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ABSTRACT

Balance laws for constituents of a mixture

of a finite number of granular materials are given.

It is shown that the resulting balance laws for the

mixture as whole generalize those previously

given for a single granular material.
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ON THE BALANCE EQUATIONS FOR A MIXTURE OF GRANULAR MATERIALS

S. L. Passman

Introductiow.

The theory of motion of a granular material in three dimenpsions has

been given by Goodman and Cowin [2]. It would be interesting, with certain

applications in mind, to extend this theory to the case of an arbitrary finite

r number of different 07anular maierials mixed with an arbitrary finite number of

ordinary continua (in particular, fluids). As a preliminary to this end, I pre-

sent oalance laws for a mixture of an. arbitrary finite number of granular mate -

rials.

1. Preliminaries

The number of symbols and tChe 'xcmplexlty of the calculations involved

in the theory presented here is so great that -any attempt to present either the

t axiomatic foundations or the physical explanations and mctivations of the theory

would enlarge the work greatly. I therefore refer the reader to the standard

-rks on mixur hor n aulr'terials! A list of symbols and4 a short

se-f rreliminaries and standard eq.uations is Lwe todr omktewr

~'~~al vself -cor-tai nod.

sequence of bodies a, 7 'a 2o.. 3 xrieed ie

reference configuration is chosen fot eacti body. ;ind in this configuration X

is the place occupied by a particle of .'hc- mctioh, of ? is the smooth
ai

mapping

ca C

in particular, I follow Truesdell [1], and Goodmai., ndCwin [Zl. ____
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of 8 onto a region of three-dimensional Euclidean space e. In generail a

backward prime is used to denote a time derivative with held fixed. Thus
0

the velocity and acceleration of constituent a

is= at X (X  t)=  (2 ,Pt) ,  0.1.z)
o O, lt

.. X t) = 2 1 t),

where the second forms follow by the assumed smoothness of (1. 1). Often the

term "peculiar " will be used in place of "_of constituent a".

Thus 2 is the peculiar velocity of the o-th constituent. It is assumed that,
a

for each t , there is a region of e each point of which is occupied simulta -

neously by particles of each F. Henceforth, each formula written will be
a

assumed to hold in subregions or at pointt of this region.

Assume that each 8 has a mass, which is a measure on , abso-

lutely continuous with respect to volume on each configuration of R. Then a

mass density p exists.
a

Other quantities defined on 8 are:

body force,
0

s , body heating ,0

A. stress

q , heat flux,

internal energy ,

k eqitilibtated inertia (1.4)

v , volume dci'tribution
0
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Ir
, equilibrated stress

equilibrated body force,

g , intrinsic body force,
* a

, equilibrated inertial force

K , inertial body force

Growth terms are
+
c , growth of mass

m ,growth of linear momentum,

f, growth of angular mom,-ntum

+
e , growth of energy,

v , growth of equilibiated force,
a

{ growth of equilibrated inertia

Q

Here, .cwver-case lightface symbols denote scalars, lower-case bold-

face symbols denote vectors, (with the exception of x), and upper-case bold-

face synbols denote (.econd-order) tensors, thought of as linear transforma-

tions on a vector space,

The mixture ma, also be thought of as a single body B. Corres-

ponding to each quantity in (1. 4) fot F3 , there is a similarly named and sym-Q

bolized quantity for the composite body B; e.g. body force b , body

heating s.

Tr,esdell [1, 3], lays down three "metaphysical principles" relating

/2 to F. Although it has been pointed out that there is some ambiguity in the

-13 -a
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interpretation of these principles, I quote them, then proceed to show that they

are satisfied by this theory. I have some confidence that, for a particular

theory at least, they may be stated as axioms to be satisfied by the balance

laws.

1. All properties of the mixture must be mathematical consequences

of properties of the constituents.

So as to describe the motion of a constituent, we may in imagi-

nation isolate it from the rest of the mixture, provyIed we allow properly for

the actions of the other constituents upon it.

3. The motion of the mixture is governed by the same equations as is

asingle bo~yd

Here the "Eingle body" considered in the third principle is a slight

generalization of the "granular material" cc iside. ed by Goodman and Cowin

The total mass density p for the 'body 8 is defined as the sum of the

peculiar densities

P 2p , (1.6)

where the symbol 2 , here and henceforth is an abbreviation for

(1.7)

The concentration of the a -th constituent is defined by

pac -- . (I.8)

tThe principles are quoted from Truesdell fi, p. 831, wh-re they are subse-

quently motivated. It may be noted that they are sor:ev'hat p-.ralIle. in intent
to the assertton of some molecular theorists that the properties of material
bodies are cictermined by the p-operties of their molecu1?, 3.
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Let 2 be the position vector from some fixed point In e to .

