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FIGURE CAPTIONS 

(1) The modulus of the nine surface modes (slopes) is 

plotted at five different times, i.e., five "snap- 

shots" of the surface spectrum. 

(2) The modulus of the nine surface modes (slopes) are 

plotted as continuous functions of time.  At any 

instant of time the surface spectrum can be read from 

the labeled curves. 

(3) The surface distortion for the tank experiment is 

plotted and compared with three calculations.  Two 

calculations are at the resonance c = c  , (i) linear, 

(ii) modal, and the third calculation is modal theory 

off resonance. 

(4) The continuous growth of the surface spectrum is indi- 

cated for the calculation depicted in Figure (2) , but 

with the four surface wave interaction "turned on". 

(5) The continuous growth of the surface spectrum is indi- 

cated for the calculation depicted in Figure (4), but 

with additional modes situated at k i K/2 and k t   -^K . o o  2 

(6) The development of the ocean surface spectrum is indi- 

cated at four distinct times.  The discrete nature of 

the calculated spectrum is approximated by the continuous 

line joining the 21 modes. 

(7) The same as Figure (6) but at latter times. 

(8) The surface distortion of the ocean surface is indi- 

cated by the straight line, i.e., no distortion. 
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1.  INTRODUCTION 

The first report in this series [Watson, West and Thomson, (I), 

PD-72-030 (RADC-TR-7 3-74)] was concerned with the development 

of a formalism which would allow a direct calculation of the 

non-linear interaction among surface gravity waves.  The tech- 

nique used was to expand the ocean surface in a series of 

modes, i.e., a finite Fourier series, and express Bernoulli's 

equation and the kinematic boundary condition at the ocean 

surface in terms of interacting modes.  These modal equations 

formed a system of rate equations with quartic and triplet 

mode couplings giving the non-linear interactions.  These 

equations were then transformed to normal coordinates, i.e., to 

the eigenmodes of the linear system, and integrated numerically 

on a computer.  A calculation1'2 with simulated initial conditions 

compared favorably wxth the BenDamin-Feir (BF) experiment (1967). 

In this second report we wish to extend the above analy- 

sis to include the interaction of the surface gravity waves 

with a surface current.  We will treat the surface current as 

being generated by a "massive" internal wave, i.e., an internal 

wave which does not react to the surface gravity waves [see 

Thomson and West, PD-72-023 (RADC-TR-72-280)1, and consider 

only the linear interaction between the current and surface 

gravity waves.  The consequences of relaxing this assumption. 
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i.e., allowing the internal wave to change, is being inves- 

tigated elsewhere (v/atson. West, Cohen, PD-73-032) .  Section 2 

reviews the construction of the linear equation and obtains 

results consistent with those of M. Milder (1972) and 

indicates an error by Zachariasen (1972) pertaining to the 

surface on which the equations are evaluated. 

In Section 3, a translating surface current is expanded 

in harmonics and introduced into the linear equations, which 

are expressed in terms of modes.  The equations are written 

in two dimensions, since the added complexity over the one 

dimensional equations is not great.  The eigenmode equations 

close to resonance are rather simple, a given mode K being 

coupled only to its neighboring modes ^±^, where ^ is the 

fundamental wavenumber of the internal wave.  A hermitian 

representation of the interaction equation can be approxi- 

mated near resonance and an interesting form of tnis equation 

is derived in two dimensions. 

The two dimensional nature of the equations is not 

exploited in this report, but a discussion indicating the 

possible direction of future work is given.  In the one 

dimensional form, the expressions are compared to those 

developed by Rosenbluth (1971) , where an inconsistency in 

the level of approximation is found. This inconsistency 

arises from the additional terms uncovered in the analysis 

of Zacharisen (1972).  A modal expression exact to order 1/N 

is derived and the solution in terms of convolutions with 

discrete Greens functions is formulated. 

2 
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The modal equations are solved numerically in 

Section 4 for a number of cases.  The first calculation 

employs initial conditions which simulate the experiment of 

Lewis (1971).  In this experiment, an internal wave was 

generated at a fluid interface near the bottom of a tank. 

An infinitesimal surface wave was mechanically generated 

and the modulation of the sirface height and slope recorded, 

We calculate the modulatior; as a function of time, as well 

as the development of the surface spectrum and compare the 

results with the experimental data, 

A second calculation is presented in which the para- 

meters are characteristic of the ocean environment rather 

than those of a tank.  The case of a single (dominant) sur- 

face wave in an unsaturated surface spectrum interacting 

with an internal wave is considered.  The results are dis- 

cussed in the context of the linear theory developed in 

Section 3 and the effect of nonlinear tranfer of energy 

between surface waves is also considered.  The distinction 

between the interaction regimes for tank experiments and 

the ocean experiments is also discussed.  The important 

quantity is determined to v3 the relative magnitude of the 

correction to the dispersion relation for the eigenmodes 

and the coupling coefficients of the surface waves to in- 

ternal waves. 
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2.  LINEAR WAVE EQUATION 

This section is essentially a review of the derivation 

of the linear wave equation and may be omitted by those fa- 

miliar w:th its construction.  In this development we consider 

the surface gravity waves to be infinitesimal and to be inter- 

acting with a non-uniform surface current.  The surface cur- 

rent may be generated by a non-dispersive internal wave, a 

swell passing through the region of interest or by a number 

of other mechanisms.  For the present we will not be concerned 

with how the surface current is produced, only that it is 

present.  This analysis complLnents that in PD 72-023 (RADC- 

TR-72-280), i.e., the linear wave equation being constructed 

includes terms which were considered negligible previously and 

found by Zachariasen (1972) to be important. 

We assume the ocean to be both homogeneous and irrota- 

tional so that we can use a potential description of the velo- 

city field, i.e., since Vxu = 0 we can write u = 7<I).  The ocean 

is also assumed to be incompressible {7«u«0) so that the 

velocity potential satisfies Laplace's equation. 

