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SUMMARY

It h true that re are a vast nuuiber of techniques that van be used in computer
simulation. For validation, e: h of these requires its own individual method of verification. The
compounding of these technivues makes verification of the total simulatiorn often approach the
impossible. However, this d s not eliminate simulation as a very valuable methodulogy for
performing systems ar.alysis. his paper has presented an example of a simulation that can be
shown to produce accurate re ults by verifying its output in two stages. Firs, an analytic solution
is derived for a constrained .rsion of the simulation. Then that portion o the simulation th.
had to be eliminated in order to test the analytic solution is tested separately. By inference, ihis
method of verification can be utilized on much more complicated shn:Katicn models by
subdividing them into simpler models each of which can be verified independently.

PREFACE

The work descried in this report was conducted under Project 1W162116A084,
- Chemical Testing and Assessment Technology. This work was started in June 1970 and

completed in November 1970

Reproduction of this document in whole or in part is prohibited except with
permission of the Commander, Edgewood Arsenal, Attn: SAREA-TS-R, Aberd!cen Proving
Ground, Maryland 21010; h owever, DDC and the National Techical Information Servicz are
authorized to reproduce the document for United States Governr' t purposes.
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AN ILLUTTRATION OF THE VALIDITY OF THE SIMULATION APPROACH
FOR SOLVING PROBLEMS FOR THE EFFECTIVENESS OF

CHEMICAL MUNITION SYSTEMS

CHAPTER 1

I. INTRODUCTION.

It is obvio'is that the most accurate way of deriving the theoretical effectiveness of a
chemical mun;tion sys'.'m is by analytic means. The complicacy of the functioning of many such
systems, however, negates the ability of developing purely mathematicat models in closed form
to represent these systems. The most widely used alternative to the mathematical model in
recent times has been the simulation. Advances in computer technology and the related advent
of computer techniques for approximating both mathematical and physical systems have
provided the analyst with an excellent tool for evaluating the effectiveness of a chemical
munition. Again, however,, a problem has arisen. Unless empirical data are available to validate
simulated results, decisions (which involve large resources of both money and manpower) must
often be made solely from the outputs of unverifiable computer models. At the present timc,
this problem can not be totally resolved. One means of partially circumventing this problem,
however, is by showing the validity of a total simulation of a complex munition system by
subdividing the functioning of the system into subunits, each of which can be verified
independently by either analytic or empirical means. Inferences concerning the validity of the
total simulation model can then be made from the proven verification of these subunits. This
paper develops one such computer simulation model for a weapons system that was analyzed at
Edgewood Arisenal. It then proves the validity of the effectiveneAs outputs of the computer
program by constraining the simulation to a case that can be proven analytically. The verification
of the total simulation is then inferred fromr statistical procedures that are applied to that
portion of the program which was eliminated in order to obtain a subunit to which an analytic
solution existed.

It is hoped that this model will serve as an example to those who might doubt the
ability of complicated simulation models to truly represent the systems they are designed to
emulate. It must b2 noted that the validity of outputs from simulation-type programs is
extremely dependent upon the parameters used as inputs. These inputs are often either empirical
in nature or are outpuLs of other computer, models. In either eve d, if imprecisions are
indigenous to the inputs, inaccuracy will result in the output even if thZ, ost perfect model is
used. This paper is concerned solely with the modeling of the functionin~ of a munition system
and does not attempt to deal with the ability of the analyst to obtain acc late inputs

. .. A.- - The Weapons System.:

The XM99 riot-control rocket, developed by the Department of the Army to
supplement helicopter armament, is used to temporarly disorg.mize and disorient an enemy. It
consists of a warhead mounted on a 2.75-inch folding-fin aircraft rocket. Inside the warhead, 32
wedge-shaped XMI00 canisters are arranged around a fuze-activated central burster. The rocket is
designed to airburst at about 300 feet, thus scattering the submunitions which bum from 8 to
26 seconds after impact. While burning, these submunitions disperse o-chlorobenzylmalonorltrile
(commonly called CS), a white, crystalline, sensoiy irritant, which at medium concentrations
produces immediate lacrimation and respiratory effects.1
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Before the develbpment of the XM99 sy..tem advanced beyond the experimental
stage, it was necessary to ascertain whether the rocket would be able to deliver the desired
amount of chemical agent inside a target. Before additioniJ monetary outlays were made for
production and testing of tht system, an effectiveness study was initiated to evaluate its
accuracy. This study determined that a computer program capable of simulating the impact
patterns produced by the rocket would be the best means of accomplishing this evaluation. The
computer program developed simulates the workings' of the XM99 system, provides the
peru*ntage of target impacts that the system is expected to produce, and includes in its output a
diagram of the simulated impacts.

B. The Background.

In July 1969, in anticipation of a request from the Weapons Development and
Engineering Laboratory, the Systems Analysis Office at Edgewood Arsenal undertook an
effectiveness study of the XM99 system. The intent of this study was to determine the effect
that variations in aircraft speed, target size, and aiming error would have on the accuracy of the
system. To form conclusions concerning this effect, it would'be necessary to find the average
percentage of submunitions that the system would be able to impact inside a specified target
using these variations in system conditions. This percentage was not obtainable from field trials
because the testing of as many variations as would be necessary would require an excessive
outlay of capital. It was evident that a theoretical means would have to be found for obtaining
the desired percentage.

Initially, it was believed that the target impact percentage could be derived by either
of two methods. An analytic solution for the percentage could be formulated using mathematical
models to represent the different parts of the system, or the percentage could be obtained from
impact patterns produced by a computer program capable of simulating the system under
practical conditions. A subsequent analysis of the feasibility of deriving an analytic solution
indicated that considerable difficulty would be encountered if that method were employed.
From this analysis it was found that impacts from the same munition could not be regarded
from a probability viewpoint as independent occurrences. The positions of these impacts were
dependent upon the points at which the submunitions were dispersed (the munition function
points). Using known technology, an analytic solution could be derived for the probability that
any submunition would impact inside the target. Unless the impacts were independent
occurrences, however, this probability did not equal the mean percentage of target impacts. This
fimding proved that the derivation of the analytic solution should not be used to obtain the
desired percentage.

C. - The Methodology.

The development of the simulation can be divided into writing of the computer
program and its subsequent verification. The procedural steps which comprise tie methodology
of each of these parts will be developed and explained. These steps are summslized in the
following paragraphs.

The first consideration to be made in the prepa'ation of the computer program is
the designation of its input and output. The input will consist of those parameters that are
necessary to accurately describe a system that is to be simulated. It will include launcher speed,
target size, aiming error, submunition effects pattern size, trial number, number of munitions per
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trial, number of submunitions per munition, and the number of replications for each set of
system conditions. The basic output will include the target impact diagram, a printout of the
input, and a printout of the percentage of target impacts for each trial. After all trials have been
simulated, the fiwn; mean percentage for the test will be computed and printed.

After the forr:at for each part of this input and output has been designated, each
phase of the weapons system must be represented by a precise mathematical model. There are
three phases of the XM99 system for which these models must be formulated: the shifting of the
aiming point on the target due to the movement of the launcher, the distribution of the
munition function points, and the distribution of the submunitions dispersed by each munition.
The mathematicall models that will emulate these phases are models based upon probability
distributions. In the program, they will be simulated by means of pseudo-random number
generators that will produce th coordinates necessary in each of the phases according to that
distribution to which each phase has been associated.

