
Best
Available

Copy

1 « ■«■ ■ l"i^*»WW^^PPBM«WPfWBB«WB^^W^«P'^ ^•^"•^■iWW^^WIPl '^*W«^WP|»««PIWIP"IIWWPP"""W""W*WWW1»1WW1^WW»H»I

AD-775 645

MEMORY MODEL FOR A ROBOT

W. A. Perkins

Stanford University

Prepared for:

Advanced Research Projects Agency

January 1974

>

DISTRIBUTED BY:

KJir
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

MEMORY MODEL FOR A ROBOT

by

W. A. Perkins

f

TABLE OF CONTENTS

SECTION

I. INTRODUCTION

II. DIALOG

III. DATABASES

A. Knowledge Representation Database
B. Historic Databasü

IV. PROCEDURAL DESCRIPTIONS

V. MOTION PROCEDURES

VI. CONTEXT MECHANISM

VII. DISCUSSION
A. Self-debugging
B. Generating Answers
C. Reasoning
D. Creating, Destroying, and Resurrecting

Tokens (Particular Objects)
E. Suggestion for Future Work

VIII. ACKNOWLEDGMENTS

APPENDIX A. HISTORIC DATABASE GENERATED BY DIALOG

REFERENCES

/.

PAGE

2

6

46

50

56

60

63

70

71

115

 . ■

II. DIALOG

The following is a dialog between MAX (the program) and a friend.
We havo Choson Winograd's Block World[6,29] &o Ihli system could bo
compared with that important earlier work. Wmograd chose his questions
so that every second or third question would bring in some new problem
for- the roprosontation system (a few of his questions were chosen only to
test the natural language parser and are not very interesting in terms of
the r c-pr esentation).

Besides testing our systoffl on all of Wmograd's questions, we have
adddd 22 new questions which test additional feature^ of our system
(thise new questions are marked with a "♦" on the right). The questions
given to MAX are marked by a "#" and his answers follow the questions
after a blank line. The natural language questions (in small letters) were
inserted Idter. Following each answer we have inserted the POP 10 run
time (without displays) in square brackets. Comments are in curly
brackets.

A deeper insight into what MAX was thinking about during this
convorsation can oe obtained from Appendix A which will become
understandable after reading Sections III, IV, V, and Vl.

HELLO l' M MAX, WHAT CAN I DO FOR YOU?

■See Fig. 2. Some hidden lines in the back of
objects are omitted or dottt J, but an object is
not obscured by another objeci in front of it. }

i . pick up a b:g red block.
fi YOU DO PiCKuP BLOCKiCOLOR REDIS'ZE - BIG).

OK
[run time ■ 9. 4 sec]

•The display showed the hand grasping the big
green cube, putting it on the table, and then
picking up the big red block in going from Fig. 2
to Fig. 3. •

5

r »■ ■ — i ■ ,..^..., _....H.. '■ "i'"——--^-—- -■■>■ ■■»IM.JB ■■ i— nan mnm mtumm mm i immmw^^^**m

HELLO I'M nPx. UHPT CMM I DO FOP YOU?

^L
OREEN

z ^
OREEN

LUE

Figure 2.

___ «^ — ■ dMA^fe^MMMOM^ tf|MIUk^UMte^aa

- Hi ■ Uff,!

—T

YOU |)0 PICKUP BLOCKC COLOR - REDS1ZE - BIGJ

OK^

Figure 3.

:!

8

^^BMMiMHBa

i

J

-f w^mHOT^OM

2. Rrasp the pyramid.
U YOU DO GRASP [3LOCK(DEFINITE|KINDOF = PYRAMID).

COULDN* T DO IT BECAUSE DESCRIPTION FIT THE SMALL RED
PYRAMID THE SMALL GREEN PYRAMID THE SMALL BLUE PYRAMID
[run time = 0.3' c]

(MAX was unable to carry out the operation
because he found three objects which fitted the
description, KINDOF ■ PYRAMID while DEFINITE
indicated that he should find only one }

3. find a block which is taller than the one you are holding
and put it into the box.

n FIND BLOCK(HDGHT > HEIGHT[BLOCK(HELD_STATUS = GRASPED.BY
HANDiMAX))]) AND YOU DO BLOCK(ANS:TFIND//X - LAST 2)
INSIDF. BOX(DEFiNITE).

IT IS THE BIG BLUE PARALLELEPIPED
OK
[run time - 0. 8 sec]

•Note that "if was handled by reference to a
previous answer. The hand put the big red
block down and placed the big blue
parallelepiped inside the box resulting in the
scene of Fig. 4. }

4, what does the box contain?
U FIND OBJECTiBOT_STATUS ■ ÜNTQP BOX(DEFINITE)).

IT IS THE BIG BLUE PARALLELEPIPED THAT. I AM NOW HOLDING
AND THE SMALL BLUE PYRAMID

[run *irne = 0.4 sec]

 - ...

FIND BLOCK(HEIGHT > HEIGHT[BLOCKCHELD_STHTUS
- GRfiSPED_BY HPNDCMPxnj) PND YOU DO BLOCKCHNS:
FIND//X 4 LAST 2) INSIDE BOx(DEFINITE) .

IT IS THE BIG BLUE PHRHLLELEPIPED
OK

Figure 4.

10

5. what is the pyramid supported by?
II FIND OBJECT(TOP_STATUS ■ HOLDING BLOCK(KINDGF = PYRAMID!
ANS:tFIND//X - LAST 2)).

IT IS THE BOX THAT I JUST PUT A BIG BLUE PARALLEL^IPED
INSIDE OF
[run time ^ 0. 7 sec]

{Here the description in the command was
essentially "the pyramid that you found" which
was unique.}

6. how many blocks are not in the box?
U HOW MANY BLOCK(BOT_STATUS t ONTOP BOX(DEFINITE)|KiNDOF
■ PARALLELEPIPED)?

4 THE BIG RED PARALLELEPIPED AND THE BIG GREEN CUBE
WHICH IS TOWARD THE BACK AND THE BIG GREEN CUBE
THAT IS NOW HOLDING A SMALL RED PYRAMID AND THE
SMALL RED CUBE
[run time = 0.3 sec]

7. is at least one of them narrower than the one which i told
you to pick up?

// DOES EXIST BLOCK(ANS:TEXIST/X/ - LAST 2|YWIDTH <
YViDTH|BLOCK(COM:HUMAN(FRIEND) TO HAND(MAX)TPICKUP/
HAND(MAX)/X - LAST «>)])?

YES THE SMALL RED CUBE
[run time = 0.4 sec]

8. is it supported?
H DOES EXIST OBJECT(TOP_STATUS ■ HOLDING BLOCK(ANS:TEXIST/
X/ - LAST 2))?

YES THE TABLE
[run time = 0.6 sec]

11

.MnaaMftaMaMI

9. can the table pick up blocks?
* IS POSSIBLE TABLE DO PICKUP BLOCKO?

NO BECAUSE AN_VEG_MIN[TABLE(ITSELF)] NOT EQUAL ANIMATE
[run time ■ 0. 82 sec]

•MAX was saying that since the property
AN_VEG_MIN for the category TABLE was not
ANIMATE, the answer was "no".}

10. can a pyramid be supported by a block?
// IS POSSIBLE BLOCK! KINDOF - PYRAMID) ONTOP BL0CK(KIND0F
■ PARALLELEPIPED»?

YES EXAMPLE IS THE SMALL RED PYRAMID AND THE BIG
GREEN CUBE THAT IS NOW HOLDING A SMALL RED PYRAMID
[run time = 0. 4 sec]

•In answering hypothetical questions such as
this MAX first looks for an example.}

11. can a pvramid support a pyramid?
0 IS POSSIBLE BLOCK(KINDOF = PYRAMID) ONTOP EL0CK(KIND0F

- PYRAMID)?

NO BECAUSE BLOCK(SHAPE_OF_TOP - POINTED) NOT SUPPORT
ANY OBJECT
[run time ■ 0. 9 sec]

•|Since no example existed, MAX entered his
imaginary world and tried to put a pyramid on
top of a pyramid. During execution he
discovered that this cannot be done and the
reason. !•

1 2. could you stack up three red blocks? *
U IS POSSIBLE YOU DO STACKUP BL0CK(C0L0R = RED) BLOCK(COLOR
■ RED) AND BLOCMCOLOR ■ RED)?

12

MMMMM

YES I IMAGINE I COULD DO THAT
[run time = 1.7 sec]

{MAX first checked to see if he had ever
stacked up three red blocks. Since he had
never done it, he entered his imaginary world
and performed the action giving the result
shown in Fig. 5.}

1 3. could you pick up a red block?
U IS POSSIBLE YOU DO PICKUP BL0CK(C0L0R = RED)?

YES I ALREADY DID THAT
[run time = 0. 2 sec]

{In checking past actions, MAX discovered that
he had already picked up a red block.}

14. could you stack up three blocks? *
U IS POSSIBLE YOU DO STACKUP BLOCKO BLOCKO AMD BLOCKO?

YES I ALREADY FIGURED THAT OUT
[run time = 0.3 sec]

{Although MAX had not really stacked up three
blocks, in his imaginary world he had done it and
he remembered that, saving himself the effort of
figuring it out again.}

13

 ■-— -- -

IS POSSIBLE YOU DO STPCKUP BLOCK(COLOR
■ REDJ ; BLOCK(CO^OR - RED) RND BLOCK(COLOR • >

YES I! IMAGINE I COULD DO THRF

+

-WOI

RED

GREEN

a.uE
m^f

Figure 5.

14

.. _ .

15. the blue pyramid is nice.
// STORE FACT UKE.STATUS OF HUMAN(FRIEND) IS LIKE
BLOCK(DEFINITE|COLOR = BLUE|KINDOF = PYRAMID).

OK
[run time ■ 8.1 sec]

I Note how different the surface structure is
from the form used to represent the meaning.}

16. i like blocks which are not red, but i don't like anything
which supports a pyramid.

U STORE FACT LIKE_STATUS OF HUMAN(FRiEND) IS LIKE
BLOCK(COLOR * RED) AND STORE FACT LIKE_STATUS OF
HUMAN(FRIEND) IS NOT LIKE OBJECT(TOP_STATUS = HOLDING
BLOCK(KINDOF ■ PYRAMID)).

OK
OK
[run time =1.9 sec]

17. do i like the box?
* IS FACT LIKE.STATUS OF HUMAN(FRIEND) IS LIKE BOX(DEFINITE)?

NO BECAUSE LIKE_STATUS[HUMAN(FRIEND)] NOT EQUAL LIKE
BOX(DEFINITE)
[run time = 0.1 sec]

■MAX was only saying that there does not exist
any fact that his friend likes the box. Therefore
it is necessary to ask the next question.}

// IS FACT LIKE.STATUS OF HUMAN(FRiEND) IS NOT LIKE
BOX(DEFINITE)?

YES THE BOX
[run time = 8.1 sec]

15

■- ■ "■-■
J

18. do i like anything in the box7

* DOES EXIST OBJECT(BOT_STATUS ■ ONTOP BOX(DEFINITE)l
LIKED.STATUS = LIKED.BY HUMAN(FRIEND))? aU*[UtHm^

yMnHTucGc B^E PARALLELEPlpED THAT I AM NOW HOLDING
AND THE SMALL BLUE PYRAMID

[run time = 8. 9 sec]

•ISince (15) and (16) caused information to be
stored on the property list of the objects as
well as the human's property list, MAX can
easily answer this question.}

1 9- is the green cube which is in f^nt of a green block *
liked or disliked by anyone?

* WHAT IS LIKED.STATUS OF BL0CK(C0L0R = GREENIKINDOF = CUBFI
LOCASHUN IN_FRONT_OF BL0CK(C0L0R ■ GREEN))? '

NOT LIKED.BY HUMAN(FRIEND)
[run time = 0. 2 sec]

{MAX was given contradictory Information about
his friend s feeling toward this block in (16).
Evidently he decided to believe the most recent
information.}

28. will you please stack up both of the red blocks and either
a green cube or a pyramid?

lyP..00 STACKUP BL0CK(C0L0R ■ RED) BL0CK(C0L0R = RED)
AND EITHER BLOCK(COLOR - GREEN) OR BLOCK(KINDOF = PYRAMID).

OK
[run time = 8. 9 sec]

{The configuration of Fig. 6 is obtained.}

16

-=^

YOU
- RED;
BLOCK(

DO STfiCKUP BLOCK(COLOR - RED) BLOCK(COLOR
PND EITHER BLOCKCCOLOR - GREEN) OR
INDOE - PYRAMID) .

Figure 6.

17

«MHMM«

21. which cube is sitting on the table?
// FIND BLOCK(KINDOF - CUBE|OOT_STATUS ■ ONTOP TABLE(DEFIN!Te)).

IT IS THE BIG GREEN CUBE THAT IS NOW HOLDING A SMALL
RED PYRAMID
[run time = 8. 3 sec]

22. what do the red pyramid and the small cube have in common? *
U WHAT DO BLOCKlCGLOR - RED|KINDOF - PYRAMID) AND
OLOCK(KINDOF - CUBE|SIZE - SMALL) HAVE IN COMMON?

THEY BOTH BELONG TO SAME CATEGORY
THEY BOTH HAVE THE COLOR RED
THEY BOTH HAVE THE SIZE SMALL
THE LENGTH OF BOTH IS 50
THE WIDTH OF BOTH IS 50
THEY ARE BOTH ON TOP OF THE BIG GREEN CUBE' S
THEY ARE BOTH CLEAR ON TOP
[run time = 0. 3 sec]

{Note that MAX not only looks at the similarities
of the objects in question but checks the
similarities of objects that they are on top of
and support.}

23. whnt do the green cube which is holding a cube and the
jrcen cubo which is holding a pyramid have in common?

U WHAT DO BLOCK(COLOR - GREEN|KINDOF = CUBE|TOP_STATUS
- HOLDING BLOCK{KINDOF = CUBE)) AND BLOCK(COLOR = GREENI

TOP_STATUS - HOLDING BLOCK(KINDOF = PYRAMID)|KINDOF
- CUBE) HAVE IN COMMON?

THEY BOTH HAVE THE DESCRIPTION THE BIG GREEN CUBE
THEY BOTH HAVE THE DIMENSIONS 150 150 150
THEY ARE BOTH HOLDING SMALL RED BLOCK'S

18

- — ■ - - ■ ■■- - »if-i '-- — - - ■ —..-..-.-.- — . — ■■ .

[run lime - 0. 6 sec]

24. is there a brgo block behind a pyramid9

* DOES EXIST BLOCKiSIZE ■ BIG|KINDOF - PARALLELEPIPED!
XCO0R0 ' XCOOROp BLOCKiKINDOF = PYRAMID)])?

YES THE BIG BLUE PARALLELEPIPED AND THE BIG RED
PARALII ..Plf'LD AND THE BIG GREEN CUBE THAT IS NOW
HOLDING A SMALL RED CUBE
|tun time 0. 5 sec]

25. put a small one onto the ceen cube which supports a ovramid
U YOU DO BLOCWSIZE = SMALL|KINDOF = PARALLELEPIPED)
ONITOP RLOCKiCOLOR ■ GREEN|TOP_STATUS - HOLDING BLOCK(KINDOF

OK
[run time - 0. 4 sec]

•MAX moves the block and the scene of Fig. 7
results. I

26. put the littlest pyramid on top of it.
0 YOU DO BLOCK! KINDOF - PYRAMIDjHEIGHT < HEIGHTfV
BLOCWKINOOF - PYRAMID)]) ONTOP BLOCK(ACT:lONTOP/X/
- LAST 3). '

OK
[run time ■ 0. 6 sec]

■MAX moves the block and the scene of Fig. 8
results.}

19

 _ _

YOU DO BLOCK(SI2E - SHPLLUNDOF - PRR-
=ILLELEPIPED; ONTOI- BLOCrc COLOR - GREENTOP.STRTUS

= HOLDING BLOCKC <I

OK

NDOF - PYRRHID))

Figure 7.

2a

——

"^r
YOU DO BLOCK(KINDOF

HEIGHTf.ü BLOCK(KlhDOF
BLOCK(^CT:ÖNTOP/x/

- PYPflniDHEIGHT i
= PYRRniD)J) ONTOP

«- LOST 3) .

OK

ONEEN

»ED

3PEEN

auE

Figure 8.

21

-■■■- -• ■

27. does the shortest 'img the tallest pyramid's support
support-- support myl.ling green?

It DOFS EXIST OBJECT(TOP_STATUS - HOLDING BLOC<(KINDOF
PYRAMIDjHEIGHT • HEIGHT[V BLOCK(WNOOF -- PYRAMID)]))

AND DOES EXIST OBJECTi COLOR . GREEN|BOT_STATUS = ONTOP
OBJECKBOT.STATUS - ONTOP OBJECKANSiTEXIST/X/ - LAST 3))|
HEIGHT < HEIGHT[v OBJECTiBOT..STATUS - ONTOP
ÜBJECTiANS:lEXlST/X/ - LAST 3))])?

YES THE BIG GREEN CUBE THAT IS NOW HOLDING A SMALL
RED CUBE AND A SMALL RED PYRAMID
YES THE SMALL GREEN PYRAMID THAT I AM NOW HOLDING
[run time 7. 5 sec]

fi DOES EXIST CBJECT(COLOR ■ GREEN|BOT_STATUS = ONTOP
OBJECKHEIGHT i HEIGHT^' OBJECT(BOT_STATUS = ONTOP
OBJ ECU TOP_ STATUS ■ HOLDING BLOCKiKINDOF = PYRAMID|
HEIGHT » HEiGHT[V BLOCKiKINDOF - PYRAMID)])))]))?

YES THE SMALL GREEN PYRAMID THAT I AM NOW HOLDING
[run time = 18. 7 sec]

•Jhis is a difficult question to say the least.
Since the question does not reveal to MAX that
all of the objects are blocks and the fact that
he does an exhaustive serrch makes this
particularly difficult. Note that the first
formulation with less nesting takes less time.}

28. what coior is it?
U WHAT IS COLOR OF ÜBJECT(TOP STATUS ■ HOLDING
0B.JECT{ANS:1EXIST/X/ - LAST 2))°

RED
[run tmc ■ 0. 5 sec]

22

■This question was chosen by Winograd because
of the difficulty with "it" in the natural language
part.}

29. how many things are on top of green cubes?
// HOW MANY OBJECKLOCASHUN DIRECTLY_ABOVE BLOCK(COLOR

GREENjKINOOF CUBE))?

3 THE '"SMALL RED CUBE AND THE SMALL RED PYRAMID
AISJÜ THE SMALL GREEN PYRAMID THAT I AM NOW HOLDING
|run t.rno ■ 0. S sec]

33. had you touched any pyramid before you put the green one on
the little cube?

« DOES EXIST BLOCK'KINDOF PYRAMID|ACT:IGRASP/HAND(MAX)/
X - CCM;lONiOP/nLOCK(COLOR - GREEN|KINDOF ■ PYRAMID)/
BLOCWSIZE - SMALLIKINDOF » CUBE)- »o)' \^

YES 11 f. SMALL GREEN PYRAMID THAT I AM NOW HOLDING
[run t.rno 2. 0 sec]

31 . when did you pick it up?
0 WHEN DID YOU DO PICKUP BL0CK(ANS:1EXIST/X/ - LAST no)?

1 DiD IT WHILE I PUT THE SMALL GREEN PYRAMID THAT
I AM NOW HOLDING ONTOP THE SMALL RED CUBE
[r un time 0. 4 sec]

32. when did you first pick it up? %
)i WHEN DID YOU DO [ACT:lGRASP/HAND(MAX)/BLOCK(ANS:TEXIST/
X/ - LAST »i.) - FIRST ■■,]?

I DID IT WHILE I STACKUP THE BIG RED PARALLELEPIPED
THE BIG GREEN CUBE THAT IS NOW ON TOP OF A BIG RED

PARALLELEPIPED AND THE SMALL RED CUBE
[run lime 1.0 sec]

23

•Mote that MAX ancwered in terms of the blocks
that he actually stacked up rather than in terms
of what he was requested to do. }

33. why?
U WHY DID YOU DO [ACT:t// - PRES 2]?

IM ORDER TO PUT THE SMALL GREEM PYRAMID THAT I AM
MOW HOLDIMG OFFOF THE SMALL RED CUBE
[run •irnc 0. 1 5cc]

■,'MAX remembers why he performed each
action. ■

34. why did you clear off that cube?
U WHY DID YOU DO [ACT:I0FF0F//BL0CK(KIMD0F - CUBE)
■•PRLS4j?

IN ORDER TO PUT THE SMALL RED CUBE OMTOP THE BIG
GREEM CUBE THAT IS MOW OM TOP OF A BIG RED PARALLELEPIPED
[run time 0. 3 sec]

35« why did you do that?
U WHY DID YOU DO [ACT:!// - PRES 2]?

SO I COULD MOVE MY HAND FROM LOCATIOM-422-688-468
TO LOCATIOM -75 -450 -460
[run time 0.2 sec]

36. why?
U WHY DID YOU DO [ACT:T// - PRES 2]?

SO THE GRASP.STATUS OF MY HAND WOULD EQUAL GRASPING
LJLOCK(B5)
run time ■ 0.1 sec]

37. why did you do that?

24

•M^MMM

It WHY DID YOU DO [ACT:?// - PRES 2]?

SO I COULD MOVE THE SMALL RED CUBE FROM LOCATION!
-75 -458 -460 TO LOCATION -318 -558 -118 0N

I run time ■ 8.1 sec]

38. why did you do that?
// WHY DID YOU DO [ACT:T// - PRES 2]?

IN ORDER TO PUT THE SMALL RED CUBE ONTOP THE BIG

K^Ä? ww 0N T0P 0F A SffSoWa««
39. why did you do that?
* WHY DID YOU DO [ACT:T// - PRES 2]?

BECAUSE YOU ASK ME TO
[run time ■ 8.83 sec]

48. how did you do it?
// HOW DID YOU DO [COM:?// - PRES »J?

I RELEASE THE BIG BLUE PARALLELEPIPED
I MOVE MY HAND FROM -545 145 -268 TO -545 -255 -Ml
I GRA-P THE DIG GREEN CUBE 'U b4b 255-368
I MOVE THE BIG GREEN CUBE FROM -545 -25^ .Hfl rn oi c. cro , „

ISÄ ^MTbSSr ««"««ÄÄr -16a

I SÄ^Ä1" TO ■" -m ■4le
I MOvE THE SMALL GREEN PYRAMID FROM -75 -458 -410 Tn A** cQo »**

TAKE THE SMALL GREEN PYRAMID OFFOF THE SMALL RED MF 08 '^
I RELEASE THE SMALL GREEN PYRAMID CUBE

I MOVE MY HAND FROM -422 -688 -468 TO -75 -458 -flflfl
I GRASP THE SMALL RED CUBE 460

I MOVE THE SMALL RED CUBE FROM-75-458-468 TO-^1« Ufl ttm

rUnTt'HE 'r^ R? CUBE 0NT0P THE BIG GREEN CUBE ■550 ■110
[run time = y. 5 sec]

25

■;MAX remembers in detail how he carried out a
command. |

Al . how many objects did you touch while you were doing it?
// HOW MANY OBJECTO YOU DO GRASP WHILE YOU DO
[COM:?// ~ PRES 2]?

