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ABSTRACT

A techniquz is presented for the measurement of the Grineisen param-
eter (I') of a solid from the free surface velocity induced by pulsed
energy deposition. The technique is used to obtain both temperature-
dependent and temperature-independent Griineisen data., The measurements
employ a velocity interferometer to determine the free surface velocity
of solids exposes to a pulsed electron beam. For the cases where I' is
independent of temperature, the ' values are obtained from the maximum
free surface velocity as a function of incident fluence. For the temper-
ature-dependent case, I is extracted by an analysis based on the differ-
entiation of the free surface velocity with respect to the initial
temperature of the solid. The analysis takes into account the effects
of both the finite exposure time of the electron pulses and the delay
time of the interferometer. Results are presented for Al, Cu, Ge and Si
in a temperature range wher2 I' 18 constant. In addition, I' is measured
for silicon as a function of temperature over the rarge 509K to 300°K,
where I 18 strongly temperature-dependent. In all cases the results are
in excellent agreement with the thermodynamic values.
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I. INTRODUCTION

When a solid is exposed tuv pulsed radiation, either photon or
particle, the resulting rapid heating can generate thermoelastic stresses
which then propagate through the medium. The magnitude of the thermo-
elastic stress developed is characterized by the Grineisen parameter T,
which 18 defined in terms of thermodynamic parameters of the solid as
I = B/oKTCy where 8 is the volume coefficient of thermal exp.nsion, p is
the density, Kt is the .sotlermal compressibility, and Cy is the specific
heat per unit mass at ccastant volume. The importance of ' in describing
the thermoelastic response of materials arises from the fact that T is
directly related to the rate of change in pressure p with internal energy
densitv E at constdant volume:

r o= (%% )y (1)

For the case of pulsed energy deposition, the target sample can essentially
be considered to be inertially clamped duging the exposure time. Thus, if

I 18 constant, the change in pressure gp(r) at &he point 4 inside the

sample due to an energy deposition AE(r) is Ap(r) = I AE(r). More generally,
if T is a function of temperature, or specific energy, the rise in pressure
is given by

£°+AE(?)

ap(r) = f I (E)AE (2)

Es

where Eo is the initial value of the internal energy density.

For most materials, I' is fairly constant at room temperature and above,
and their thermoelastic response at these temperatures is adequately char-
acterized by a temperature-independent Griineisen parameter., At lower
temperatures, however, the variation of I' with temperature often becomes
significant., In some materials this variation is quite strong with T
even becoming negative at sufficiently low temperature. Therefore, if
one wishes to describe the thermoelastic response of these materials at
low temperatures, it is necessary that the temperature depenience of T
be known. In this paper we describe and demonstrate a technique that can
be used to measure T as a function of temperature. The measurement is
made by obaserving the free surface velocity induced by exposure to a
pulsed electron beam.

It has been shown previously1-2v3'“ that the thermoelastic response
of solids can be utilized as a means of measuring TI' for solids char-
acterized by a constant I'. 1In particular, using a displacement type

IR, B, Oswald, Jr., D. R. Schallhorn, H. A. Eisen, and F. B. McLean,
Appl. Phys. Letters 13, 270 (1968).

‘R, B. Oswald, Jr., F. B. McLean, D. R. Schallhorn, and L. D. Buxton,
Appl. Phys. Letters 16, 24 (1970).

JR. A. Graham and R. E. Hutchison, Appl. Phys. Letters 11, 69 (1967).
YR, B. Oswald, Jr., F. B. McLean, D. R. Schallhorn and L. D. Buxton,
J. Appl. Phys. 42, 3463 (1971).
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laser interferometer3+“ to study free surface motion proved to be a
fruitful and direct means of determining I'. Displacement interferometry
analysis was also applied to the study of the thermomechanical properties
of certain materials at low temperatures.s It was found that introducing
a one-dimensional thermoelastic model that explicitly accounts for the
temperature dependence of T' 1s indeed necessary for the description of
the dynamic response of these materials. In this analysis the known
temperature dependence of I as ascertained by thermal measurements of

8, K, and Cy was used in comparing the experimental observations with
the predictions of the thermoelastic model. No attempt was made to
measure T'(T) with the displacement interferometric technique, primarily
because the reduction of displacement data to values for I' requires the
unfolding of a double integral and the resulting accuracy would be
relatively poor.

The accuracy of the results for Grineisen values is improved con-
siderably if either induced _tress or free surface velocity measure-
ments are used, for then only a single integral is involved in the re-
duction of the data to I values. Gauster® recently employed a stress-
gauge technique to relate F(T) with measured stress. In the present
study we utilize a "velocity" interferometer of the type described by
Barker’ to measure the free surface velocity induced by a pulsed electron
beam, and we describe the analysis for extraction of T(T). We note at
the outset that the precision with which ' can be measured by inter-
ferometric. methods in general is or the order of 5%. This precision is
certainly poorer than can be accomplished by careful thermodynamic
measurements of 8, Kr, and Cy. However, interferometric methods are
direct, fast, and relatively simple, and yield results within the pre-
cision necessary for most engineering applications. Further, by
averaging a number of data points, the precision is usually improved
considerably.

In the next section we describe the analysis necessary to extract
Grineisen values from free surface velocity data. In essence, the
analysis is a differential one, where the Grineisen parameter is
sampled only over limited regions of temperature, or internal energy
density. Corrections for the finite duration of the electron pulse and
for the delay time of the interferometer are included. In Section III
we discuss the details of the experimental arrangement and procedures.
In the final section, as a check on the technique, we first determine
values of T for a number of materials over an energy interval where T
is known and constant. We then use the technique to determine the
temperature dependence of I' by measuring I'(T) for Si over a temperature
interval from 50°K to 300°K, and compare our results with the results
of thermal measurements.

5. B. McLean, R. B. Oswald, Jr., D. R. Schallhorn and L. D. Buxton,
J. Appl. Phys. 42, 3474 (1971).

bw. B. Gauster, Phys. Rev. B 4, 1288 (1971).

