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NOMENCLATURE 

A , A_ Cross sectional area of stiffeners s  r 

s' r Stiffener spacing 

E Young's modulus of shell and stif- 
fener, assumed same 

Stiffener eccentricity (dimensionless) 

Dimensionless stress function 

Shear modulus of skin and stiffener 

Shell thickness 

Moment of inertia of stiffener about 
shell middle surface 

Torsional constant of stiffener 

Cylinder length 

Wave numbers in axial and circum- 
ferential directions 

fm , i.i , m , m )  Stress couples (dimensionless) j      ~j      j« v x' y' xy' yx' r        v ' 

N , N , N  (n , n . n ) Stress resultants (dimensionless) x' y' xy *■ x' y' xy' v ' 

n Critical load (dimensionless) 

R Radius of shell 

U, V, W (u, v, w) Middle surface displacements 
(dimensionless) 

X, Y (x, y) Axial and circumferential coordinates 
(dimensionless) 

Es. Er (es, V 
f 

G 

H 

s'    r 

J  , J s'    r 

L 

m, n 

M , M  , M > M, 

s' r 

Batdorf parameter = L2/RH 

Axial stiffness parameter = 

in 
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I ( 

s  r 

V \ 

Flexural stiffness parameter = 

Torsional stiffness parameter = 

(D CI-V) X*rJ   t) 
v Poisson's ratio of shell and stiffened 

s,r Denote stringers (axial stiffeners) 
and rings 

comma Denotes partial differentiation 

IV 
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INTRODUCTION 

Research activity in the compressive general instability of stif- 

fened cylindrical shells, in spite of some early work in the 1930's 

(see for example, References 1 and 2"), did not receive sustained effort 

until the advent of launch and space vehicle designs of the early 60's. 

In this latter period, extensive test results were obtained on stiffened 

cylinders which showed that, by and large, these agreed with the predic- 

tions of a Donnell-type linear theory which included the stiffeners in 

the expressions for the resistance of the shell. 

Of the various formulations used in this period, we are concerned 

here with the linear theory of Prof. Singer and his coworkers at Technion,3 

which was also proposed by Block et al1* in a slightly more generalized form. 

The main contribution of this theory is that it accounts for the coupling 

between the bending stress resultants and the middle surface stretching 

on the one hand and that between the membrane stress resultants and the 

changes in the middle surface curvature on the other. This coupling, 

produced by the eccentricity of the stiffener center line location with 

respect to the shell middle surface, has the net effect of involving odd 

powers of the eccentricity parameter in the final expression for the 

buckling stress. Not surprisingly then, the sign of the eccentricity 

with respect to the middle surface of the shell (i.e., due to the stiffener 

being outside or inside with respect to the shell) has a profound influence 

1. DSCHOU, D. Die Druckfestigkeit Versteifter Zylindrischer Schalen.  Luftfahrtforschung, v. ll.no. 8, 1935, 
p. 233-234. 

2. TAYLOR, J. L.  The Stability of Monocoque in Compression.  British R and M, no. 1679, June 1935. 
3. BARUCH. M., and SINGER, J. Effect of Eccentricity of Säffeners on the General Instability of Stiffened Cylin- 

drical Shells Under Hydrostatic Pressure. J. Mech. Eng. Science, v. 5, no. 1, 1963, p. 23-27. 
4. BLOCK, D. L, CARD, M. F., and MIKULAS, M. M. Buckling of Eccentrically Stiffened Orthotropic Cylinders. 

NASA TND-2960, August 1965. 
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on the buckling load. The change in thj buckling load is accentuated 

the most in the case of axially stiffened cylinders under axial compression. 

This eccentricity phenomonon is discussed extensively by Singer et al in 

References 5 and 6. 

However, since their main preoccupation has been with this eccentricity 

effect, certain aspects of the problem, such as the characteristic buckling 

modes.- are not adequately treated in their paper.6 For instance, in the 

case of an axially stiffened cyiindei the axisymmetric modes are dismissed 

with the statement that they are possible for certain combinations of 

the geometrical parameters. Now, it is a characteristic of the stiffened 

cylinder buckling that unlike the unstiffened c; lenders (where the linear 

solution is obtained without reference to the buckling modes) the solu- 

tions are governed by the characteristic modes: axisymmetric, general 

asymmetric and for axially stiffened cylinders, an asymmetric mode with 

a single half-wave along the length of the cylinder.7 In fact, for some 

of the results presented in Reference 6 pertinent to the axial case, the 

buckling mode is indeed the last mentioned type with a single axial 

half-wave, though nowhere is it mentioned in the paper. 

The ab initio selection of the governing buckling mode for a given 

stiffener geometry is, perhaps, not very critical in obtainint an answer 

for the linear problem; however it becomes very important in a related 

nonlinear problem connected with the dynamic stability of imperfect 

5. SINGER, J., BARUCH, M., and HARARI, O. Further Remarks on the Effect of Eccentricity of Stiffeners on the 
General Instability of Stiffened Cylindrical Shells.  TAE Report No. 42. Technion - Israel Inst. of Tech., Haifa, 
Israel, Aug. 1965. 