3 THE GIG GREEN CUBE THAT IS NOW ON TOP OF A BIG
RED PARALLELEPIPED AND THE SMALL RED CUBE AND
THE SMALL GREEN PYRAMID THAT I AM NOW HOLDING
[run time =-0.4 sec]

•This question is more difficult than it first
appears to be. Note all the possible variations
such as (42)}.

42. how many red objects did you clear off before you did it? •
// HOW MANY OBJECT(COLOR - RED) YOU DO OFFOF BEFORE
YOU DO [COM:!// « PRES 2]?

1 THE (JIG RED PARALLELEPIPED
[run time ■ 0.4 sec]

43. what did the red cube support before you started to clean
it off?

/; FINU ()ÜJECT(BOT STATUS = ONTOP BL0CK(COLOR ■ RED|
KINDOF -- CUBE)) BEFORE YOU DO OBJECTO OFFOF BLOCK(COLOR
■ REDjKINDOF - CUBE)?

IT IS THE SMALL GREEN PYRAMID
[run time ^ 2. 5 sec]

{MAX enters his imaginary world and retraces
his steps to the configuration shown in Fig. 9.
Then he answers the questions by examining
the state of the imaginary world. }

26

■■■ — -■ ■--- ■ -- ■ „-^...^ — -——-- - ■ - -^-i ^-.J.,-^.- _ -

^F

FINp OBJECTCBOT- STPTUS - ONTOP BLOCKCCOLOR - RED'
KINDOF - CUBE)) BEfORE YOU DO OBJECTU OFFOF
BLOCK(COLOR - REDKINDOF - CUBE)?

IT 16 THE SMRLL GREEN PYRfifllD

Figure 9.

27

 _.. ..,.. ,._. i urn if^-^*——J-J-.: -.- ■—... .^. ■ _. . ^

14, there were five blocks to the left of the box then.
II HOW MANY BLOCKiLOCASHUN LEFT.OF BOX(DEFIMITE)|KINDOF

PARALLELEPIPED) AT THAT TIME?

4 THE RIG RED PARALLELEPIPED AND THE BIG GREEN
CUBE THAT WAS ON TOP OF A BIG RED PARALLELEPIPED
ANÜ THE BIG GREEN CUBE THAT WAS HOLDING A SMALL

RFD PYRAMID AND THE SMALL RED CUBE
[run time 3. 3 cec]

45. how many things were on top of green cubes at that time? *
II HOW MANY OBJECTiLOCASHUN DIRECTLY ABOVE BLOCK(COLOR
- GRFENKINDOF - CUBE» AT THAT TIME?

1 THL SMALL RED PYRAMID
[run lime 3. 9 occ]

■|MAX deleted the imaginary world after
answering coch of the questions (43), (44), and
(45). This caused him to retrace his steps each
time. If he had been a little smarter, he could
have saved the imaginary world from Question
(43) to answer Questions (44) and (45).
However, MAX was afraid that he would not
know when to delete the imaginary world if he
did that.}

4G. put the blue pyramid on the block in the box.
U YOU DO BLÜCK(COLOR ■ DLUE|KINDOF ■ PYRAMID) ONTOP
ULUCKtUOT.STATUS ■ ONTOP BOX(DEFINITE)).

OK
[run time ■ 9. 4 sec]

{The configuration of Fig. 10 is achieved. }

28

 , ■

—*- WB^^W^"^PW i^m^^^immiwmi^^^mm^Bm

YOU DO BLOCKCCOLOR - BLUEKINDOF = PYRPMKu
ONTOP BLOCKCBOT.STRTUS - ONTOP BOx(DEFINITg))

OK

OREEN

HED

5REEN

sr^v^x^ -/-
BLUE

^ ^ ^
^

1

 1
S > ^^^ s

«^

Figure 10.

29

mmm^^—-~^^^m^~
■ ■ ■ - —

47. is Ihere anything which is bigger that every pyramid but is
not at wide as the thing that supports it?

U DOI S EXIST ÜBJc-:CT(HEIGHT > HEIGHT[V BLOCWKINOOF-
PYRAMID'1|30T_STATUS ■ ONTOP OßJECKYWIDTH >

YWIDTHI ITSELF]))?

VPS Tl if7 RIG BLUE PARALLELEPIPED THAT I JUST PUT A SMALL
BLUE PYRAMID ONTOP OF
[run time 1.7 sec]

•Note that MAX mentioned a recent event to
help identify the object. (

48. doe^ a steeple exist?
U DOES "XIST STEEPLEO?

NO BECAUSE COMPOSITE_OBJECT NOT EXIST STEEPLE
[run time 0. 02 sec]

49. a ""-.tceplc" is a stack which contains two green cubes and a
pyrormd.

U STORE COMPOSITE OBJECT STEEPLEO = BLOCK'COLOR = GREEN|
KINOOF CUGE|TOP_STATUS ■ HOLDING BL0CK(C0L0R = GREEN|
KINDOF - CUBE|TOP_STATUS - HOLDING BLOCK(COLOR = RED|
KINDOF PYRAMID))).

OK
[run time ■ 0. 02 sec]

{Our description of a "steeple" Is essentially the
description of the bottom block.}

50. are there any steeples now?
U DOES EXIST STEEPLEO?

NO BECAUSE BLOCK NOT EXIST BLOCK(COLOR = GREEN|KINDOF ■ CUBE|
TOP_STATUS ■ HOLDING BLOCK(COLOR = GREENjKINDOF = CUBE]

30

^^M-_aa_l_Ba^^

TOP.STATUS - HOLDING BLOCK(COLOR ■ REDi<INDOF = PYRAMID)))
[run time - 0. 3 sec]

•Note the different answers for the identical
questions (48) and (50). •

f)! . build one.
.'• YÜU DO BUILD STEEPLEO.

OK
[run time 2. 7 sec]

•MAX built the steeple shown in Fig. 11. }

'J2. how did you build the sieeple?
tl HOW DID YOU DO BUILD STEEPLEO?

I RFIXASL THE SMALL BLUE PYRAMID
I MOVE MY HAND FROM -545 1 45 -1 60 TO -55 -155 -260
I GRASP IHE SMALL G?EEN PYRAMID
I MOVE THE SMALL GREEN PYRAMID FROM -55 -155 -260 TO -422 -603 -460
I TAKE THE SMALL GREEN PYRAMID OFFOF THE SMALL RED CUBE
I KLLLAGE THE SMALL GREEN PYRAMID
I MOVE MY HAND FROM -422 -608 -460 TO -55 -155 -310
I GRASP THE SMALL RED CUBE
I MOVE THE SMALL RED CUBE FROM -55 -1 55 -310 TO -472 -608 -460
I TAKE THE SMALL RED CUGE OFFOF THE BIG GREEN CUBE
I RELEASE THE SMALL RED CUBE
I MOVE MY HAND FROM -472 -608 -460 TO -105 -70 -160
I GRASP THE SMALL RED PYRAMID
I MOVE THE SMALL RED PYRAMID FROM -105 -70 -160 TO -522 -608 -310
I TAKE I HE SMALL RED PYRAMID OFFOF THE BIG GREEN CUBE
I RELI ASF THE SMALL RED PYRAMID
I MOVE MY HAND FROM -522 -608 -310 TO -319 -550 -160
I GRASP THE UIG GREEN CUBE
I MOVE rilK RIG GREEN CUBE FROM -310 -550 -160 TO -75 -105 -210
I PUT THE BIG GREEN CUBE ONTOP THE BIG GREEN CUBE

31

YOU DO BUILD STEEPLE()

OK

Figure 11.

32

- ■ --
J

I REU AGL' THE GIG GREEN CURE
I MOVE MY HAND FROM -75 -105 -218 TO -522 -608 -310
I GRASP THE SMALL RED PYRAMID
I MOVE THE SMALL RED PYRAMID FROM -522 -608 -310 TO -75 -105 -10
I PUT THE SMALL RED PYRAMID ONTOP THE BIG GREEN CUBE
[run time - 0. 9 sec]

53. a pile is a red pyramid which is on top of a blue block which *
is supported by a green block.

11 STORE COMPOSITE OBJECT Ptt.E{GREENj8LUEjRE0) - BLOCK(COLOR
GREENIKJNOOF - PARALLELEPIPED|TOP_STAruS - HOLDING

CLüCK(COLOR BLUEIKINDOF ■ PARALLELEPIPED|TOP_STATUS
HOLDING BLOCKiCOLOR ■ RED|KINDOF - PYRAMID))).

OK
Irun time - 0. 03 sec]

•This definition for a composite object allows us
to make substitutions. }

54. gre Ihey any green, green, and red piles now? *
U DOES EXIST PILE(GREEN|GREEN|RED)?

YES THE DIG GREEN CUBE THAT IS NOW HOLDING A BIG GREEN
CUBE
[run time ■1,2 sec]

55. how would you build a red, green, and blue pile9 *
H HOW WOULD YOU DO BUILD PILE(RED|GREEN|BLUE)?

I WOUin MOVE THE SMALL RED PYRAMID FROM -75 -105 -10
TO-522-60«-31 a
I WOULD TAKE THE SMALL RED PYRAMID OFFOF THE BIG GREEN CUBE
I WOi H 0 RELEASE THE SMALL RED PYRAMID
I WOULD MOVE MY HAND FROM -522 -608 -310 TO -75 -105 -210
I WOULD GRASP 1 HE BIG GREEN CUBE
I WOULD MOVE THE BIG GREEN CUBE FROM -75 -105 -210 TO -310 -550 -IfiB
I WOULD PUT THE BIG GREEN CUBE ONTOP THE BIG RED PARALLELEPIPED

33

I WOULD RELEASE THE BIG GREEN CUBE
I WOULD MOVE MY HAND FROM -310 -559 -160 TO -545 145 -160
I WOULD GRASP THE SMALL BLUE PYRAMID
I WOULD MOVE THE SMALL BLUE PYRAMID FROM -545 145 -160
TO-310 -Ü50 -60
I WOULD PUT THE SMALL BLUE PYRAMID ONTOP THE BIG GREEN CUBE
[run time 3. 4 sec]

•To answer this question, MAX entered hit
imaginary world, built the pile (see Fig. 12),
and then examined how he cd it in the
imaginary world.}

56. yet rid of those two ^reen cubes.
:: SUBTRACT DATABASE BLOCK(COLOR - GREEN|KINDOF = CUBEI
ROT_STATUS ■ ONTQP BLOCKiCOLOR - GREEN)) AND SUBTRACT
DATABASE BLOCKiCOLOR - GREEN|KINDOF = CUBE).

OK
OK
[run time - 0. 5 sec]

■Note that MAX cleared off the top green cube
before he destroyed it. See Fig. 13.}

57. add a black cylinder and a very tall orange cy^nder. *
// ADD DATABASE BL0CK(C0L0R = BLACKjKINDOF = CYLINDER)
AND ADD DATABASE BLOCKiCOLOR - ORANGEjKINDOF = CYLINDER!
HEIGHT : HEIGHT[V BLOCKO]). '

OK
OK
[run time - 0. 4 sec]

■Jhe two cylinders appear as in Fig. 14. •

34

1

HON (^OULD YOU DO

I UOULp MOUE THE SMPL.L RED PYRfiMID . , .

ILD PILEC REDGPEENBLUEJ ?

Figure 12.

M^MHHBaM^ «MMMaaaaiiaMMMM

~m*mmm~ mnitmim

-^T

- mfiPftm T
C:?STMOPSE Bl-0"1 COLOR = GREENKINDOF

- CU8ES0 -STPITUS = ONTOP BLOCICC COLOR = GRFFN11
?^^BTf «FL00™8«^ BLOCK(COLOR = GREEN1
KINDOF = CUBE)

Figure 13.

^

i—iM,l1.
ll^!i_'' " ■

^r
PDD DP

- CYLINDER'
KINDOF =

OK
OK

ABRSE BLOCKCCOLOR = BLPCKKINDOF
PND fiDD DftTPBPSE BLOCKC COLOR = ORPNGE'

CYLINDERHEIGHT I HEIGHT[b BLOCKC)])

Figure 14.

37

■- —■-■■i——^—IJ—■ --■■.. _ .. -

^m^mm M-»mm>'

58. add CJ small yellow cone in your hand and a box on top of •
the lar^e red block.

tt ADD DATABASE BLOCKiCOLOR - YELL0W|KIND0F = CCME|SIZE
SMALL|HELD_STATUS ■ GRASPED_BY HAND(MAX)) AND ADD

DATABASE BOX(DESCRIPTION - THE BOX|BOT STATUS = ONTOP
BLOCKICOLOR - RED|SIZE - BIG)).

OK
OK
[run time = 8. 3 secj

•MAX released the red pyramid so he wouli
have a free hand for the cone. Note that MAX
will follow any requirements given in t^e
description but he also fills in needed data tnat
is not specified. The result is shown in Fis.
15.} 5

J9. a rocket made of parallelepipeds and a pyramid is a pile. *
tf STORE COMPOSITE OBJECT ROCKET(PARALLELEPIPED|PYRAMID|
YELLOW|BROWN|GREEN) - PILE(YELLOW|BROWN|GREEN).

OK
|run time - 0. 7 sec]

•iNote how eesy it is to tell MAX about a rocket
since he already knows what a pile is. }

68. build a rocket of oranje and black cylinders and a yellow cone. •
U YOU DO BUILD ROCKET(CYLINDER|CONE|ORANGE|BLACK|YELLOW)?

OK
[run time ■ 2. 8 sec]

•The result is shown in Fig. 16.}

38

--- —■

ADD DftjgBftSE BLOCICC COLOR = YELLOUKINDOF = CONE
SIZE - SH^uLHELD-STPTUS = GRRSPED_BY HfiND(MAx))
AND RDD^DffTABASE BOx(DESCRIPTION = THE BOx^
BOT.STPTUS = ONTOP BLOCK (COLOR = RED§IZE = BIG))

Figure 15.

39

 - ii IMI ^mmm—*tma ■ -

^F

YOU DO BUILD
BLPOtELLOW)?

OK

ROCKETC CYLINDERCONEÖRRNGE

QU

^^^l GLACC

QRPNOE

TEEE
BLUL

Figure 16.

40

 ■■
 , -

- ■

ßl . what objects arc on top of the table now? »
U FIND OßJErT(BOT_STATUS ONTOP TABLE(DEFINITE))?

IT IS THE GIG RED PARALLELEPIPED AND THE SMALL
GREEN PYRAMID AND THE SMALL RED CUBE AND THE SMALL
RED PYRAMID AND THE MEDIUM-SIZED ORANGE CYLINDER

THE BOX THAT IS NOW HOLDING A BIG BLUE PARALLELEPIPED
[run time -1.2 sec]

•Note that MAX must now identify which box he
is refering to. }

B2. call the biegest block "superblock".
tl STORE FACT GNAME OF BLOCK;VOLUME > VOLUMEFV BLOCKOl)
IS SUPERBLOCK. J

OK
[run time - 0. 2 sec]

•;Wo can establish between ourselves and MAX,
a common name for any object. }

63. have you picked up ouporblock since we bc^an?
U WHEN DID YOU DO PICKUP BLOCK(GNAME ■ SUPERBLOCK)?

I DID IT WHILE I PICKUP THE BIG RED PARALLELEPIPED
CALLED SUPERBLOCK
[run time -1.5 sec]

■;MAX still has his old internal name for that
object, so he is not confused in searching his
past.;

64. how many blocks other than pyramids were left of the box *
at that'time?

U HOW MANY BLOCK(KINDOF i PYRAMID|LOCASHUN LEFT OF
BOXO) AT THAT TIME?

41

■H^^M

[> THE BIG BLUE PARALLELEPIPED AND THE BIG RED
PAI^LLtlLPIPED CALLED SUPERBLOCK AND THE SMALL RED
CURE AND THE BIG GREEN CUBE THAT WAS HOLDING A SMALL
RED PYRAMID AND THE BIG GREEN CUBE WHICH WAS TOWARD
THE BACK
[run time ■ 14. 8 sec]

•IThis question is a difficult challenge for any
representation system. MAX must not only
retrace his steps, but he must also destroy and
resurrect old objects in an imaginary world as
he does it. The result is shown in Fig. 17. }

Bb. why did you drop ouperblock?
// WHY DID YOU DO DROP BLOCK(GNAME ■ SUPERDLOCK)?

I DON'T REMEMBER DOING THAT
[run time «■ 3. 2 sec]

fi6. is there anything in front of the red pyramid?
n DOES EXIST OBJECT(LOCASHUN IN.FRONT OF BLOCK(COLOR - REDI
KINDOF PYRAMID))? '

YES THE BIG RED PARALLELEPIPED CALLED SUPERBLOCK
AND THE SMALL GREEN PYRAMID AND THE SMALL RED CUBE

THE BOX THAT IS NOW ON TOP OF A BIG RED PARALLELEPIPED
[run time ■ 1.0 sec]

{See Fig. 18. •

67. thank you.
U THANK YOU.

YOU' RE WELCOME

42

-=jr "iT

HOW MRNY BLOCKdlNDOF * PYRRniDLOCfiSHUN
LEFTt-OF BOX(J J AT THAT TIME?

BLOCt

d ' SLUE

■•"•!: L --^it^-

OKEN

Figure 1 7.

,
BLUE

1/ I s

' / BLUE

^i_

43

DOES ExIST OBJEJTCLOCRSHUN IN_FRONT_OF
BLOCKCCOLOR = REDfINDOF = PYRRMID)H

YES THE BIG REÜ)
SUPERBLOCK PND

PND THE SMPLL R^D
IS NOU ON TOP OF

PPRPLLELEPIPEÜ CPLLED
HE SMPLL GREEN PYRPMID

CUBE THE BOX THPT
P BIG RED PPRPLLELEPIPED

BLlf

stSZir

Figure 18.

44

Hta-aaMa-^^

■

L_

DATABASES

It IG convenient to split the database into two parts, one which
contains complete informalion about the world in its present state
(Knowiede« Representation Database) and another which contains historic
information about the post conversations and events (Historic Database).
Data for the imaginary world is stored in the same string arrays (and same
locations) as that for the real world.

A. Knowledge Representation Database

It is convenient to group objects in one's world into categories. In
this robot' s world there are only five categories:

1 BLOCK
2 BOX
3 TABLE
4 HUMAN
5 HAND

Hero HAND stands for the Robot whose only effector is a hand. This
databnse is a list cf properties, ^or each category there are two types of
lists. One is a list of properties which pertains to all objects in that
categmy, while the other is a list of properties which pertains to tokens or
particuUir objects. Thus there is one double-index array for each
catrgory. The first index goes from 0 to some number (for example 10).
The property list pertaining to all objects of the category is stored in the
array with the first index - 0, while the other numbers are used for storing
the property lists of tokens. A few examples should make all of this clear.

46

,_^^__

Table I. Property List for "All" BLOCK' s

BLüCKfO.PNAME] IS BLOCK
niOCKfO.STATUS] IS 8
BLOCKIO.FIRST.ONE] IS 1
BLOCK|a,MOVEABLE] IS MOVABLE
BLOCK[0)AN_VEG_MIN] IS VEGETABLE
BLOCK|0,ITSELF_LIST] IS 1
BLÜCKIO.PLIST] IS 2
nLOCK[0,MAX_NUMB_POSSIQLE] IS 15
BLOCK|0,KI^DOF] IS WOODEN
BLOCK[0,GNAME] IS

Table I

BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
Rl GCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

Property List for a Particular BLOCK

4,PMAME]
4,HELD_STATUS]
-UOCASHUN]
4,C0I.0R]
a.siZE]
4,DESCRIPT{ON]
4J0P-STATUS]
A.EOT.STATUS]
4,KIND0F]
4,DIMENSI0NS]
4)XLENGTH]
41YWIÜTH]
4,HEIGHT]
4,XC00RD]
4,YC00RD]
4,ZC00RD]
4)WALL_W1DTH]
4,LIKED_STATUS]
4,GNAMEj
4,V0LUME]
4,DISP_NUMB]
^SMAPE.OF.TOP]

47

IS B4
IS FREE
IS -75 -185 -368
IS GREEN
IS BIG
IS THE BIG GREEN CUBE
IS HOLDING BLOCK{B6)
IS ONTOPTABLE(TABLl)
IS CUBE
IS 158 158 158
IS 158
IS 158
IS 158
IS -75
IS -185
IS -358
IS
IS
IS
IS 3375888
IS 4
IS FLAT

Table III. Property List for a Particular HUMAN

IIUMANfl
HUMAN[1
MUMAN[1
HUMAM 1
HUMAN! 1
HUMAN[]
IlliMANjl
HUMAN[]
HUMAN] 1
IUMAN] 1
HUMAM|1
HUMAN[1
HUMAN'f!
HUMANI1
HUMANJ1
HUMANf]
HUMANJ1
HUMAN! 1
I lUMANi 1
HUMAN! 1
HUMAN!!
HUMANfl
HUMAN!!

.PNAME]
1GRASP_STATUSJ
.WEIGHT]
.LOCASHUN]
.HAIR.COLOR]
.SIZE]
.DrSCRIPTION]
,TOP_STATUS]
,BOT_STATUS]
.KINDOF]
.EYE.COLOR]
.AGE]
.SFX]
.HEIGHT]
.XCOORD]
.YCOORD]
.ZCOORD]
.LIKE.STATUS]
,LIKED_STATUS]
.GNAME]
.VOLUME]
.DISP_NUMB]
,SHAPE_OF_TOP]

IS FRIEND
IS EMPTY
IS 175
IS 100 208 200
IS BROWN
IS BIG
IS YOU
IS CLEAR
IS ONTOP CHAIR(CHAIRl)
IS HACKER
IS BROWN
IS 25
IS MALE
IS 72
IS 100
IS 200
IS 200
IS
IS
IS
IS
IS
IS ROUND

The property list for all blocks is shown in Table I, and the property
list for a particular token, in Table II, and the property list of a particular
human, m Table III. The two indices for the string arrays are shown in
»quari bracket?. The first index is a number, while the second index is a
string 'MACRO' which is translated by the compiler into a number. The
orray contain« the strings in the right-hand column. You might ask "Where
does the semantic information reside? It is true that you have property
lists, but what do the properties mean to the program?" The answer is that
the semantics resides in the procedures which know about these
properties. The string names of the properties are contained in the string
wray NAMEOFp.J] for which the first index refers to which list (different
eatogorica have different lists—the number for these are stored under
-object ^.PLIST]—as shown in Table I) and the second index corresponds
to the property number.

48

The general format for an entry is shown in Table IV. The string
before the colon identifies the type of information. The string between the
colon and the upward arrow contains extra information such as type of
question if it is a question, who said it to whom, or the name of a
procedure to identify itself. Between the arrow and first slash there is an
action word ouch as a verb (or "not" followed by a verb). The next two
stfingi are ^subject^ and <object>. Most of the entries fit this format, but
there are a few exceptions i.uch as the action "move" which has "from" and
"to" information. Typical entries can be seen in APPENDIX A which contains
the Grapevine Array which the program generated during the dialog of
Section II.

IV. PROCEDURAL DESCRIPTIONS

Objects are identified by a category name followed by a description
in parentheses. Typical examples of descriptions are given in Table V. As
one can cca there are several different formats. This flexibility ceems to
be necessary. BL0CK(B3) is an example in which the format is Jur,t the
PNAME n.e. the program's name for that particular object). This type of
description is used by the program as a fast, definite description. In
principle a human communicating with MAX would never know or refer to
this name. If a human wants to establish between himself and MAX a
common name for an object, he uses the property GNAME, which can be
changed without upsetting the databases.

