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THE INTERACTION AND DAMAGE EFFECTIVENESS OF TWO 

EXPANDING NON-SPHERICAL EXPLOSION BUBBLES 

1. INTRODUCTION 

The underwater explosion of two simultaneously or sequentially 

initiated separated charges produces complex shock wave and bubble 

phenomena. The interaction of the two shock waves has been studied 

1 2 
in the past ’ . This report is a continuation of a study of the 

bubble phenomena of separated charges. 

With two separated charges, two distinct bubbles are formed 

following the detonation. The bubbles will deform from a spherical 

shape as a result of the hydrodynamic interaction. The authors 

have shown that the centers of two spherical explosion bubbles 

remain essentially stationary during the expansion phase but later 

attract strongly as the bubble contracts. It is assumed that 

explosion bubbles which are not constrained to a spherical shape 

will behave in the same manner. The analysis deals with explosion 

bubbles that pulsate in phase. Only the expansion phase will be 

considered. The effect of buoyancy upon the bubbles is neglected. 

Our study utilizes the methods of potential flow theory to 

describe the expansion of the bubbles and their shapes as a 

N. L. Coleburn and L. A. Roslund, "Collision of Spherical Shock 
Waves in Water," NOLTR 68-110, (I968) 

R. J. Seeger and H. Polachek, "On Shock Wave Phenomena: Waterlike 
Substances, Journal of Applied Physics, _22, 640 (1951) 

R. G. Leamon, C. G. Simpson, and H. G. Snay, "The Interaction of 
Two Spherical Explosion Bubbles," NOLTR 73-101, (1973) 
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function of time. Lagrangian coordinates are used to follow 

individual particles on the bubble-water interface and for the 

determination of the shape of the bubble. This problem has been 

studied elsewhere using the far more sophisticated MACYL computer 

technique. The results of our approximation compare favorably with 

those obtained with the MACYL analysis that uses finite difference 

techniques. The potential flow calculations are simple and require 

only a small portion of the machine time needed for the finite 

difference method. 

2. METHOD 

In the method described below, a solution of the appropriate 

hydrodynamic equation—LaplaceTs equation—is used. Such a solution 

specifies the particle velocities in the water. The initial shape 

of each bubble and the equation of state for the water and that for 

the gaseous contents of the bubbles are those of the classic bubble 

theory, namely that of an incompressible medium for the water 

surrounding the bubbles and that of an ideal gas for the contents 

of the bubbles. 

The bubble interface* is assumed to consist of the same 

particles of water throughout the pulsation. If the particle 

velocities In the water are known, and if the initial interface is 

specified, then the shape of the bubbles can be calculated as a 

function of time by following the motion of the interface particles. 

This approach allows the bubbles to combine or coalesce. 

¥- 
For the purpose of this report, the term interface shall refer 

to the bubble-water interface regardless of whether or not the two 
bubbles are coalescent. 
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2,1 ffi16 Velocity Potential. For the purpose of describing the 

motion of the bubbles, the flow field In the water Is taken to be 

irrotatlonal and incompressible. These assumptions form the basis 

of the well-established bubble theory,11,5 the classic bubble theory 

Under these conditions, a velocity potential, <)>, exists which 

describes the flow field and which satisfies Laplace's equation 

V2<(> 0 . (2.1) 

Any velocity potential which satisfies this equation is a 

possible solution to our problem. One class of functions which 

satisfy Equation (2.1) are called singular solutions, so called 

because <t> becomes infinite at the origin of these solutions. These 

include sources, dipoles, quadrupoles, etc. The simplest of these 

solutions, the source, is written as 

-*.SM , 
r * (2.2) 

where Q(t) is an arbitrary function of time and r is the distance 

from the origin to any point in the flow field. In fact the source 

is the complete solution of a single pulsating non-migrating 

spherical bubble. In this case it takes the form 

Ç-—- 
B. Friedman, "Theory of Underwater Explosion Bubbles," Institute 

of Mathematics and Mechanics, New York University, Report No. 
IMM-NYU166, (1947). Reprinted in Underwater Explosion Research. 
Volume II, The Gas Globe, Office of Naval Research,'"p. 329-378, (1950) 

H- SnaY an(^ E. A. Christian, "Underwater Explosion Phenomena: 
The Parameters of Non-Migrating Bubbles," NAVORD 2937, (1952) 

3 
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(2.3) r 

where A Is the radius of the spherical bubble and A, its time 

derivative which is the radial velocity of the bubble interface. 

