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CHAPTER 1 

INTRODUCTORY REMARKS 

1.1. Introduction 

The problem considered in this paper is the estimation of the 

parameters in the mixed model of the analysis of variance by the 

method of maximum likelihood, assuming normality of the random 

effects and errors. Both asymptotic properties of such estimators 

as the size of the design increases and numerical methods for their 

calculation are considered. The mixed model has been studied for 

many years. Various methods have been suggested for use in specific 

cases, but without unified theory applying to all cases. The method 

of maximum likelihood, which provides such a unified theory, has not 

been used in the past because the complexity of the likelihood 

equations in general cases made their solution very difficult. 

Computers have now made feasible the solution of the likelihood 

equations; this fact makes the study of the properties of these 

estimators of interest. 

This paper extends certain asymptotic results of K. 0. Hartley and 

J. N. K. Rao (1967) and "Hhitby (1971) to cover the asymptotic behavior 

of these estimators in great generality. Both of these previous sets 

of results have restrictions confining their application to a 

narrower class of models to which many interesting cases do not 

belong. In this paper the theory has been extended to cover almost 

all models.  (Certain degenerate cases are not considered.) The 



theory presented, here applies to both balanced and unbalanced designs . 

The exact model used is given by Hartley and. Rao as 

y = Xbr + lib .+ U_b0 +...+ U b  + e , 

•where £ is- an nxl vector of observations; X is an nxp design matrix 

for the p_xl vector of fixed effects ax  U. is an nxm. design matrix 

for the m.xl vector of random effects b., i=l,2,...,p,; e is an nxl 

random vector of errors.  It is assumed that the expected value of 

each of the random vectors is the zero vector and that the covariance 

matrix of b. is a.I, i=l,2,...,p,, and the covariance matrix of e is 
~a    i~     '    1' ~ 

0-1, where the identity matrices are of appropriate size.  (See the 
\jr~t 

note in Section 1.3 on the use of o\ instead of o\ for a variance.) 
11 

It is further assumed that jb.. ,b^ ... ,b , and _e are mutually independ- 

ent and that each has a multivariate normal distribution. It follows 

that y has a multivariate normal distribution with mean X* and covariance 

matrix S = a„I + cr.U-U' + o0Unu' +....+ a   U u' . A full description 
~   0~   1~1~1   2~£r£. P-|~P-,~-p-i 

of the model-and the basic assumptions about it is given in Section 1.3. 

The problem is to estimate a and crn,a1,... ,o     by the method of maximum 

likelihood and to study the properties of such estimators. 

Consistency and asymptotic normality of maximum likelihood esti- 

mators are often proved by using a Taylor series expansion of the 

1.  The author acknowledges his indebtedness to Hartley and Rao for 
the form of the basic model and to Whitby for the form of Theorems 
3.2.1 and 3-3.1. 

m 



likelihood equations about the true parameter point (Cramer [I9U6]). 

There are often independent, identically distributed observations 

and, in this case, conditions are placed on the common density function 

to allow the correct expansions to be made. The asymptotic theory is 

then carried out by normalizing by some sequence depending on the 

number of observations, (Usually, but not always, the square root is 

used; see Whitby [1971:2].)  Work has also been done .with cases --where 

the observations are not independent, not identically distributed, or 

neither independent nor identically distributed.(For example, see 

Silvey [1961].)  However, none of the above theory can be directly 

applied to this problem. One generally does not think of an analysis 

of variance as a sequence of observations but as an experiment; that 

is, one thinks of an analysis of variance as one observation of a 

vector of variables constituting an experiment. Asymptotic theory is 

then usually carried out on a "conceptual sequence of experiments" for 

•which the size of the entire design becomes infinite in some orderly 

way. The work done in this area of the analysis of variance does not 

apply in all cases either. The problem is that often the estimate of 

each parameter requires a different normalizing sequence; this problem 

is discussed further below. 

The results presented here are extensions of the work of Whitby 

in the following sense. Whitby proved theorems dealing with a general 

maximum likelihood estimation problem. He considered estimation of 

several parameters but his proofs depend on the normalizing sequence 

(he calls it c ) being the same for each parameter and en the norm of 
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a pxl vector x "being ||xj| = (.£? , x-y • He mentioned that different 

normalizing sequences may be necessary "but gave no indication of how 

they are obtained or "why they might be necessary. The theorems 

presented here are-much more general. They allow any legitimate 

vector norm to be used and they allow the estimate of each parameter 

to have its own normalizing sequence. To see that such an extension 

may be necessary in an analysis of variance, one need only consider/ 

the balanced two-way model. The sufficient statistics in this model      i 

are the grand mean and several sums of squares. The sums of squares       | 

are a set of independent chi-square random variables with degrees of      J 

freedom which will increase at different rates (See Sections 6.1 and      5 

6.2.),; any analysis of the maximum likelihood estimators (-which of 

course are functions of the sufficient statistics) must take account 

of these differences. 

The freedom to allow the estimate of each parameter to have its 

own normalizing sequence is achieved by the artifice of building the 

normalizing sequence into the parameter, obtaining a set of sequences      '• 

of parameters.- The basic asymptotic theorem, Theorem 3.3-1» deals        : 

only with such sequences of parameters. It is quite general; in fact, 

most of the usual asymptotic results about maximum likelihood estima- 

tion can be derived as special cases of Theorem 3.3-1- In Chapter it- 

Theorem 3.3.1 is used to prove the consistency and asymptotic norm- 
" I 

ality of the maximum likelihood estimators in the mixed model of the       I 

analysis of variance. This is done by translating back from the 

properties of estimators of a set of sequences of parameters to a 



sequence of estimates of a set of parameters. 

One advantage of the use of the above method of proof for Theorem 

3.3.1 and its application in Theorem 4.4.1 is that the problems incurred 

•when the -wrong normalizing sequence is used are clearly located. These 

problems are easily illustrated by considering the simple case of cor- 

rectly normalizing X , the arithmetic mean of n independent, identically 

distributed random variables, each with mean zero and finite nonzero j 

ife   
variance. If the normalized estimate is Y• = n2  X , then only for J n      n i 
e=0 will a limiting normal distribution be obtained. If e < 0 the 1 

normalizing sequence is "too small" and the Y converge to a degenerate j 

I 
(point) distribution at zero.  If e > 0 the normalizing sequence is \ 

1 
"too large" and the distributions of Y "blow up" to a distribution i 

n | 
" —•'•' ä 

having atoms at plus and minus infinity, . This phenomenon has some- | 
• 1 

times been described in the following manner:  if e < 0 the asymptotic | 

variance is zero and if e > 0 the asymptotic variance is infinite. 

