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FIGURE CAPTIONS

The modulus of the nine surface modes (slopes) is
plotted at five different times, i.e., five "snap-

shots" of the surface spectrum.

The modulus of the nine surface modes (slopes) are
plotted as continuous functions of time. At any
instant of time the surface spectrum can be read from

the labeled curves.

The surface distortion for the tank experiment is
plotted and compared with three calculations. Two

calculations are at the resonance cg = cI , (i) linear,

(ii) modal, and the third calculation is modal theory

off resonance.

The continuous growth of the surface spectrum is indi-
cated for the calculction depicted in Figure (2), but

with the four surface wave interaction "turned on".

The continuous growth of the surface spectrum is indi-
cated for the calculation depicted in Figure (4), but
with additional modes situated at ko + K/2 and ko i %K .
The development of the ccean surface spectrum is indi-
cated at four distinct times. The discrete nature of

the calculated spectrum is approximated by the continuous

line joining the 21 modes.
The same as Figure (6) hut at latter times.

The surface 3istortion of the ocean surface is indi-

cated by the straight line, i.e., no distortion.




1. INTRODUCTION

The first report in this series [Watson, West and Thomson, (I),
PD-72-030 (RADC-TR-73-74)] was concerned with the development
of a formalism which would allow a direct calculation of the
non-linear interaction among surface gravity waves. The tech-
nique used was to expand the ocean surface in a series of
modes, i.e., a finite Fourier series, and express Bernoulli's
equation and the kinematic boundary condition at the ocean
surface in terms of interacting modes. These modal equations
formed a system of rate equations with quartic and triplet
mode couplings giving the non-linear interactions. These
equations were then transformed to normal coordinates, i.e., to
the eigenmodes of the linear system, and integrated numerically
on a computer. A calculationl’2 with simulated initial conditions

compared favorably with the Benjamin-Feir (BF) experiment (1967).

In this second report we wish to extend the above analy-

sis to inciude the interaction of the surface gravity waves

with a surface current. We will treat the surface current as
being generated by a "massive" internal wave, i.e., an internal
wave which does not react to the surface gravity waves [see
Thomson and West, PD-72-023 (RADC-TR-72-280)], and consider
only the linear interaction between the current and surface

gravity waves. The consequences of relaxing this assumption,




i.e., allowing the internal wave to change, is being inves-
tigated elsewhere (Watson, West, Cohen, PD-73-032). Section 2
reviews the construction of the linear equation and obtains
results consistent with those of M. Milder (1972) and
indicates an error by Zachariasen (1972) pertaining to the
surface on which the equations are evaluated.

In Section 3, a translating surface current is expanded
in harmonics and introduced into the linear equations, which
are expressed in terms of modes. The equations are written
in two dimensions, since the added complexity over the one
dimensional equations is not great. The eigenmode equations
close to resonance are rather simple, a given mode % being
coupled only to its neighboring modes k+k, where K is the
fundamental wavenumber of the internal wave. A hermitian
representation of the interaction equation can be approxi-
mated near resonunce and an interesting form of tnis equation
is derived in two dimensiéné.

The two dimensional nature of the equations is not
exploited in this report, but a discussion indicating the
possible direction of future work is given. 1In the one
dimensional form, the expressions are compared to those
developed by Rosenbluth (1971), where an inconsistency in
the level of approximation is found. This inconsistency
arises from the additional terms uncovered in the analysis
of Zacharisen (1972). A modal expression exact to order 1/N
. is derived and the solution in terms of convolutions with
discrete Greens functions is formulated.

2
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The modal equations are solved numerically in

Section 4 for a number of cases. The first calculation
employs initial conditions which simulate the experiment of
Lewis (1971). 1In this experiment, an internal wave was
generated at a fluid interface near the bottom of a tank.
An infinitesimal surface wave was mechanically generated
and the modulation of the surface height and slope recorded.
We calculate the modulatior. as a function of time, as well
as the development of the surface spectrum and compare the
results with the experimental data.

A second calculation is pre2sented in which the para-
meters are characteristic of the ocean environment rather
than those of a tank. The case of a single (dominant) sur-
face wave in an unsaturated surface spectrum interacting
with an internal wave is considered. The results are dis-
cussed in the context of the linear theory developed in
Section 3 and the effect of nonlinear tranfer cf energy
between surface waves is also considered. The distinction
between the interaction regimes for tank experiments and
the ocean experiments is also discussed. The important
quantity is determined to 2 the relative magnitude of the
correction to the dispersion relation for the eigenmodes

and the coupling coefficients of the surface waves to in-

ternal waves.
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2. LINEAR WAVE EQUATION

This section is essentially a review of the derivation
of the linear wave equation and may be omitted by those fa-

miliar with its construction. In this development we consider

the surface gravity waves to be infinitesimal and to be inter-
acting with a non-uniform surface current. The surface cur-
rent may be gunerated by a non-dispersive internal wave, a
swell passing through the region of interest or by a number

of other mechanisms. For the present we will not be concerned

with how the surface current is produced, only that it is
present. This analysis compliments that in PD 72-023 (RADC- !
TR-72-280), i.e., the linear wave equation being constructed ‘
includes terms which were considered negligible previously and
found by Zachariasen (1972) to be important.

We assume the ocean to be both homogeneous and irrota-

tional so that we can use a potential description of the velo-
city field, i.e., since Vxl =0 we can write U=Vé. The ocean
is also assumed to be incompressible (V-3==0) so that the

velocity potential satisfies Laplace's equation,

2

Vi =0 . (2.1)

The integral of the momentum equation yields Bernoulli's equa-

tion at the ocean surface
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o, + % VO-Ve + gz = 0 at z=r (2.2)

with the condition that hydrostatic equilibrium must prevail

at infinity and z={ is the free surface of the ocean. The

velocity potential must also satisfy the kinematic boundary
condition at the ocean surface, i.e., the rate of increase
in the wave height frollowing a fluid element is the vertical

component of the fluid velocity,

g% = -g% at Z=r (2.3)
where

g? = -gT'f' VoV (2'4)

is the Eulerian derivative.