Q10CK(VAR B3 B4 B7) is an example of a description which refers
to any or ail of the blocks with PNAMES B3, B4, and B7. This is useful in
cases for which there exists a choice. If MAX were asked to pick up a
<.reen block and D3, B4, and B7 were green blocks, the program would
convert the description to this form and delay a definite decision until the
last moment.

The most common type of description has the format of:

<property> ^relation> <state>.

58

Table V. Examples of Descriptions

BL0CK(B3)

BL0CK(C0L0R - RED|KINDOF ■ CUBE)

BL0CK(VAR B3 B4 B7)

BL0CK(C0L0R = BLUE|HEIGHT >
HEIGHT[BLüCKiHELD_STATUS = GRASPED_BY HAND(MAX))])

OBJECT« COLOR ■ GREEN|BOT_STATUS ■ ONTOP
OBJECKHEIGHT i HEIGHT[V OBJECT(BOT_STATUS = ONTOP
OBJECKTOP.STATUS - HOLDING BLOCK(KINDOF ■ PYRAMID]

HEIGHT > HEIGHT[v BLÜCK(KINDOF ■ PYRAMID)])))]))

BLOCK'KINDOF H PYRAMID|ANS:TEXIST/X/ - 187 a»)

BLOCK(KINDOF - PYRAMID|ACT:TGRASP/HAND(MAX)/X -
COMTONTOP/BLOCKiCOLOR = GREEN|KINDOF ■ PYRAMID)

/BLOCKtSIZE - SMALLIKINDOF ■ CUBE)- a»)

BLOCK*VAR B3 B4 B7: is an example of a description which refers
to any or ail of the blocks with PNAMES B3, B4, and B7. This is useful in
cascr, for which there exists a choice. If MAX were asked to pick up a
green block and B3, B4, and B7 were green blocks, the program would
convert the description to this form and delay a definite decision until the
laot moment•

The most common type of description has the f of:

'■property2, <relation> <stai

51

■ — — -■ -■ - -

Table Vl. Examples of Descriptive Segment

Property Relation State

KINOOF
TöP_STATUS
HEIGHT

-

=

>

(b)

PYRAMID
HOLDING BL0CK(...)
HEIGHT[BOX(...)]

YCOORD
HEIGHT

<
>

YC00RD[VBL0CK(...)]
HEIGHT[3 BL0CK(...)]

Examples are chown m Table VI. If the program were asked to find
RLOCKiKIISJDOF - PYRAMID), it would cycle through all of its block tokens
pullm- out their property KINDOF and noting those for which this property
were equal to PYRAMID. Some properties are more complicated such as
TOP_STATUS. For example, the TQP.STATUS of a particular block mi°ht
be 0

HOLDING BL0CK(B4)|H0LDING B0X(B0X3)|H0LDING BL0CK(B2)

while the ctate that the program is trying to match is

HOLDING BL0CK(COLOR ■ BLUE).

The comparison is done by first finding all blocks satisfying the
description COLOR - BLUE through a recursive call by the procedure on
itself. Then each block that it is holding is compared with all the blue

52

MMBMBtaa ■■Ma -

blocks. The prooram does on exhouotive search returning all objects
satisfying any description, rather than stopping after it finds the first one.

To contrast our descriptions with those of Winograd, consider the
description "a red cube which supports a pyramid". Winograd's[28]
description (PLANNER progtarn) is:

(GOAL (IS ?X1 BLOCK))
(GOAL (COLÜR_OF ?X1 RED))
(GOAL (EQUIDIMENSIONAL ?X1))
(GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2))

while our description is:

BLOCK(COLOR REO|KiNOOF ■ CUBE|
TOP_STATUS ■ HOLDING BLOCK(KINDOF - PYRAMID)).

The <state-' in third example in Table VKa) has the form:

<property>[<object>(<description>)].

The program (1) finds the particular object (if there is more than one
nod Ihr otatc is not quantified, it reports failure); (2) gets the value of
■propctty> for this object and converts it to a number. Then this is
cornpejred with the ''property> (also converted to a number) according to
the dcr.ignotcd relation.

The program uses the following relations:

-, /, >, <, <, >, ABOVE, BELOW, LEFT.OF, RIGHT.OF,
BEHIND, IN_FRONT_OF, DIRECTLY_ABOVE, DIRECTLY.BELOW,

EQUALS.EITHER.OR, and NOT <relation>.

There is a r.hort algorithm connected vyith each of these that gives
thorn an exact mathematical lalthough not necessarily intuitive) meaning.

Quantified descriptions have the form shown in Table VKb). The

53

~ ■

famiiicir predicate calculus symbols "V" and "3* all used for "all" and
"some". However, their effect on the calculation is only that caused by a
pcir ticulor algorithm and any symbol could be used. The combined effect of
the t elation and the quantifier determines the number used for <slate> in
the comparison« For example if the relation is "<" and the quantifier 15 "w"
then we mujt find the smallest number.

Any number of descriptions (<property> <relation> <stste>) can be
concutmated together with a vertical line for a delimiter as shown in the
fifth Gxnmple of Table V. Also, as indicated in that example the description
can contain other descriptions to any depth.

Another format is used to describe objects which were previously
tefetred to. Pattern matching of the historic Grapevine Array is done by
filling in come (or possibly none) of the locations and by put' ng an "X" in
the location of the desired quari'ity as in the description:

BLOCK(AN?.TEXIST/X/ - LAST ro),

This type of description has the format:

<type;;:< before-uparrow>T<action>/< subject >/<object>
-^arrow5 ^pointer> <how-far>.

The first pari is just the format for an entry in the Grapevine Array.
The quantity <pointer> indicates where the search should start and it can
be; (1 I FIRST, for starting at the first entry; (2) LAST, for starting at the
last entry; (3) PRES, for starting at the time marker for the present
dificussion. The words "when", "how", and "why" cause a time marker to be
■set to some Grapevine index number, and PRES refers to this number; (4)
some Grapevine index number; or (5) another Grapevine entry to be
matchod as in the last example of Table Vl.

The quantity '-arrow"" can be -, -, or - depending upon whether the
rcarrh is to be backward, forward, or around the designated entry. The
quantity <how-far> is a number indicating the extent of the search (ai
means go to the end).

A null (or "X") is the description will match anything in the

54

corresponding field of the Grapevine entry. Non-null fields in ^ype^
<bofore-uparrow>, and ■caction> must be identical for a match. In matching
- subject5 and <object> fields we note that

COM:HUMAN(FRIEND) TO HAND(MAX)TPICKUP/HAND(MAX)/
BL0CK(COLOR ■ RED|SIZE = BIG)

should be matched by

COM:TPICKUP/X/BL0CK(C0LOR = RED).

Also

ACT:rGRASP/HAND(MAX)/BL0CK(B7)

should be matched by

ACT:XTGRASP//BL0CK(KIND0F = PYRAMID)

if tha block with PNAME of B7 is a pyramid.

These matches are accomplished as follows: (1) The set of ail
objects satisfying the desired description is found; (2) The set of all
objects satisfying the Grapevine description is found; (3) A set intersection
of the two sets is performed; (4) If the resulting set is not empty, they
match. Otherwise, they do not match.

Matches are also done to find locations in the Grapevine Array. In
these coses the "X" is omitted.

In matching the total description, the general order is that each
object is tested against the description until it fails to satisfy some
requirement or it succeeds. Descriptions involving actions such as "red
objects that you touched while ..." (see Questions 41 and 42) are
hondled by: (1) finding all objects satisfying the static description; (2)
finding all objects satisfying the motion description; and (3) doing a set
intersection o' the two results. A description of the form:

BLOCK(KINDOF = PYRAMID|ACT:TGRASP/HAND(MAX)/X - LAST w)

is handled by backtracking (programmed especially for this case). It would
be inefficient to search the Grapevine for all objects that the hand has
grasped and yet the program would fail (without backtracking) if the first
object that it found was not a pyramid.

The description format for composite objects was chosen so that It
would be easy to identify the presence of a composite object. For
example,

PILE(GREEI\I|BLIJE|RED) ■ BL0CK(C0L0R ■ GREEI\)|
KINDOF - PARALLELEPIPED|TOP_STATUS = HOLDING BLOCK(COLOR = BLUEI
KINDOF = PARALLELEPIPtD|TOP_STATUS ■ HOLDING BLOCK(COLOR = REDI

KINDOF = PYRAMID)))

io really only the description of one object (the bottom object) for which
the program already has an identification mechanism. The description inside
the parenthesis following the name of the composite object is treated like a
set of variables in a macro definition. Any quantity put inside the
parenthesis on the left (at the time that the definition is given) can be
freely substituted for in itJ every occurrence on the right at a later time.

V. MOTION PROCEDURES

There are a set of procedures for moving objects:

Specialists

GRASP
RELEASE

GETONTOPOF
GETOFFOF
FIND.SPOT

MOVETO

 , „

MOVE.OIRECT
AVOID.COLLISION

Strateßists

CHANGETO
STACKUP

BUILD

One can command MAX to do the following simple actions (involving
one or two objfcto and the hand): grasp, release, ontop, offof, putdown,
pickup, near, inside, and move. All such requests pass through the
procedure CHANGETO which simply calls upon one or two of the
specialists. The speciülbto are rather independent. They check the
present Mate of the world at the time that they are called and report
failure if any errors in syntax or inconsistencies appear. If the present
state of the world is ready for them to do their job, they simple do it and
exit. However, if the present state of the world does not permit them to
do their job, they call on other procedures and themselves recursively to
create the proper conditions. For example, if we have the conditions
shown in Fig. 18, and one were to command MAX to grasp the green cube
which is Pitting on the table-, the procedure GRASP would call on (1)
GEfOF-FOF so that the object it wants to grasp would have a clear top; (2)
RCLFASE so its hand would be empty; and (3) MOVETQ so its hand would
be at the correct location to grasp the green cube. This simple operation
(GRASP is the only procedure called by CHANGETO) would cause the
following calling sequence:

{the big green cube}
•Ithe small red cube off of the big green cube}
•Ithe bmall sreen pyramid off of the small red cube}

•the cm.ill green pyramid}
{the smcill blue pyramid}
{hand from the blue pyramid to the small green pyramid}
{for the small green pyramid}
{the small green pyramid to the table}

{the small red cube}
{the small green pyramid}

57

21 GRASP
12 GETOFFOF
6 GETOFFOF
3 GRASP
1 RELEASE
2 MOVETO
4 FIND_SPOT
5 MOVETO
9 GRASP
7 RELEASE

■ - -

t

8 M0VF.T0
10 FIND_SPOT
11 MOVETO
18 SETOFFOF
15 GRASP
13 RELEASE
14 MOVETO
IG FIMD_SPOT
17 MOVETO
19 RELEASE
26 MOVETO

{hand from the green pyramid to the small red cube}
■for the small red cube}
•Ithe small red cube to the table}
•Jthe small red pyramid off of the big green cube}

•the smcill pyramid}
■the small red cube}
•hand from the small red cube to the small red pyramid}
■|for the small red pyramid}
•the small red pyramid to the table}
•[the small red pyramid}
•hand from the small red pyramid to the big green cube}

Note that the order in which procedures are entered (listed from top
to bottom) is different from the order In which they do their main job
(given by the numbers on the left). The main effect of procedure GRASP
(and RELEASE) is to change the GRASP_STATUS of the hand and the
IIELD_STATUS of some object, but their side effects can be considerable
as we have just discussed. RELEASE will not do its job unless the object
to be relecised is supported. If it is not, RELEASE will check to see if there
is rt-cilly some object just below the one that it wants to release. If there
IO, it colls upon another procedure to modify the top and bottom status of
the objects involved. If not, it calls on GET0NT0P0F to put the object on
the table.

The location of objects is changed only by procedure MOVETO or
MOVE_DIRECT. (MOVE_DIRECT and AV0ID_C0LLISI0N are used in special
cases in which the hand and anything it happens to be holding are moved
left, righti up, down, backward, or forward). The main effect of
GETONFOPOF and GETOFFOF are to change the top and bottom status of
objects. All locations for placing objects ontop of other objects or the
table are selected by the procedure FIND_SP0T, although other procedures
can suggtsi that it use a certain location.

The procedures STACKUP and BUILD examine the objects, plan a
strutegy for the overall task (without considering details), and then they
rnakc colls on CHANGETO.

This method of moving objects is not new; Winograd[6,20] used a

very similar method. The advantage of this method is that the higher-level
procedures need only worry about the task that they want to achieve and
not the grimy details.

59

I^MMM

.1 . I |III,IH|M

VI. CONTEXT MECHANISM

In order to answer hypothetical questions, the program needs to
carry out octions in an imaginary world. These actions must not affect the
data for the real world as the program will eventually want to return
quiclly to Ihii otate. Usually one wants to start the modifications with the
dotob.-r.o in ilr. present form in the real world. Making an extra copy of the
database is an unsatisfactory solution as this would require a long time and
a large memory space for a system with a large database. Typically one
wants the real-world database (which could be very large) with only a
small number of modifications.

This same problem also arises when the program wants to know
about a past state of the world. Saving all past state«: of the world is out
of the question. However, even if one knows what modifications occurred
and tho order that they occurred in, he still needs an extra database (which
is initially identical to the real database) in which to make the ctunges.

To solvt these and other similar problems, we have devised a
context mechanism. It is not too different from those used in
C0NNIVER[13], 0A4[12], AND MLISP2[2l] when one considers the great
difference in programming languages.

In implementing this context mechanism, we require that all transfers
of information to and from the Knowledge Representation Database pass
through a filter. The filtering procedure checks the present context and
takes the cipptopriate action. If the context^ then some locations in string
arrays may contain dat» which is different in the real world from that in the
imaginary world. The two data strings are separated by a "*" with the
imaginary-world data on the left and the real-world data on the right. Data
with no "*" arc identical in the two worlds. A typical BLOCK array for
such a case is shown in Table Vll.

68

Table VII. Property List for a Particular BLOCK with Existence of
Imaginary Context

BLOCK(5,PNAMEj IS
BL0CK[5,HELD_STATUS] IS
BL0CK[51L0CASHUN] IS
BL0CK[5,C0L0R1 IS
BLÜCK[5,SIZE] IS
l3LOCK[b,ÜESCRIPTIOi\l] IS
BL0CKf5,T0P_STATUS] IS
BLOCK! 5,B0T_STATUS] IS
BLGCK[5,KIND0F] IS
BL0CK[5,DIMENSI0NS] IS
BL0CK[5,XLENGTHJ ' IS
BLOCK[5,YWIDTH] IS
BL0CK[51HEIGHT] IS
BLOCK! 5,XC00RD] IS
BLOCK[S.YCOORD] IS
BLOCK! 5,ZC00RD] IS
BLOCK!51WALL_WIDTH] IS
BLOCK![iILIKED_STATUS] IS
BLOCK!5,GNAME] IS
BLOCK! G.VOLUME] IS
BLOCK! B.DISP.NUMB] IS
BLOCK[5,SHAPE_OF_TOP] IS

B5
FREE*FREE
-318 -558 -268*-75 -458 -468
RED
SMALL
THE SMALL RED CUBE
HOLDING BLOCK(B6)*HOLDING BLOCK(B7)
ONTOP BLOCK(B2)*ONTOP TABLE/TABL1)
CUBE
58 58 58
58
58
58
-318*-75
-558*-458
-253*-468

125888
7*5
FLAT

The rules used in filtering the data to and from the string arrays are
as follows:

(1) if the context-3, then the filter does nothing letting data flow
in the normal manner.

(2) if the contexts, then:
(•) data is taken from the right of the V if a "*" exists.

Otherwise, from the complete location as normal.

61

.

zcs^^mmmmmm m^^m^^mmmmm

no "*" (b) data is stored after the V if a "*" exists. If
exists, then one is added before storage and a note of this
location is made.

(3) if the context^ -1, then:
(a) data i« taken from the left of the "*" if a V exists.

Otherwise, from the complete location as normal.
(b) data is stored before the "*" if a "*" exists. If no "*"

exists, then one is added before storage and a note of this
location is made.

The addresses of string-array locations which contain imaginary-
world datd that is different than real-world data (i.e. a "*" is present) are
saved. (Note that each address in only saved once.) Thus the effort
involved in returning to the state in which only real-world data exists
(context - 0) is proportional to the extent of the modifications in the
imoginory world and involves only a change in the "*" locations.

This context mechanism could be generalized to several contexts by
u5in° several delimiters or adding context labels between the entries but
its efficiency would suffer grtatty. At present, we have not found the
need for many contexts. The context mechanism has been implemented to
handle- the case in which one request, "Suppose we only had one pyramid
and one cube, what ...". Here we do not want to waste time -dding a
* to all locations in setting up the imaginary world. This is handled by

»elting the context ■ -2 for which only entries with a "*" exist in the
imaginary world. This context frame is convenient for small, completely
dnferent, imaginary worlds.

Note that the frame with context = +1 or -1 can be used to handle
the situation in which one requests, "Remember everything as it is now
All right, make the following changes ...". Here one just changes the
context from 8 to +1 and the state which the robot was asked to
remember will be the imaginary world with context = -1.

In summary, we think that this is a useful context mechanism for a
robot because (1) there is essentially no overhead involved in changing to
an imaginary world, and (2) The additional storage space and time involved
are proportional to the size of the changes in the imaginary world.

62

mtm

——————-

VII. DISCUSSION

In this section we shall distuss several short topics which did not
seern to be appropriate for any earlier section.

A. Self-debugging

As Winograd[221 and others have noted, with large programs such as
CHRDLU there is a complexity barrier making them difficult to understand
cind extend. When one wants to add a new procedure or modify an old
one, he may not remember all the conditions and requirements of other
sections of the program (particularly if several months have elapsed since
the other sections were written).

With this complexity problem in mind, MAX was written in what some
might call an inefficient manner with considerable redundancy. This slightly
increased the programming time and the size of the program, but it greatly
icnurod the debugging time. All procedures (except trivial ones) were
jjven some independence. Each procedure has some expectancy about its
input data. If the syntax is wrong or the data is in any way inconsistent
with these expectations, the procedure reports an error and indicates the
form of the error by addinß an entry to the Grapevine Array. If the
procedure! should fail to achieve an objective, it must also report failure
with a Grapevine message telling why the failure occurred. This error
testing greatly aided debugging because the error was detected earlier and
the program was loss likely to die. For example if some new input "tickled
a luig" the error would usually be detected either inside the procedure in
which it occurred or the next procedure. Whereas, if no error testing
were done, the program might ramble on in its recursive, interwoven
manner through a dozen procedures before the error was detected or it
died. The message usually explained the cause of the problem. If not, the
program was still alive to answer more questions about the bug.

 ' •• i i i i i w^^a-vii i ■■ i i m^^^ß^^mmmmm^m^^mmimmmmm^^mmm^^mm^mmtmt

9

B. Generating Answers

It lo much easier to generate natural language than to parse natural
lansuaj« into the correct program representation. Although the program
dor-, not put out particularly good English, the effort for generating this
output was trivial. This leads one to believe that it is a rather straight-
forward problem to generate output that humans can understand. The
same cannot be said of handling natural-language input which is a far more
difficult problem. (Tc generate output that is indistinguishable from that of
humani is, of course, difficult[23].) Some answers are "canned", but most
anawcra ore a concatenation of strings from various parts of the program.
For exampie, the answers to Questions 12, 13, and 1 4 are "canned". If the
program gets to one of these places in its analysis, there is only one
concept that it wishes to convey so a "canned" answer seems appropriate.

Procedure IDENTIFY provides a complete description for an object
(its input is the object's category and pname). First, it obtains a short
description ouch as "the big green cube" from the property DESCRIPTION
(see Tdble II). Then it checks to see if the object has a gname. If it does
then "called <gname>" is added to the short description. If it has no gname'
then the property HELD„STATÜS is checked. If it is being held in robot' s
hand then "that I STRING1 holding" is added to the description for which
STRING! is "am now" or "was" depending upon the situation. If neither of
tho above conditions apply then IDENTIFY calls upon a procedure which
interrogates the Grapevine Array to find out if this object has been
involved in any recent actions. This procedure interrogates the Grapevine
Array for oix entries back and reports what action, if any, this object was
involved in. This is responsible for such answers as:

IT IS THE BOX THAT I JUST PUT A BIG BLUE PARALLELEPIPED INSIDE OF
(Question 5)

YES THE DIG BLUE PARALLELEPIPED THAT I JUST PUT A SMALL BLUE
PYRAMID ONTOP OF (Question 47).

64

P^^^^^^^^W^^M^^W^^^

I none of the above apply, the program checks to see if any other
object has the same description. If none does, it is satisfied with the short
dcncnption. If the object * s description is identical to that of one or more
Other objects, the procedure IDENTIFY checks the properties TOP_STATUS
and HO I STATUS trying to find something to distinguish it from other
wrwlar objects. If these fail, it determines the direction with the greatest
spattal variation to separate this object from similar objects. This leads to
answers such as,

5 THE . . . THE BIG GREEN CUBE THAT WAS HOLDING A SMALL RED PYRAMin
AND THE BIG GREEN CUBE WHICH WAS TOWARD THE BACK (QuestL 64)

For all failures the program calls on procedure REASON which puts
toodhor a string by examining the Grapevine. For example consider
Uuer.tion 2. The Grapevine contains the following reason for failure:

GRAPEVINE 22: REAS; FIND.NUMB/TOOMANYTFIT/DESCRIPTION/
BLOCK(VAR B6 B7 B8)

Proeoduro FIND_NUMB has found three blocks satisfying the descriotion
wh.le the DEFINITE in the description required thaMt onfy 'nd o e

PPAQ^r 'TU*, t
failUre and 8ave the above rea8on- Procedure

REASON just put this into the normal form of subject-verb-object calline
on procedure IDENTIFY to describe the blocks with pnames B6, B7 and BS
Thus reason returns the string:

BECAUSE DESCRIPTION FIT THE SMALL RED PYRAMID
THE SMALL GREEN PYRAMID AND THE SMALL BLUE PYRAMID

C. Reasoning

As one can see from the dialog (Section II), the program has
considerable reasoning power, but no explicit predicate calculus's used.
Instead the program s reasoning abilities are built into the procedures and

65

WMI w^mimmm'mt^ßmmmmmm'mi'^mwmmmmmmmm^^ßm^^^"'! ■ > m—»W^^BWI^

otructure of the oystcm. (In other words, we followed the PUNNDVllI
rnethoo.) For example consider the following simple reasoning problem
m w ich one ß.ves the proßram two factual statements and the^asksa

All humans are mortal.
Turing is a human.
Is Turing mortal?

The following dialog was generated with MAX (since MAX does not have
the property MORTAL_STATUS stored, we must first get it added o the
propertv lis for humans)- 8 eu lo ine property list for humans):

" STORE PROPERTY.

OK -- WHAT CATEGORY OF OBJECTS IS IT A PROPERTY
OF? (BLOCK,BOX,HUMAN,...?) ™urtKiY

0 HUMAN

IS IT A PROPERTY OF ALL HUMAN'S -- Y OR N?

« YES

WHAT IS THE NAME OF THE PROPERTY? '

V MORTAL_STATUS

IS IT AN UNCHANGEABLE PROPERTY? Y OR N?

« NO

66

MMHMMIHIMil

IS IT RELATED PROPERTY Y OR N?

// NO

I* M READY TO STORE THE FOLLOWING DATA:
PROPERTY LIST - 3
PROPERTY = MORTAL.STATUS

ARE ALL OF THESE CORRECT -- Y OR N?

