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CHAFTER 1 :

INTRODUCTORY REMARKS

1.1. Introduction

The problem considered in this paper is the estimation of the
parameters in the mixed model of the analysis of veriance by the
method of maximum likelihood, assuming normality of the random
effects and errors. Both asymptotic properties of such estimators
as the size of the design increases and numerical methods for théir

calculation are considered. The mixed model has been studied for

many years. Various methods have been suggested for use in specific
cases, but without unified theory applying to all cases. The methed
of maximum likelihood, which provides such a unified theory,igas not
been used in the past because the complexity of the likelihood
equations in general cases made theif solution very difficult.
Computers have now made feasible the solution of the likelihood
equations; this fact makes the study of the properties of these
estimators of interest.

This papexfextends certain asymptotic results of H. 0. Hartley and
J. N. K. Rao (1967) and Whitby (1971) to cover the asymptotic behavior
of theée estimators in great generality. Both of these previous sets
of results have restrictions confining their application to a
narrower class of models to which many interesting cases do not
belong. In this paper the theory has been extended to cover almost
all models. (Certain degenerate cases are not considered.) The
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theory presented here applies to both balanced and unbalanced designsl.

The exact model used is given by Hartley and Rao as

SRS TR G T

= Ay + 000
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where y is an nx1 vector of observations; X is an nxp, design matrix
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for the poxl vector of fixed effects g} pﬂ is an nxm, design matrix
for the m, x1 vector of random effects b , 1=l 2,...,pl, e is an nx1
random vector of errors, It is assumed that the expected value of
each of the random vectors is the zero vector and that the covariance
matrix of b. is 6.1, i=.l,2,...,pl, and the covariance matrix of e is
605, where the ldentity matrices are of approprlate size. (See the

) note in Sectlon 1.3 on the use of c instead of 02 for a variance.)

It is further assumed that b, }3@ » and e are mutually independ-

19Pps s
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&

ent and that each has a multivariate normal distribution. It follows
that X has a multivariate normal distribut_ion with mean A}ng and covariance

i - . ") .
matrix ¥ = Gol + c_glgl 2~2~Q GESeReat: GP:LH’P:LE?:L . A full description

of the model-and the basic assumptions about it is given in Section 1.3.

The problem.' is to estimate g and OsTqsee- ,cp by the method of maximum
1

likelihood and to study the properties of such estimators.

oo bl R R SR s sl

Consistency a:na asymptotlc normality of maximum likelihood esti-

mators are often proved by using a Taylor series expansion of the

s ke o <

1. The author acknowledges his indebtedness to Hartley and Rao for
the form of the basic model and to Whitby for the form of Theorems
3.2.1 and 3.3.1.
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likelihood equations about the true parameter point (Cramér [19L46]).
There are often independent, identically distribuied coservations

and, in this case, conditions are placed on the common density function
to allow the correct expansions to be made. The as:,ﬁrptotic theory is

then carried out by normalizing by some sequence depending on the

number of observations.(Usually, but not always, the square root is

ﬁsed; see Whitby [1971:2].) Work has also been done with cases where

the observations are not independent, not identically distributed, or -
neither independent nor identically distributed, (Fcr example, see
Silvey [1961].) However, none of the above theory can be directly 1
applied to this problem. One generally does not think of an analysis
of véria.nce as a sequence of observations but as an experimgn:b_;w that
is, one thinks of an analysis of variance as one observatioﬁ of a
vector of variables constituting an experiment. Asymptotic theory is\
then usually carried out on a "conceptual sequence of experiments" for
which the size of the entire design becomes infinite in some orderly
way. The work done in this area of the analysis of variance does not
apply in all cases either. The problem is that often the estimeie of 1
each parameter requires a different normalizing seguence; this prcblen
is discussed further below.

. The results presented here are extensions of the work of Whitby

in the following sense. Whitby proved theorems dealing with a general

maximum likelihood estimation problem. He considered estimation of ' %

several parameters but his proofs depend on the normalizing seguence 3

(ne calls it cn) being the same for each parameter and on the norm of

¥
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1 .
a pxl vector X being ”;‘c“ = (2§=l x?)z . He mentioned that different

nd_rma.lizing seguences may be necessary but gave no indication of how
they are obtained or why they might be necessary. The theorems
px_'esented here are much more general. They allow any legitimate
vector norm tc be used and they allow the estimate of each parameter
to have its own normalizing sequence, To see that such an extension
may be necessary in an analysis of variance, one need only consider .
the balanced two-way model. The sufficient statistics in this model
are the grand mean aﬁd several sums of squares. The sums of squares
are a set of independent chi-square random variables with degrees of
freedom which will increase at different rates (Sce Sections 6.1 and
6.2.); eny enalysis of the meximum likelihood estimators (which of
 course are functions of the sufficient statistics) must take account
of these differences,

The freedom to allow the estimate of each parameter to have ifs
own normalizing sequence is achieved by the.a.rtifice of building the
normalizing sequence into the parameter, obtaining a set of sequences

of parameters.. The basic asymptotic theorem, Theorem 3,3.1, deals

only with such sequences of parameters., It is quite general; in fact,

most of the usual asymptotic results about maximum likelihood estima-
tion can be derived as special cases of Theorem 3.3.1. In 'Chapter. L
Theorem 3.3.1 is used to prove the consistency and asymptotic norm-
ality of the _ma.ximum likelihood estimators in the mixed model of fhe
analysis of variance. This is done by translating back from the

properties of estimators of a set of sequences of parameters to a
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sequence of estimates of a set of parameters.

One advantage of the use of the above method of proof for Theorem
3.3.1 and its application in Theorenm 4.4.1 is that the problems incurred
when the wrong normalizing sequence is used are clearly located. These
problems are easily illustrated by considering the simple case of cor-
rectly normalizing in’ the arithmetic mean of n indgpendent, idenfically
distributed random variables, each with mean zero and finite nonzero
variance, If the normalized estimate is Yﬁé n%+e iﬁ, then only for
€=0 will a 1limiting normal distribution be obtained. If ¢ < O the
normalizing sequeﬁce is "too small" and the Yn converge to a degenerate
(point) distribution at zero. If ¢ > O the normalizing sequence is
"too large" and the distributions of-Yﬁ "plow up" to a distribution
having atoms at pilus and minus infinity. This phenomenon ﬂ;;;ééme-
times been described in the following manner: if ¢ < 0 the asymptotic
variance is zero and if € > O the asymptotic variance is infinite.
‘While the first descriptions of the phenomenon are technically more
- accurate, the second descriptions do point out a way of locating the
problem. In the analysis of variance model the problems manifest
themselves in the matrix J defined in Section L.3.

The matrix J is the limit of the matrix of expected values of
second.derivatives of the log-likelihood. This matrix has had the
normalizing sequences built inté it. Only if the-nﬁrmalizing sequence
for each parameter is of precisely the right order of magnitude will -

J be positive definite. If the sequence for some parameter is "too

e
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small" the limit of the appropriate diagonal element will be infinite.
If the sequeﬁce is "too large" the entire row and column of J associated
with that parameter will be zero. Since g—l is ‘the asymptotic covariance
matrix it is easily seen that results analagous to the case for X occur
in the model under study. The problems of zero or infinite "asymptotic
variances" manifest themselves in the nonexistence of the limits form-
ing J or the fact that J is not positive definite. However, the proofs
of Theorems 3,3.1 and ’-L_.LL.:L point out further what goes wrong. The
proof of Theorem 3.3.1 breaks down completely if d is not positive
definite. Proofs of the lemmae used to prove Theorem 4.Lk.1 also break
down if the normalizing .sequences are not of the correct orders of
magnitude. The assumptions of Section 4.2 insure that for the sequence
of désigns considered in Theorem 4,4.1 the matrix J will be. positive
definite,

The results présented here are also extension of the work of
H. 0. Hartley and J. N. XK. Rao. Hartley and Rao (1967:101) make the
following assumption gbout the asymptotic behavior of the design
matrices U.: Every column of each Ei may contaln at most a finite
nunmber of nonzero elements. The two-way balanced model mentioned
above 'illust_fates that this assumption rules out any sort of balanced-
crossed layout. (See Section 6.1.) The effect of this assumption is,
in fact, to assure that the estimates of a.ll’ the o; can be normalized
by the same normalizing sequence, As noted above, the results presented

here are not so restrictive. In fact, any sequence of designs that
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might be considered as an actual sequence of experiments is covered by
these results; the assumptions used here may appear restrictive but
they merely rule out cases that are useful only as couﬁterexamples to
theorems and not as actual design sequences,

Hartley aﬁd Reo went on in their paper to assert that under
their assumptions, the maximum likelihood estimators are consistent -
and asymptotically efficient, although they did not meke clear vhat
they meant by the latter term. They sketched but did not give details
of a method of proof. In fact the details constitute the difficult
part of the proof. With a great deal of effort, and after corrections
are made to their assumptions, their method of proof (with details)
vields the claimed results. (If the assumptions are taken, as written,
counterexamples to the theorems can be found.) A more detailed dis-
cussion of their pfqof is given in Appen&ix D. The methods used here.
require no less effort but cover all interesﬁing cases,

Thus far only asymptotic theory concerning the maximum likelihood
estimates has been discussed. The numerical computation of the esti-
mates is also a fruitful area for study. One problem in this case is
the problem of negative estimates. The maximum likelihood estimate of
a variance can never be a negative number; such a point would not be in
the parameteriépaceqand would be ineligible for a maximum likelihood
estimate. Thus some sort of truncation procedure must be used to
insure nonnegative estimates. The procedure used vhen the estimates

are obtained as solutions to the likelihood equations is given in

e




Section 1.3. The problem of negative_estimates is also discussed in

" Chapter 2 and in Section 5.6. It should be pointed out that truncation
does not affect the asymptotic theory'because the true parameter is
assumed to be an interior point of the parameter space so that all
the’trué variaﬁces are positive, .Since the estimates are conéistent,
truncation ceases to be a problem., Asymptotic theory when the true
parameter point is on the bouﬁdary has not been developed for this
model; in some simple boundary cases, asymptotic distributions occur
which are definitelyjnot normal. Thus some further éxtension of
methods of proof will be reQuired in these cases,

The actual numerical procedures for the computation of the estimates
are discussed in Chapter 5. An iterative procedure suggested by Anderson
(l971b)§“(1973) is compared with a procedure sﬁggested by H. O. Hartley
and J. N. K. Rao (1967) and implemented by Vaughn (1970). The pro-
cedure of Anderson was found to be computationally much more efficient
than the Hartley, Rao, Vaughn procedure in a Monte Carlo study. J. N. K.
Rao (1973) has pointed out that the Anderson procedure is in effect the
method of scoring. A compubter program developed to implement the

Anderson procedure is discussed in Appendix C.
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1.,2. Notation and Conventions Used.

The following notation will be used throughout this paper. All
vectors are column vectors and are underscored with the symbol "~ to
~ represent boldface type. Matrices are also underscored in the same
menner. With three exceptions (G, R, and sometime Y) vectors are
represented by small Latin or Greek letters; matrices are always
represented by capital Latin or Greek letters. All vectors belong to
the space R (the Cartesian product of R, the real line, with itself

m times) of the appropriate dimension.

and the matrix norm it induces as a natural norm is also denoted by

i=1 a

i.e., IU' sup _—”:]T_ . If A is an nxm matrix, tr(d) = =

NN

is the trace of A, )\J. (A) is- the ,jth characteristic root of A, where
A=A, = ..o 2, |A] is the determinant of A, and if A is non-
singular gl is the inverse of A and ;gt = (,13')'l = (;:;l)'.

I 2(35) is a pxl vector f‘u.nction of the pxl vector X5 then the

Jacobian of f, (;\c) is a pxp matrix function of x deflnea by
[;‘,(J]i -1
[J (?5”1;, —=s; — - It then follows that if £(x) = A g(x),
J

where f and g are pxl'vector functions of the pxl vector x and A is
pxp nonsingular, :If(i‘) 5 g.‘;lgg (x). A frequently e notation will
be 9,(&)}:)9 where g~is a pxl vector function of a pxl variable § and a
random variable Y (Y may also ve a vector.). Analyses will then be
performed on G relative to y for fixed Y and Y may be required to

belong to some set in its probability space (which set will have large
¥ .

\
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probability). For such a G the pXp Jacobian matrix :IG(}’L:E) is defined

( 3la(y,0) 1, _
{gﬁ\i,N)]ij = _—3{1'3——— . Another notgtlon which will be use@ mayl

seen confusing at first. in is often used as a statistical parameter
and ¥ as an argument in a function in the same expression; the notation

N (y,b)

Y may appear, where A is a scalar function of y and § and
Y i

==l
NH.{J_

Yy is a random variabie. This expression contains §, the variable vhich
is diffe.rentiated w:i;th respect to in the function A, and also }kn’ a
parameter, one of a seguence of paraxﬁeters under consideration. This
dual role of § parallels the use of dwmmy variables in an integration

(e.g. f(x) = er g(x)dx ). Differentiation by a subvector will be as

%o

, , . A (y,¥) A (y,)
follows: Let y’= (B',7") then -——sz"— or ~——m——— may be
~ ’~ oB. - o7, _
J ﬂl.:-ln 1 i_in
written if that is more convenient than using a complicated subscript

scheme, Vector derivatives may also be used where appropriate; for
oN . . R .
eXample, 38 where E' is poxl yields a po_xl vector of derivatives and

2
3 A . ) R
———ﬁagag and yields a PoXP, matrix of second derivatives.

Linear spaces are denoted by script letters and are column spaces;
that is, £(X) is the linear space formed by all linear combinations of

the columns of X. The symbol & denotes direct sum; if x = S(')\C') and




11

Y=38(Y) then 2 =X 6 Y= {El’%i}s‘"x, XeX, yeYl. Spheres of radius
r sbout x, are represented by'Sr(icO) = {YJ HX’?EQ” < r} for-whatever

If 8 C RP, then § is the closure of S.

Convergence in distribution is represented by-g‘—' and . convergence
in probability by—Q—* . Both of these concepts may be used with vectors
or matrices. For instance, "'J}n(gn) 2 A", where én(gn) is a pxp matrix
function of a random variable zn and A is a pxp constant matrix, means
P{Hfl}n(}'n) -,I}H >8} -0 as n— =, Since both vector and matrix norms are
continuous functions of their elements, it is sufficient to prove con-
vergence for each element of the vector or matrix separately.

A p dimensional miltivariate normal random vector is denoted
n (L’?Z)’ where p is its expected value and X is its covarla.nce matrix.
For a univariate norma.l the subscrlpt is dropped. x2 is a ‘éljlwl-square
rendom variable Wlth p degrees of freedom. The symbol "~!' means "3is-
tributed as"j; thus X ~$C§ means the random variable X has a chi-square
é[istribution with p degrees of freedon.