V6* = 0 (2.1) 

The  integral of the momentum equation yields Bernoulli's  equa- 

tion at the ocean surface 

iMMteMM—*lriiii in 
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*t + 7 ^♦•v* + 9Z at z (2.2) 

with the condition that hydrostatic equilibrium must prevail 

at infinity and z«c is the free surface of the ocean.  The 

velocity potential must also satisfy the kinematic boundary 

condition at the ocean surface, i.e., the rate of increase 

in the wave height fc llowing a fluid elemcrt is the vertical 

component of the fluid velocity, 

where 
dt 

d 
at 

34 
77 at z 

It + 74'V 

(2.3) 

(2.4) 

is the Eulerian derivative. 

The linearized forms of the dynamic equations may be ob- 

tained by separating the effects of the infinitesimal surface 

waves and surface current.  We do this by writing the velocity 

potential and surface displacement as, 

and 

♦ = Y + 4) 

X+ h 

(2.5) 

(2.6) 

where 4» and x are associated with the current and 4» and h are 

associated with the infinitesimal surface waves.  In the approx- 

imation we are considering, the effect of the surface waves on 

■   ■mini         ■   ».--,_ 



the current is negligible.  Therefore, f and X satisfy the free 

surface equations independent of the surface height (h) and 

velocity potential {$) ,   i.e., 

and 

V  + J V^'V* + gX 

X. + W-VX t   s  s 

■  0 at 

3Y 
9z =  ^-L   at 

z = X 

z = X 

(2.7) 

(2.8) 

Note that Equations (2.7) and (2.8) refer to the unperturbed 

ocean surface, that is, unperturbed by the surface waves. 

To determine the interaction between the gravity waves 

and current, we substitute Equations (2.3) and (2.6) into 

liquation (2.2) to obtain, 

'■ , :      .■•>.■ --.v      .,!,-_ I'i<   »  1. \/'1' -■/ :  !  M ,' 1     ,1 !    Z   -  X + h 

(2.9) 

+ ^ V(J)-V<|) + V^-VT + qh = -lft + J VT-V'C + gXJ   at 

The right hand side of Equation (2.9) would apparently vanish 

using Equation (2.7) except that the two expressions are not 

evaluated at the same boundary.  It is necessary, therefore, to 

oxpand Equation (2.9) about the ambient surface, i.e., the sur- 

rounding region on which there are no gravity waves.  The ex- 

pansions for the velocity potential are as follows: 

7f 
z = X+h 

* ivy   +   h  ^-   (?f) 
I d Z 

(2.10) 

z = X 

MMMMfeMaM ^MM ^«^■iil i        i    i     ■^"■-.■■j"*"MaMfci — ■  



and 

■ ■ X+h « i*t + h H (V (2.11) 
z = x 

in which we have kept only terms linear in the surface wave 

height (h). 

We define the current as follows; 

74» = U + V  k 
s 

(2.12) 

where  k  is a unit vector in the vertical direction.  The 

horizontal current U is significant regardless of the 

generating mechanism, the vertical component V  , however, 
s 

is not.  For example, if the current is produced by a non- 

dispersive internal wave, then  |ü| >> jv |  so that only 
s 

the horizontal component need be retained in Equation (2.12). 

If, however, the current is produced by a passing swell, the 

vertical component of the current may be comparable to the 

horizontal, so that both must be considered.  The particular 

generating mechanism will therefore determine the form of the 

current used in the analysis. 

using the definition of the current (Equation (2.12)] and 

the expansions given by Equations (2.10) and (2.11) in the in- 

teraction equation [Equation (2.9)] we obtain, 

dMMMM&MMHMH I IM——— ■■ ...!■.-.-.       ..   -, -..^■■—,.-.. 



^t + i y**v* + 
13V 

+ (V(t)+V4')*VV  h + 7f*f# ■ 0 at  z = x 

(2.13) 

If we now restrict our analysis to the linear case, i.e., 

linear in both $  and h, we reduce Equation (2.13) to 

/   dV \ 
4) + ?f •?# + (g + jr*J h = 0   tt s «X • (2.14) 

We note that in addition to the standard linear interaction 

term between the surface waves and current (V'P'VcJ)) there is a 

second interaction due to the vertical component of the current 

field.  This modification of the gravitational acceleration 

nas boon discussed recently by M. Milder 

In determining the linear form of the kinematic boundary 

condition [Equation (2.3)], we encounter the same difficulty 

as with the interaction equation, i.e., going from the perturbed 

to the ambient surface.  We expand the terms in Equation (2.3), 

just as before, and obtain 

V 
3V 

z = X+h 
i       - K-8) (2.1: > 

z =X 

to terms linear in h.  Using Equation (2.15) along with the other 

expansions [Equations (2.10) and (2.11)1 and the kinematic bound- 

ary condition for the current [Equation (2.8)] in Equation (2.3) 

yields, 

8 
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3t 
7  + V**V  + VV   •Vjh 
S 6       S S S     Sf 

8V 

3z 3z 
V(ji-7X  -  VV   «VX 
ss s s   s 

at     z = X 

which to  terms  linear  in $ and h becomes 

dh 
St 

3Vs 
t + ^jr - VV at  z =X (2.16) 

The incompressibility condition applied to the surface current 

yields the relation 

3V     »a*     2        « 

R    3z2 

which when substituted into Equation (2.16) results in, 

(at+'ss)h ■ H " 7#-vsx     "  2-x  • <2-17) 

We may replace the gradient of the ambient surface in Eq 

tion (2.17) by taking the gradient of Equation (2.7) and using 

the definition of the current to write 

ua- 

VX 
s    g 

--|[»*».v.] 
Substituting Equation (2.18) into Equation (2.17) yields, 

(2.18) 

drv*)' ♦. ♦ I ft • v (2.19) 
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Neglecting terms quadratic and higher, except when they involve 

a coupling of the surface waves to the surface current, we 

obtain from Equations (2.14) and (2.19), 

^. +• VY'7(|) + gh = 0 (2.20a) 

h. + V t'V h + (V •U)h t   s  s     s 
A       1      ^    ',    A ■  + — ^-T-« y ii z   g <)t  s (2.20b) 

evaluated at z=X.  Although these equations have the same 

structure in one dimension as those derived by Zachariasen (1972), 

they are evaluated at z=x and not z^O as were his expressions. 

The small terms obtained by further expanding the set (2.20) 

about z=0 are found to be of importance. 

