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Balance laws for constituents of a mixture
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ON THE BALANCE EQUATIONS FOR A MIXTURE OF GRANULAR MATERIALS
S. L. Passman

Introductior.

The theory‘of motion of @ granular material in three dimensions has
been given by Goodmar:. and Cowin [2]. It would be interesting, with certain
applications in mind, ito extend this theory to the case of an arbitrary finite
number of different qranular maicrials mixed with an arbitrary finite number of
ordinary continua (in particular, fluids). As a preliminary tc this end, I pre-
sent oalance laws for a mixture of ar arbitrary finite number of granular mate-
rials,

1. Preliminaries

The number of symbols and the complexity of the calculations involved
in the theory presented here is so great that any attempt to present either the
axiomatic foundstions or the physical explanations and mctivatiens of the theory
would enlarge the work greatly. I therefore refer the reader 1o the standard
worke on mixiure theory and ¢ anular materials.T A list of symbols and a short
set of rreliminaries and standard equations is given ir order to make the work
novtially self-contained.

o8 =13:,2,...,0 i3 considered. A fixed

A sequence of bodies a

reference configuration is chosen for 2acy body. And in this coniiguration X
[}

is the place occupied by a particle of fg . The mction of *§ is the smooth

mapping

b3 =EQ$ )t)s te "‘«'-mg. (1.1}
g a

-

'in particulas, I follow Truesdell [1], and Goodma:, and Cowin [2}.

Swonsored by the United States Army under Contract ifn, DA-31-124 ARO.D 462,
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of @ onto a regjon of three-dimensional Euclidean space €., In general a

backward prime is used to denote a time derivative with X held fixed. Thus

(1
the velocity and acceleration of constituent a
K=23, 20 ,0=%(x,1, (L.2)
¢ 6 a
w2 -
£=08 %&,t)=x(x,1,
o e a ¢

where the second forms follow by the assumed smoothness of (1.1). Qften the
term "peculiar " will be used in place of * of constituent a".
Thus ;_.c is the peculiar velocity of the ¢-th constituent, It is assumed that,
for ea:h t , there is a region of € each point of which is occupied simulta-

neously by particles of each aﬁ. Henceforth, each formula written will be

assumed to hold in subregions or at points of this region.

Assume that each § has a mass, which is a measure on @ , abs:-
lutely continuous with respect to volume on each configuration of 69 . Then a

mass density p exists,
a

Other quantities defined on &G ara:

b , body force,
o

, body heating ,

, stress ,

[VR -1

heat flux,

w L

. internal energy ,

= > ul < L]

, equiiiinated inertia . (1. 4)

, volume di=tribution

o<
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, equilibrated stress ,

, equilibrated body force,

P~ o

, intrinsic body force,

equilibrated inertial force ,

o) e ix Pa

, inertial body force .
Growth terms are

, growth of mass ,

, growth of linear momentumn,

215+ 20+

growth of angular mom-ntum ,

, growth of energy ,

growth of equilibiated force,

e+ PO ng"'

X

growth of equilibrated inertia .

Here, lcwer-case lightface symbols denote scalars, lewer-case bold-
face symbols denote vectors, (with the exception of x), and upper-case bold-
face synhols depote {.econd-order) tensors, thought of as linear transforma-
tions on a vector space,

The mixture ma s also be thought of as a single body B . Corres-
ponding to ach quantity in (1. 4) for 55 , there is a similarly named and sym-
bolized quantity for the composite bcdy & ; e.g. body force b , body
heating s .

Truesdell [1.3], lays down three "metaphysical principles" relating

R to /. Although it has been pointed out that there is some ambiquity in the
e
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interpretation of these principles, I quote them, then proceed to'show that they
are satisfied by this theory, I have some confidence that, for a particular
theory at least, they may be stated as axioms to be satisfied by the balance
laws.

1. All properties of the mixture must be mathematical consequences

of properties of the constituents.

2. So as to describe the motion of a constituent, we may in imagi-

nation isolate it from the rest of the mixture, proviled we allow properly for

the actions of the other constituents upon it.

3. The motiovn of the mixture is gqoverned by the same equations as is

a singie bodg[.?