// YES

OK

* STORE FACT MORTAL.STATUS OF HUMAIM(ITSELF) IS MORTAL.

OK

ft ADD DATABASE HUMAN(GNAME ■ TURING).

OK

* IS FACT MORTAL.STATUS OF HUMAN(GNAME = TURING) IS MORTAL?

YES

// IS FACT MORTAL_STATUS OF HUN/AN(GNAME = TURING) IS
IMMORTAL?

NO BECAUSE MORTAL.STATUS NOT EQUAL IMMORTAL

// WHAT IS MORTAL.STATUS OF HUMAN(GNAME = TURING)?

MORTAL

Note that the program actually added a "token" human to its
database, and its übility to answer the question was due to its use ct the
dotabcise structure.

D. Creating, Destroying, and Resurrecting Tokens (Particular Objects)

Unlike Winograd's SIIRDLU[6], MAX can readily create and destroy
tokenr; (sec Questions 55-58). The program has a set of default values for
properties so one can Just command:

ADD DATABASE BLOCKO

and the program will choose the type of block, its size, and call upon
FIND_SPOT to find a location for it, etc. Note that the program can use its
molion procedures to clear off objects before it destroys them and put
down objects so it has a free hand for new objects.

Whenever a token is destroyed, all of the information about the
tokrn is eliminated from the Knowledge Representation Database (its
position in the string array is given to another token). However, the
token's complete property Hot is saved (in the usual descriptive format) in
a Grapevine entry. Thus it is easy to resurrect that token at a later time.
To answer Question 64, the program in an imaginary context destroyed
objects and resurrected two green cubes. Since their pnames were unique,
the program had no trouble moving a resurrected token in retracing its
steps.

It is quite apparent that a human taking MAX's part in the dialog
would not (although he could) make a complete representation of the scene
at the beginning and then carry out the operation blind by modifying his

68

representotion« It is more likely that he would look at the scene between
actions, filling his database with tokens (from visual input) each time. Thus
the eddition and deletion of tokens from the working database may be very
imporlcint in simulating human behavior—particular if vision is included.

One sometimes wonders how a large Knowledge Representation
Dfttabasa could work efficiently. For example, if one asked MAX, "Who is
the tnllcst person in the room?" and MAX knew 1008 people, he would
cycle through the all the people (1000) in his Knowledge Representation
Dalaboce before answering which would be very inefficient. One possible
solution to this problem is to have a small, relevant, working Knowledge
Representation Database. In this case, for example, it might only be filled
to cmower the particular question and therefore only contain those people
in the room. The properties of all other tokens could be contained in
something like the Grapev.ne Array. Thus, when two old friends appear,
they (their property lists, that is) could be resurrected to the working
database.

E. Suggestions for ture Work

Since it took only six months (see Section I) to get the program to
this level, one can be optimistic about extending it. As long as the
progrwn runt rapidly and the self-debugging is effective, the larger, the
better--thc,t is, it is easier to do some new process because one can call
on so many old procedures. Also it is easier for the program to learn about
r,omc new composite object if they can be described in terms of ones that
it already knows about. For example, MAX was told about a "rocket" in
terms of a "pile".

severa
With the program at its present level of competence, there are
il interesting directions in which it could be extended:

(1) Increasing the representation to handle properties and relations
that arc needed in a more complex world such as Euler Angles to
specify the orientation of an object and concepts such as objects
"touching";

(2) Adding some or all of the vision segments shown in Fig. 1;

69

I

(3) Adding a content-addressable database with pointers to entries
in the Grapevine Array;

(4) Increasing the abilities of the executive to do inferencing[24,25]
and examination of ail error messages;

(5) Extending the Grapevine Array format to something like a
conceptual-dependency diagram[7,24,25];

(6) Increasing the program's learning ability. At present, this
involves storing facts, adding and deleting tokens and properties.
The odding of new proporties is perhaps the highest level of learning
achieved in the prosrarn, and it gives some indication of the methods
necessary for extending this capability. Properties can be added
directly from the teletype (see Section VUG) and the program asks
the necessary questions. A complicated property such as
LIKE_STATUS (and its complement) are handled by putting strings in
several arrays and increasing the count number in other arrays. This
learning ability should be extented to adding and deleting new
categories, new relations, and new actions.

Having procedural knowledge can make it more difficult to add new
knowledge. (Susornan[26] has worked on this problem.) For
example, if one odds a now type of object, the program needs to
know the property SHAPE_0F_T0P. If this property is "round",
"pointed", or "flat" then the present program can handle it. However,
if it were "peaked", one would have to modify the coding to handle
this new case. This and similar problems could be handled by storing
lists (long strings that contain entries separated by a break character
and which can be augmented) of acceptable and unacceptable
SHAPE.OF.TOP' s for supporting other objects.

VIII. ACKNOWLEDGMENTS

We would like to thank T. Winograd, J. A. Feldman, and T. 0.
Binford for helpful discussions, J. R. Low for helping with SAIL related
problems, and B. A. Perkins for the graphic display program.

APPENDIX A. HISTORIC DATABASE GENERATED BY DIALOG

The Hiotoric Database it initially empty when a conversation begins.
This section contains the Grapevine-Array entries which the program
generated during the dialog of Section II. So that one can easily find the
Grapevine entries for a particular question, the computer output has been
edited by the insertion of question numbers. "INFO" refers to array INFO
whoc-e entries are given at the end. The program usually refers to objects
by their pnames which for the blocks are as follows:

Bl IS THE GIG BLUE PARAl.LEl CPIPED.
B2 IS THE BIG RED PARALLELEPIPED.
B3 IS THE BIG GREEN CUÜL WHICH INITIALLY IS ON TOP OF BLOCK B2.
B4 IS THE GIG GREEN CUBE WHICH INITIALLY IS HOLDING BLOCK B6.
B5 IS THE SMALL RED CUBE.
B6 IS THE SMALL RED PYRAMID.
137 IS THE SMALL GREEN PYRAMID.
BS IS THE SMALL BLUE PYRAMID.

Question

GRAPEVINE 1: COM;HUMAN(FRIEND) TO HAND(MAX)TPICKUP/
HAND(MAX)/ELOCK(COLOR = RED|SIZE ■ BIG)
GRAPEVINE 7: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM 0 0 0/

TO -3113 -550 -IM
GRAF'EVINE 3: REAS:ACHIEVEtGRASP/HAND(MAX)/BL0CK(B3)
GRAPEVINE 4: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

niOCK(B3)
GRAPEVINE 5: REAS:ACHIEVEl0FF0F/BL0CK(B3)/BL0CK(B2)
GRAPEVINE 6: 0RD:GET0rir0F TO FlND_SPOTTFIND/FIND_SPOT/

INFO.''I
GRAPEVINE 7: ACT:TM0VE/HAND(MAX)/BL0CK(B3)/FR0M -310

-bbO -160/TO -545 -255 -363
GRAPEVINE B: REAS:ACHIEVET0NT0P/BL0CK(B3)/TABLE(TABL1)
GRAPEVINE 9: ACT:CAUSED_BY HAND(MAX)T0FF0F/BL0CK(B3)/

ÜLüCK(B2)
GRAPEVINE 10; REAS:ACHIEVETT0P_STATUS[BL0CK(B2)] ■ CLEAR

71

GRAPEVINE 11: ACT;CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
CLOCK! B3)
GRAPEVINE 12; REAS:ACIilEVl"TMOVE/HAND(MAX)/HAND(MAX)/

FROM -545 -255 -35Ö/TO -318 -550 -318
GRAPEVINE 13: ACT:tN/10VE/HAND(MAX)/HAND(MAX)/FROM -545

-2bb -360/TO -318 -558 -318
GRAPEVINE 14: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

GRASPING BLOCK(B2)
GRAPEVINE 15: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

BLOGK(R2)
GRAPEVINE 16: REAS:ACHIEVETMGVE/HAND(MAX)/BLOCK(B2)/

FROM -318 -558 -318/TO -318 -558 288
GRAPEVINE 1 7: ACT:TMOVE/HAND(MAX)/BLOCK(B2)/FROM -310

-558 -310/10 -310 -558 288
GRAPEVINE 18: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 19: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/HAND(MAX)/

INF0^2

Question 2

GRAPEVINE 20: COM:HUMAM{FRIEND) TO HAND(MAX)TGRASP/
HANDiMAX)/eLOCK(DEFINiTE|KIND0F = PYRAMID)
GRAPEVINE 21: ACT:NOAP
GRAPEVINE 22: REAS:FIND_NUMB/TOOMANYTFIT/DESCRIPTION/

BLOCKWAR B6 B7 B8)
GRAPEVINE 23: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOT DID/

HAND(MAX)/INF0^3

Question 3

GRAPEVINE 24: COM:HUMAN(FR;END) TO HAND(MAX)TFIND/
HAND.MAX)/ELOCK(HEIGHT > HEIGHT[BLOCK(HELD_STATUS =
GRASPED.BY HAND(MAX)J])
GRAPEVINE 25: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/

HAND^MAX)/BL0CK(B1)
GRAPEVINE 26: C0M:HUMAN{FR1END) TO HAND(MAX)TINSIDE/

BL0CK(ANS:1FIND//X - 23 2)/B0X(DEFINITE)
GRAPEVINE 27: 0RD:GET0NT0P0F TO FIND_SPOTTFIND/FIND_SPüT/

72

INFCV/4

GRAPEVINE 28: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/

GRAPEVIME 29: ACT:lMOVE/HAMD(MAX')/BLOCK(B2)/FROM -318
-550 208/TO-310-550-310

GRAPEVINE 33: REAS:ACHIEVETONTOP/BLOCK.B2)/TABLE(TABLl)
GRAPEVINE 31: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(B2)/

GRAPEVINE 32: REAS:ACHIEVETRELEASE/HAND(MAX)/BLOCK(B2)
GRAPEVINE 33: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/

GRAPEVINE 34: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM • 310 -558 200/TO -475 -185 -268
GRAPEVINE 35: ACT:tMOVE/HAND(MAX)/HAND(MAX)/FROM -318
-550^00/10-475-105-260
GRAPEVINE 36: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)1

" GRASPING RLOCK(Bl) J

GRAPEVINE 37: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
BLOCK! 81)

GRAPEVINE 38: REAS:ACHIEVETM0VE/HAND(MAX)/BL0CK(B1)/
FROM -475 -I 05 -268/TO -545 145 -268
GRAPEVINE 39: ACT:IM0VE/HAND(MAX)/BL0CK(B1)/FR0M -475

-105-260/TO-545 145-260
GRAPEVINE 48: REAS:ACHIEVET0NT0P/BL0CK(B1)/BOX(BOXl)
GRAPEVINE 41: ACT:CAUSED_BY HAND(MAX)TINSIDE/BL0CK(B1)/

GRAPEVINE 42: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 43: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/HAND(MAX)/

Question 4

GRAPEVINE 44: COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
HANn(MAX)/OBJECT{BOT.STATüS - ONTOP BOX(DEFINITE))
GRAPEVINE 45: ANS:HAND(MAX) TO HÜMAN(FRIEND)TFIND/

HAND(MAX)/BLOCK(VAR Bl B8)

Question 5

73

GRAPEVINE 46: COM:HUMANiFRIEND) TO HAND(MAX)TFIND/
HAMDMAAVOBJECTITOP.STATUS = HOLDING BLOCK(KINDOF - PYRAMIDI
ANS:tFIND//X - 48 2»
GRAPEVINE 47: ANS:HANDiMAXi TO HUMAN(FRIEND)TFIND/

HANDiMAX)/BOXiBOXl)

Question 6

GRAPEVINE 48: 0UEST:HOW_MANY/HUMANI(FRIEND) TO HAND(MAX)
lFXIST/BLOCK(BOT_STATUS * ONTOP BOX(DEFIN,TE)|KINDOF

PARALLELEPIPED)/
GRAPEVINE 49: ANS:HAND(MAX) TO HUMAN(FRIEIJD)TEXIST/

BLOCKiVAR B2 B3 B4 B5)/4

Question 7

GRAPEVINE 50: QUEST:YES_NO/HlJMAN;FRIEND) TU HANÜ(MAX)TEXIST/
BLÜCK(ANS:IEXIST/X/ - 49 2|YWIDTH < YWIDTH[ELOCK(COM:
HUMAN(FRIEND) TO HAND(MAX)lPICKUP/HAND(MAX)/X *- 49 a.)])/
GRAPEVINE 51: ANS:HAND(MAX) TO HUMAN(FRlEND)rEXIST/

BLOCK(B5;/l

Question S

GRAPEVINE 52: 0UEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)TEXIST/
ÜEJECT(TOP_STATUS ■ HOLDING BLOCK(ANS:TEXIST/X/ *■ 51 2))/
GRAPEVINE 53: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

TABLE(TABL1)/1

Question 9

GRAPEVINE 54: QÜEST:lb_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
I DO/TABLE/PICKUP BLOCKO

74

GRAPEVINE 55: ANS:HAND(MAX) TO HUMAN(FRIEND)1N0//
GRAPEVINE 56: REAS:TNOT EQUAL/AN_VEG_MIN[TABLE(ITSELF)1/

ANIMATE J

Question 19

GRAPEVINE 57: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
10NT0P/BL0CK(KIND0F = PYRAMID)/BLOCK(KINDOF - PARALLELEPIPED)
GRAPEVINE 58: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 59: REAS:TEXIST/EXAMPLE/INFOÖ7

Question 11

GRAPEVINE G8: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TONTOP/
ELOCK(KINDOF - PYRAMID)/BLOCK(KINDOF ■ PYRAMID)
GRAPEVINE 61: THOUGHT:ÜKO:GETONTOPOF TO FIND SPOTTFIND/

nND_SP0T/INF0«8 "
GRAPEVINE G2: THOUGHT:ACT:NOAP

GRAPEVINE 63: THOUGHT:REAS:FIND_SPOT/CANNOT_BE_DONETNOT
SUPPnRT/BLOCK(SHAPE_OF_TOP ■ POINTED)/OBJECT(VAR)
GRAPEVINE 64: ANS:HAND(MAX) TO HUMAN(FRIEND)TNO//

Question 12

GRAPEVINE 65: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO HAND(MAX)
1 DO/HAND(MAX)/STACKUP BLOCK(C0LOR ■ RED) BLOCK(COLOR
- RED) AND nLOCK(COLOR - RED)
GRAPEVINE f>6: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)

TSTACKUP/HAND(MAX)/BLOCK{COLOR = RED) BLOCK(COLOR =
RED) AND BLOCK(COLOR ■ RED)
GRAPEVINE 67: THOUGHT:ACT:NOAP
GRAPEVINE G8: THOUGHT:REAS:ACHIEVErBOT STATUSrBLOCK(B2)l

- ONrOPTABLE(VAR) " L J

GRAPEVINE 69: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND^MAX)/BLOCK{Bl)
GRAPEVINE 78: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/

75

HANü(MAX)/FROM -545 145 -260/TO -75 -450 -410
GRAPEVINE 71: TH0UGHT:ACT;1M0VE/HAND(MAX)/HAND(MAX)/

FROM 545] 45 -260/TO -75 -450 -410

RLOawT /2: THÜUGHT:f^AS:ACHIEVETGRASP/HAND(MAX)/

GRAPEVINE 74: THOUGHT.REAS:ACHIEVETOFFOF/BLOCK(B7)/
BL(XK(B5)
GRAPEVINE 75: THOUGHT:ORD:GETOFFCF TO FIND SPOTTFIND/

FIND_SPOT/IWO*10 "
GRAPEVINE 76: THOUGHT:ACT:tMOVE/HAND(MAX)/BLOCK(B7)/

FROM • 75 -450 -410/TO -422 -60C -460
GRAPEVINE 77: THOUGHT:REAS:ACHIEVErONTOP/BLOCK(B7)/

TABLECTABLl) ^-MD///

GRAPEVINE 79: THOUGHT:REAS:ACHIEVET0NT0P/BLOCK(B5)/
BLOCK) ü2)

GRAPEVINE m THOUGHT:ORD:GET0NT0POF TO FIÜ'O SPOTTFIND/
FIM0_SP0T/INF0//11 ^.sr unriiNJU/

GRAPEVINE L;1: THOUGHT:ACT:CAUSED_BY HAMXMAX)TRELEAff/
IIAND(MAX)/BLOCK{B7) «A/i^LtAbt/

GRAPEVINE 82: THOUGHT:REAS:ACHIEVETM0VE/HANDiMAX)/
HANO(MAX)/FROM -422 -60S -460/TO -75 -450 -468

FR^:4V^^

'GRA'nNGSoCK^'1^'9^^^^^^-8^1^^^^

S^x^SHT:ACT:CAUSED-BY HAND':MAX^
GRAPEVINE 86: THOUGHT:REAS:ACHIEVETMOVF/HAND(MAX)/

GLOCK(B5)/FROM -75 -450 -450/TO -310 -550 -260
GRAPEVINE '67: THOUGHT:ACT:IMOVE/HAND(MAX)/BLOCK(B5)/

I RUM -75 -450 -460/TO -310 -550 -260
GRAPEVINE 88: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B5)/

BLOCK» B2>

f!u.cS/eLCc<!B02rT:ACT:CAUSED-BYHAND(MAX,T0NT0P/

GRAPEVINE 93: THOUGHT:REAS:ACHIEVETSTACKUP/BLOCK(B5)/
üLL;CKI1J2)

GRAPEVINE 91: THOUGHT:0RD:GET0NT0P0F T0 FIND.SPOTTFIND/

76

MMM

FIND._SPOT/INFO«! 2
GRAPEVINE 92: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

flAND^MAX)/BLOCK(ü5)
GRAPEVINE 93: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/

HAND(MAX)/FROM -318 -558 -268/T0 -185 -78 -168
GRAPEVINE 94: THOUGHT:ACT:TM0VE/HAND(MAX)/HAND(MAX)/

FROM -31 n -558 -26Ö/TO -105 -78 -168
GRAPEVINE 95: THÜUGHT:REAS:ACHIEVETGRASP STATUSrHAND(MAX)l

•= GRASPING GLOCK(B6) J

GRAPrviNE 96: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/
HAND(MAX)/BLOCK(B$)
GRAPEVINE 97: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/

niOCK(nf,)/FROM -185 -78 -160/TO -318 -558 -68
GRAPEVINE 98: THOUGHT:ACT:rMOVE/HAND(MAX)/BLOCK(B6)/

FROM -105 -78 -168/TO -310 -558 -68
GRAPEVINE 99: THOUGHT:REAS:ACHIEVETONTOP/BLOCK{B6)/

BLOCKiBS)
GRAPEVINE 188: THOUGHT:ACT:CAUSED_BY HAND(MA>.)TONTOP/

niOCKlnf.)/BLOCK(B5)

GRAPEVINE 101: THOUGHT:REAS:rASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 182: ANS:HANDiMAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 183: REAS:1 IMAGINE/HAND(MAX)/INF0'V13

Question 1 3

GRAPEVINE 184: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO
HAND;MAX)TDO/HAND(MAX)/PICKUP BLOCK(COLOR = RED)
GRAPEVINE 185: ACT:NOAP
GRAPEVINE 106: REAS:WATCHX/ERRORTNOT CORRECT/FORM/

COM:rPICKUP/HAND(MAX)/BLOCK(COLOR = RED)
GRAPEVINE 187: ANS:HAND(MAX) TO HUMAN(FRIEND)TYES//
GRAPEVINE 188: REAS:GRAPEVINE «19TDONE/BEFORE/

Question 1 4

GRAPEVINE 1 09: QUEST:IS_POSSIBLE/HUMAN(FRIEND) TO
HAND(MAX)TDO/HAND(MAX)/STACKUP BLOCKO BLOCKO AND BLOCKO
GRAPEVINE 110: ANS:HAND(MAX) TO HUMANIFRIENDUYES//

77

 ^_ - ,

GRAPEVINE 111;
REAS:GRAPEVINE//183TTHOUGHT_DONE/BERDRE/

Question 1 5

GRAPEVINE
LIKFD

»EVJNE 11 2: FACT:HUMAN{FRIEND) TO HAND(MAX)TEOUAl /

iSc Sl^fJl3: FACT:H^AN(FRIEND) TO HAND(MAX)TFOUAI /
LIKE.STA I US[HUMAN(FR1END)]/LIKE BL0CK(B8) Q ^

Question 16

GRAPEVIME 1U: FACT^HUMAMFRIENO) TO HANKMAX.tmilA, /

GiMllVlNE 119: FACT:HUMAN(FRIEiMD) TO HAND(MAX)TFni IAI /
LI1CF_STATUS[HUMAN(FRIEND) l/LIKE BLOCK(BaMl - QI nr^7,

GRAPEVINE 1 20: F-ACT:HUMAN(FRIEND) TO HAND(MAX)TFnnA. /

,u^ .T^ 121: FACT:HUViAN(FRIEND) TO HAND(WAX)TFn JAi /
LIKLU_STArUS[BLüCK(B5)J/N0T LIKED B mMAWFW^ '

|SÄAarl^, eT? HHuAr pAsrL/

78

Question 17

GRAl-EVINE 125: QUEST:IS_FACT/HUMAN(FRIEND) TO HAND(MAX)

GRAPEVINE 1 26: ANS:HAND(MAX) TO HUMAN(FRIEND)TNO//
GRAPEVINE 1 27: REAS:IS_FACT/lNOT EQUAL/LIKE STATUS

(HDMANiTRlEMmj/LlKE BOX(DEFIMTE) L/Ll^-^ArUS

GRAPEVINE 128: QUEST:IS_FACT/HUMAN(FRIEND) TO HAND(MAX)
1LÜUAL/LIKE_STATUS[HUMAN(FRIEND)]/N0T LIKE BOX(DEFINITE)
GRAPEVINE 129: ANS:HAND(MAX) TO HUMAN(FRIEND) YES

Question 18

GRAPEVINE 1 30: 0UEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
lEXIsr/OGJECT(BOT_STATUS - ONTOP BOX(DEFINITE)yKED STATUS

■ LIKm nYiiUMANiFRIENQ»/ 'M"t;|UMiU_STATUS

ümCKfvTR^l^BSvT^^0^^' T0 HÜMAN(FR,EN^TEXIST/

Question 1 9

GRAPEVINE 132: 0UEST:WHATJS/HUMAN(FRIEND) TO HANDfMA^Tic/
LIKf:D_STATUS/BLOCK(COLOR - ^EN|KINO(^C^lL^^ ^
IN..FRONT_OF BLOCK(COLOR - GREEN)) ^Ubt|LOCASHUN

GRAPEVINE 133: ANS:HAND(MAX) TO HÜMAN{FRIEND)TIS/
LIKED_STATUS/NOT LIKED.BY HUMAN(FRIEND)

Question 20

ÄS^Ä^T10R eL0CK<KINÜ0F"PYRA^
GONTOp'TABL3E(VARf:ACHIEVEteOT-STATUSfBLOCK(B2,l

79

_

,™NE 137: 0*D™™OPOF TO F,«_SPOTrFIND/FIND_SPOT/

ESST '^ ACT:(:AU^Ü-BV HANKMAX,tRELEASE/HAND(MAX)/

-srMT^e4/ro
A-5^?2

v5E5/HA3r9,MAx,/HAND(MAx,/™M

^%AI™Ga;cMB
A3rCH,EVETGRASP-STATUS[HA«'^^

ROa'mT l4* ACT:CAU^D.BY HAW(MAX)TGRASP/HANO(MAX)/

-5"^r^4
3

4;/0
CT

3^r-räWAWBL0CK(B3)/™M

BlOCK(B2) ACtCAUSED-SY HAND(MAX)t0NT0P/BLXK(B3)/

BLOCK(B3) AC-TCAJSED_BY HAND(MAX)tRELEASE/HAND(MAX)/

BLOCK^f 168: ACTCAU^D_By HAND(MAX,rRELEASE/HAND(MAX)/

88

----- - - ■ - ^J^—^ - -

If

GRAPEVWE 161: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -422 -688 -460/TO -75 -458 -468
GRAPEVINE 162: ACT:rMOVE/HAND(MAX)/HAND(MAX)/FROM