6. SINGER, J., BARUCH, M., and HARARI, O. On the Stability of Eccentrically Stiffened Cylindrical Shells Under 
Axial Compression.  Int. J. Solids Structures, v. 3, 1967, p. 445470. 

7. LAKSHMIKANTHAM, C, GERARD, G., and MILLIGAN, R. Linear Orthotropic Stability of Shallow-Stiffened 
Cylinders: An Assessment. The Aeronautical Quarterly, v. 21, May 1970, p. 133-144. 
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cylinders. Roth and Klosner8 have demonstrated that in the case of 

dynamic stability of unstiffened imperfect cylinders, the static linear 

(classical) value forms the limiting solution for zero imperfection. 

In a similar study with stiffened cylinders the present authors have 

found9'10 that the mode of buckling remains the same in the linear (peifect) 

and nonlinear (imperfect) ranges, and hence for an efficient determination 

of the critical dynamic buckling load (that is, from a computer-time 

point of view), a knowledge of the linear static modes is extremely 

important. 

Having thus established a rationale for reexamining the linear 

stability problem of an eccentrical 1/  stiffened cylindrical shell, we 

propose to show that from among the numerous geometrical parameters 

entering the problem, one can rationally select a few which delineate the 

regions of prevailing buckling modes. 

GOVERNING EQUATIONS 

Although the buckling equations are similar to those of Singer et 

al,6 our derivation of them is different, being patterned on the non- 

linear formulations. Also our final equations are cast into a form 

which lends itself to an easier examination of the relative importance 

of the various stiffening parameters. 

8. ROTH. R. S., and KLOSNER, F. Nonlinear Response of Cylindrical Shells Subjected to Dynamic Axial Loads. 
A.I.A.A. Journal, v. 2,Oct. 1964, p. 1788-1794. 

9. TSUI, TIEN-YU. and LAKSHMIKANTHAM, C. 77ie Nonlinear Dynamic Response of Stiffened Shells Unier 
Compressive Axial Impulse. Presented at the 4th Canadian Congress of Applied Mechanics, Montreal, Canada, 
1973. 

10.  LAKSHMIKANTHAM, C, and TSUI, TIEN-YU. Dmamic Stability of Axially Stiffened Imperfect Cylindrical 
Shells Under Axial Impulsive Loading. Accepied '.   Publication by AIAA Journal. 
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The assumptions basic to the linear problem are similar to those of 

Reference 6: a) the stiffeners are close enough that they can be "smeared" 

over the shell; b) the stiffeners are essentially beam-like elements 

contributing to the membrane and bending resistance of the shell but 

not to the shear resistance; c) the entire shell including the stiffeners 

is activated in the buckling; that is, local instability failures are 

ruled out. 

Figure 1 describes the basic geometric parameters of the shell. 

With the normal to the shell surface taken as positive inward, positive 

(negative) values of E , E indicate inside (outside) location of the 

stiffeners with respect to the shell. 

The unstiffened shell is characterized by three parameters L, R, 9' 

H (length, radius, and the thickness of the shell) which can be combined 

into the so-called Batdorf parameter Z = L2/RH, the ranges of whose 

values are used to describe a "short"' or a "moderate length" cylinder. 

The effective increases in the area of section, the section area 

Figure 1.  Shell Geometry 
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X 1 

moment, and the section torsional stiffness of the shell due to the 

presence of stiffeners are best characterized by nondimensional parameters 

o, n and Y with subscripts s or r to denote a stringer (axial stiffener) 

or a ring (frame or circumferential stiffener). These parameters are 

the ratios of the properties of the stiffener section relative to a 

unit shell section between the stiffener center lines. We have assumed 

that the stiffeners have the same material properties as those of the 

shell; otherwise the relative stiffener-to-shell moduli ratios are to 

be included in the definition of ex, n and y. 

Although these parameters are not independent of each other, it is 

still convenient to consider them so, from a computational point of 

view. For slender and deep stiffeners of rectangular sections (such as 

is assumed here) one can express y  in terms of a multiplied by a constant. 

Hence the chief stiffener parameters of interest are a, n together with 

E the eccentricity of the stiffener. 