One practice followed in this paper Vmiéh the reader might find
confusing is the notation of dependence on n. "n — " is used to
dencte that the size of the entire design becomes infinite (y is nxl).
- A11 other elements of the problem, including the sizes of vectors and
matrices, depend on n; only Py and Py> the number of parameters in the
mode_l, remain fixed., The dependence on n does not always appear in
the notation., It is suppressed when it is obvious that such dependence
exists, When it is not suppressed, it is usually to emphasize the
dependence on n., The reader, being forewarned, should not be disturbed

A

Py




by the seeming inconsistency; as one becomes familiar with the topic,
the inconsistency disappeaxrs.,

This peper is divided into seven chapters labeled 1-7 and four
sppendices labeled A-D. Vhen a chapter is divided into sections, these
sections are labeled 1,2,... and are prefixed by the chapter label
(e.g. Section 1.2, Seétion A.3). Section A.L is Purther divided into
five subsections labeled A.L.1-A.L4.5. Theorems, lemmae, propositions,
end assumptions are numbered consecutively within sections and prefixed
by the section label (e.g. Assumption 1.3.5, Proposition A.3.4). 1If
there is only one theorem in a section it is still labeled as the first
theorem in the section (e.g. ‘Theorem 3.2.1). In the case of the sub-
sections A.4.1-A.L4.5, the lemmae appearing in these subsectlons are
labeled A L,1-A.L,5 instead of AL.1.1-A.Lk, 5 1 because the first set
of numbers relsates to Section A4 as a whole and that is the rule used

to number these lemmae,

% ;'qu_,v
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l..3,. Basic Analysis of Variance Model and Assumptions About Tt
The basic model used will be the mixed model znalysis of variance,

which can be written as

Lty ket By e

vhere
¥ 1is an nXl vector of observations;
X is an nx;po matrix of known constantsj; ! s
is a poxl vector of unknown constants;

is an nXm matrix of known constants, i=1,2,... ,pl,

e ®

is an mixl random vector, i=l,2,... sPq3

e is an nXl1 random vector. l

e

Thus X is the design matrix for the fixed effects znd the Ei are the
design matrices for the random effects b.. Let G. = U.U! ,
~L ~ ~dsd

i=1,2,... 5Py > and '(:’JO = En . The following assumptions are made about

the model: '
ASSUMPTION 1.3.1. The random vectors 31,}32,'...,33? , e are | .j?
l b
_mutually independent, with e ~ 7 (0, o I ) and b, ?]ml( > Oy Emi),
- 2 :
) 1=1,2,0003P1.
ASSUMPTION 1.3.2. The matrix X has full renk 1:0.
ASSUMPTION 1.3.3. n = po + 12 + 1,
ASSUMPTION 1.3.Y4, The partitioned matrix {}’ U,! has rank greater

than Py 1i=1,2,... sPye

2, This differs from the usual convention of using c?. o, is used as

a variance to avoid writing many squares. This also Tollows the
thatlon of Anderson (1969), (1970), (1971b), (1973).

\




ASSUMPTIN 1.3.5. The matrices go,_ El""’gp are linearly

Py

independent; that is, zi=0 oi’g,i = Q implies 0;= 0, i=0,l,...,pl.

These assumptions are sufficient to find the estimates; however, one

further assumption about the U, will be made.

ASSUMPTION 1.3.6. The matrix U, consists only of zeros and omes

and there is exactly one 1 in each row and at least one 1 in each

column, i=1,;2, sessPy-

The above assumptions can be explained in analysis of variance
terms. Assumption 1,3.1 is the usual assumption of the independence
and normality of the random effects. Asmmption 1.3.2 can always be
saetisfied by a suitgble reparameterization of the problem. Assumption
1.3.3 says there are at least as many observations as parameters.
Assumption 1.3.4 says that the fixed effects are not confounded with
any of the random effects. Assumption 1.3.5 says that the random
effects are not confounded with each other. Assumption 1.3.6 just
says that the Ei are standard design matrices and it has three
consequences, E{ Eil = Ei’ an miXmi nonsingular diagonal matrix; Ei

has full rank m, and m, < n.

It follows from the above assumptions that y has a normal distri-

bution with

6(1) =X ,
Cov(y) = 8(y-%) (y-%2)’
U G T g UL v e U W
O~n 1~1~1. Py~P1~Py
Py
=Y 0.G. =2,
1~ ~

i=0

LI TR P Pt
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Thus y ~ N (Xx,Z). The problem considered here is to observe y and
estimate o, 02Ty seee ,O’P by the method of maximum likelihood.
1

The parameter space is defined as follows: Let p=p+ P+ 1.

@ c R’ is the parameter space; if 3 ¢ ©® then 3’= (%',g'), vhere
o = (al,orz,...,apo)' end g = (Go,cl,...,dpl)'. The restrictions

vhich form ® are © = {ge RPL@J'= @’,0')s o ¢ RrP0; oy > 03 05 20,
i=l,2,...,pl}. If the likelihood function of y and § is L(y,6) it

follows from the multiveriate normal density that

)\(z,g) = log L(z,ﬁ)
-1 1
= -3n(1og 2m)-3log|3|-H(y) T (g-32). i
: :
Differentiation” of A by o and g leads to the following equations which !
mist be solved simltaneously for & and ’c:r' ' iy 1

[ 3 o2, xJe- 5(20%%>1

tr( gloc;)‘l tr( oG) ( G)’l( o) (y-Yar) !
370 5%/ R4 ST S

i=O,l,....,pl.
These equations can be zbbreviated

P ST S

-1
tr G, = tr r o1 G.Z (x—Xa)(y-Xa), 1=0,1,...,D7 »

~~ ~

where E is a function of o.

3. Such maximization by differentiating is Justified in Anderson

( 1970)

{
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As was noted in Section 1.1, the maximum likelihood estimates
of the variances cannot be negative, but the solutions of the likeli-
hood equations may be negative. Thus the'following truncation scheme
is_necessary; If the solution of the likelihood equations yields a-
negative estimate of o, for i ¢ § (where S is some set of indices)

then solve the following set of equations:

d

L0
oA )
== =0 , ids,
1

o; = o ., ieS.

If a negative estimate occurs for some other o;, add its index to the
set S and repeat the above procedure. Continue in this manner until
no negative estimates are obtained. As is pointed out in Section 5.6

this is easily done for this model.

The computational methods used to solve the likelihood equations

are discussed in Chapter 5. The asymptotic properties of such solutions

are discussed in Chapter L.




CHAPTER 2
REVIEW OF PAST LITERATURE

The subject of variance component estimation has been considered
for some time, An excellent overview of the present staté of the art
may be found in.Searle (1971). He described the development of many
different techniques used and gave copious references. A history of
the development of the entire field will not be given here; instead a
short review of the literature immediately pertinent to this paper is
presented.

Theoretical properties of methods of estimation and testing of
variance components have been considered by Herbach (1959),.who-
considered the one and two way balanced layouts and proved optimality.
results for the usual analysis of variance tests and zlso derived the
likelihood ratio tests in these cases., Graybiu and Hultquist (1961),
Hultquist and Graybill (1965), and Hultquist and Atzinger (1973)
considered the balanced models with respect to minimel sufficient
statisties and proved vérious optimality results as-well as deriving
certain likelihood equations; some of the results of Hultquist and
Atzinger overlap some of those of Anderson (1970) described below.

~ Several author;'héne considered the problem of é model where the
covariance matrix has a special structure. Wilks (1946) considered
the intraclass correlation coefficient model. Olkin and Preés (1969)

studied the circular stationary model., Srivastava (1966) and Srivastava

——

17
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and Meik (1967) considered a more general model where the covariance
matrix has linear structure and the matrices go’gl""’gp . have special
properties. A1l the above authors derived likelihood ratio tests
(using several diverée techniques) for the particular model under
study. Anderscrn (1969), (1970), (1971b), (1973) also studied models
where the ccveriance matrix has linear structure. Anderson's method
of aralysis snebled all the above cases to be coasidered within one
unified fremewcrk, |

The model inderson used is y ~ ﬂp(ﬂ.’g) , Where H,’: ’}SE and
, ='Eo o, r%i' The model asgumed. here is a special case of this.

f=

inderson derived the likelihood equations and showed how they ca.n be
sunphf‘:.e?im certain cases.(See Section 5.2.) He gavé conditions for
estingbility of the parameters and suggested several methods for the
solution of the likelihood equations. The method studied in this paper
was advanced in {1971b). In (1969), he derived and gave properties of
the likelihood ratio tests of hypotheses dbout X and the s He also
proved that the maximum likelihoéd estimators in this case are consis-
tent and asymptotically efficient as the entire process is replicated
(that is, as repeeted cbservations are taken on Z) and he derived the
esyrptotic. coveriance matrix,

H. 0. Hartley and J. N. K. Rao (1967) analyzed maximum likelihood
estimétion in the mixed model of the analysis of variance, the model

used in this paper. They gave five rationale for using the method of

maximum likelihood in this case, which are paraphrased here. |

o=
e
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a) Computers make easy solution of the likelihood
equations possible.
b) This technigue can be applied to any model,
‘balanced or unbalanced.
c)  The technique has large sample optimality properties.
d) Maximm likelihood estimates are always functions of
the minimal sufficient statistics.
" e) The maximum likelihood estimates of the variance
components are always positive.
Several comments can be made about these rationale. A technique
(similar to Anderson's) is proposed in this paper which is different
than Hartley and Rao's for solving the likelihood equations,. . This
technique does not guarantee 1nonnegative estimates, but can éasily
be modified so that only nonnegative estimates are finally arrived
at.(See Chépter 5.) (Many writers have considered the problem of
negative estimates; see Searle [1971:22] for a good summary.) Hartley
and Vaughn (1972) developed a computer program to implement the
algorithm of Hartley and Rac. (The computer program to implement the
algorithm proposed here is discussed in Appendix C.) Theilarge'sample
optimality referred to above was proved by Hartley and Rao only for a
“liﬁited'set of designs'in-which the nurmber of dbservétions at any
particular level of any random factor must remain bounded. Such an
assumption rules out even so simple a model as the two-way érossed
layout random effects model. In this papér the optimality resulis

are extended to cover almost all interesting cases.

4




The discussion of asymptotic results has, as a rule, been
confined to independent, identically distributed cobservations., The
basic techniques were expounded by Cramér (1946), Wald (1949) and
Wolfowitz (i9h9). As noted in the introduction, these techniques do
not apply to the model under consideration here. Silvey (1961)
discussed asymptotic results for sequences of dependent observations
bub again his work cammot be applied in this case. Whitby (1971)
considered estimation for the generalized beta distribution; although
he was also considering sequences of ’independent, identically dis-
tributed random variables, he did prove some general theorems which
have been extended to cover the analysis of variance model of this’

paper. Whitby used only one normalizing sequence for all the

estiJﬁé;ﬁé’g.: The theorems presented here allow a different normalizing

sequencé fo:g' the estimate of each parameter. This is done by the
artifice of building the normalizing sequence right into the para-
meter. The result is a sequence of parameters, the estimates of
which have certain properties; these properties can then easily be
translated té properties of the desired estimators.(See Chapter L.)
This is only a cursory review of the subject of maximum like-
lihood estimation in the analysis of variance. For a more detailed
study, the reader is referred to the papers of Searle (1971); Anderson

(1971b); (1973); Hartley and Rao (1967); and Whitby (1971).
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CHAPTER 3

BASIC THEOREMS ON ASYMPTOTIC BEHAVIOR

3.1. Introduction

In this chapte:r two theorems are presented which will be used to
prove the asymptotic properties of maximum likelihéod estimators in
the analysis of variance. Theorem 3.2.1 is a form of inverse function
theorem and is used to prove Theorem 3.3.1. Theorem 3.3.1 is a very
general theorem concerning asymptotic theory and is used to prove |
Theorem 4.}4.1, the main asymptotic result of this paper. However,
vhere Theorem 3.2.1 has little intrinsic interest except for the
methematics of its proof, Theorem 3.3.1 has applications beyond that
of a lemma for Theorem 4.L4.1. Theorem 3.3.1 has wide appliczbility
and can be used to prove most of the standard asymptotic results con-
cerning .roots of the likelihood equation, |

Theorem 3.2.1 is a form of inverse function theorem. It concerns
roots of the vector egquation 9..(?5) = 0. When G has the form
CG(x) =a+ ,%(35’50) + 3(35), a and r are smell relative to A, and
certain continuity and differentiability conditions are met, then
there is a rcot of ’C:,(zc) =0 near Xo Similar theorems are often used
in proving results abbut the roots of the likelihood equations. The.
method of proof of Theorem 3.2.1 is pabberned on the proof of The
Inverse Function Theorem (Theorem 9.17) of Rudin (1964:193-195). The
form of the theorem is patterned on a lemma (Lemma 3.1) of Whitby.

(1971:8-9). Whitby based his proof on the proof in the first edition

e
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of Rudin's book; Rudin's first proof (and hence Whitby's) required

1
that the norm of a vector be the Euclidean norm, ”?5” = (Z?__l x? &

The proof given here is slightly more'general in that it a2llows any
vector norm to be used. (See Issacson and Keller [1966:3-“ for the
definition of a2 vector norm.) The assumptions of Theorem 3.2.1 are
stated somevhat differently than those of Whitby's Lemma 3.1 in order
to facilitate the different method of proof wused here.

Theoram 3.3.1 contains powerful asymptotic results and has
intrinsic interest because of its wide applicability. Theorem 3.3.1
concerns a seguence of estimators of a sequence of constants {(or
constant vectors). The sequence of .estima,’cors becomes close (in a
well defined sense) to the sequence of constants with high probability;
ﬁlrthé;'ﬁcn);e, the sequence of estimates is asymptotically normal. As
seen in Chapter 4, this sequence of estimates can easily be translated

into 2 sequence of consistent and asymptotically normal estimates of

the parameters in the analysis of variance problem. The basic setup

and method of proof of Theorem 3.3.1 are as follows: For each n (of a

sequence of values of n increasing to infinity) there is a wvector
function G (¥ ,Y ) of a vector of parameters in and a random vector
~iAn’An

Y . (G will be the likelihood equations.) Then for each Y in a

~ ~ ~n .
certain set of ¥ values, it is shown that G (l’wY ), as a function

~n ~ntAn’An .
of in, satisfies the conditions of Theorem 3.2.1; thus there is a root

A

A 5 - = I . 1 1"
ifn(zn) of 9n<in’£n’ Q near y, . (}{On will be analogous to the trug

paremeter point.) If n is large enough, the set of ¥ values will have

L
e AR

3 L i
Ml e P

£

3
S {@‘\
o
T

SRR

2
B

i o iy
i T

gt g Lot
R #2458

o,




D
W

large probability. It is also shown that ﬁn(zn ) - Jpy, converges in
aistribution to a multivariate normal distribution. |

The wide applicability of Theorem 3.3.1 resuilis from the fact that
a sequencé of estimates {ﬁn(Zh)} of a sequence of parameters {&On} is
considered instead of a sequence of estimates {én(zn}} of a single
parameter EO' The estimates of the single parameter QO will require
normalizing sequences and any proofs of asymptotic properties must take
explicit account of these normalizing sequences. In Theorem 3.3.1 the
normalizing factors are built into the estimates‘and parameters and
are not expiicitly mentioned, (In Chapter 4 it is showm how}!in is
obtained from‘g'by mltiplying each element of_glby'the appropriate
normalizing factor.) The fact that the normalizing sequences are not
specifically mentioned in Theorem 3.3.1 allows it to be uséd ;£ the
anelysis of variance (vhere the éstimate of each paraxeter may require
a differeht normalizing sequence), in a case where the estimate.of
each parémeter can be properly normalized by the sguare rooﬁ of the
number of observations, or in almost any other case of maximumllikeii—
hood estimation. For instance, Theorem 3.3.1 cen easily be applied %o
vield consistency and asymptotic normality in the case of:independent,
identically distributed observations givén in most textbooks (e.g.
Cramer [1946]). .