-^22 -688 -468/T0 -75 -458 -468
GRAPEVINE 1 63: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)1

- GRASPWG BLOCK(B5)
GRAI'L-VINE 164: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

BL0CK(B5)
GRAPEVINE) 65: REAS:ACHIEVErM0VE/HAND(MAX)/BL0CK(B5)/

Ff.'OM -75 -4b8 -468/TO -318 -558 -118
GRAPEVINE 166: ACT:IM0VE/HAND(MAX//BL0CK(B5)/FR0M

-75-458 468/TO-318-558-118
GRAPEVINE 167: REAS:ACHIEVEr0NT0P/BL0CK(B5)/BL0CK(B3)
GRAPEVINE 1 68: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(B5)/

BLÜCK(B3)
GRAPEVINE 169: REAS:TASK/HUMAN(FRIEND)/HAND(MA,<)
GRAPEVINE 1 78: ANS;HAND(MAX) TO HUMAN(FRIEND)TDID/

HAND(MAX)/INF0#17

Question 21

GRAPEVINE 1 71: COM:HUMAN(FRIEND) TO HAND(MAX)TFIND/
IIANOiMAX)/BLOCK(KINDOF - CUBEjBOT_STATUS = ONTOP T-
ABLE-nEFINITE»
GRAPEVINE 1 72: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/

HAND(MAX)/BL0CK(B4)

Question 22

GRAPEVINE 1 73: QUEST:HAVE_IN_COMMON/HUMAN(FRIEND)
TO HANn:MAX)lHAVEJN_COLMON/BLOCI<(B6)/BLOCK(B5)
GRAPEVINE 1 74: FACT:rHAVE_IN_C0MM0N/BL0CK(B4)/BL0CK(B3)/

ÜESCRIPI l(JN|DIMENSIOMS
GRAI'EVINC 1 75: ANS:THAVE_IN_C0MM0N/BL0CK(B6)/BL0CK(B5)/

CATEGORYICOLORISIZEIXLENGTHIYWIDTHI-BOT.STATUSITOP STATUS

81

^

 — Question 23

JSfuJSSS ! 7.6: QU^^^VE-'N-COMMON/HUMANIFRIEND)
TO HANDiMAX)THAVE_IN_C0MM0N/BL0CK(B3)/BL0CK(B4)
^PEVINE 1 77: FACT:rHA\)E_IN_COMMON/BLOCK(B2)/TABLE(TABLl)/

GRAPEVINE 1 78: FACT:THAVE_IN_COMMON/BLOCK(B5)/BLOCK(Be)/
CA1 EüüRY|COLOR|SIZE|XLENGTH|YWlDTH|TOP_STATUS /

nGr^,nE:ryiN1E 1 79: ANS:THAVE-IN-C0MM0N/BL0CK(B3)/BL0CK(B4)/
DESCRIPTIONIDIMENSIONSI-TOP.STATUS J'/OLUWUV/

Question 24

GRAPEVINE 180: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
IEXIST/BL0CK(SIZE - BIG1KINDOF - PARALLELEPIPED|XCOORD
< XCOORD[3 BLOCK(KINDOK - PYRAMID)])/ LUI^UKU
GRAPEVINE 181: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

BLOCK(VAR Bl B2 B3V3 /

Question 25

r?K522f 182: C0M:HUMAN{FRIEND) TO HAND(MAX)T0N70P/
ÜLOCK(SIZL - SMALLIKINDOF - PARALLELEPIPED)/BLOCK(COLOR
^GREENITOP.STATUS - HOLDING BL0CK(KIND0F = PYRAMID))
^GRAPEVINE 183: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/

^tPF^£ M4; ACT:™OVE/HAND(MAX)/BLOCK(B5)/FROM
-310 -550-110/TO-55-155-310
GRAPEVINE 185: REAS:ACHIEVET0NT0P/BL0CK(B5)/BL0CK(B4)

Biomf,T] 86: ACT:CAUSED-BY ^omx)mTomiocKL/
GRAPEVINE 187: REAS:TASK/HUMAN(FRIEND)/HAND{MAX)

Question 26

J

GRAPEVINE 189: COM:HUMAN(FRIEND) TO HAND{MAX)TONTOP/
BLOCK(KINDOF - PYRAMID|HEIGH' < HEIGHT[V BLOCK(KINDOF '

(,YUAMID)])/BLOCK(ACT:TONrOP/X/ - 188 3)
GRAPEVINE 1 90: ORD:GETONTOPGF TO FIND SPOTT FIND/FIND SPOT/

INFO-V2Ö " '

GRAPEVINE 191: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
nLOCK(R5)

GRAPEVINE 1 92: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM bS -155 -318/TO -422 -608 -460
GRAPEVINE 1 93: ACT:rMOVE/HAND(MAX)/HAND(MAX)/FROM

-55 -1 55 -310/TO -422 -603 -460
GRAPEVINE 1 94: REAG:ACHIEVETGRASP_STATUS[HAND(MAX)1

- GRASPING BLOCK(B7)
GRAPEVINE 1 95: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND{MAX)/

BLüCK(B7)
GRAPEVINE 1 96: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B7)/

FROM -422 -608 -460/TO -55 -155 -260
GRAPEVINE 197: ACT:TMOVE/HAND(MAX)/BLOCK(B7)/FROM

-422 -608 -460/TO -55 -155 -260
GRAPEVINE 1 98: REAS:ACHIEVETONT0P/BLOCK(B7)/BLOCK(B5)
GRAPEVINE 199: ACT:CAUSED_BY HAND(MAX)TONTOP/BLOCK(B7)/

DL0CK(B5)
GRAPEVINE 200: REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 201: ANS:HAND(MAX) TO HUMAN(FRIEND)rDID/

IIAND(MAX)/INFO//2l

Question 27

GRAPEVINE 202: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
1EXIST/0B.JECT(T0P_STATUS ■ HOLDING BLOCK(KINDOF = PYRAMID!
HEIGHT 2 HEIGHT[V BLOCKiKINDOF - PYRAMID)]))/
GRAPEVINE 203: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

BL0CK(B4)/1

GRAPEVINE 204: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
IEXIST/OBJECT(COLOR = GREEN|BOT_STATUS ■ ONTOP
OBJECT(BOT_STATUS ■ ONTOP OBJECT(ANS:TFXIST/X/ - 201 3))|
HEIGHT < HEIGHT[V OBJECT(BOT^STATUS ■ ONTOP OBJECT(ANS:T
EXIST/X/ - 201 3))])/
GRAPEVINE 205: ANS:HAND(MAX) TO HUMAN(FRIEND)TEX1ST/

BL0CK(B7)/1
GRAPEVINE 206: 0UEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)

rEXtST/OBJ£CT(OOLOR - GRtEiM|BOT_STATUS = ONTOP OBJECKHEIGHT
< HEIGMTIV OBJECT(BOT_STATUS = ONTOP OBJECKTOP.STATUS
- HOLDING BLOCK(KINDOF - PYRAMID|HEIGHT > HEIGHT[V
ÜLOCKIKINDOF ■ PYRAMID)])))]))/
GRAPEVINE 207: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

BLOCK(B7)/l

Question 28

GRAPEVINE 208: QUEST:WHAT_IS/HUMAN(FRIEND) TO HAND(MAX)TIS/
caL(jR/i)BJLCT(TOP_STATUS - HOLDING OBJ:CT(ANS:TEXIST/
X/ - 207 2))
GRAPEVINE 209: ANS:HAND(MAX) TO HUMAN(FR1END)TIS/C0L0R/RED

Question 29

GRAPEVINE 210: QUEST:HOW_MANY/HUMAN(FRItND) TO HAiMD(MAX)
1EXI5T/0BJECT(L0CASHUN DIRECTLY_ABOVE BLOCK(COLOR ■ GREEN]
KINDOr - CUBE))/
GRAPEVINE 211: ANS:HAND(MAX) TO HUMAN(FRIEND)IEXIST/

ELÜCK(VARB5 B6 B7)/3

Question 30

GRAPEVINE 212: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
IFXISr/IJlOCKiKINDOF - PYRAMID|ACT:1GRASP/HAND(MAX)/
X - COM:lONTOP/BLOCK(COLOR - GREEN|KINDOF ■ PYRAMID)/
EJLüCK(SIZL ■ SMALLIKINDOF - CUBE)- <*.)/
GRAPEVINE 213: ACT:NOAP
GRAPEVINE 214: REAS:INSTANCES/TNOT EXIST/BLOCK/BLOCK(KINDOF

- PY,rMMlD|PNUMBER ■ VAR B5)
GRAPEVINE 215: ANS:HAND(MAX) TO HUMAN(FRIEND)rEXIST/

BLOCK(B7)/l

84

 —

Question 31

GRAPEVINE 216: QUEST:WHEN_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND;MAX)/PICKUP BLOCKiANS:TEXIST/X/ - 215 «•)
GRAPEVINE 217: ANS:HANDiMAX) TO HUMAN(FRIEND)TDID/

I IAND(MAX)///195/WHILE//281 j

Question 32

GRAPEVINE 218: QUEST:WIIEN_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/ACT:TGRASP/HANDIMAX)/BLOCK(ANS:1EXIST/X/
-217 m) - FIRST m
GRAPEVINE 219: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/

HAND(MAX)/Öl 52/WHILE«! 78

Question 33

GRAPEVINE 220: QUEST;WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/[ACT:1// - 152 2]
GRAPEVINE 221: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)///153

Question 34

GRAPEVINE 222: QUEST:WHY_DID/HUMAN{FRIEND) TO HAND(MAX)TDO/
HANO{MAX)/[ACT:TOFFOF//BLOCK(KINDOF = CUBE) - 153 4]
GRAPEVINE 223: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)//n58

— Question 35

GRAPEVINE 224: QUEST:WHY_Dn/HUMAN(FRIEND) TO HAND(MAX)tDO/

85

I*

r
HANDiMAX)/fACT:T// - 158 2|
GRAPEVINE 225: ANS:HAND(MAX) TO HUMAWFRIENDltACTED BECAUSE/

HAND<MAX)///161

Question 36

GfMI'LVINE 226: QUEST:WHY_DID/HUMAN(FRIEND) TO HAHUWOOtOQ/
IIAMniMAX)/|ACT:r// -161 2J

GRAPEVINE 227: ANS:HANO(MAX) TO HUMA[\KKRIEND)TACTED BECAUSE/
I-IANUIMAX)///163 O^MUOC/

 Question 37

GRAPEVINE 228: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HANDiMAX)/[ACT:T// - 153 2] «A/IUU/

GRAPEVINE 229; ANS^AMXMAX) TO HUMAN(FRIEND)TACTED BECAUSE/
HAND(MAX)///165 »m***W

Question 38

GRAPEVINE 233: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND{MAX)TDO/
HANn(MAX)/[ACT:T// - 155 2] '
GRAPEVINE 231: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/

HAND(MAX)///167 »wm**w

Question 39

GRAPEVINE 232: QUEST:WHY_DID/HUMAN(FRIEND) TO HAND(MAX)rDO/
HANCXMAXV/fACTjt// - 167 2J ^MA^IUU/

GRAPEVINE 233: ANS:HAND(MAX) TO HUMAN(FRIEND)TACTED BECAUSE/
HAN^MAX;/Ö169 u DCOMUSL/

__»_■_■__—_

11,111,11 —~~*'~~~~~~~^-~-^*~~'^^^^~^^^m^^^^^^^^^*m^mmmmmmimmmmmmmmmmmmimimmmmmm^mmmm

Question 40

GRAPEVINE 234: QUEST;HOW_DID/HUMAN(FRIEND) TO HAND(N/AX)TDO/
HANDiMAX)/[COM:r// - 169 •»•]
GRAPEVINE 235: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/

HAND(MAX)/FR0M*134/T0#1 78

Question 41

GRAPEVINE ?36: QUEST:HOW_MANY/HUMANiFRIEND) TO HAND(MAX)
1 EXIST/OBJECTO/
GRAPEVINE 237: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

Question 42

BLOCKWAR B3 B5 B7i/3
GRAPEVINE 238: QUEST:HOW_MANY/HUMAN(FRIEND) TO HAND(MAX)

1 EXIST/OBJECTiCOLOR - RED)/
GRAPEVINE 239: AN^HAND'MAX) TO HUMAN(FRIEND)TEXIST/

BLOCK(B2)/I

Question 43

GRAPEVINE 240. THOUGHT:ACT:1MOVE/HAND(MAX)/BLOCK(B7)/
FROM -55 -1 55 -250/TO -422 -503 -460 *
GRAPEVINE 241: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 242: THOUGHT:ORD:GETONTOPOF TO FIND SPOTTFIND/

FIND_SPOT/INFOÖ22
GRAPEVINE 243: THOUGHT:ACT:NOAP
GRAPEVINE 244: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/

BLOCK(B7)/FROM -422 -508 -450/TO -422 -608 -460
GRAPEVINE 245: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

ni.OCK(B7)/TABLE(TABLl)
GRAPEVINE 245: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLüCK(B7)
GRAI'EVINE 247: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

87

HANO(MAX)/BL0CK(B7)
GRAPEVINE 248: TH0UGHT:REA3:1 ASK/AT TIME/RELEASE
GRAPEVINE 249: THOUGHT:ACT:lMOVE/HANDiMAX)/HAND(MAX)/

FROM -t\7.2 -608 -460/TO -55 -155 -310
GRAPEVINE 250: THOUGHT:REAS:tASK/AT_TIME/MOVETO
GRAPEVINE 251: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

IIAND(MAX)/BLOCK(B5)
GRAPEVINE 252: THOUGHT:REAS:TASK/AT TJME/GRASP
GRAPEVINE 253: THOUGHT:ACT:1MOVL/HANJD(MAX)/BLOCK(B5)/

FROM -55 -155 -310/TO -310 -550 -110
GRAPEVINE 254: THOJCHT:REAS:l ASK/AT TIME/MOVETO
GRAPEVINE 255: THOUCHT:ACT:TMOVE/HAf»0MAX)/BLOCK(B5)/

PROM -310 -550 -110/TO -75 -450 -460
GRAPEVINE 256: THOUGHT:REAS:TAS'</AT_TIME/MOVETO
GRAPEVINE 257: THOUGHT:ORD:GETONTGPOF TO FIND SPOTTFIND/

riNO_SPOT/INrO,V23 ~
GRAPEVINE 258: THOUGHT:ACT:NOAP

GRAPEVINE 259: THOUGHT:REAS:ALREADY_DONElWOVE/HAND(MAX)/
QLOCK(BS)/FROM -75 -450 -460/TO -75 -450 -460 "*•**'/
GRAPEVINE 260; THOUGHT:ACT:CAUSED_BY HANDiMAX)TONTOP/

BLCJCK(B5)/TABLE(TABLl)
GRAPEVINE 261: THOUGHT:REAS:ACHiEVETRELEASE/HAND(MAX)/

BlOCK(S5)

GRAPEVINE 262: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND MAX)/BLOCK(B5)
GRAPEVINE 263: THOUGHT:REAS:l ASK/AT_TIME/RELEASE
GRAPEVINE 264: THOUGHT-ACT:iMOVE/HANDiMAX)/HAND(MAX)/

FROM -75 -450 -460/TO -422 -60S -460
GRAPEVINE 265: THOUGHT:REAS:I ASK/AT_TIME/MOVETO
GRAPEVINE 266: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

IIANü;MAX)/BLOCK(B7) '
GRAPEVINE 257: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 263: THOUGHT:ACT:lWOVE/HAND(MAX)/BLOC,<(B7)/

FROM -422 -603 -460/TO -75 -450 -410
GRAPEVINE 269: THOUGHT:REAS:USK/AT TIME/MOVETO
GRAPEVINE 270: THOUGHT:ORD:GETONTOPOF TO FIND SPOTTFIND/

FINÜ_SPOT/INFO«24 -ou.iniMu/

GRAPEVINE 271: THOUGHT:ACT:NOAP

GRAPEVINE 272: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLüCK(B7)/FROM -75 -450 -410/TO -75 -450 -410 «"«W
GRAPEVINE 273: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

BLOCK(B7)/BLOCK(B5)

88

mmk ■MMMMMMBMMMi ^MM

GRAPEVINE 274: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
LL(JCK(B7)

GRAPEVINE 275: THOUGHT:ACT:CAU^ED_BY HAND(MAX)TRELEASE/

GRAPEVINE 276: TH0UGHT:REAS:1 A3K/AT_TIME/RELEASE

u^A^;;^^vE^n77;THOUGHT:CÜM:HUMAN(FRIEND, T0 HAND(MAX)TFIND/
HANü;MAX)/OBJECT(BOT_STATUS - ONTOP BL0CK(C0L0R - REDI
KINDOF CUBE» , '

GRAPEVINE 278: ANS:HAND(MAX) TO HUMAN(FRIEN1D)TFIND/
HANDiMAX)/BL0CK(B7)

Question 44

GRAPEVINE 279: TH0UGHT:ACT:tM0VE/HAND(MAX)/BL0CK(B7)/
FROM-55-155-266/10-422-608-4« ^^ö/y/
GRAPEVINE 280: THOUGHT:REAS:tASK/AT TIME/MOVETQ
GRAPEVINE 281; TH0UGHT:0RD:GET0NT0P0F TO FIND SPOTTFIND/

riNü_rJPüT/INFOÖ25 ^-oruMPiNu/

GRAPt.VINE 282: THOUGHT:ACT:NOAP

GRAPEVINE 283: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK(B7)/FROM -422 -608 -460/TO -422 -688 -460 ^
GRAPEVINE 284: THOUGI IT:ACT:CAUSED_BY HAND(MAX)TONTOP/

ELOCK(R7i/TABLE(TAELl) '

[:?r)cr™E 285: TH0UGHT:REAS:ACHIEVErRELEASE/HAND(MAX)/

GRAPEVINE 286: THOUGHT:ACT:CAUSED_BY HANDiMAXjtRELEASE/
HAND;MAX)/BL0CK(B7) 'viMAyi KtLtAbL/

GRAPEVINE 287: THOUGHT:REAS:TASK/AT T1ME/RELEASE
GRAPEVINE 288: TH011GHT:ACT:IW0VE/HAND(MAX)/HAND(MAX)/

FROM -422 -60S -46Ü/TO -55 -1 55 -310 ^MMA;/

GRAPEVINE 289: THOUGHT:REAS:USK/AT_TIME/MOVETO
GRAPEVINE 290: THOUGHT:ACT:CAUSED.BY HANO(MAX)TGRASP/

HAN&MAX)/BLOCK(B5) »ww/

GRAPEVINE 291: THOUGHT:REAS:TASK/AT TIME/GRASP
GRAPEVINE 292: TH0lJGHT:ACT:lM0VE/HAND(MAX)/BL0CK(B5)/

FRuM -55 -155-310/T0 -310-550-110 «^»»»1/

GRAPEVINE 293: TH0UGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 294: TH0UGHT:ACT:IW0VE/HAND(MAX)/BL0CK(B5)/

FRUM -31 a -550 -HO/TO -75 -450 -460 w^w;/

GRAPEVINE 295: TH0UGHT:REAS:TASK/AT_TlME/M0VET0

89

^J

GRAPEVINE ?96: THOUGHT:0RD;GETONTOPOF TO FIND.SPOTTFIND/
F'ND .SPOT/INFCW26
CiRAPEVINE 297: THOUGHT:ACT:NOAP
GRAPEVINE 298: THOUGHr:REAS:ALREADY_DONIETMOVE/HAND(MAXj/

RL0CK(n5)/FR0M -75 -453 -4G0/TO -75 -450 -460
GRAPEVINE 299; THÜUGHT:ACT;CAUSED_BY HAND(MAX)T0NT0P/

BL0CK(Q5)/TABLE{TABL1)
GRAPEVINE 300: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCK(B5)
GRAPEVINE 301: THOUGHr:ACT:CAUSED_BY HAND{MAX)TRELEASE/

HA^JnlMAX)/RLOCK(G5,'
GRAPEVINE 332: THOUGHT:REAS:l ASK/AT_TIME/RELEASE
GRAPEVINE 303: THOUGHT:ACT:lMOVE/HAND(MAX)/HAND(MAX)/

FROM -75 -450 -4G0/TO -422 -60S -460
GRAPEVINE 304: TH0UGHT:REAS:1ASK/AT_TIME/M0VET0
GRAPEVINE 305: THOUGHr:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BLOCK{B7)
GRAPEVINE 336: THOUGHT:REAS:l ASK/AT_TIME/GRASP
GRAPEVINE 307: THOUGH PACT:! W0VE/HAND(MAX)/BL0CK(B7)/

FROM -423 -608 -460/TO -75 -450 -410
GRAPEVINE 308: THOUGHT:REAS:lASK/AT_TIME/MOVETO
GRAPEVINE 339: TKOUGHT:ORD:GETONITOPOF TO FIND_SPOTTFIND/

nNn..SPOT/IMFO'V27
GRAPEVINE 310: THOUGHT:ACT;NOAP
GRAPEVINE 311: THOUGHT:REAS:ALREADY_DONErMOVE/HAND(MAX)/

ÖLOCK{B7)/FR0M-75-450-410/TO-78-450-410
GRAPEVINE 31 2: THOUGHT:ACT:CAUSED_BY HA\lD:MAX)TONTOP/

BLOCK{B7)/BLOCK(B5)
GRAITVINE 313: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BL0CK(B7)
GRAPEVINE 314: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAN0(MAX)/BL0CK{B7)
GRAPEVINE 315: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 31 6: QUEST:HOW_MANY/HUMAr\l(FRiErMD) TO HAND(MAX)

TEXiST/13LOCKiL0CASHUN LEFT_OF BOX(DEFINITE)|KINDOF
PARALLELEPIPED)/

GRAPEVINE 3i7: ANS:HANDiMAX) TO HUMAN(FRIEND)TEXIST/
L'LOCKiVAR B2 B3 B4 B5)/4

Question 45 —

90

^J

GRAPEVINE 318: THOUGHT:ACT:lMOVE/HAND(MAX)/BL0CK(B7)/
F ROM -55 -1 55 -260/TO -422 -688 -460 U^MD/;/

GRAPEVINE 319: TH0UGHT:REAS:1 ASK/AT_TIME/MOVETO
GRAPEVINE 328: THOUGHT:ORD:GETONTOPOF TO FIND SPOTTFIND/

FINÜ_SPf.)T/INFO//28 '
GRAPEVINE 321: THOUGHT:ACT:NOAP

GRAPEVINE 322: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOCK{B7)/FROM -422 -688 -468/10 -422 -688 -468 "U(MR*)/

GRAPEVINE 32b: THOUGHT:ACT:CAUSED_BY HAND(MAX)T0NT0P/
BL0CK(B7)/TABLE(TABL1)
GRAI^EViNE 324: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