71,. Barker, Behavior of Dense Media Under liigh Dynamic Pressure,

Symposium HDP IUTAM, Paris, 1967, Gordon and Breach, New York, N. Y.
p. 483 (1968).
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II. METHOD OF ANALYSIS

The measurement of the GrUneisen parameter presented here is based
upon solutions of the one-dimensional thermoelastic equation of motion
which include the dependence of T on the internal energy density8 6 or
temperature. These solutions have been described in detail previously;“-5
thus, we briefly review only the results which pertain to the present
discussion. We consider a thin slib of elastic material, initially at

temperature T, and corresponding specific energy E,, exposed to a pulsed
electron beam of uniform flux incident along the x axis. Let x = 0 de-
note the plane on which the beanm is incident and x = L denote the plane
of the rear surface where velocity measurements are made, If the sample
thickness is much smaller than the lateral dimensions, the central region
of the sample will initially respond only along the x direction in

a one-dimensional manner?., We therefore postulate that the deposited
energy is immediately coupled to the lattice as thermal phonons and is
characterized by an x-dependent deposition function AE(x) (with units
energy per unit volume). Figure 1 shows a typical energy deposition pro-
file, in this case for aluminum 6061 exposed to an electron spectrum with
a mean energy of 1.96 MeV, Note that the energy deposition reaches its
peak value a short distance x, from the front surface. We take as a
convenient measure of the electron beam exposure the energy deposition
at the peak, AE, = AE(xp,). Also, we point out that for the present
experiments the sample thickness L is always made greater than the
electron range in the material; therefore, AE(x)+0 for x = L. We assume
that the temperature variations of the density, p, and of the acoustic
speed, c, are small in comparison with the temperature variation of T
and thus can be neglected. In addition, we assume that the electron
pulse can be treated as a square wave in time of pulse width 15 and we
take t = 0 as the time the pulse first strikes the front surface cf the
sample. We further assume that attenuation of the stress pulse during
the first cycle can be neglected or can be accounted for by a simple
correction factor determined empirically.

In this paper we are interested in the motion of the rear surface,
specifically the rear surface velocity, which from the results of
reference 5 is given as a function of time by

L-ct+i,
VL,*) = (1/ecty) j dxK(x) (3)
L=ct

wiere £, = c1, and K(x) is defined by

Er(x)

K(x) = f I'(E)dE (4)
EO

8W. B. Gauster, Phys. Rev. 187, 1035 (1969).

9R. J. Clifton, J. Appl. Phys. 41, 5335 (1970).
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Figure 1. Energy deposition profile in aluminum 6061 for the
1.96 MeV electron beam exposure.

for the range 0< x <L. To account for the periodic nature of the solu-
tion, the range of K(x) is extended to all x with K(:z) being defined
for other values of x by the periodic conditions

K(-x) = -K(x)
K(x+2L) = K(x) (5)
K(0) - = 0

10




In Eq. (4) Ep(x) = E, + 8E(x) is the final (x-dependent) energy density
of the sample. The ?inal temperature profile Tp(x) is related to Ef(x)
by the expression

Tp(x)

Ep(x) = o / Cy(T)dT (6)
To

Eq. (3) gives the calculated velocity history of the rear surface as long
as the stresses do not exceed the elastic limit of the material and
attenuation is negligible.

Consider now what one is actually measuring with the velocity inter-
ferometer. In particular, we must account for the effects of the finite
rise time of the interferometer. In figure 2 we show a schematic!V of the
laser velocity interferometer (after ref 7). We follow the analysis
given by Clifton.? Essentially, one is looking at the interference be-
tween two light beams One beam is reflected from the sample rear
surface at time t and travels directly to the photomultiplier tube in
time t, at the photomultiplier at time t+t;. The other beam is reflected
at time t - tp and is subjected to an optical delay of duration tp thus
also arriving at the photomultiplier at time t + t;. At time t = O the
sample rear surface is stationary and we suppose that the two bear. are
adjusted so that they are in constructive interference, i.e., the delay
leg is adjusted so that it contains an integer number of wavelengths A,
For t > 0 the rear surface begins to move, and the phases ~f the two light
beams are shifted relative tn each other, the phase shift being

8t (t +¢ty) = (2/Cy) Iu(e) - u(t - tp)l )]

where C| is the speed of light and U(t) is the displacement of the rear
surface. We may drop the time t;, as it merely shifts the entire time
record by the constant value t;. Now, every time the phase shift is
equal to an integer times the period 1 of the light waves, a fringe is
detected by the photomultiplier tube—the two light beams are again in
constructive interference. Thus, the fringe count N(t) at time t is
given by N(t) = At(t)/1p which, by (7) and rewriting the displacement
as an integral over velocity, becomes

t
N(t) = (2/}) f v(t')de' (8)
t-1p

This expression shows that the fringe count at time t is related to an
"average'" of the velocity over the time interval 1y, centered around the
time t - tp/2. In fact, if 1p is sufficiently sma?l we can apply the
mean value theorem to the integral in (8) to obtain

N(t) = 2t5/2 V (v - 1p/2) 9

B Berger, in Methods in Computational Physics, edited by B. Alder,
et al (Academic Press, New York, 1963), Vol. 1, p. 135.

11
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Figure 2. Schematic diagram of the experimental arrangement
depicting the velocity interferometer, the sample,
the calorimeter, and pulsed-electron beam exposure.

Mure precisely, however, we rewrite (8) as
N(t) = 2tp/A <V(t)>TD (10)

vhere <V(t)>rn is the velocity averaged over the interval 1p centered

around time t, and is defined in conjunction with eq. 3 by

t+TD/2
<V(t)>TD = 1l/1p f v(t')de'

t-1p/2
(11)
t+1p/2 L-ct'+4,
= 1/pclotp j dt' / dx'K(x")
t-1p/2 L-ct'

(It is understood now that all velocities refer to the rear surface
velocity. Also, we have again shifted the time base by the constant
value 1p/2; thus, the fringe count at time t+t; + tp/2 is related to
the average velocity defined by Eq. 11 at time t.) For later purposes
it is convenient to define auxiliary variables x = L-ct and 'x' = L-ct';
then Eq. (11) becomes

x+2p/2 x'+lo
<V(t = L-x/c)>T = 1/pclolp /- dx' /- dx"K(x'")
D x- 2p/2 x' (12)

12
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where ip=ct1p. In this expression the first integral accounts for the
velocity averaging in the interval t1p, the second integral for the finite
pulse-width effect, and K(x) accounts for the energy dependence of I' via
Eq. (4). In essence, a record of the fringe count as a function of time
is directly related to the velocity history of the rear surface, or more

precisely, to the time history of the averaged velocity as expreused by
Eqs. (11) or (12).