The precise statements and proofs of Theorems 3.2.1 snd 3.3.21

will be given in the following two sections.
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3.2. An Inverse Function Theorem

The theorem in this section ié a form of inverse function theorem.
The essence of the theorem is that when a function G(x) is of the form
E’,(E) = a+ '133(5"50) + r(x) and a and r are small relative to A, then
there is a root of G(x) = O near Xqe | The norms, spheres, and Jacobians
used below are defined in Section 1.2. The'‘proof of this theorem is

patterned on the proof of Theorem 9.17 of Rudin (196k:193-195).

THEOREM 3.2.1. Let G(x) be a pX1 vector valued function of a pxl

vector x. Let a be a pxl constant vector, A a pXp constant matrix

and ,1:'('}5) a_pXl vector valued function of x. Suppose there exists

7 > O such that

i) 6(x) = a+ A(,ZS',?&)) + r(x) for all x e Slm(?fo) N

"~

i1) |al # o,

111) o=t off <1,

) (I8 Gl <31 for 11 x e Sp(x)

- v) G(x) is continuously differentiable in Slm(?fo) ,

vi) For £(x) = A 'g(x)
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a) ’qi(zc_‘l) = B is nonsingular,
-1
o) B < 2,
-1

¢) For all x e S;(x)), Iigﬁ(g)-gjl < 1/¢2lis™D).

Then there exists ’S:c) a_solution of G(x) = 0 such that X ¢ S3n(1co).
(Note that Condition 3.2.1.v is equivalent to steting that for
o wmey

all x ¢ Slm(ico)’ = exists and is continuous, i,3=1,2,...,D.)

~o

PROOF.
First note that 3.2.1.v implies that ;\E‘J(g\c}) is continuously
3 s 8 5 -1 Aaen e
differentiable in Slm(i‘o)' Second, since ”?51- §O||=||£: a)l <N by
‘e _ : - Let
3.2.1.iii, S3ﬂ('}51) c Slm(i‘o)' Now proceed as in Rudin's proof. Let

1

= — where E is as above.
iz~

" Then "}L_f'(i{,) - EJ] <2\ for all x e 331](51) by 3.2.1.vi.c. Now

suppose X € 331](?51) and h is such that x + h ¢ 331](?51}' Let
F(t) = £(x + th) - tBh, 0 < t < 1, (i.e. F: [0,1] ~ R".) Since

any norm is a convex function on R® , x + th ¢ 33"’]("3.
. . i "~ ~~ S e

Thus

I (&) = llg0(x + ta)n - Ball

~

< llgo(x + th) - Bl Il

by definition of ”-” for matrices,
|2 5

\

x. ) for t ¢ [0,1].

A
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2 i)l

by 3.2.1.vi.c,

2\ |[3™ Bl

N

<o 7Y e
% |IBn)|

by definition of A. Theorem 5.20 of Rudin (1964:99) states: If F is

a continuous mapping of [a,b] into Rp and F is differentisble in (a,b),
 then there exists r ¢ (a,b) such that g (p) - E(a)” < (b-a) ”'F;'(r)”.

Since E above is indeed continuous on (0,1) this theorem applies and
lle(xsn) - £(x) - ByJ| = |[F(1) - F(0)]]

< B/ ()]

< % [jBaf| .

The triangle inequality, [[yrzl| < [lyll + |lzll,can be applied to
z = w-y to give || - [yl < lwv-yll = lly-w]l. This property is used with

X=Bh, ¥ = Llxh) - £lx) to give
lIBn)l - i) -£(0)]l < l|£(x+h) -£(x) -Bh)|
< % |jBy)l .

This implies

i
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l£(xn) - £ = % ||B
()
= 2\ |l

mﬁenever X and 35+£1J belong to SBﬂ(ﬁi)' Hence £(-) is 1-1 og 831]'('}51 ).

Now 521](95:1) c 831]('%1) and '52,”(351) c S3'ﬂ(£l) (S = closure of S).

To prove that 3[82,[](351)] contains the sphere Sz)\n[i(;sl)], note that

if

pe]

then ”y’l" < g

by 3.2.1.vi.b.

= £(x;)

-1 -1 -1
=A7a+x,-A"a-x +Ar(x)
= A r(x),

by 3.2.1.iv and 2xn' = :Il_z—%ﬁ > )1} because “ﬁ“l“ <2
B :

Thus Hxln < 2\7 and 82)\'{](11) contains 0.

Let T = {x| x|l = 2n}. Now fix g e Soa () (3-ee g/l < 22m)

and define ¢(§)

= llg-£@)|l. It must be shown that there exists

S x¥e SZT](~X1) such that f£(x¥) = y. (i.e. sﬁch that ¢(x*) = 0.)

First note

by definition of T,

that if x ¢ T, then (%) implies

an = 2Allx-x |

< gk + (2% - £

by (¥) with h = x-x,




| < fle@-gll + Iyl
by triangle inequality [I1= ,f:.(?f.l)] s

= ¢(x) + o(x,)

< ¢(§) + 277

because ¢(xl) = H;[’-zl” < 2AT} because ye S Thus

axn(xl) 5

¢(x;) < 2T '<¢§(§) for all x ¢ T.

Norms are continuous functions of the components and f is
lad

continuous so ¢(x) is cantinuous. Further, '§2n.(ggl) is compact.
Hence there exists x* e —8_2,‘1(351) such that ¢ (x*) < ¢(x) for all
X € SZT}-(ﬁl)' But x* cannot belong to T because ¢(’}51) < ¢(x) for all

xeT. Let ws= X-’fv(;g*). Since B is nonsingular, let h = g-l}g. Then

choose t €(0,1) so smell that x* + th ¢ Szn(fil)‘ Then

le-£Ge)- Bl = et

fl(1~t) )l

(1-) [l

But
et + ) - 2029 - Bl < iz
by the argument above,
- Y]

= 3|l

il
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Then

?(x* + th)

lly-£Gx + th)]]

]

llg-£(x%)-Bth + Bth + £(x*) - £(x* + to)]

A

g2 B + IBth + £x) - £(z* + )|

A

(1-t) [l + 3¢ Il

il

(1-2¢) Il

il

(1-3t) ¢ ()

If ¢(x*) > 0, then 0 < t < 1 implies (1-Lt) < 1 which in turn implies
 $(x* + th) < ¢(x*), which contradicts the minimal property of-x*.
Therefére ¢(xx) = ”X-,g('\xj*)ll = 0; which means ¥=£(x¥). This argument
can be used for each y ¢ Szm(ll)’ yielding x* ¢ Sz‘q(f:f) such that
f—’f\"(’}s*) In particular it can be used fo:? 0 c S2hﬂ(xl)’ yielding X
such that £(X) = 0. But this says £(%) = 5‘1g(§‘3) = Q which implies
G =03 furthermore Xe S2’l’](r}5l) c S3,n(§0). This éompletes the proof
of Theorem 3.2.1. ||}

Atl this point it can be mentioned thet not only does the sbove:
proof imply that the described g exists but that it is unique in
S3T](§d). ‘Unfortuwiately the theorem does not yield c-:'omple‘ce.uzﬁquenés's, :
just uniqueness in the neighborhood. In the subsequent statistical

applications of this theorem, the limited uniqueness is of little value.

This 1s why it has not been stated as a conclusion of the theorem..

e




3.3. A General Asymptotic Theorem

The theorem in this section is a general theorem on asympto’cic
results. It concerns a sequence of estimates {%(Xn)} of a sequence
of parameters {iOn} It states that for n large enough, there will
be a root ﬁn(zn) of G (in’zn) = O mear {, with large probability; it
also states that i;-n (Zn) ~ Y, converges in distribution to a multi-
varizte pormal distribution. In £he application of this theorem, the
estimates and parameters ﬂjﬂ, in’ and ’\ko are obtained from the

estimates and parameters in the usual problem e 8 8, and 90 by multi-

plication of each component of 49—11 » B, or »90 by the appropriate normal-

izing factor (See Section L.3.). Furthermore, the function G represents

the (normallzed) 1ikelihood equations; therefore, this theorem deals

w:Lth maxipum llkeln_hood estimates whlch are solutions of the likelihood

equations,

Theorem 3.3.1 is proved by demonstrating that for G (rdin ,:gn) as
defined, for n large enough, the conditions of Theorem 3.2.1 are true
except for an event ﬁth small probability. The results of Theorem

3.2.1 then immediately imply the results of Theorem 3.3.1.

THEOREM 3.3.1. Tor a sequence of values of n approaching infinity,

define for each such n: Zn an nxXl vector valued random variable,

2, (:{n) a pXl vecto;' function of ¥ , A (Xn) a pXp symmetric matrix

function of Y , % a pXl vector, G (yn,}:n) and Bﬂ(}}{n,zn).p_xl vector

functions of. in and }:n’ and J a pXp positive definite constant matrix.

Suppose the following six conditions are true.
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i) For each b > 0, given ¢ > O there exists no(b,e) such

~that for all n > nO

PG (o) =20 () 2 () (0 *Re (80 Tor ald

i1) g (¥) i 2,0, 9) -
133) A(r)+3 o

jv) For each b >0, given ¢ > 0 and § > O there exists

no(b,g,é) such that for n > n,

P{ sup |R (g%l <6} = 1-c.

ine Sb_(l{'-On)

v) For each b > 0, given ¢ > 0, there exists no(b,e)

such that for all n > no

P{the elements of ggn (len’zn) are continuous

functions of y in § (y, )} = 1-e.

~

vi) ;ggn(in,gn) EJ”fgn(r‘kn’Zn)’ then for each b > 0,

given ¢ >0 and § > 0, there exists no(b,e,é) such that

for all n> no
P{ swp |IE (g5 )l <8} = 1.

%e Sb (yOn)

Then it follows that given € > O there exists b=b(e) such that

0<b<®and no=no(e) such that for each n >nj

4
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P{there exists a root ﬁn(gn) of Qn(i?n’zn) =0

such that i{n(ern) € Sb(j[on)}_ > l-e.

s 4 -1
Furthermore, for this root, ﬁ—n(zn) = o == Z(p(g,i ).
PRCOF.
Tet ¢ > 0 be given and let e% = —= . Define D (Y )= J + A (Y
_ 10 ~n‘~n ~ ~n‘~n
Then
5 = -2+ 2,(X)
= J[I-31D ()]
~ e~ AntAn’-t

1t io, (x )l
é;l

Let

is small (which is true in probebility by 3.3.1.iii) then

(gd:)..;ezdsts end is given by

-1 - -1 -1
AN ) = -1 - I (Y17 o
D(Y)=AN(r) + I
= AN )T+ A (7 )10
1,0 -1
= A Xz D (¥)7
= -[1- 27 ()1 T (g

s s ke e

sl R

g R

€
it

]
=
%




Then
I, el = 1tz - &7 p (e 1™t a7 ) 57
s itz - 37 o, @)1 Mg Ml el
g™ - i )]l

>

1 - Jlg™n ()l

2 i . fp— -1 1

i2 12,2l 15 w1, since g < 1) + g ena [z - M 5 by

- j1-.--“1r1en.”:§.“ < 1, ‘Thus IIPZ(XH)]I will be small whenever “En(gn)” is small

and hence 3.3.1.iii implies IIP:(Zn)II-E* 0 which in turn implies that

é;l(gn)—}z" - g_l. Therefore, the multivariate version of Slutsky's
~n’~n\~n

=1 oz e
Thecrem and 3.3.1.iii imply that gn—(Y Ya (Y )—‘L ?A??(gjg l). :

Now choose 1} so that when %~ﬂp(g,£-l), plizll = 1} < § ex. Now

foy

He]l is a continuous function of its elements; therefore zZ

~

implies ”’%Ip@_, lIz]l. Thus there exists n, such thet for n >n,

P{liz Ml = 1} < 2lligl = M} + 5= = e

by definition of convergence in distribution. Ietting 2 =A._l(
we find that for n > ny
-1 ' - ' -
* 1)
Pl (g )a, (g = 1} < ex (1)
This proves Condition 3.2.1.iii except for an event of at most

-prohability e*.
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W~Tr - * b~ -
Now show that P{Iéﬂ(gﬂ)‘ 0} < e* for n large. A (Y )=-[J-D (¥ )]
and thus |£.n(gﬂ)| = ("1)P‘,‘1‘Pn(,¥ﬂ)l' But —éﬂ(gﬂ) is a symmetric matrix

end therefore its determinant can be shown to be nonzero by proving

Purthermore, it is true that max Ixj(gn )| - 0 if and only if
J=1,2,...,P

[C 1,,~ O for i,3=1,2,...,p, if and only if llgnl[ - 0. Therefore by

n ij
assurption 3.3.1.iii there exists n, = n, such that for n > n,
. ey -
Pl _max | 4D (T >3, (D) <ex,
3=1,2,...,D
P{la (x )] = 0} < ex (2

This proves Condition 3.2.1.ii except for an event of at most
probability e%*.

*
Since I:P-n(zn)” 2. 0 there also exists n, > n, such that for

3 2

> 37 < ex. But [ () =ll-2+0 (2 ) islig D)z )

A0t

*

which implies for n >n

3
I )l > 2l < ex
Now epply 3.3.1.iv with b = U, ¢ = €% and § = | - . Then 3.3.1.iv

implies that there exists n), =z n. such that for n > n,,

3




e

35
P swp R (g, )l > =L} < e
The last two inequalities together imply
P sup  [ATMEOR (4x )l > ) <2 en (3)

ineslm(EOn)

This proves Condition 3.2.1.iv except for an event of at most probability
2 e*,
Now apply 3.3.1.i with b = U7, € = e¥ to claim that there exists

n5 > nh such that for n > nh

P{It is not true that

S (X)) = 2, (X ) + 4 (Y )y, - don) * Bo(4X )} <ex (W)

This proves Condition 3.2.1.1 except for an event of at most probability

c¥

Assumption 3.3.1.v with b = LUT) and € = ¢* guarantees that there

exists n6 2 n. such that forn>n

> 5’

P{gén(In’zh) is not continuous in Shn(ibn)} < g*, (5)

This proves Condition 3.2.1.v except for an event of at most probability

¥

L

- Now Conditions 3.2.1.vi.a-3.2.1.vi.c must be proved., If

= a2 ; _ 1
£.05,5) = A (106 (v, .Y ), then e (4,5%,) = A&, (gn)ggn (40X

But

an(f‘kn’lfn) =-3+E (y.,Y),

e




whence

m
I

+
3%
&
&»4

Clearly [[E (y_,¥ )|l will be small vhenever |ip) (¥ )l and g (3 .l

are small, so that Conditions 3.3.1.iii and 3.3.1.vi with b = U1} can
be used to show that there ead..sts n7 = n6 such that for n > n7 '

¥
P su ax AAE (T ,Y %‘ iy
{ines)_:;(%n) 'j=l92> L X ,Pl J{'\n(,g.n "‘n)} l = } <e

Now if y, ~is some particular point in Slm(ﬂion) and B (gn ) = e (iln’lfn)’
~

the above probability statement implies (by the same method used to show
\'én(zn)\ # 0 above) that for n > n,

B, (¥ )| = 0} < ex. (6)

This proves Condition 3.2..l.v1'.a ‘except for an event of at most
-probability e*.