In order to derive the basic equations, we introduce the following 

nondimensional quantities: 

All lengths (including the coordinate distances X, Y) are normalized 

with respect to R, the shell radius. Thus we write: 

[u, v, w, x, y, es, er] = [U, V, ¥.,  X, Y, E,., Ef]/R (1) 

Dimensionless stress and moment resultants are given by: 

n,n,n , n = [N , N , N , N j/B  B = Eh/(l-v2) 
x' y'    xy  x  l x' y' xy' xJ 

m,m,m,m  = [M , M , M , M 1/D D = Eh3/12(l-v2) 
x' y' xy  yx  L x' y'    xy  yxJ 

(2) 

am M 



The linear strain-displacement relationships at the middle surface of 

shell are: 

(3) 
e =u, ;e = v, - w ; e  = 1/2 (u, + v. 3 
x   'x ' y   'y   ' xy       y    * 

RK = w,  ; R< = w,  ■ RK  = W,  = RK 
x   'xx   y   yy'  xy   xy   yx 

Tlie stress-resultant strain relationships are given by: 

(4) 

'xy 

"xy 

"yx 

(IKS ) v -esRus 0 

(l+ar) 0 

(1-v) 

-ejJlaj 

-esßS 
0 0 (1 ♦ns3 V 0 0 

0 -Frßr 0 V d^r) 0 0 

0 0 0 0 0 !i-v)dns) 0 

0 0 

M3 

0 0 0 0 (1-v)(1+1 

M4 

-xy 

^xy 

"•yx (S) 

The nonzero submatriccs M„ and M. in Eq. (5) provide the coupling 

effects of the stiffener eccentricity. 

In Eq. 5 0 (ß ) is not a new parameter but is related to ag (ar) 

through D3 = Ba . 

The governing equations are then given by: 

n       +n =n +n       =0 
x,x       xy,y       xy.x       y,y 

(6a, 6b) 

1      H    L,  [wl  + a    e    e° + a    "e    e°       -n    w,      + n    = 0        (6c) 
y-,   £2    3  l  J        s    s    x, xx       r    r    y.yy     x    'xx       y 

BM MB ■r.ir.t-r.iir    itfk   -■   ...•■■■-..>-^.*..-a,-->^^^ml|| -ti ■■ fa    n.^.i    , n 
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where L_ is a linear differential operator given by 

L3 ( ) • (1 ♦ ns) ( ),_ ♦ 2 {1 ♦ Ii?Jl (y„ + yj) ( ), xxxx 

(1 + nr} ( }'yyyy 

and n is the (dimensionless) external compvessive load. 

xxyy 

(6d) 

Eq. (6c) reduces to the standard (linear) form when all stiffness 

and eccentricities are neglected. 

Eqs. (6a, 6b) are identically satisfied by introducing a stress 

function of such that n = f, ; n = f,  and n  = -f, x   'yy' y   'xx    xy    xy. 

Making use of the stress-strain relationships Eq. (5) and introducing 

the stress function f, tq. (6c) may be rewritten as: 

-17 IP L3 w -r- L2 <f) + r~ L4 w - "x w«xx+ f'xx - ° (7) 
rs        r? 

where L- and L. are linear operators given by 

L-, ( ) = va.e ( ),    -{(J + a ) a e + (1 + a ) a e } ( ), 2       s s v ''xxxx  l   s' r r  l   r' s s    J'x\/y + 

(8a) va e ( ), 
r r   yyyy 

_ 2 _ 
and L. ( ) = (1 + a ) (o.f )  ( ), - 2v a a, e F ( ), xxxx s r s r 

(1 + a J (a e )2 ( ), r r yyyy 

xxyy + 

(8b) 

and A  = (1 + a ) (1 + a )- v2 rs      s      r 

A second independent equation involving f and w is provided by the 

compatibility reiat"- m which is easily deduced from Eq. (3) to be 

e°   + e°   - 2e°     =-w, (q) 
x,yy   y,xx   xy, xy   xx l } 

Eq. (91 can be written in terms of f and w by again making use of Eq. (5) 

This results in 

fciu MM 



L. (f) = L_ (w) - A  w, 1 l '        2 rs  xx 

rs 

(10) 

where ^  ( ) - (1 ♦ «,) ( )«xxxx * 2 (~-v ) ( ),xxyy ♦ (1 ♦ *r) 

( Nyyy (ii) 

Thus the basic equations of the static buckling problem are Eqs. 

(7) and (10). 

Now we notice that the operators L., L_, L_, L. are linear with 

constant, coefficients (shifted biharmonic types). 

iince the buckling modes are essentially harmonic, w and consequently 

f are both harmonic. Hence we see that the following operations with 

the operators hold: 

li   [L. (♦)] = Lj [L. (♦)] 

and also L. [ ( ) ,xx] = [L. ( )], xx i, j « 1, 2, 3, 4 

(12) 

(13) 

Thus we can eliminate f from Eq. (7) by operating with L. upon Eq. (7) 

and as a result have 
2 

_ Tö F 2^,   L_ (w) - T— L, L- (f) + -.— L. L. (w) - n L, (w,  ) + 12 R ^ 1 3 v -^  A   12     A   1 4 v     x 1   xx' rs 

L. f,  = 0 1  xx (14) 

By makinj use of Eqs. (12), (13) and (10) we finally have 
2 

12 h  Ll L3 (W) " X-    tLl L4 (W) - L2 L2 ^  + Ars W'xxxx rs 
2 L_(w, ) 2V xx' 

+ nxLl(w,xx)=0 (15) 

Eq. (15) is thus the Donnell equation for the eccentrically stiffened 

shell problem with only w appearing in it. 

