (K.GE.1.AND K.LE.WW) GOTO 80

GO TO 81

IF (J.LT.1) LCEN=LCEN+1

IF (J.GT.LL) TCEN=TCEN+1

GO TO 16

IF (J.GT.1.LAND.J.LE.LL) TO TO 82

GO TO 16

IF (K.L'(.1) LMID=LMID+1

IF (X.GT.WW) RMID=RMID+1

GO TO 16

FIELD(J K)=FIELD(J K)+6H(@@@@@

CONTINUE

CONTINUE
NO=LBOT+LCEN+RBOT+RMID+RTOP+TCEN+LTOP+LMID
NI=NMUN*NUMIN-NO
RP=FLOAT(NI)/FLOAT(NMUN*NUMIN)

WRITE (6,2019) RP

FORMAT(1HO,10X,28HSUBMUNITIONS IN TARGET AREA= [F17.5)
WRITE (6,124) LBOT,RBOT,LTOP,RTOP,TCEN,LCEN,RMID,LMID
FORMAT(1X,5HLBOT=,14,5X,SHRBOT=, K4,5X,SHLTOP=,14,5X,
15SHRTOP=,14,5X,SHTCEN=,14,5X,5SHLCEN=,14,5X,5SHRMID=,14,
25X,SHLMID=,14)

WRITE (6,123) -

FORMAT(1H1,30X,29HRANGE OF MUNITION GOING RIGHT)
DO 117 K=1,WW INC

WRITE (6,120) (FIELD(J K)J=1,LL,INC)

FORMAT(1X,100A1)
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117 CONTINUE
TOT=TOT+RP

N 679 = CONTINUE

TOT=TOT/FLOAT(NOREP)

WRITE (6,234) TOT |
234 - FORMAT(1X,17HMEAN PERCENTAGE= F7.5)

GOTO 1

END

X(1)= 13289. XM 72931.

V=32.375 SIGX=20.000 W=50.000 SIGY=20.000 L=50.000
NUMIN=38 NMUN=32 LL=100 WW=100 INC=3 NOREP=25 T=3.000

TRIAL 1
SUBMUNITION IN TARGET AREA= .90461

LBOT=3 RBOT=0 LTOP=0 RTOP=0 TCOBN =43 BCEN=40 RMID=9 LMID=21

RANGE OF MUNITION GOING RIGHT

C AA A
AABAAA A A A A A
ABA BA A A AAB
BABAAA A AAA B AA
AAB AABAC A A
BAABA AAAA AA
BAABAA ACAA A AA
e~ AAB ABC B A AA AB AAA AA -
AAA AAB ABA CBE BAB BB A BB
AB AB BBAACAABCB AAAA
A ABA BACADA BCBACBA BA BAAB
A C AAB CA AA AAAA
AA AAAAABBA A A
A A AB A B
A ABBAA BBA A A
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APPENDIX B
THEORETICAL TEST FOR THE ANALYTIC SOLUTION
An interesting method of testing the theory of the analytic solution is to cri-;cnk its
limiting value as p approaches zero. Physically, this means that the firing mechanism is
stationary, and that the aiming point does not move. Because only the probability density

function associated with the range coordinatc X of the munition function is dependent upon p,
it will suffice to show that as p approaches zero, the limit of

p/2 | E ~(x4x,_)2
o12 =" XP |- 2”‘2 du,

is the normal probability density function

A"

1 02 | |
N, P E’“’;jz‘ |

with mean equal to zero and standard deviation eqhal to sy.

Using L'Hospital’s rule for indeténninate, limits and the rules of calculus for
calculating the derivatives of integrals,

; p/2 2 p/2 (Xu,)?
Jm [ Exp (.1*_11_) du, - f EXP (____ duy
o 2,2 0 2.2

-ﬁﬁpsx

/
l'l

3 2 2
Exp ({x p/2) ) xp (X P/
2,2 2,2
27 Sy

=

Substituting zero for p into this expression and collecting terms prodﬁcm the desired
result

1 -x2 ) »
The theory behind this portion of the analytic solution is thus mathematically
sound. |
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