Let , be vectors, let A D) denote their tensor product, and let A^

denote their outer productFD - 1 D. (19

The densities of linear momentum and angular momentum, as well as

equilibrated inertia and volume distribution momentum for B are defined by

pk -Px , (1.10)

and

pk =Zpk, (1.1l)
00

W1 PI, 2: a v

Here j is interpreted as velocity in S.

Z. Balance Equations

I postulate the following set of balance laws for each constituent of

the mixture, for each part I of 8 for all time t:

f pc dv=fpdv)"d (2.1)
aU

f g pidv p('.dv)( .. o#dA " -fp- dv ,

f p( t4+ g Z')dv(f <p~ dv)- jp AIfl dA- fB p bdv , (2.3)

tTher are certain refinements which I eschew in order to keep this work

relatively reasonable in length. E. g. I assume the existence of a stress
tensor rather than proving it by the classical argument of Cauchy.

#1390 -5-
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fp e fdv ( +)- + nk v-f)dv).

-#w xdA j n dA -4 ' 0 dA

U

(s + I .~iIdv, (2.4)

Her IF dv (ente iptqto over d-.he voum of It +rrr prt of2.5)n

ace

fp pdv (f g k dv)' -ft. B dA - f~ K dv , Z.,
s a a(t

II
Here f dv denotes integration over the volume of an arbitrary part of 8 and

dA denotes integratian over its surface with unit outward normal n. The

first four of these equations respectively express growth of mass, llr.ear momen-

tum, angular momentum and energy for each component ot the mixture and,

except for three terms in the equation for energy, are of standard form. The

fifth equation expresses growth of eqi.librated force. An early explicit recogni-

tion of a statement of this nature as a separate balance law 's that of Ericksen

[4]. Since that recognition, balance laws of this type have been widely

accepted in the theory of continua with directors. The first explicit recognition

of an equation of the form (2. 6) as a separate balance law is apparently due to

Goodman and Cowin [2].

A standard argument applied to (Z. 1) y!it, '

pc =p + div t p + div (p ) (2.7)
Co U o

the local form of the balance of mass.

let ,I, be a scalar, rector, or te'nsor d.ii: -d at points in 8. By a

standard method, it may ', rhown that

-6- #1390
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(f p 4dvr fr - +p k)dv 8

If kI is related to -I, by
a

P* PR(2.9)

then again by a standard method it may be shown that

P ~t : -div Z pqj , P- 4p -

aG Q( a a a

where u is the diffusion velocity of the a -th constituent
U

o c

By (Z. 10), (1. 10) and (1. 11) become

p% = Zp; - divAOkU + %pk, (z.12)

-GO GGo GO &
A x"

a0aa0 a do0 ad d

Using the lemmas (Z. 8) and (Z. 10), and noinq that each of (Z. 2)-(.6)

,h," for arbitrary parts of P, I obtain the local forms
a

P = P + * p ; - divT- pb , (2.131
a aa a a a aa

+ IT T _ 2^p b (Z.14)

t

tHere "div" denotes divergence with respect to 4. The divergence of a vector
as the trace of its gradient. Gcadient is denoted by "grad', trace by "r".

#1390
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4. % ( %Z. 4 k 4

dicv a-v div b b grad v

-p (s+ x. b + vI, (2. 5~

+ + kcdv3cIc) 216)

At =p K+ pck- div k- pK.(.7

These local equations may be reduced So simpler fo-rms by substitution, yielding

+
pj P =p4c + :div -(18

++i T(2 Qpki P x+=; -

T

+ +. + 4
+c YvX + v v(t (. (2£t

++

P X =pk p c kd1v k-p K (2.22

Equations 1.2.7) and (2. 16)-(2. 22) appear to satisfy TruesdEl~s second mets

p.hysical prin~ciple.



assume that mass, linear momentum, angular momentum, energy,

equilibrated force, and equilibrated inertia are each conserved for the mixture,

that is

zc =0,

0

+

Zk=Q

(2.23)

2:e =0,

Z v 0

0~
* Z .= 0.

I show that, through the use of (2. 23), (2.7) and (2.13)-(2. 17) satisfy Truesdell's

third metaphysical principle .

By a standard argument, (1.6) and (2.7), (2. 23)1 becomes

+ p div 0. (2. 24)

Define

Q 00 0tC

a as a ([%T a b ; -,{uz k ( - )

pt 2; pQ b (2.25
13 = - 9pk ,

C 0000%

, } = : - >:pkg

pb- : pb , (2.25)

- #1390 -9 -



ps Mp s 4. -1p [b. u + I ('V- ), (2. 25)
~.Q O C CCcont .