LT e S T T e e e e e
o

The linearized forms of the dynamic ecuations may be ob-
tained by separating the effects of the infinitesimal surface
waves and surface current. We do this by writing the velocity

potential and surface displacement as,

¢ = Y + ¢ i (2.5)
and
T = X+ h (2.6)

where ¥ and X are associated with the current and ¢ and h are
associated with the infinitesimal surface waves. In the approx-

imation we are considering, the effect of the surface waves on

o
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the current is negligible. Therefore, ¥ and X satisfy the free
surface equations independent of the surface height (h) and

velocity potential (¢), i.e.,

Y o+ L yy.yy + gX

t 5 at z=X (@<« 7)

"
o

and

X o+ qyevx = & a4t z=x . (2.8)
t s s z

Note that Equations (2.7) and (2.8) refer to the unperturbed

ocean surface, that is, unperturbed by the surface waves.

To determine the interaction hetween the gravity waves
and current, we substitute Equations (2.5) and (2.6) into

I'guation (2.2) to obtain,

b, *+ % Vo+Vd + Vo+T¥ + ¢h = -(wt + %- VYUY + gx) at z=x+h
(2.9)

The right hand side of Equation (2.9) would apparently vanish
using Equation (2.7) except that the two expressions are not
evaluated at the same boundqry. It is necessary, therefore, to
oxznand Equation (2.9) about the ambient surface, i.e., the‘sur—
rounding region on which there are no gravity waves. The ex-

pansions for the velocity potential are as follows:

[
A4 = ;VV + h e (VW)i (2.10)

z = X+h

z=X




and

b v

& (2.11)

2 = X+h

in which we have kept only terms linear in the surface wave

height (h).

We define the current as follows:

wo=0+v_ k @10

A

where k is a unit vector in the vertical direction. The
horizontal current U is sigrificant regardless of the
generating mechanism, the vertical component Vs ., however,
is not. For example, if the current is produced by a non-
dispersive internal wave, then |U| >> ivsl so that only

the horizontal component need be retained in Equation (2.12).
If, however, the current is produced by a passing swell, the
vertical component of the current may be comparable to the
horizontal, so that both must be considered. The partiéular
generating mechanism will therefore determine the form of the

current used in the analysis.

Eryes me

-

Using the definition of the current [Equation (2.12)] and

the expansions given by Equations (2.10) and (2.11) in the in-

teraction equation ([Equation (2.9)] we obtain,




v
¢>t+-§-v¢-v¢+ [g+—§-+ (v¢+vw)-vvs]h+w-v¢>=0 at z=Y

ot
l
(2.13)
If we now restrict our analysis to the linear case, i.e.,
r linear in both ¢ and h, we reduce Equation (2.13) o
dvS
6, + V¥-V6 + |g + y=|h = 0 at z=x . (2289

We note that in addition to the standard linear interaction
] term between the surface waves and current (V¥-V¢) there is a
second interaction due to the vertical component of the current

field. This modification of the gravitational acceleration

has been discussed recently by M. MilderlO

In determining the linear form of the kinematic boundary
condition [Equation (2.3)], we encounter the same difficulty
as with the interaction equation, i.e., going from the perturbed
to the ambient surface. We expand the terms in Equation (2.3),
just as before, and obtain

avs
V + h —
S 9z

Q

~
~

v

; (V e —!) (2.12)
s s z

z = X+h

to terms linear in h. Using Equation (2.15) along with the other
expansions [Equations (2.10) and (2.11)] and the kinematic bound-

ary condition for the current [Equation (2.8)] in Equation (2.3)

yields,

"
T T (R R e —
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Y

a—- . . Y . = ﬂ S = . — .
(Bt + VS¢ Vs+ Vs‘l’ Vs+ Vs\'s Vgh Nz + h 52 Vs¢ st sts VSX
at z=X
which to terms linear in ¢ and h becomes
A
dh 3 8 =
T 5-%+ h g2 - 799X at z=X . (2.16)

The incompressibility condition applied to the surface current

yields the relation

0]
%

—:——%:—Vi‘{l:—Voﬁ
9z

which when substituted into Equation (2.16) results in,

d !-’ = -a—t - o =
(a-E+vsu)h 5 $ VX at z=X . (2.17)

We may replace the gradient of the ambient surface in Equa-
tion (2.17) by taking the gradient of Equation (2.7) and using

the definition of the current to write

- l 2 2
st 5 vs[wt + %(U° + vs)]

->
1] 4du

- 2.18
3 [a'—t + Vs sts] (2.18)

Substituting Equation (2.18) into Equation (2.17) yields,

<>
(gz-+vs-ﬁ)h = ¢, + % %% - U (2.19)




Neglecting terms quadratic and higher, except when they involve

a coupling of the surface waves to the surface current, we

obtain from Equations (2.14) and (2.19),

¢)t + V¥«V¢p + gh =0 (2.20a)

v

ht + VSW-VSh + (VS'U)h = ¢z +

<3

(2.20Db)

Q-
ol e
&
&3]
>

evaluated at z=X. Although these equations have the same
structure in one dimension as those derived by Zachariasen (1972),
they are evaluated at z=X and not z=0 as were his expressions.
The small terms obtained by further expanding the set (2.20)

about z=0 are found to be of importance.

Milder (1972)6 has shown that the simplicity of these
equitions can be maintained by noting that the right-hand side

of Equation (2.20b) can be written as,

ad _ dx 93¢ _ 3s 3¢
3z 3X 3X  0X an (2.21)

in a single horizontal dimension X, where s is the distance
along the surface z = x(x,t) and gﬁ-is the derivative normal
to that surface. Milder then shows that because the velocity

potential satisfies the Laplacian, in two dimensions,

v2¢=(g—x+ig—z-)(%(-—ig—£)¢=o (2.22)

10
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that

3s 3¢ _ _, %
3X 3n 1 5% (2.23)
and Equation (2.20) reduces to,
é% ¢ +gh =0
(2,24)
é% h + U.h = -i ¢
where the x derivatives are constrained to the surface
9 9

z = y(x,t) and é% is the Lagrangian derivative, It z 3E + U IX°

This analysis may be extended to two dimensions, resulting in
->

the loss of the %%-term in Equation (2.20b) (see Appendix in

Watson and West, PD-73-048).