Milder (1972)  has shown that the simplicity of these 

equitions can be maintained by noting that the right-hand side 

of Equation (2.20b) can be written as. 

jj    _    dx    H_ _ 3_S ^0 
(2.21) 

in  a   single  horizontal  dimension x,   where  s   is   the  distance 

along   the  surface  z  =  x(x,t)   and  -—  is  the derivative   normal 
ö n 

to that surface.  Milder then shows that because the velocity 

potential satisfies the Laplacian, in two dimensions, 

'2*-(k^y(k-i|*)»-« (2.22) 

10 

_«^MHMMi ■"-—r--- ^11 llVl ll( ' II I fll 



that 

3_s M 
3x 9n 

■ -i Ü 3x 
(2.23) 

and Equation (2.20) reduces to, 

3t (j) + gh = 0 

(2.24) 

it  ^ uxh = -i ^ 

where the x derivatives are constrained to the surface 

z • x(x,t) and -^ is the Lagrangian derivative, g^ - gt + u f^ 

This analysis may be extended to two dimensions, resulting in 

3U the loss of the »£ term in Equation (2.20b) (see Appendix in 

Watson and West, PD-73-048). 

11 
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3.  MODAL ANALYSIS WITH A HARMONIC SURFACE CURRENT 

This section is concerned with the interaction between 

surface gravity waves and a current distribution 

U  ■  U(x,t) ex 

where 

U(x,t)  = 2-» ut. cos K(x"cit) (3'1) 

K 

and e  is a unit vector in the direction of propagation.  The 

approach used is that developed in Section I in which eigen- 

node equations were constructed to represent the interaction 

of gravity wa.'es with gravity waves.  We will extend that 

analysis to include the interaction of surface gravity waves 

to surface currents prescribed by Equation (3.1).  The linear 

solution to the gravity wave-sur ''ace current interaction 

problem has been obtained by a number of investigators using 

a variety of approaches; e.g., Rosenbluth (1971), Ko (1971) 

and Zachariasen (1972).  In this section we will indicate in 

the context of the eigenmode model how these various calcula- 

tions differ  in their level of approximation.  In the next 

section, we will extend the calculation into the nonlinear 

regime. 

The first order equations for the velocity potential 

and surface elevation derived in the preceding sections 

12 
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[Equations (2.20) and (2.21)] easily accommodates the current 

distribution defined by Equation (3.1).  At the unperturbed 

surface, the interaction may be written in two dimensions as 

^t + gh  = Eu 
K K ^X COS K5 

and (3.2) 

ht - s • 'S J
KK cos KC - Kh sinK^ 

K 

where C ■ x - c-t and c is the phase velocity of the internal 

wave packet.  Because the velocity potential satisfies Laplace's 

equation, we may write the two-dimensional Fourier transforms 

of $ and the surface elevation as 

(t>(r,z,t) 
y^r J- 

and 

h(r,t)     = - r 

eik,r elklz  ^(t)  d2k 

(3.3) 

/Jir 
eij^ hjt(t)   d2k 

and r = (x,y).  Although the wavenumbers are continuous in 

Equation (3.3), we will find that the dynamic equations restrict 

their values to a discrete set.  The resulting expressions will, 

therefore, conform to the definitions introduced in Section I. 

The interaction equations may be expressed in terms of 

the mode amplitudes as 

13 
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u cos K^  elk*r d2k 
k      J 

■  0 

md 

Joo 

|*i   I k I Z 
h-» -  k  e' '  0- 

K      k 
COS K: 

K U   h-t sin K^ e     a  i 

ik-r ,2. e    d k 

(3.4) 

WG recall that the linearised equations have been obtained at 

the surface z = x-  The exponential terms in Equation (3.4) 

ray therefore be S-JI: equal to unity since |k|x << 1 for the 

.-.arfaco gravity waves of interest.  If we multiply Equation (3.4) 

by oxp [- -k'rj and integrate over the surface plane (r), wo 

obtain 

;K ♦ ghj Ei 
K 2 ÜK 

-iKc t iKc t 
(kx - K) *k-K e       + (kx + K^ it+K 

e     . 

and 

*I " 1^1 H 

(3.5a) 

El -iKC,t 
4». •   ' 2  K (kX-K) ^-K +Khk^ 

+ e 
iKc.t 

i 
(kx + K) h^.K " Khk+K 

as the linearized node coupled equations to second order in the 

interaction. 

14 
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3A.  The Eigenmode Expansion 

We now introduce the eigenmode variables constructed 

in Section 1: 

•.'"(*) H^iif M (3.6) 

where a)(Jc) is given by the linear dispersion relation (- ^Tifj") 

and A(k) is chosen to be 

A{k) 
/TfT a)(k) 

(3.7) 

By taking the sum and difference of Equations (3.5), we obtain 

the eigenmode equations 

(±) (±) ibv:t'(k) +uk)buM*) = A(k) fir.itj »lÄlf (tj1 

(3.8) 

where F^fc) and F2(ic) are defined by the right-hand sides of 

Equation» (3.5a) and (3.5b), respectively. 

We may rewrite Equation (3.8) in the more explicit form 

(+) 
^^i.(k)b^) . -jEii.iiiiu 

K | k—K 

-K      -iKc t 
- e 

x a) (k 
1 * )c~=ir * W  ) *'*' *-i) I 

-j"i^-5fe   ).'-'<!■«.] 
15 
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t E ».in -^ ^s 
K k+K 

I K_   +     h>{k) 
kx+K u)(k+K) b^   ; (k+K) 

k   +K x 

»00 
üj(k+K) u(   ) (k+K) 

(3.9al 

and the second coupled equation 

'-.h^'1 it) I   \   -* ^   V^ k  -K       -iKcTt 

K |k-K| 

1 - -^   ♦ JiÜÜL.        b(->(W) h -K + ^Tk=irr 

-i 
K 

t   K co{k) 
cü(k-K) 

|b^(k.K) k   -K 
X 

->        kv+K 

kl    x. 
ilo-t 

e 
k+K 

1   - 
k. +K aj{k+K) bt'Ut-i) 

i - 
k   +K x w(k+K) 

bv    ; (k+K) 

(3.9b) 

16 
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where we have used Q ■ CjK as the frequency of the internal 

wave.  Examining the structure of the coupling coefficients 

in Equation (3.9) makes it clear that b + and b   are 

only weakly coupled, since |t|i ^x >> 
K •  It 

is only necessary, therefore, to discuss the equations for 

either b^ or b   but not both. 