GRAPEVINE 325: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BL0CK(B7) ""***./

GRAPEVINE 326: THOUGHT:REAS:TASK/AT TIME/RELEASE
GRAPEVINE 327: TH0UGHT:ACT:1M0VE/HA~ND(MAX)/HAND(MAX)/

FROM -422 -688 -468/T0 -55 -155 -318
GRAPEVINE 328: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 329: THOUGHT:ACT:CAUSED_BY HAN0(MAX}TGRASP/

HANüiMAXi/ÜLOCKIBS' ^«ar/

GRAPEVINE 338: THOUGHT:REAS:TASK/AT_TIME/GR/SP
GRAPEVINE 331: TH0UGHT:ACT:tW0VE/HAND(MAX)/BL0CK(B5)/

FROM -55-155-318/10-318-558-118
GRAPEVINE 332: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 333: TH0UGHT:ACT:IM0VE/HAND(MAX)/BL0CK(B5)/

FROM -310 -558 -118/T0 -75 -458 -468

GRAPEVINE 334: TH0UGHT:REAS:1 ASK/AT_TIME/MOVETO
GRAPEVINE 335: TH0UGHT:0RD:GET0NT0P0F TO FIND SPOTTFIND/

FINü_SPOr/INFO//29 -orunniMu/

GRAPEVINE 336: THOUGHT:ACT:NOAP
GRAPEVINE 337: THOUGHT:REAS:ALREAÜY DONETMOVE/HAND(MAX)/

BLOCK(B5)/FR0M -75 -458 -46e/TO -75 -458 _\^L,hmu{MA^
GRAPEVINE 338: THOUGHT:ACT:CAUSED_BY HAND(MAX)T0NT0P/

DL0CK(B5)/TABLE(TAEL1) '

GRAPEVINE 339: THOUGHT:REAS:ACHIEVETREI^SE/HAND(MAX)/

GRAPEVINE 348: THOUGHT:ACT:CAüSED_BY HAND(MAX)TRELEASE/
HAND(MAX)/BLOCK(B5) w*««/

GRAPEVINE 341: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 342: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM -75 -458 -468/T0 -422 -688 -468 ^MMAV

91

GRAPEVINE 343: THOUGHT:REAS:TASK/AT_TIME'MOVETO
GRAPEVINE 344: THOUGhT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BL0CK(B71
GRAPEVINE 345: TH0UGHr:REAS:1 ASK/AT_TIME/GRASP
GRAPEVINE 346: TH0UGHT:ACT:lM0VE/HAND(MAX)/BL0CK(B7)/

FROM -422 -603 -460/TO -75 -458 -410
GRAPEVINE 347: THOUGHTrREASttASK/AT TIME/MOVETO
(iRAPLVlNE 318: THOUGHr:ORD:GETONTOPOF TO FIND SPOTTFIND/

riND..SPOT/INFü//33
GRAPEVINE 349: THOUGHT:ACT:NOAP

GRAI1VINE 350: THOUGHr:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BLOC!:(B7\;FROM -75-450-410/TO-75-450-410
GRAPEVINE 351: THOUGHT:ACT:CAUSED_BY HAND(MAX)tONTOP/

b,LüCK(G7)/BLOCK(B5)
GRAPFVIME 352: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCK(B7J
GRAPEVINE 353: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND(MAX)/BLOCK(B7)
GRAPEVINE 354: THOUGHT:REAS:t ASK/AT_TIME/RELEASE
GRAPEVINE 355: QUESTJHOW.MANY/HUMAMFRIEND) TO HAND(MAX)

1FXIST/0BJFCT(L0CASHUN DIRECTLY_ABOVE BLOCK(COLOR = GREENI
KINDOF = CUBE))/ '
GRAPEVINE 356: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

I3L0CK(B6)/1

Question 45

GRAPEVINE 357: COM:HlÄ4AN(FRIEND) TO HAND(MAX)TONTOP/
BLOCK(COl OR - BLUEIKINDOF - PYRAWID)/BLOCK(BOT_STATUS

- ON I OP BOX(DEFINITE))
GRAPEVINE 358: ORD:GETONTOPOF TO FIND.SPOTIFIND/FIND SPOT/

INFO-V31 -"I

GRAPEVINE 359: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/
EJLOCWD?)

GRAPEVINE 360: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -55-155-260/TO-470 165-410
GRAPEVINE 361: ACT:lMOVE/HAND(MAX)/HAND(MAX)/FROM

-55 -1 55-260/rO-470 1 65-410
GRAPEVINE 362: REAG:ACHIEVETGRASP_STATUS[HAND(MAX)1

GRASPING BLOCK(B8)

92

—— .m > ■ . -

■

1

GRAPEVINE 363: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/
bLOCK(BS) .
GRAPEVINE 364: REAS:ACHIEVErM0VE/HAND(MAX)/BL0CK(B8)/

FROM -470 165 -418/T0 -54b 145 -168
GRAPEVINE 365: ACT:TM0VE/HAND^MAX)/BL0CK{B8)/FR0M

-47Ü 1 65 -410/TO -545 145 -160
GRAI'CVINE 366: REAS:ACHIEVET0NT0P/GL0CK(R8)/BL0CK(Bl)
GRAPEVINE 367: ACT:CAUSED_BY HAND(MAX)T0NTQP/BL0CK(B8)/

BLUCKiBl)
GRAPEVINE 368: REAS:TASK/IIUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 369: M&HANOCMAX) TO HUMAN(FRIEND)TDID/

HAND\MAX)/lNF0//32

Question 47

GRAPEVINE 370: QUEDr:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
TEXIST/OBJECKHEIGHT > HEIGHT[V BLOCK(KINDOF ■ PYRAMID)]|
nOT._STATUS ■ ONTOP OEJECT(YWIDTH > YW1DTH[ITSELF]))/
GRAPEVINE 371: ANS:HAND(MAX) TO HUMAN(FRIEND)TEXIST/

BL0CK(B1)/1

Question 48

GRAPEVINE 372: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
rExisT/sTimco/
GRAPEVINE 373: ACT:NOAP
GRAPEVINE 374: REAS:WHATISIT/TNOT EXIST/COMPOSITE_OBJECT/

STEEPLE

Question 49

GRAPEVINE 375: FACT:HUMAN(FRIENn) TO HAND(MAX)TEQUAL/
STEEPl.EO/PiOCKICOLOR - GREEi\J|KINDOF - CUBE|TOP STATU.>
- HOLDING BLOCK(COLOR - GREEN|KINDOF = CUBE|TOP_STATUS
- HOLDING BLOCK(COLOR ■ RED|KINDOF ■ PYRAMID)))

- - —■- --

I

J

Question 50

GRAPEVINE 376: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
lEXIST/SlTEPICO/
GRAPEVINE 377: ACT:l\JOAP
GRAPEVINE 37S: REAS:INSTANCES/TNOT EXIST/BLOCK/BLOCK(COLOR

GRKNjKINüOF - CU[3E|TOP_STATUS ■ HOLDING BLOCK(COLOR

KINGm^N|^YRAMID)))UBE|T0P"STATUS = H0LDiNG BL0CK(C0L0R = REDI

GRAPEVINE 379: ANS:HAND(MAX) TO HUMAN(FRIEND)TNOT EXIST/
BLOCK(COLOR = GREEN|KINDOF - CUBE|TOP_STATUS ■ HOLDING
BLOCK(COLOR - GREEN|KINDÖF - CUBE|TOP_STAT!JS = HOLDING
ÜLOCK(COLOR ■ REDIKINDOF = PYRAMID)))/

Question 51

GRAPEVINE 380: COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/
HANDMAX)/STEEP[.E()

GRAPEVINE 381: ORD:GETONTOPOF TO FIND.SPOTtFIND/FIND.SPOT/
INI ()•'''3'1
GRAPEVINE 382: ACT:NOAP

GRAPEVINE 383: REAS:FIND_SPOT/CANNOT_BE DONETlS/AREAr(FREE)
OF ÜLÜCK(B4)]/T00SMALL ^n^c^r^u

GRAPEVINE 384: 0RD:GET0NT0P0F TO FIND_SPOTTFlND/FIND_SPOT/

GRAI'EVn\JE 385: ACT:CAUSED_BY HAND(MAX/TRELEASE/HAND(MAX)/

GRAPEVINE 386: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/
FROM -545 145 -160/TO -55 -155 -260
GRAPEVINE 387: ACT:TMOVE/HA,\D(MAX)/HAND(MAX)/FROM

-545 145 -160/TO-55-155-260
GRAPEVINE 388: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(B7)
GRAPEVINE 389: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

GRAPEVINE 390: RcAS:ACHIEVETOFFOF/BLOCK(B7)/BLOCK(B5)
GRAPEVINE 391: ORD:GET0FFOF TO FIND SPOTT FIND/FIND SPOT/

INFO#36 <m*r**i

GRAPEVINE 392: ACT:rMOVE/HAND(MAX)/BLOCK(B7)/FROM

94

-55 -1 55 -260/TO -422 -60S -460
GRAPEVINE ?93: REAS:ACHIEVET0NT0P/BL0CK(B7)/TABLE(TABL1)
GRAPEVINE 394: ACT:CAUSED_BY HAND(MAX)iOFFOF/BLOCK(B7)/

CLüCK(Bb)
RRAPÜVINE 395: REAS:ACHIEVElT0P_STATUS[BL0CK(B5)] = CLEAR
GRAPEVINE 395: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/

BL0CK(B7)
GRAPEVINE 397: REAS:ACHIEVErMOVE/HAND(MAX)/HAND(MAX)/

FROM -422 -608 -460/TO -55 -155 -310
GRAPEVINE 398: ACT:rMOVE/HAND(MAX)/HAND(MAX)/FROM

-422 -60J; -460/TO -55 -155 -310
GRAPEVINE 399: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(B5)
GRAPEVINE 400: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

EJLOCK{B5)
GRAPEVINE 401: REAS:ACHIEVET0FF0F/BL0CK(B5)/BLOCK(B4)
GRAPEVINE 402: ORD:GETOFFOF TO FIND_SPOTTFiND/FIND_SPOT/

INrO//37
GRAPEVINE 403: ACT:TMOVE/HANKMAX)/BLOCK(B5)/FROM

-55 -1 55 -310/TO -472 -608 -460
GRAPEVINE 404: REAS:ACtllEVET0NT0P/BL0CK(B5)/TABLE(TABLl)
GRAPEVINE 405: ACT:CAUSED_BY HAND(MAX)TOFFOF/BLOCK(B5)/

BLOCK{B4)
GRAPEVINE 406: REAS:ACIIIEVETT0P_STATUS[BL0CK(B4)] = CLEAR
GRAPEVINE 407: ACTCAUSED.BY HAND(MAX)TRELEASE/HAND(MAX)/

BL0CK(B5)
GRAPEVINE '108: REAS:ACIIlEVETMOVE/HAND(MAX)/HAND(MAX)/

PROM -472 -608 -460/TO -105 -70 -160
GRAPEVINE 409: ACT:lN/OVE/HAf\JD(MAX)/HAND(MAX)/FROM

-472 -608 -n60/TO -105 -70 -160
GRAPEVINE 410: REAS:ACHIEVETGRASP/HAND(MAX)/BLOCK(B5)
GRAPEVINE 411: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

ÜL()CK(Ü6)
GRAPEVINE 412: REAS:ACHIEVET0FF0F/BL0CK(B6)/BL0CK(B4)
GRAPEVINE 41 3: ORD:GETOFFOF TO FIND_SPOTTFIND/FIND_SPOT/

IN(;0//33
GRAPEVINE 414: ACT:lMOVE/HAND(MAX)/BLOCK(B6)/FROM

-1 »5 -70 -1 60/TO -522 -608 -310
GRAPEVINE 415: REAS:ACHIEVErONTOP/BLOCK(B6)/TABLE(TABLl)

ACT:CAUSED_BYHAND(MAX)TOFFOF/BLOCK(B6)/ GRAPEVINE 416
SL0CK(B4)
GRAPEVINE 41 7
GRAPEVINE 418

REAS:ACHIEVErT0P_STATUS[BL0CK(B4)] = CLEAR
ACT:CAUSED_BY IIAND(MAX)rRELEASE/HAND(MAX)/

95

BL0CK(Ü6)
GRAPEVINE 419: REAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/

FROM -522 -608 -310/TO -318 -558 -168
GRAPEVINE 428: ACT:TMOVE/MAND(MAX)/HAND(MAX)/FROM

-522 -088 -318/T0 -318 -558 -168
GRAPEVINE 421: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)J

=- GRASPING BL0CK(B3)
GRAPEVINE 422: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

BLOCK(B3;
GRAPEVINE 423: REAS:ACHIEVErM0VE/HAND(MAX)/BL0CK(B3)/

PROM -310 -558 -168/TO -75 -185 -218
GRAPEVINE 424: ACT:rM0VE/HAND(MAX)/BL0CK(B3)/FR0M

-310 -550 -160/TO -75 -105 -210
GRAPEVINE 425: REAS:ACHIEVET0NT0P/BL0CK(B3)/BL0CK(B4)
GRAPEVINE 426: ACT:CAUSED_BY HAND(MAX)T0NT0P/BL0CK(B3)/

BL()CK(G4)
GRAPEVINE 427: REAS:ACHIEVETSTACKUP/BL0CK(B3)/BL0CK(B4)
GRAPEVINE 428: ORD:GETONTOPOF TO FIND_SPOTTFIND/FIND_SPOT/
motm
GRAPEVINE 429: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/

BLOCK(B3)
GRAPEVINE 430: K,EAS:ACHIEVETMOVE/HAND(MAX)/HAND(MAX)/

FROM -75 -105 -210/TO -522 -608 -310
GRAPEVINE 431: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM

-7b -1 05 -210/TO -522 -60S -310
GRAPEVINE 432: REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

- GRASPING BLOCK(B6)
GRAPEVINE 433: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

DlOCK<B6)
GRAPEVINE 434: REAS:ACHIEVETMOVE/HAND(MAX)/BLOCK(B6)/

FROM -522 -608 -310/TO -75 -105 -10
GRAPEViNE 435: ACT:rM0VE/HAND(MAX)/BL0CK(B6)/FR0M

-522 -60S -310/TO -75 -185 -18
GRAPEVINE 436: REAS:ACHIEVETONTOP/BLOCK(B6)/BLOCK(B3)
GRAPEVINE 437: ACT:CAUSED_BY HAND(MAX)T0NT0P/BL0CK(B6)/

BL.OCK(B3)
GRAPEV'NE 438: REAS:rASK/HUMAN{FRIEND)/HAND(MAX)
GRAPCVINE 439: ANS:HAND(MAX) TO HIJMAN(FRIEND)TDID/

HAND(MAX)/INFO#33

96

fc^^. . ^,-;.^^ .-.-^

Question 52

GRAPEVINE 440: QUEST:HOW_DID/HUMAN(FRIEND) TO H..AND(MAX)TDO/
HAND(MAX)/BUILD STEEPLE«)
GRAPEVINE 441: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/

I IANn(MAX)/FROM//380/TO/M39

Question 53

GRAI'EVINC 442: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
PILE(nRFEN|RLUE|RED)/BLOCK{COLOR ■ GREEN|KINDOF - -
PARALLELF.PIPED|TOP_STATUS = HOLDING BLOCK(COLOR ■ BLUE|
KINDOF - PARALLELEPIPED|TOP_STATUS ■ HOLDING BLOCK(COLOR
• RED|KINDOF ■ PYRAMID)))

Question 54

GRAPEVINE 443: QUEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
1 EXIST/PILE(GREEN|GR£EN|RED)/
GRAPEVINE 444: ANS:HAND(MAX) TO HUMAN(FRIEMD)TEXIST/

BLOCK(B4)/l

Question 55

GRAPEVINE 445: QUEST:HOW_WOULD/HUMAN(FRIEND) TO HAND(MAX)
1 DO/HAND(MAX)/BUILD PILE(RED|GREEN1BLUE)
GRAPEVINE 446: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/

IIANn(MAX)/PILE(RED|GREEN|RLUE)
GRAPEVINE 447: THOUGHT:ORD:GETOFFOF TO FIND.SPOTTFIND/

FIND.SPOT/'NFO/Ml
GRAPEVINE 448: THOUGHT:ACT:i MOVE/HAND(MAX)/BLOCK(B6)/

FROM -75 -185 -18/TO -522 -688 -318
GRAPEVINE 449: THOUGHT:REAS:ACHIEVETONTOP/BLOCK(B6)/

TAIiLE(TAÜLl)
GRAPEVINE 458: THOUGHT:ACT:CAUSED_BY HAND(MAX)TOFFOF/

BLOCK(B6)/BLOCK(B3)

97

... ■„■■a.—^-i-.^- .-.■>- ^-....„■.,,. .. _ ,. _ ■^■.-.. . II llllllM |Magaa*|gmi|

mmpiMmP^^w* n -■ - IM-^H

GRAPEVINE 48li TH0UGHT:REAS:ACHIEVET0NT0P/BL0CK(Ü3)/

GRAPEVINE 452: THOUGHT:ORD:GETONTOPOF TO FIND.SPOTTFIND/
F1ND_SPOI7INFOW42
GRAITVINE 453: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HANDiMAX)/EL0CK(B6)
GRAi'EVlNL 454: TH0UGHT:REAS:ACH1EVETN/0VE/HAND(MAX)/

I IÄNrXMAX)/FROM -522 -608 -318/T0 -75 -135 -210
GRAPEVINE 455: THOUGHT:ACT:lMOVE/HAND(MAX)/HAND(MAX)/

FROM -522 -608 -310/TO -75 -105 -210
GRAfTVINE 456: THOUGHT:REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

- GRASPING BL0CK(B3)
GRAPEVINE 457: THOUGHT:ACT:CAUbED_BY HAND(MAX)TGRASP/

HAN.>(MAX)/GL0CK(B3)
GRAPEVINE 458: THOUGHT:REAS:ACHIEVETMGVE/HAND(MAX)/

BL0CK(B3)/FR0M -75 -105 -210/TC -310 -550 -160
GRAI'FVINE 459: TH0UGHT:ACT:1 M0VE/HAND(MAX)/BL0CK(B3)/

FROM -75 -105 -210/TO -310 -550 -160
GRAPEVINE 460: THOUGHT:REAS:ACHIEVETONT0P/BLOCK(B3)/

BL0CK(B2)
GRAPEVINE 461: THOUGHT:ACT:CAUSED_BY HAND(MAX)T0NT0P/

BLOCK(B3)/BLOCK(B2)
GRAPEVINE 462: TH0UGHT:REAS:ACHIEVETSTACKUP/BL0CK(B3)/

RIOCKIR?)
GRAPEVINE 463: TH0UGHT:0RD.GET0NT0P0F TO FIND_SPOTTFIND/

I INÜ_SPf)l/INF0//43
GRAPFVINi: 464: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND{MAX)/BL0CK(B3)
GRAPEVINE 465: THOUGHT:REAS:ACHIEVETMOVE/HAND(MAX)/

IIANDMAX)/FROM -313 -550 -1G0/TO -545 145 -160
GRAPEVINE 466: THOUGHT:ACT:tMOVE/HAND(MAX)/HAND(MAX)/

FROM -310 -550 -160/TO -545 145 -160
GRAPEVINE 467: THOUGHT:REAS:ACHIEVETGRASP_STATUS[HAND(MAX)]

- GRASPING BL0CK(B8)
GRAl'EVINE /168: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

||ANniMAX)/f3I.OCK(B8)
GRAPEVINE 469: TH0UGHT:REAS:ACHIEVETM0VE/HAND(iv1AX)/

Gli)CK(BS)/FR0M -545 145 -160/TO -310 -550 -60
GRAPEVINE 473: TH0UGHT:ACT:1M0VE/HAND(MAX)/BL0CK(B8)/

FROM -545 1 45 -160/TO -310 -550 -60
GRAPEVINE 471: TH0UGHT:REAS:ACHIEVET0NT0P/BL0CK(B8)/

(U.OCK(R3)

*lii1i-Mili mi n ii ■ .. ' -■- '-- ^■-'- — -■■■ ■■- ■ ^^ ,..— .. - | i-ii,.^ .-—.;■..—- ■ -.. ■-.■ ^^.^— , . -..^.■^^_-^-^.J^^-^_.— . J

wrs,

GRAITVINE 472: THOLIGHT:ACT:CAUSED_BY hlA\iD(MAX)TONTOP/
BL0CK(rC)/BL0CK(B3)

GRAPEVINE 473:THOUGHT:REAS:TASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 474: THOUGHT:ANS:HAND(MAX) TO HUWAN(FRIEND)TDiD/

HAND(MAX)/INFO#40 '
GRAPEVINE 475: ANS:HAND(MAX) TO HUN/.A^FRIEND)!WOULD DO/

HANDiMAX)/FR0M//445/T0//474

Question 56

GRAPEVINE 476: COM:HUI\MNiFRIEND) TO HAND(MAX)T
SURTRACT,DATABASE/HAND(MAX)/BLOCK(COLOR ■ GREENIKINDOF = CUBE
BOT_STAl US = ONTOP BLOCK(COLOR = GREEN))
GRAPEVINE 477: ORD:GETOFFOF TO FIND SPOTTFIND/FIND SPOT/

INF0//44 "" -•rw'l

GRAPEVINE 478: ACT:rMOVE/HAND(MAX)/BLOCK(B6)/l-ROM
-75 -185 -10/TO -522 -638 -310

GRAPEVINE 479: REAS:ACHIEVETONTOP/BLOCK(B6)/TABLE(TABLl)
GRAPEVINE 480: ACT:CAUSED_BY HAND(MAX)TOFFOF/Bl 0CK(B6)/

ÜLOCK(B3) '

GRAPEVINE 481: REAS:ACHIEVETT0P_STATUS[BL0CK(B3)] = CLEAR
GRAPEVINE 4S2: SUB:TMODIFY/tSUBTRACT/HAND(MAX)/BLOCK(PNAME

- BSjUtLÜ^STATüS - FRtE|LOCASHUN = -75 -105 -210|COLOR
- GREEN|SI7E = BIG|DESCRIPT!ON - THE BIG GREEN CUBE|
TOP_STATUS ■ CLEAR|BOT_STATUS = ONTOP BL0CK(B4)|KIND0F
- CUUEpMEN^IONS = 150 150 150|XLENGTH = 150|YWIDTH = 1501
HEIGHT - 1 50|XCOORD ~- -75|YCOORD = -105|ZCOORD = -2101
LIKED_STATUS - UKED.BY HUMAN(FRIEND)|VOLUME ■ 33750001
DIGP.NUMli - 3|CENTER_OF_MASS ■ -75 -105 -285|XCMS - -751
yCMS ■ -105I2CMS - -285|SIIAPE_0F_T0P ■ FLAT)
GRAPEVINE 483: ANS:HAND(MAX) TO HUMAN(FRIEND)T

SUürR,ACT_DATABASE/HAND(MAX)/BL0CK(B3)
GRAPEVINE 484: COM:HU.VtAN(FRIEND) TO HAND(MAX)r

SUBTRACT_DATABASE/HAND(MAX)/BLOCK(COLOR - GREENIKINDOF - CUBE)
GRAPEVINE 485: SUB:TMODIFY/TSUSTRACT/HAND(MAX)/BLOCK(PNAME