Using the same reasoning as that used for ,1};1 l(}\(n) it is true
that vwhen Hgn(}kh,gn)n is small

B'l(Y
~Nn ~n

45y
=
5
=
8

) = [T+

i

——

-
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n
i
&ii
éf.
50-4

Thus

Bl = L+ B (X))

< Il I G )
s 1+ 8l

*% . * )
But ”gn (iln’zn)” will be small whenever ”fEn(iln’zn)” is small and

3.3,1.iii and 3.3.1.vi can be used to imply this. Thus again using
3.3.1.iii and 3.3.1.vi with b = 47, it can be shown that there exists
ng = n, such that for n >n P{HE**(i Y )| >l} < e*, This, of

8 7 8 ~n ‘Aln’An 5 . 4

course, implies that
Pt )] > 8 < ox | o

This proves Condition 3.2.1.vi.b except for an event of at most
probability e¥,

1

2|B ¢

If §, is any point in Shn(y‘oﬁ) then ”:T,f (;v{n,;\rn)-_gn(gn)lfs
~n iy
~ T~

if and only if ||7, (y,%) - BTl « 1B )l < 4.
; ~11
Note that

g, (4,52 - B (I

=l By X)) - [D+ B 1)
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= I, (4,5 - E (4 o5l

< |8 (X )+ 12 G2 )
12 ?%l(zn);g S% and ng(in’zn)_” s-ls— for all j{n € .Slm(ion). then

5. (10X - B ) - BNl

s T, (X1 + 18 Gy o2 )1+ BN

P, oI LL) > 5 <o
Xn®"hm\Xon

It follows that

1
»p - o ,Y) =B (Y —_—
P{w% oy e, % - 2>

x, 1 -1 6
< P{i’neg:l; %n)llgn(gn,zn)ll >z or B ()l > 2}

< 2 e¥ (8).

because n > n9 = ng. This proves Condition 3.2.1.vi.c except for an

event of at most probability 2 e*.

{5 B e

R T
et b

o e s
g M PO T P R &

S ot
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It has now been shown in (1)-(8) that the conditions of Theorem
3.2.1 are trxrue for each n > n9 except for an event at mosit
e¥+e¥+2c¥+e¥+e¥+e¥+e*¥+2¢¥=10ec¥=¢, Thus Theorem 3.2.1 applies and
there exists i’n(}:n> a solution Of. 'Cin (in’zn) = ,.Q, such that
;‘;:rn(}:n)eshn(\b: ) with probability greater than l-e¢ for n > nge

if ¢ Y =
But if G (y (¥ ),Y ) = 0,

$005) o™ A ()28 - A (IR (001,

The first term converges in distribution to ?zp (g,g—l), as was shown

above, That the latter term converges in probability to 0 is seen by

the following remarks.

Pl R (4, (20101 > 8)

= PO (0 R (8, (10521 > 6 and 3, (7 )esy (4,0
# (3,00 § 50(40,)]

<P swp ATty )R (4.3 > 83
ﬂfnes‘km(ion) -

+ Pl (x,) & sm(%n)}.'

But the first term is small for n large as shown in proving (3). The

-latter term is small for n large by the entire first part of the theorem,

LR LY
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. PR — -1 P
The resulting mequal.jcy proves that A (Y )R (§ (¥ ), ) 0. Then
the multivariate version of Slutsky's Theorem implies that
d -1
(L) -y 2 : ih b o
\Y_) Yo R (0,3 7). Then Theorem. 3.3.1 is proved_mth b = b1

and n.= n_ as above. |||

0™ ™9




CHAPTER L

ASYMPTOTIC THEORY FOR THE ANALYSIS OF VARIANCE MODEL

4,1, Introduction

In this chapter the maximum likelihood estimates are proved to
be consistent and asymptotically normal as the size of the experimental
design increases. This is done in Theorem 4,L,1, the main result of
this paper. In Section 4.2 the assumptions used to prove the asymp-
totic properties are discussed; in Section 4,3 the setup used to prove
Theorem L4.4.1 by application of Theorem 3.3.1 is explained; Theorem
h.h.l.is stated in Section 4.k and proved in Section k.5, (The details
of the proof are given in Appendix A.) In Section L.6 it isﬁnotéd that
the maximum likelihood estimates are asymptotically efficient in the
sense of attaining the Cramér-Rao lower bound for the covariance matrix.

Asymptotic theory is useful as a practical tool when the experi-
mentor has confidence that his experiment is "large enough" for the
good asymptotic properties to hoid. In the case of independent,
identically distributed observations, one hopes one has taken encugh
observations; in the case of the analysis of variance, one hopes the
size of the design is large enough. The device used to prove the
good asympﬁoﬁic pfoperfies'in the énalysié of variénce;is a "éonceptual
sequence of experiments." For each n of a sequence of values of n.
increasing to infinity, an experimental design is considered. Each
experiment may be an extension of previous experiments or it may be

an entirély different design. The only requirement is that the

i

L1

b it e



sequence of experiments have the properties required in Section Lk.2.

Thus any particular experimental design eﬁcoun‘cered in practice may

be thought of as a part of some sequence of designs; the experimenfer
hopes that the size. of hi's"par’cicular desién'is "large enough" for

the good asymptotic properties to hold. (In the independent, identi-
cally distributed case, there are results attempting to consider how
1érge is "large enocugh"; no such attempt is made in this paper. This
may be a fruitful subject for further research.) The assumptions of
Section k.2 may seem to be restrictive upon first examination; however,
they rule out no expérimen’cal designs of practical ip’cerest. - Thus
Theorem 4,4,1 has wide applicability in the analysié of variance.,

- In Section L.3 the reparameterization reguired for the application
of Theorem 3,3,1 is discussed. It is shown that for each n the parameter
vector in is obtained from § by multiplying each component of § by the
appropriate normaelizing factor. The derivatives of the log-likelihood
up tosecond order, which are needed for Theorem 7-}.’-}.1, are computed
and a matrix used to compute the asymptotic covariance matrix is
defined. Theorem 4.4.1 is stated in Section 4.l and is proved using
a sequence of lengthy lemmse, each of which proves that one or more
of the conditions of Theorem 3.3.1 is true. These lemmae constitute
the details of the proof and may be omitted without loss of continuity

to the reader; they are presented in Section A.L.
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1,2 Assumptions for Asymptotic Theory

The assumptions needed to carry out the asymptotic theory
arguments will be stated and then briefly explained in this section.
Under consideration will be a "conceptual sequence of experiments",
each following the basic ﬁodel for the analysis cf variance described
in Section 1.3. An experiment in this sequence mzy be an extension of
previous experiments or an entirely different design. However, all
such sequences must have the properties described by the following

assumptions.

ASSUMPTION 4.2,1. n and each m,, i=l,2,...,pl, tend to infinity:

each mi can be considered a function of n.

ASSUMPTION L4.2.2. Let oy = n; then for each i,j=0,l,...,pl, either

m,

m,
lim — = p.. or lim - = p.. exists.
m, ij — . i ———
n—o 3 o O 0

(1f pij= 0, then let pji= o for notational convenience.)

Now without loss of generality, let the Qé'be labeled so that for
.i < J, pij > 0; i.e, the m, are in decreasing order of megnitude.
Generate a partition of the integers {O,l,...,pl}, Sg2S1se++55,5 SO
that for indices i in the same set Ss, the asscecizted mi‘s have the

same order of magnitude. Such a partition is generated as follows:

i) iy = 0; 8= fol; i, =1

ii) For s=1,2,... , it is true that i_€ S.. Then for

(
8

is= is + 1, is + 2540s 5 include i in Ss until o,
S,

call the first value of i where this occurs i then iS €5

s+1°

+1° Zsrlte

AR e i e e i <R

h;



iii) Continue as in Step ii wntil Py has been placed in a
set. Call this set Sc.
There are then c+l sets in the partition, So,Sl,...,Sc, and

8= {lsi'°"ls+1fl} (vhere 1,47~ P71 to insure S is correct).

L L
o

%
Define sets SS as follows:

* C
SSE U St » S=l,2,noo,c s
t=s ‘
S .. =
c+l ¢ .

% .
The SS are then sets of indices whose associated m.i have the same or

smaller orders of megnitude when compared with m o
: s

For-each i=l,2,...,pl, ie SS for some s=1,2,...,c. Define

sequences v, (depending on n) as follows:

v; = rank [E& :E&S+l: cee :Ebl]

- rank[gﬁs: oo 20 12U 4% e :Eél] :

i=1,2,... 5Py »

volz'n - rank[gi: Nt :Eél] .

HPIHF

ASSUMPTION L.2.3. Let r, = lin , 1=0,1,...,p,3 then each of

n—o

the T, exists and is positive.

|
!

. . P
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For each E&, i=l,2,...,pl, let the colums of U, be given by

A Ei = .[E—_&_i):b(i)w-',,’;l;i)]

ASSUMPTION L4.2.4. For every i and every j ¢ 8, 3 # i, where

ie SS, there exist two nonnegative constants, Rl and R, both less

23

than or egual to one, such that

(a')’(i)'
z n -
2 ot )5 B

m.,

for all but Rym, values of k in the set {l,2,...,mi}. Furthermore,

R, and R, are such that

1 2

1

R+t (BB, < 5y + 1 °

vhere N(SS) is the nunber of indices in the set S_.

C 7 N,
ASSUMPTION 4.2.5. ILet 97 = (o),0]), L?l&l;fizo- (%0’%1""’50101) >

iy
be the true parameter point which is being estimated andjgdz Zjiﬁ Gojgé

be the true covariance matrix. Then there exists a sequence vp 1
1

{depending on n) and a PoXP, positive definite matrix.go such that

. I -
lim X'EK =0, -
e pl+l

e




L6

The following is an atbempt to briéfLy explain these assumptions.
The object of the assumptions is to rule out certain sequences of
experimenté for which the limiting distribubtions either degenerate or
"blow up" (See Section 1.1.). For example, asymptotic theory requires
en expesnding sequence of experiments, which is what Assumption 4.2.1
reguires. Assumpbion 4.2.2 requires that the expansion should be
orderly -- sizes of various parts of the design should relate to each
other in an orderly way. There is no need to consider disorganized
sequences and so nothing of importance is lost by these first two
assumptions. .
The next three assumptions require that the sequence not be a

degengra@e:one. That is, the.matrix‘g defined in Section 4.3 mist not
-degeﬁef;;e; it must be positive definite. These assumptions insure
that this is so. The v, referred to in Assumption 4.,2.3 is the dimension
of the part of the linear space spanned by the golumns of E& vhich is
orthogonal to the space spanned ﬁy the columns of the other 25 where
je s:, j#Aiendice §_. Thus v, is the dimension of the part of U,
not dependent on the other Eﬁ. Assumption 4.2.3 says that this part
remains an integral part of E&;'it does not get overwhelmed by the |
other columns of 9&. It could be said that this assumption requires
that the ith effect not be "asymptotically confounded” with the effects
associated with the other Hﬁ mentioned above., Such "asymptotically
confounded" design sequences are of little interest and nothing is lost
if they are ignored. It shouldlbe noted that this assumption implies
thai,vi,and mi.are of the same.order of magnitude and hence Vs - @,
i=0,1,...,n by Assumption 4.2.1.

Assumption 4.2.L4 is somewhat more difficult to explain. Its use
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occurs naturally in Section A.L.1 and it is explained theré.also.
This assumption could be described as a requirement for "almost
orthogonality" of the designs (orthogonal in the language of experi-
mental design). If in fact the designs are orthogonal in this sense,
'R1= 0 and de 0 as n = «, The seeming restrictiveness of this assump-
tion is Jjust that; it seems to be restrictive but it rules out nothing
~of any real interest. Any reasonable crossed or nested design sequence,
whether balanced or not, will satisfy this assumption. Further light
ﬁéy be shed on this subject in Section 6.5. There an example is given
of a design sequence for which Assumption L.2.4 does not héld even
though Assumption 4.2.3 does. (For the design sequence in Section
6.5, it can be shown that J is not positive definite, even though
Assumption %.2.3 holds. Thus some stronger assumption likéﬂzééumption
h.2.h is necessary in this problem.) Note that Assumption 4.2.4
requires that the columns of E& not be oo™ depgndent on the columns
of the other Eﬁ just as Assumption 4.2.3 does, but that "too" dependent
is defined in a slightly stronger sense than in Assumption L4.2.3.

Assumption 4.2.5 again rules out certain degenerate design
sequences.  These sequences are such that the fixed effects cannct be
estimated properly. Again there is no loss in not considering such
design sequences. Thﬁs in all cases. the assumptions aBQve-eliminate
only disorganized or degenerate sequences of experiments which are of
no real interest in any case.

The sequences v%, i=0,l,...,pl+l, will become the.proper normal-

: 1
izing sequences for the estimates of the parameters ¢ and o. vf is the




- seqguence used for ;s i=O,l,...,]:_>l, and \%l'*'l is the sequence for o,
‘Note that only cne normalizing sequence has been allowed for all the
elements of ¢. This usually is the correct thing to do 5 however, w:L’ch
a nontrivial smcunt of work of the same sort used in the remainder of
this chapter, the theory can be extended to allow different rates for

o

eachr element of z.
Fad

4.3 Final Setuwo for Asymptotic Theory

In this section the tr ansforma’clon from e to 'Y-n for each n is
, 1
defined. The normelizing factors used will be n, = v?, 1=0,1,...,p;*1,

where ’che v. are defined as in Section L4.2. A1l the \). and hence the

n; are consuiered as sequences (dependlng on n) increasing to infinity.

The reparameterization used will be 6 - rin’ with ’Q = (93 ,g’) and

(B T "), vhere En = nP 41 @ and [In]i = n,0,, i=0,1,...,p,. The
1

L " 3 !l = 7 7
true” paranmeter 8. then transforms for each n to Yon (B ’IOn)'

~0 -

The log-likel:‘.hocxil:L then becomes

Ay, oY) = og I (Y .Y )
1 En -1 En
= -=1log 2m - 3 1°g|£n|'§(,¥,'£ = ) T (Z"Zgn )
pl+l pl+l

1 The notation is abused somewhat by the use of )‘n(r‘kn’zn) and later

)\( ,‘1{,) to represent the log-likelihood function in terms of i because
)‘(X) g) is ..lso used to represent the log-likelihood function in terms
of § and A(y,8) # A(y,¢) when @ = §. However, it is clear from
context ah:t.c:1 “u_lc’clon A is be’fng referred to.

B3
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P
1 [7.].
vhere T = I SHEE NG
~n . n, ~.
i=0 i i

Now choose a norm for a p = po+pl+l dimensional vector

2= (28,052 )’ as follows: |lgf| = max la,] . Note that
? ' i=1,2,...,D *

if jﬁn is an estimate of J{n and ’Qn is the corresponding estimate of 8-

obtained by applying the inverse of the above transformation, then if

g~ #onll < for all n >n, then this implies that for all such n

215 [roplsl =In (18,1, - o0)| < b, 1=0,1,...,p; and

118,15~ (B, 15l = lnplﬂ([cznlj- o5 | <b, 3=1,2,...,p,. This of

course implies l[ﬁ]i- O‘Ol' <'—%— , i=0,l,...,p:L and
1

5 < s 3=1,2,...,D,; that is, the estimator § is

”Qn]j' %o

approaching _@0, tﬁe true parameter, with each component converging at
perhaps a different rate.