We may remove the explicit time dependence from 
* 

Equation (3.9) by introducing the variables 

«<*>(*)  » b^tf) e1^1' (3.10) 

If we introduce Equation (3.10) into Equation (3.9a) and 

use the decoupling approximation, we obtain the equation 

for right travelling waves 

icfa    =     [u)(k)   - k^j]   c(Jc) 

+ ££ 
kx-K 

ITII 
i + K     .    oj(k) 

kx-K      a)(k-K) 
c (J^-K) 

^C   i- K 
kx+K 

Jüjk) 
iü(k+K) 

c(k+K) 

(3.11) 

where we have deleted the extraneous (+) superscript. A 

second and perhaps stronger justification for the form of 

Equation (3.11) is based on the notion of a resonant inter- 

action between the surface gravity waves.  This notion was 

This transformation was suggested by Kenneth Case and the 
resulting Hermitian equations are explored elsewhere, Watson, 
West and Case, 19/3 (III). 
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I 3B. Approximate Two-Dimendional Equation 

First let us note that, while ic is a continuous 

variable, Equation (3.11) is really a discrete set.  Thus 

for a given c(ic) , we need only consider the equations for 

c(Jc') where ic' - Jc + L niK K with mK being a positive or 

negative integer. To obtain a Hermitian form of Equation 

(3.11), we restrict our attention to the case of a single 

internal wave of wavenumber K; then 

(*) 

it) 

ÜK  -  kx"K r1 1*1 •*■» 

u 
r 

|Mj 

K >!, ^ 
k +K 

|M| 

^ + ^ + 
wfk-K) j 

(3.13) 

and introduce 

p(ic) (D(k) - kx Cj 
(3.14) 

We consider the condition where |^| >> K  which 

is applicable to the ocean situation.  In this limit. Equation 

(3.11)  reduces to 
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U 
=   [Cu(k)  - k CT]  C(it)  +       ^  |k 

at x !        2 

ac(k) 
<| Jc{k+K) + c()t-K) > 

(3.15) 

The change of variable 

c(k)  = ^7 ff(fi) 

in  Equation    (3.11,   could  also  be  used   to  obtain 

i  JlliL      =     Iwdc)   -  k cT]   ^(k)   + 2-r 
bK 

ot 
IC^Cj] ^(k) + Z-r 2^ {aK(k+Kj ,(k+K) 

K     I 

♦ aK(k) ,(k-K)| (3.16) 

where 

aK(k)  = fllljl - K|     . (3.17) 

which reduces to Equation (3.15) for |k| .> |K|. 

Equation (3.16) gives the interaction of the gravity waves 

with an internal v.'ave spectrum in a Hermitian representation. 

To obtain an alternate expression for the two- 

dimensional problem, we focus attention on Equation (3.15) 

for the case of a single internal wave.  We note that we 

nave been concernca with the wavenumber region |k| ^ K, 

so that we may employ the following approximation 
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2   < c(k+K)  +    e< k-K)> c(it) + i K2 v?   c(it)  + ... 
a k 

(3.18) 

where V^. is the gradient operator in k-space.  If in addition 

to Equation (3.18) we look at the eigenvalue problem 

0(f)  = ft. (it) e"iXt (3.19: 

Equation (3.15) becomes 

where 

fz txm +-j 
K'U, 

MMMJ - x 
S(k) (3.20) 

UJ'U)  =  cü(k) + |t| Uk - kx 02 (3.21) 

The quantity u)'(k) is the frequency of the surface wave in 

the coordinate system translating with the phase velocity of 

the internal wave and is therefore a constant. 

The efficacy of using the expansion given by Equation 

(3.18) is discussed elsewhere (III) where an exact one-dimensional 

eigenvalue problem is solved and compared with that obtained 

using the expansion.  The eigenvalues and eigenfunctions of 

the approximate expression are found to be quite close to 

those given by the exact solutions. We are therefore confident 

that the general behavior of the solution to Equation (3.15) 

may be determined by examining the solutions to Equation (3.20). 
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3C.  Approximate One-Dimensional Equation 

Let us from hero on focus our attention on the one- 

dimensional form of Equation (3.15),  In one dimension k - (kx,0 

and since the interaction equations form a discrete set 

we use the wavenumber kx = nK, n = 0,1, ...N-l, N, N+l,   

For a single internal wave of wavenumber K, we may rewrite 

Equation (3.15) as 

ic  ■ [Av.)   - n,Jcn ♦ 2 UonK {Cn + 1 + Cn-l| 
(3.22) 

where tH-KCj) is the frequency of the internal wave.  We 

recall that the strongly interacting surface nodes are those 

for which the frequency resonance condition given by Equation 

(3.12) holds.  If we assume that the central surface mode is 

located by an integer n » 1 and .(n) » «, then we may find 

a simple approximate expression for Equation (3.22). 

(i)  Expansion in Terms of Block Waves 

We introduce a new variable which is shifted in phase 

from the central mode n = N 

a  = c  e 
v     n 

i[ü)-Nßlt (3.23) 

into  Equation   (3.22)   to  obtain 

[W  - W(n)   -  Mfi  ♦  nr.]av     =    | V  n   [av+l  +  av-l]      ' 

(3.24) 
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Note that the new expansion coefficients [av] are constants 

in time and v measures the deviation of the wavenumber from 

the central mode, i.e., n ■ N + v. 

We now proceed to expand üJ{N+V) about u (N) and deter- 

mine the value of Q in terms of N.  We select the frequency 

u to be 

u CJ(N) + 6u (3.25) 

so that Equation (3.24) becomes 

|«tt ♦ | (^)2 /gNKJ gNK } a. 