We use two equal source potentials fixed in the flow field to 

represent the motion due to the two bubbles. These bubbles are 

taken as being formed by equal, simultaneous underwater explosions. 

The effect of buoyancy on the bubbles is neglected. This effect is 

known to be small for a single bubble during the expansion phased 

In addition there are compelling reasons for omitting the effect of 

buoyancy*. Using the axisymmetric coordinate system shown in 

Figure 1, the form of the velocity potential becomes 

(2.4) 

or 

1_\ 
- 4> = Q(t) 

yxz + y2 ^(x+B)2 + y2J 
Where B is the total separation distance between the two charges, 

Physically, this is analogous to superposing the two velocity 

potentials which, taken individually, would correctly represent a 

single bubble. 

^ H. G. Snay, "Underwater Explosion Phenomena: The Parameters of 
Migrating Bubbles," NAVORD 4125, (1962) 

Compare with page 36 of reference 3 
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To first order we fix the location of the two sources at the 

initial separation distance of the two charges. The justification 

of this approach is provided by the previous study^ of the pulsation 

and migration of two interacting spherical bubbles. It was found 

that the centers of the interacting bubbles remain almost stationary# 

at first, but strongly move toward each other later as the bubble 

contracts. This assumption is further substantiated by the good 

agreement between calculations based on Equation (2.4) and calcula¬ 

tions with the MACYL Code (See section 3.2). 

2.2 Equations for the Interface. Since a bubble-water interface 

consists of the same particles throughout its motion#*, the position 

of a particular point on the bubble interface can be determined by 

integration of the particle velocities over time. 

The particle velocities for any point in the flow field are 

given by the gradient of the potential given by Equation (2.4), 

“■-If 
u/Q(t) = (_x_ + (x+B)\ 

^ j 
(2.5a) 

M 

I 'Ml 

V = - 
3y 

v/Q(t) M) 
(2.5b) 

In fact, the two equal spherical bubbles slightly repel one 
another, but the total distances moved are small. 

Vaporization or boiling of the ambient water into the bubble 
due to passage of the shock wave is ignored. I I 

UNCLASSIFIED 
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where u and v are the particle velocities in the x and y directions, 

respectively, as shown in Figure 1. 

Thus, at any time t, the coordinates x and y of a point on the 

bubble interface are given by 

t 

(2.6a) 

•h 

and 
t 

to 

(2.6b) 

where x(t0) and y(t0) are the coordinates of the interface particle 

at time t0. It is seen, then, that specifying Q(t) is sufficient 

to find the motion of an Interface particle. By tracing the trajec¬ 

tories of enough interface particles, it is possible to numerically 

determine the motion of the whole interface and obtain the resulting 

flow field. 

2.3 Determination of Q(t). The function Q(t) may be determined 

from the equation for the conservation of energy. 

The kinetic energy of the water is given by integration of the 

square of the velocities over the volume of the field. 

6 
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T = ip 2K0 
flow field 
volume 

/{u2+v2} 
di 

= K/1 (¾)+ (i) i11 ■ 
(2.7) 

flow field 
volume 

By use of Green’s formula, this volume integral may be reduced to 

a surface integral enclosing the flow field volume. As there is no 

flow at infinite distance, the surface integral vanishes at infinity. 

This means that the surface integral needs to be taken over the 

bubble interface a only. Thus, the kinetic energy in the flow 

field becomes 

- !p°/ (* !ïï)da > (2.8) 

bubble 
interface 

where 3<J>/3n, the partial derivative of $ in the direction of the 

outward normal to the interface, is the normal velocity and p0 Is 

the density of the ambient water. Equation (2.8) can be expressed 

in terms of Q(t) by use of Equations (2.5): 

bubble 
Interface 

X + Qjtj da (2.9a) 

where x and y are the unit vectors In the x and y directions and n 

is the outward pointing unit vector normal to the bubble interface. 

7 
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The expression in the square brackets is the dot product. For a 

single spherical bubble the kinetic energy becomes 

• 

T = 2ïïPoA3A2 = 27tp0qVa. (2.9b) 

The potential energy, Í2 , of one of the two bubbles is given by 

= P0V , (2.10) 

where P0 is the hydrostatic pressure in the water and V is the 

volume of the bubble. 