When the total mathematical model for the system has been assembled, a
micro-flowchart will be prepared to outline the sequence of generdl steps that the program must
contain. Each of its macro-steps will then be broken down into individual mathematical and
logical operations. From these, a micro-flowchart will be prepare! depicting the f:nal logic and
step sequence of the program. Each step from this flowchart will finally be programmed to
produce the finished simulation.

The simulation will be coded into FOR1TRAN V. The version that will be used is
that developed for the UNIVAC 1108 by the Sperry Land C&.poratior. 2

When the simulation has been completed, the resulting submunition patterns must
accurately represent those produced Ly the simulated system. This will be verified by-comparing
the values of the percentage of target impacts obtained from the simulation with the same values
obtained from the analytic solution. The analytic solution that will be derived for this purpose is
the sdme one that was disregarded as the method for obtaining the percentage of target impacts.
It can be used t- verify the simulation if slight restrictions are placed upon the simulated system.

If the submunition impacts are assumed to be independent occurrences, it can be
shown that the probability that any submunition impacts inside the target equals the average
percentage of target impacts over repeated trials. If a system is simulated assuming that each
munition disperses ony one siibmunition, the resulting submunition impacts can be regarded as
independent occurrences. The percentage of target impacts obtained from this restricted
simulation should, therefore, equal the probability obtained from the analytic solution.

The derivation of the analytic solution will be the major step in the verification of
the simulation. After :-', solution has been formulated, the values of the percentages obtained
from it using variations in system conditions will be compared with the same values obtained
from the simulation. Statistical tests will then be utilized to test for significant differences. The
lack of such differences in the two sets of percentages will show that the program is accurately
simulating both the movement of the target aiming point and the dispersion of the munition
finction points.

At this point, one portion of the simulation will remain to be verified. The relative
equality of the two sets of percentages will not prove that the simulation accurately represents
the dispersion of the submunitions by each munition. This portion of the program will have been
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omitted when the assumption was placed upon ti-i system thit there could be only one
submunition per rocket. Toe dispersion will be verified by resting the pseudo-random number
generator, which is used to simulate the dispersion, for r'ness of fit with respect to the
numbe-s it produces. A Chi-quare teat will be used for tiis part of the verification. The results
of thee final tests will be the last proof that is needed to show that the simulation is producing
patterns which accurately reprement those produced by the actual system.

D. Additional Applications for the Simulation.

In addition to the analysis of the XM99 rocket, the simulation can be useful in the
analysis of other weapons systems having the same general characteristics as the XM99 system: a
moving firing mechanism which launches submunitions dispersing projectiles toward a stationary
target. Single-round syst' ms and systems with stationary launchers will become applicable for the
program by merely adjusting the input parameters. This adaptability should prove useful because
similar studies on different types of weapon systems will be required in the future.

In addition to determining the accuracy of a weapons system, the program will be
used in other types of weapons effectiveness studies. Systems can be simulated to determinc the
number of rounds required to place a specified number of subminitions inside a target area. This
information is necessary in studies comparing the effectiveness of different systems. and in
studies determining the number of munitions necessary to ;:ace a designated dosage of chemical
agent over a target. The impact points produced by the pattern simultion can be used in future
programs as the generation points for the chemical agent clouds released by a system. The
diffusion and travel- of these clouds over various system conditions would then be simulated, and
analyses of the resulting dosages of chemical agent would furnish information concerning the
casualty effects and the area coverage that the system can be expected to produce.

CHAPTER 2

If. THE ASSUMPTONS.

The development of the simulation and the derivation of the analytic solution each
require that the XM99 system be linked to a mathematical model. This model must be such that
its compone, ,s can be precisely emulated by programming methods to produce a computer
progmim that accurately imitates the workings of the weapons system. As stated in the first
c;.apter, the parts of the system that must be incorporated into the model include: the
movement of the target aiming point caused by the motion of the launcher, the distribution of
the munition function points, and the dispersion of the submunitions by each munition. Before
each of these are dealt w'th, however, the system must be oriented to a frame of reference so
that a clear descripLion can be given as to what is being done.

A. The Frame of Reference.

The target will be assumed to be centered at the origin of a Cartesian coordinate
system. The x-axis will extend in its negative direction from the center of the target through the
launcher. The positive direction of the x-exis away from the launcher will be referred to in this
paper as the direction of the range. The direction which is perper.dicular to the range will be
designated the direction of deflection.
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The target will be assumed to be rectangular. Its sides will lie parallel to the axes of
the coordinate system. The length of the rectangle in the direction of the range will be referred
to as LL. Its width in the direction of deflection will be WW.

Using this coordinate system, the assumptions cai now b made for the formulation
of the mathematical model. Each of the three parts of the system which must be incorporated
into this model will be indi, idually dealt with in the follcwing paragraphs.

B. The Aiming Point.

While it is firing its munitions, the launcher travels a distance p toward the center of
the target. This motion causes the abscissa of the aiming point, which lies inside the target, to
also shift a distance p in the positive direction. To simulate this motion, the program will place
the initial aiming point at a distance p/2 in front of the target center on the negative x-axis.
After the first munition has been launched, the aiming point for the next munition will shift a
distance. beyond the first aiming point equal to that which the'launcher has moved between the
two firings. This procedure will be repeated for each subsequent munition launching. Since taie
launcher is considered to fire its munitions at equal time intervals and is assumed to be r,;oving
at a constant velocity, the subsequent aiming points will lie at equal intervals along the x-axis.
When the final munition is released, the aiming point will lie on the axis, a distance p/2 beyond
the center of the target.

In the simulation, the movement of the aiming point will be imitated hy physically
adding the incremental distances travelcd by the launcher to each successive range function point
coordinate. In the analytic solution, the coordinates of the aiming point will be considered to be
distributed according to a uniform distribution. This distribution has a probability density
function j such thit

j =i/p

where p is the total distance traveled by the launcher while firing its munitions. The interval over
which this distribution will occur is the interval from p/2 to -p/2 on the x-axis.

C. The Munition Function Points.

The munition function points for each trial will be assumed to be distributed
according to a normal distribution. In the computer program the function point coordinates will
be generated by a pseudo-random number generator that will produce a coordinate when given
the specified mean and standard deviation. 3 The mean for the placement of each rarge
coordinate will be the aiming point for the munition. It will be designated ux. The mean for
each deflection coordinate will be assumed to be zero. The standard deviatiens for the two
normal distributions will be constant over each firing and will b! referred to as sx in the
direction of the range and as sy in the direction of deflection. These deviations will correspond
to the aiming errors associated with the system in each direction.

The analytic solution requires that a mathematical formula be found to represent
this dispersion. According to the preceding paragraph, it was assumed that the probability
density for the function point coordinates in the direction of the range is the normal density
function
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EXP
...... J2 sx

where x is 'he random variable denoting these coordinates. Similarly, the probability density
function for the random variable y, which denotes the coordinates of the function points i the
direction of deflection, is the normal density

I -
EXP( 2

The independence of the variables x and y permits the joint probability density
function of both variables to be expressed as the multiple of their respctive densities.

2(sysx2x 2  2)

This is the expression that will bc. used in the analytic solution to emulate the dispersion of the

function points.

D. The Submunitions.

At its function point, the munition disperses its submunitions over the target. These
submunitions are assumed to impact within a rectangular effects area that is centered at the
munition function point. The sides of the effects rctangle are parallel to the sides of the target
and, thus to the coordinate axes. The length of the effects area in the direction of the range will
be rtferred to as L, and its width in the direction of deflection as W.