-1 

-f- (N+v) (av+1 ♦ a^) 

or expanding (N+v)  , we have 

av+l 
+ av-l " Uo 

-1 2 6 0) , _ 
IT + I 

N 

1 Q /vV 
1  K \N/ av « 0 (3.26) 

where Q has been set equal to j /gK/N  . We note that 

Equation (3.26) is the expression obtained by Rosenbluth (1971) 

for the interaction of discrete modes when the expansion set 

for the surface elevation and velocity potential are Block 

Waves.  It might also be mentioned that the expansion given 

by Equation (3.18) in the two-dimensional case is equivalent 

to adding zero to Equation (3.26) in the form 2av - 2av and 

taking the limit of continuous v as done by Rosenbluth.  We 
2 

also note that although terms to order (v/N)  have been main- 

tained in Equation (3.26), terms of lower orfier have previously 
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been deleted, i.e., order v/N.  These arc the terms 

in the coupling coefficients [Equation (3.13)] k • K x 
which arise from the- current gradient terms in Equation (2.21! 

and were first discussed by Zachariasen (1972). 

Because of the inconsistency in the order of terms 

maintained in Equation (3.26), we take a slightly different 

approach than that of Kosenbluth.  We introduce the variable 

a (t)  ^  c (t) eUUN)-N.]t e
1V2 

v        n 
(3.27) 

into the one-dimensional form of Equation (3.11) to obtain 

a (t)  =  - i U(n) - u(N) - v..] a (t) 
V v 

Ü 
+ -^ nK 4 (l ^ + -i^j)   ^v-l 

/   J_ +  .(n)\ 
V^  n+1  .An+l))    v+1 (3.28) 

If we expand .(N+v) about U)(N) and equate  with * /gK/N 

then 

.-(N+v)   « h)(N)   +   Vfi   ;     n   =  N   +  v 3.29a) 

and 

ui (n) 
a) (n + 1) s 1 

1 
2n 

(3.29b) 
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SubstituLing Equation (3.29) into Equation (3.28) results in 

the expression 

UK 3U K 
av(t)  = -°- n (a^ - av+1) + -f-(a^ + a^) (3.30) 

which is exact to order rr .  The second term in Equation (3.30) 

is of order JT smaller than the first and invites a perturbation 

approach to the problem. 

(ii)  Perturbation Solution of Equation (3.30) 

Let us consider a solution to Equation (3.30) of the 

form 

av(t)  = a^o)(t) + 6av(t) (3.31) 

whe^e 6a (t) is of order — smaller than a   (t).  If we scale v N v 

the time in Equation (3.30) as 

T  = U KNt o (3.32) 

and introduce the perturbation expression Equation (3.31), 

we obtain 

St °r '*' = i ra
(o) 

-    I  [av-l (t)   - ■»•' ] 
25 
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and 

d- ««..(t) V 

i v r (o) _ (o}i 
2   N     [av-l        av+lJ (3.33b) 

where we have deleted terms of order 1/N .  Equations {3.33a 

and b) are correct to order 1/N. 

It is clear that Equation (3.33a) is the recursion 

relation for Bessel functions. The solution to our first 

order equation can therefore be written as 

.r«*' <0) W*' 3.34) 
£ = -oo 

where Jm(T) is the Bessel function of the first kind of order 

m.  The expansion coefficients (d(o')are determined by the 

fact that only m = 0 Bessel functions are non-zero at time 

: = 0 and are selected to satisfy the initial conditions for 

the problem. 

Using the first order solution given by Equation (3.34) 

and the additional recursion relation for Bessel functions 

P-  J (t) 
T   n Jn-1(T) + Jn + l(t: (3.35) 

in Equation (3.33b) we obtain 
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-r—   6a dT       v 
1 
2 6av_1  -   6av+1 

(o) 
4M 

£=-00 
~3T T      t-v 

(3.36) 

Equation (3.36) is clearly a linear equation in 6av with a 

driving force given by the sum over Bessel functions.  We 

may solve Equation (3.36) by rewriting the equation as 

a? 6avh) -H Sa^d) - 6av+ 1(T)] ' Fv (T) (3.37) 

where 

Fv(T)  " i» «,   ^ £, = -00 
E *(o) dJ

£-V(t)    H-V 

(3.38) 

If we introduce the Laplace transforms 

^[6av(T)]  = 6av(s) =J  e"
ST 6av(T)dT 

and (3.39) 

XtFv(T)]  =  Fvis) = J   e"31 Fv(T)dT 

into Equation   (3.37),  we obtain 

s  6av(s)   - |  t6av_;L(s)   -  6av+1(s)] Fv(s)   +  6av(o) 

after  integrating^ 
d6a 

"37 
v 

(3.40) 

by parts. 
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We observe that Equation (3.40) may be integrated 

by using the discrete Green's function g(v,s) which satisfies 

the equation 

sg(v,s) - » Lg(v-l,s) - g(v+l, s) ] vo 
(3.41) 

The   solution  to  Equation   (3.41)   is given  by 

g(v,s) 7*1 /2TT    -'-<» 

-ivKx   , e dx 
s-i   sin  Kx 

;3.42) 

which may be  verified  by  direct  substitution.     The   formal 

solution  to   Equation   (3.40)   may  now be written  as 

ca   (s)     -   2-<    g(v-v',   s)   [FV,(S)   +   öav,(o)J 
v' . 

(3.43) 

The inverse of ca (s) may be obtained by recalling 
v 

'X^1 I^UjCtnicfjCT)!! ■ jfT f^t' ) f2(i-^) di' 

(3.44) 

where ^"1{f} is the inverse Laplace transform of f.  Using 

Equation (3.44) on Equation (3.43)  yields 

6av(:) S I1 rjW-v', T-T')[FV d') + 6«v#(o) 6(T')] d:' 

(3.45) 
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The Green's function in Equation (3.45) is given by 

g(v-v/, i- ' 
I  I    -i(v-v')Kx  i (:-, ')sini';x 
  i   e c ^'- 

(3.46) 

/I7 

Because wo are dealing with a discrete set of states, we 

approximate the limits on this integral by t  ^,   which is the 

periodic ccnditicn imposed or the surface waves ovsx th^ 

wavelength of the internal wave.  In this approximation. 

Equation (3.46) yields 

qfv-v' .-r-T ') « J   MI- ') 
V ~ v 

so that Equation (3•43) becomes 

(3.47) 

00 

:a (i) =2^^^^''^ oav/(o)+ 4  2-r   d{o)   I 'V 

V',1=-™ 

dJ 

dx ' 

i-v' 
+ "T7- J«.-v' Jv^,<T-T')dT' 

(o) 
as the general solution to Equation (3.33b) with d^'  given 

by the initial conditions for the solution to (3.33a). 