11




3. MODAL ANALYSIS WITH A HARMONIC SURFACE CURRENT

This section is concerned with the interaction b2atween

surface gravity waves and a current distribution

U = U(x,t) e,
where
Uu(x,t) = :E: UK cos K(x-cIt) (3.1)
K

and EX is a unit vector in the direction of propagation. The
approach used is that developed in Section I in which eigen-
rmode equations were constructed to represent the interaction
of gravity waves with gravity waves. We will extend that
analysis to include the interaction of surface gravity waves
to surface currents prescribed by Equation (3.1). The linear
solution to the gravity wave-surface current interaction
problem has been gptained by a number of investigators using
a variety of approaches; e.g., Rosenbluth (1971), Ko (1971)
and Zachariasen (1972). In this section we will indicate in
the context of the eigenmode model how these various calcula-
tions differ in their level of approximation. In the next
section, we will extend the calculation into the nonlinear
regime.

The first order equations for the velocity potential

and surface elevation derived in the preceding sections

12
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[Equations (2.20) and (2.21)]) easily accommpdates the current

distribution

surface, the
¢t +

and

where £ = x
wave packet.
equation, we

of ¢ and the

¢(¥,z,t) =

and

h(r,t) =

and T = (x,y).

defined by Equation (3.1). At the unperturbed

interaction may be written in two dimensions as

gh = -ZUK cpxcosxﬁ
K
(3.2)
¢, = - :E: g {hx cos K§ = Kh sinKE}
K
- c,t and c; is the phase velocity of the internal

Because the velocity potential satisfies Laplace's
may write the two-dimensional Fourier transforms

surface elevation as

s T >
< f eikeT glK|z oz (t) a%
V21 Yew
(3.3)
O e
Lf KT np(t) a
)

Although the wavenumbers are continuous in

Equation (3.3), we will find that the dynamic equations restrict

their values

to a discrete set. The resulting expressions will,

therefore, conform to the definitions introduced in Section I.

The interaction equations may be expressed in terms of

the mode amplitudes as

13
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-

w[e ¢>k+gh§+1|k| . Ux ¢k cos Kg.Je

<>

|E[z + ik z U, h+ cos K eik'f a%k
¢’-};||K-4Kk

(3.4)

We recall that the linearized equations have heen obtained at
the surface z = x. The exponential terms in Equation (3.4)

-+
ray therefore be szt equal to unity since lk|x << 1 for the

surface gravity waves of interest. If we multiply Egquation (3.4)

-

by exp [- .k

- >
‘'r] and intcgrate over the surface plane (r), we

obtain
—1KcIt chIﬂ

+ (kx + Kb e

. R i >
5 Bl L - 2 Uk [(kx B b3k, ® k+K

(3.5a)

—1KcIt

e PkX-K) hﬁ'i +th_?]

iKcIt
e [(kx R gy - "N

(3.5
as the linearized mode coupled equations to second order in the

interaction.
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3A. The Eigenmode Expansion

We now introduce the eigenmode variables constructed

in Section 1I:

b (®) = A ¢¢E s wlk) (3.6)

k| K

where w(k) is given by the linear dispersion relatjon (= /glﬁl)
and A(k) is chosen to be

> 2
Ak) = —IRI° (3.7)
/2T w(k)

By taking the sum and difference of Equations (3.5), we obtain

the eigenmode equations

@& L@ @) - aw {iFl(K) : TiT’ FZ(K)}
| :

(3.8)
where F, (k) and F,(k) are defined by the right-hand sides of
Equations (3.5a) and (3,5b), respectively.

We may rewrite Equation (3.8) in the more explicit form

(+) ,» , Kk _-K ~iKe. t
B L wmp™ (R - -4 :E: v, [B] B a T




K | R+K |
- oK w(k) (%) 2.5
] :1 kx+K + o TR+K) }b (k+K)
K w(k) t=y = %
o 1 = == = b (k+K)
{ kX+K w (K+K) } )
and the second coupled equation
o (=) = k -iKc. t
b k) . (=) ,» 2 1 I
d_dt—(.— 1 w(k) b (k) = EZUK Ikl e
K | kK|
R w (k) (=) .2 %
{l + kx_K + TR-KT }b (k-K)
o K r w(k) (+)
{ Sl g o (k-K) }b Tt
1 i kx+h 1KcIt
= E UK Ikl - - e
K |k+K|
K w(k) ( )
{ L =% * ol } (k-K)
_ i ¥ _ w(k) (Rl
{1 KK T TR } o e
(3.9b)

16




where we have used Q@ = c;K as the frequency of the internal
wave. Examining the structure of the coupling coefficients
in Equation (3.9) makes it clear that b*) and b{7) are
only weakly coupled, since |ﬁ|, k, >> K . it

is only necessary, therefore, to discuss the equations for

either b'*) or b~} but not both.

We may. remove the explicit time dependence from

Equation (3.9) by introducing the variables*
ik_ec.t
B @) = b e XTI (3.10)
If we introduce Equation (3.10) into Equation (3.9a) and

use the decoupling approximation, we obtain the equation

for right travelling waves

ick) = [(w(k) - kch] c (k)

uK > . K
+ :E: Ell 2 [+ iy + 2K
Y T l I » kx'K w (k=-K)

k_+K
X - e 4 Rl c (k+K)
|-]:+-IEI kx+K w (k+K)

where we have deleted the extranecus (+) superscript. A
second and perhaps stronger justification for the form of
Equation (3.11) is based on the notion of a resonant inter-

action between the surface gravity waves. This notion was

———
This transformation was suggested by Kenneth Case and the
resulting Hermitian equations are explored elsewhere, Watson,
West and Case, 1973 (III).

17




used in I to deiate terms whose frequencies could not be
matchad in tie thir? order interaction. A similar argu-
Jent couli bke corst.::.tcd above so that cniy te.r.ns where

the freguency; dirference

l:\-l\' = (}) = n(k;x) F Q (3.12\

cai. vanisn contribuie strongly to Equaticn (3.9). These
are just the terms «:pt in Equation (3.11).