Here the "cingle body” considered in the third principle is a slight
generalization of the “granular materiai* cc 1sidered by Goodman and Cowin
[2].

The total mass density p for the nody B is defined as the sum of the
peculiar densities

p=Z P , (1.6)
where the symbol £ , here and henceforth is an abbreviation for

== (1.7)

—a=i

The concentration ¢ of the a-th constituent is definad by

. (1.8)

00
"
o joo

Y'l’he principles are quoted from Truesdell {1, p. 83}, whore they are subse-
quently motivated. It may be ncted that they are sorn:ewhat poralle! in intent
to the assertion of some molecular theorists that the pronerties of material

bodies are actermined by the p-operties of their molecules,

#1390
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Let p be the position vector from some fixed point in € to x .
. Let a, b be vectors, let 3 @b denote their tensor product, and let g~ b
| denote their outer product
3~b=2dk-bo2a. {1.9)
The densities of linear momentum and angular momentum, as well as

equilibrated inertia and volume distribution momentum for A are defined by

pX =ZpXx , (1.10)
ae
RrpX=ZRpAp X,
and
¥ 4 ‘* :Epk, (i.ll)
a2
=X pkv.
: kv =Zely

Here ¥ is interpreted as velocity in 2,
2. Balance Equations
I postulate the following set of balance laws for each constituent of

the mixture, for each part g’ of /g for all time t:

fegav=tfoaw, (2.1)
j’p?dv:(f:é;dv)‘ -fgpar-fop av, 2.2)

+ + N
fp(M+gAm)dv=(fB ~px dv) - fBAIBdA-ngdeV, (2.3)
a a as a g a

?'E‘here are certain refinements which [ eschew in order to keep this work
relatively reasonable in length. E.g. I assume the existence of a stress
tensor rather than proving it by the classical argument of Cauchy.

#1390 -5-
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- (s+;(- +vi)dv (2.4) iy
fg ¢ 7 E aa) ’
+ - v dr - n. [ .
fpgdv-(fgié:dl) :{5 pda ja.\ztg)d\l, (2.5)
fpédv:(fe}édv)‘-é‘KogdA-!ggdv. (2.0)
1

Here f dv denotes integration over the volume of an arbitrary part of § and

ﬁ dA denotes integratinn over its surface with unit outward normal n . The
first four of these equaticns respectively express growth of mass, lirear momen-
tum, angular momentum and energy for each component ot the mixture and,
except for three terms in the equation for energy, are of standard form. The R
fifth equation expresses growth of equ.librated force. An early explicit recogni-

tion of a statement of this natuze as a separate balance law is that of Ericksen

[4]. Since-that recognition, balance laws of this type have been widely

accepted in the theory of continua with directors. The first explicit recognition

of an equation of the form (2.6) as a separate balance faw is apparently due to
Goodman and Cowin [2] .

A standard argument applied to (2.1) y/uvid-

¢

[- ek d

Eatg+d:v(p§}, (2.7)

=p+p div ,
a | a

X

the local forn: of the balance of mass,

Lat gr be a scalar, sector, or tensor d:.li: :d at points in oB . Bya

standard method, it may Le¢ shown that

it e dton o e e 0 s a ng g s
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If \g is related to ¥ by

p¥ =X p¥ , (2.9)

then again by a standard method it may be shown that

p;i;:fjg%" -divquxg &Egéf, (2.10)1‘
aqa g [+

where u is the diffusion velocity of the o-th constituent

o

-%x. (2.11)

1
-2 A

e -

By (2. 10}, (1.10) and (1, 11) bacome

pf = SpX - divEpxgy + Zptx
ada ca a ae

pk = Zpk - divEpky + Zpék, (2.12)
ac aga aq

pkVv 4+ p G:Ep(k; +§c;}~div3pk‘v§+§p'k
aaag a s aq da [+4

2 O

v
a
Using the lemmas (2. 8) and (2.10), and noting that each of {2.2)-(2.6)

ne'  for arbitrary parts of *':’ I obtain the local forms

-'o

p% zp X tpX C -divI-ph (2.13}
[+ S { [+ 2 a

» li?.p
= e}
(=R e

% + -, ~ 4
pM+ prpm = pArpx+prpxc-prdivy
b1 a aa aa a

+ IT-T -p~Apb, (2. 14)
a a

fHere "div" denotes divergence with respect to %. The divergence cf a vector
is the trace of its gradient. Gradient is denoted by "grad”, trace by "tr",