Tt is now necessary to write out the derivatives of the log like-
lihood up to sécond order to get the functions used in Theorem b1,
At this point the notation of dependence on n will be suppressed. T
and B will be used without the subscript.n, u.nders*’candihg thaf every-
thing--y, % and G, included--depends on n. A1l logic is carried out
for a certain value of y, which may be required to belong to a certain

set (which set will have large probability).

g
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The appropriate derivatives are given below. Mabtrix and vector
derivatives are used where appropriate and expressions have been
algebraically simplified where possible.  In each case the indices

iand J run from C %o Pye

B
A 1 a1 ~
E’ = n ?S,ii‘, (X'% n ) 2
1
a poxl vector;
- g B
o L . -1 . ~ Noe=l, -1 .
57, o I DX ) G (X L
i i p1+1 pl+l
S A 1 P
Sgs8’ - 2 X'y
p1+1
a pOXpO matrix;
2%\ 1 1, -1
or.oB ~ n 2L gL (X g ) >
1~ 1 p1+1 pl+l
a poxl ‘vector; _ |
2
3 A 1 -1 -1
“OT.0T. 2n.n. [tr T Eq_g Q’,j
i 4d
- 2(y-X yt o le i .T_l(x—X =] .
pl+l p1+l

s

o ST, ———
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If under some conditions, the second derivatives can be shown to
be continuous in a neighborhood of iOn (the true parameter), then under

those conditions, a Taylor series can be employed, yielding

agl(z,y)

N (L) M (g,y)

b
7l M + 2 ([, = (oq]y)

Flon 37 i

vhere y* = py. + (1~u)in and i €(0,1). This can be written as a

vector equation as follows:

6 (4o8) =2, () + A X)W - 1) + R(4,1),

where ]
(8 4o ) s ?}%—Qlw ’
~ n
[2, ()], = Ezé%igz liinn :
8201y = é;%?‘ IHOH’
az;%aznﬂi j: ( %’('%‘ ‘un %%% ﬁon)(wf rig

. . . | : i de
(Observe that Eh(zﬁ> and éh(Zh) only depend on Y glnce Yoo 18 considered

known.) For G, as defined above

S
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olg (,.%)];
7y (poXp)1sy = “ni“f;j““ = Y
Mgy Sy
= W i in Py l,J=l,2,...,Po
i7v3 = '

A11 the items required to apply Theorem 3.3.1 have now been presented
with the exception of the matrix ’{ which will be defined below. Theorem
| 3.3.1 will yield a sequence of estimates j[:n(zn) of §,, which will be
translated back to a sequence of estimates 8 (Y. ) of 6.. The sequence
: ~1 A~ ~0
§n (j:’n) will be 2 segquence of consistent and é,symptotically normal roots
of the likelihood equations.
Let a pXp metrix J be defined in the following manner,
: 2
[3).. = lin |- & ° MLy
o D] Rade TR

¥ lon
It is required that this matrix be positive definite. That the ma‘l;riic
is positive definite is proved in Section A.4.1. Some comments can be

made appropriately at this point, however. Recall that

2
¥~ (x ’::Po) vhen y = Yy , the true parameter”. Further recall

n~n
Py

2 1In all subsequent writing, the dependence on n will be maintained
for the vector ¢ which will be called 3[{0 > ¥, or ie on occasion;
A n in n

however the T mabrices and B wvectors corresponding will be called

-‘1 m ~ ad ¥ "
only 20, I, or 22 and. EO’ El or EQ even though they are correctly
Ton? Ezln ete. There is still, of course, a dependence on n even

though it is suppressed in the notation.

s N e U > AETE o

——y . merv—gp =g - -

P




that

:'P-O i n, ~1

and

P17, 3,
.

fi
[ng
[#}

Z %1%

SDM

-nplfl.gO

+
P+l

for all values of n. Thus y '*Zzn(&o’go) when y=y, , for all values of

n, Then it folléws from the definitions of second derivatives given

above that

pl+l

%0

e (22, ) = =
O \ 3BaB _ n2
L n pl+l
1
T2
~ %

53
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by Assumption 4.2.5;

al ) - 1 - 8
<2O(BT:.LBB ‘._ %o non o T %I (TX g +l):|
H'—'1'{(01’]. pl . pl
=0, 1—0,1,....13_.L .
because 60(;:) = X5 end
3 ) L LU T |
2 50( 3T oT. |, = %nn. Iy &1, ﬁj
BEEE| ﬂ{’— n
B, ' B |
Bo \p-1, -1, -1 199 ]
* 2 6o (X ) ", 10 T (X )
id p,+l p,+1 ;
1 1
. S
2n.n tr go galgo %j

by Lemma B.l. Thus it remains to study the properties of the (pl+l)x(pl+l)
matrix 91 defined by

=133 -1, -1 i o
(gl)ij e N EO 'q"lgo ,g,j’ 1’3—0’1>‘°°>pl'

It can eaisily be shown that the lim inf and lim sup exist for the last

st s I a3 —— TG

expression-as will be done below., One of the assumptions of Theorem
L. 4.1 is that the limit in fact exists -- that the lim inf equals the
1im inf. This is not a grave assumption; again it merély eliminates

disorganized seguences of experiments. The lim inf and lim sup can be
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shown to exist if it can be proved that the seguences are bounded.

Observe that

. -1, =1 oy & < ’
B 201Gy 2.0y~ LT %lgdgigolg*gj
by definition of the ga s
2 _ e~ e
=i ng-olgigdrgolg‘
_ P re=
= tr (UsZ, q)(EjgolUl)
20
because for any matrix A, tr ’@QA;' = X aij = 0, Furthermore
i3

1, o1, mn{mg,m,) 4

TG, .
n..n, D ~AMAD A ninj cOicoj

by Propositions A.3.8 and A.3.9 with E,=E, = EO .

B

o1
%0i%03

by Proposition A.3.10,where B is a finite constant not depending on n.
If B* is defined as

B* = max ___12__,

s 8 Opn:Ops
1,3:0,1,...,p1 01703 -
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then B¥ is finite because 20 is in the interior of the parameter space

and thus all the Oy are positive. Therefore

s

) i,j:'o,l,..\.’pl b

for 211 n. Thus the sequences are bounded and either the limit [Cljii
exists or the lim inf does not equal the lim sup. It remains to show

that the matrix C, is positive definite. This is done as a part of the

(@]
A
ja]
c
L]
6["1
1
1Q
el
&9
'_I
CZJQ
A
N+
td
K
»
5 s "
«Wmm~

proof of Theorem 4.4.1 which will be stated and proved in the next

sections. : ' .

s

34,
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4,L Consistency and Asymptotic Normality of Maximum Likelihood Estimates

Theorem-4.4.1, the basic theorem of this paper, states that in the

e SBRER IS

model of Section.l.3 and under the assumptions in Sections 1.3 and ’-1-.2,_

Ju——
“avang”

there is a root of the 1ikelihood equations which is consistent and
asymptotically normal. Consistent estimates of the various parameters
are-defined to be estimates converging in probability to the true para-
meters, However, it has been noted that the estimates of different

parsmeters may converge at different rates. Similarly, the estimates
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are asymbtotically normal, but only when normalized by the correct set
of normslizing sequences, which may be different for different para-
meters,

This theorem will be proved by using the setup of Section 4.3 to
apply Theorem 3.3.1 to this probiem. The proof is given separately in

Section 4.5. The details of the proof are given in Appendix A.

THEOREM 4.4.1. Consider the mixed model of the analysis.of variance

described in Section 1.3, under Assumptions 1.3.1-1.3.6. Consider a

conceptual sequence of experiments as described in Section 4.2, under

Assumptions 4.,2,1-1.2.5, Tet the parameter space ® be a subset of RP

'(p=po+pl+l)-and let a typical point of that space be represented as

8/ = (¢’,0"), where o ¢ R © and o = (UO’Gl""’cf )’ has nonnegative
~ P and T—— /—_—. .~ l 1 N

ccmponents. Let the true parameter point go be such that

= v 4 L] h
9% (QOO,Gol,...,copl) has a2ll positive components. Let sequences

;s i=0,1,...,pl+l, increasing to infinity be defined as in Section 4.3

and assume that lim tr g;lgigalgﬁ existsd, 1,3=0,.,...,0y. Let

n=e TiJ

3 Note that this assumption only requires that the lim inf equals the

: 1im sup for this sequence, Both of these can be proved to exist by
the other assumptions. Thus this is not as grave an assumption as
it might seem (See Section L4.3.). '

e




] , where EO is a pOX}_)O matrix

defined by Cy.= Hm —5 ggajg and C; is a. (pl+l) x(pl+_1) matrix

efined by [¢;],, = % lim n'l;l_ tr 576,50, 1,3%0,1,...,0,.

Under these conditions it follows that J 1s positive definite. Further-

more, for each n there exists an estimator gn(zﬁ) = [Q;(Zn), él(z{n)]'-

of 8 with the following properties.

- :s-i) Given e > O there exists b=b(e) such that 0 <b < « and

no=no(e) such ﬁ@at for all n >n,

. b

n
+
D, +1

3 3=1,25d% 1Dk

< =, i=O,l,...,p]} > 1-ec.

=Y

1

[8,, (%075~ 91

ii) The pxl vector whose first P5 compenents are

. s th .
npl+l{9~/n(r¥n) = qo} and whose (po..1.+1) component is
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ni{[ﬁn(zh)]i_ OOi}, i=0,1,...,p,, converges in distri-

-1
bution to a ﬁp(gﬁi “) random variable.

The proof of Theorem 4,4.1 follows in Section k,5.

4.5, Proof of Theorem L4.k.1--Consistency and.A§ythotic

Wormality of Maximim Likelihood Estimates.

As suggested in Section 4.3, Theorem L4.4.1 will be proved by
applying Theorem 3.3.1 to the reparameterized problem given in Section

4.3, Recall that for each n the transformation used is Q‘ﬁ-in, where

.» 1=0,1,...,D

Y Y ' ¢t = ' _
?_, = (CL 32)3 iﬂ (En’In)’ En n o, and [In31 nicl

Then a Taylor Series is used to write the log-likelihood as follows:

N (y,¥) Ay, ¥) -GS
—— | |z e | - e
A T o

¥*
where § = uy +'(l—u)gn and p €(0,1). As in Section 4.3, this can be

written as a vector eguation in proper form for the application of -

' Theorem 3.3.1.

G (4 X) =2, (X)) + A (Y ) - 1) *+ R (8,51)s

o



where
(e, (45201, = ?_‘%_;2 lHﬂ ,
(2, ()1, = _a..l_%_@. }Mo : b
* Xon
[ﬁ'n(zn,)]ij = fi}\éa%z‘ ;iﬂ'on >
(5, (o) s = jlél %%Tf? ‘H: E:,i_;a%)‘ lﬂo X 4] 5 ony)- !

' G
RS

2 (Zn) a.nd A (z‘n) depend only on y becguse Yon is derived from [ which

is known, S ' :
Theorem 3.3.1'nstate$ that under certain conditions (Conditions i

3.3.1.i-3.3.1.vi) the following statements are true.
Given ¢ > 0, there exists b=b(e) such that 0 < b < » and no='no(e) _ ‘

such that for each n > n,

P{there exists a root gn(zn) of G (Ll,zn) = 0 such that

$a(5) e Sb(%n)} = 1€

furthermore,
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These statements are easily translated back to the current

problem, Define the estimator © (Y ) as follows:
A

Y
‘A v
where .
g (r)=—— B (1)
~n‘~n’ T n . En ~n’ ?
p.+1
o
and
6 (X)), = == [% (L)), , 1=0,1,...,Dp
~n‘~nt Ui %mmi’ M

A

Thus gngzﬁ) is formed by the inverse of the transformation;ghﬁ_gn.
A = . . 1
Then the statement that G (‘i‘n(lfn ) )X, ). .9‘ is equlva._en_t to the

statement that

=)\ (E;i) 1 _ -0
R ety 7
rey 8 ‘ | =0, i=0,1 D
aTi | iz'i‘n(Yn‘) > -4 2 ’_l
Butt |
R X AR N - AR

; - The reader should again note that A represents different functions

on the left hand and right hand sides of the next two equations.
aﬁe the first footnote of this chapter.

\

v
{
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=1 (X:,‘{’) ._ _1- o\ (I)E) l 1eood _ .
~ - rs E] T alseee, .
a'ri izjfn(gn) n, Bcri ~=§ﬁ(,¥ﬂ} 1
or(y,8)

K r (Y ), = 0 is equi
‘Thus G, (¢, (¥ ), ¥ ) = 0 is equivalent to S5 l -
i le=p (Y )
~ A

urthermore, the statement that ﬁn(zn) € Sb(i'oq) is equivalent to the
Statement that l[gn(gn)]j- [QOH_]jl <b, §=1,2,...,p,, and

}[In(gn)]i- [z'On]i[ <b, 1=0,1,...,p,, which is in turn equivalent to

R : b . - b
‘[gn(znnj— °’oj‘ < o > 3=1,25...,p, and Hgn(zn)]i- GOil < .’
1

1=0,1,...,0). In addition, the vector § (Y, )-%, = (

;.Zs—b gu»

(X'n) P-On ) and
(L) -Ton

B (Z )8 npl+1(0! (X)) (B, (Y )15, 15= n (18, (¥ )] -0,.)s

.1 O,l,...,p:L Thus the conclusions of Theorem 3.3.1 imply the con-
clusions of Theorem b k.1 for §—n(r¥n) as defined above, It then re.mains.
to show that all the cc;nditions of Theorem 3,3.1 are satisfied under
the assumptions for the problem as reparameterized.,

The first thing to be shown is that the matrix J defined in Theorem
4.4.1 is positive definite so that it can be used in Theorem 3.3.1.
(The existence of the limits is guaranteed by the assumptions of Theorem

L.4.1.) Recall that a matrix J was defined in Section L.3 by

- T N (g>4)
(315 = ;Ll_lf; %o ( 3V, %

DI
) _J » 1,3=1,2,...,p.

Tlon

= O,-i=l,2,...,ph

o a—— AT - IO I R WA - WY BB

aaly
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This matrix is easily seen to be the same J defined in Theorem L k.1.
This matrix is shown to be positive definite in Lemmz 4,41 in Section
L.4.1, Now it must be proved that the assumptions. of Theorem 4.4, 1
imply the six conditions of Theorem 3.3.1. This is done in a series
of four lemmse.. First each condition is reduced to a simpler statement
and then these statements are proved separately, each in a separate
éubsection. The conditions are not considered in the order i-vi but
are considered in approximate order of inecreasing difficulty.

S 5 . . d :
Condition 3.3.1.ii requires that gﬂ(zn) = ﬂ@(g,g), that is,

(Y1) e : :
— = N (0,J). This is proved directly in Lemma A L.2 in
Oi i:}‘y-on ~p e ; ;

Section A.4.2. Condition 3.3.1.iii requires that if En(zn) = £+én(zn),
then Rn (}:n) 2, Q It is clearly sufficient that the convergence in
probebility occurs for each element of Pn (Z‘n), that is, it is

sufficient to show that [D (¥ )], ® o, i,3=1,2,...,p. But

2,515y = D21y + 12y

R

=

‘327\(%,,@ ‘ -'1. : r <827\(,}5,'},‘£) ‘
= + 1im | e
RIS R

i. O
\Lv=1b0n i 1lr=“frOn

g a‘x"ia"bj l&.:io ) é.o a¢ia¢j Q‘:ion

LA



.327\(;5,1) ‘ ) _

* 6y 34,00,
The second cbviously converges

breaks into two terms.
Thus 'it .is

Thus [D, (%0155 .
to zero by the definition of limits of real numbers.,
to prove that the first term converges to zero in probability

sufficient i
This is proved directly in Lemma A.4.3 in Section

for each i

and J.
first two conditions. are proved directly; the remaining four
Suppose there is a

A.4,3.