:**"—-*■-*— " «.-.>■■. -- ■ ■_ i. ..,—-..-»—.. —-J 



We seek a solution of the above  by choosing the following form for 

w: 

w = w cos mirx cosny (16) 

where ir = nR/L 

Using Eq. (16) in Eq. (15) we find 

(17) 
_ 2 2 
n  R  -  (nur) 1 C     i  ,D    B  ,    Z    1       2iJc _x _ =n =  - f rs -  i { rs - rs }, +      +     rs 

AH     A   Z 12   A        P       (imr)  P      A  P rs       rs rs      rs rs     rs rs 

where C  = (1 + n ) + 2 (1 + ^—^-    (y    + y  )} 82+ (1 + n ) Bk 

rs      s 2    s   r rJ 

2 2 
D  = (a e 1  (1 + a ) - 2v a a e e 32 +  (1 + a ) (a e ) ^ rs  v s S'  v   rJ s r s r     v   sJ   y  r rJ 

B  =vae - {(1 + L. ) ot e + (1 + a ) a e )32 + a e v ß1* rs   ss       s'rr      rss     rr 
A 

P  = (1 + a ) + 2 (~ -v )ß2 + (1 + a )8lf 

rs  v   s'    vl-v        v   r 

,E   E .  R r     -  , (18) 
a  _IL_       _ ( s , r ) =  (e  e ) v ' 
* '  mir  ' es' er "  H  H    H  S' r 

The buckling load is obtained by minimizing Eq. (17) with respect 

to the wave numbers n, m. 

In deriving Eq. (17), we notice that no emphasis has been placed 

on the boundary conditions. This is as it should be. It is inherent 

in the classical shell stability heory that the eigenvalues are 

obtained without reference to boundary conditions. 

DISCUSSION OF THE BUCKLING EQUATION 

Eq. (17) constitutes the fundamental equation from which the (minimum) 

buckling load is obtained for a given shell with prescribed geometry and, 

furthermore, it can be demonstrated that it is identical with the equation 

k__   i MMM>MBMMM"  —■■^.«^., 



used by Singer et al.6 We now proceed to deduce several interesting 

results based on the form of Eq. (17) together with the stiffening para- 

meters defined in Eq. (18). 

Firstly, we notice that the eccentricity parameters e , e appear 

explicitly only in the terms B  and D . Thus B  and D  are the r rs    rs      rs    rs 

coupling effects due to eccentricity. If the eccentricities were ignored, 

(either owing to symmetrical stiffeners or as a higher order effect) 

B  and D  would drop out, and the resulting expression 

; = 1 !-l j£ * JL 2 _L (is) 
12 Z    A     (mir)  P 

rs     J        rs 

would admit positive (and hence physically admissible) solutions for all 

choices of a and n. 

However, B  involves first powers of e , e while D  is quadratic 

in them. Hence the sign of the last term in Eq. (17) is dictated by the 

sign of the eccentricity terms. This brings out a distinctive feature 

of the problem of an eccentrically stiffened shell. The presence of a 

minus sign within the square brackets, together with the possibility that 

the last term could be negative, makes only certain combinations of the 

stiffening parameters yield physically admissible solutions.  It is not 

hard to see, given the structure of Eq. (17), that there are admissible 

combinations of the parameters yielding negative or zero values for the 

buckling load! It is even more remarkable that the same set of physical 

parameters which would yield admissible (positive) solutions based on 

Eq. (19) would cease to do so if the symmetry of the stiffeners is 

distorted. 

10 
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A second observation which we can make, and to which we shall come 

back, is the absence of Z explicitly in the last term of Eq. (17), which 

makes certain solutions valid fcr all Z ranges. 

Eq. (17), involving both rings and stringers, is applicable to .1 

general (grid) stiffened shell. Particular cases of axial or ring 

stiffeners are obtaii.^d from Eq. (17) b/ setting the appropriate stif- 

fening terms equal to zero. A grid stiffened shell is essentially a 

composite of axial and ring stiffened cylinders, and hence its behavior 

is understood best by studying the axial and the ring cases separately. 

This paper confines its attention to the axial and ring cases only. 

AXIALLY STIFFENED SHELL 

Ail the parameters with subscript r are set equal to zero in 

Eqs. (17) and (18) and after some manipulation we can obtain the 

governing equation for the axially stiffened shell under axial compres- 

sion as follows: 

1 f (mir) 2 C (a e )z    (1 + 1L.) 1    z    1   2a e (v-ß2 ) v s sJ 1-v  I s s v    ' 
+ + 

e        — (mir) A   P s   s (20) 

where 

Cs = (1 ♦ ns) + 2 {1 + (1-v) YS/21 B2 ♦ & 

P =(l+a)+2{l+a /(1-v)}  ß2 + $u 

s       s s 
(21) 

A - (1 + a ) - v' s  l    s' 

For a shell of given ct, e, n and Z, Eq. (20j yields a load for each 

integer value of m,n such that m > 1; n>0. (m=n=0 case corresponds to 

11 
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a constant w displacement which is of no interest to the buckling problem). 