2, 2

Pg zpg

pK ZK .

These definitions, along with (1. 10) and (1. 11) appear to satisfy Truesdell's

first metaphysical principle.

Summing (2.18) over all constituents, noting (2. 23) 2 (225 115

yields, by (1.6), (1 I'~ and (Z. l2)I

p8 =pb +divT (2.2Z6)

Summing (2. 19) over all constituents, noting (2. 23) 3 and (2. 25) 1 yields

T T (2.27)

Equations (2. 24), (2. 26), and (2. 27) are re spec.ively the usual localI forms of

balance of mass, linear momentum, and moment of momentum for a single body.

- It is convenient to leave (2. 20) until (2, 21) and (2. 22) are considered.

Summing (Z. 22) over all constituents and noting (Z. 23)6 yields

* +
p k + Epc k dv c p KO0 (2. 28)

By (2. 12) this becomes

p i pk3 i kZ (2.29)

By (2. 25)4 1 then

p k-div~- p K=0. (2. 30)

-10- # 1390



In the particular case when k is solenoidal and K 0 , (Z. 30) reduces to

] =0. (Z. 31)

This corresponds to the local equation for the balance of equilibrated inertia

as given by Goodman and Cowin [Z, equation (4.9)].

r Summing (2. 16) over all constituents and noting (Z. 23)5 yields

Z p k+ 2p '+p -div -Zp I+q)0 (Z. 3)
a ~ aG a 0a aUca

By (Z. )3 , (Z. 32) becomes

p k 'V + pg + div 2 p k ' u -div h -g p(I +g) 0 ,(2.33)

which, by (2. 25) 3 8,9 is

pk + pk =divb + p(U + g). (2.33)

This may also be written as

pk ;+ (divk+pK) =divb + p(I + g), (2.34)

where (2. 30) has been used. In the case where k is solenoidal and K =0 ,

(Z. 34) becomes

pk D =divb +p(I + g). (Z. 35)

This corresponds to the local equation for the balance of equilibrated force as

given by Goodman and Cowin [2, equation (4. 10)] .

The proof that (Z. 20) and (Z. 23)4 yield the usual equation of balance

of energy, although somewhat repetitive of the derivation for the non-polar case,

is given in some detail here in order to emphasize the interaction of the new

* terms in the total internal energy, heat supply, and heat flux with the equi-

librated stress and equilibrated inertia.
J

#_ 1390 -11-



Note that by (I. 6), (1. 10) and (2. 11)

p mou zp gnD. -p . (2. 36)
a Q0 0 a0 a

As a corollary

z '2 . (2.37)

Consider the last term In (2. 25) 7

Ep k(v - )2 = Zpk V - Z(.Epkv) + (Zpk) . (2. 38)

By (1. l1)~ 2' this becomes

Egk(V - Z lkvz pk (239

Substituting (2. 37) and (2. 39) into (Z. 25) 7 yields

+ 2 X1k (2.40)

= The result (2. 40) has the form (2. 9), and the lemma (2. 10) gives

.22 1'2p(~4-~~+ i~ d+kv Z= ~(c + + k V +

1 2
+ d Iv p(+ x + kv V'

Note that

TT
*div + tr (I grad )div~ I I (2.42)

0~ ~ a 00

By (2. 11) and (2. Z5)1

Xdiv TT' = div + d iv

divX ExTI + div. T + i~ (~ (2.43)

Hcwever, by (2. 36)

X, p6j D 3) p ;s (p(2. 44)

-12- #1390



so that (Z. 43) becomes

-. div + Ztr(TT gradc) =div -;.T u + A div T
_0( O, 0 0 G O

~T
+ tr(I gradj) + d iv Zp(j(& - div (p ; . (Z.45)

By (2. 25)z

t T2;q =q -U T +I(C,- )-p(E+ u - k,( -IV)u]. (2.46)
-' " a a 0 oo a 0 0a

Equations (1. 6), (1. 10) and (2. 11) yield

2~uU=p 2~ nx9Xx 2.px +
2 1g zpxc (2.47)

Also, by (2. 25)7 and (Z. 37)

.PC 2;: p, is - Ep C
al a1 Ct { a 0Q a a

o(II z 2( {Z-

N9 = ~ -(p - ku -+ Npk -k v)

0 ~ Q00 co Q

2i x - RP ) k(v - ) (2.48)