We now describe how we may extract Grineisen values from rear surface
velocity measurements. Assume for the present that I' 18 positive for all
energies. Then, experimentally the method reduces to measuring the maxi-
mum fringe count observed during the first pass of the stress wave at the
rear surface as a function of the initial energy density of the sample
and of the incident electron energy dose. That is, we determine

Nmax(Eo' AEP) - ZID/A Max {<V(t)>TD(Eo.AEp)}
(13)

= 2‘0“ vmx(zo.arp)

where V.. (EO,AEP) is defined as the maximum averaged velocity observed
for the initial specific energy E, and peak energy deposition AEp. If

£0 and Lp are sufficiently small, then we see from Eqs. (12) and (4) that
<V(t)>rD achieves its maximum value from that portion of the stress wave

generated by the beam heating in the vicinity of x,, the position of the
peak energy deposition. Note that if T'(E) is positive for all E>E,,
then the quantity K(x) alsv achieves its maximum value at the point x,.
Letting tp be the time that maximizes <V(t)>YD and using Eqs. (12) and
(4), we write Vpax (E,, AEP) as

me(l-:o, AEP) - <V(tm)>TD(E°,AEp)
(14)
L]
xm+QD/2 x+2° EF(x )
= 1/pcl % dx dx' I'(E)dE
oD
x -2 /2 x E
m D o

where xp = L-cty. If £, is much smaller than x;,, which is the case for
the present experiments, then the value of x; depends essentially upon
the relative sizes of 2p/2 and Xp. If Lp/2 <xp, then for all practical
purposes, xp coincides with the peak position x,. On the other hand,
1f p/2 >xp, then as a consequence of the symmetry conditions (5), the
correct choice of xpm is easily seen to be fp/2. That is to say

X, = Max {xp, RDIZ} (15)

where the approximately equal sign is used because in principle xn could
be shifted slightly away from the right hand side of (15) due to smoothing
effects of the spatial integrations in (14). However, for the work

13
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reported here such a shift is entirely negligible. (There could con-
ceivably be a significant shift only if ¢y and (or) 2p/2 are of the
order of or greater than the range of the incident electrons in the
sample.)

There are several ways one can obtain the energy dependence of T
from Eqs. 13 and 14. One direct approach, which may be descr hed as an
integral (or non-local) method, is simply to expand I' in a power series
in E, retaining as many terms as desired. The expansion coefficients
may then be determined by fitting to the measured values of Vmax (Ep,
AEP) in some fashion. Although scuch a method may be entirely satisfactory,
particularly if T does not vary too rapidly with energy, we choose to
use a differential (or local) method of analysis, which involves expan-
sions of T'(E) only in narrow regions of energy. This method offers the
advantage that the errors associated with the expansions of T are re-
duced considerably or, equivalently, only a few terms are needed in the
expansion to achieve the same accuracy.

.0 understand best the motivation for our differential approach,
note that in the limits 2,+0 and 2p+0, (14) reduces to

]Er
vmax(Eo’ AEP) = 1/pc T(E)dE (16)

E
(4]

where we define EF = Ef(xp) = E; + AEp. (In this case, of course, xp
= xp and AEp AE(x ). gor this limiting case I' (E) can be expressed
in terms of Vmax (Eo, AE ) = Vmax (Eo, EF) in either of two obvious
ways, obtained by appropriate differentiation of Eq. 16.

av
max
(i) P(EF) = pc (QEF ) Eo (17a)
v
(11) T(E)) = -pc (T‘E”L") % (17b)
(+] F

in other words, we can obtain I' as a function of energy either by
measuring Vpax as a function of EF holding the initial energy constant
or by measuring Vpax as a function of E; holding the final energy
constant. In either case I'(E) is determined by the slope of the
resulting curve. In addition, we can differentiate (16) with respect
to Eg holding AEP constant, obtaining the following relationship

v
max
(111) T{E;) = T(Ep) -pc ( 3E, > AEp (17¢)

In this case TI'(Ep) is determined—provided T'(EF) is known-by measuring
Vmax as a function of Egp holding the energy dose constant.

14
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For the case of finite &5 and 2p, matters are not quite this simple,
of course, but Eqs. (17) do serve to illustrate the general idea of our
procedure. Before discussing the general case, we point out that although
in princ.ple each of the three methuds {s valid for all energies, as a
matter of practical convenience they lend themselves to actual analysis of
data for different situations. In particular, {f ' {s independent of
energy, method (i) is the most strafightforward to apply; we can simply
measure Vmax as a function of energy dose. (Note that in this case (16)
reduces to simply Vpax (Eo, AEp) = I'/pc JEp). Method (1) can also be used
to determine [(E) at high energy. Methods (i{i) and (iii{) are better
suited for extracting Grineisen data in the low energy region. (Keep in
mind that in practice AEp s sizeable and can be much greater than Eo).
Method (111) {8, of course, restricted for use when I' values at the final
energies are known, whereas method (i1i) has no such restriction. However,
if T(Ef) is accurately known, method (iii) offers greater accuracy in
applications to be discussed further below.

The procedure we employ for the general case (non-zero ¢y and 2p) is
as follows. First we write down the expression (14) for Vpax for two

sets of energy parameters (E,, AEp) and (Eé, AE;), and then take their
difference

Voax(Eor 0E) = Voo (B, BED)
Ec" x +0,/2 X+ '
- ano | [ rma s i:-’i[ & ae
E x -L./2 D x o
o m D
EF(x')
j: I'(E)dE
EF(x')

where we have used the fact that the first energy integral is independent
of x. (We are setting up the analysis in a completely general way, so
that our expressions may be applied to the case of finite increments be-
tween the energy parameters as well as to the case of infinitesimal incre-
ments. This procedure proves convenient in application to actual data.