The surface elevation is given by the discrete form 

of the one-dimensional Fourier transform in Equation (3.3). 

This, together with the defining equations 1(3.6) and (3.10)] 

yields 
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h(x,t) 
2 ^-^ k n   n 

(    ikn(x-cIt)    (    ik^X-Cjt) 
c   e - c   e n n 

(3.49) 

We note that for a situation with only right travelling waves, 

i.e., predominantly in the direction of the wind, c^   . 0 n 

for k  > 0 and c(") = (c( + ))*so that 
n -n     n 

h( V  rn x,t)  =  / ^  r— sin 
n^O   n 

[^(X-Cjt) ♦ 6n] (3.50; 

where 

c<+',t, 
19 

r  e n 
n 

(3.51) 

Using Equations (3.27), (3.34) and (3.48), we have for the 

slope variable 

c (t) n 
-  ' (o) av  (t) + oav(t)(  exP I " i (Lü(N)

 " Na>t [- - iv Jj 

(o; 

im=ÖB 
Ji-.h)   +4N t   f di' 

I? -v' 
T'    i-v' ^'Vv, d-T') 

< exp - i(u(N) - m\t  - lv » (3.52) 

where we have set 6a (o) = 0.  Inserting Equation (3.52) 

into the expansion for the surface elevation results in 
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h(x,t) 

  00 

N+V>0   £=-00 NT^  
hN+£(0) 

V' = —oo  -^ 

g(v-v' ,T-T')FV/ (TMCIT' *  sin [eN + kvc - v jj 

(3.53) 
where 

6^ ■ kNx - u)(N)t 

(3.54) 
and 

kvC = vK(x - Cjt) 

Equation (3.53) is a superposition of travelling wave with 

time dependent amplitudes. 

If we expand the sine terms in Equation (3.53), we 

find the surface elevation can be written as 

h(x,t)  =  |G(x,t)|  cos ieN - arc tan (Gj/G^ ]  (3.55) 

where 

G(x,t)  = 

N+v>0 
(N+£) h (o) 

£ = -00 

J£-V(T) + 

^  2^  J  g(v-v^T-T,) FV/(T') di' x exp i(kv^ - v |) 

31 
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The function G(x,t), therefore, determines the modulation 

of the central mode kN(- NK) .  We may express the envelope 

function in terms of cn(t) rather than the surface elevation 

so that 

Ec„. (t)  ilk ^+N t] 4±Y  e  v- 
N+V>O  r^+v 

(3.57) 

If we use the slope variables introduced in I, i.e., 

( + ) 
-n 

„( + ) -iMn)-nnit 
(3.58) 

then v;e would have from Equation (3.57) 

G(x,t) 

N+v.-O 

4Vv    (t)    ^««-«gtl 
E      e (3.59) 

whore 

cg  =  [w (N+v) - ui (N)]/kv (3.60) 

is the group velocity of the surface wave packet. 

The modulation function for the surface slope (—) 

may be found in a similar manner to be 

Gs(x,t) 2^    2-^N+' 
N+v>0  v'-™ 

h   . (o; 

Ori 

J£-v(: 

V 'mmm "b 

g(v-v' ,T-: ')Fv/ (tMdi ' 
I(K5-5) 

v 

32 
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If we introduce the variable 

i(KC+?) 

2  =  e 

into Equation (3.61), then we have an expansion in terms 

of zv.  This result can be used for formal manipulation of 

the interaction equation when the solution is expressed as 

a generating function, 

gU,t) a z 
v 
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4.  NUMERICAL CALCULATIONS 

4A.  Introduction 

In this section wc wish to explore the relative 

effects on the redistribution of energy within a given 

initial spectrum by both the mechanisir. of nonlinear inter- 

action of surface gravity waves and the interaction of 

these waves with a prescribed surface current.  To do this 

we use the full nonlinear expression shown in Section 3, 

Equation (3.13).  Our discussion will cent-'r on two calculations, 

both giving some insight into the relative importance of 

the interactive mechanisms.  The first calculation will be 

that of an impulsively applied harmonic surface current 

interacting with a single surface mode.  The growth of the 

spectrum as a function of time will be discussed, as well as 

the nonlinear effects on the surface modulation.  This sim- 

plified picture will be compared with the linear calculations 

of the Lewis experiment as an indication of the veracity of 

the numerical techniques used in the integration.  The second 

calculation replaces the single surface mode of the preceding 

case with a discrete surface spectrum interacting with an 

internal wave with typical oceanographic oarametcrs. 
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4B.  Linear Surface Modes 

In this calculation, we wish to focus on the inter- 

action between a prescribed surface current and surface 

qravity waves.  To isolate this interaction from the nonlircar 

interaction between surface gravity waves, we consider small 

amplitude surface waves, so that the nonlinear interaction 

is inhibited.  The analysis in Section 3 is appropriate for 

calculations in which the parameters of the problem are 

characteristic of the ocean environment.  It is inappropriate, 

however, for conditions found in typical tank experiments. 

This situation becomes clear if we examine the relative size 

of the interaction coefficients to the doppler shift in the 

igenmode frequency. 

We recall that the frequency of the (N+v) sideband 

was approximated in Section 3 by 

ui (N+v) * u){N) + vü (4.1) 

The next order term in this expansion, which was neglected 

in Section 3, would be v2^/4N, where Q  = u{N)/2N and the 

central wavenumber is given by kN = NK.  Typical values for 

ocean and tank experiments are 
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Let us consider the problem of an impulsively-applied 

harmonic current to a sing.1e small amplitude surface wave, 

i.e., at time t = 0 we "turn on" the interaction between a 

single surface mode and internal mode both of infinite spatial 

extent.  If we concern ourselves with only the growth of the 

first two side bands, we obtain the coupled system 

al(t)  = i   4N al(t) + I K Uo N ao(t; 

ao(t: =• N K U 
2     o 

a_1 (t) - a1(t: 

a_1(t) i *N a-l^ " 2 N K Uo ao(t) (4.3) 

where k., = NK is the wavenumber of the initial wave.  We N 

may combine the equations in (4.3) to obtain 

2 'NKU 'NKU 
ä1(t) 1 h ai(t) + a1(t) »^(t) 

'NKU 'NKU 
ä-i(t)    i fe a-i(t) +1-2-2   a-i(t) ■ -r2]   ai(t) 

37 
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for the modulation of the initial wave.  For the early time 

solutic -i, i.e.,  t   1, we can write 

G(x,t) h(o) e "N ll - KU 1 - KUot [sin K4 ■+ -b- cos K 

- iNU o-f cos K 
8N' 

t air; K )l 
(4.9; 

since u ^  0.02 sec  so that t << 50 sec.  We can also 

write 

G(x,t) I « h(o)(. iÖN  1 - üoKt [sin r. . ^ cos K-.l [ 

(4.10) 

which agrees with Zachariasen's calculation tor the initial 

value problem.  Equation (4.10) may now be uaud to check the 

numerical calculation at early times. 