While the first descriptions of the phenomenon are technically more 

accurate, the second descriptions do point out a way of locating the 

problem. In the analysis of variance model the problems manifest 

themselves in the matrix J defined in Section 4.3. 

The matrix J Is the limit of the matrix of expected values of 

second derivatives of the log-likelihood. This matrix has had the 

normalizing sequences built into it. Only if the normalizing sequence 

for each parameter is of precisely the right order of magnitude will 

J be positive definite.  If the sequence for some parameter is "too 

J 



small" the limit of the appropriate diagonal element will be infinite. 

If the sequence is "too large" the entire row and column of J associated 

with that parameter will be zero. Since J  is the asymptotic covariance 

matrix it is easily seen that results analagous to the case for X occur 

in the model under study. The problems of zero or infinite "asymptotic 

variances" manifest themselves in the nonexistence of the limits form- 

ing J or the fact that J is not positive definite. However, the proofs 

of Theorems 3.3*1 sad. ^A.l point out further what goes wrong. The 

proof of Theorem 3.3.1 breaks down completely if J is not positive 

definite. Proofs of the lemmae used to prove Theorem !+.%.! also break 

down if the normalizing sequences are not of the correct orders of 

magnitude. The assumptions of Section U.2 insure that for the sequence 

of designs considered in Theorem k.k.X  the matrix J will be positive 

definite. 

The results presented here are also extension of the work of 

H. 0. Hartley and J. TT. K. Rao. Hartley and Rao (1967:101) make the 

following assumption about the asymptotic behavior of the design 

matrices U.: Every column of each U. may contain at most a finite 

number of nonzero elements. The two-way balanced model mentioned 

above illustrates that this assumption rules out any sort of balanced- 

crossed layout.  (See Section 6.1.) The effect of this assumption is, 

in fact, to assure that the estimates of all the a.  can be normalized 
i 

by the- same-normalizing sequence. As noted above, the results presented 

here are not so restrictive. In fact, any sequence of designs that 



might be considered as an actual sequence of experiments is covered by 

these results; the assumptions used here may appear restrictive but 

they merely rule out cases that are useful only as counterexamples to 

theorems and not as actual design sequences. 

Hartley and Rao went on in their paper to assert that under 

their assumptions, the maximum likelihood estimators are consistent 

and asymptotically efficient, although they did not make clear •what 

they meant by the latter term. They sketched but did not give details 

of a method of proof. In fact the details constitute the difficult 

part of the proof. With a great deal of effort, and after corrections 

are made to their assumptions, their method of proof (with details) 

yields the claimed results,  (if the assumptions are taken as_written, 

counterexamples to the theorems can be found.) A more detailed dis- 

cussion of their proof is given in Appendix D. The methods used here 

require no less effort but cover all interesting cases. 

Thus far only asymptotic theory concerning the maximum likelihood 

estimates has been discussed. The numerical computation of the esti- 

mates is also a fruitful area for study. One problem in this caseis 

the problem of negative estimates. The maximum likelihood estimate of 

a variance can never be a negative number; such a point would not be in 

the parameter space and would be ineligible for a maximum likelihood 

estimate. Thus some sort of truncation procedure must be used to 

insure nonnegative estimates. The procedure used when the estimates 

are obtained as solutions to the likelihood equations is given in 
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Section 1.3. The problem of negative estimates is also discussed in 

Chapter 2 and in Section 5«6. It should be pointed out that truncation 

does not affect the asymptotic theory because the true parameter is 

assumed to be an interior point of the parameter space so that all 

the true variances are positive. Since the estimates are consistent, 

truncation ceases to be a problem. Asymptotic theory when the true 

parameter point is on the boundary has not been developed for this 

model: in some simple boundary cases, asymptotic distributions occur 

•which are definitely not normal. Thus some further extension of 

methods of proof -will be required in these cases. 

She actual numerical procedures for the computation of the estimates 

are discussed in Chapter 5. An iterative procedure suggested by Anderson 

(1971b), (1973) is compared with a procedure suggested by H. 0. Hartley 

and J. N. K. Rao (1967) and implemented by Vaughn (1970). The pro- 

cedure of Anderson was found to be computationally much more efficient 

than the Hartley, Rao, Vaughn procedure in a Monte Carlo study. J. IT. K. 

Rao (1973) has pointed out that the Anderson procedure is in effect the 

method of scoring. A computer program developed to implement the 

Anderson procedure is discussed in Appendix C. 

1 



1.2. dotation and Conventions Used 

The following notation will be used throughout this paper. All 

vectors are column vectors and are underscored with the symbol "~" to 

represent boldface type. Matrices are also underscored in the same 

manner. With three exceptions (G_, R, and sometime Y) vectors are 

represented by small Latin or Greek letters; matrices are always 

represented by capital Latin or Greek letters. All vectors belong to 

the space R (the Cartesian product of R, the real line, with itself 

m times) of the appropriate dimension. A vector norm is denoted ||»|| 

and the matrix norm it induces as a natural norm is also denoted by 

HAXJI 
ll'lb   i.e. j   ||AJ|' = sup —II  ||     .     If A is an nxn matrix,  tr(A)  = E        a. . 

is the trace of A,  X.(A)  is the j      characteristic root of A, where 

X,  ä X„ 2: ...  5: \  ,    A!  is the determinant of A,  and if A is non- 12 n     ~' ~^ ~ 

singular A      is the inverse of A and A~    = (A7)"    =  (A~  )'. 