We can recover the differential expressions generalizing Eqs. (17) by
taking appropriate limits). Eq. 18 1is exact within linear thermoelastic
theory. To proceed further we write the limits of the second energy
integral as

EF(x') = EF - AEP [1-e(x')]

(19)

l' =l_1_.'
EF(x ) EF AEP |1-e{x")|
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where we recall Ep = Ep (xp). Hence, e(x) is the normalized depth dose
profile such that e(xp) = Y. {.e., e(x) = AE(x)/A0E,. Next, we expand
F(E) in Taylor series to first order in E around tge points SO -

(Eoc + Eg)/2 and Ep « (Ep + EF)/2. That is, in the first integral we let

re) = ) o+ (3L) et (e-E) (20a)
and in the second we let
rEe) = @) 4 (35) g D (20b)
F

These expansions are valid as long as I'(E) 1s approximately linear in
the energy intervals Eg to Eg and Ep to Ef and provided that £, and 1p
are small compared with the electron range in th: sample—so that

1 - e(x') << 1 i{n the range of the spatial integrations of (18). After
some straightforward algebra (18) reduces to

°|

Voax(Bor BE) = Vo (E

k)
= 1/pc r(Eo)(so-so) + F(EF)IEF-EF-(AEP—AEP)II! (21)

- r'(EF)(AEP+A£p)/2 ICEgEQ) Ty = (8E-0E )1,

where
: .
rr (¥ 155 | gat
F
and
x +1 /2 x+2
=D dx ° dx' n
1 = f o [ — {l-e(x") (22)
n L L
x -8 /2 D «x o
m D

The factors I} and I, include the corrections due to both the finite
exposure time and the f}nite delay time. They are independent of the
energy parameters E;, Eg, AEp, AE.; they depend only upon the values
of L5 and &p and on the shape of the depth dose profile. We note that
{f 25 and fp are much less than the electron range, then I, << I} << 1,
In fact, for the studies reported here I, is entirely negligible. We
retain {t only for the purpose of keeping our expressions general,
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Equations (21) and (22) are our basic operating equations. The
energy dependence of the Griineisen parameter is now obtained in a manner
similar to the methods indicated by Eqs. 17 for the simplified case of
Lo = &p = 0. We consider each method in turn.

(1) Setting E, = £é in (21) we obtain the equivalent of Eq. (17a)

]

-V E AE
¥y = pc max(Eo' AEP) max( o’ P) (23)

F (8E_~AE') (1-1;)
p P
Taking the limit Ep - E} = 0Ep - AE; + 0, we have
pc avmax

I‘(BF) " 10 (3_5;--)5 (24)

As pointed out earlier this method can be used for determining I at
higher energies. It is particularly useful when I 1is constant for
E > E;, in which case (24) becomes

V (E, AE)
P oa BC max' o 'D (25)
1-1, AEP

(11) Pu..ing Ep = Ep in (21) ylelds

]
r¥) = —pc Vmax Bo? Ep) - vmax(Eo' Ep)
o e E -E;
- (26)
AE_+AE )
_ pt
+ T(ERLy - T'(Ep) ——25-—2) I,
which in the limit Eg + E, corresponds to (17b)
WV nax
= - - |
F(Eo) pc ( an ) EF + F(EF)Il r (EF)AEPIZ (27)

Hence, if T(E) is known in the vicinity of Ep we can obtain I values at
low energy via Eqs. (26) or (27). For the case of finite increments,
however, this method may be cast into an alternative fgrm which elimi-
nates thg need to know I'(EF). If instead of setting Ef = Ef in 21), we
choose Ef = Ep - (AEp - AE&) I, or equivalently, E; = E; + (ABp - AEé)
I,, we obtain
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V. (E, 8E) -V __(E', aE")
r(go) - -pc [ max_ o ép-s' max_ o P ] L

)
+ (AE -AE )1 28
( 5 p) 1 (28)

—

' 2

AE + AE I, -1
+ r'(ﬁ ) ( L £ ) [ 2
F 2 1-1; !

If i, and &p are sufficiently small compared with the electron range, as
is the case for our studies, the last term in (28) is small compared
with the precision of our results and may be neglected.

(111) The expression corresponding to (17c) s found by setting

8Ep = AE; in (21). Noting that E, - Eo = EF - Ef we have
- - ]
: r(k)) r(¥p) ) 8E Iy
(29)
3 L
. Vo (oo AEP) -V (B AEL)
P E -E'
o o
Passing to the limit E; + E,, this becomes
avmax
= - ' -
1 F(Eo) F(EF) r (EF)AEpII pc ( 3, ) AEp (30)

Again, F(Ep) must be known to evaluate P(Eo).

We note that experimentally it 1is convenient to present the Jata
for the case where ' is a function of energy in terms of a family of ;
plots of Vpax vs Ey for a series of AE, values. If I(Ep) is unknown— ]
or we prefer not to use it if kno hen Eq. 28 with the second term ;
neglected can be used to obtain I'(E;). To minimjize the error asso- ]
ciated with the expansion of T around the point E,, adjacent curves
(adjacent AEp values) should be used. On the other hand, if T(Ef) is
accurately known, for example, by either method (1) ¢t (ii), then the
differential expression (30) of method (ii1) can be applied to each
plot individually, thereby eliminating the expansion around E,. (Note:
the differential expression (27) cannot be applied to ¢n individual
plot because in using (27) Ef must be maintained constant. We still
have an error due to the expansion of T around Ef, but in practice T
generally varies much more slowly at high energy than at low energy,
and hence the errors associated with an expansion at high energy are
smaller than those associated with an expansion of T at low energy.