- OAJl lf:LD_STATUS = FREEILOCASHUN - -75 -105 -360|COLOR
- GRFENISIZE - BIG|DESCRIPTION - THE BIG GREEN CUBEI
rOP.STATUS - CLEAR|BOT_STATUS = ONTOP TABLE(TABL1)|
KINDOE - CUREpMENSIONS - 150 150 150|XLENGTH = 1501
YWIDTH - 150|HEIGHT - 1 50|XCOORD - -75|YCOGRD = -105|

99

 mmm _—-

ZCOüKD - -36Ö|LI1<:D_STATUS - NOT LIKED_BY HUMAN(FRIEND)|
VOLUME 33750OOpiSP_NÜMB ■ 3|CENTER_OF_MASS ■ -75
-10h -43b|XCMS -75|YCMS - -1Ö5|ZCMS - -435|SHAPE_0F_T0P
■ FLAT)
GRAPEVINE 486: ANS:HAND(MAX) TO HUMAN(FRIEND)T

SUIJ1IMCT_DATABASE/HAND(MAX)/BL0CK(B4)

Question 57

GRAPEVINE 487: COM:IIUMAN(FRIEND) TO HAND(MAX)rADD_DATABASE/
IIANn(MAX)/BLOCK(COLC)R = BLACK|KINDOF ■ CYLINDER)
GRAPEVINE 488: ORD:TMüDIFY TO FIND_SPOTTFIND/FIND_SPOT/

INrO//4b
GRAPEVINE 489: ADDTMODIFY/lADD/HAND(MAX)/BL0CK(BL0CK483)
GRAI'EVINE 490: ANS:HAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

11AN1>MAX)/BLÜCK(BL0CK488)
GRAPEVINE 491: COM:HUMAN(FRIEND) TO HAND(MAX)TADD_DATABASE/

HAND;MAX)/BLOCK(COLOR - ORANGEIKINDOF ■ CYLINDER|HEIGHT
• liLIGIIIfV BLOCKO])
GRAPEVINE 492: 0RD:TM0DIFY TO FIND_SPOTTFIND/FIND_SPOT/

INF0-V46
GRAI'EVINE 493: ADD:TW0DIFY/TADD/HAND(MAX)/BL0CK(BL0CK492)
Gf^APEVINE 494: ANS:IIAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

HAND(MAX)/BL0CK(BL0CK492)

Question 58

GRAPEVINE 495: COM:HUMAN(FRIEND) TO HAND(MAX)TADD_DATABASE/
IIANÜ(MA>0/BLüCK(COLOR = YELLOW|;<INDOF ■ CONE|SIZE = SMALL|
IIELO.STATUS - GRASPE0J3Y HAND(MAX))
GRAPEVINE 496: ACT:CAUSED_BY HAND(MAX)TRELEASE/HAND(MAX)/

BLOCKCBS)
GRAPEVINE 497: REAS:ACHIEVEi GRASP_STATUS[HAND(MAX)] = EMPTY
GRAPEVINE 498: ACT:TMOVE/HAND(MAX)/HAND(MAX)/FROM

-522 -60S -310/TO -522 -608 200
GRAPEVINE 499: REAS:1 ÄSK/HUMAWFRIENO)/HANO(MAX)
GRAPEVINE 500: ADD:TM0DIFY/rADD/HAN^MAX)/BL0CK(BL0CK496)
GRAPEVINE 501: ANS:HAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

100

...... :.^J.1L —,-.■... .._ „^.. _ ^J __....„;-.. . . __. . i Hinauf if liMM J

^^^*m '•mnm

HAND« MAX)/BLOCK(Bl 0CK4%)
GUAI'LVINE B02: COM:IIUMAN(FRIEND) TO HAND(MAX)TADD_DATAB/^E/

HANO(MAX)/BOX(DESCRIPTION - THE BOX|BOT_STATUS ■ ONTOP
RLOCK(COLOR - RED|SIZE = BIG))
GRAPEVINE 503: ORD:TMODIFY TO FIND_SPOTTFIND/FIND_SPOT/

INFORM?
GRAPEVINE 504: ADD:TMODIFY/tADD/HAND(MAX)/BOX(BOX503)
GRAPEVINE b05: ANS:HAND(MAX) TO HUMAN(FRIEND)TADD_DATABASE/

Question 59

IIAND(MAX)/BOX(BOX503)
GRATTVINE F»06: FACT:HUMAN(FRIEiMn) TO HAND(MAX)TEQUAL/

ROCKET\PARALLELEPIPED|PYRA^ID|YELLOW|BROWN|GREEN)/-
BLC)CK(COLOR = YELLOW|KINDOF = PARALLELEPIPED|TOP_ STATUS
- HOLDING BLOCK(COLGR - BROVv/N|KINDOF - PARALLELEPIPED|
TOP_STATUS - HOLDING BL0CK(C0L0R = GREEN|KINDOF = PYRAMID)))

Question G0

GRAPEVINE 507: COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD/
HANDfMAX)/ROCKET(CYLINDER|CONE|0RANGElBLACK|YELL0W)
GRAPEVINE 508: 0RD:GET0NT0P0F TO FIND_SPOTTFIND/FIND_SPOT/

INFO/M9
GRAPEVINE 509: ORD:GETONTOPOF TO FIND_SPOTrFIND/FIND_SPOT/

iwrv/se
GRAPEVINE 510: ACT:TMüVE/HAND(MAX)/BLOCK(BLOCK496)/

FROM -522 -603 200/TO -25 -520 -460
GRAPEVINE 511: REAS:ACHIEVErONTOP/BLOCK(BLOCK496)/

TABtr(TADLl)
GRAPEVINE 512: ACT:CAUSED_BY HAND(MAX)T0NT0P/BL0CK(BL0CK496)

/TABLL{rAULl)
GRAPEVINE 513: REAS:ACHIEVETRELEASE/HAND(MAX)/

BL0C<(EIL0CK496)
GRAPEVINE 514: ACT:CAUSED_BY HAND(MAX)TREL'£ASE/HAND(MAX)/

BLOCK<RLOCK49$)
GRAPEVINE 515: REAS:ACHiEVETMOVE/HAND(MAX)/HAND(MAX)/

FROM -522 -608 200/TO -570 -533 -360

101

GUAI'LVINL blG: ACT:?MOVE/HANKMAX)/HAND(MAW/FROM
-b?? -Gun 20C-1/TO -570 -533 -363
GRAPEVINE 51 7: REAS:ACH1EVETGRASP_STATUS[HAND(MAX)]

- GRASPING BL0CK<B10CK488)
GRAITVINE 518: ACT:CAUSED_BY HAND(MAX)TGRASP/HANÜ(MAX)/

BLOr.K(ELOCK488)
GRAPEVINE 51 9: REAS:ACMIEVETM0VE/HAND(MAX)/BL0CK(BL0CK488)/

PROM -570 -533 -360/TO -570 -433 -110
GRAPEVINE 520: ACT:TM0VE/HANDfMAX)/BL0CK(BL0CK488)/

FROM ■ 579 -533 -360/TO -570 -433 -110
GRAITVINE 521: REAS:ACIliEVErONTGP/BLOCK(BLOCK488)/

BLOr.K{BtOCK492)
GRAPEVINE 522: ACT:CAUSED_BY HAND(MAX)T0NT0P/BL0CK(BL0CK488)

/Pl.(i(:K(PIOCK/192)
GRAFFVINE 523: REAS:ACHIEVETSTACKUP/BL0CK(BL0CK488)/

BLOCK! BLÜCK492)
GRAIIVINE 524: 0RD:GE1ÜNT0P0F TO FIND_SP0TIFIND/FIND_SP0T/

INT^BI
GRAPEVINE 525: ACT:CAUSED_BY HAND(MAX)rRELEASE/HAND(MAX)/

ClOCKilildCK/lc'lS)
GRAITVINE 526: REAS:ACH1EVETM0VE/HAND(MAX)/HAND(MAX)/

FROM 57»' -433 -110/TO -25 -52C -460
GRAPLVINE 527: ACT:IMGVt7HAND(MAX)/HAND(N/,AX)/FR0M

-570 -433 -1 1 0/'TO -25 -520 -460
GRAPEVINE 528: REAS:ACHiEVElGRASP_STATUS[HAND(MAX)]

GRASPING BL0CK(BL0CK4y6)
GRAPEVINE 529: ACT:CAUSED_BY HAND(MAX)TGRASP/HAND(MAX)/

BLÜCK(BLOCK496)
GRAI'EVINE 533: REAS^CHIEVETMOVE/HANDCMAX),öL0CK(BL0CK496)/

PROM -25 -520 -460/TO -570 -433 -60
GRAPEVINE 531: ACT:TMOVE/HAND(MAX)/BLOCK(BLOCK496)/

FROM -25 -520 -460/TO -570 -433 -60
GRAPPVINF F.32: REAS:ACI IIEVElOiMTOP/BLOCK(BLOCK496)/

0L0CK(BLUCK488)
GRAPEVINE 533: ACT:CAU5ED_BY HAND(MAX)T0NT0P/BL0CK(BLÜCK496)

/I;I()C;K{PIOCK4S8)

GRAPEVINE 534: REASTASK/HUMAN(FRIEND)/HAND(MAX)
GRAPEVINE 535: ANS:HANDiMAX) TO HUMAN(FRIEND)TDID/

IIANntMAX)/INF0/M8

102

,-'- -■•-■ ■■ J

Question Gl

GRAPEVINE 336: CCMHUMANiFRIEND) TO HAND(MAX)TFIND/
HAND(MAX)/OBJECT(BOT_STATUS ■ ONTOP TABLE(DEFINITE))
GRAPEV'NE 537: ANS:HAND(MAX) TO HUMAN(FRIElMD)tFIND/

HAND(MAX)/BLOCK(VAR B2 B7 B5 B6 BLOCK492)
GRAPEVINE 538: ANS:HAND(MAX) TO HUMAN(FRIEND)TFIND/

HAND{MAX)/BOX(VAR BOXl)

Question 62

GRAPEVINE 539: FACT:HUMAN(FRIEND) TO HAND(MAX)TEQUAL/
GNAMEI BLOCK(B2)]/SUPERBLOCK

Question 63

GRAPEVINE 540: QUEST:WHEN_DID/HUMAN(FRIEND) TO HAND(MAX)TDO/
HAND(MAX)/PICKUP BLOCK(GNAME ■ SUPERBLOCK)
GRAPEVINE 541: ACT:NOAP
GRAPEVINE 542: REAS:FIND_NUMB/lNOT EXiST/RELATION/
GRAPEVINE 543: ACT:NOAP
GRAPEVINE 544: REAS:FIND_NLMB/tNOT EXIST/RELATION/
GRAPEVINE 545: ANS:HAND(MAX) TO HUMAN(FRIEND)TDID/

HANDlMAX)///! 5/WHILE//19

Question 64

GRAPEVINE 546: TH0ÜGHT:ACT:tW0VE/HAND(MAX)/BL0CK(BL0CK496)/
I ROM -576 -433 -60/70 -25 -520 -460
GRAPEVINE 547: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 548- THOUGHT:ORD:GETONTOPOF TO FIND.SPOTTFIND/

(INn_SPOT/INFO.V52
GRAPEVINE 549: THOUGHT:ACT:NOAP
GRAPEVINE 550: THOUGHT:REAS:ALREADY_DONErWOVE/HAND(MAX)/

IJL()CK(DLnCK496),/FROM -25 -520 -460/TC -25 -520 -450
GRAPEVINE 551: THCÜGHT:ACT:CAUSEC_BY HAND(MAX)TONTOP/

103

_^

iW^SWPPr^^w»"^«

-550 -1 6b|SIZE - MEDIUM-SIZEDIDESCRIPTIOM = THE B0X|
TOH.STATUS ■ CLEAR|BOT_STATUS - ONTOP l3LOCK(B2)iDIMENSIC)N)S

- 106 100 1 50|XLEISIGTH - 100|YWIDTH = 100|HEIGHT - 150|
XCOORD - -SlOjYCOORD ■ -55Ö|ZC00RD = -160|VOLUME = 1500000|
DISP.NUMB - 2|CEIMTER_OF_MASS ■ -310 -550 -235|XCMS - -3101
YCMS " -550IZCMS ■ -235iSHAPE_0F_ TOP = FLAT)
GRAPEVINE 577: THOUGHT:SJB:TMODIFY/TSUBTRACT/HAND(MAX)/

BLOCKCPNAME ■ BLOCK496|HELD_STATUS ■ GRASPED_BY HAND(MAX)|
LOCASI lU.M - -522 -608 200|COLOR - YELLOW|SIZE ■ SMALL]
DESCRIPTION - THE SMALL YELLOW CONE|TOP_STATUS = CLEAR)
BOT_STATLIS - FREEIKINDOF - CONE|DIMENSIONS ■ 50 75 50|
XI.LNGTH - 50|YWIDTH ■ 75|l IEIGHT = 50|XCOORD = -522|
YCOORD * -60r.|ZCOORD - 20O|VOLUME ■ 73623|DISP_NUMB = 2|
CENrER.OF.MASS - -522 -608 175|XCMS = -522|YCMS = -6881
ZCMS - 1 75|SHAPE_OF_TOP - POINTED)
GRAPEVINE 578: THOUGHT:ACT:IMOVE/HAND(MAX)/HAND(MAX)/

FROM -51'2 -608 200/TO -522 -608 -310
GR/MTVINE 579: THOUGHr:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 580: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND'MAX)/BLOCK(B6)
GRAPEVINE 031; THOUGHT:U'EAS:TASK/AT_TIME/GRA5P
GRAPEVINE 582: THOUGHT:SUR:TMODIFY/tSUBTRACT/HAND(MAX)/

BLOCK(PNAME - BLOCK492|HELD_STATUS ■ FREE|LOCASHUN
■ -570 -433 -26biCOLOR - ORANGE|SIZE = MEDIUM-SIZEDj

DESCRIPTION - TH£ MEDIUM-SIZED ORANGE CYLINDER|TOP_STATUS
- CLEAR|BOT_STATUS - ONTOP TABLE(TABL1)|I<IND0F ■ CYLINDER|
DIVil.NS'ONS - 100 100 250|XLENGTH = 100|YWIDTH = 100|
HEIGHT - 250|XCOORD - -570|YCOORD ■ -433|ZC00RD = -260|
VOLUME * 1 963493iDISP_NUMB - 2|CENTER_0F_MASS ■ -570
-433 -335IXCMS ■ -570|YCMS - -433|ZCMS = -385|SHAPE_0F_T0P
- Fl AT)
GRAPEVINE 583: THOUGHT:SUB:TMODIFY/TSUBTRACT/HAND(MAX)/

BLOCK!PNAME - BLOCK4S8|HELD_STATUS = FREE|l.OCASHUN
- -570 -533 -360|COLOR - BLACK|SIZE = MEDIUM-SIZED|
DESCRIPTION - THE MEDIUM-SIZED BLACK CYLINDER|TOP_STATUS
= CLEAR|BOT_STATUS = ONTOP TABLE(TABL1)|KIND0F - CYL.INDER|
DIMENSIONS -- 100 100 150|XLENGTH = 100|YWIDTH - I88|
HEIGHT - 1 50|XCOORD = -570|YCOORD - -533|ZC00RD = -360|
VOLUME - 1173096|DISP_NUMB = 3|CENTER_0F MASS = -570
-533 -435IXCMS - -570|YCMS = -533|ZCMS = -435|SHAPE_0F_T0P
- FLAT)
GRAPEVINE 584: THOUGHT:ORD:TMODIFY TO FIND SPOTTFIND/

I 105

- - -

FlNü_SPOT/INF0*54
Gi^Ai'CVINi: S>8S: TH0UGHT:AOO:TMODIFY/tA0O/HAM)(MAX)/BL0CK(B4)
RRAFEVINE 58G: THOUCHT:ORD:TWODIFY TO FIND_SPOTTFIND/

FIND_SPOT/INIFO*55
RRAI'I \m: b&7: Tli0UGHT:ADD:rM0DIFY/TADD/HAND(MAX)/BL0CK(B3)
GRAPEVINE R88: THOUGHT:ACT:lMOVE/HAND(MAX)/BLOCK(B6)/

FRUM 522 -608 -3in/T0 -75 -105 -10
GRAU VINE bJlO: THOUGüT^l-IAS:! ASK/AT_TIWE/MOVr.TO
HRAITVliMF 598: THOUGHT:ACT:l MOVE/HAND(MAX)/BLOCK(B6)/

PROM -75-1 05 -1 0/TO -522 -GCG -319
GRAPI VINE 591: TIICJGH! ilCFAS:! ASK/AT_TIME/WOVFTO
r>RAPrVINE 592: THOUGHT;ORD;GETOiMTOPOF TO FIND_SPOTlFIND/

M:JlJ_SFOT/INF0^5b
GRAPEVINE 593: THOUGHT:ACT:NOAP
GRAPEVINE 594; THOUGHT;REAS:Al.READY_DONErMOVE/HAND(MAX)/

P' ^CK(BG)/FROM -522 -BOC -318/T0 -522 -63S -313
GRAI'LVINfc; 595: PHOUGHr:ACT.-CAUS£D.BY HAND^MAXllONTOP/

BI(>CKinf.)/TABlE(TABLl I
GRAPEVINE 596: THOUGHT:REAG:ACHIEVETRELEASE/HAND(MAX)/

IJL(.)CK(BC»)
GRAPFVIf« 597: THOUGHT:ACT:CAUSED_BY HAi\DwS/AX)TRELEASE/

HANCKMAX)/BLOCK(B6)
GRAPEVINE 5U8: THOUGHT:l?EAS:TASK/AT.TIME/RELEASE
GKAPFVINE 599: TH01JGHT:ACT:1 [/iOVE/HAND(MAX)/HAND(MAX)/

FROM -522 -603 -31 0/TO -75 -105 -210
GRAPEVINE 600: THOUGHTrREAS.TASK/AT.TIME/MOVETO
GRAfTVINE R01: TI-!OUGIIT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND.f"'iA>o/BLOCK{B3)
GRAPEVINE 602: THOUGH i:KtAS:l ÄSK/AT.TIME/GRASP
GKAPI VINE 603: THOUGHT:ACT:rM0VE/HAN0(MAX)/BL0CK(B3)/

FROM -75 -105 -21 0/TO -310 -550 -160
GRAPEVINE 604: THOUGH i :REAS:tASK/AT_TIME/MOVET0
GRAPEVINE 60S: THOUGH r:ÜRD:GCTONTOPOF TO FlND_SPOTtFIND/

FIND .SPOT/INFO//57
GRAPEVINE 606: THOUGHT:ACT:NOAP
GKAI'LVIM: 607: THOUGIIT:R£AS:ALREADY«D0NETMOVE/HANO(MAX>/

nLOCK(R3)/FR0M -310 -550 -] 60/TO -31.0 -558 -1 60
GRAPEVINE 60S: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

LIU)CK(Ü3)/ÜLÜCK(B2I >
GRAPEVINE 609: THOUGHT:REMS:ACHIEVEtRELEASE/HAND(MAX)/

CLOCK(B3)
GRAPEVINE 610: THOUGHT:ACT:CAUSED_3Y HAND(MAX)TRELEASE/

106

 ^-~-- - > :..... .^.-i ^■^....-.,.■ .,...;. . . „„„„jt^^tJ^mam

HAND(MAX)/BL0CK(B3)
GRAPEVINE 511: THOUGHT:REAS:TASK/AT TIME/RELEASE
GRAPEVINE 612: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM -318 -550 -168/TO -522 -608 -310
GRAPEVINE 613: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 614: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HANÜiMAX)/BLüCK{B6)
GRAITVINE 615: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 61 6: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B6)/

FROM -522 -608 -310/TO -105 -70 -160
GRAPEVINE 61 7: THüUGHT:REAS:TASK/AT TIME/MOVETO
GRAPEVINE 618: THOUGHT:ORD:GETGNTOPOF TO FIND_SPGTTFIND/

FIND_SPOT/INFO//58
GRAPEVINE 61 9: THOUGHT:ACT:NOAP
GRAPEVINE 620: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/

BLOCK(B6)/FROM -105 -70 -160/TO -105 -70 -160
GRAPEVINE 621: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

BLOCK(EG)/BL0CK(B4)
GRAPEVINE 622: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCWBS)
GRAPEVINE 623: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND(MAX)/BLOCK(B6)
GRAPEVINE 624: TIIOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 625: THOUGHT:ACT:tMOVE/HAND(MAX)/HAND{MAX)/

FROM -1 05 -70 -160/TO -472 -608 -460
GRAPEVINE 626: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE G27: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BLOCK(B5)
GRAPEVINE 623: THOUGH r:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 629: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/

FROM -472 -608 -460/TO -55 -155 -310
GRAPEVINE 630: THOUGHT:REAS:TASK/AT_TIME/MOV£TO
GRAPEVINE 631: THOUGHT;ORD:GETONTOPOF TO FIND.SPOTTFIND/

FIND_SPOT/INFö^59
GRAPEVINE 632: ", HOUGHT-ACT:NOAP
GRAPEVINE 633: THOUGH,T:REAS:ALREADY_DONETMOVE/HAND(MAX)/

BL0CK(E5)/FRÜM -55 -155 -310/TO -55 -155 -310
GRAPEVINE 634: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

BL'")CK(R5)/BL0CK{B4)
GRArEVINE 635: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BL()CK(B5)
GRAi'EVINE 636: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

107

■- -

IIANrKMAX)/BL0CK(B5)
GRAPQ/INE 637: THOUGHTiREAS:!ASK/AT_TIME/RELEASE
GRAPEVINE 638: THOUGHT:ACT:TM0VE/HAND(MAX)/H;.ND(MAX)/

FROM -55 -155 -318/TO -422 -603 -460
GRAPEVINE 639: THOUGHT.REAS:! ASK/AT JIME/MOVETO
GRAPEVINE 640: THOUGHT:ACT:CAUSED_BY i'AND(MAX)TGRASP/

IIANl^MAX)/RLOCK(B7)
GRAPEVINE 641: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 642: THOUGHT:ACT:lMOVE/HAND(MAX)/BLOCK(B7)/

PROM -422 -603 -460/"! 0 -55 -155 -260
GRAPEVINE 643: THOUGHT;REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 64«: THOUGHT:ORD:GETGNTOPOF TO FIND.SPOTi FIND/

(: INIJ_SPOT/INFO/V60
GRAPEVINE 645: THOUGHT:ACT:NOAP
GRAPEVINE 646: THÜUGHT:REAS:ALREADY_OONETMGVE/HAND(MAX)/

BLoä«U7)/fROM -55 -155 -260/TO -55 -155 -230
GRAPEViNE 647: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

ELOCK(D7)/BLOCK(B5)
GRAI 'LVINE 643: rHOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BlOCKiR?)
GRAPEVINE 649: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

flANO(MAX)/BLOCK(ö7)
GRAPEVINE 650: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 651: THOUGHT:ACT:tMOVE/HAND(MAX)/HAND(MAX)/

FROM -55 -155 -260/TO -545 145 -160
GRAPEVINE 652: THOUGHT:REAS:TASK/AT_TIME/Iv10VETO
GRAPEViNE 653: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BLUCK{Ü3)
GRAIT.VINE 654: THOUGHT:REAS:TASK/AT_TIN/1E/GRASP
GRAPEViNE 655: TH0UGHT:ACT:1M0VE/HAND(MAX)/BL0CK(B8)/

FROM -541) 145 -160/TO -470 165 -410
GRAPEVINE 656: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEViNE 657: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/

FIND_SPOr/INF0^6l
GRAPEVINE 653: TIIOUGHT:ACT:NOAP
GRAPEVINE 659: THOUGHT:REAS;ALREADY_DONETMOVE/HAND(MAX)/

GL0CK(B3)/FRÜM -470 165 -410/TO -470 165 -410
GRAPEVINE 660: TIIOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

eLOCK(n3)/TABLE(TABLl)
GRAPEViNE 661: THOUGHT:REAS:ACHIEVETRELEA5E/HAND(MAX)/

BLCxac(Ba)
GRAPEVINE 662: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

108

 J

HAND(MAX)/BL0CK(B8)
GRAPEVINE 663: TH0UGHT:REAS:1ASK/AT_TIME/RELEASE
GRAPEVINE 664: THOUGHT:ACT:1M0VE/HAND(MAX)/HAND(MAX)/

FROM -470 165 -410/TO -55 -155 -260
GRAPEVINE 665: THOUGHT;REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 666: THOUGHT:ACT:CAU$ED_BY HAND(MAX)TGRASP/

|-IAND(MAX)/BLOCK(B7)
GRAPEVINE 667; THOUGHT:REAS:tASK/AT_TIME/GRASP
GRAPEVINE 668: TH0UGHT:ACT:1M0VE/HAND(MAX)/BL0CK(B7)/

FROM -55 -J 55 -2G0/TO -422 -608 -460
GRAPEVINE 669: THOUGKHREAS:!ASK/AT_TIME/MOVETO
GRAPEVINE 670: THOUGHT:ORD-ÜETONTOPOF TO FIND.SPOTTFIND/

riNn_sPOT/iNro^62
GRAPEVINE 671: THOUGHT:ACT:NOAP
GRAPEVINE 672: THOUGHr:REAS:ALREADY_DONETMOVE/HAND(MAX)/

DLOCK(n7)/FROM -422 -608 -460/TO -422 -608 -460
GRAPEVINE 673: THOUGHT:ACT:CAUSED_Bv HAND(MAX)TONTOP/

ÜLÜCK(Ü7)/TAÜLE(TABL1)
GRAPEVINE 674: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCKIB7)
GRAPEVINE 675: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HANn{MAX)/BLOCK(B7)
GRAPEVINE 676: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 677: THOUGHT:ACT:rMOVE/HAND(MAX)/HAND(MAX)/

FROM -422 -608 -460/TO -55 -155 -310
GRAPEVINE 678: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 679: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HANU(MAX)/BLOCK(B5)
GRAPEVINE G80: THOUGHT:REAS:TASK/AT_TIME/GRASP
GRAPEVINE 681: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(B5)/

FROM -55 -155 -310/TO -310 -550 -110
GRAPEVINE 682: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 683: THOUGHT:ACT:lMOVE/HAND(MAX)/BLOCK(B5)/

FROM -310 -550 -110/TO -75 -450 -460
GRAPEVINE 684: THOUGHT:REAS:rASK/AT_TIME/MOVETO
GRAPEVINE 685: THOUGHT:ORD:GETONTOPOF TO FIND_SPOTTFIND/

FINU_SPOT/INFO//63
GRAPEVINE 686: THOUGHT:ACT:NOAP
GRAPEVINE 687: THOUGHT:REAS:ALREADY_OONETMOVE/HAND(MAX)/

BLC)CK(B5)/FROM -75 -450 -460/TG -75 -450 -460
GRAPEVINE 688: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

BLOCK(B5)/TABLE(TABLl)

109

.