- These T

;ed indirectly in the following manner.
sequence of events, say {X_}; it is of interest vhether P{X } » 1 as

¥will be proved
s n
Th*s can be shown by showing that there exists another sequence

n - w, i 1
of events {Z } such that Z =X for all n and that P{Z }-lasn-e,
This is

Proving P{Zn} -1

The obgect is to prove the probabzlistic statement P{X } - 1.
is not a

done in two steps--one probabalistic and one not

hs
Y A D GRS A 2 I GANNY  BOIY —AG N WP G WY GBI BB T v O e

of course involves probability concepts; however, 7Z_ = X

provabalistic statement and its proof is usually algebraic.
condition to be trezted in the above manner is Condition

e

The firs

L Py e
This condition requires that for each b > 0, given ¢ > O
there exists n.(b,e,8) such that for all n > n,

iy

393‘l.vi.
and § > 0O
2, o Il < of = 2ee
X b "kOn
- 7 e -
N ggm(in,Y ). Again it is sufficient to prove the
. Now

where gﬂ(j{m,}'ﬂ\
bound for each element of B (in’
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—
=
~~
$€-
»
<
~
—
|

33 (1) A (1)
= 5.0 ‘ B lm‘go( ST.o0. l )
A A A

3 () } P (gp)

BRI '

iﬂun- %3905 iy

n

A () 3 (1) |
TR l Hoﬂ- &o( £ ‘ M{)ﬂ)
ééx(x,i) 2 (1) ‘
o i |y - 22 i, L)

Thus [gn(in’zn)]ij breaks into three terms. The second goes to zero in

probability, as was shown above, and- the third goes .'to zero by defini-
tion of limit, as. shown above, Thus it is sufficient to bound in-
probability the first term. This is done by using Conditions A,2.1
and.A.3.1 which were shown in Sections A.2 and 4.3 to occur.in proba-
bility. It is shown in Lemma A.4.L4 in Section A.4.4 that for b as

above, if Conditions A,2.1 and A.3.1 are true then

Ay, 1) A\ (y,1)

sup —_ - — : |-+O
R R A e



as n - e, i,j=1,2,...,p. Now to get no(b,e,ﬁ) for Condition 3.3.1.vi,

first choose nl so that for n > nl

Ay | Ay | o\
P{] X3 l 60( X l )l<

8
NI VoV gm0 3

. €
i:J=l:2:'--:P} =21- 3

(vhich can be done by Lemma A.4.3). Then choose n, = n. such that for

2 1
n > l’l2
LB |\ 3%\ (g ) 5
loo aq,iaq,j ‘i=ion> e, a.q,iaq,j ! )l S

Flon

i,3=1,2,...,p, (vhich can be done by the definition of limit). Then

choose n32 n, such that for n > n3,

P{Conditions A.2.1 and A.3.1 are true} 21-%,

(which can be done by Proposition A.2,1 and the definition of limit).

Finally, choose no(b,e,é) 2 n_ such that forn >n

3 0
aa)\(xyir,) aa)\(X:k',) ‘ 5 > J
Su B - o <=
he 5oy 00 g SR Ly |3

(vhich can be done by Lemma A.4.4). Then this n, is the desired object

of Condition 3.3.1.vi., This full line of reasoning will not be reproduced
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Tfor the next three conditions. Analogous arguments of this type are
used for eéch of the three.

.Condition 3.3.1.iv requires that for each b > 0, given € > 0 and
8§ > 0, there exists no(b,e,é) such that for n > n,

s IR (g x )l < 6} = 1e
yne Sb<i0n)

As above, each element [R (¢ ,Y )], may be considered separately. Now
4 ~n ~n’ i

i 3% (y>4) I

..—j.-:‘ i773 Ii,’:ﬁ a‘llia‘?j 'Y'a;.}:On

where j:; = mion * (1-p) 4, and €(0,1). But for ¥, €<Sb(~\k0n)’

Hin]j - '{'i‘on]j‘ <b, j=1,2,...,p; furthermore

H]

I - gl = ey - L)yl

1

(L-p)llg- donll

A

.(1-u»)'0,
* 4 Sy st ad L
so that y e Sb< iOn)' Therefore it is sui'flc:Len“, to prove that
2
B (3, 4) A (s 1)
sup —_—

‘ Y, 3., T oV, oy, :
A A I 2

i

D S ~
‘ = O" i,3=1,2,...,p.
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But this is exactly what is proved in Lemma AJL.L using Conditions
A.2.1 and A.3.1. Thus Condition 3.3.l.iv is proved.
Condition 3.3.1.v requires that for any b > 0, given ¢ > 0, there

exists no(b,e) such that for all n >nj

P<the elements of I (Jkn’zn) are continuous
Nn .
functions of § in Sb(’\kon)} > 1-¢.

By the same logic zs used above it is sufficient to prove that if

Conditions A.2.1 and A.3.1 are true, then

2 _ , :
9 )\(;/}i',) o i
1 = S 4 . . : .
[:IG ("kn’znnij SRR is a unformly continuous function of g, in
~n i3 : _
sb(g{oﬁj,'"”i,'yl,z,...,p. This is done in Lemma A.4.5 in Section A.k.5.
Condition 3.3.1.1 requires that for each b > 0, given ¢ > 0 there

exists no(b,e) such that for all n >n,

PG, (L) = 2,(0) + A (b0 + B (4,0

for all §, e Sb(_ﬁ{On)} = l-eg

- that is, the Taylor Series expansion given at the beginning of this
section must be valid in Sb(iOn) with large probability. For the
expansion to be valid, it is sufficient that all second derivatives

are continuous functions of in S (4 . Again it is sufficient to
b Xon

show that if Conditions A.2.1 and A.3.1 are true then

b

R N GNP NI GIREII ™ A ST G = YU G s GUWR, = Y s AR~ =~ G il

e Z
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34 (1)

D T . . 4 . .
3¢15Wj is a uniformly continuous function of in in Sb(iOn) s

1,3=1,2,e..,p. But this is what is proved in Lemma A.L.5. Thus
Condition 3.3.1.1 is proved.

As was shown sbove, the proofs of these six conditions ensble
Theorem 3.3.1 to be applied, which is used to prove Theorem L.4,1 in
the mamner demonstrated in the beginning of this section. The five
lemmae used to prove these conditions, plus other details, are given
in Appendix A. The reader may easily omit these details without loss

of continuity, |||




70

4.6. A Note on the Asymptotic Efficiency of the Maximum Likelihood

Estimates

It has been shown in the previous secﬁions of this chapter that
the maximum likelihood estimates in the mixed model of the analysis
oflvariance are consistent and asyﬁptoficall& norﬁal! It then is of
interest to know whether these estiﬁates are asymptotically efficient
in some sense, Efficiency has been defined in several different ways
by verious authors, The maximum likelihood estimators in this_problem
are efficient in the sense that the Cramér-Rao lower bound for the

4
covariance matrix is asymptotically attained. The Cramer-Rao lower

bound for the covariance matrix is the inverse of the Fisher information
matrix, which is the expected value (under the true parameter) éf the
Hessian matrix of second derivatives, Iﬁ the case of independent,
identically distributed observations, this definition needs no elabo-
ration; in the problem under study here more explanation is required.

The matrii considered in the independent, identically distributed
case is derived as follows. The likelihood for n observations is just
n times the likelihood for one observation; therefore, the expected

values of the derivatives for n observations are n times the expected

t
|
|
|

-values of the derivatives for one observation. The entire matrix is .

gy

then normalized by 1/n and the limit teken. This is the rigorous 1

definition of the information matrix J. That is

1 o, (1,8)

0205 5 ='rll_i: 2 %o 36,38

}

300
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ax(,e)
24, (o 523

= ’hm T30.00. 19

&=,

s, { ISy (x,e)

3 .=l 2 e e P-
\e ae l } s - Lyd=dyc, >
B8=0 :

~0
Thus although a limit of matrices is considered, what is arrived at is
the information matrix for one observation.

Tn the problem considered here there is no one obser&ation vhich
does not depend on n. Thus'limifs analogous to that above must be
considered.- However each parameter may require its own normalizing
seqguence, For notational convenience let n, be the correét ;equence
for ei; thaf is, tﬁe pX1l vector whose ith component is niei has a
limiting normal distribution. (Note that each sequence n, depends on
n.) This does not agree exactly with the notation of previous sections
but does make the exposition in this section easier. The definition of
an information matrix in this case which is analogous to the.definifion

in the independent, identically distributed case is

N, (x,8)
[£];5 =-1in n]h 85 15630 * } >
e i i™J 9=8,

i,j=1,2,...,D.
A sequence of estimates is then said to be asymptetically efficient if

the estimates are consistent and asymptobtically normal and if the

et



T2

asyrmtotic covariance matrix is the inverse of the information matrix
4 defined above.

The estimates in the analysis of variance were shown to be consis-
tent and asymptotically normal in Theorem 4.L.1. thermore, the
asymptotic covariancs matri# wa.s ‘_{—l, where J was defined in Theorem
L.h.1. But the matrix J is just exactly the information matrix
described above and hence the maximum likelihood estimates in the
mixed model of the analysis of variance are asymptotically efficient

4
in the sense of aitaining the Cramer-Rao lower bound for the covariance

matrix.




CHAPTER 5

COMPUTATICH OF THE MAXTMUM. LIKELTHOOD ESTIMATE

5.1. Imtrocduction

This chapter contains discussions of computziional procedures for
the~calculation cf the maximum likelihood estimetes in the mixed model
of the analysis of wvariance as described in Section 1.3. In Section
5.2 an equivalent form of the likelihood equations is derived. A
.simplificatiqn which occurs when each g& can be sirmltanecusly diagon-
alized and also a case where explicit solutions to the likelihood
‘equations exist are described in Section 5.3. Since explicit solutions
seldom exist, an iterative procedure is propoéed in Secticn 5.4 to
.sclve the highly nonlinear likelihood equétions. The iterative pro-
cedure proposed here was first suggested by Anderson (1971b), (1973).
J. M. X. Rao (1973) has pointed out in a personzl communication to
‘Anderson thailthis iterative procedure is in effect the method of
scoring; this is also discussed in Sectibn 5., In Section 5.5 it is
demonstrated that when explicit solutions exist, the iterative procedurs
of Section 5.4 yields those solutions in one iteration from any starting
point. In_Section'5.6 the problem of avoiding negative estimates is
discussed.,

In Sections 5.7 and 5.8 the iterative procedure of Section 5.4 is
compared wifh a procedure suggested by Hartley and Rzo (1967). Using
four sample problems given in Hartley and Vaugha {1972), it was found

that The Iterative Procedure was computationally more efficient than

H
\ 73

A
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the Hertley-Rzo-Vaughn algorithm. (In the remainder of Chapter 5 the |
iterative preccedure vroposed .:Ln Section é.h will be referred %o as
"The Iterative Procedure” and this will be abbreviated TIP. The
algorithm dei'eloped by Hartley, Rao and Vaughn will be referred to as
the Eertley-Reo-Vaight algorithm end this will be sbbreviated as the
H-R-V 2lgorithm,) 2 Montel Carlo study of The Iterative Procedure
revealed that it was indeed a computationally efficient algorithm,
Althcugh it hzs not been proved here that The Iterative Procedure
always converges, tha Monte Carlé results indicate that it will always
converge unless %;‘ne convergence is to a set of negative estimates
Whi'ch, make ZE(E) singaiar. . These negative estimates occur only |
infreguently and such negative estimates are not of interest in any
case. A numerical technique which was used as a modification of

The Iterative Procedure made it even more computationally efficient.

5.2. The Likelihood ZEgquations and an'Equivalent Form

As shown in Section 1.3 the likelihood equations which must be

solved to obtain raxirum likelihood estimates of 3 and g are

Py

[ (,_OUJGJ>JX]Q’ X(Z cG)l
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and
Pq N Pl 0y :
tr(Z GG) g/i= tr(Z 0.G. ~1<2 o%) J.=O,ZL,...,p:L 5
§=0 I~ §=0 J~3 -0 9
. where

=g-wE-2)’.
These may be rewritten with

P

(o) =% 0.6,

 tr E-l(c)G. = tr g'l(c)_ .g-l(g)g, 1=0,1,.0. 5P«

(Note that Z(g) has an inverse because 05> 0, 0, 20 1=1,2,...,p,,
implies Z(g) is positive definite and hence nonsingular.) An equivalent
form of the second set of equations is obtained as follows. The follow=-:

ing identity is true

I-Z (@

-1 [
p> Z .G

151
202()
.30J

n
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Substitute this identity into the second set of equations yielding for

a typical left hand side

-1 -1
oz (g, St 2h(9)6) T

b 5N o)e. 2 ? @
T2 ,‘Z),.ri,v o) J%0 o

~j~J
1 -1 -1
=% o, tr Z (0)¢.2 (o)G.

= [E(g)g]l )

where ¢ = (cr' 507540050 )7 is a (p,+1)X1 vector and B(c) is a

(j_)l+l)x(pl+l) mgtrix whose i,jbh element is given by

- PR | ‘i
[E(g)]ij— tr £ (9)G, T (g)g,j 1,3=0,15440,D; -

Now define = (pl+l) X1 vector S(g,%) (because C depends on @) by
-1 -1 .
[C(g,g)]f tr Z (g)f%,l,% (g)g s 1=O;1>---,Pl-

Then the second set of likelihood equations can be written in matrix

form as




This form is equivalent to the original form since it results merely
by multiplying by an identity matrix. (Eﬁl(gjgﬂg) = I for any vector

g.)

5.3. Simplification of the Likelihood Egquations When Each gi Can Be

Simultaneously Diagonalized

In this section some results of Anderson (1969) are restated and
expanded., Suppose that there exists an nXn orthogonal matrix
P (i.e. PP’ = PP = 1.) such that P’G.P = A, where A, is a diagonal
~~ ~r ~e o~ ~ ~ A~ ~1 . ~]

matrix, 1=0,1,...,p;. Then G = ggig' and’

P

(o) = = 0.6,

}
[N

It

e

[N
&
™
“~
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Furthermore,

L) - DR 1

~

Tet V = P/ 9,,13, and rewrite the second set of likelihood equations as

~ ~
)

follows,

For the left hand sides,

tr ¥ (0)G, .= tr PA"T(c)P’PA. P’
~ ~ ~] ~ono e A~

For the right hand sides,

i

-1 -1 -1 -1
tr Z(9)gZ(9)C = tr By (QR'BALRRAT (9IRS,

n

tr A (AL () X .

Let the diagonal elerents of A, be )\(.l), k=1,2,...,n. Then the likeli-
~i kK

hood equations becore

n )\1({1) n )‘l(il) V.
Xk .
z D = Z T 3 1=O:l:-'-apl s
k=1 1 (_,) k=1 1 (.) 2
5 oL o]
5=0 9 k 0 9J K

where Vi is the ktn diagonal element of V. Similerly, the equivalent
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form of the likelihood equations becomes

pl n Xlgi)llgj) n )\,(i) Vi
T {z- 0. =3 =S , 1=0,1,...,Dq.
j=0 k=1 - P1 J k-1 Py 1
. (2)72 )
Z o | £ oA,
=0 £=0

Aﬁother simplification occurs if ¢ can be estimated independent of
o. Thhis will occur if E is of the f_orm X = Q,F., waere Q is nxpo a.nd
. consists of P of the columns of P and F is pOXPC and nonsinguler,
Without loss of generality let R = [g:g]; that 1s let Q be the first

Po columns of P, ~ Also let

o) o Qf I
'I\\’(g) = [ ~ %N :’ be partitioned as P. Then 2'%=[ : :L=[ ~ ] and
8 Mg g’ Y
§ = KT HOX TRt
T <1, PUNERE S T z
- 'Y QR e Ry
, -1, T E1oa, g, gy 1
= [E'[T olA (g,).[ ]E] ],TJ-[E ola ‘(g,[ o | E
- ' 0 Q

PUENESR




= FME R o'y
-y

which is independent of o.