The submunition impacts will be distributed within the rectangle according to a
uniform distribution. The joint probability density function for the positioning of the
sibmuni' .ins is thus

(W L)

This formula does not take into account anything tha. has previously happened within the
system. The mathematical combination of this formula with those of the other parts of the

• system, using principles of dependence and conditional probability, will be dealt with when the
analytic solution is derved. .

S... In the computer simulation, the submunition coordinates will be dispersed over the
effects rectangle by means of a pseudo-random number generator. This generator produces
numbers according to a uniform distribution when it is given the interval over which that
d'F'ribution lies.3 The abscissa of each submunition impact will be generated on an interval lying
in the direction of the range. This inte.val is centered at the munition function point and has a
length equal to that of the effects rectangle in the x direction. TI-Ms length has. been previously
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designated L. The ordinate will be generated on an interval lying in the direction of deflection. It
is also centered at the function point and has a length equal to W, the length of the effects
rectangle in the y direction.

E. Summary.

These are the basic assumptions that will be used in the formulation of the
computer simulation program and the analytic solution. There are additional assumptions and
alterations that must be made to the system in order to simplify its programming. The,;e,
however, will not affect the mathematical models which emulate the system; they will be
explained as they occur in the development of the prop-am.

CHAPTER 3

III. THE SIMULATION.

This chapter deals with the development of the computer program that will simulate
the XM99 system. To aid in explaining the theory behind the steps that will be incorporated
into the simulation, the program variables will be referred to in this chapter by the mnemonic
names that will be used to describe them in the program. A table of these mnemonic names and
their meanings appears later in this chapter. A copy of the finished program and its output
appear in appendix A.

A. The Inpdt.

There are several conditions associated with each trial that affect the final
distribution of submunition impacts. The variables which represent these conditions must be
consolidated into the program so that they will affect the computer results in a similar manner
to the way the conditions affect the actual munition firing. These variables make up the major
portion of the input to the program. T y are listed alphabetically in table I according to their
mnemonic names. Included in this tabhe is a brief descripticn of the meaning or use of e. n
variable and a separate listing of its units. Also included are variables which hay. !:ea added to
the input during proS.. -'ming. These variables either activate the random number of generators
used by the program or aid in converting the target area to a grid system.

B. The Output.

The first portion of the program output will display the conditions under which
each system is being simulated. These conditions remain constant over each test, and thus only
their initial printout is n~cessary. The remaining output will be printed for each trial. It will
consist of the trial number, the patern diagram, the regional totals, and the trial impact
percentage.

The patteni diagram will display the submunition impacts which occur inside the
target. It will differentiate between points at which o- e submunition has landed and points at
which more than one landing has occurred. For points receiving multiple impacts, it will display
the number of landings at each point.
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Tabie I. Input Variables

Variable Description Units

DT The distance between grid lines in both directions across the target Meters

L The length of the effects rectangle in the direction of the range Meters

LL The length of the target rectangle in the direction of the range Meters

NMUN The number of submunitions to be dispersed by each munition

NOREP The number of trials to be replicated per test using the same
system conditions

NUMIN The number of munitions to be fired per trial

SIGX The standard deviation of the distribution of the function point Meters
coordinates in the direction of the range. This corresponds to the
ainuing error associated with the system.

SIGY The standard deviation of the distribution of the function point Meters
coordinates in the direction of deflection. This corresponds to the
aiming error assoicated with the system.

T The time interval between the first munition fring and the last Seconds

V The velocity of the launcher in the direction of the range Knots

W The width of the effects rectangle in the direction of deflection Meters

WW The width of the target rectangle in the direction of deflection Meters

X( I) The positive integer primer for the normal p-eudo-random number
. generator

XM(l) The positive integer primer for the uniform pseudo-random number
generator

12



For impacts outside the target, the exact position of each impact will not be
printed. The relative locations of these impacts will be shown by dividing the area surrr-nding
the target into zones. The total ntmber of impacts that occur in each zone will then be listed to
indicate the relative positions of submunitions missing the target.

In order to eliminate the enormous amount of output produced by a large number
of trials, the printing of the impact diagrams and of other trial information, except for the initial
printirg of the input conditions, will be suppressible by removing from tle card deck the four
necessary printout instruction' cards. This modification should decrease turn around time to a
substartial degree as it will eliminate much of the time that is wasted by the slowneM of
peripheral output equipment. In this situation it is also inconvenient to compute by hand the
average percentage or target impacts over all trials. The program will thus compute and print this
final mean percentage after all simulated trials have been completed.

As fntrtioned previously, a sample of the program output appears in appendix A.

C. TMw Impact Zones.

The area outside the target is divided into zones into which the submunitions
missing the target fall. These zones are formed by extending the sides of the target rectangle
infinitely in all directions. This produces eight zones Which are in figure 1.

RBOT RMID RTOP

TARGET

LCEN TCEN

RANGE-4I)

LBOT LMID LTOP

Figure 1. Diagram of the Impact Zones

D. The Programming Model

As discussed in chapter 2, there are three phases of the workings of the XM99
system that must be emulated by mathematical and programming models. The frst of Ltese is
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:he effect of the movement of the launcher oa the target aiming point. If the launcher moves a
distance p during the time period in which it launches NUMIN munitions, the aiming pclint
inside the target will shift along the x-exis from a distance p/2 In front of the target center to a
distance p/2 in back of the center. This movement will occur in increments of p/(NUMIN-l).
Each shifted aiming point will subsequently serve as the mean for the normal distribution
according to which the range coordinate of the munition function point is dispersed.

The actual fuing of the munition is simulated with the use of a pseudo-random
number generator. This generator produces a set of pseudo-random numbers which follow a
normal distribution with specified mean and standard deviation. 3 Two sets of NUMIN random
numbers are generated. One set is used to produce the abscissas of the munition function points,
and the other et, the ordinates. The following explanation describes the simulation of one
munition and one of its submunitions. Any number of munitions and submunitions can be
simulated by merely repeating the following procedure.

The normal pseudo-random number generator produces a number RX for each
munition using a mean of -p/ 2 . RX, when transformed, becomes the range coordinate X of the
munition function point. The necessary transformation entails adding RX to the distance the
launcher has moved prior to the firing of the munition and subsequent to the firing of the first
munition. If the munition is the ith munition launched

X, = RX + (i-I) [p/(NUMIN-)J.

This transformation produces the range coordinate of the munition function point. Because the
mean of the normal distribution, according to which the deflection coordinates of the function
points are dispersed, has been assumed to be zero, the deflection coordinate Y is equal to a
second normal pseudo-random number which the generator has produced using a mean of zero.

The coordinates of the munition function point have now been determined.
Centered at this point is a rectangular effects area over which the submunition impacts are
uniformly dispersed. The means of simulating this dispersion is a pseudo-random number
generator which produces two sets of NMUN numbers for each munition. These nun'bzrs are
uniformly distributed on the interval (0,1).3

For each submunition,' the generator produces two numbers, RUX and RUY. They
are transformed into the impact coordinates in the directions of the range and deflection,
respectively. Because the effects pattern is centered at the munition function point, each
generated number must first have .5 subtracted from it to proJuce a coordinate that can lie on
either side of the effects pattern center. The numbers are then adjusted to the size of the effects

. . rectangle by multiplying each by the length of the rectangle in its respective direction. The
expression for the submunition impact range coordinate is

Abscissa = (RUX-.5)L + X.

Similarly, for the deflection coordinate

Ordinate = (RU-.5)W + Y.