Lauation (3.1i1) gives the rate of change in the
:-tl. gravity mode s.cpe in two dimensions produced by the
intezactios with an arbitrary travelling surfacc current.
Since :le interaction is assumed to be linear, i.e., we used
Equatisns 12.20) and (z.21), the dynamic equation may be added
directly ts the noalinear expression developed in I.

The composite equation in one dimension is

U
. K
ic(k) = [u(k) - kejle(k) + Z :Z"k[ak-RC(k'K) + a,  ge(k+K)]
K
- 2 : ngkn c(2) c(p) c*(n) (3.13)
.‘t—.:t_i‘

‘where the coupling coeificients rzpk" are given in 1, the
ST aiven ir Equation (3.11) and we have neglected wind,

viszesity and surface tension.
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3B. Approximate Two-Dimensional Equation

First let us note that, while kK is a continuous

variable, Equation (3.11) is really a discrete set. Thus
for a given c(ﬁ), we need only consider the equations for
c(k’) where k' =k +2 My K with My being a positive or

negative integer. Tokobtain a Hermitian form of Equation
(3.11), we resérict our attention to the case of a single

internal wave of wavenumber K; then

4] k_-K
tk) = ¢ |k =2 {1’*1&'7 TE#T} |

|k-X| :
2 k : (3.13) )
+K
Py = X g X . k |
g (k) T k| x| {1 K K m—(‘b)f)'}
and introduce
= .
p(k) = w(k) - kx cq # (3.14)

We consider the condition where |X| >> X which

is applicable to the ocean situation. In this limit, Fquation

(3.11) reduces to

o e

19
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: ac (k)
ot

U
= [w(k) - kgl c(k) + §5v|k| c(K+K) + C(K—K)}

The change of variable
ck) =YKl v(&

in Equation (3.11) could also be used to obtain

o U il
i (k) = [w(k) - kch] W(K) + :E: 55 {aK(E+K) U (K+K)
ot K
+ a, (k) w(i—ﬁ)} (3.16)
where
a, (k) = ylk||k - K| : (3. 3%

which reduces to Equation (3.15) for |k| >> K| .

Equation (3.16) gives the interaction of the gravity waves
with an internal wave spectrum in a Hermitian representation.
To obtain an alternate expression for the two-
dimensioral problem, we focus attention on Equation (3.15)
for the éase of a single internal wave. We note that we

'

->
have been concerned with the wavenumber region |k| >, K

so that we may employ the following approximation

20




% { c (R4K) + c(i-i)} s c(R) + % k2 v c(k) + ... (3.18)

where Vi is the gradient operator in ﬁ-space. If in addition

to Equation (3.18) we look at the eigenvalue problem

ck) = ¢, (K e it (3.19)

Equation (3.15) becomes

-+ ! - >
2o k) + 52 |edBLo A, (k) = o (3.20)
k KU, |k |

where

w'(k) = w(k) + |k| U -k c (3.21)

x 1

The quantity w'’(k) is the frequency of the surface wave in
the coordinate system translating with the phase velocity of
the internal wave and is therefore a constant.

The efficacy of using the expansion given by Equation
(3.18) is discussed elsewhere (III) where an exact one-dimensional
eigenvalue problem is solved and compared with that obtained
using the expansion. The eigenvalues and eigenfunctions of
the approximate expression are found to be quite close to
those given by the exact solutions. We are therefore confident
that the general behavior of the solution to Equation (3.15)

may be determined by examining the solutions to Equation (3.20).




3C. Approximate One-Dimensional Eguation

Let us from here on focus our attention on the one-
dimensional form of Eguation (3.15). 1In one dimension k = (kx,O)
and since the interaction equations forn a discrete set

we use the wavenumber k = nk, n=0,1, ...N-1, W4, N+l,

For a single internal wave of wavenumber K, we may rewrite

Equation (3.15) as
ic. = [w(n) - nilc_ + Lyank e + C (3.22)
n e 4 n 2 o n+l n-1 :

where Q(=KCI) is the frequency of the internal wave. Ve
recall that the strongly interactinog surface modes are those
for which the frequency resonance condition given by Eguation
(3.12) holds. 1If we assume that the central surface mode is
located by an integer n >»> 1 and w(n) >> &, then we may find

a simple approximate expression for Eguation t3522) -

(i) Expansion in Terms of Block Waves
we introduce a new variable which is shifted in phase

from the central mode n = N

3. = oL gt lWSERE (3.23)

into Eqguation (3.22) to obtain

[w - w(n) - N + nQ]aV

I

|
(&

(0]

=
B
(o8
+




Note that the new expansion coefficients [aV] are constants
in time and v measures the deviation of the wavenumber from
the central mode, i.e., n = N + V.

We now proceed to expand w(N+v) about  (N) and deter-
mine the value of Q@ in terms of N. We select the frequency

w to be

w = wi(N) + Suw (3.25)

so that Equation (3.24) becomes

l (v 2 UoK
sw + 1 (ﬁ) [GRya, = -2 V) (a,,; *+ay_;)

or expanding (N+v) "1, we have

a + a - gt J2ae , &2 {Y : s 0 (3.26)
v+l v-1 o kN 2 K\N ay )

where (@ has been set egual to % /gk/N . We note that

Equation (3.26) is the expression obtained by Rosenbluth (1971)
for the interaction of discrete modes when the expansion set
for the surface elevation and velocity potential are Block
Waves. It might also be mentioned that the expansion given

by Equation (3.18) in the two-dimensional case is equivalent
to adding zero to Equation (3.26) in the form 2av - 2av and
taking the limit of continuous v as done by Rosenbluth. We
also note that although terms to order (v/N)2 have been main-

tained in Equation (3.26), terms of lower order have previously
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been deleted, i.e., order v/N. These are the terms

K . . . .
E : K in the coupling coefficients [Eguation (3.13)]

w:ich arise from the current gradient terms in Equation (2.21)
and were first discussed by Zachariasen (1972).