If f£x)   is a pxl vector function of the pxl vector x,  then the 

Jacobian of f_, ^(x)  is a pxp matrix function of x_ defined by 

*l&*)h 1 
[J~(x)]. . = K £ . It then follows that if f(x) = A g(x), L~-fv~ 13     dx. ~~'  ~ -»w» 
~ 3 

where f and g^ are pxl vector functions of the pxl vector x and A is 

pxp nonsingular, J_(x) = A~ J (x). A frequently used notation will 

be Gj^jjj, Y), where G is a pxl vector function of a pxl variable ^ and a 

random variable Y (Y may also be a vector). Analyses will then be 

performed on (3 relative to jr for fixed Y and Y may be required to 

belong to some set in its probability space (which set will have large 

i 
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probability).    For such a G the pXp Jacobian matrix JpCjfjY)  is defined 

a[G(i,T)] 
[J^O^jY)]. . =  5-  . Another notation -which will be used may 

seem confusing at first, Jr is often used as a statistical parameter 

and jr as an argument in a function in the same expression; the notation 

».(jet) 
Sir. 

• x 
ä <--n 

may appear, where X is a scalar function of y and * and 

y is. a random variable. This expression contains jr, the variable which 

is differentiated with respect to in the function X, and also jr , a 

parameter, one of a sequence of parameters under consideration. This 

dual role of ^ parallels the use of dummy variables in an integration 

pX 
(e.g. f(x) =   g(x)dx ). Differentiation by a subvector will be as 

X0 
oX(y,jr)       ax(y,£) 

follows:  Let *'= (P',T') then 
r**      <-«-* •i 

or may be 

written if that is more convenient than using a complicated subscript 

scheme. Vector-derivatives may also be used where appropriate; for 

example, Vö where ß is p.Xl yields a p^Xl vector of derivatives and 
op     ~    0 ü 

o2X 
•.„•so/ and yields a p„Xp_ matrix of second derivatives. 

Linear spaces are denoted by script letters and are column spaces; 

that is, £(X) is the linear space formed by all linear combinations of 

the columns of X. The symbol © denotes direct sum; if X = £(x) and 
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y = £(Y) then p. - X ffi y = {jz | Zj=x+£, x e £, £ e y).    Spheres of radius 

r about x» are represented by S (x^) = [yj   ||;£-xJ| < r}  for -whatever 

norm ||«|| is being used.    If S c Rp,  then S is the closure of S. 

d 
Convergence in distribution is represented by—» and convergence 

in probability by—» . Both of these concepts may be used with vectors 

or matrices. For instance, "A (Y ) -E* A", where A (Y ) is a pxp matrix 
' 'MV^n'   ~ '     ~nwr     * * 

function of a random variable Y and A is a pxp constant matrix, means 

P{|JA (Y )-AJ| > 5} -» 0 as n -» «. Since both vector and matrix norms are 

continuous functions of their elements, it is sufficient to prove con- 

vergence for each element of the vector or matrix separately. 

A p dimensional multivariate normal random vector is denoted 

7[ (jAj£) j where JJ^ is its expected value and E is its covariance matrix. 

For a univariate normal, the subscript is dropped. % is a .chi-square 

random variable with p degrees of freedom. The symbol "~" means "dis- 

tributed as"; thus X ~2T means the random variable X has a chi-square 

distribution with p degrees of freedom. 

One practice followed in this paper which the reader might find 

confusing is the notation of dependence on n. "n -» «°" is used to 

denote that the size of the entire design becomes infinite (v^ is nxl). 

All other elements of the problem, including the sizes of vectors and 

matrices, depend on n; only p and p1, the number of parameters•in-the 

model, remain fixed. The dependence on n does not always appear in 

the notation. It is suppressed when it is obvious that such dependence 

exists. When it is not suppressed, it is usually to emphasize the 

dependence on n. The reader, being forewarned, should not be disturbed 

1 
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"by the seeming inconsistency; as one becomes familiar with the topic, 

the inconsistency disappears. 

This paper is divided into seven chapters labeled 1-7 and four 

appendices labeled A-D. When a chapter is divided into sections, these 

sections are labeled 1,2,... and are prefixed ty the chapter label 

(e.g. Section 1.2, Section A.3). Section A.U is further divided into 

five subsections labeled A.if.l-A.J+.5. Theorems, lemmae, propositions, 

and assumptions are numbered consecutively within sections and prefixed 

by the section label (e.g. Assumption 1.3.5> Proposition A.3.^-). If 

there is only one theorem in a section it is still labeled as the first 

theorem in the section (e.g. Theorem 3.2.1).  In the case of the sub- 

sections A.ii-.l-A.lt.5, the lemmae appearing in these subsections are 

labeled A.k.l-A.h.5  instead of A.^.l.l-A.U.5.1 because the first set 

of numbers relates to Section A.k  as a whole and that is the rule used 

to number these lemmae. 

• / 

/8 

I 
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1.3. Basic Analysis of Variance Model and Assumptions About It 

The basic model used will be the mixed model analysis of variance, 

•which can be written as 

y = Ja +  U-b.. + U0b0 +...+ U ' b  + e 

where 

y^ is an nxl vector of observations; 

X is an nXp_ matrix of known constants: 

cy is a p~Xl vector of unknown constants; 

U. is an nXm. matrix of known constants, i=l,2,...,p.; 

ID. is an m.Xl random vector, i=l,2,...,pn; 

e is an nxl random vector. 

design matrices for the random effects b.. Let G.  = U.Uf , 

ASSUMPTION 1.3.1. The random vectors bn,b_,...,b , e are 

mutually independent, with e ~ 71  (0, •&.  I ) and b. ~ 7>    (0, a. I ), —__—_JZ•_„-_JI_„ 2 ^,  ~inv~' o <~n  ~a  -*>. ~  l «~m. 
2 X       x 

l—x,c,...^p . 

ASSUMPTION 1.3.2.    The matrix X has full rank p.. 
 ~   u 

ASSUMPTION 1.3.3. n a: p0 + p + 1. 

ASSUMPTION 1.3.^. The partitioned matrix [X:U.] has rank greater 

than p , i=l,2,...,p1. 

2 
2. This differs from the usual convention of using c\. a. is" used as 

l   i 
äivariance to avoid writing many squares. This also follows the 
notation of Anderson (1969), (1970), (1971b), (1973). 