The gaseous contents of the bubbles are taken as ideal gases 

with a constant adiabatic exponent y, an assumption carried over 

from the classic bubble theory. For each bubble, the internal energy 

of the gaseous bubble contents, G, is given by 

where Pr and Vr are arbitrary reference magnitudes, for instance 

the initial pressure and the corresponding initial volume. 

The total energy of the mechanical system comprising the two 

bubbles and the surrounding water, 2E, is conserved. Thus, the 

sum of the kinetic, potential, and internal energy is constant 

throughout the first pulsation. The magnitude E is called the 

bubble energy. For a single bubble, it is given by 

T + £2 + G = E (2,12a) 

or 

* This equation holds only for two bubbles produced by the 
same explosive and charge weight. If the type of explosive or 
the charge weight is not the same, a different expression for G 
is required for each bubble. When such bubbles coalesce, their 
pressures may not be the same and a pressure equalization takes 
place at the moment of their combination. 

8 
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T + PnV + P 

The desired expression for the source strength Q(t) of one bubble 

may be obtained from Equations (2.12) and (2.9). At the instant t we 

have 

= ^<e-c-g>/ (r- + r) ((am); + (mrÿ) • " 

bubble 
interface 

(2.12b) 

da, 

(2.13) 

where the positive square root is used as the bubbles are expanding. 

Equations (2.12) and (2.13) may be somewhat simplified by using 

non-dimensional coordinates due to Friedman\ The transform to 

dimensionless variables is based upon the bubble energy E. The 

length scale L and the time scale C are given as 

L = (3E/4ïïP0)1/3 

(2.14a) 

1.7289 (eW/Z) 1/3 

C = L(3p0/2Po)1/2 

= 0.37331 (eW)1/3Z_5/6 , 

(2.14b) 

where P0 is the hydrostatic pressure, W is the weight of one of the 

explosive charges, Z, the hydrostatic pressure expressed in feet of 

ambient water, and e, the specific bubble energy in cal/gm. Intro¬ 

ducing the dimensionless variables 

9 
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The values of the adiabatic exponent y for the gaseous contents of 

the bubble are known for several types of high explosives. If the 

dimensionless notation is usedj the determination of and Vr is 

tantamount to determining k (providedj of course, that y and the 

depth are given). On the basis of experimental pressure measure- 

ments made using single TNT explosive charges, Arons' gives the 

following expression for k, 

k = 0.0552 Z y-i (2.18) 

Strictly speaking, this relation should not be used if the depth of 

explosion is greater than 1000 feet but this is not a serious limi¬ 

tation for our consideration. 

Initially, the two bubbles are assumed to be spherical. Their 

radius can be determined from Equation (2.15). Just after detonation 

the dimensionless kinetic energy in the water T is very small. 

Further, the dimensionless volume V is also small. Equation (2.15) 

becomes 

k vj ^=1 

(2.19) 
or 

V„ = k 1/(Y-l) 

The dimensionless initial radius, A0, may thus be obtained from V0as 

A0 = (k1/(Y-1))1/3 (2.20) 

7 A. B. Arons, "Secondary Pressure Pulses Due to Gas Globe Oscilla¬ 
tions in Underwater Explosions II. Selection of Adiabatic Parameters 
in the Theory of Oscillation," Journal of the Acoustical Society of 
America, 20, (19^8). Reprinted in Underwater Explosion Research, 
Volume II, The Gas Globe, Office of Naval Research, (1950) 

11 
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which is analogous to a similar expression in the classic incompress¬ 

ible theory for a single bubble*. 

The time, t0, at which the bubbles are spherical is taken as 

to=0, i.e., the instant of detonation. Strictly speaking, any incom¬ 

pressible representation of explosion phenomena is not valid for 

times very shortly after detonation. For these short times, 

phenomena which are due to the compressibility of the surrounding 

water (i.e., the shock wave formation) are dominant. An incompress¬ 

ible theory cannot possibly be in accord with reality at these times. 

It is not surprising then that the radius given by Equation (2.20) 

does not correspond to the radius of the explosive charge; Equation 

(2.20) gives a radius about m too large. When the values for 

A° and k ^om Equations (2.18) and (2.20) are used to represent a 

single explosion bubble, the results for the maximum radius and 

period agree with experimental measurements to within a few percent. 

These calculations also yield histories of the bubble radius and the 

pressure in the water which agree favorably with experimental re¬ 

cords. There is every reason to believe these initial conditions 

are also applicable to explosion bubbles from two separated charges. 