Because of the inconsistency in the order of terms
maintained in Equation (3.26), we take a slightly different
approach than that of Rosenbluth. We introduce the variable
oilw()-Nalt eivi

av(t) - cn(t) (3.27)

into the one-dimensional form of Equation (3.11) to obtain

av(t) = =1 [w(n) - w(N) - vQ] av(t)

1 win)
* g (1 ot o'(n-l)) dy-1

= P w(n)
(} n+l ¥ w(n+l)> ay+l . (3.28)

If we expand w(N+v) about w(N) and equate . with % vgK/N

then

W(N+V) &~ . (N) + vl ; n =N+ v (3.29a)

€

o
—
1+

=

ij

+
R

(3.29Db)
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Substituting Equation (3.29) into Equation (3.28) results in

the expression

. U_K 3U K
ay(t) = == n(a,y = ay) * 5@, * 3, (3.30)

which is exact to order % . The second term in Equation (3.30)

is of order % smaller than the first and invites a perturbation

approach to the problem.

(1i) Perturbation Solution of Equation (3,.30)

Let us consider a solution to Equation (3.30) of the

form
= (o)
av(t) = av (t) + Gav(t) (3.31)
wheze §a_(t) is of order X smaller than a\(,°) (t). If we scale

the time in Equation (3.30) as

T = UOKNt (3.32)

and introduce the perturbation expression Equation (3.31),

we obtain

g’r‘ a\(rO)(t) = % [a\(,c_’)l(t) % aéi)l(t)] (3.33a)
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and

1 v (o) (o)
I N [av—l - av+l] EedaR)

where we have deleted terms of order l/NZ. Egquations (3.33a
and b) are correct to order 1/N.

It is clear that Equation (3.33a) is the recursion
relation for Bessel functions. The solution to our first

order equation can therefore be written as

) (o)
a,’’ (t) = Z a,% 7, _ k) (3.34)

Q==

where Jm(r) is the Bessel function of the first kind of order
m. The expansion coefficients (déo))are determined by the
fact that only m = 0 Bessel functions are non-zero at time
T = 0 and are selected to satisfy the initial conditions for
the problem.

Using the first order solution given by Egquation (3.34)
and the additional recursion relation for Bessel functions

2n

T da ) = T _iiT) ¥ I

s - o (t) (3.%3)

n+l

in Equation (3.33b) we obtain
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(3.36)

Equation (3.36) is clearly a linear equation in da,, with a
driving force given by the sum over Bessel functions. We

may solve Equation (3.36) by rewriting the equation as

d 1
| oo, (1) - § [sa, () = b2y, (0] = F (3.37)
where
dJg,_. (t)
- S (o) L=V L=V
FV(T) 4N 2; dl V 7at t 3 Jl-v(t) '
(3.38)
I1f we introduce the Laplace transforms
l Lisa, (1)) = sa,ls) E-L. e™5" sa (r)dt
and (3.39)
LIF (1)) = F is) = .I e™%" F (1)dt
()

into Equation (3.37), we obtain

j s sa (s) - 1 [6a,_;(s) - 6a,,,(s)] = F(s) + ¢a(o)

v~1l
(3.40)

déav
after integrating$£-7;F— by parts.
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We observe that Equation (3.40) may be integrated
by using the discrete Green's function g(v,s) which satisfies

the equation

sg(v,s) - = (g(v=1,s) = glv+l, &)1 = o, - (3.41)

The solution to Equation (3.41) is given by

o -1vKx
giv g8 = == it i (3.42)
W, 2l s-1 sin Kx

which may be verified by direct substitut.on. The formal

solution to Equation (3.40) may now be written as
6av(s) = :g; g(v-v', s) [Fv,(s) + 6av,(o)] . (3.43)

The inverse of éav(s) may be obtained by recalling
21y " AL )
o 1By ()Y L (b Pl
(3.44)

whereeli_l{f} is the inverse Laplace transform of f. Using

Equation (3.44) on Equation (3.43) yields

2
sa, (1) = f glv-v', =tV [F, (x') + éa,,(0) &(x/)] dr’ . *
v'! s \" v

(3.45)
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The Green's function in Equation (3.45) is given by

5 (N : S e
1 ] o i(v=-v')Kx ul(l ;') sinkKx a5
/21 Y

(3.46)

Because we are dealing with a discrete set of states, we

+ %, which is the

periodic ccnditicn imposed or the surface waves over the

approximate the limits on this integral by ¢

wavelength of the internal wave. 1In this approximation,

i Equation (3.46) yields

I(T'v’) (3.47)

= ! = b
i glv-v’',1-17") JV_V

so thet Equation (2.43) becomes

€ dJ
8 = Z -v! : 3 Z (o) ) b
uav(T) , g(v=v’, 1) oav,(o)+ % dl Al — o
v L (o)

v —

-y 1
T geyt | Ty-ye (T7Tl)dT

(o)
L

by the initial conditions for the solution to (3.33a).

as the general solution to Equation (3.33b) with d given
The surface elevation is given by the discrete form

of the one-dimensional Fourier transform in Equation (3.3).

This, together with the defining equations [(3.6) and (3.10)]

yields
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d ik (x-c_t) 3 1k _(x-c_t)
B ) =_%zn:%_ cé+)en I _cé)en i .

(3.49)

We note that for a situation with only right travelling waves,

l.e., predominantly in the direction of the wind, cé_) =0
for k. > 0 and c'7) = (c(+))*so that
n -n n
'n
hix,t) = \ f— sin [kn(x-cIt) + ﬂn] (3.50)
n>0 n
where
16
(+) ‘ 19,
S (ty = r e 3 (3.51)

Using Equations (3.27), (3.34) and (3.48), we have for the

slope variable

c (t) = ;a\fo)(t) + 6av(t)i exp [- i (w(N) = No)t - iv %]
o0 2. 15
dJ
= :E: (o) 3 :E: .f g g (g 1)
= d J 1) + = v ——
(o 2 l-v() W M X dt’
l_ 1
% TY JQ-V'(TI) dT'Jv-v'(T-T')
x exp [- i(w(N) - Nt - iv %] (3.52)
where we have set Gav(o) = 0. Inserting Equation (3.52)

into the expansion for the surface elevation results in
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| N+ 1 = J
hix,t) = 2 2 Nev Pneg (@) 1T, (1) + = Z f
N+v N+ 2 L=-v N
N+v>0 =~ .~
g(v-v’,r-r’)Fv,(T’)dr’ x sin [ev + kvg - v g]
(3.53)
where
GN = kNx - w(N)t
(3.54)
and
kvg = vK(x - cIt) )

.