In these equations, X and Y are the respectivt coordinates of the munition function point.
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The entire impact pattern is generated by simply repeating the above procedure for
the desired n'amber of munitions and wbmunitions.

E. The Progm

It is quite difficult to plot individually submunitions which impact very close to one
another. To remedy this situation, the simulation was modified so that impacts occurring within
a close distance of each other will be considered to occur at the same point. This modification
entails forming the target rectangle into a grid. In the direction of the range, lines are drawn
perpendicular to the x-axis across the target, a constant interval apart.. The distance between the
grid lines will be an input variable and will depend .upon the size of the target. It will generally
be less than 10 meters. The range coordinate of each impact point now assumes the value of the
grid line nearest it. For example, if grid ines were drawn at 3 and 6 meters on the coordinate
axis, and the range coordLate of an impact is 4.4, the cocrdix -e would assume the value 3.
This same procedure is used in the direction of deflection so that a checkerboard pattern is
formed on which the impacts lie at the intersections of the horizontal and vertical grid lines. A
nicely spaced pattern, which can be neatly printed, is the resilt.

In the output diagram, the impact points will be displayed in alphanumeric
characters. This alleviates the confusion that would arise if 10 or more impacts should be located
at one grid intersection. For example, if II impacts occurred at a single grid point, using
numerals to represent the number of impacts at a point, confusion would exist as to whether
there were two adjacent points with one impact each or one point with 11 impacts. This will be
especially helpful in trials where a large target allows no blank spaces between intersections. It
will permit large pattern diagrams to be printed 'on one computer sheet because each space on
the sheet can represent one intersection on the target grid. Grid intersections at which no impacts
occur will be displayed as blank spaces. Only the impacts inside the target will be displayed by
the target diagram. Outside impacts will appLoir in their regional totals.

The next step in the development of the simulation program is the formulation of a
macro-flowchart.. This flowchart is presented in figure 2. The purpose of the flowchart is to
outline. the general sequence of steps that will occur within the program.

Each of the steps in the macro-flowchart is next broken down into mathematical
and logical operations which can be directly coded into the computer language. A
micro-flowchart is prepared to show the sequence of these operations. This flowchart is
presented in figure 3. In this chart, the reading of input and the printing of output are not
displayed in detail as they have previously been explained.

Table I1 lists all variables used in the simulation, along with a brief description of
their use and meaning. The variables are pres. nted in approximately the order in which they will
appear in the program. As the input variables have already been presented in table I, they are
omitted from the Est.

The final coding of the program can be observed in appendix A along with a copy
of the program output.
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Table ff. Program Variables

Variable Description

TOT The mean percentage of target impacts for the test

UI The value of the mean used to normally generate the munition
function point range coordinates

U2 The value of the mean used to normally generate the munition
tinction point deflection coordinates

U3 The distanct in meters that the launcher travels between successive

munition firings

W . An array used to store the range function point coordinates

YM An array used to store the deflection function point coordinates

II Integer variable used by the random number generators to make
sure that the last number produced will be used as the next prime

M Integer index which specifies the trial number

IJK,N Integers used as array indexes

FIELD Two-dimensional integer array whce elements represent the
possible impact points inside the target

LBOT
LCEN
RBOT
RMID nes outside the target in which impacts car occur
RTOP
TCEN
LTOP
LMID

_NU__ Integer index equal to NUMIN-I

IX,IY Variables used to shift from coordinates to the grid system

NONI Total impacts outside and inside the target

IRP The percentage of target impacts for the trial

18.



CHAFrER 4

/ 'I IV. THE ANALYTIC SOLUTION.

To siow the validity of the im'.lated impact patterns, a comparison will now be
made between the mean percertage of target impacts produced by repeated trials of the
simulation and the same percentage derived analytically. The analytic pe-centzF will be
calculated by inte3rating over the target limits the joint probability densty function for
submunition impact position. The result of this Intgpatlon will be the probAility that any
individual submunition lands inside the target. In the following paragraph, this probability is
proven mathematically to be identical to the desired analytic percentage.

If each submumtion impact is treated as the result of an independent repeated trial,
the probability of impact incidence inside the target can be computed using a binomial
distribution. There are tio states of nature for each submunition firing: hitting the target and
missing it. The probability of hitting the target is P, which will have been found analytically, and
the probability of missing it is I-P. The total number of target impacts in n repeated trials will
be simply the mean of a binomial distribution with n observations and probability P for an
individual target impact. The value of this mean is n.P.4 The mean percentage of submunitions
that land inside the target area per trial is thus the total number of target :lts over all trials
divided by the number of trials

mean percentage (n- PS n

A. The Density Function.

The joint probability density function for wbmunitions impact position will be
designated F(U,V). U is the random variable denoting the range coordinate of the submunition
impact point, and V is the random variable denoting the coordinate in the direction of the
deflection.

The coordinates of the submunition impacts are dependent upon the coordinates of
the munition function point. F(UV) is thus a marginal probability density produced by
integrating out the random variables for mumition function point position from the total joint
density

F(U,V) = f f f(U,VX,Y)dX dY

In this expression, X and Y are random variables denoting the range and deflection coordinates,
respectively, of the function point.

It has been assumed that X and Y are distributed normally with means ux and zero,
respectiv-ly. As ux is itself a random variable on which X is dependent, the above expression for
F(U,V) must be extended to include ux.Thus

F(U,V) = f f f f(U,V,X,Y,ux)dX dY dux
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Using a theorem of conditional probability,4 the expression for the density function

f becomes

f(U,VX,Y,ux) = h(U,WX,Y,u x ) •(XY,ux)

In this equation, g(X,Y,u x) is the joint probability density function for the munition function
point coordinates and the mean o " X, and h(U,V/XY,ux) is the joint conditional densitV
function for submunition impact position given the munition function point potition and the
mean of X.

Reapplying the sume theorem to the joint density g .

g(X,Y,ux) = d(XY/ux) J(ux)

Here, d(X,Y/u x ) is the joint conditional density function for the position of tke munition
function point given the mean of X, and j(uN) is the probability density function for the mean
of X.

Because of the independence of the random variables X and Y, d can be exprsd
as the product of two simpler density functions

d(X,Yu), - d(X/u.) • e(Y)

where d(X/u x ) is the conditional density function of X given ux, and e(Y) is the density
function for the random variable Y.

Assembling the components of the joint probability function yields the equation for
f in its final form

f(U,VXY,ux) = h(U,VIXY,ux) d(X/ux) eY) * j(ux)

Each of the individual functions on the right side of this equation must now be represented by a
mathematical model. These models are derived in the following paragraphs.

The submuntion impacts have been assumed to be dispersed according to a uniform
distribution within an effects rectangle of length L and width W. The mathematical formula for
the joint conditional density function h is thus

1
(L. W)

It has also been assumed that the coordinates of the munition function points are
distributed normally with mean ux in the direction of the range and mean zero in the direction
of deflection. The conditional density function d is thus the normal density function with mean
ux and standard deviation sx. Similarly, the probability density function e is the normal density
function with mean zero and standard deviation sy. These expressions are
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= fs~EXP (~ 2
d( X/ux)I 

X 'X u)2
and

e(Y) -y2P~I~
J7 S EXP V-- )

Letting p represent the distance the fring mechanism moves during the time period
in which it launches its munitions, the range coordinate of the mean of X also shifts a distance
p. As it is assumed that the fring mechanism moves at constant velocity and launches its
munitions at equal time intervals, the probability density function j for the random variable ux is
the uniform density function

li/p

The components of the mathematical formula for f can now be assembled

f(U,V,XY,uX) = - (X u)
pLW 2 &x r s' 2A2 2SY2

This joint density function must next be integrated with respect to each of the five random

variables. The result of this integration will be P, the desired percentage.