-
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{ assume that mass, linear momentum, angular momentum, energy,

equilibrated force, and equilibrated inertia are each conserved for the mixture,

that is

e =0,

a
231=9, ’

Q

+
2M=g’

a

(2.23)

Zé =0,

[}
23:0,

Qa

EZ: 0.

a

I show that, through the use of (2.23), (2.7) and (2.13)-(2. 17) satisfy Truesdell's
third metaphysical principle .
By a standard argument, (1.6) and (2,7), (2. 23)1 becomes
prpdivg =0, (2.24)
Define

z

(2.25)




(2.25)
cont .

pt = Zpt
aa
pg = Zpg ,
aae
K= ZpK.
Pk = Zgk

These definitions, alcng with (1,10) and (L. 11) appear to satisfy Truesdell's
first metaphysical principle.

Summing (2. 18) over all constituents, noting (2. 23)2 , (2. 25)1, 5
vields, by (1.6), (1. 10)1, and (?..12)1 »

pX =phb +div]. (2.26)
Summing (2. 19) over all constituents, noting (2. 23)3 and (2. ?.5)1 vields

T =71 . (2.27)
Equations (2. 24), (2.26), and (2,27) are respec.ively the usual local forms of
balance of mass, linear momentum, and moment of momentum for a single body.

It is convenient to teave (2.20) until (2, 21) and (2, 22) are considered.
Summing (2. 22) over all constituents and noting (2. z3)6 vields

Zpk + Spbk -div Ik - ZpK=0. (2.28)
aa ca G aa

By (2.12)& this becomes

pk +divZpky -div =k - ZpK=0. (2.29)
caa a aa
By (2.25 then
y( )4’10
ok -divk -pK=0. (2.30)
-10- #1390
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In the particular case when k s solenoidal and K = 0, (2. 30) reduces to

~

k=0, (2.31)

-

This corresponds to the local equation for the balance of equilibrated inertia

-

as given by Goodman and Cowin [2, equation (4.9)].
Summing (2. i6) over all constituents and noting (2. 23)5 vields

- . S ~ +
Zpkv+ ZpKviZkve -divEZh - Zp(L+ =0, 2.32)
80u gao pcun Q 8‘0 3) (

By (2.12)3 , (2.32) becomes

pk'\’/+p)§t‘/+div23§lé;v§-div}3 -Eg(£+ng)=0, (z.33)
which, by (2. 25)3,8,9 is
P pkVv +pkv=divh +p(2 +4q). (2.33)
) This may also be written as
g
3 pk T+ (divk+pK)P =divh + plf +q), (2. 34)

where (2.30) has been used. In the case where k is solenoidal and K= 0,
{2.34) becomes
pkVv =divh +p(l + 9g). (2.35)
This corresponds to the local equation for the balance of equilibrated force as

given by Goodman and Cowin [2, equation (4,10)].

The proof that (2.20) and (2. 23)4 vield the usual equation of balance
of energy, although somewhat repetitive of the derivation for the non-polar case,
is given in some detail here in order to emphasize the interaction of the new

a . terms in the total internal energy, heat supply, and heat flux with the equi-

librated stress and equilibrated inertia,

#1390 -11-
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Note that by (1.6}, (1.10) and (2.11)

Zpu®u = ZpX®@K - pX X - (2. 36)
eg o cd a

As a corollary

2 2 L2

b -z i ) 2,37

RY ° TRE P (2.37)
4 Consider the last term in (2. 25),7

. S L2 -2 S 2

3 Tpk(v-v) =Zpkv - 2(Zpkv)y + (Zpklv . (2. 38)
3 caa aga aaa aa

By (1. ll)1 29 this becomes
H

s .2 ~2 .
1 1 ¥ S

g

(2. 39)