Equation (3.53) is a supervosition of travelling wave with
time dependent amplitudes.
If we expand the sine terms in Equation (3.53), we

find the surface elevation can be written as

hix,t) = |G(x,t)| cos [GN - arc tan (GI/GR)] (3.55)

where

]

Glx,t) = ol (N+2) h{O) g (q) 4
N+v N+2 2=V
N+v>0 ==0

T
' ' i = s
Vlgw l g(v=v' ,t=1") Fv,(‘t') dt’/ x exp l(kvg \ 2)

A | o

(3.56)
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The function G(x,t), therefore, determines the modulation
of the central mode kN(= NK). We may express the envelope
function in terms of cn(t) rather than the surface elevation

<0 that

:E: cN+V(t) i[kvg+N t]
———-k e
N+v>0 N+v

f we use the slope variables introduced in I, i.e.,

c(+) ei[u,(n)-n,z]t

5 ()
‘n n

then we would have from Equation (3.57)

(+) .
o (t) ik (x=-c_t)
G(x,t) = Z L e & g

kN+v

ey = lulvv) - w]/k,

group velocity of the surface wave packet.
The modulation function for the surface slope (%%)

may be found in a similar manner to be

G_(x,t) = \
s Z Z(N+2’)hN+Q(°)

N+v>0Q ==

g(V—V’,T-T’)FV,(T’)dT’
(3.61)

32




If we introduce the variable

i (KE+3)

zZ = €

into Equation (3.61), then we have an expansion in terms
of z'. This result can be used for formal manipulation of
the interaction equation when the solution is expressed as

a generating function,

g(glt) = 2 av zv .

v
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4. NUMERICAL CALCULATIONS

4A. Introduction

In this section we wish to explore the relative
effects on the redistribution of energy within a given
initial spectrum by both the mechanism of nonlinear inter-
action of surface gravity waves and the interaction of
these waves with a prescribed surface current. To do this
we use the full nonlinear expression shown in Section 3,
Equation (3.13). Our discussion will center on two calculations,
both giving some insight into the relative importance of
the interactive mechanisms. The first calculation will be
that of an impulsively applied harmonic surface current
interacting with a single surface mode. The growth of the
spectrum as a function of time will be discussed, as well as
the nonlinear effects on the surface modulation. This sim-
plified picture will be compared with the linear calculations
of the Lewis experiment as an indication of the veracity of
the numerical techniques used in the integration. The second
calculation replaces the single surface mode of the preceding

case with a discrete surface spectrum interacting with an

internal wave with typical oceanographic parameters.




4B. Linear Surface Modes

In this calculation, we wish to focus on the inter-
action between a prescribed surface current and surface
gravity waves. To isolate this interaction from the nonlircar
lnteraction between surface gravity waves, we consider small
amplitude surface waves, so that the nonlinear interaction
is inhibited. The analysis in Section 3 is appropriate for
Calculations in which the parameters of the problem are
Characteristic of the ocean environment. It is inappropriate,
however, for conditions found in typical tank experiments.
This situation becomes clear if we examine the relative size
of the interaction coefficients to the doppler shift in the
1genmode frequency.

We recall that the frequency of the (N+v) sideband

was approximated in Section 3 by
w{(N+v) a4 w(N) + vQ 3 (4.1)

Ihie next order term in this expansion, which was neglected
in Section 3, would be v29/4N, where i = w(N)/2N and the

central wavenumber is given by kN = NK. Typical values for

ocean and tank experiments are

pr——




Ocean Tank

A 107% gee™t 6~ 1 et

K~ 2x10"4 cm7? K ~0.05 cm !

N ~ 500 N~ 8

U, ~ 2 cm/sec U, ~ 1072 cn/sec
v2 a/4N ~ 5x10°° v v? a/4n ~ 0.03 v°

3 =1

. Uk ~ 21077 sec

Uk ~ 0.1 sec

In the ocean enviroament the interacticn coefficient is
typically 104 larger than the doppler shift: howeyer,

in tanks the doppl2r shift is typically an order of
magnitude larger than the coupling coefficient. The tank
is therefore in a separate region of the experimental range
than is the ocean.

To see this result in detail, we consider the inter-
action equation for the surface gravity waves with a surface
current generated by a single internal wave with the frequency
correction term included

. i P >‘. ‘, - '
av(t) = i1v s==a (t) + > UNK a,_p (t) av+l(t)‘ .

\

(4.2)
The terms neglected in Equation (4.2) are an order of magnitude
smaller than the coupiing coefficient which in turn are an

order of magnitude smaller than the freguency correction term.
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Let us consider the problem of an impulsively-applied
harmonic current to a single small amplitude surface wave,
i.e., at time t = 0 we "turn on" the interaction between a
single surface mode and internal mode both of infinite spatial
extent. If we concern ourselves with only the grewth of the

first two side bands, we obtain the coupled system

¥

. Y iL
al(t) = 1w al(t) + 5 K Uo N ao(t)
a (t) = Luku a - (&) - &, (&)

o) 2 o) -1 1
a () = i2. a _ () - LNykvu a (t)

-1 4N -1 2 o “o (4.3)

where kN = NK is the wavenumber of the initial wave. We
may combine the equations in (4.3) to obtain

) g . NKUo 2 NKUo 2
al(t) - 1 N al(t) + -5 al(t) = == a"l(t)

) o NKU 2 NKU <
a_l(t) -1y a_l(t) + 3 a_l(t) & hep== al(t)
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: s
The coefficient of the forcing function is of the order 10 ~ sec
and the solution to the system may be obtained to a good
approximation b, =<tting the right-hand side equal to zero,

especially for the linear case, yielding

a, it = S— e T sinut; w-=-3 J"““’o’ + (1m)
(4.5)
when a, , (o) = 0.
The modulation function for the surface elevation
is given by Equation (3.57) which in terms of the a 's
becomes
+1
a (&)Y . ;
Gix,t} = i) e & 4w (4.6)
kN+V
y==1
where
- 2 - :
JN = kNx w(N)t
and (4.7)
g = = = c. £t
i
In terms of the sc.utions for the impulsively applied
internal wave, we have
a_ (o) eifN NKU_ 3 -igﬁt
Gix,t) = G e l - — sin wt [- sin K7 + cos Kﬁ]e
N w N
(4.8)
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for the modulation of the initial wave. For the early tine

i solutica, i.e., ut l, we can write

G(x,t) =~ hi(o) et'N ;l < KUOt [sin K¢ o+ g Cos ¥ ]
- 1NU_Kt [cos K- = ——= t sin K ]2
0 2

since . ~ 0.02 sec-]so that t << 50 sec. We can also

write

|G(x,t) | = h(o)et'N ;l - UKt [sin Rt gi cos K@]z

R g T —

(4.10)

which agrees with Zachariasen's calculation for the initial
value problem. Equation (4.10) may now be uscd to check the
numerical calculation at early ties.