Cne further simplification occurs which allows a closed form

80

solution of the likelihood equations. Following Anderson (1969:58-59),

let each

His 2 9

.. . boy £
~i = L] L]
0 o

O

{e

where the orders of the identities on the main diagonal are nl,nz,...,n

2

and the nk's do not depend on i. The obJect is to take account of the

multiplicities of the roots of ’g(g) or equivalently the diagonal elements

of Alo). Define V, for k=1,2,...,p, by

. 1 ny
Vl= ;l— 2 V.. s
1 =1 9
3 nl+n2
V2= o z Voss
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n
e NEF
2 Py 3=n-np +1

2

where the v,y are defined by V = P'CP = P/(y-X &)(y-X §)'B. The likeli-

hood equations then simplifyy to

X's oK @ = X2 o)y
and
Py

. |
z Mot 2 nk ”'kl %

B S 1=0,1,...,p,.

If & can be solved for independent of ¢ and if the above notation

change is made, then &, V,,V,,...,V. are a sufficient set of statistics
~> 71272 Py

for the problem., Explicit solutions can be found in the case of

P,= py*+l. Then the equations

Py

Z Gj ,J.-kj = Vk k'_'l’-z"")Pa
3=0 e

have Py equations in pl+1 =D, unknowns and can be solved for g. (as

Anderson points out, the matrix of coefficients will be nonsingular
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because 90’91""’§p are linearly independent [Assumption 1.3.5],
' 1

vhich implies thai AO,Al,...,A are linearly independent.) Substitut-

ing these values of g into the denominators of the likelihood equations

yields

o, P

Zznk“‘ki_ 22 Ty By Vi
EKL i~

=1k k=l Vo

ﬁhidh shows that the g'dbtaine& egbove is indeed an explicit solution of
the likelihood equétions.

Explicit solutions ave intéresting and helpful when they exist but
unfortﬁnéﬁéiy they often do not exist. Thus an iterative-procedure is
requifed to solve the very nonlinear likelihood equations. Such a

procedure is discussed in the next section.

5.4. The Iterative Procedure

Writing the likelihood equations in the equivalent matrix form
suggests a convenient, simple iterative procedure for their solution.

It is basically the method of functional iteration which is used often
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in numerical analysis, The equabtions to solve are

TR ¢ = XEHY g
and
B(g) g = clo.2).
Since it is assumed that X has full rank and that g-l(g) is positive
definite, ')\("E_l(g)g is nonsingular and the equation for ¢ can be

solved to give

Then there is only one equation to solve for g, nemely

If g(g) is nonsinguler the equation may be restated as

g=3"(g) cloa(@] .
If a (pl+l))(l‘ vector § which satisfies the last eguation can be found,.
then § and é =a (§) will satisfy the likelihood eguations, The last _'
equation suggests the following iterative procedure. (This iterative
procedure will be referred to in this and.succgssive sections as The
Tterative Procedure, to be abbreviated TIP.) |

'
g
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Let (o) be any initial guess for gl.’ (The problem of choosing
(o) is discussed later in this section.) Then for i=0,1,2,...

2

151) = R 7(g)) eleay, alegs))d -
This process ccontinues until g«(i+l) is sufficiently close to 2(1) in
some norm, If the iterative procedure is to make sense it must be

- proved that E(—q'(i)) is nonsingular. This is done in the next proposi-

tion, which is stated and proved as Lemma 2.1 in Anderson (1971:11-12).

It is restated and reproved here for completeness.

—

PROPOSITION 5.4,1. If g(;) is such that g(g(i)) is nonsingular then

E(g(i)) is positive definite.

PROCF.

Given a.ny ('o +1)x1 vector § = (60, 1""’59 )/, it must be shown

that Q'g(g(i))g is positive. - '
But
S
'f)f']?"('c‘y*(li))'ésv ) jEO 1:3 [B(~(1))]Jk ik’
Py By
=% T tryg (c(l))c;z: (0'( )) 5 s

3=0 k=0

Py
-1
tr Z7Hg 1)) [J):O 5,6, :|>: (2¢1) [kfo 51&] ,

' v I e i
o (D ORI~~~ S~ "

:
@
!
|
!
\
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r ! -2
= tr | g-l(g(i)) ( % 8.G. _; R
L=t jao 9%
which is positive unless I~ (cr( ) ( DI G } 0. But it is impossible
Jj=0

P
1
for ¥ l(cr AL Z 8.G.) to be O because the G. are linearly independent
~ ML) Ny I ~ ~j _

and E—l(g(i)) is obviously nonsingular. |H

It should be noted that so long as [o,.,]., the O"h component of o/.y,
~(1)-0 - ~(1)

is positive and the others are nomnegative E(g(i)) will always be ri_on—
singular. Thus so long as the iterative process avoids negative values
it W:I._ll. continue unimpedéd. (For a discussion of negative values for
components of §, see Section 5.6.)

7. .N. X. Raoc has pointed out that The Iterative Procedure is in
effect the method of scoring. That this is sc can be seen by the follow-
ing remarks. The method of scoring obtains iterations in the following
ma.nner. leen an estlmate e(k) of the pXl pa.mme:gr 9, calcul@te

J( ~(k))’ the po 1nformat10n matrix whose 1,,3.1."L element is given by

} » 1,3=1,2,...,p, and

8= (x)

| aax(x,g) ‘

aeiaej

it



a(y,9)

Y- » the pXl vector whose ith component is

Then the next iterate 9 (k+1) is given by

-1 a’\(x:é)
&s1) = 2w) T L Q) TS5 :
| o )

08

n(y.8)

i

@
[6)

S (x)

It is easily seen that ?g(g(k)) for the case under study here is given

by (The notation used here is same as that used previously in this

section.)
Tl -
£ -(2(1;))?2 2
) =
3 ’ 1. ’
i 2 2B(g(y)) _
Furthermore,
n(g.8) ! 5%
ag ‘ =6 ) ’
Rk b,
where
-1
by= .}E'E (S(k) ) [X'&(i(k) )]

‘mw: LT Sy~ S T~ S - G TN~ R G I~ I~ Ay~ Q) > - A AL, i ... :
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1 -1 ‘ -1, -
[Bp]5= 3ltr £ (g0 IGE ™ (50 )C - 7 B Hgy)E,)
N %{ng(k) >%(g(k))] - R(g'(k)) g(k)}l s i=0,l,...,pl .
Then &rpery™ Qﬁfk+1)’£fk+1))' is given by

i) ~ X)) * E () B RE (g - 2y

y “1 .1
RIS s VU
and

. | _.
ee1) = Y)*R T (o) g 2200 - L)

~1

Thus the method of scoring yields the same equations as The Tterative
-Procedure. ’ . |

The Iterative Procedure described sbove has the advantage'éf being
simple, easy to describe, and easy to program. (& computer program
implementing this algorithm is deseribed in Appendix C.) Other methods
for solving the likelihood equations have been developad., Hartley and J.N.K.

Rao; (1967) suggested solution by the method of steepest ascent. They

s
\
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numerically intezrated out a system of simultaneous differential
equations to obtain solutions. They gave a proof of the convergence
of their algorithm. Hartley and Vaughn (1972) presented a computer
program written by Vaughn (1970) implementing the Hartley-Rao
a.léé:-ithm. .Tnis program is guite complicated; it proceeds
in the following menner., A least squares approximation is obtained to
the differential eguations to be solved. This approximation is numer-
ically integrated by the Runge-Kutta method until a solution is obtained.
These two steps are repeated until convergence is obtained. The reason
an approximation must be used is ‘that numerical integration methods may
require large mumbers of iterations and a large smount of effort is
required to evaluate the likelihood equations. A comparison of The
Itera.tive-_,Procédure and the me_:thod of Hartley, Rao, and Vaughn on some
sample problems presented in Ha.rtley'and Vaughn (1972) is given in
Section 5.7. It can be said at this point that The Iterative Procedure
seems to be computationally much more efficient, at least in most cases.
Choosing the initial estimatbor g(o) is of some importance in-The
Iterative Procedure. The closer E(O) is to the true solution, the
easier it will be for the aigorithm to iterate to that solution.
Anderson (1971b:12-13) considers the case where the mean of y is either
known or completely unspecified and ther.e are N observations on y. He

suggests 2(0) the solution of the equations

Py

jEO oy tr AGAG. = tr AGAC , 1=0,1,...,D; ,

o SRR e S e

oy QR rm— v~ WD Gy -~ S——
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vhere A is an arbitrary positive definite matrix and

- !: r - 2o e " 1 N o N\ =
=% Z}Z:l('yk-&) (zk—g) if p is known or C === ZK=1(XK-X) (y:k-:%) if

w is completely unspecified. In both cases C is an unbiased estimate

of g and hence g( will be an unbiased estimate of g. One choice

0)
suggested for :13: is I, the identity matrix. It has been found in sample
problems that the above method does not work very well in practice.

It often seems to take many iterations to reach convergence from the

above g( while other types of guesses work better. Anderson mentions

0)

some other methods for the case above. For the analysis of variance

the following methods may work well. The usual analysis of verience

estimatesi, if they are available, or approximations to them ,cé.n be

used. A rough approximation to the sum of squares for each factor

may work fairly weli if that is all that is available. Prior knowiedge

may be put into the inij;ial guess if desired. If no information at all

is available, 9207 (1,0,...,0) may be used; this corresponds.to choosing

é = E‘ in the Anderson method above., The choice of the initial guess is

not critical but some attempt should be made to make reasoneble choices.
The advantages and use of this method have been alluded to. At

this poinf an attempt must be made to answer the three criticali questions

one must-ask of any numerical procedure.

1) Does it converge?
' 2) If it does converge, to what does it converge? Is the

result a root of the likelihood egquetions?

3) Is the answer unique?

e
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Unfortunately complete answers are not known to any of these questions.
An answer to all three is given in the next section for a special case.
To study the first two in general Monte Carlo studies were used., These
results are described in Section 5.8. More complete answers to these
queétioﬁs'méy'be found after further researéh. At this point the
excellent Monte Carlo results and the fact that The Iterative Procedure
is in fact the method of scoring, which has been accepted for many

years, enccurage the use of The Iterative Procedure even though these

questions remain unanswered.,

5.5. A Case Where the Iterative Procedure Gives Exact Solutions in

One Iteration

In the event that the conditions described in Section 5.3 for the
existence of explicit solutions of the likelihood equations are satis-
Tied, The Iterative Procedure works very well indeed. ‘In fact it will
yield the_exact solutions tolthe iikelihood equations in one iteration

starting from any initial guess. Recall that these conditions are the

following.

CONDITION 5.5.1. There exists an nXn orthogonal matrix E such that

B'GE = A; 1°0,1,...,p;, where

al
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By; L Q ° % 9
2 Bos L Sl Q
A. = L ] - L ]
~1
0 0 1 I

with the orders of the identities nl,na,....,n.0 respectively. The nk'S

2
‘do not depend on i,

-'CQNDITION 5.5.2. X = QF where Q consists of (without loss of generality).

the first Pg columns of P and Fisa nonsingular pOxPO matrix.

CONDITION 5.5.3. o= pl+l.

When these conditions are true a solutionm to the likelihood equations

is

12

= g-lg'y, and § the solution of

2]
z o.

5o0 3 = Vs k=l:23-9'3P2 s

Pry T 'k

vhere the V. are defined from the matrix V= '2'(2’,‘@) (y-x2) ';3 as follows



1 I’J.l-i-n2
Vé = = v 5
2 j=ng+1 9

The following Proposition is true.

PROPOSITION 5.5.1.' If Conditions 5.5.1-5.5.3 are true, and g(o) is any

initial guess for g such that E(E(O)) is nonsingular, then The Iterative

Procedure yields

(1 = 2"1(9,(0)) g[g(o),a:,(g(o))]

B
1

where g(l) is the solution to Z

J=0

Uj “kj = Vka k=l’2s°--;P2°

PROCF.

= (0 _(0) (0)y . oo
Let o) = (cr0 > O ,...,crpl Y. Then the matrix E(g(o)) is given

(B(g(0) 135 =t £ (9(0))%E (%(0))%s

> R t—-e -~ S— -~ SNy S G MG -~ GO R e A e — i S
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'~ Thus the equation %o be solved for g(n is

P; D P -
=0kl P1 o k=l_( 3;1 (), y2
oy B
oo R Pxg

Since g(g(())) is nonsingular, g(g(o)) is positive definite and, there-

fore there is exactly one solution to the above equation. But o, the '

Pl 2 : a5
solution of X o.
j=o ¢

=V

K° k=1,2,...,p2, is a solution as is verified

by the following substitution in the left hand side of each equation.

et



oh

P
1
P. D P iy (T sol)
1 2 o Mgy By 2 ki ‘20 kj
SIS = J ]cJ = 3 > J
J=0 "k=1 ( Z::L O-(O)p' )2 =1 ( Z::L 0.(0) )2
9= ‘f __k£ - 2=0 A ukl
P
2‘2 By By Vi
p 2
k=1 *1
(0) 2
(22 .0'2 ].ka)

vhich is the right hand side of the equation. Thus the unique solution

o is just & the solution to
~(1) 5 "

%4.%;44 Pl
PN

V., for k=l,2,-"’p2’ ['[
3=0 |

G. .=
iPg T 'k

It is reassuring to know that if there exist exact s@lutions, The
Iterative Procedure will pick them out immediately even if the user of
the method is unaware that they exist. The Hartley-Rao-Vaughn algorithm
does not have this property. However it does ha:_vé the property that it
contains built in_ traps to guarantee that it never produces negative
estimates, Of course the maximum likelihood estimates are never nega-
tive. The Iterative Procedure as presently constructed does not inher-
ently avoid negative estimates, However, it can be adjusted so that

the final answers are nonnegative., This is discussed in the next

section.
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5.6. Avoiding Negative Estimates

The general problem of negative estimates of variance components
has been discussed by many authors. (See Searle [1971:22] for a
sumuary.) Of course, maximum likelihood estimates. cannot be negative;
negative estimates do not belong in the parameter épace and hence are
~ ineligible for maximum likelihood.estimation.