In addition, when £, and &p are small the range of the expansion
around Er is correspondingly small, further reducing the error in ]

T
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method (111). In principle, therefore, method (i111) should provide the
most accuracy for temperature measurements, though, of course, Eq., 28 of
method (11) 1is certainly the most advantageous ‘for use when one wishes to
avoid the necessity of knowing I' at higher energy. We shall apply both
methods to reduce the data in the present study.

Up to this point we have been assuming in our discussion that T is
positive for all values of energy under study. In this case the maximum
rear surface velocity results from the stress generated in the vicinity
of the peak in the energy deposition profile; the time tp at which Vmax
is achieved corresponds to the time required for the stress wave to
propagate from the position xp as defined by Eq. 15 to the rear surface,
i.e., tm = (L - xp)/c. (See discussion preceding Eq. 15.) Now we inquire
into the situation for which I may be negative for certain energy regions
under study. This situation is known to be the case for certain materials,
for example, the covalent-bonded cubic crystals Si, Ge, and InSb, for
which I' is negative for temperature T ¢ 0.2 6p where 6y is the Debye
temperature of the solid. First, ve note that i1f T i1s in fact negative
everywhere in the energy region Eo < E < Efp, then our analysis goes
through exactly as before, except that the signs associated with the
rear surface motion are reversed. The displacement of the rear surface
is initially in the negative x direction, and hence Vpux corresponds to
the maximum velocity achieved in the negative direction during the first
cycle. Again, Vpax results from the stress generated in the vicinity
X Vv Xp.

If T changes sign in the interval E, < E < Ep, the velocity in
general would not attain its maximum magnitude at the time tp. Instead,
the time at which the velocity is maximum, as well as its sign, depends
upon the explicit nature of the energy dependence of i and the energy
deposition function, and upon the values ot F;, and AE,. To avoid causing
the analysis to become unduly complicated in detetmingng the values of T
for this case, we can simply use the fringe count at the time ty at which
the maximum average velocity would occur if ' were evcrywhere positive (or
everywhere negative). That is, in our analysis we use Vp,y as defined
by Eq. 14 where xj ‘s still chosen by (15); however, we realize that Vpax
so defined may not correspond to the actual maximum rear surface velocity.
Of course, we must a.so take care to ascertain the correct sign of Vpax
in this case. We note, however, that in practice T is generally negative
only over a relatively small energy interval at low energies—if I is
negative at all. (Recall that the specific heat of solids at low temper-
ature 1is proportional to T3.) Further, the values of AEp that must be
used in actual experiments are sufficiently large that the final energy
values Ef are rather high in the energy region where I' is positive. Thus,
it turns out that, even when Eog ~ 0, the maximum rear surface velocity
does in fact usually occur at the time tp and is positive.
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I1I. EXPERIMENTAL PROCEDURE

To establish this Gruneisen parameter measurement technique a series
of materials having known I' values were investigated. Then the values of
[ obtained by applying the snalysis described in the previous 4ection to
the measured maximum rear surface velocities produced by pulsel electron
bear exposure are compared to their thermodynamic values. For the temper-
ature-independent measurements, the materials chosen were Si, Ge, Al, and
Cu having a range in ' from 0.43 to 2.2. The temperature-dependent
measurements were carried uut on silicon over the range in temperature
from 50 to 300°K.

Figure 2 provides a schematic diagram of the experimental arrangement
depicting the electron beam, calorimeter, sample and interferometer. The
electrons emitted by the field emission tube of the flash x-ray machine
strcam in a partially evacuated drift tube and emerge through an aperture
with a-2 mil titanium transmission window. As previously described" this
arrangement produces a stable, reproducible electron pulse whose full
width at half maximum is approximately 30 nsec with a fluence uniformity
of *10% over the face of the exposed samples. The machine-charging voltage
for the exposures reported here was either 4.1 MV or 5.0 MV and produced
electron spectra with mean energies of 1.96 MeV and 2.50 MeV, respectively.

The peak energy deposition in the exposed sample was determined using
thin, in-line copper calorimeters in the following manner. For measure-
ments of rear-surface velocity at room temperature, the average dose in
the calorimeter was measured by the response of a thermocouple welded to
the calorimeter. The energy deposition profiie in the calorimeter and
target material were computed for an incident fluence of one electron/
cm? usinE the electron transport code ZEBRA!O and a measured electron
spectrun’ (also S. Graybill and G. Ames, private communication) cor-
responding to the operating voltage of the machine. The maximum energy
deposition in the target was then determined by multiplying the observed
calorimeter response by the predicted ratio of the peak dose in the
sample to the average dose in the calorimeter. For the low-temperature
measurements with silicon, the calorimeter response at room temperature
was normalized to correspond to the peak dose appropriate to the observed
peak velocity. Then, for exposures intended to be at a constant fluence,
the calorimeter response at lower temperatures was used to determine the
constancy of the incident electron fluence while the initial temperature
was varied. The initial energy, E,, was obtained from the measurement
of the initiul temperature using the Debye specific heat with a Debye
temperature of 6500K. '

The target sample, calorimeter and optics were supported on a vibra-
tion isolation table independent of the electron beam machine. All the
samples used were optically polished with flat and parallel faces. For
the room temperature measurements the samples were disks that had a diam-
eter of 5.08 cm and a mass thickness approximately 1.1 g/rm?. These
samples were mounted by supporting the sample around its edge with a
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neoprene O-ring which applied a2 slight pressure. Under this arrangement
the exposed diameter to thickness ratio was greater than 10 to 1 for all
the samples exposed for the room temperature measurements. For the cry-
ogenic exposure of silicon, the samples were rectangular slabs that were
glued to the cold finger of a variable remperature liquid helium Dewar
flask as previously described5. The cold finger had an aperture to permit
observation of the rear surface motion of the sample. To insure that the
effects of the constraints caused by bonding the sample to the cold finger
would not be observed during the first half cycle of the induced motion,
the diameter of the aperture was made greater than twice the thickness of
the sample. Thus for both the temperature independent and temperature
dependent measurements the observed response could be considered to be
one-dimensional for at least the first half cycle of motion.