The lowest of these loads for all m,n combinations is the buckling load 

for the given shell. 

From a theoretical point of view, however, it is more convenient 

to assume ab initio a buckling mode and investigate the range of its 

validity. We first consider the axisymmetric case (n=0). 

Axisymnetric Case 

This is obtained by setting 6=0 in Eqs. (20) and (21). The 

resulting equation is then minimized with respect to m to yield the 

following: 

0      l     \l + \    (Vs)2r>i/2 2vase
s 9 IV (22) 

A (1 + a ) 
s     s 

The sign cf the last term in Eq. (22) depends upon the sign of e . 

We can thus distinguish the two cases of inside (+ ve eg) and outside 

(- ve eg) stiffsners. 

We notice that for real values of n ., 
axi 

ns - 12 (esCts)
? / (1 ♦ as) - 1 = n *       (23) 

should hold in Eq. (22).  It is interesting to note that for n greater 

than n such that the square root tc-rm is positive., the predicted load 

is affected by the sign of the last tern. Thus, for e positive the 

load is higher than that with e negative. Hence the inside stiffener 

case would yield higher axisymmetric loads than outside stiffeners. 

It follows that for negative e , the minimum load is zero and the corre- 

sponding r\    value is given by: 
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*fr*3fo^gg^83ff*B»tg^ ^ a« 

ns = n* = 12 (es«s)
2 / Ag - 1 pith n^. (-) = 0) (24) 

* * 
n  is greater thann as A (=1 + a -v2) < 1 * a for positive 

v. However the difference between the two n values is very little. 

For very large a values the difference is of the order e.2. 

An impoitant feature of the axisymmetric solution is that it is 

independent of Z. Hence if the solution is valid it will hold for both 

•short* and 'moderate-length' cylinders. 

Asymmetric Case 

The asymmetric solution is obtained from Eq, (20) as the lowest 

possible load for all possible integer combinations of m and n (n>0) 

for all given values of a, e, n, and Z. Obviously, a large number of 

computations has to be performed to cover a wide range of these parameters, 

However, a slightly modified form of Eq. (20) is more convenient for 

theoretical comparison with the axisymmetric solution Eq. (22). This 

approximate form is obtained by noting that for the axisymmetric case of 

a moderate length cylinder, generally n>>m and hence ß2 can be taken 

much larger than unity in Eq. (20) an-t thus we write: 

1  (mTr)2 C    2 (a e )2 ß2      Z   1   2ae 
r  S        S SJ , S S 

n *     [    -       ] ♦ 

A   Z    12       P (imr)2 P    A P      (25) 
s s J      s    s s 

Even further simplification is possible if we compare the sizes of 

some of the terms with ß in Eqs. (20) and (21). Henerally, a and e have 

numerically the smallest range of values, seldom exceeding a number 

such as 10 for practical cylinders; however, n has a wide range and 

can have values of the order lO4. Thus retaining terms of the order 

B1*  in Eqs. (20) rnd (21) we can rewrite Eq. (25) as: 
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1 (mir)2       1 + n+ß1*    Z    1   ? a e 
n - [      S   ] + - 11_   (26) 

A   Z 12       (mir)2 ß1*    A. g2 

Certain features of the axisymmetric solution in comparison with 

the axisymmetric solution Eq. (22) became quite apparent from the 

form of Eq. (26). Firstly, we notice that the sign of the last term 

in Eq. (26) is opposite to that in Eq. (22). Thus the stiffener effects 

is reversed in the asymmetric case: buckling load for e positive 

(inside stiffeners) is lower than that for negative e . Secondly, 

the solution of Eq. (26) is strongly Z-dependent. Also in fiq. (26) 

there is no apparent lower limit to n values in contrast to the n* 

values of £qs. (231 and (24); hence in the regions where the axisym- 

metric solution is inadmissible, the asymmetric solution will prevail. 

Consequently, some valid comparisons can be readily made between the 

two modes; however, it is convenient to distinguish the two cases of 

eccentricity. 

Outside Stiffeners (es negative) ; Comparison of Solutions 

For negative e , all the terms of Eq. (26) are posHive, whereas 

the minimum n . is zero from Fq. (24). Hence we suspect that for axi 
*        > any a,e combination, in the vicinity of n  (i.e. n - n*)> given 

from Eq. (24), the axisymmetric solution will Drevail. For values of 

n much larger than n*, Eq. (22) shows a monotone behavior and for 

very large n values, Eq. (22) will approach the limit. 
1 + n

s 1/2   l        \ll 

"axi = Z( 5   C > (27) 3X1    1 + a 12 A s      s 
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However for large n values, Eq. (26) is still modified by Z and 

other factors. Intuitively, we expect, then, that the asymmetric solu- 

tions will prevail for large n values. Again for n lower than the 

critical value for axisymmetr-ic solution (=n*), the asymmetric solution 

being admissible, we can assume that we will have the asymmetric solution. 