For the numerical calculation, we selected the wave-

T P T p— "

number of the surface mode to be ko = 0.412 cm-l and internal ;
mode number K = 0.0515 cm-l. These values wrre chosen to be )
in the range used by Lewis (1971) in his interaction experi-
ment. For an internal wave of phas: speed of c, = 24.39 cm/sec,
the surface and internal wave are in resonance. Figure (1)

depicts tune discrete spectrum of surface waves at five different

times; the "0 sec" graph illustrating the initial conditions

for our problem. The initial slope |qk | = 0.0524 is that
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of the mechanically generated surface wave in the Lewis
experiment. The spacing between modes is given by the
internal mode number Ak = K.

The spectral "snapshots" in Figure (1) indicate the
persistence of a rather 1arrow spectrum. Only the sidebands
ot the primary wave have gained appreciably in energy after
a time interval corresponding to twelve cycles of the central
mode. The other modes scem to acquire and lose energy, but
not to steadily increase. This is seen more clearly in the
following figure.

In Figure (2) we indicate the continuous growth of the
spectral mode slopes in time. It is clear that three of the
nine modes in the calculation dominate the characteristics
of the spectrum. In hindsight then, the inclusion of the

other six modes was superfluous and their removal from the

calculation should not materially alter any conclusions made.
The effect of the internal wave on the surface spectrum 1is,
therefore, primarily local in k-space, its width being approxi-
matcly 2K where K is the internal mode wavenumber.

In linear theory for the case of resonance hetween the

primary surface wave and internal wave, the surface modulation

should be stationary with respect to the internal wave. We
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may characterize thce interaction as Lewis (1971) did in his

experiment, by defining a quantity called the surface dis-

e T

tortion (S),

S = (4.11)

which using the linear calculation in this section reduces

to

S = U_ Kt [sinxj # ‘—St cost] X (4.12)

Because we have a resonance condition, a qgiven segment of
the surfacc wave interacts continuously with a given phase

point of the internal wave as they both propagate decwn the

tank. The length of time of the interaction can there-

fore be measured as a function of distance down the tank,
1 i.e.,, t = x/CI. Keeping this in mind and recalling
Zachariasen's calculation of the maximum surface distortion,

we rewrite Eq. (4.12) as,

ey UO ‘/ -'KX) 2
o - = \ _
bmax ol 't Srm:; C K Ll 64 * (4.13)

This erpression differs in the initial slope from the one

given by Zachariascn, but as he pointed out the problem he
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considered in detail was the boundary value problem where-

as Eq. (4.13) corresponds to the initial! value problem.

Eq. (4.13) does agree with the linear calculation of Ko (1971)
and also the initial value problem of Zuchariasen, the
solution of which he left in general form.

In Figure (3) we compare the results of the numerical
calculation of the interaction with the linear expression in
Eq. (4.13) and the results of the Lewis experiment (1971).
The linear theory agrees with the numerical calculation
for a surprisingly long time. One should recail, however,
that the parameters only restrict the interaction time tc be
less than 50 seconds for the linear case. Near this tine
the two results diverge, the linear case growing gquadradi-
cally and the nonlinear numerical calculation saturating
to a surface distortion of approximately 0.65. It is un-
fortunate that for the experimental parameters selected
that the tank was not a few feet longer so as to distinguish
experimentally betwe:n these two calculations.

In the light of these results one could reproduce
in the present context the complete analysis given by Ko
(1971). The third curve in Fiqure (3) is an example of
such a calculation in which the initial wave is not in
resonance with the internal wave and therefore the surface

distortion is inhibited. It is not the similarities with
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linear theory, however, but the differences which are of

interest here. 1In linear theory, the resonant wave and
those close to resonance are unique 1in that the surface
distortion grows without limit, whereas the nonresonant
waves lead to finite surface distortions. In general,
however, if we stert with a resonant system the nonlinear
interactions will detune the system thereby inducing
saturation. The saturation level for the initially resonant
system, will, however, be maximum.

In Figure (4) the effect of including the four wave
coupling terms in Eq. (3.13) can be seen. The first effect
noted is the increased rate of growth in each mode, except
of course the primary mode which has an increased rate of
attentuation. To understand this effect we recall the
discussion in I about the preferential amplification of
the Benjamin-Feir sidebands. The sideband frequencies

which had maximum amplification were Wy = Wy (1+qk )
o

BF o
where 9y is the slope of the central wave in our notation.
o]

The corresponding wavenumbers are kBF = ko (l+.2qk ) which
o

for the initial conditions in our problem are kBF = ko (1+0.104),

i.e., +.043 cm_1 from ko . It is coincidental that the

Benjamin-Feir sidebands lie very close to the sidebands coupled

by the internal wave to the primary mode, i.e., *+.0515 cm_l

fronlko. This near coincidence of the wavenumber, however,
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accounts for the marked increase in the growth rate of

the sidebands.

The second effect apparent from comparing Figure (4)
with Figure (3)is the loss of oscillation in the mode ampli-
tudes. This occurs because of the changr in the phase
velocity induced by the nonlinear terms, i.c., a nonlincar
dispersion relation. To see this effect in mode detail
and to determine if a finer grid for thr wavenumbers would
significantly change the spectral growth indicated in
Figure(4), we introduced modes at ko*%K and ko'%K in the
present problem.