The rear-surface velocity of the exposed samples was measured using
a velocity interferometer similar to the type developed by Barker.’
The interferometer employed a collimated, single-mode, 63283. He-Ne laser
as the light source. The laser beam was directed through a lens which
focused the beam onto the rear surface of the sample where it was re-
flected along a separate return path and recollimated by a second lens.
The rear-surface velocity of the target was determined by the Doppler
shift in frequency in the reflected laser beam. The frequency shift
was measured with a Mach-Zender interferometer composed of the beam
splitter and two retroreflectors. The Doppler shift is detected through
the interference fringes of the recombined beams as described in Section
II. The fringes were detected with a RCA Type 7265 photomultiplier tube,
whose output was amplified using a wide band amplifier having a fixed
gain of 20 dB over the frequency range from 200 Hz to 200 MHz. This
signal was recorded on an oscilloscope. The combined rise time of the
photomultiplier, amplifier and oscilloscope was approximately 12 nsec.
The maximum "averaged" rear surface velocity was obtained from the re-
corded interferometer trace by determining the maximum fringe count
(occurring at time tp) and using the velocity interferometer relation-
ship given Ty, Eq. 10. For the measurements reported here, the difference
in optical path lengths wa? varied between 8 and 52 m with corresponding
delay times ranging from 26 nsec to 170 nsec.

IV. RESULTS

A. Energy-Independent Griineisen Measurements

To verify the experimental technique, the Grilineisen values for Si,
Ge, Cu and Al (6061) were determined over an energy interval where T 1is
constant using Eq. 25. The results were compared with thermodynamic
values reported in the literature.!!»!2 For these measurements the
values of Vpax (AE;), AEp, and the acoustic speed c were determined
experimentally; wiSely published values were used for the densities.
The correction term I} for the effect of finite pulse width and inter-
ferometer delay time was computed in accurdance with Eqs. 22 and 15
using the measured values of 15 (= 30 nsec) and 1p along with the

lgarl A. Gschneidner, Jr., in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press, New York, 1970), Vol. 16, p. 410.
7. Brugger and T. C. Fritz, Phys. Rev. 157, 525 (1967).
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computed deposition profile based upon the measured electron spectrum.
(See fig. ) for aluminum.) Vpax was measured as a function uf the peak
dose deposited in the material; these peak doses ranged from a minimum
of 3 x 108 ergs/cm3 to a maximum of 12 - 45 x 10® ergs/cm3 depending
upon the material. Typical results for these measurements are shown
for Al in figure 3. By fitting a straight line to the Vmax vs AEp data,
the errors in both the dosimetry and velocity measurements are reduced
through an effective averaging process. The acoustic speed of each
material was dete-mined simultaneously with the measurement of V .. by
observing the time required for the stress pulse to propagate twice
through the sample and then combining this "round trip" time with the
measured thickness of the sample.

Results are shown in Table I, 1In all cases, the observed values
of T are within approximately 5% of the tabulated thermal values. In
fact, except for Al there is agreement within 2%. However, the samples
used in the present experiments were not pure Al but were made from the
aluminum alloy 6061 (1.0X% Mg, 0.6% Si, 0.25% Cu, 0.25% Cr, 97.9% Al).

B. Energy-Dependent Griineisen Measurements

The changes in the free surface velocity of silicon resulting from
the variation of T with specific energy, or temperature, are illustrated
in Figures 4a and 4b. These figures show the velocity interferometer
traces for a S{ single-crystal sample—voriented with the [100] axis
parallel to the incident electror flux—exposed to receive a peak dose
of 10.7 x 108 ergs/cm3 but at two Initial specific energies 1.73 x 108
and 16.5 x 108 ergs/cm?. At an initial energy of 16.5 x 108 ergs/cm?
(To = 244°K), T'(E) is very near its high energy limit of 0.43; thus the
electron-buam exposure produces a velocity history which is character-
istic of the constant high temperature value for I'. As indicated in
figure 4a the peak velocity corresponds to a fringe count of 2.2 at 680
nsec. A marked decrease in velocity is produced by lowering the initial
energy to 1.73 x 108 ergs/cm3 (To = 1089K) while maintaining the same
peak dose. As shown in figure 4b, the peak velocity to correspond to
a fringe counc of 1.0. The decrease is the direct result of the re-
duction in I' at lower specific energy.

The effects produced on the measured velocity history by varying
the initial energy is shown more explicitly in figure 5. 1In these plots
we show the velocity histories as obtained directly from the inter-
ferometer traces, again for the 100 orientation and for a constant peak
deposition of 11.1 x 108 ergs/cmd. Therefore, they are the "averaged"
free surface velocities as described by Eq. 11; they include the effect
of the long risetime of the interferometer due to the large optical
delay time (1p = 170 nsec) used for these measurements. The solid lines
in figure 5 are drawn to fit the experimental data. Two effects are
observed as the initial temperature is decreased: (1) a decrease in
velocity at lower temperatures, and, (2) changes in the velocity profile,
particularly over the early portion of the history. This change in
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Figure 3. Measured peak velocity vs. peak dose, .Ep, for
aluminum 6061 exposed to the pulsed 1.96 MeV
electron beam at room temperature.
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Table I. Comparison of Measured Values of T with
Tabulated Thermodynamic Values of TI' from
the Literature.

Material ¢ (105 cm/sec) tD(naec) I1 (R rthermal
Si (111]) 9.36 170 047 42 43
Ge [111) 5.95 42 .014 .75 .76
Al (6061) 6.67 42 .006 2.07 2.17
Cu 4.87 26 .015 2.00 2.00

e ——
-/
—
-—
——""‘

<
-
L%??S

-
-’
. o
o
o
o~

-

——

-

U |

TVTy
-
-
—-
-
-

AA i
LERJ

-y = - | - — - -

Figure 4a. Velocity interferometer traces for a Si single crystal
exposed with the [100] axis oriented parallel to the
direction of the incident electron beam. Both traces
correspond to a peak energy deposition of '10.7 x 108
ergs/cm3 but at initial temperatures of (a) T, = 244°K
and (b) T, = 108°K. The horizontal and vertical scales
are 200 nsec/major division and 0.20V/major division,
respectively.