Thus, in an r\s - as  plane (for fixed values of es), we expect two zones 

of asymmetric modes interspersed by a (narrow) zone where axisymmetric 

solution prevails. 

Inside Stitfeners (e positive): Comparison of Solutions 

Here, from Eq. (26) we see that n values can decrease to zero 

* 
whereas the lowest possible axisymmetric load (occurring at n = n ) 

is seen from Eq. (22) to be 

zva e 

naxi <♦> 11- ^ 
As (1 ♦ aa) 

Hence we can expect that there may be no axisymmetric zone at all 

for the Z values in the moderate length region. 

Numerical Results: Discussion of Zones 

In order to give substance to the above arguments, a number of 

a, e, n combinations were used to study Eqs. (20) and over a wide range 

of Z values from 102tDl01+ a was varied from 0 to lü; e was taken as 

± 1, 3, 5, 7, and 10. For each combination of the parameters, a minimum 

of Eq. (20) was found by considering integer values of m (1 to 20j and 

n (1 to 50) on a Univac 1106 computer. 
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The results are shown in Figure 2. For every cace the n-a diagram 

shows four typical zones: Zone I of asymmetric m=l mode; Zone II of Z- 

dependent axisymmetric and asymmetric (m=l) modes; Zone III of axisymmstric 

mode and Zone IV of asymmetric mode where generally m t  1. 

Zone I occurs for Z generally in the moderate length range, though 

this range decreases with increasing e. Thus, for the highest e 

considered, i.e. e = 10, the Z range of Zone I was from 150 to 104 while 

for e=l, Z could be as low as 20. 

a.    eccentricity e, = -1 

102 —       Zone 1 
Asymmetric Jr 
m = 1 

A/ 

li 
.   Zone II // 

Axisymmetric // 
101 _ or Asymmetric 7 /Zcne IV 

//  / 
"                       /'  / Asymmetric 

i                 /'     / 

m t 1 

//     / Zone III 

/'       1 //        1 
Axisymmetric 

1 /'        /        i 

b.    eccentricity e, * -3 

104 

103 - 

"i 

102 

101 

Zone I 
Asymmetric 
m = 1 

Zone II 
Axisymmetric 
or Asymmetric 

- AfZone IV 

A f     Asymmetric 
m ^ 1 

/// 
/'/ /// Zone III 

/'/   —" -Axisymmetric 

/'/      c.    eccentricity e, ■ -5 

0.1    0.2    0.4       1.0    2.0    4.0     10.0   0.1    0.2    0.4       1.0    2.C    4.0      10.0 

104 iir» 
; Zone | 

\ Asymmetric 
. m = 1 

Zone II 

103 _ Axisymmetric 
; or Asymmetric 

//7jax\z IV 
. '/    Asymmetric 

m (t 1 

Zone III 
/// Axisymmetric 

102 —               /£-"— 
/if 
it/ 

/'/ 

I'l           d.    eccentricity e, = -7 

101 

103 

102; 

10' 

Zone I 
Asymmetric 
m = 1 

Zone II 
Axisymmetric 
or Asymmetric <e IV 

Asymmetric 
m ^ 1 

Zone III 
Axisymmetric 

e.    eccentricity et ■ -10 
*   ■>■■'■»   

0.1     0.2    0.4       1.0    2.0    4.0     10?   0.1   0.2     0.4       1.0    2.0    4.0      10.0  0.1    0.2    0.4       1.0    2.0    4.0      10.0 

Figure 2.  Governing Buckling Modes in Various Zones for Axially Stiffened Cylinder Unc»r Axial Compression 
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Zone II is a transition zone where pxisymmetric solutions govern for 

Z values which increase with decreasing n, until Zone III values of n 

are reached, where axisymmetric solutions giverns all Z values. Generally 

Zones II and III form a narrow band and the curve distiguishing the 

two becomes asymptotic to the curves of Zone I and Zine III. The lower 

bound of Zone III is the n* curve defined in Eq. (24). 

For positive e values j.lso,there exist the same four zones though 

the middle zones are even less prominent than in the negative e case. 

It is interesting to note that the same curve forms the lower bound of 

Zone I in both the positive and negative cases.  It may also be 

mentioned that the values of shell parameter studied by Singer et al6 

fall within Zone I for the axially stiffened case. 

Summarizing the axially stiffened case, we have for every a,e 

combination a minimum n above which the buckling is in asymmetric m=l 

mode, valid for t'.e shell parameter Z with a minimum range of 150 to 101*; 

for lower n values, axisymmetric solutions prevail up to a critical 

* 
value of n  below which once again asymmetric modes (though m ^ 1 now) 

occur. 