For the numerical calculation, we selected the wave- 

number of the surface mode to be k  ■ 0.412 cm  and internal 

mode number K = 0.0515 cm  .  Those values wore chosen to be 

in the range used by Lewis (1971) in his interaction experi- 

ment.  For an internal wave of phase speed oL: c --  24.30 cm/sec, 

the surface and internal wave are in resonance.  Figure (1) 

depicts the discrete spectrum oi surface waves at five different 

times; the "0 sec" graph illustrating the initial conditions 

for our problem.  The initial slope |q 
k. 

0.0524   is   that 
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of the mechanically generated surface wave in the Lewis 

experiment.  The spacing between modes is gi"Gn by the 

internal mode number Ak - K. 

The spectral "snapshots" in Figure (1) indicate the 

persistence of a rather iarrow spectrum.  Only the sidebands 

ot   the primary wave have gained appreciably in energy after 

a time interval corresponding to twelve cycles of the central 

mode.  The other modes soom to acquire and lose energy, but 

not to steadily incroise.  This is seen more clearly in the 

following figure. 

In Figure (2) we indicate the continuous growth of the 

spectral mode slopes in time.  It is clear that three ot the 

nine modes in the calculation dominate the characteristics 

of the spectrum.  In hindsight then, the inclusion of the 

other six modes was superfluous and their removal from the 

calculation should not materially alter any conclusions made. 

The effect of the internal wave on the surface spectrum is, 

therefore, primarily local in k-space, its width being approxi- 

mately 2K where K is the internal mode wavenumber. 

In linear theory for the case of resonance between the 

primary surface wave and internal wave, the surf ice modulation 

should be stationary with respect to the internal wave.  We 
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may characterize the interaction as Lewis (1971) did in his 

experiment, by dofininq a quantity called the surface dis- 

tortion (S) , 

S ■ 
G     -  G 'max   ' 'mm 

G|    4 |G| max     'mm 

(4.11) 

which using hhe linear calculation in this section reduces 

to 

S = U  Kt o I sinK  + -j-  cosK' (4.12) 

Because we have a resonance condition, a qLven segment of 

the turfaco wave Interact! continuously with a givnn phase 

point of the internal wave as they both propagate down the 

tank.  The length of time of the interaction can there- 

fore be measured as a function of distance down the tank, 

i.e., t -  x/C .  Keeping this in mind and recalling 

Zachariasen's calculation of the maximum surface distortion, 

we rewrite Eq.    (4.12) as. 

S   ■ /2 S max       rm: 

'U 
IKx V , + (Kx)_ 

64 (4.13) 

This oppression differs in khe initial slope from the one 

given by Zachariasen, but as he pointed out the problem he 
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linear theory, however, but the differences which are of 

interest here.  In linear theory, the resonant wave and 

those close to resonance are unique in that the surface 

distortion grows without limit, whereas the nonresonant 

waves lead to finite surface distortions.  In general, 

however, if we sti.rt with a resonant system the nonlinear 

interactions will detune the system thereby inducing 

saturation.  The saturation level for the initially resonant 

system, will, however, be maximum. 

In Figure (4) tho effect of including the four wave 

coupling terms in Eq. (3.13) can be seen.  The first effect 

noted is the increased rate of growth in each mode, except 

of course the primary mode which has an increased rate of 

attentuation.  To understand this effect we recall the 

discussion in I  about the preferential amplification of 

the Benjamin-Feir  sidebands.  The sideband frequencies 

which had maximum amplification were u».   = u». d^q, ) 
BF     o     o 

where q,  is the slope of the central wave in our notation. 
o 

The corresponding wavenumbers are k„ ■ k  {l + 2q, ) which ^     J BF    o      k o 
for the initial conditions in our problem are k,,^ = k  (1^0.104), BF    o 

i.e., +.043 cm   from k It is coincidental that the 

Benjamm-Feir sidebands lie very close to the sidebands coupled 

by the internal wave to the primary mode, i.e., '.OSIS cm 

fromk . This near coincidence of the wavenumber, however, 
o 
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accounts for the marked increase in the qrowth rate of 

the sidebands. 

The second effect apparent from comparing Figure f4) 

with Figure (3)is the loss of oscillation in the mode ampli- 

tudes.  This occurs because of the change in the phase 

velocity induced by the nonlinear terms, i.e., a nonlinear 

dispersion relation.  To see this effect in mode detail 

and to determine if a finer grid for thr-  w ivenumLors would 

significantly change the spectral growth indicated in 

Figure (4), we introduced modes at k   ' jK  and k
0'2K   ^n the 

present problem. 

In Figure()) the growth of the nine modes in the 

latter calculation is indicated.  The initial amplitudes 

for this calculation are slightly different from the pro- 

ceeding but this difference should be of no consequence. 

Of importance to the early time aehavior is the initial 

choice of phases for the modes.  We see that with the phases 

selected the sidebands at k •2K initially give up energy 

to the system.  This trend is soon reversed, however, so 

that at late times (t'2S sec) the growth of the modes 

directly coupled to the internal wave is not noticeably 

affected by the initial choice of phases.  We also see that 

the modes at half-odd multiples of K which only grow by 

means of the nonlinear interaction, play no part in the 

spectral development. 
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Due to the large number of modes in this calculation, 

the representation of the results is slightly different than 

in the tank case.  If we omit the four wave coupling, the 

spectrum is shown in Figures(6) and (7) at different times. 