The Iterative Procedure defined above does not by its nature
converge to nonnegative estimates. In fact it may very well converge
to negative estimates. However, a simple modification allows one to
avoid negafive estimateé as final énswers. The general solution when
any estimates are computed as negative is to fix them at zero and solve
the remaining likelihood equations subject to these cons?;?énts; that
is, if g would have been negétive for i ¢ S, where S is some set of

 indices, the new equations become

o/

A

R
SA . .
3—0‘-.= 0, 3=O:->'°°:Pl J é S,
N
g, =0 ie 8.,
1

This is the method used by Hartley, Rao, and Vaughn in their algorithm,
They are able to build this device right into the iterations. This
cannot be done in The Tterative Procedure. (It was tried but did not

|

i
Y
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work out well; it induced nonconvergence.) However, it is easy to see
how to get around the problem. The new likelihood equations are just
the equations for the following new model.
Py
=X+ I Uib,
3=0 d ~d

ids

where Qb = En and EO = E,and the other Eﬁ and Pﬂ are as defined in

Section 1.3. But thié model has exactly the same form as the old
model for which The Iterative Procedure gave negative estimates; it is
Just smaller. Thus when The Iterative Procedure yields negative
estimates, all that must be done is to reformulate the reduced problem
ebove and resubmit this to The Iterative Procedure. One continues in
this menner uwntil no negative estimates are obtained., This ﬁrocedure
avoids entirely any negative estimates being reborted as maximum like-
lihood estimates. - The computer program presented in Appendix C does
not automatically perform the above operations, but with a simple but
major overhauling of the program, this could be accomplished.,
Iterative Procedure would be comparasble to the Hartley-Rao-Vaughn
algorithm.

One seriocus problem of negative estimates in The Iterative

7
)

, Procedure was alluded to in Section 5.1. The problem is, that if at
any stage, a negative estimate for any of the ci's occurs, then the

matrix Z(g) may be singular or nearly singular. When this happens The

Iterative Procedure will become very unstable and may even blow up. In

Then The

ar: |
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fact, this agctually occur:fed in the Monte Carlo studies of The Iterative
Procedure and was the only cause of nonconvergence of The Iterative
Procedure (See Section 5.8.), Unfortunately no technique exists at the
moment for eliminating these difficulties. The subject is undergoing
further study. |

Even with these difficulties The Iterative Procedure still performs
very well in comparison with its competitién, the Hartley-Rao-Vaughn.

algorithm. Some comparisons dre given in the next section.

5.7. Comparison of The Iterative Procedure with the Hartley-Rac-Vaughn

Algorithm

Hartley and Vaughn (1972:135-1Lk4) give four examples of maximum
likelihood estimation involving real data. These examples will not be
reproduced here; the performance of the Hartley-Rao-Vaughn (to be
abbreviated H-R-V for the rest of this chapter) algorithm as stated in
Harllcley‘énciVaughn and The Tterative Procedure (to be abbreviated TIP)
on these rroblems. These comparisons will point cut the computational
efficiency of The Iterative Procedure. The H-R-V algorithm computes

: o

variance ratios (that is, it computes oy and vy, = -C-;J: for i=l,2.,...,pl)'
0

e
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instead of variances. The results of TIP have been converted to this
form for comparison. The problems were fed into the computer program
described in Appendix C using the same initial guesses Hartley and
 Vaughn used (converted of course to varia.nce;:). Efficier}cy will be
reasured by comparing the number of in%rersionsl of a matrix of the
form Z(g)vhich are required (each method must perform such calculations).
Both methods reguire many other calculations, with the H-R-V requiring
many more, bqt these inversions are the major computational effort.

The Iterative Procedure requires either one or two inversions per
iteration (See Seciﬁion 5.8 and Appendix C,)while the H-R-V algorithm

(p;+1) (p,+2)
2

requires + 1 inversions for each iteration to make its

appro;lzim;.;:?‘_gn (Hartley and Vaughn [1972:133]). It will be seen that
each procedure requires approximately thg Same nmnber of iterafidns to |
converge, with consequent great savings for The Iterative Procedure in
computational efz’;ort. The results of the four sample problems giveﬁ by
Hartley and Vaughn were as follows.

1) The Twofold Nested Model

i=1,2,...,1,
3=1,2,.04,J,
k=1,2,...,K,

= +
Vige™ B F 8y Pt a0

1l. Of course the inversion may be only done implicitly as in solving
a number of linear eguations,

imm«-—»m Iy . AL W e GRIING . - ILR, oo IR B SN o ERRAEN, -




where i is fixed and the a's, b's and e's are the random effects. Such

a model ‘is described in Section 6.3 with the a's as fixed effects. For
this model, there exist exact solutions and so as in Section 5.5, ihe
Tterative Procedure achieves them in one iteration. (In the sample
problem of Hartley and Vaughn, I=l, J=3, K=2, for n=2k,) However, the
computer requires one more iteration to recogniie convergence, so TIP
reguires two iterations to achieve the final result, ﬂhiéh agrees with
the exact solution. A total of two inversions of the matrix g(g) are
required. The H~R-V algorithm required three compiete cycles and hence

reguired a total of 3-[ 2+1222+2 + l] = 21 inversions to obtain answers

'Iwhich agreed with the exact answers to only two decimal places for the
variance ratios, OFf course, had a more stringent convefééﬁée criterion
been gpplied, H-R-V woula have attained better agreemenf with the.exacti"
answers at a cost of more iterations.
The final results were
8, VR Vo
Exact 0.066542 39,106 2k, 20h
H-R-V 0.066549 39.095 2L ,1999

- TIP 0.066542  39.106 ok, 20k .

2) Twofold Nested Model When One Variance Ratio is Zero’
This model is the same as above but for these data the variance
ratio for the a effect is calculated as negative and hence set to zero.

4
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(In the sample problem of Hartley and Vaughn, I=5, J=2, K=2, for n=20.)
The Iterative Procedure requires two iterations to recognize the
negative veriance and two more to compute the final answer in the
reduced model as describéd in Section 5.6. Thu$ a total of Pour
inv;rsioné Wére required. Thé H-R-V aigorithm.reéuired féﬁr comple£e
cycles and hence Le7=28 inversions to obtéin the final answers. Both

answers agreed with the exact answers.

The final results were

P N

'ab_ Y1 Yo
Exact 0.0387 0.0 0.35695
H-R-V 0.0387 - 0.0 0.35696

TIP 0.0387 0.0 0.35695 .

3) Unbalanced One-Way Classification

yij= o+ a; + eij, i=1,2,4..,1,

J=1’2, se ’Ji-

This model is discussed in Section 6.4. The a's and eis are random
effects and p . is a fixed effect, No exact solutions exist here. (Iq
the sample problem of Hartley and Vaughn, I=5 and the Ji's are 5,3,2,3,1,
for n=1Lk.) The Iterative Procedure requires'five iterations involving
a toﬁal of 6 inversions to converge. The H-R-V algorithm reguired five

iterations with a consequent 5-( lﬁﬂ'21*2 + l) = 20 inversions. The

answers agreed to three decimal places. (Hartley and Vaughn only gave

'lﬁt‘"1§ﬂﬂ““!ﬂ!r“*ﬁ.ﬂf““'-rw“‘Iﬂfﬁﬂi.‘ﬁ**ﬂﬂ-éh—m--p;ﬁl-rhn—d-l——J-nn

3
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the answers to three decimal places in this problem.)

The final results were

% Yy
H-R-V 0.773 0.271
TIP 0.773 0.671 .

k) Two-Way Classification with Interaction

= + +
yijk 1 ai bj + cij + eijk 5

i=l,'2,... ,I,
3=1,2,...,J,
X

k=1,2,...,K,

where p is a fixed effect and the a's, b's, ¢'s énd.e’s are random
effects, This model is discussed in_Sectibns 6.1 and 6.2. No closed
form solutions exist for this model. (In the sermple problem of Hertley
and Vaughn I=2, J=3, K=3, for n=18.) The Iterative Proéednre required
12 iterations involving a total of 13.inversions.to reach a solution.

The H-R-V algorithm required 15 iterations with = consequent

15-( 3+1123+2 ot 1) = 165 inversions. The answers for the two procedures

only agree to two or three digits but as far as is possible to know The

Iterative Procedure gives more accurate results. (For example &O can be

solved for exactly in this model; see Section 6.2.) Again the E-R-V

algdrithm.gould be made to converge more closely, but at the cost of
mor%literations.

4
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The final results were

A A N

H-R-V  69.75  9.54  12.82  0.326

TIP 69.78 9.52 12.79 0.327 .

These rour examples point out that The Iterative Procedure seems
to be éomputationally much more efficient than the H-R-V algorithm. To
be sure, it may be unfair to compare in cases 1) and 2) where The Itera-

tive Procedure gives exact solutions and the H-R-V just iterates.  Still,

where exact solutions do not 'exist the compérisdn is just as dramatic.
One can hardly generalize from four examples, but it is trﬁe that a
general pattern develops that if one method requires many iterations,
so will the other; however, the. H-R-V algorithm pays a much higher
price per iteration. ‘I’his pattei'n continues in the Monte Carlo studies
in the next section. The H-R-V method ha.s an ad.vanta,ge that it has

been proven to converge. BSuch a result has not been proved for The

Tterative Procedure but Monte Carlo resulis have been most encouraging.

These are presented in the next section.

it is an advantage to give exact solutions when they exist. In the cases z
»
MR- |
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'5.8. Monte Carlo Results

As noted in previous sections, it has not been proved here thab
The Iterative Procedure is guaranteed to converge. Thus an attempt
has been made to demczstrate its effectiveness by Monte Carlo methods.
The results have besn most encouraging. The following procedure was
-used, Only one mcdel, the fwo-way crossed balanced design described
in Sections 6.1 and 6.2, was used. There were two reasons for this.
First, the iterative equaticns can be easily programmed and do not
require massive amcunts of computer time to reach a soiution as might
be fequired'with mcre complicated designs. Second, there is no closed
form solution to these equations so the iterations are nontrivial.
Problems which might possibly occur can occur under thisl§§fug as
easily as under any cther., This layout seemed to offer the best
possibility for finding whatefer problems The Iterative Process might
have in the most economical wa&.

| The actﬁal Mbnté Carlo process was carried out as Tollows,

Sufficient statisties exist for this model (see Section 6.1) and can
be generated with pseudorandom chi-square generators once I, J, X end
a set of "true" parameters Op> 912 Op» O3 have been chosen.. These
statistics were thexn fed into The Iterative Process. If convergence

" occurred, any negsiive estimates were Set to zero and the egquations
resolved with those estimates restricted. When final sclutions were
obtained they were recorded and fed into the Hartley-Rao-Vaughn
2lgorithm to confifm that they were indeed solutions of the likelihood
equations, If 300 iterations occurred withoul convergence the process
i
Q

%
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stopped and the sufficient statistics were recorded and later fed into
another program to analyze in more detail why convergence failed to
océur. Over 15,000 separate Monte Carlo repetitions were run for
various I, J, X, G4, Oy, Oy o3 coﬂbinations.‘ (See below for more .
letail on the typés of combinations used., ) .

The results of the Monte Carlo analysis support the contention
that The Iterative Procedure is indeed an effective, efficient method
for caleculating meximm likelihood estimates in the mixed model of the
analysis of variance. Two problems were discovered during the Monte
Carlo runs, one of which was easily rectified and the other of which
was more serious., These prdblems'will be discussed next followed by
the large quantity of favorable results of the Monte Carlo trials.

When.the Monte Carlo runs were si-,a:cted it was found that sometimes
it seemed like The Tterative Process was not converging when in fact it
wes. (This occurred less than 0.8% of the time.) The problem was that’
the convergence was so slow that. it might have takep up to 10,000
iterations to converge., For instance the sequence 11000, 9000, 10999,
9001, 10998, 9002,... is convergiﬁg.té 10000 but will require 2000
iterations to get there at the rate it is going. The Monte Carlo results
-seemed to indicate that whenever the slow convergence occurred, it was
in the oscillating manner indicated above. A natural correction fof
this problem seemed to be to average consecutive iterations. This
proved to be an excellent idea as it eliminated entirely the problem of

reporting lack of convergence due to slow convergence and improved other

slow convergence rates by a factor of from 10 to 50 or more. However,




care must be taken in applying this technique since if applied indis-
criminantly, it can lead to a false convergence where a sequence of
iterates regenerate themselves by averaging. (This actually occurred
in early studies.) The false convergence can be easily eliminated by
simple programming steps which are described in Appendix C. All
further results reported here are results after the sbove modification
was made to The Iterative. Process.

A more serious problem which occurred was mentioned briefly in
Section 5.6. When negative estimates were generated in one iteration
in such a configuration that I(c) became singular or nearly singular,

. the process became very unstable often oscillating between several
'points of singularity. Once such unstable points were reggh_gi con-
vergence almost never occurred. No totally satisfactory solufion to
this problem was found. However, SOméi facts became evident. .Fir'sf,'

' the problem can only occur when some of the estimates are negative;

for positive estimates convergence occurred 100% of the time. Second,

- the problem tended to occur only in situations when I, J and K were
small and when Oy2 912 9o and 03 were chosen to increase the probability
of negative estimates occurring. (For instance if the interaction
variance oy is large with respect to the row and column effect variances
I, and-GB or if the error variance %o is large Wi‘i:h'respect.t'o oy then
the probability of this proﬁlem occurring seemed to increase.) It is
somewhat reassuring to note that stich configurations occur infreguently

in real' data.

o
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M.though the ebove problem is serious, it may possibly be overcome
by restarting from a new trial solution., If this fails it is possible
to act as if the final solubtion had been reached at whatever point the
: blo;_v' up or oscillation o_cg:ur_red. Any estimates Which are negative at
thiz point are set To Zerc and the equations resolved. This second
method is not totally satisfactory but will work in most cases.

The results of the Monte Carlo study not only pointed out two
problems--one of wnich was completely rectifiable the other oniy
partially éo——but also produced many encouraging results. The first
positive result was the fact that in over 15000 runs with various I, J,
K, 0gs 995 Ops a3 combinations, { see b'elowl for more detail) The
Iterative Procedure .converged 98.7% of the time when the failures due
to slowf:bn‘vergence are included and 99+% of the time when the averag;
Iing correction is mzde. In every case where convergence occurred, the
Hartley-Rao-Vavghn =lgorithm cénverged in one iteration starting with
the final results of TIP as an initial guess. This verified that in
every case where TIP converged, it converged to a solution of the like-
lihood equations. |

Another positive result of the Monte Carlo study was that The
Iterative Procedure seldom req\;ired a large number of iterations %o
reach convergence, The number of iterations seldom exceeded 20 although
in a few.cases it was over 200. The averaging modification mentioned

gbove further raduced the number of iterations required., This contrasts

with other procedures which may require large number of iterations., For

instance, the Hartley-Rao-Vaughn algorithm may require a thousand or more
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Runge-Kutta iterations for each approximate solution and there are as
many of these approximate solutions as there are overall iterations.
(It was for this reason that in the Monte Carlo study, the H-R-V
algorithm was used only as a check rather than being allowed to
iterate . to a solution.)

It was also noted that if the "true” paremeters were chosen SO
that negative estimates were unlikely to develocp (see above), .the
percentage of runs where convergence occurred went up and the number
of iterations went down. As long as no negative estimates occurred,
The Iterative Procedure converged every time.' It seems that such a
lconfiguration of parameters is likely to occur in real data.

Another very imorfant aspect of The Iterstive Procedure which
was highlighted by the Monte Carlo study is that as the size of the
design increased, so did the computational efficiency of TI?. The
percentage of runs where convergence occurred increased (reaching 100%
for large designs). The average number of iterations per run decreased
(getting very close to the absolute minimum of 2 for large designs and
attaining this minimm for very large designs).

The positive results mentioned above are illustrated by the dats
in the following two tables. In each table a box represents 100 Monte
Carlo runs af the particular I, J, K and Og» O o‘é, ‘63'cozib5'.n"tic'>n.'"
The number in the upper 1eft of each box is the percentage of runs on
vhich convergence occurred and the number in the lower right is the
average number of iterations perrun for the runs represented by that
box.‘ Table 5.8.1 illustrates what occurs as n becomes large. Two
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