• 

Thus X is the design matrix for the fixed effects and the U. are the I 
: 

i=l,2,.. ,,p_, and G_ = I . The following assumptions are made about 

the model: 1 
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ASSUMPTION 1.3.5. The matrices G  ,  G ,...,G  are linearly 

Pl 
independent; that is, S. ^ e.G. = 0 implies <r.= 0. i=0,l,... .p.,. 

These assumptions are sufficient to find the estimates; however, one 

further assumption about the U. will he made. 

ASSUMPTION 1.3.6. The matrix U. consists only of zeros and ones 

and there is exactly one 1 in each row and at least one 1 in each 

column, 1=1,2,... ,p... 

The above assumptions can be explained in analysis of variance 

terms. Assumption 1.3.1 is the usual assumption of the independence 

and normality of the random effects. Assumption 1.3.2 can always he 

satisfied by a suitable reparameterization of the problem. Assumption 

1.3.3 says"'there are at least as many observations as parameters. 

Assumption 1.3.^ says that the fixed effects are not confounded with 

any of the random effects.. Assumption 1.3.5 says that the random 

effects are not confounded with each other. Assumption 1.3.6 just 

says that the U. are standard design matrices and it has three 

consequences, uf U. = D., an m.Xm. nonsingular diagonal matrix; U. 

has full rank m.; and m. £ n. 
1     1 

It follows from the above assumptions that y_ has a normal distri- 

bution with 

= CToJn + CTiHiHi+-.+ ^1HpiSpi 

Pl 
= S    O.G. = 2 . 

i=0 
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Thus y ~ ??  (Xy.S).    The -problem considered here is to observe y and 

estimate a, cr-.o\,,... ,cr     hy the method of maximum likelihood. ~'     Cr  1'       ' pn     
J 

The parameter space is defined as follows:    Let p=pn+ p + 1. 

Bclr  is the parameter space;  if 8 e 0 then 9/= (a'jCr7)? where 
r^>       t~>~* 

a  = (or, ,0' .... .a    )' and c = (ex.,cr, .....cr )'. The restrictions ~  v 1' 2'  ' p '     ~  v 0' 1'  ' p ' 

•which form © are © = {9 e Rp| G/= (ff'.a'); a e RP0: a„ > 0; o. £ 0, 

i=l,2,... ,p-,}. If the likelihood function of jjr and j9 is L(y^,j6) it 

follows from the multivariate normal density that 

x&e) = log L(y,e) 

- -|n(log 2n)4log|E|4(£-0fc)'£ Vs*)-. 

3 
Differentiation    of X by or  and cr leads to the following equations which 

must be solved simultaneously for a and a 

PT \_I   -I / P 
[x,(l1

5.S.)"3lkx'(s1a.G.)"1T    , 

trf.sj a.G.V1G.= trf E1 a.G.Y^G.f S1 CT.G.Y1(y-XcO (y-Xa-)'. 

These equations can be abbreviated 

[X7 r_1Xl cr = X' ZfV , 

tr S"V, = tr Z~1G.Z.~1(y-Ya)(y-Xx)l i=0,l,... ,p.. , 

where E is a function of cr. 

3. Such maximization by differentiating is justified in Anderson 
(1970). 

mSBBBS «4g 

{ 
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As was noted in Section 1.1, the maximum likelihood estimates 

of the variances cannot he negative, but the solutions of the likeli- 

hood equations may he negative. Thus the following truncation scheme 

is necessary.- If the solution of the likelihood equations yields a 

negative estimate of o\ for i e S (where S is some set of indices) 

then solve the following set of equations: 

0 > 

oX 
da. 

l 

0 * i|s , • M 

a. = 0 ,  i e S . 

If a negative estimate occurs for some other a., add its index to the 

set S and repeat the above procedure. Continue in this manner until 

no negative estimates are obtained. As is pointed out in Section 5»6 

this is easily done for this model. 

The computational methods used to solve the likelihood equations 

are discussed in Chapter 5- The asymptotic properties of such solutions 

are discussed in Chapter k. 



CHAPTER 2 

REVIEW OF PAST LITERATURE 

The subject of variance component estimation has been considered 

for some time. An excellent overview of the present state of the art 

may be found in Searle (1971). He described the development of many- 

different techniques used and gave copious references. A history of 

the development of the entire field will not be given here; instead a 

short review of the literature immediately pertinent to this paper is 

presented. 

Theoretical properties of methods of estimation and testing of 

variance components have been considered by Herbach (1959)s who- 

considered the one and two way balanced layouts and proved optimality 

results for the usual analysis of variance tests and also derived the 

likelihood ratio tests in these cases. Graybill and Hultquist (1961), 

Hultquist and Graybill (1965), and Hultquist and Atzinger (1973) 

considered the balanced models with respect to minimal sufficient 

statistics and proved various optimality results as -well as deriving 

certain likelihood equations; some of the results of Hultquist and 

Atzinger overlap some of those of Anderson (1970) described below. 

Several authors have considered the problem of a model where the 

covariance matrix has a special structure. Wilks (19^6) considered 

the intraclass correlation coefficient model. Olkin and Press (1969) 

studied the circular stationary model. Srivastava (1966) and SriVastava 

\ 



18 

and Maik (1967) considered a more general model where the covariance 

matrix has linear structure and the matrices G^,G^,...,G  have special 
M) ~1'   '~p..      e 

properties. AU the above authors derived likelihood ratio tests 

(using several diverse techniques) for the particular model under 

study. Anderson (1969), (1970), (1971b), (1973) also studied models 

•where the covariance matrix has linear structure. Anderson's method 

of analysis enabled all the above cases to be considered within one 

unified framework. 

The model Anderson used is y ~ 7\  (u,H), where u = Xß and 

m 
E = E er. G.. The model assumed here is a special case of this. 
~ i=0 x~x • 

Anderson derived the likelihood equations and showed how they can- be 

simplified in certain cases.(See Section 5.2.)  He gave conditions for 

estimability of the parameters and suggested several methods for the 

solution of the likelihood equations. The method studied in this paper 

was advanced in (1971b). In (1969), he derived and gave properties of 

the likelihood ratio tests of hypotheses about S and the a.. He also 

proved that the maximum likelihood estimators in this case are consis- 

tent and asymptotically efficient as the entire process is replicated 

(that is, as repeated observations are taken on y) and he derived the 

asymptotic covariance matrix. 