B. The Intekrtion.

The joint density function f is first integrated with respect to ux , the range
coordinate of the aiming point. This integration will yield the joint marginal density of U, V, X,
and Y. The limits for the integration are p/2 and -p/2 where p is the total distance traveled by
the launcher durng its fring time. As in the simulation model, the target is centered at the
origin of a Cartesian coordinate system. This and subsequent integrations use the same
coordinate system for the determination of limits.

The integration with respect to ux is simplified by the fact that X is the only
random variable dependent on ux . The joint marginal density of U, V, X, and Y is thus

G(U,VXY) = f f(U,V,X,Y,u x ) dux

which has been found to be

I I /-y 2 \ pIZ_ I 1-(X-u) 2 \
pLl,/ EXP 2 , -pJ/2 r EXP duX
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If everything outsde the int gal is r.garded as a constant and the transformations
c X-ux and dc = -dux are performed, the C.pession for G becomes

I s -p/2+X - dc
K - - EXP(A)d

; s. f p/2+X 2

Reversing the limits of integration and separating the integral into the difference of two integrals
then yields

[f-.~ c2 X-p12- t
........ .... I..-7 + /2 EXP dIc - f -pl EXP dc]

If a transformation is now made to G using the variable A = c/(r2 sx)

:: :., EXP (-A2) f/A - ,

This expression can be evaluated by using the error function evaluated at its upper limit. Tha
error function is defined and will be referred to as

/(X- p/2 2 /"X-p2

ERF (X 2) 2 JO4.p/2 EXP(-t 2 ) dt5

0

The mathematical evaluation of the error function will be deferred until the final solution for P

has been derived. Until that time, the above integral will simply be referred to as ERF (.

Using the error function, the expression for G takes on its final form

2 Jf_,___, _ - R ' /
G(U,V,X,Y) = 2pL ./2\ ,/) -y R2Sy

The next step in the derivation of P is the calculation of F(UV), the joint marginal
density of U and V. F is derived by integrating G(U,V,X,Y) over the variables X and Y. X and Y
are independent random variables. This integration thus reduces to the product of two separate
integrations

.. f , EXP dY - f - ERFx _I J dX

22



These two integrals will be evaluated individually.

Because the munition function point is the center of the effects rectangle in which
the submunitions are uniformly dispersed, the limits for the integration with respect to X are
U-IU2andU + L/2 where L is the ler,th of the effects rectangle in the direction of the range.
Similarly, the limits for the integration with respect to Y are V-W/2 and V + W/2 where W is the
width of the rectangle in the direction of deflection.

Separated from the total integration of G, the expression for the integration with
respect to Y is

V+W/2 I EXP - dY

V-W/2 wJ12 s ,x (2y) d

Making the substitution A = Y/(f2 sy)' this integral also reverts to a form of the error function

[ERF ERF V-W12F2 v \-- ) -i SRy I

The integral th respect to X is fmt separated into the difference of two integrals

U + L12ER (x_ + .d/u + L/2 (X.p,2 d
ERF p/ ERF-dXU -L/2 (, +42X

U-s/ fj - .12 S.J

When a transformation is made to each integrl using the variables Q = (X + p/2) / (f2 sx) and
R = (X-p/2) I (f sx), the expression for the integration becomes

U + L/2 + p/2 U +,L/2- p/2
J1sx

r2 SXERF(Q)tIQ fEFR)dR]
U-L/2 4+ y12 U -p/2 /

Lfr x sx

Using the relationship

f A R F ( dt t A E R F ( A ) - ( l e
"

A 2 )
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this sum is evaluated as

U+ L/2 + p/1 + L2 +I p " U + L/+p/2 )2]

U- L/2+ p12)E - L/2+p/2) I [-"((U 
- ,L +22)]

(Ui/In ) ERF ( nii.P2)x [1 EXP 2X

The f'mal expission for the integration with t to X is produced Dy adding together like
terms•

(9 ((

U /2 P2 U L/2+p/2 U-/+ 2 U-/p

,E+ , + E

+ ( +/ 2 + 2 U'F-L2 F/2) " 1 L/2-p/27--FL/2- 
2

47f; I,- VX /s

[E+LX+p/+ L/22 + EP/2 ((U-L/2 + p/12) EXP L/2 +-p/2

EXP (L2 -
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AU components of the integration of G have been derived. Assembling therm yields
the final expression for F(U,V)

[- lv+ /V /\ U+ L/2 + p/2
4pLW 1ERF ERF J-/,)J 2s

4 W ERF (U 12P2 Ul/2) &~(-J2P ) ] (n L/-p 2

.ERF U L2 P /2 + ( IJP/2 ERF (U-L2+ / L /2 -p/

U L L12 - EXP ( -- 2 EXP -LP

+ER + ERS2 F2 J2x

+ EXP (-(U- L/2 -p/2)

The final step in the derivation of the analytic percentage is the integration of
F(U,V). F(U,V) can most easily be integrated if it is expressed as the product of two separate
integrals. This can be done because of the independence of the random variables U and V. The
integration then takes the form

f f F(U),V)dUdV f K f g(V)dV f h(U)dU

F is being integrated over the target which is centered at the origin. The limits of
integration are thus half the target dimensions in the directions of the co'responding variMIes.
The length of the target in the direction of the range is LL; therefore, the limits of integr:,'io;:

with respect to the variable U are -LL,2 and LL/2. Similarly, the limits fcr V are -WW," an,
WW/2 where WW is the width of the target in the direction of deflection.

The integration of g(V) will be done first. From the previous integration
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WW/2

f[(vRd r !2 ERF W dV

-Ww/2

The form of this integral is first altered so that it is expressed as the difference cf two integrals. A
transformation i, then made to the arguments of the error functions using the variables

AW/2 V - W/2

The integral then becomes

[ (eWW+ W (2 2s) WW W.w)/(2 2s)
Jr2 s ERF(A)dA -fERF(B)dB

Using the previously stated method for integrating the eAror function, the integral of
g(V) is now expressed as

,- [ww +w W\ ~w I 1 X (wwI) 2  W-wJ2 s r2j2jsy) ERF + W) XP /~2~y

*ERF (+ww ±I EX (www)2J (WW W- ERE
(wA S T) V 8sy2  2J 2 2 SY/22

F-A) 2= -E (-WW-W)

I EXP +(W ERF)

The final expression for the, integral is achieved by combining terms. Furthersimplification is permitted by the relationship

ERF(-A) =-ERF(A)
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The final equation is

f (V)dY (WW W) ERF WW+W)-(W -WW) ERF(1WW-)

+ rEXP ( EXP (

The second half of the integration of F(U,V) entils the integration of h(U). The
expression for this integration is

JU + L/2 + U+ L/2 + p/- L/2 + / p(U-L /2/

-LL/2 r2 X 2sxS

(U+L/2. p/2) ER (U+L2- p/2.) U -..L2-P/2 ERF (U-L/2p/2

+.rEXP (-(U+L/2 -p/2)2 ) -(U-L/2+ p!2)2,2 - L/2 -p/2

4 2 / . 2s,

+ EXP P - L2 -P /2)2" +

The integral is first separated into the mn of eight integrals. When the following
transformations are performed