2,5 The Computer Program. The developments discussed in Sections 

2.2, 2.3, and 2.4 were written into a computer code which calculates 

the expansion of two non-spherical bubbles. The time integrations 

for the coordinates of the bubble interface. Equation (2.6), were 

done numerically. Several interface particle trajectories must be 

calculated so that at each time step the entire interface shape can 

be determined by interpolation. The bubbles are axisymmetric about 

-- 
See Equation (13) of reference 7. 

12 
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the x-axis of Figure 1. This means that the particle trajectories 

in only one plane containing the axis of symmetry (e.g., the x - y 

plane of Figure .1) need be considered. The interpolations were done 

using sections generated by rotation of segments of parabolas in the 

x - y plane about the x-axis near the y-axis. The directrix of the 

parabolas selected was along the y-axis. Near the x-axis and the 

median plane (i.e., the plane equidistant from both charges) the 

directrix was taken along the x-axis. Thus, at each time step the 

volume of the bubbles and the surface integration of Equation (2.17) 

is then used to find Q(t) at this time. This value of Q is then 

used in the quadratures of Equation (2.6) to find the new position 

of interface particles, etc. The time integrations were made using 

the FN0L3 computer program described In a report by Ferguson and 

Orlow®. 

2*6 Description of the MACYL Calculations. The MACYL computer pro- 
g 

gram is a technique for solving incompressible, viscous, two- 

dimensional, axially symmetric, initial-value fluid flow problems 

involving zero, one, or two free surfaces. The incompressible 

Navier-Stokes equations and the continuity equation. Equation (2.21), 

are solved by finite difference methods. 

r)V 
+ (V.grad)V ^ grad p + V 

Ü 
(2.21) 

R. E. Ferguson and T. A. Orlow, "FN0L3, A Computer Program to 
Solve Ordinary Differential Equations," NOLTR 71-2, (1971) 

M ll f“ VenCh’ F: H' Harlow> J- p- Shannon, B. J. Daly, The MAC 
Method—A Computing Technique for Solving Viscous, Incompressible, 
Transient Fluid-Flow Problems Involving Free Surfaces," Los Alamos 
Scientific Laboratory, LA-3425, (1966) 

13 
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+ p div V + Vgrad p = 0 

where n is the dynamic viscosity. For details of the computing 

method see references 9 and 10. A sample of the MACYL output is 

shown in Figure 2. This figure shows the shape at the maximum 

expansion of a single bubble. The slight deviation from the 

spherical shape seen is due to the effect of gravity. The "scatter" 

of the points is typical of such calculations. It has been improved 

considerably since these calculations were made. 

3. NUMERICAL CALCULATIONS 

3.1 Present Method. Calculations were made assuming two 3^7-lb 

TNT charges with separations of 10, 30, and 100 ft exploding in a 

depth of 70 ft. The shapes of the interacting bubbles are illus¬ 

trated In Figures 3j and 5. Typically, 20 interface particle 

paths were considered. The figures show the trajectories of these 

particles. This number of interface paths gives agreement within 

1% for the maximum radius and the half period of spherical bubbles. 

To obtain this check, the bubble pulsation was calculated by means 

of the classical theory (Incompressible fluid) for charge weights 

of 347-lb TNT and 694-lb TNT. 

The Initial conditions and the important magnitudes associated 

with these calculations were as follows: 

-1-0 J. W. Pritchett, "MACYL—A Two-Dimensional Cylindrical Coordinate 
Incompressible Hydrodynamic Code," Naval Radiological Defense Labora¬ 
tory USNRDL-LR-67-97, (1967) 

14 
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Depth of Explosion 

Isentropic Exponent 

Bubble Parameter 

Bubble Energy- 

Length Scale Factor 

W = 3 ^ 7-lb TNT 

W = 694-lb TNT 

Time Scale Factor 

W = 347-lb TNT 

W = 694-lb TNT 

Initial Radius 

Dimensionless 

W = 347-lb TNT 

W = 694-lb TNT 

Initial Pressure 

W = 347-lb TNT 

W = 694-lb TNT 
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■Y-l 

C = 

= 70 ft 

= 1.2415 

= 0.0552 Z 

= O.I6906 

= 490 cal/gr 

= I.7289 (eW/Z)1/3 

= 20.433 ft 

= 25.744 ft 

O.37331 (eW)1/3Z"5/6 

O.4347 sec 

0.5477 sec 

A0/L 

A0 

A0 

P (An ) 