H. 0. Hartley and J. N. K. Rao (19^7) analyzed maximum likelihood 

estimation in the mixed model of the analysis of variance, the model 

used in this paper. They gave five rationale for using the method of 

maximum likelihood in this case, which are paraphrased here. 
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a) Computers make easy solution of the likelihood 

equations possible. 

b) This technique can be applied to any model, 

balanced or unbalanced. 

c) The technique has large sample optimality properties. ) 

d) Maximum likelihood estimates are always functions of j 

the minimal sufficient statistics. I 
•   j 

e) The maximum likelihood estimates of the variance | 
j 

components are always positive. j 

Several comments can be made about these rationale. A technique i 
1 

(similar to Anderson's) is proposed in this paper which is different 1 

than Hartley and Rao's for solving the likelihood equations.. JIhis 

technique does not guarantee nonnegative estimates, but can easily 

be modified so that only nonnegative estimates are finally arrived 

at.(See Chapter 5.)  (Many writers have considered the problem of 

negative estimates; see Searle [1971:22] for a good summary.) Hartley 

and Vaughn (1972) developed a computer program to implement the 

algorithm of Hartley and Rao.  (The computer program.to implement the 

algorithm proposed here is discussed in Appendix C.) The large"sample 

optimality referred to above was proved by Hartley and Rao only for a 

limited set of designs in which the number of observations at any 

particular level of any random factor must remain bounded. Such an 

assumption rules out even so simple a model as the two-way crossed 

layout random effects model.  In this paper the optimality results 

are extended to cover almost all interesting cases. 

I 
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The discussion of asymptotic results has, as a rule, been 

confined to independent, identically distributed observations. The 

basic techniques were expounded by Cramer (I9h6) >  Wald (19^9) and 

Wolfowitz (19^9)« As noted in the introduction, these techniques do 

not apply to the model under consideration here. Silvey (1961) 

discussed asymptotic results for sequences of dependent observations 

but again.-his work cannot be applied in this case. Whitby (1971) 

considered estimation for the generalized beta distribution; although 

he was also considering sequences of independent, identically dis- 

tributed random variables, he did prove some general theorems which 

have been extended to cover the analysis of variance model of this 

paper. Whitby used only one normalizing sequence for all the 

estimates. The theorems presented here allow a different normalizing 

sequence for the estimate of each parameter. This is done by the 

artifice of building the normalizing sequence right into the para- 

meter. The result is a sequence of parameters, the estimates of 

which have certain properties; these properties can then easily be 

translated to properties of the desired estimators.(See Chapter h.) 

This is only a cursory review of the subject of maximum like- 

lihood estimation in the analysis of variance. For a more detailed 

study, the reader is referred to the papers of Searle (1971); Anderson 

(1971b), (1973); Hartley and Rao (1967); and Whitby (1971). 

i 

,;, 
•i 
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CHAPTER 3 

BASIC THEOREMS ON ASYMPTOTIC.BEHAVIOR 

3.1. Introduction 

In this chapter two theorems are presented which will be used to 

prove the asymptotic properties of maximum likelihood estimators in 

the analysis of variance. Theorem 3.2.1 is a form of inverse function 

theorem and is used to prove Theorem 3.3.1. Theorem 3.3.1 is a very 

general theorem concerning asymptotic theory and is used to prove 

Theorem U.ij-.l, the main asymptotic result of this paper. However, 

where Theorem 3.2.1 has little intrinsic interest except for the 

mathematics of its proof, Theorem 3«3-l has applications beyond that 

of a lemma for Theorem V.U.I. Theorem 3.3-1 has wide applicability j 

and can "be used to prove most of the standard asymptotic results con^ 

cerning roots of the likelihood equation. 3 
• I 

Theorem 3-2.1 is a form of inverse function theorem. It concerns \ 
"! 

roots of the vector equation G(x) = 0. When G has the form I 

G(xj = a + A(x-x^) + r(x), a and r are small relative to A, and 

certain continuity and differentiability conditions are met, then j 

there is a root of G(x) = 0 near x^.  Similar theorems are often used 

in proving results about the roots of the likelihood equations. The: 

method of proof of Theorem 3.2.1 is patterned on  the proof of The 

Inverse Function Theorem (Theorem 9.17) of Rudin (196^:193-195). The 

form of the theorem is patterned on a lemma (Lemma 3.1) of Whitby 

(1971:8-9). 'Whitby based his proof on the proof in the first edition 



22 

of Rudin's book; Rudin's first proof (and hence Whitby's) required 

that the norm of a vector be the Euclidean norm, ||x|j = (£?_-, x. J2 . 

The proof given here is slightly more general in that it allows any 

vector norm to be used.  (See Issacson and Keller [1966:3-^-3 for the 

definition of a vector norm.) The assumptions of Theorem 3.2.1 are 

stated somewhat differently than those of Whitby's Lemma 3«! in order 

to facilitate the different method of proof used here. 

Theorem 3.3.1 contains powerful asymptotic results and has 

intrinsic interest because of its wide applicability. Theorem 3.3.1 

concerns a sequence of estimators of a sequence of constants (or 

constant vectors). The sequence of estimators becomes close (in a 

well defined sense) to the sequence of constants with high, probability; 

furthermore, the sequence of estimates is asymptotically normal. As 

seen in Chapter h,  this sequence of estimates can easily be translated 

into a sequence of consistent and asymptotically normal estimates of 

the parameters in the analysis of variance problem. The basic setup 

and method of proof of Theorem 3.3.1 are as follows: For each n (of a 

sequence of values of n increasing to infinity) there is a vector 

function G (jr ,Y ) of a vector of parameters jr and a random vector 

Y .  (G will be the likelihood equations.) Then for each Y in a 
~Q   ---n " <~«n 

certain set of Y values, it is shown that G (ilr ,Y ), as a function 

of & , satisfies the conditions of Theorem 3.2.1; thus there is a root 
A 

ilr  (Y )  of G (t ,Y )  = 0 near ft.  .     (*_    will be analogous to the "true" 'Ma^~ny   '-nv'<n,~n/  ~    A-On  ^M)n & 

parameter point.) If n is large enough, the set of Y values will have 



large probability. It is also shown that jf (Y ) - ^rn  con-verges in 

distribution to a multivariate normal distribution. 