From a predictive point of view, where we wish to design a 

cylinder to buckle in the m=l mode, we are obviously interested in the 

bounding curve of Zone I. The following approximate expression was 

found to provide a close upper bound on the curve: 

|2 
n = 18 W (29) 

1 + a 

valid for a." 1 the ranges of the parameters tested. 
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RING STIFFENED SHELL 

For the ring stiffened shell, we set all terms with subscript s 

equal to zero in Eqs. (17) and (18) and after some manipulation obtain 

„  (mir)2 rc Qk  + 2fi2  -i   Z  1   2a eß2 (1-vß2) 

A P 
r r 

Pr (30) 

where 

cr = 1 + 2 (1 + kjL   yr)ß
2 + (1 ♦ nr) 6h 

Pr = 1 ♦ 2 (1 ♦ ar/l-v)g2 ♦ (1 ♦ ar)6lt (31) 

A = 1 + o - v2    ß = n/mir 

Axisymmetric Solution 

The axisymmetric solution is readily obtained by setting 6=0 in Eqs. 

(30) and (31) and minimizing the resulting expression with respect to m. 

Thus we have: 

nax. = 2/(12 Ar)
1/2 - 1/[3(1 ♦ or - v2)]1/2 (32) 

Notice that this solution is independent of both n and e. 

Asymmetric Case: A Closed Form Solution 

The asymmetric case is based on Eq. (30) by the usual minimization 

with respect to m, n (n > 0). However, it is possible to obtain a 

simple closed form solutivn for the particular case of m=l and ß2 > > 1. 

Thus by retaining terms of ehe order ß1* in Eqs. (30) and (31), we get 

the following approximate expression: 

18 



(w)2    1 + n    (a e )2    Z     1       2va e 
p  [ I .  r r 1 ^ —       .  -   r r 

ArZ  
P l 12   " 1 * ar 

J  5*  "(I + Or)0- 
v Ar (1 + or) 

(33) 

which yields the following minimum 

1 1 1 +    nr Orer)2    if 2    2varer 

« - 2 [ s- 71-T^T i  -IT"1-  - T-H- >1 Ar  (1 - ar)  
l  12   "  ■ 1 + ar 

JJ    Ar (1 * ZT) 

(34) 

It is instructive to examine Eq. (34). We notice that the form of Eq. 

(34) is identical with the axisymmetric solution for the axially 

stiffened case, Eq. (22). This solution again leads to possible zero 

value for negative e (outside stiffeners). Hence we can suspect that 

for n values very close to (and greater than) 

.     12 (a e )2   , ,„r, r'r (.) *    r rJ       - 1 (35) 

r 

the asymmetric m=l mode will prevail for at least the negative e case. 
* 

Furthermore, for n < n r •> we see that Eq. (34) will not hold as 
* 

it v.ill yi^ld negative values for n; hence for n < n we should expect 

other modes, more general asymmetric or the axisymmetric modes, to 

prevail. 

Before we try to compare the solutions, we can examine the conse-) 

quences of letting m be of the same order as n in Eq. (30); the essential 

result is that ß2 < 1 and the last term in Eq. (30) gets modified to 

.  On*)2 r Cr Sh *  2ß2     Z    1  2orerß
2 

n ■ -XT [n- (Vr)2 ß"{      T-V 
} } öH^ r - -inr-     m 

P 
r 

which is additive for negative e and subtractive for positive e . 
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Comparison of Solutions: Outside Stiffeners (negative e ) 

Of the three possible solutions, we can anticipate that for valuer 

of n slightly in excess of n given by Eq. (35), Eq. (34) will provide 

the lowest possible values; when n is substantially larger than n , 

the monotonic behavior of Eq. (34) suggests that the only possible 

solutions will be the axisymmetric case of Eq. (32) or the more general 

asymmetric case corresponding to Eq. (36). However, here again since 

the last term is additive for negative e , and also that C will be 

quite dominant, one can intuitively opt for the axisymmetric case which 

* 
is independent of n and Z. For values of n below n , the only solutions 

in contest are the axisymmetric or the general asymmetric. Here again, 

since C may itself be small, the terms in the square bracket may be 

substantially low to warrant the prevalence of the general asymmetric 

solution over the axisymmetric solution. 

Comparison of Solutions: Inside Stiffeners 

For inside stiffeners, with e positive, Eq. (36) could give us 

substantially lower values as the last term is negative, compared to 

the m=l solution, Eq. (34), where the last term is positive. Hence 

the probable modes are the axisymmetric and the general asymmetric 

modes. A further careful examination of Eq. (36) shows that it is 

strongly dependent on Z, generally increasing with Z (as ß2 < 1 and 

all the terms, such as C , P tend to a limit). Hence for high Z 
r» r 

values Eq. (36) may yield high values of n which are higher than the 

axisymmetric. For lower values of Z, Z/(nttr)2 will be substantially 

smaller and the sizes of the positive and negative terms will be of the 

same order; thus yielding quite low values. 
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Numerical Results and Discussion 

Eq. (30) was studied for several combinations of o, e, and n 

over a range of Z from 102 to 101* and m,n values in the range (1 to 50) 

each. Eq. (32), being a function of a only, was computed for all the 

a values of interest. 

The rule on stiffener eccentricity on Eq. (30) was found to be 

that, for negative e (outside stiffeners), n (i.e., the asymmetric load) 

was relatively independent of Z, depending only on n for a shell of 

given a, e. 