Although the number of modes is discrete, in Figure (6) we 

join the mode amplitudes at a given timu to aid the eye in 

determining the spectrum.  The "0 sec" spectrum is the initial 

state of the problem and is depicted as a very na:row spectrum 

After the interaction is "turned on" the spectrum is seen to 

broaden and develop a bi-modal character. 

Figure (7) depicts a continuation ol the spectral 

development initiated in Figure (6).  It can bo seen that the 

energy is being symmetrically transferred to both higher and 

lower wavenumbers as the interaction persists.  It is evident 

that the more central mode amplitudes are oscillating in time 

and as the bulk of the energy is transferred to the spectral 

extremes the energy in the central part of the spectrum is 

decaying.  Indeed, if we look at the linear part of tne solu- 

tion to this problem as given by Equation (3.52), we have 

qn(t) ^qN(o) JN_v(:) 

Then using the asymptotic form of the Bessel function, the 

central part of the spectrum decays as l//t and oscillates 

52 

ii ■■■■ .-  ■ - --^ .■-.... .,.•   -. w^.. i. ■■- -,..■.. , . 



^ J'pw" ■ 'm—v^^^tmmm njmm^' .■*">.'w"-w'»i^mm***m i' W^r^^^^HPMIWimiHPIIi i „ i.lllj in^^^npfi 

FlG'JRE  6. 

2.oi x 3anindiw/ smnaow 

53 

as 

ro 

C7> 
CD 
(Ti 

in a 
CD (Vi 
(T) O 

z 

äö cr 
en UJ 

CD 

(D 2 
N 3 
a> z 

UJ 
N > 
r^ < 
a^ ^ 

LÜ 
O 
< 
li r<) cr IS D cn en 

en 
0) 
CJ> 

»n 
U) 
(^ 

CD 



.WH.     MIJI II!   I   I   Mil  IJI^IM^^Wr^M w^mmmmm**mr*mm*mmm 

u 
UJ 
CL 

< 
UJ o 
o 

FIGURE 7. 

1 J L 

o 
UJ 
en 

_ CD 
u OJ 
UJ 
If) 

OJ 
CJ / 

Ö 
CD 
Ö ö 

2.oi x 3anindKiv snnnaow 

in ■MHIMMI 
54 

MMMHMMMMH  ...^       - .^LJ.-.- 



ffmrn ■"^"r^mm^mm ■    " ■ ' 

with a period T = i i.  which is approximately 5 seconds 
o o 

in our problem.  This is the structure that is beginning 

to appear in Figure (7).  The central mode, whose frequency 

is ... = 9.79 rad/sec, has a period of 0.641 sec and is 

depleted of energy in approximately eighteen cycles.  A 

somewhat lesser amount of energy is then returned to the 

mode in a scmewlvt shorter time. 

Figure (8) depicts a further contrast with the tank 

experiment.  In this figure we show the surface distortion 

of the ocean for the 21-mode calculation.  If wo examine 

the expression for the modulation function of the surface 

slope given by Eq. (3.61), retaining only the Linear terms 

AO have 

Gs(x,t) ■ E 
■) = -A 

qN(o) JV(T) z' 

i (Kr,+j) 
where z = e    *  , 2A is the spectral width and N 

We may approximate the sum in Eq. (4.14) by, 

A 

z'  3     (T ) as exp' 

(4.14) 

A >> 1 

E 
J = -A 

'j1 2 (Z " ^ (4.15) 

which is the generating function for Bessel functions. 

Using the definition of z and Eq. (4.15) we obtain for the 

slope modulation function, 

55 

■MBMMMI .HMMMMMiMMMMIIMi 



1 ■■■ ' ■ ■ "n ■■■■   •■       ii mm mmmmmmBm^i^^pm^mvmmm^i! 

O 
<!>    P    O 
«>    H    0) 

Et 

CVJ CVJ in 
II    II II 
O H 

3 ^ O 

FIGURE 8. 

I L 

Ö 
to 
d 

1 

H o 
II 

Oi o 

I 

CM 

CVJ 

CVJ 
CVJ 

o 

00 

CD 

i 
CVJ        • 

ÜJ 

o    1 
—    I- 

00 

CD 

CVJ 

CVJ -! 
Ö      o 

urn XDUJ. 

UlUijg^XDUijg, ■ Noiidoisia 30Vddns 

56 

MIMMiMM 
 "-•   '■    -    - --. 



j^n^*mm*^i**mi^mmmm  ■■'    ■ ' ■—«•—•^^ i in i —»»iwi^—■■»»^■■^^^^■^ 

Gs(x/t) * q^fo) exp^ii cosK'J   . (4.16) 

Because Eq. (4.16) has modulus unity, it is  clear that to 

first order both the surface distortion and slope distortion 

are constant.  This linear result is in agreement with the 

numerical calculation indicated in Figure (8). 

For the initial conditions of this problem, the four 

wave interaction terms do not affect the qualitative results 

shown.  In fact, for the first 14 seconds or aoproximately 

twenty periods of the primary wave there is essentially no 

quantitative difference in the surface distortion.  Further 

calculations using more "physical" initial conditions will 

be conducted elsewhere. 
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4D.  Conclusions 

It is clear from the calculations discussed in 

Section 4B and 4C that the ocean and tank experiments fall 

into two quite different interaction regimes.  This is most 

clearly illustrated by the growth of the surface distortion 

found in the tank experiment and calculation depicted in 

Figure (4) and the complete lack of growth found under 

oceanographic conditions for an equivalent interaction de- 

picted in Figure (8).  This result points up the extreme 

caution required in the design of tank experiments whose 

purpose is to induce information about  nteractions on the 

real ocean. 

The calculations clearly demonstrate the need for 

detailed analysis of experiments to determine their appli- 

cability to the ocean environment.  To this end a program 

of calculations is being initiated which will determine 

spectral modifications produced by surface currents under 

a variety of oceanographic conditions.  Calculations will 

also be made for the corresponding tank experiments where 

such experiments can be conducted.  An example of such a 

calculation would be that of a stationary current pattern 

in the lab which simulates the convergence zone of a long 

internal wave.  Since such a simulated internal wave could 
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be constructed by contouring the bottom of a tank appro- 

priately, the difficulty encountered in generating a trans- 

lating internal wave in a tank is avoided. 
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