24



LI B e

i E
: I
+ TS SUTTN FETTE FETTE FETEE SR
I .t
i 4 ‘
+

[ 1 ]
I A
[ ; .
i 1
1 &
: T &
T
I
I
]
tﬂ\

Figure 4b. Velocity interferometer traces for a Si single crystal i

] exposed with the [100} axis oriented parallel to the
direction of the incident electron beam. Both traces
correspond to a peak energy deposition of 10,7 x 108
ergs/cm3 but at initial temperatures of (a) Ty = 244%
and (b) T, = 108%K. The horizontal and vertical scales
are 200 nsec/major division and 0.20V/major division,
respectively.

R T T

shape results from the fact that each portion of the velocity history :
corresponds to an integral of T'(E) over different energy intervals, as
can be seen by referring to Eqs. 4 and 12. Therefore, unless T'(E) is
constant over the energy intervals of interest, the changes in the _
velocity history with temperature should in general be non-linear. {
The velocity curves of figure 5 show evidence of such non-linear behavior E
for Si over the specific energy interval from 1 x 108 to 20 x 108 ergs/
cmd. The dashed curves in figure 5 are the corresponding velocity
histories calculated from Eq. 12 using the energy dependent ['(E) as de-
termined from our measurements. These curves will be discussed in
further detail below.

To demonstrate the use of the analysis developed in Section I for
determining an energy-dependent T'(E), the Grineisen parameter of Si was
measured over a range in initial energy density from 1 x 108 to 24 x 108
ergs/cm? and then compared with thermodynamic datal3:1%, For these ;
measure ents single crystal samples with [111] orientation were used. !

3p. F. Gibbons, Phys, Rev. 112, 136 (1958).

9

'"R. H. Carr, R. D. McCammon, and G. H. White, Phil. Mag 12, 157 (1965).
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Figure 5. Comparison of measured and calculated velocity histories
corresponding to “he response of a single crystal of Si
oriented with the [l00] axis parallel to the direction of
the incident electron beam and at three different initial
temperatures (a) 273°K, (b) 126°K and (c) 94°K. The
solid curves are drawn to fit the data points; the dashed
curves are computed from Eq. 14 using our measured energy-
dependent T.

First, we used Eq. 28 of method (i1i) with the last term omitted to obtain
F(E), in which case it is not necessary to use Griineisen values for higher
energy. Then these results were used in conjunction with Eq. 30 (method
i11)) to obtain a more reliable estimate of T'(E) at lower energy densities.
The values used for Vpay (Eo, AEP) were determined in the following manner.
Maintaining the peak dose at a constant value, the maximum rear surface
velocity was measured at several initial specific energy values covering
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i the range from 1 x 108 to 24 x 10% ergs/cm?. These data were then fitted
with a smooth curve thereby giving Vpay (Eo, 8Ep) vs E, for the fixed

value of AEp. Again, the fitting of a emooth curve to the data effectively
averages out experimental errors associated with dosimetry and with

reading the maximum fringe counts, The procedure was repeated for six
different peak doses as shown by the family of plots in figure 6~those in
figure 6a were obtained with the 1.96 MeV electron beam and those in figure
| 6b with the 2.5 MeV beam. This family of curves formed the data base

' used in the analysis. For the analysis p and ¢ were assumed to be constant
and equal to their room-temperature values. Again, the value of I, was de-
termined from the values of t, and 1p {10 = 30 nsec and 1p = 170 nsec) and

from the computed deposition profiles. For the 1.96 MeV beam I} = .047
and for the 2.5 MeV beam I, = .028. (The value of I, is of the order of
.001 in both cases; hence, the second term of Eq. 28 is completely
negligible.)
4
300}~
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Figure 6a. Maximum velocity vs. initial energy for silicon single
crystal samples with [111] orientation exposed to six
values of peak deposition AE,. The curves in (a) were
obtained with the 1.96 MeV electron beam and those in
(b) vith the 2.5 MeV beam.
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Figure 6b. Maximum velocity vs. initial energy for silicon single
crystal samples with [111] orientation exposed to six
values of peak deposition AE,. The curves in (a) were
obtained with. the 1.96 MeV electron beam and those in
(b) with the 2.5 MeV beam.

In figure 7 we present the results for ' v E using Eq. 28. To
minimize the error associated with the expansion of T(E) around the
point E, = 1/2 (Eq + Eo), we used only adjacent Vpax curves (for the
same electron specttum) in obtaining the differences VYpax I(Eg, AEP)
- Vmax (Eo. AE; )I More explicitly, for given (adjacent) values of
AEp and AE}, a value of Eo {8 chosen and the corresponding value of
Vmax (Eo, g ?) is read from the experimental curve (fig. 6) Then
Vmax (Eo, AEp) is found from the AEp curve at a value of Eg such
that the requirement Eo = E; + (8Ep - AEP) I, is fulfilled. Then
application of (28) yields r( ). This procedure was iterated over
the entire range of possible Ey. In figure 7 each of the four symbols
represents data obtained from a pair of adjacent velocity curves. A
visual-inspection "best fit" curve (solid line) drawn through the
resulting data then represents our experimentally determined ene ;
dependent T(E). For purposes of comparison the thermal data of
Gibbons!3 and Carr, 14 ot al (dashed curve) is also shown in figure 7.
As can be seen there is reasonably good agreement between our
measured [(E) and the thermal data for all energy, the agreement
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Figure 7.
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Measured values of ' vs specific energy for silicon ob-
tained by applying Eq. 28 (method ii) to the data base
of figure 6. The data points correspond to pairs of
adjacent plots in figure 6. The solid curve is a best
fit to the data points, and the dashed curve represents
the thermodynamic values of T'(E) after D.". Gibbonsl3
and R.F. Carr, et all®,

being very close at high energy but less so at lower energy. That the
agreement i< less satisfactory at low energy and that the measured curve
lies below the thermodynamic curve (except at the lowest energies where
there are probably large errors in measuring the initial temperatures)
is not totally unexpected. As discussed in section I., by using method

(i1) we are approximating T(E) in the range E, to Eé wvith a linear curve.
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29