-- o.G aY a3" 0 1

Expanding the last term in Q". 48) and using (1.1111 2 gives

a U 2

By (2. 25) 3

Zikv N ~.(. 50)

By (2. 40%

9 00 a a I 2

Substituting (2. 47) (2. 51) no (Z. 46) gives

~ T - %J+ b # 1k~
0 i - Io *P

13 -13-



By (Z. 25)5, 8 ' (2- Z5) 6 becomes

ps =ps - b.2 +'x. p2S - !p/v+,pt. (2.53)

Qo a 0Q0

The equation (2. 20) is now reduced by summing over all constituents.

noting (2. 23)4 , and substituting values obtained from (2. 41). (2. 45), (2. 52)

and (2. 53). The resulting equation is

(r! +- + 2 + k )-tr( T gra d )

-div - div , - p (s f - + , I ) =0. (2. 54)

Substituting (Z. 26) and (2. 32) into (Z. 54) yields

p = Tgradk)+b• grad, + p 2  + pg +divq + ps. (2.55)

This is the equation of balance of energy for the mixture. In -he case when

is solenoidal and K = 0 , by (Z. 341) it becomes

Tp} =tr ( grad )+ h grad i'+ pg + div q + ps, (2.56)

which agrees with the energy equation of Goodman and Cowin [2, equation

(4. 11)]. In the case = 0 , it furter reduces to the classical equetion for

the balance of energy.

-14- 13 4-



3. The Entropy Inequality

In addition to the balance laws analyzed in the preceding section,I

introduce a postulate of growth of entropy, analogous to the "second law of[ thermodynamics-. '4 assuine, for each constituent the existence of a coldness

~,assumed to be strictly- positive and interpreted as the reciprocal of the

absolute temiperature, an entropy Y) , and an entropy growth tj.I assume a

balance law for each constituent of the following form:

fpi dv =(f p ndv) - -i dA f , s dv. (3 . 1) t
a a 0

By (2.8) the local form of this equation is

P 1=P1 C1 4- dv 2 32
a a0 a 0a 0~ a 0C0a

I introduce the axiom of dissipation

4
> >0. (3.3)

This inequality is analogous to the conservation laws (2. 23).

I define the total entropy T) entropy flux 6 , and entropy supply

multiplied by the coldness for the mixture by

S ( q pr Yj M (3.6)

,P S0 t 3.71
00 a

- -I proceed to show that the entropy inaquaity for the mixture is similar in form

to the entropy inequality for a single continuum of the type considered.

tGoodman and Cowin [2] assume, for a single consfituetl, a similar inequality
but with a mno!7 gurneral form for thei entropy "flux" (the surface integral in (3.!)

S They than proceed to show that, within a certain constitutivv - entropy
flux has the form assumed in (13. 1). As osuit~~ thait raure, if m--Ade herc.
would make some of the ca!culatioiis in this sectiorn t1rivia!.

ishould be noted that this equation does not uniquely specify ~r r ,I
#1390 -



Equation (3. 5) is of the form (Z. 9). Therefore by (Z. 10)

4-

a a 000 a

By (3. 2) this becomes

P ~~ i v qgi -q ~X p s (3

or ny (3.6) and (3. 7)

P Y- QI p (Tl "p o ".€ (3. ;01

The dissipation axiom (3. 3) then yields

p, > div t, -r p.5 I . (3. 11)

This equation is the same as that of Gocximan and Cowin [2, equation (4. 12)1.

It is often convenient to state the axiom of dissipation in another form,

called ,he "reduced dissipation inequality. " I substitute (2. 20) into (3. Z1,

obtauning

p- c a + - grad-c

: P p r Z R5p P a

4- P qg. + } 2rK -div k p ol
ao a a a a

S-tr( grad x) - g rad v] (3.12)

Define the Helm.oltz free energy

. . (3. 13)

so thpt

0 Q

! -lh - ui39.0



qutions (3. 13) and (3. 14), when substituted into (.12), yield

P -qI
+p (- rZ ;S )

+ aa

- grad + tr(X grad x)+~ ga
a ~a a a

-4j (p K -divi -p.& 4L + vj..5
a a CI a a a 0

Summing (3. 15) over al) constituents andi taking note of (3. 3), 1 obtain the

reduced dissipation ineat'ality'

e -- c(i-x
a a a a at a a

a a a 0

Zq rd+ ~r~ grad )+ Z ) grad'
a a a a a G a

-~ ~[v (p K div P -p - pg) O (316
fa a Goa a a c (3.16

This reduces to the result ,f. Goodmar fud Cowin [2, equation (4. 15)) in the

case of one consti'tuent.
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