U + L/2 + p/2, B U + z/2- L/2, U + L/2- p2,andD U -L/2 -p/2,
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*the expression for the integration of h(U) becomes

LL +L +p LL+ p- Lf 2 F2fL2rL x
r2 sxAERF(A)dA r xEFBd

LL+ L-p LL +Lp-

LL +L-p JLL -L-p

[2 SXCERF(C)dC tJ sxDERF(fl)dD

LL+ L+ pLL-L+p
f2 F2sx2 7sfX EXP(-A 2)dA -] EXCp(-B 2)dB

4w 'LL + L +p -LL -L +p
2 4-1~ 22 sx

LL+L-p LL-L-p
2 2 sx J-jEXP(C2)d+j f-EXP(-D 2)dD

f*LL+L-p -LL -L- p
2JSX 4
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Th- firt four interals in this expremion are evaluated using integration by parts. A
model for this nethod is

f odt - st - f tds

The relationshi) of this model and the first integ"al in the expression for the integration of h(U)
is such that th ERF(A) is associated with the s and the A with the dt. A similar association is
used in each o the other three integrals being evaluated. The expression for these four integrals
now becomes

LL+L+p LL+L+p

2 A2ERF(A) A2 EXP(-A 2 )dA

-LL + p + L -LL+L+p

2/2 x  2 J7 sx

LL-L+p LL-L +p2 r2- axf.2 47 sx
f2 SE + )'2 B2EXP(B2)dB

-_2RF()B. pLL L +p 1-

2 ~~ ~ -LLLsp-

LL+L-p LL+L-p
2 Isx 2 x

C2 ERF(C) 2 C2 EXP(-C 2 )dC
2 -LL+L-p - -.

2,n sx  77Thx7

LL-L-p LL-L-p

27 2 f22 2
+DERF(D) [D' 2 EXP(-D 2 )dD

2 -LL-L-p -LL-L-p
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In this expression, for each term in the form

2fA M2

2

there exists a term in the form

2 -A N2
- " E X P ( N 2 )d

which is equal in value. Thus, the two terms add and the integi...on of the terms not containing
the error function reduces to

LL+L+p LL-L+p

2 2sx 2 J2 2 x- A2EXP(.A 2)dA + A2EXP(.A 2)dA
- LL+L+p - -L+p

2d2sx  2f]sx

This expression is transformed using the variable F = A2

(LL + L + p) 2  (LL -L + p) 2

8,2 1. 8s,2 _
._A -f L ) F2EXP(-F)dF + f LL F EXP(-F)dF

(_LL+ L +p) 2  (- L-+ p)2

8sx 2  8SX2

This two-term sm can be evaluated when it is recognized that the integrals are aform of the probability integral of the Chi-square distribution. This probability integral is
expressed in the form

Pr(x 2/v) 1 2 v t

2(v/t) r(v/2) " T e dt
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where v is the number of degrees of freedom.4 When a transformation is made to Pr(x 2 /v) usng
the variable R = t/2, the probability Integral becomes

x2
Pr(x2/v) = . EXP(-R)dR

• 0

Using this relationship, the expression for the portion of h(U) that is being evaluated becomes

(3/2) Pr((LL+L+p) 2 /3) -+ 3)Pr - " ./3) Pt (LLL+P) 2 /3)

4aX2 4a24x

- p)2 /3)]

The transformation F A2 introduces a complication into the integration. It deletes
the fact that A can be negative. To compensate for this omission, the sign of each Chi-square
term must be changed if.the value of A contained in its argument is negative. For example, if
(-LL + L + p) is negative, the sign in front of the Chi-square term having that expression in its
argument will change from plus to minus. To show this condition in the final expressions, both a
plus and a minus will be placed in front of the Chiquare ts to show that th.ir sign depends
upon the sign of the A portion of their argument

The values of the Chi-square probabilities are obtainable in most books of
mathematical tables. Their exact evaluation will be deferred until the final solution is derived and
then will be used only when comparing the analytically derived values against similar simulated
ones. The Chi-square probability functions will be raferred to throughout the remainder of this
paper as Pr(.

When the limits of the remaining terms in themtegration by parts are substituted in
and like term ae collected, the final expression for the fist portion of the integration of h(U)results

,r2 . +... (LL +L 7-E iLL +L+ p)

2 x\ ax 2 r2 2JP)

'LL+p\2ER L-L+p) + (-LL-L+P)2 ERF CLLL+P)
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r/2) (LL + - r "'LL+Lp) 3

t±Pr (LL- L + p)2 /3) 1 Pr (-LL-L + p) 31

4sX2 4/ x24

The remaining four terms in the integration of h(U) can be evaluated using the
.... . ... .. .re ationship

2 ERF(A) = EXP(-t2 )de

They become
SX [ER 2LL s +- ERF (-LL + .-pERF 2(LL X PL + ERF 2-LL - L

[ (LL+L-P -LLL+ (LL Lp) (-LL - L P

ERF ( +.,) ERF ( 2,E+..P) ERLF - ERF L )2 JTS"s 2 r 2 sx ]

Combining terms reduces this expression to its final form

T2 /LL.LER\ 1-FLL + L + E /LL -L + p + /F-LL-L+pl

.2 nsxx k2I7sx 2+R 27 ,

The two halves of the integration are now assembled to yield the final expression
for h(U)

sxIL +L p ERF (LL+L+p) (.LL-L+P)2 tQ.LL +L +p)

(LL'L+p) 2 ERF /LL - +  2 ERF -LL -L'L++)
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I 2r (3/2) ((U + L +p), 3L+L+p /+ LPr ~ 4,2 13 P 2 -/

( r(LL- Li +p)2 _/3) P (-EL -L + p) 2 i3)]

+17 x [E ERF -ERF (j7-- + ERF 2ILP)

Every component of the integration of F (UN) has been derived. The integral had

been in the form

f f F(U,V)dUdV = K I XV)dV f h(U)dU

Substituting the constant and the two integrals into the left zide of the equation yields the final
expresion for the analytic solution P

2 [ + , W) ERF WW+W) EREw-ww

+ .isy 2,n sy2 ( - WW) jj2'~ [L4L+Py

4"/ k \ 8sy2  / gs2 //jL\2/rsxP /
2 E /' 7)) LL L + p 2

(L L _+p ] - (-IT22 s P) sx

ERF 2JF _Zs k.F)

+ (-LL-L+ p2 ERF -LL - L+ + F(32) ( L "+p)2 /3)
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((LL -L + p)2 13 (-LL +Lr) 1)* (LL p)2  1 3)]

+ ERF LL+L p - ERF (LL+L+ p E2( L -2)+p + ERF (-LL + )

C. Smnmary.

The probability that a submunition impacts inside a target area has been derived-
analytically. It has been shown mathematically that this probability equals the mean percentage
of target impacts during any set of trials. The purpose of deriving the analytic solution was to
verify the accuracy of the simulation. To accomplish this, a comparison must now be made
between the results obtained from the substitution of similar parameters into each solution. A
proof to substantiate a portion of the theory upon which the analytic solution was derived is
presented in appendix B. This proof tests the validity of the solution at one of its boundary,
conditions.

CHAPTER S

V. SUMMARY AND CONCLUSIONS.

A. Comparbons.

The comparison will now be made between percertages derived from the analytic
solution and those obtained from the simulation. Each simulated mean percentage is the result of
1000 replicated trials with the simulation. Twenty-six different cases were compared using
realistic extremes of system conditions. The compared values are listed in table Il.