The wide applicability of Theorem 3.3.1 results from the fact that 

a sequence of estimates {|L(Y )} of a sequence of parameters {ju } is 

considered instead of a sequence of estimates f§ (Y )} of a single 

parameter 6-.. The estimates of the single parameter 9n will reqaire 

normalizing sequences and any proofs of asymptotic properties must take 

explicit account of these normalizing sequences. In Theorem 3.3.1 the 

normalizing factors are built into the estimates and parameters and 

are not explicitly mentioned,  (in Chapter k  it is shorn how i|r is 

obtained from 0 by multiplying each element of 6 by the appropriate 

normalizing factor.) The fact that the normalizing sequences are not 

specifically mentioned in Theorem 3-3.1 allows it to be used in the 

analysis of variance (where the estimate of each parameter may require 

a different normalizing sequence), in a case where the estimate of 

each parameter can be properly normalized by the square root of the 

number of observations, or in almost any other case of maximum likeli- 

hood estimation. For instance, Theorem 3.3.1 can easily be applied to 

yield consistency and asymptotic normality in the case of independent, 

identically distributed observations given in most textbooks (e.g. 

Cramer [19h6]). 

The precise statements and proofs of Theorems 3.2.1 and 3.3.1 

will be given in the following two sections. 
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3.2. An Inverse Function Theorem 

The theorem in this section is a form of inverse function theorem. 

The essence of the theorem is that -when a function G(x) is of the form 

G(x) = a + A(x-x-) + r(x) and a and r are small relative to A, then 

there is a root of G(x) = 0 near x^. The norms, spheres, and Jaeobians 

used below are defined in Section 1.2. Thevproof of this theorem is 

patterned on the proof of Theorem 9.17 of Rudin (196^:193-195). 

THEOREM 3*2.1. Let G(x) he a pXI vector valued function of a pXl 

vector x. Let a he a pxl constant vector, A a pXp constant matrix 

and r(x) a pxl vector valued function of x. Sunpose there exists 
-———   *sj- V*-#       "• •   *•    —    '  -' • — •   i II • •'   • ' -  r^J —' *'*»-• i- —•••.  »I i-.i   

T] > 0 such that 

i)    G(x) = a + A(x-x-)  + r(x)  for all x e S,,„(x-)   , 

ii)   |A| J o , 

iii)    HA-1 aj| < 7]  , 

iv) IfeT1 £W II < #1 for all x s S^C^j) , 

v) G(x) is continuously differentiable in S. ^(x^) , 

vi) For f(x) = A_1G(x) 
r>-» s**J *-w  r*J  r*~> 

= A~ a + (x-x„) + A" r(x) 
•>-»    /-^» 

and x = x^- A  a, 
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a) Jp(x..) = B is nonsingular, 

b)   !|B-
1
||<2S 

c)    For all x e S    (x^),   il^C^-Bjl < l/(2||B-1||). 

Then there exists x,  a solution of G(x)  = 0 such that x e S„_(x_). 

(Note that Condition 3.2.1.v is equivalent to stating that for 

ÖG.(xj 
all x e S,_(x_), Vi|W ax. exists and is continuous, i,j=l,2,...,p.) 

x 

PROOF. 

First note that 3.2.1.V implies that f(x)  is continuously 

differentiable in ^.„(x^).     Second,  since [|x - XJ|=||A~ aj| < T)~by 

3.2.1.iii,  S^-OO c S.-.(x^).    Now proceed as in Budin's proof.     Let 

X _ _ _—   where B is as above. 
Mfe"1« 

Then IJJp(x)  - BJ| < 2\ for all x e S    (x ) by 3.2.1.vi.c.    Now 

suppose x e S„_,(x,)  and h is such that x + h e S„_(x,).    Let 
<-*       3il    1 ~ ~     ~       3Tj ~-i 

F(t) = f(x + th)  - tBh, 0 < t ^ 1.     (i.e. F:   [0,1] - ••RP•)    Since 

any norm is a convex function on Br   ,    x + th e S_„(x.,)  for t e  [0,1]. 

Thus 

^ fe(ä + th)   - Bjl  Hhjl 

by definition of ||«JJ for matrices, 

I 
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* 2X  [|h|| 

by 3.2.1.vi.c, 

= 2\    B 3h 

<; 2\ Ihr1!! liBhi 

iteli 

hy definition of X.    Theorem 5.20 of   Rudin (196^:99)   states:    If F is 

a continuous mapping of [a,*)]  into Xp and F is differentiable in (a,b), 

then there exists r e  (a,b)  such that    ||F("b)  - F(a)|j £ (b-a)  j|F'(r)j|. 

Since F above is indeed continuous on (0,1) this theorem applies and 

—     ife*) -£fe) -SilMfcU) -I('o>ll 

* Ife'Cr)!! 

^ t HBhll  . 

The triangle inequality,  lly+zjl ^ HyJI + i|zjl>ca» be applied to 

js = w-y^ to give ||w||  - |jyj| •£. ||w-yj| = Hy^-wJI-    This property is used with 

w = Bh, y = f(x+h)  - f(x)  to give 

iteli - lfe(£*) -£(5) 11 * fe(rÄ)-£fe)-aii' 

* I INI • 

This implies 
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' V*-* V"w»  <*-* lt£(£*) - £&H * i Itell 
(*) 

* 2X  ||h!| 

whenever x and x+h belong to S__(xn).    Hence f(»)  is 1-1 on S„^,(x ). 
~ ~~ ü 3 M ~1 ~ 3 M ^1 

Now S
2T)(£L) 

c S3T)^~i^  £md ^2T/~1^ 
C S3Tlfel^   ^ = closixre of S)- 

To prove that fjS^»(x,)] contains the sphere S   -[fjx.)], note that 

if 

Xi - *fe.) 