= k1^3^“1^ = O.O8599 

= I.757O ft 

= 2.2137 ft 

= 17,426.6 psi 

Single Spherical Charge: 

Maximum Radius 

19.096 ft 

24.06 ft 

Half Period* 

O.327 sec 

0.412 sec 

3-2 MACYL Calculations. The results of calculations using the 

method in this report were compared with the calculations using the 

MACYL Code. Figure 6 Illustrates the agreement between these two 

techniques. This figure is drawn for a charge separation of 10 ft 

and for two 347-lb TNT charges. The method starts with the same 

T 
Half period is the time of the bubble maximum. 

15 
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initial conditions as those used in our calculations. Agreement 

between the two methods for the expansion phase of the double 

bubble is seen to be within 10$. 

4. DAMAGE EFFECTIVENESS 

4.1 Bubble Parameters Which Cause the Whipping of Ships. It was 

originally believed that a double charge arrangement would produce 

greater damage to naval targets than a single charge of equal total 

weight. The analysis presented here has shown that this is not the 

case. In this paragraph, we present a summary of the considerations 

which originally led to this assumption. Subsequently, in 

paragraph 4.3, it will be shown that the results of the present 

study on the behavior of double bubbles invalidates the basis for 

this assumption. 

Since we are dealing with bubble phenomena, an underbottom 

attack against surface ships is considered, as this is the most 

Important type of damage done by the underwater explosion bubble. 

In this case, the explosion Is set off at some distance below the 

bottom of the ship. The expanding bubble excites violent trans¬ 

verse flexural vibrations of the entire body of the ship, known 

as whipping. These vibrations almost always occur in the vertical 

plane, i.e., they are up-and-down motions. 

The ship may be visualized as a floating beam (a girder) of 

varying cross section. The dangerous effects of whipping arise from 

the different acceleration of the sections of the ship. The section 

above the explosion is accelerated upward most strongly. The 

acceleration decreases with increasing longitudinal distance from 
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the attacked section. This uneven acceleration produces a bending 

11 of the ship and induces strong flexural oscillations11 which can 

severely impair the girder strength of the ship and may even sever 

the ship into two parts. 

An explosion beneath the ship produces rapid motions of the 

surrounding water. This flow exerts hydrodynamic forces on the 

ship which are proportional to the average vertical acceleration 

û of the water displaced by the ship. These forces produce an 

upward acceleration ÿ of the ship as well as elastic or plastic 

restraining forces in its structure. 

Consider sections of the ship, each bounded by planes perpendi 

cular to the ship's axis. For the i-th section we have: 

("di + "Vi) ^ - (»i * O h-Fi- mi + raWi (4.1) 

where 

m 

Ù-l = average upward acceleration of the water which, in the 

absence of the ship, would occupy the space displaced 

by the i-th section 

ÿi = bodily upward acceleration of the i-th section 

pi = total of the restraining forces acting on both faces of 

the i-th section 

lDi = mass of water displaced by the i-th section 

mWi = added mass of the i-th section = mass of water which 

appears to move with the section mWi dePends on the 

11 
A. N. Hicks, "The Elastic Theory of the Explosion Induced Whipping 

Motion of Ships and Submarines" NCRE/R.532, (1968) 
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underwater shape of the section 

mi = actual mass of the i-th section = mass of hull, decks, 

bulkheads, stiffeners, machinery, etc. situated In the 

section. 

Note that commonly 

mDi ^ mi » (4.2) 

whereas according to Archimedes' principle 

N N 

2 mDi = X mi ’ (4.3) 
i=l 1=1 

where N is the total number of sections. 

The average upward acceleration Û due to the expansion of a 

spherical bubble of radius A(t) is given by 

^ ' rr ár H}. (4.-0 
ri 

where 

dj[ = depth of bubble center below the center of mDi 

" slant distance between these centers . 

Equation (4.4) holds for the case where the bubble center is on 

vertical plane of symmetry. The general case can be readily written 

down but is not of interest here. 

The magnitude A2A is the source strength Q(t) discussed in 

section 2 of this paper. It may thus appear that Q(t), or specifi¬ 

cally Q(t), is the physical magnitude responsible for the excitation 
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of whipping. Here further details of the whipping process must be 

considered before drawing a conclusion. 