However, for positive e, n was strongly dependent on both Z and n. 

Since this difference in behavicr distorts the regions of asymmetric and 
I 

axisymmetric behavior it is convenient to treat the two cases of 
| 

eccentricity separately. 
•*. 
j 

a) Outside Stiffeners: The solutions of Eq. f30) for negative e were 

almost independent of Z (in the range of interest) and increased rapidly 

with n so that for every a, e case it was easy to find a minimum n n 

above which tbo asymmetric solution of Eq. (30) was always higher than 

the axisymmetric solution. 

s 
Figure (3) shows a typical n-a diagram for a suitable lei value. 

The diagram consists of tw> major zones of axisymmetric and general 

asymmetric modes. The dividing curve happens to coincide with the 

n , . curve given in Eq. (35), which is based on an m=l solution. 

* 
This mode is essentially confined to the n curve; for values of n 

* 
even slightly larger than n we get only axisymmetric solution as the 

buckling mode. 
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Axisymmetric 

nr = tjr, ,* = 12(erar)
2/(1 + 0,-^2) . 1 

Asymmetric 

Figure 3.  Governing Buckling Modes for Cylinder witr Outside Radial Stiffeners Under Axial Compression 

Hence from a predictive point of view any value of n slightly 

* 
larger than n , . would give us the minimum combinations for an 

axisymmetric buckling. 

b) Inside Stiffeners: For positive e, the dependence of Eq. (30) on Z 

exhibits itself in a remarkable way. For Z < 103 generally n was 

independent of Z, but in the range 103 > Z > 101* it almost increases 

monotonically with Z. This behavior is generally true for low n as 

well as high n as shown in an ex^nple in Figure 4.  (for a combination of 

a,  e which could be taken as light stiffening). The axisymmetric line (being 

independent of Z, n» e) is also shjwn for the a considered. Thus it 

becomes clear that for Z > 103 we can have axisymmetric buckling 

(provided we have a minimum n required). For every case studied we 
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Figure 4.  Variation of Buck. • 3 Loads Versus Z for Cylinder with Inside Radial Stiffeners 

(a, = 0.5, er = 3) 

found that for Z > 103, we could find acceptable n values beyond 

which axisymmetric solutions become possible.  It is also clear from 

Figure 4 that the higher the Z value the minimum n for axisymmetric 

buckling becomes lower. Figure 5 shows the minimum n values for a 

shell of Z = 2000. 

The dividing curve between the axisymmetric and the asymmetric 

solution in Figure 5 can be represented by 

n = C 
12 (a e )2 

_ r TJ 

1 ♦ a_ 
(37) 

where the values of C are given in Figure 6 for different values of e. 

Returning to Figure 4, we notice that for Z < 103 the axisymmetric 
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Figure 5.  Governing Bucki.nc, Modes for Radially Stiffened Cylinder Under Axial Compression 

solution was independent of Z, but that for the particular n shown (200) 

it was slightly below the axisymmetric value. However, no matter how 

high the value of n was chosen, the asymmetric solution for Z < 103 

did not exceed the axisymmetric line. Thus a second remarkable feature 

of the positive eccentricity emerges: for Z < 103 the axisymmetric 

solution seems j.? be almost impossible. The reason is probably that 
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Figure 6. Graphs for Constant C in Equation (37) 

for Z <_   103 the buckling is a 'many-bayed' phenomenon with each bay 

buckling as a short cylinder.6 However, a point remains: the axisymmetric 

solution is certainly possible for Z > 103 which Reference 6 seems to regard 

as impossible for any Z. 

A further remark is also relevant: the axisymmetric solution, 

being so close to the asymmetric solution (at least for the n shown in 

Figure 4), provides a close approximation for the buckling load for 102 

< Z < 103 for a great number of a, e, n combinations. 

Summarizing the ring-stiffened case, both axisymmetric and asymmetric 

buckling are possible and for outside stiffeners it occurs for all Z ranges 

while for inside stiffeners it is confined to moderate-to-long Z ranges. 
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CONCLUSION 

The primary aim of this paper has been to concentrate on the effect 

of stiffener eccentricity oi the buckling modes rather than on the 

buckling loads*, to present as simply as possible the parameter combi- 

nations for which a particular mode would prevail. In 3ome cases we 

havu succeeded in presenting a simplified relationship between the 

parameters which would give minimum parameter combinations for moderate- 

length (102 < Z < 101*) c/linders buckling in the dominant mode. By 

concentrating on the buckling equations (within the assumptions of the 

theory) we have avoided some of the conclusions made in References 4 or 6, 

i.e., "that axisymmetric buckling occurs for 'short' cylinders' or "that 

axisymmetric buckling cannot occur for ring-stiffened shei.Is with inside 

stiffeners". 

This a priori knowledge of buckling modes is extremely useful in 

the computationally efficient integration schemes for the related problem 

of the dynamic stability of stiffened shells. 
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