-1 -1 -1 
= A   a + x_ - A   a - x- + A   r(x_) 

= A" r(x,), 

then ll^lf <   I   by 3.2.1.iv and 2\T) =   —^T~   >   5   because fe"1!! < 2 

by 3.2.1.vi.b.    Thus ||yj| < 2XT| and ^"nfe)  contains £• 

Let T = {x|   \\x-xj = 2T)}.    Now fix £ e S^Cy^Ki.e.   fc^l < 2M1) 

and define 0(x) = li^-j^Cx)!!.    It must he shown that there exists 

x* e S^(x-)such that f(x*) = £.     (i.e.  stich that 0(x*) = 0.) 

First note that if x e I, then (*)  implies 

k\T\ = 2X||x-x1|| 

by definition of T, 

* fete* fe*L>] - £fe)H 
by '(*) with h = x-x., 
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by triangle inequality [y = £(x )], 

= 0(x)   + 0(Xj_). 

< 0(x) +• 2\T1 

because 0(x ) = [Ig-gJI < 2XT] because y e S2kT)(%>l)'    Klus 

0(x,) < 2XT] < 0(x)  for all x e T. 

Norms are continuous functions of the components and f is 

continuous so 0(x) is continuous. Further, S (x ) is compact. 

Hence there exists x* e S^Tx^) such that 0(x*) ^ 0(x) for all 

x e S „(x ). But x* cannot belong to T because 0(x.) < 0(x) for all 

x e T. Let w = y-f(x*). Since B is nonsingular, let h = B~ w. Then 

choose t e(o,l) so small that x* + th e S0_,(x,). 

= lld-t)*)i 

= d-t)iyi. 

But 

||f(x* + th)  - f(x*)  - Bthlj £ iilBthji 

by the argument above, 

= illtsll 
-itiyi. 

Then 
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Then 

0(x* + th)  = ||y-f(x* + th)(j 

= |jy-f(x*)-Bth + Bth + f(x*)  - f(x* + th)j| 

* &-£&*)-B1£j| + llBth + f(x*)   - £(2*    + th)|| 

^ (i-t) y + it liwff 

= (i-jt) fell 

=  (l-ft) 0   (x*) 

If 0(x*)> 0, then 0 < t < 1 implies (l~§t) < 1 -which in turn implies 

$(x* + th) < 0(x*), -which contradicts the minimal property of ;x*. 

Therefore 0(x*) = •(};£-£(£*) II ^ °> -which means jjr=f(x*). This argument 

can be used for each y^ e S  (^ ), yielding x* e S „(x ) such that 

y=f(x*). In particular it can he used for 0 e Sp^_(y ), yielding x 

such that f (x) = 0. But this says f (x) = A" G(x) = 0 -which implies 

G(x) = 0; furthermore x e S0„(xn) c S_,„(x_). This conroletes the proof 

of Theorem 3-2.1. |Jj 

At this point it can be mentioned that not only does the above 

proof imply that the described x exists but that it is unique in 

^--(XQ). Unfortunately the theorem does not yield complete uniqueness, 

just uniqueness in the neighborhood. In the subsequent statistical 

applications of this theorem, the limited uniqueness is of little value. 

This is -why it has not been stated as a conclusion of the theorem.- 
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3.3. A General Asymptotic Theorem 

The theorem in this section is a general theorem on asymptotic 

results. It concerns a sequence of estimates {jL(Y )} of a sequence 

of parameters {(JQJ. It states that for n large enough, there will 

be a root j^Q^) of ^^»ZQ) * £ near Inn wittl larSe Probability; it 

also states that I (Y ) - *A converges in distribution to a multi- 

variate normal distribution. In the application of this theorem, the 

estimates and parameters $ , jr , and jr^ are obtained from the 

estimates and parameters in the usual problem 8 , 9, and 0. by multi- <~*n '•*•»    «^-o 

plication of each component of 9 , jB, or 9_ by the appropriate normal- 

izing factor (See Section ^.3.). Furthermore, the function G represents 

the (normalized) likelihood equations; therefore, this theorem deals 

with maximum likelihood estimates which are solutions of the likelihood 

equations. 

Theorem 3*3.1 is proved by demonstrating that for G ($  ,Y ) as 

defined, for n large enough, the conditions of Theorem 3.2.1 are true 

except for an event with small probability. The results of Theorem 

3.2.1 then immediately imply the results of Theorem 3.3.1. 

THEOREM 3.3.1. For a sequence of values of n approaching infinity, 

define for each such n: Y an nxl vector valued random variable, 

a (Y ) a pxl vector function of Y , A (Y ) a pXp symmetric matrix j 

function of Y , i a pxl vector, G (jr >Y ) and E (jf -Y )pxl vector j 

functions of * and Y , and J a pxp positive definite constant matrix. j _ An - n>   ^ —r tr  r ,  j 

Suppose the following six conditions are true. 
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i) For each b > 0, given e > 0 there exists n (L,e) such 

that for all n > n. 

ii) a (Y ) ^ 71  (0,J). 

iii) A (Y ) + J 2» 0. 

iv)    For each b > 0,  given e > 0 and 5 > 0 there exists 

n (b,e,6)  such that for n > n_ 

pC       -UP        1^(^)11 < 6} * 1-e. 
WV ,._.. 

v) For each b > 0, given e > 0, there exists n (b,e) 

such that for all n > nn 

Pfthe elements of J., (jr ,Y ) are continuous 
•~JQ 

functions of 4 in SL (ju )•} ^ 1-e. 

vi) If j^C^»^) = £ + £n  (ta'In)»  then for each b > 0, 
~n 

given e > 0 and 6 > 0, there exists nn(b,e,6) such that 

for all n'> n_' 

P{  sup   ||E (* ,Y )|| <S]si-i. 

!Then it follows that given e > 0 there exists b=b(s) such that 

0 < b < <» and n =n_(s) such that for each n > n_ 
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P{there exists a root jL(Y )  of G (jr ,Y ) = 0 

such that JJJT) e S^^)} * 1-e. 

Furthermore, for this root, yjj  - j^   ^ ^(0,J-1). 

PROOF. 