For each pair of percentages, the null hypothesis being tested is that the simulated
percentage u equals the analytic percentage uo.'A large sample test can be used when dealing
with a population that is not necessarily normal, but which has a finite variance. The variance of
the population is approximated by s, the sample variance4

, 1ooo (u, _42

i n-I

The null hypothesis will be tested against the composite alternative u * uo using the best critical
region of size a, z > za/2 where
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For this test, a, the probability of committing a type I error, will equal .05. The resulting za/2
value is 1.96.4

The z values for the 26 trials are presented in table IV. The fact that all but four of
these values am lea than 1.96 means that the null hypothesis can not be rejected for 22 of the
26 cases.

An analysis of the four cases for which the null hypothesis is rejected fimds that
each of the four are characterized by a very large p. This implies that inaccuracy could be caused
by a fault in the uniform pseudo-random number generator. In each of the four trials, the
distance the launcher travels while firing is much greater than the target length in the direction
of the range. If the generator is producing numbers within the interval (0,1) which have a mean
much greater than .5, the large p could cause an excessive number of submunitions to impact
around die periphery of the target rectangles and thus land in front of or beyond the target
Thus, hypothesis is further supported by the fact that all four cases possessed a simulated

- percentage that was smaller than the respective analytic oae.

A subsequent analysis was made on the uniform generator. Two thousand numbers
were generated using the same primer that was used in the simulation. The resulting
pseudo-random numbers had a mean of .5112 and a variance of .08421. When the large sample
test was run on these numbers using a two-sided alternative, the resulting z value was 1.713. This
value is not Wigh enough to reject the null hypothesis that the mean equals .5, but it is
sufficiently ,close to 1.96 (the z value for a = .05) so that an excess of coordinates could occur
outside the target when p is very large with respect to the target dimension in the direction of
the range.

It appears that it is more than coincidence that the largest differences between pairs
of percentages occur at these same four trials. There are two other trials (4 and 13) for which p
is large; however, they both also possess large sx's. This large sx would cause fewer submunitions
to land inside the target, thus reducing the obvious effect of the large p. The z values for these
cases were still greater than !.

The purpose of the effectiveness study was to ascertain the percentage of
submunitions that the XM99 system would be able to impact inside a specified target using
variations in system conditions. Since not one difference between compared percentages was
greater than 1%, it can be concluded that the simulation accurately emulates the dispersion of
the munition function points and the movement of the launcher.

To further substantiate the preceding conclusion, a second test will be applied to the
pairs of percentages. The sign test is a statistical test commonly used to compare pairs of
observations. For the test to be applicable, two conditions must exist. Each of the two
observations of a given pair must be made under similar conditions, and different pairs must be
observed under different conditions. The test is based upon the signs of the differences between
each two observations. Differences that are zero are excluded and the sample size is reduced. The
null hypothesis will be rejected when the number of positive and negative signs differ
significantly from equality. 7
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Table IV. Statistical Test Value,% for Trial Comparison

Trial Sign vrac au
No. test Vrac au

I + 0.00193 1.022
2 + .00265 1.062

3 ___________+____ .00379 5.003

4 + .00605 1.057
5 + .00421 2.529

6 + .00314 .203
7 Deleted .00000 .000
8 Deleted .00000 .000
9 + .00321 1.558

10 + .00642 .904

I1 .00620 .060

12 + .00273 .684
13 -. 00345 .732
14 + .00559 .271
15 .00577 .375
16 + .00516 4.248

*17 -. 00585 .232
*18 -. 00583 .435

19 .00284 1.139
20 +.00160 .032
21 -. 00144 1.083
22 +.00002 10.889
23 +.00127 1.242

24 -. 00123 .009
25 -. 00073 .456
26 .00546 .265
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Setting a significance ievel of 25%, the critical value for this difference between
numbers of signs is 8 for 24 observations (two cases were deleted because of zero differences).
Table IV shows that there are 10 positive and 14 negative differences in the 24 trials. Since the
number of times the less frequent sign occurs is greater than the critical value, the null
hypothesis can not be rejected.

B. The Diqemion of the Submunitions.

One remaining portion of the simulation remains to be verified. When the restriction
was placed upon the system that only one submunition would be emitted per rocket, the
uniform dispersion of submunitions over the effects patterns became so reduced that an estimiate
of its accuracy could not be seen. The uniform pseudo-random number generator has already
been tested using a large sample test. The z value obtained (1.713) was within the critical area
with a = .05. Thu3, the hypothesis which stated that the mean of the generated numbers equals
.5 could not be rejected.

.--- The generator will now be studied further to show that its random numbers are
evenly distributed throughout their interval, here (0,1). The uniform distribution propertyiwill be
investigated by dividing the interval into 10 subintervals and then counting how many iadom
numbers are produced within each subinterval.8 A Chi-square test is used to test the hypothesis
that each subinterval contains equally many numbers. Using 10,000 random numbers, the value
of the Chi-square for this generator was 11.442. Compared with the table values, using 9 degrees
of freedom, it can be seen that this value will be exceeded 25% of the time. 9 The null
hypothesis, which states that an equal number of numbers fall into each interval, thus can not be
rejected.

We would also like to assure that successive random numbers in the sequence are
statistically independent, that is, uncorrelated. A test for this is made by again dividing the
interval (0,1) into 10 equal subintervals. A count of the number of times a random number in
the ith subinterval is followed by one in the jth subinterval is kept in Tij where T is 10 ( 10
matrix. The Chi-square test is again used to test the hypothesis that all T-- are equal.8 The
Chi-square value computed using this test is 100.299 using 99 degrees of freedom.
Approximating this value to a z value in the normal table yields .12766 which is well urder any
apprc date testing value.4

Conclusions.

- _ The su .nunition impact patterns produced by the XM99 riot-control rocket have
been ccessfully simulated with the use of mathematical models and programming methods. The
computer program resulting from this effort has been found to be capable of predicting the
accuracy of the rocket over varying system conditions. The exactness of the patterns has been
shown to be dependent upon these conditions; however, in all cases tested, the resulting patterns
have given a good prediction of the average percentage of target impacts the system will be able
to produce when compared to the percentages obtained from the analytic model. This simulation
program will thus become a useful tool for analyzing the effectiveness of weapons systems which
possess characteristics lying within the scope of its application.
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In summary, this simulation reliably emulates the effectiveness of the XM99 system,
at least with respect to the way it theoretically operates. It is true that there are a vast number
of techniques that can be used in computer simulatiun. For validation, each of these requires its
own individual method of verification. The compounding of these techniques makes verification
of the total simulation often apprumh the impossible. However, this does not eliminate
simulation as a very valuable methodology for performing systems analysis. This paper has
presented an example of a simulation that can be shown to produce accurate results by verifying
its output in two stages. First, an analytic solution is derived for a constrained version of the
simulation. Then that portion of the simulation that had to be eliminated in order to test the
analytic solution is tested separately. By inference, this method of verification can be utilized on
much more complicated simulation models by subdividing them into simpler models each of
which can be verified independently.
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APPENDIX A

THE SIMULATION PROGRAM AND ITS OUTUT

C SIMULATION OF THE EFFECTS PATTERN OF THE XM99 ROCKET
INTEGER RBOT,RMD,RTOP,TCENLLWW
REAL L
INTEGER FIELD (300,300)
DIMENSION X.(200),Y(200),X4( 200),YM( 200)
READ (5,1001) X(l),XM(l)