In Figure(>) the growth of the nine modes in the
latter calculation is indicated. The initial amplitudes
for this calculation are slightly different from the pre-
ceeding but this difference should be of no consequence.
of importance to the early time behavior is the initial
choice of phases for the modes. We see that with the phases
selected the sidebands at kot2K initially give up energy
to the system. This trend is soon reversed, however, so
that at late times (t-25 sec) the growth of the modes
directly coupled to the internal wave is not noticeably
affected by the initial choice of phases. We also see that
the modes at half-odd multiples of K which only grow by

means of the nonlinear interaction, play no part in the

spectral development.
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ComparingFigures(3), (4) and (5) we see that:
(i) the energy transferred directly from the internal wave
to the surface spectrum is localized in k-space, (ii) the
four wave interaction spreads this energy out, i.e.,
brnadens the —:ffect of (i), and (iii) the maor effect
of the four wave intcractions is between waves directly
coupled to the primary wave via the internal wave due to

the coinciacnc~ nf the Benjamin-Feir spacing (.043 cm-l)

1

and the wavcruik:r spacing (.0515 cm ).
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4C. Ocean Spectral Development

In this calculation we wish to contrast the spectral
development in an cce. environment with that just calculated
for a tank. We consider an impulsively-applied interaction
between an i:ntei.uai « o < in the ocean and a surface spectrum.
We assume the interr.! wave to be “110‘ meters long; i.e.,

K = 2x107% em™!, witn frequency ¢ = 1072 sec! so that its
phase velocity is Cl = 50 cm/sec. The central wavenumber of
the surface spectrum is assumed to be in resonance with the
internal wave and therefore has a wavelength of 64.18 cm;
i.e., k,= 9.79 107 cm™}. The amplitude of the central mode
is 1 cm, so that its slope (qk) is 0.1.

The estimate i1n Section 4B indicates that the coupling
of the central mode to the rest of the spectrum in the ocean
is much greater than in the tank case. This implies that
the energy will drain much faster from the central mode. For
this reason the present calculation is done with 21 modes so
as to avoid any uifficulty with the finite size of the spectrum
in determining the characteristics of the spectral development.
To simulate the occan environment, we assume the remaining

3

twenty modes tc have an initial amplitude of 106 7; i.e.,

two orders of magnitude smaller than the primary and to have

random phases.




Due to the large number of modes in this calculation,
the representation of the results is slightly different than
in the tank case. If we omit the four wave coupling, the
spectrum is shown in Figures(6) and (7) at different times.
Although the number of modes is discrete, in Figure (f) we

join the mode amplitudes at a given time to aid the eyc in
determining the spectrum. The "0 sec" spectrum is the initial
state of the problem and is depicted as a very nairow spectrum.
After the interaction is "turned on" the spectrum is secen to
broaden and develop a bi-modal character.

Figure (7) depicts a continuation ot the spectral
development initiated in Figure (6). It can be scen that the
cnergy 1s becing symmetrically transferred to both higher and
lower wavenumbers as the interaction persists. It is evident
that the more central mode amplitudes are oscillating in time
and as the bulk of the energy is transferred to the spectral
extremes the energy in the central part of the spectrum is
decaying. Indeed, if we look at the linear part of the solu-

tion to this problem as given by Equation (3.52), we have

q, (£) = qylo) I _ (1) .

Then using the asymptotic form of the Bessel function, the

central part of the spectrum decays as 1//t and oscillates
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with a period T = EJE— which is approximately 5 seconds
oo

in our problem. This is the structure that is bheginning

to appear in Figure (7). The central mode, whose frequency
is.uk = 9.79 rad/sec, has a period of 0.641 scc and is
depleted of energy in approximately eighteen cycles. A
somewhat lesscr amount of energy is then returned to the
mode in a scmewhiit shorter time.

Figure (8) depicts a further contrast with the tank
experiment. In this figure we show the surface distortion
of the ocean for the 2l-mode calculation. If we examine
the expression for the modulation function of the surfacc
slope given by Eq. (3.61), retaining only the linear terms
~& have

A

_ \V]
Gs(x.t) = E ; qN(o) Jv(T) z

vy=-=A

i (KZ+)
where z = e , 2A is the spectral width and N > A >> 1.

We may approximate the sum in Eq. (4.14) by,

(= - )|

A

‘J=_A

which is the generating function for Bessel functions.
Using the definition of z and Eq. (4.15) we obtain for the

slope modulation function,
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Gg (x,t) ® gy (0) exp[it coski| . (4.16)
Because Eq. (4.16) has modulus unity, it is clear that to
first order both the surface distortion and slope distortion
are constant. This linear result is in agrecement with the
numerical calculation indicated in Figure (8).

For the initial conditions of this problem, the four
wave interaction torms do not affect the qualitative results
shown. 1In fact, for the first 14 seconds or approximately
twenty periods of the primary wave there is essentially no
quantitative difference in the surface distortion. Further
calculations using more "physical" initial conditions will

be conducted elsewhere.
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4D. Conclusions

It is clear from the calculations discussed in
Section 4B and 4C that the ocean and tank experiments fall
into two quite different interaction regimes. This is most

clearly illustrated by the growth of the surface distortion

found in the tank experiment and calculation depicted in
Figure (4) and the complete lack of growth found under
oceanographic conditions for an equivalent interaction de-
picted in Figure (8). This result points up the extreme
caution required in the design of tank experiments whose
purpose is to induce information about Interactions on the

real ocean.

PR———

The calculations clearly demonstrate the need for
detailed analysis of experiments to determine their appli- !
cability to the ocean environment. To this end a program
of calculations is being initiated which will determine ]
spectral modifications produced by surface currents under
a variety of oceanographic rconditions. Calculations will

also be made for the corresponding tank experiments where

such experiments can be conducted. An example of such a

calculation would be that of a stationary current pattern
in the lab which simulates the convergence zone of a long

internal wave. Since such a simulated internal wave could

58

B P R gy L T R e e



be constructed by contouring the bottom of a tank appro-
priately, the difficulty encountered in gecnerating a trans-

lating internal wave in a tank is avoided.
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