2 Substituting (2. 37) and (2. 39) into (2. 25)7 yields

152 1y .2 (2 g, ~2

f P34tk =2 1%+ 3 . :

. de zx + 2 14 ) g(fo“" 2)& + ) }é: ) (2 40)
b The result (2. 40) has the form {2.9), and the lemma (2.10) gives

3 p(e‘+;'5=2+-§-}'<\32+k66)=2:9(2+%.;g+%f<;2+k;;)

- ac @ @ as aaa

. 182 1, 82 . s

-divZp(e+ 3x +zkv )X

: e a ca @

E - 132 1y 28

: 4 div g(§+a§ +z§:)§

q + 132, 1,2

] +ZpClg+zX +2ky"). (2. 41)
. Note that

ii":i: - T -~ T ~

] %+ divT +tr(T gradg)=div]I %. (2.42)

4 a a ) a e o

By (2. 11) and (2.25), ,

E SdivT'x = div T y + dv ST % ,

= & Q aa a

;i- ,T T & ’ -

= divII g + divI x+divZp(u@ulx . (2.43)
a o aa 1}
Hewever, by (2, 36) .
"4 - . ~ ~ S e 2. s
Sou@wk = Ze (3@ 8N - (px°) &, (2. 44)
43 ag @ aa a

b -12- #1390
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so that (2.43) becomes

Tx- div] + Str(T grad %) = div ET gy + % - div T
[ a a a 8 G
T ) . < ~ ~ ) [ .2 °
+tr(] grad x) + divZp(x@x)s -divipx)x.
aa ¢
By (2.25)2
- srpt Yoo 1,2 NN
Zq=9-ZT yu+h(v-0)-ple+zu -kv(v-3v)ul.
g ° a a aa aaq a aa a a
Equations (1. 6), (1.10) and (2. 11) yield
2 '~2 -~ S e ~2. . 02.
= =2 -2Z - + 2 X .
pu g T ERX § - 2Tp o px- Hpx )k + 2exx

Spey=Zpex -Zpc ¥
aa a ac a aa
- v _ - sl 2 ~ .2
= ZTpex-x(pe -Zzpu - Zzpk(v-v)),
ag @ aa ca &
~ ¢+ H ‘Zo 02
=Zpex-pe i+ s Zpx g - 3lpx
Qg o aa et a
Expanding the iast term ir (2, 48) and using (L. 11}1 > gives
b4
L X > < 1 "2 ¢2 .
Zpey =Zpex ~pe i+ TypX % -7 (pX7)X
aca Ro 3 2a
P hok v - dok ot
ua 3

By (2. ?.5)3

By (2.490)

‘22
pe X %(

g =g -EITQ - Zh \:-;-h&*ipe%-pkﬁz £
a - a o GG taa
s Eipk ;Zg + Ei’(p;cz,;- oz )X
"mea O aa i o a0
2 .
SZpXTIR .
ga

#1399

% - =1 ok(v- 9% (2.48)

(2.45)

(2.46)

(2.47)

(2.49)

{.50)

(2.51)




By (2. 25)5,8 , (2”25)6 becomes

WA

Zps=ps -ZTpb-x+
(33 aa

1=1 - 34

cpb -Zptve vk, (2.53)
ad a

The equaticn (2, 20) is now reduced by summing over all constituents,
noting (2. 123)4 , and substituting values obtained from (2. 41), (2. 45), (2.52)
and (2.53). The resulting equation is

plé+x5- 8 + %lv'c\"2+k ) -tr(,ITgradg)

~-divy -divhs - plstg-b+vet)=0. (2.54)
Substituting (2.26) and (2, 32} into (2. 54) yields

pC = tr(ITgradgH h-grad v+ pk -52+ pg v+ div g + ps. (2.55)
This is the equation of balance of energy for the mixture. In .he case when k
is solencidal and K = 0 , by (2. 3!} it becomes

pé=tr(I grad §)+ h- grad $+ pg 5+ div g +ps, (2. 56)
which agrees with the energy equation of Goodman and Cowin [2, equation
(4.11)]. In the case ¥ = 0, it furtrer reduces to the classical equetion for

the balance of energy.