1001 FORMAT(2F710.O)
WRITE (6,3001) X(1),XM(l)

3001 FORMAT( 1X,SHX( 1)=,F I .0,5X,6HXM( I)=,F 10.0)
I READ (5,1000) V,SIGXW,SIGYL

1000 FORMAT(5F7.3)
WRITE (6,3000) VSIGX,W,SIGY,L

3000 FORMAT( IHI ,21V=,F7.3 ,5X,5HSIGX=,F7.3,5X,2HW=,F73SX,
1 5HSIGY=,F7.3,SX,2HL=,F7.3)
READ (5,1002) NUMINNMUN,LLWW,INC,NOREP,T

1002 FORMAT(615,FS.3)
WRiTE (6,3002) NUMIN,NMUN,LL,WW,INC,NOREPT

3002 FORMAT( IX,6HNUMIN=, 15,5 X,5HNMUN=, 1 ,5X,3HLL=,15,5X,3HWW=,
I 15,5X,4HINC=,15 ,5X,6HNOREP-=,I5,SX,2HT=,F5.3)
TOT=0.
U I=FLOAT(LL/2)-9.266*V*T/36
U2=FLOAT(WW/2)
U3=9.266*V*T/(1I8.*(FLOAT(NUMIN..;)))
11=0
CALL RANDN(X,3,U1 ,SIGX,II)
CALL RANDU(XM,3,II)
I1=6
DO 679 M=1,NOREP
WRITE (6,683) M

683 FORMAT( HI ,5HTRIAL,13)
DO 676 K= 1,WW,INC
DO 15 J1I,LL,INC

15 FIELD(JK)=1IH
676 CONTINUE 

________

1.BOT=0
LCEN=0O
RBOT=0
RMID=0
RTOP=0
TCEN=0
LTOP=0O
LMID=0
CALL RANDN(X,NUMIN,UI .SIGX,11)
CALL RANDN(Y,NUMTN,U2,SIGY,11)
NU=NUMIN. I
DO 20 I=1,NU
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20 X(I$1)=X(I+I) IOU3
DO 30 I=1,NUMIN
CALL RAND U(XM ,NM UN ,II)
CALL RANDU(YM,NMUN,II)
DO'40 N=I,MUN
XM(NH-XM(N)-.S)*L+X(I)
YM(N)=(YM(N)-.5)*W+Y(I)
IF (XM(N).GE.O.) IX=IFIX((XM(N)+FLCAT(INC)/2.-1.)IFLOAT(INC))
IF (XM(N).LT.0.) IX=IFI X((XM(N)-FLOAT(INC)/ 2.-i .)/FLOAT(INC))
XM(N)-FLOAT(IX)*FLOAT(INC)+ 1.
IF (YM(N).GE.0.) JY=IFIX((YM(N)+FLOAT(INC)/2.-l .)/FLOAT(INC))
IF (YM(N).LT.O.) IY=IFIX((YM(N4)-FLOAT(INC)/2.- I.)/FLOAT(INC))

40 YM(N)=FLOAT([Y)*FLOAT(INC)+ I
DO 16 N=],NMUN

- J=IFIX(XM(N))
K=IFIX(YM(N))
IF (IGT.L.L.OR.J.LT. I.OR.K.GT.WW.OR.K.LT. 1) GO TO 21
GO TO 17

21 IF (J.GT.LL.AND.K.GT.WW) RTOP=RTOP+l
IF (J.GT.LL.AND.K.LT.1) LTOP=LT'OP+1
IF (i.LT. I.AND.K.LT. I) LBOT=LBOT+ I
IF (i.LT.I1.AND.K .GT.WW) RBOT=RBOT+ 1
IF (K.GE.I.AND.K.LE.WW) GO TO 80
GO TO 81

80, IF (J.LT.1) LCEN=LCEN+1
IF (J.GT.LL) TCEN=TCEN+1
GO TO 16

81 IF (J.GT.I.AND.J.LE.LL) TO TO 82
GO TO 16

82 IF (K.Xr.) LMID=LM1D+l
IF (K.Gr-.WW) RMID=RMID+l
GO TO 16

17 FIELD(J K)=FIELD(J,K)+6H(@@@
16 CONTINUE
30 CONTINUE

NO=LBOT+LCEN+RBOT+RMID+RTiOP+TCEN+LTOP+LMID
NI=NMUN*NUTMIN.NO
RP--FLOAT(NI)JFLOAT(NMUN*NUMIN)
WRITE (6,20 19) RP

2019 FORMAT(I HO, IOX,28HSUBMUNITIONS IN TARGET AREA= ,F7.5)
WRITE (6,124) LBOT,RBOT,LTOP,RTOP,TCEN,LCEN,R-MIL),LMID

124 FORMAT( IX,SHLBOT=,1 4,SX,5HRBOT=, 14,5X,SHLTOP=-,14,5X,
I SHRTOP--,I4,5 X,5HTCEN=,14,5X,5HLCEN=,14,5X,5HRMID=,14,
25X,5HLMID=,14)
WRITE (6,123)

123 FORMAT(1HI,30X,29HRANGE OF MUNITION GOING RIGHT)
DO 117 K=I1,WW,INC
WRITE (6,120) (FIE LD(J ,K),1 I ,LL,INC)

120 FORMAT() X, IOOAI1)
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117 CONTINUE
TOT-TOT+RP

679 CONTINUE
TOT=TOT/FLO)AT(NOREP)
WRITE (6,234) TOT

234 FORMAT( lxii7HMEAN PERCENTAGE= ,F7.5)
GO TO I
END

X]= 13289. XM(1)= 72931.

V=32.37S SIGX=20.000 W=50.000 SIGY=20.000 L=50.000
NUMIN=38 NMUN=32 LL=100 WW=l00 INC=3 NOREP-=25 T=3.000

TRIAL I
SUBMUNITION IN TARGET ARKEA= .90461

LBOT=3 RBOT=0 LTOP-=0 RTOP=0 TCX4-43 BCEN=40 RMID--9 LMID=21

RANGE OF MUNITION GOING RIGHT

C AA A
A ABA AA A A A A A

ABA BA A A AAB
BABAAA A AAA B AA
AAB AA BA C A A

B AAB A AAAA AA
B AABAA ACA A A A A

--- - - ------ AAB9 AB C BAAA -ABAAA AA
AAA AAB ABA CBE BAB BB A BB

A B AB BB AACAAB CBAAA A
A ABA BACADA BCBACBA BA BAAB

*A C AAB CA AA AAA A
AA A AA AABBA A A

A A AB A B
A A BBAA BBA A A
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APENDIX B

THEORETICAL TEST FOR THE ANALYTIC SOLLTION

An interesting method of testing the theory of the anilytic solution is to chck its
limiting value as p approaches zero. Physically, this means that the firing mechanmn is
stationary, and that the aiming point does not move. Because only the probability I nsity
function associated with the range coordinatc X of the munition function is dependent u n p,
it will sutfice to show that as p approaches zero, the limit of

p/2

EXP dux

is the normal probability density function I

1 E

with mean equal to zero and standard deviation equal to sx .

L'Usng L'Hospital's rule for indeterminate limits and the rules of calculus for
calculating the derivatives of integrals,

fill pf/2 /.(X -ux) 2/ dux - p/2 XP /(X'UX)2 d u

10 EXPu - EX-.(l)) dux]E -

x r2 s

EXP(4x.p/)2)EXP (.(X +p/2)2 )

2 2flJT sx 72

Substituting zero for p into this expression and collecting terms produces the desired
result

.X2

The theory behind this portion of the analytic solution is thus mathematically
sound.
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