GRAPEVINE 689: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/
BL0CK(Ü5)
GRAPEVINE 690: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND(MAX)/BLOCK(B5)
GRAPEVINE 691: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 592: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM -75 -450 -460/TO -422 -508 -460
GRAPEVINE 693: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 694: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HANn;MAX)/BLOCK(B7)
GRAPEVINE 69b: THOUGHT:REAS:TAS^/AT_TIME/GRASP
GRAPEVINE 595: THOLJGHT:ACT:TMG,

wE/HAND(MAX)/BLOCK(B7)/
FROM -422 -50S -450/TO -75 -450 -410
GRAPEVINE 597: THOUGHT:REAS;TASK/AT_TIME/MOVETO
GRAPEVINE 698: T1I0UGI-IT:0RD:GET0NT0P0E TO EIND_SPOTTFIND/

FIND«SPOT/INFO*64
GRAPEVINE 599: THOUGHT:ACT:NOAP
GRAPEVINE 730: TllOUGHT:REAS:ALREADY_DONErMOVE/HAND(MAX)/

BLOCK(B7)/FROM -75 -450 -410/TO -75 -450 -410
GRAPEVINE 701: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

OLOCK^7)/BLOCK(G5)
GRAPEVINE 702: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCK(B7)
GRAPEVINE 703: THOUGHT:ACT:CAUSED_BY HANDi,MAX)TRELEASE/

HANn(MAX>/BLOCaC(B7)
GRAPEVINE 784: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAI'EVINE /OS: THOUGHT:ACT:TM0VE/HAND(MAX)/HAND(MAX)/

FRCM -75 -450 -410/TO -310 -550 -150
GRAPEVINE 705: THOUGHT:REAS:TASK/AT_TIM£/MOVETO
GRAPEVINE 707: THOUGHT:ACT:CAUSED_BY HAND(N/1AX)TGRASP/

IIANn'MAX)/RI.OCK{R3)
GRAPEVINE 708: THOUGHT:REAS:1 ASK/AT_TIME/GRASP
GRAPEVINE 709: THOÜGHT:ACT:lWOVE/HAND(MAX)/BLOCK(B3)/

PROM -31 0 -550 -1 50/TO -545 -255 -350
GRAPEVINE 710: THOUGHT;REAS:1 ASK/AT_TIME/MOVETO
GRAPEVINE /I 1: THüUGHT:URD:GETONTOPOF TO FIND.SPOTTFIND/

f lNn._SPnT/INFO//55
t GRAPEVINE 71 2: THOUGHT:ACT:NOAP

GRAPEVINE 713: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
BL0CK(ü3y/FR0M -545 -255 -350/TO -545 -255 -360
GRAPEVINE 71 4: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/

BL0CK(B3)/TABLE(TABL1)

110

-- 1—^.——~. . ^- —.-...^——^a»»—^—.

j

J

GRAPEVINE 715: THOUGHT:R£AS:ACHIEVETRELEASE/HAND(MAX)/
BL0CWB3)
GRAPEVINE 716: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/

HAND(MAX)/BL0CK(B3)
GRAPEVINE 717: THOUGHT:REAS:TASK/AT_TIME/RELEASE
GRAPEVINE 718: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM 545 -255 -360/TO -545 145 -268
GRAPEVINE 71 9: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 720: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BLOCK(Bl)
GRAPEVINE 721: THÜUGHT:REAS:1 ASK/AT_TiME/GRASP
GRAPEVINE 722: THOUGHT:ACT:TMOVE/HAND(MAX)/BLOCK(Bl)/

FROM -545 145 -260/TO -475 -105 -260
GRAPEVINE 723: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 724: THOUGHT:ORn:GETONTOPOF TO FIND.SPOTTFIND/

FIND_SPOT/INFO#66
GRAPEVINE 725: THOUGHT:ACT;NOAP
GRAPEVINE 726: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/

BLOCKiBl l/FROM -475 -10E -260/TO -475 -105 -260
GRAPEVINE 727: THOUGHT,ACT:CAUSED_BY HAND(MAX)TONTOP/

QLOCK(nJ)/TABLE(TABLl)
GRAPEVINE 728: THOUGKT:REAS:ACHIEVETRELEASE/HAND(MAX)/

BLOCK'Bl)
GRAr'EVINE 729: THOUGHT:ACT:CAüSED_BY HAND(MAX)TRELEASE/

HAND(MAX)/BLOCK(Bl)
GRAPEVINE 738: THOUGHT:REAS:TASK/AT_TliVlE/RELEASE
GRAPEVINE 731: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM -475 -105 -260/TO -310 -550 200
GRAPEVINE 732: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 733: THOUGHT:ACT:TMOVE/HAND(MAX)/HAND(MAX)/

FROM -31 0 -550 200/TO -310 -550 -310
GRAPEVINE 734: THOUGHT:REAS:ACHIEVETGRASP/HAND(MAX)/

BLOCK(B2)
GRAPEVINE 735: THOUGHT:ACT:CAUSED_BY HAND(MAX)TGRASP/

HAND(MAX)/BLOCK(B2)
GRAPEVINE 736: THOUGHT:REAS:1 ASK/AT_TiME/GRASP
GRAPEVINE 737: THOUGHT:ACT:tMOVE/HAND(MAX)/BLOCK(B2)/

FROM -310 -550 -310/TO -310 -550 200
GRAPEVINE 738: THOUGHT:REAS:TASK/AT_TIME/MOVETO
GRAPEVINE 739: TH0UGHT:ACT:IM0VE/HAND(MAX)/BL0CK(B2)/

FROM -310 -550 200/TO -310 -550 -310
GRAPEVINE 740: THOUGHT:REAS:1 ASK/AT_TIME/MOVETO

111

 - ■ " - - ' " ----. - - - ■ii in - - - - .M, M^lia^^Mia^^M^« I
J

GRAPEVINE 741: THOUGHT:ORD:GET0NT0P0F TO FIND SPOTTFIND/
FINn_SPOT/INF0^67 '
GRAPEVINE 742: THOUGHT:ACT:NOAP

GRAPEVINE 743: THOUGHT:REAS:ALREADY_DONETMOVE/HAND(MAX)/
nLOCK(B2)/FROM -310 -558 -313/10 -313 -553 -313 /riM,NMM/w/

GRAPEVINE 744: THOUGHT:ACT:CAUSED_BY HAND(MAX)TONTOP/
ÜL()CK(B2)/TABLE(TABL1)

GRAPEVINE 745: THOUGHT:REAS:ACHIEVETRELEASE/HAND(MAX)/

GRAPEVINE 746: THOUGHT:ACT:CAUSED_BY HAND(MAX)TRELEASE/
IIANn(MAX)/GLOCK(B2) ^mtuiAbt/

GRAPEVINE 747: THOUGHT:REAS:TASK/AT TIME/RELEASE
GRAPEVINE 748: QUEST:HOW_MANY/HU,VlÄN(FRIEND) TO HAND(MAX)

rEXIST/QLOCK(KINOOF H PYRAMIDjLOCASHUN LEFT.OF BOXO)/
GRAPEVINE 749: ANS:HAND(N/AX) TO HUMAN(FRIEND)TEXIST/

BLÜCK(VAR Bl B2 B5 B4 B3)/5

Question 65

GRAPEVINE 753: QUEST:WHY_DID/HUMAI\I(FRIEND) TO HAND(MAX)TDO/
IIANi^MAX^/DROP BLOCK(GNAME - SUPERBLOCK) ^^AA;IUU/

GRAPEVINE 751: ACT:NOAP
GRAPEVINE 752: REAS:MATCHX7TN0T DOST/STRAO/ACMDROP/

IIANU(MAX)/BLOCK(GNAME - SUPERBLOCK) '

HTNAD(MZE/INF0^8S:HAND{MAX) T0 HUMAN(FRIEND)TNOT REMEMBER/

Question 66

GRAPEVINE 754: 0UEST:YES_NO/HUMAN(FRIEND) TO HAND(MAX)
1EXIST/0BJECT(L0CASHIJN IN.FRONT OF BLOCK(COLOR ■ REDI
KINOOF - PYRAMID))/ '
GRAPEVINE 755: ANS:HAND{MAX) TO HUMAN(FRIEND)TEXIST/

BLOCKWAR 82 B7 B5>/4
(GRAPEVINE 756: ANS:HAND(MAX) TO HUMANiFRIEND)rEXIST/

BOX(VAR BOX533)//i '

112

----- - — ■^"-^**^*iat^"j - -

INFO 1: LOCATION ONTOPOF TABLE(TABLl)
INFO ?: COM;HUMAN(FRIEND) TO HAND(MAX)TPICKUP/HAND(MAX)/BLOCK(B2)
INFO 3: COM:HUMAN(FRIEND) TO HAND(MAX)TGRASP/HAND(MAX)

/BLOCK(DEFIMTE|KINDOF = PYRAMID)
INFO 4: LOCATION ONTOPOF BOX(BOXl)
INFO 5: LOCATION ONTOPOF TABLE(TABLl)
INFO 6: COM:HUMAN(FRIEND) TO HAND(MAX)TlNSIDE/BLOCK(Bl)/BOX(BOXl)
INFO 7: ONTOP/BLOCK{B6)/BLOCK(B4)
INFO 8: LOCATION ONTOPOF BLOCK(B8)
INFO 9: TIIOUGIir:CÜM:HUMAN(FRlLND) TO HAND(MAX)TONTOP

/BLOCKlKINDOF ■ PYRAMID)/BLOCK(KlNDOF = PYRAMID)
INFO 1 0: LOCATION ONTOPOF TABLE(TABJ)
INTO 11: LOCATION ONTOPOF BLOCK(B2)
INFO 1 2: 1 OCATION ONTOPOF BLOCK(B5)
INFO 13: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TSTACKUP

/HAND(MAX)/BLOCK(B2) BLOCK(B5) AND BLOCK(B6)
INFO 1 4: LOCATION ONTOPOF BLOCK!B2)
INFO 1 5: LOCATION ONTOPOF TABLE(TABLl)
INFO 16: LOCATION ONTOPOF BL0CK(B3)
INFO 1 7: COM:IIUMANtFRIENn) TO HAND(MAX)TSTACKUP/HAND(MAX)

/BLOCK(B2) BLOCK(B3) AND BLOCK(B5)
INFO IS: LOCATION ONTOPOF BL0CK(B4)
INFO 19: COM:tlUMAN(FRIEND) TO HAND(MAX)T0NT0P/BL0CK(B5)/BL0CK(B4)
INFO 20: LOCATION ONTOPOF BLOCK(B5)
INFO 21: COM:HLJMAN(FRIEND) TO HAND(MAX)T0NT0P/BLOCK(B7)/BLOCK(B5)
INFO 22: LOCATION ONTOPOF TABLE(TABLl)
INFO 23: LOCATION ONTOPOF TABLE(TABLl)
INFO 24: LOCATION ONTOPOF BLOCK{B5)
INFO 25: LOCATION ONTOPOF TABLE(TABLl)
INFO 26: LOCATION ONTOPOF TABLE(TABLl)
INFO 27: LOCATION ONTOPOF BLOCK(B5)
INFO 28: LOCATION ONTOPOF lABLE(TABLl)
INFO 29: LOCATION ONTOPOF TABLE(TABLl)
INFO 30: LOCATION ONTOPOF BLOCK(B5)
INFO 31: LOCATION ONTOPOF BLOCKIBl)
INFO 32: COM:HUMAN(FRIEND) TO HAND(MAX)T0NT0P/BLCCK(B8)/BL0CK(Bl)
INFO 33: COM:HLJMAN(FRIEND) TO HAND(MAX)TBUILD/HAND(MAX)/STEEPLE()
INFO 34: LOCATION ONTOPOF CLO$K)B49
INFO 35: LOCATION ONTOPOF BL0CK(B4)

113

j

.

INFO 36: LOCATION ONTOPOF TABLE(TABLl)
INFO 37: LOCATION ONTOPOF TABLE(TABLl)
INTO 38: LOCATION ONTOPOF TABLEdABLl)
INFO 39; LOCATION ONTOPOF BLOCK(B3)
INFO 40: THOUGHT:COM:HUMAN(FRIEND) TO HAND(MAX)TBUILD

/llAND(MAX)/PILi:.(RFD|GREEN|GLUE)
INFO 41: LOCATION ONTOPOF TABLE(TABLl)
INFO 42: LOCATION C JTOPOF BLOCK(B2)
INI:0 43: LOCATION ONTOPOF BLOCK(B3)
INFO 44: LOCATION ONTOPOF TABLE(TABLl)
INFO 4G: LOCATION ONTOPOF TABLE(TABLl)
INFO '16: LOCATION ONTOPOF TABL£(TABLl)
INFO 47: LOCATION ONTOPOF BLOCK(B2)
INFO 48- COM:HUMAN(FRIENO) TO HAND(^AX)TBUILD/HAND(MAX)

/RÜCKET(CYLINDER|CONC10RANGE|BLACK|YELLOW)
INFO 49: LOCATION ONTOPOF BLOCK(BLOCK492)
INFO 50: LOCATION ONTOPOF TABLE(TABLI)
INFO 51: LOCATION ONTOPOF BLOCK(BLOCK488)
INFO 52: I OCATION ONTOPOF TABLE(TABLI)
INFO 53; LOCATION ONTOPOF TABLE(TABLl)
INFO 54: LOCATION ONTOPOF TABLE(TABLl)
INFO S5: I OCATION ONTOPOF BL0CK(E4)
INFO 56; LOCATION ONTOPOF TABLEiTABLl)
INFO 57: LOCATION ONTOPOF BLOCl<(B2)
INFO 58: LOCATION ONTOPOF BL0C1<(B4)
INFO 59; LOCATION ONTOPOF BLCCK(E4)
INT) 60: LOCATION ONTOPOF BLOCK(B5)
INFO 61 : LOCATION ONTOPOF TABLEiTABLl)
INFO 62: LOCATION ONTOPOF TABLE(TABLl)
INFO 63: LOCATION ONTOPOF TABLEiTABLl)
INFO 64: LOCATION ONTOPOF 3L0CK(B5)
INFO 65: I OCATION ONTOPOF TABLEiTABLl)
INFO 66: LOCATION ONTOPOF TABLEiTABL' I
INFO 67: LOCATION ONTOPOF TABLEiTABLl)
INFO 63: ACT:lDROP/HANDiMAX)/BLOCKiGNAME ■ SUPERBLOCK)

114

-■*-— ■ ■ ■ - ■ -•"■■'■--—

REFERENCES

I. J. McCarthy, "Programs with Common Sense", Mechanization of
Thought Processes, Vol. 1, London: HMSO (1959).

2. A. Newell, J. C. Shaw, and H. A. Simmon, "Elements of a Theory
of Human Problem Solving", Psychological Review 65, pi51 (1958).

3. S. Amorcl, "On the Representation Problems of Reasoning about
Action", in D. Mitchie (Ed.) Machine Intelligence 3, New York:
American, Elsevier (1968).

4. J. McCarthy and P. J. Hayes, "Some Philosophical Problems from
the Standpoint of Artificial Intelligence", in B. Meltzer and
D. Michie (Eds.) Machine Intelligence 4, p463, Edinburg (1969).

5. M. R, Quillian, "Semantic Memory", in M. Minsky (Ed.), Semantic
Information Processins, Cambridge, Mass. M.I.T. Press, 1968.
"The Teachable Language Comprehender", Communications
of the ACM 12, p459(l969).

6. T. Winograd, "Procedures as a Representation for Understanding
Natural Language", MAC TR-84 M.I.T. Artificial Intelligence
Laboratory, Ph.D. thesis (1971).
"Understanding Natural Language", New York, Academic Press (1972).

7. R. C. Shank, "Conceptual Dependency: A Theory of Natural Language
Understanding", Cogn. Psychol., Vol. 3, 552(1972).

8. P. M. Winston, "Learning Structural Description? form Examples",
MAC TR-76, M.I.T. Artificial Intelligence Laboratory Report,
Ph.D. thesis (1970).

115

^.^^^^..-^^.^ ^.^M^. ^ .,.. „:....-........., , . .^^i .- . ■■-

T. 0. Binford, "Visjal Perception by Computer" in Systems,
Scirncc and Cybernetico, Miami. (Dec. 1971).

10. G. J. Agin and T. 0. Binford, "Computer Description of Curved
Objects", p629, in Proceedings Third International Joint
Conference on Artificial Intelligence, Stanford Research
Institute, Menlo Park (Stanford, Aug. 1973).

11. C. Hewitt, "PLANNER: A Language for Manipulating Models and
Proving Theorems in a Robot", M. I.T. Artificial Intelligence
Laboratory Memo 168 (Aug. 1970).

12. J. F. Ruhfson, J. A. Derksen, and R. J. Waldinger, "QA4: A
Procedural Calculus for Intuitive Reasoning", Tech. Note 74,
Artificial Intelligence Center SRI (Nov. 1972).

1 3. D. V. McDermott and G. J. Sussman, "The Conniver Reference
Manual", M.I.T. Artificial Intelligence Laboratory Memo 259
;May,l972).

] 4. C. Hewitt, P. Bishop, and R. Steiger, "A Universal Modular
Actor Formalism for Artificial Intelligence", p235, in
Proceedings Third International Joint Conference on Artificial
Intelligence, Stanford Research Institute, Menlo Park
(Stanford, Aus. 1 973).

15. F. A. Feigenbaum, "A Simulation in Verbal Learning Behavior",
in E. A. Feigenbaum and Feldman (Ed.), Computers and Thourht.
McGraw-Hill, New York, (1 963).
H. A. Simon and E. A. Feigenbaum, "An Information Processing
Theory of Some Effects of Similarity, Familiarity, and
Meaningfulness in Verbal Learning", Journal of Verbal Learning
and Verbal Behavior, Vol. 3, p385 (1964).

f 116

—-- ■ — —-

I

16. D. I.. Hmlzman, "Explorations with a Discrimination Net Model
for Paired-associate Learning", Journal of Mathematical
Pcychology, Vol. 5, pi23. (1968).

1 7. D. E. Rumelhart, P. H. Lindsay, and D. A. Norman, "A Proces«
Model for Long-term Memory", in E. Tulving and W. Donaldson
(Eds.), Organization and Memory. Academic Press
New York (1972).

IS. J. R. Anderson and G. Bower, Human Associative Memory.
V. H. Winston ond Sons, Washington, D. C. (1973).

1 9. See SAIL MANUAL, K. A. VanLehn, Editor, Stanford Artificial
Intelligence Project, Memo No. 284 (June 1973).

20. T. Winogrod, "A Procedural Model of Language Understanding",
in R. C. Shank and K. M. Colby (Eds.), Computer Models of '
Thought and Language, W. H. Freeman and Company, San
Francisco, pi 52 (1973).

21. G. C. Smith and H. J. Enca, "Backtracking in MLISP2", p677,
in Proceedings Third International Joint Conference on
Artificial Intelligence, Stanford Research Institute,
Mcnlo Park (Stanford, Aug. 1973).

22. T. Winograd, "Breaking the >mplexity Barrier A<?ain",
in Proceedings of the ACM, SmAN-SIGIR Interface Meeting.
(Nov. 1973) (to be publibhea;.

23. N. M. Goldman and C. K. Riesbeck, "A fonceptua.ly Based Sentence
Pai-üphraser", Stanford Artificial Intelligence Laboratory
Memo No. 196 (May 1973).

I 117

■ - —— ■ - ■ — " ■ --..^—^^-^ lllllM—ll —"- -.J..E....... ■- ■ ..- ^ , ._ -..—:...... - -■ -■ ^- -.-^---v ■...■■.

24. R. C. Shank and C. J. Rieger III, "Inference and Computer
Understanding of Natural Language", AIM 197 (May,l973).

25. C. J. Rieger III, "Conceptual Memory", Stanford Artificial
Intelligence Laboratory, Ph.D. thesis (1974).

26. G. J. Sussmon, "A Computational Model of Skill Acquisition",
M. I. T. Artificial Intelligence Laboratory, Ph. D. thesis (Aug.' 1 973).

118

- -- --- —-' -'"--^