13- #1300
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3. The Entropy Inequality

In addition to the palance laws analyzed in the preceding section, I
introduce a postulate of growth of entropy, analogous to the “second law of
thermodynamics. ™ [ assume, for each constituent the existence of a coldness
3’ assumed to be strictly positive and interpreted as the reciprocal of the
absolute temperature, an entropy Q , and an entropy growth 5 . lassumea

balance law for each constituent of the following form:

fp?idv:(_fpndv)—f,gq-gdA-[.gpsdv. (3.1)1P
a aa a3y “aoa
By (2.8) the local form of this aquation is

+ . +

pn =pun+pcCn-divi(sg)-sps. (3.2)

c aa aa 83 Gaa@

I introduce the axiom of dissipation
= 4 ;
Zn>»0. (3.3)

a

This inequality is analogous to the conservation laws (2, 23),

I define the total entropy n . entropy flux & , and entropy supply

multiplied by the coldness s for the mixture by

S (3.5}

(s3] g'g: 1 }

¢ =S(cg-pny). (3.6)
aa [ B

+

{3QT}Q

poc =Zpas,
eac

I proceed to show that the entropy inzquality for the mixture is similar in form

to the entropy inequality for a single continuum of the type considered.

1'Goodman and Cowin [2] assume, for a single constitusni, a similar inequality,
but with a marz general form for the entropy "flux” {the surface integral in {3. 1)),
Tuey than proceed to shcw that, within a certain constitutive clanz, *he entropy

flux has the form assumed in {3,1). As ass:umptizn & that naiure, if made here,
would make some of the calculations in this sectior trivial.

Iir chould be noted that this equation does not uniquely specify « r 3.
#1390 -1
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Equation (3. 5) is of the form (2.9). Therefore by (2.10),

~ - 4
pn= Zpn-divIpny+ Tpcy . (
ag a a g a

L= g~ 1

By (3. 2} this beccmes

r Ty =pncdivileny -59) - Z:ps, (3 5)
a 68 g~ aaa
eroy(3.6)and (3.7},
p:‘..;; zpn-diVae -pao . g (3.:0)
2 2
The dissipation axiom (3. 3) then yields
pn> dive rpsT. (3.11)

This equailon is the same as that of Goodman and Cowin [2, equation (4. 12}].
It is often convenient to state tke axiom of dissipation in another form,

called :he "reduced dissipation inequality. " I substitute (2. 20) into (3. 2!,

obtaining
*+ - + rad
o= + < - £
P garesay-i 9 a
Q
N - 1\2 . - 18
- spes pcle mexlipc X-p2
aaa I 3 a a a
~ ‘\2 +
+pgv+%v(nt(-div_'5 ~pn)
2Q a aa a a
IT ~ N -
-twi{l gradx)-h « grad v]. (3.12)
e a a °

Define the Helmholtz free energy . ¥,

w = & (3.13)
B a
50 that
n - B (3. 14)
2 az foa g <




Equations {3.13) and (3. ]4), when substituted into (3.12), yield

'!* + .~ . l\Z
, pn = psfle-m g -clu-3:x7)]
a a a [+ a a ¢ [+
a3
. +p(= &-8w)
+ a2 aa
Qa

Q Q Q aa a
1\2 : 1 3 7
-¢[zvi(pK-divk -pR)+pG i, {3.15)
G ¢ aa 3 G a8 a

Summing (3. 15) over all constituents and tzking note of (3. 3), I obtain the

m:ll i

s reduced dissipation inearzlity

%
< % . ~
- £ Epe[é-m-z-3<¢-§xz)l
3 6 & & a a a 3
=
E =
= § ‘
- Z .4 s
: B +Zp(= ¢ -54)
= Rlsa aa
= ¢ a
F T - N
£ -Zg-grad g+ Zotr(T grad x)+ T s - grad v
£ K 3 a a a G a a
N 1 h 2 : 3 & R N
-Z s[zv(pK-divk -p4g)+ pgv}]?_o. {3.16)
¢ & aa ) a aaa
This reduces to the result «.f Goodmar znd Cowin [2, eguation (4,15)] in the
case of one constituent,
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