Equation (4.4) for the upward acceleration u is based pn the 

relations of incompressible fluid motion. As stated in paragraph 2.3 

the assumption of an incompressible medium is adequate for the 

description bubble phenomena except for the early times following 

the Instant of detonation. This exception holds for the whipping 

process to an even greater degree. At these early times, the target 

is subjected to the impact of the shockwave and Its afterflow. At 

this stage Equations (4.1) and (4.4) lose their physical meaning 

and hence their validity. 

The shockwave produces elastic or plastic deflections of the 

hull of the ship. The energy thus transmitted to the plating is 

either expended in the process of hull rupture or, If no rupture 

occurs, Is transmitted to the side of the hull and the transverse 

bulkheads. Equalisation of the upward momentum imparted by the 

shockwave into the members of the ship’s structure ultimately yields 

upward motions of the sections of the ship that are analogous to 

whipping motions. These motions are enhanced by the afterflow of 

the shockwave, i.e., the flow caused by the expanding bubble. An 

analytic description of these early processes is difficult and has 

not yet been accomplished. 

Whipping theory utilizes an approximation for these early phases 

which, judging from the good agreement between experimental and 

calculated results, seems to describe the actual phenomena very well. 

It is assumed that initially a velocity is imparted to the ship that 

corresponds to the maximum rate of the volume expansion of the bubble, 
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yi(t=o) - -2.1 i Un) 
1 + mWi r13 \ ) 

whereby 

y1(t=0) = 0. (4.6) 

Here y^t) is the deflection of the axis of the ship at the 

center of the i-th section. The magnitude H max is the maximum 
source strength Q 

max 

It appears from Equation (4.5) that every section of the ship 

is decelerated for t > 0. This is because yJ(t=0) and Q are 
i max 

maximum values and, hence ÿ^t) and Q(t) must subsequently decrease. 

For the same reason ÿ± in Equation (4.1) as well as Q are negative 

for t > 0. It is thus seen that the basic equation of the whipping 

theory (4.1) considers the retardation of the whipping velocity from 

its initial "kick-off velocity", yi(t=0). Although this retardation 

is important for details of the whipping process, it appears that 

Snax is the Par“ameter of predominant importance for whipping damage. 

To summarize, the maximum source strength Qmax is the primary 

measure of whipping damage which an expanding explosion bubble can 

inflict to a ship. The negative values of Q that occur after Q 
max 

are parameters of secondary significance. The smaller |q|, the less 

decelerated is the whipping motion and the larger is the damage 

under otherwise equivalent conditions. 

4.2 Damage Potential of Double Bubbles. Figure 7 illustrates the 

superposition of the velocities produced by the expansion of two 

separate bubbles. As stated above, the velocity components from 
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each bubble are proportional to the source strength of each bubble 

~ AjAjJ J = i»2* To obtain a simple representation of Q we set 

A(t) = JW1/3Z-1/3F1(t) (4.6) 

and 

whence 

and 

t = tKW1/3Z-5/6 

A(t) = I Z1/2F2(t), 

Azk = |3 w2/3z"1/6f (t). 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Here 

J = Radius Coefficient 

K = Period Coefficient 

W = Charge Weight 

Z = Hydrostatic Head. 

The functions F1 .... F^ are virtually independent of charge weight, 

depth, or the type of the explosive, but depend on the dimensionless 

time i only. The trend of these functions is not important for our 

study. 

According to Figure 7, the resultant upward velocity u from 

two separated bubbles generated by the simultaneous explosion of 

charges having the weights W1 and W2 is 
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u = J3 sine z-l/6 

K R2 (Tl)Wl2/3 + (T 2) W, 
2/3 

(^).11) 

or for equal charge weights with W = W1 = W2 and with R = D/sin0 

u - f siaii z-vV(t)w2/3 , 2 
D 

(it.11a) 

The magnitudes 0, D, and R are shown in Figure 7. If the two charges 

are combined into one single charge, we obtain 

u = £V1/6 F3(t) 
K (vw2) 2/3, 7 D‘ (4.12) 

or if and W2 are equal 

u = |3 Z“1/6F3(t) W2/3 22/3 / D2 (4.12a) 

Hence the resultant velocity u from two equal separated bubbles is 

sin30x2/2 ' ^ times larger than that from a lumped charge of equal 

total weight measured at the same distance. This corresponds to a 

26¾ increase if 0 is close to 90°. 