In the first place, I'(E) varles most rapidly with E at low energy and
such an approximation i{s expected to be poorer in this region than at
high enerpy. Secondly, when we approximate a nonlinear curve with
straipght line seyments the resulting approximate curve will lie to the
concave side of the exact curve,

To fmprove our measurement of I'(E), particularly at lower energy,
we used the differential expression (30) in conjunction with the above
results from method (i1i) for I'(E) at higher energy. In this case the
analysis was applied to each experimental curve in figure 6 individually.
The value of T at a point E, was determined from the slope of the maxi-
mum velocity curve at E, together with the linear fit to I' at Ep = Eg +
AEp in accordance with (20b). The data points (up to six) for each
value of Ey were then averaged with the results shown {n tigure 8. Here,
the error bars reflect the statistical uncertainty (not experimental
error) associated with each value of E;. Again, we compare with the
thermal data (dashed curve). As is apparent the agreement is signifi-
cantly i{mproved at lower energy; there is essentially exact agreement
for E > 2 x 108 ergs/cm3. The large discrepancies at the very low
energies are probably due to rather large errors in the {nitial temper-
ature measurement. One point of note is tnat we are quite definitely
measuring negative Griineisen values for E < 2.4 x 108 ergs/cm3. Thus,
our technique is fully capable of handling this region even though the
final energy densities lie well up into the region where I is positive.

As a final check on our measurements we compute the velocity time
histories corresponding to the observed ones in figure 5 using Eq. 12
and the measured T(E) curve of figure 8. The results are the dashed
curves In figure 5. We consider the agreement entirely satisfactory.
It demonstretes the validity of the thermoelastic model which forms
the basis for Eq. 12 as well as the reifability of our technique for
determining T(E). We note that the computed velocity history for Ty =
940K contains an initial negative velocity region corresponding to the
fact that the integral over I'(E) is negative in the tail of the energy
deposition profile. As T, is lowered even further this negative
velocity region increases both in magnitude and in extent in time.

V. DISCUSSION

The results presented in this paper demonstrate that the free
surface velocity of a thermoelastic solid subjected to pulsed energy
deposition can be used to determine both energy-dependent as well as
energy-independent Griineisen data. The experimental results further
demonstrate the adequacy of the model of thermoelastic response to
account for the effects of the finite pulse width of the electron beam
and the finite rise time of the velocity interferometer used.

This technique provides a complementary procedure to those using
propagated stress or free surface displacement to measure I'. In a
previous paper® a technique was outlined (but not utilized) to measure
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Figure 8. Measured energy dependence of T for silicon obtained by
applying the differential expression (30) (method iii) to
the data of figure 6 and using the measured T'(E) values
shown in figure 7 for the final energy densities Ef.

The error bars reflect the statistical uncertainty of
averaging the data. The thermodynamic energy dependence
of I' is given by the dashed curve.l3,

the temperature dependence of T using a Michelson interferometer. How-
ever, the free surface velocity is related to I'(E) through a single
integral over energy while the free surface displacement is related to
T(E) through a double integral (a spatial integral over the whole of the
deposition region in addition to the energy integral). Therefore, I'(E)
was determined from free-surface velocity rather than displacement
peasurements. !3
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As transmitted stress is also related to I' via a single integral,
the use of stress measurements as a4 function of initial temperature is
also an applicable technique for measuring I'(E). Recently, Gauster®
performed such measurements in aluminum and silicon using quartz gauge-
pressure transducers bonded to the sumples. The quartz gauge measure-
ments of fer the advantage that low stress levels can be measured, and
hence low electron fluences can be used with correspondingly small
temperature rises in the samples. However, relatively large-diameter

gauges must be used to achfeve sufficient accuracy at low stress levels,

and this may lead to difficulty with short one-dimensional read times.
On the other hand, with the velocity interferometer one can mecasure
the response at a point in the center of the sample rear surface and
therefore enjoy the ful) one-dimensional read time as determined by
the acoustic speed and the ratio of the beam area to the sample thick-
ness. cor many high-fluence electron beam facilities currently avail-
able, the beam area is typically 3 cm?. Thus, for a low density
material, with a small Grineisen parameter and low acoustic speed the
longer read time attainable with the velocity interferometer may be
advantageous. This advantage is particularly important for those
cases where there is appreciable attenuation of the stress pulses as
they propagate through the sample. For exposures below the spall
threshold, it is possible with interferometric techniques to observe
the motion of the rear surface over several cycles and correct for

the attenuation“. An additional advantage of the velocity inter-
ferometer i8 that it does not require the presence of a second
material medium to measure the response. For high temperature studies,
the need for the second material may introduce problems associated
with the bonding of the quartz gauges to the samples.

Additional measurements of energy-independent I values have been
carried out with 750 and 200 KeV electron beams producing peak doses
greater than 1010 etgs/cma, thus enabling the use of velocity inter-
ferometers with delay times of 6 nsec and less. These results were
equally successful in demonstrating the utility of this procedure.

The precision of an individual measurement in the velocity inter-
ferometer technique is limited by the errors in dosimetry and measured
velocity. The precision of the dosimetry technique is within approxi-

mately +10%, while the fringe count can be read to within approximately

a tenth of a fringe. Hence, the precision of the velocity measurement
is $0.1 (A/21p). Thus for a fixed delay time the relative error in-
creases as the velocity decreases. For both the energy-independent
and energy-dependent measurements the maximum velocity values used in
the analysis were determined from smooth curves fitted to the data,
giving Vpax in the first case as a function of peak dose in the second
case as a function of initial energy density. In addition, for the
energy-dependent measurements the results of several experimental runs
were averaged to produce T'(E) at each value of E. In this manner the

random errors in the data are effectively averaged out to a great extent,
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thereby improving the accuracy of our measured values of I'. As we have
seen, our measured values of T all lie with 5% of the thermodynamic
values, except for the low energy region in the temperature-dependent

f results for silicon, where a relatively large constant error in the

t initial temperature measurement at the lower temperatures is probably
responsible for the discrepancy.
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