For the acceleration u, one finds 

Û = ¿1 sinO z2/3 

K2 R2 (Tl)wl1/3 + p4 ('s) w, 
1/3 

(4.13) 

or for equal charge weights 
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strength for a non-interacting bubble (infinite separation). Since 

the charge radius of a B^T-lb charge is roughly one foot, the curves 

may also be used for other charge weights by expressing the separa¬ 

tion in charge radii. More accurately, the curves hold for 10.6, 

SI.?, and 105.7 TNT charge radii. 

Figure 8 illustrates that the interaction of the two bubbles 

reduces the maximum source strength, but increases the half period. 

Even at the large separation of 100 ft, a substantial interaction Is 

noticeable. For a 10-ft separation, the Interaction has increased so 

much that the maximum source strength is reduced to that of a lumped 

charge, shown by the dashed curve In Figure 8. 

The dashed curve in Figure 8 Is obtained as follows: The solid 

curves show the source strength Q for one of the two interacting 

bubbles. Being symmetric the other bubble produces the same Q, so 

that the total strength is 2Q. If the separation B is reduced to 

zero a lumped charge of 6g4-lb TNT is obtained. Its total source 

strength is 2Q in our notation. To be consistent with the curves of 

Figure 8, we have shown |q(694 lb) for the source strength of the 

lumped charge. 

The source strength Q Is proportional to the square of the 

length scale, which In turn is proportional to the cube root of the 

bubble energy or the charge weight. This is seen from the definition 

of the dimensionless source strength Q given in Equation (2.14c). 

(Note that the time scale factor C is proportional to the length 

scale factor L. Hence, C/L which occurs in the definition of Q is 

independent of the charge weight.) It follows that 
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This effect can only be accounted for by means of whipping 

calculations. Such a study has been completed at the Naval Ordnance 

Laboratory and it has confirmed the conclusion of the present study 

that no advantages can be expected from multiple charges in doing 

whipping damage to ships. These calculations will be described in a 

forthcoming paper. 

5. CONCLUSIONS 

We have demonstrated that potential flow theory using a single 

stationary point source of variable strength is sufficient for the 

calculation of the shape and the properties of two interacting 

bubbles during the expansion phase. The results of our simple 

calculations agree within 10% with those obtained by finite differ¬ 

ence methods using the MACYL computer technique. The justification 

for assuming a stationary (not translating) point source is given by 

the results of our previous study3, which show that the centers of 

spherical bubbles expanding in unison remain essentially stationary. 

Upon contraction (not considered here) the centers move rapidly 

toward each other. 

The maximum strength of the source representing the expanding 

bubble is a measure for the degree of whipping damage done by the 

bubble. 

The interaction between two expanding bubbles reduces the 

maximum source strength even for large separations of bubble centers. 

As a consequence, double explosions offer no advantages in bubble 

damage effectiveness against ships. 
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R AND Z IN FEET 

FIG. 2 SAMPLE OUTPUT OF A CALCULATION MADE USING THE MACYL COMPUTER TECHNIQUE 
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POTENTIAL SOLUTION 

MACYL CODE 

FIG. 6 COMPARISON OF CALCULATIONS MADE WITH POTENTIAL FLOW THEORY 

WITH CALCULATIONS BY THE MACYL CODE 

The Curves Show One Quadrant Of The Bubble Expansion Of Two Simulta¬ 

neously Initiated 347-lb TNT Charges Separated By 10 Feet. The Burst 

Depth Is 70 Feet. The Parameter Is The Time In Seconds. The Maximum 

Expansion Is Reached At A Time Of 0. 405 Seconds. 
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CHARGE A CHARGE B 

FIG. 7 EXPLOSION GEOMETRY BELOW TARGET 
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FIG. 8 SOURCE STRENGTH OF TWO INTERACTING BUBBLES AS A FUNCTION OF TIME 

The Soiid Curves Give The Source Strength Of One Of The Two Interacting 
Bubbles. The Dashed Curve Shows The Corresponding Magnitude For A 
Lumped Charge. The Maximum Source Strength Is Considered A Measure Of 
Damage Effectiveness For Whipping. The Half Period Is The Time at Which 
The Source Strength Vanishes. The Graph Shows That The Maximum Source 
Strength Decreases With Decreasing Charge Separation. For A 10-Ft 
Separation It Assumes The Value Corresponding To A Lumped Charge. 

35 