Let e > 0 "be given and let e* = -r—  . Define D (Y ) = J + A (Y ) 
10 «HI^HI       ~     «HI

V
«HV 

"Ehen 

A (Y )  = -J + D  (Y ) 
«HI «HI ~     «HI «HI 

-J[I - J"1 D  (Y )], 

If ||D (Y )|| is small   ("which is true in probability by 3.3.1.iii) then 

«MX   V«H1' 
A„  (Y„) .exists and is given by 

A_1(Y )  = -[I - J_1D  (Y )]_1 J"1. 

Let 

'Mi  "«HI' u~.    ~   «vflv«va'j      ~ 

D*(Y ) s A-1(Y ) + J'1 

•Ml  «HI7 «Ml     «MT ~ 

= A"1(YM>[J + A (Y )]J_1 

«Ml     «HI     ~       «HI «HI  . ~ 

= A"1(Y )D  (Y )J_1 

«HI   «HI «HI «HV~ 

= -[I - J_1D  (Y )]_1 J"1 D  (Y )J_1. 
"-~       ~    «HI «HI «V       «HI «HI ~ 



Then 

||D*(Y )|| =  1|[I - J"1 D  (Y )]_1 J-1 D  (Y  )  J"1!! 

s ]£¥ • 1(1,(5,) II 
1 IIJ'^ (Y )||     ' 'Ml  ~n 

if W^is small> since IteJI-* IIäII ' Itell «^ IKI - A)"
1

!! * 3^ .|A|I 

•when ||A[[ < 1.    Thus 11^(^)11 will be small whenever JJD (Y )|| is small 

and hence 3.3.1.üi implies lb (Y )||-^-* 0-which, in turn implies that ""A —n " 

A" (Y )—^-* - J . Therefore, the multivariate version of Slutsiy's 
•~n 'Hi     ~ ' 

Theorem and 3.3.1.111 imply that A_1(Y )a (Y )-^-* 7>  (O.J*1). ~ •^ J      'HI  'HV'HV'Hr    ,<p\~>~  y 

Wow choose T) so that when Z ~ 71  (O.J-1). pHIzi! > T\] < § e*. Now 

[|»|| is a continuous function of its elements; therefore Z -—• Z 
'•'-23. '"»'* 

implies |[zj| —• ||zj|.    Thus there exists n    such that for n > n. 

PCI|Z II * Hi < PCIISJI * "to + -r - e* 

by definition of convergence in distribution. Letting Z =A~ (Y )a (Y ) 
~n.»HI »Hi'^-n «HI 

we find that for n > n_  ' 

P{||A-1(Y )a (Y )|| £ T)} < e* (l) 
'•"'Ha V«HV'HlV'Hr "    ,J      . .     . 

This proves Condition 3.2.1.iii except for an event of at most 

probability e*. 
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How show that P{JA (Y ) | = 0) < e* for n large. A (Y )=-[J-D (Y )] 

ancLthus |A (Y,)| = {-l)P|j-D (Y )|. But -A (Y ) is a symmetric matrix ''Hti -~-n '       '~ 'Ha <~n '      <~-n »na 

and therefore its determinant can be shown to he nonzero by proving 

that it is positive definite; that is, it must he shown that 

X . fJ-D (Y )}. > 0. J is positive definite; therefore. X . (j) > 0.       I suja"~ ~n-MI       ~ '        •' min w ,£' 

Furthermore, it is true that    max   |\ . (C ) j -» 0 if and only if       j§ 

[C ]., -Ofor i,3=1,2,...,p, if and only if ||c |( - 0. Therefore hy       | 

assumption 3.3.1-iii there exists n2 S: n.. such that for n > np "I 

P{   max   I X .[D (Y )} 1 > i X .  (j)} < e* 1 
0=1,2,...,p  d | 

•which implies 

PC 1^(^)1 .= °} < e* (2) ; 

This proves Condition 3.2.1.ii except for an event of at most 

probability s* •# 

Since |!D (Y )'j| ""-» 0 there also exists n~ ä n„ such that for '$ 'wr-nr" 3   2 4 

* > »,, pfltf (L,)!I > Ik"1!!} < .*. But IIA-^Y )IHI-•>*(Y )IMMH|D*(Y)l"     "' 

•which implies for n > n._ 

pnu-1(Y1)ii>2i^1ii}<e^ 

ITow apoly 3.3.1.iv with b = kT\3  e = e* and 5 =   —3-_ ,    j^en 3.3.1.iv 

implies that there exists nv   £ n_  such that for n > n, , 
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P{       sup ||R  (*.Y )|| >   —1—}  < e, 

W*Qn>  " % " ölt 'li 

The last two inequalities together imply 

This proves Condition 3.2.1. iv except for an event of at most probability 

2 e*. 

Now apply 3.3.1.1 with b = kT\,  e = e* to claim that there exists 

n^ s n.   such that for n > n. 

P{lt is not true that 

G (4  ,Y )  = a (Y )  +.A (Y )(* - 4_  ) + R (*  ,Y )}.-.< e*      (k) 

This proves Condition 3.2.1.i except for an event of at most probability 

e*. 

Assumption 3.3-l.v with b = kl\ and e = e* guarantees that there 

exists txr a iv. such that for n > n,-, 
6 •  • 5 5' 

P% (&a>%n) is not continuo'as in \^%tofi < e** (5) 

This proves Condition 3.2.1.V except for an event of at most probability 

e*.  .. 

Now Conditions 3.2.1.vi.a-3.2.1.vi.c must be proved.    If 

f (A   >Y ) = A_1(Y )G (*  ,Y ),  then J- (*  ,Y )  = A"
X

(Y )«T„   (*  ,Y ). 
<--n ^ 

But 

J_   (4   ,Y )  = -J + E  (*  ,Y ), 
~« 
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•whence 

-1/ Jp (*  ,Y )  = A_J-(Y )<T„  (ijr  ,Y ) 
~n ><a 

=  [-J-1 + D*(Y )][-J + E  (f -;y )'] 

= I-D*(Y )J-J"1K (*  ,Y )  + D*(Y )E  (4  ,Y ) ~ ~*r~n/~ ~  *ins<<a.}>~-a.'      'Hv~n/^-n^Mi'^n 

I + E  (* ,Y ) 

Clearly 11^(^^)11 ^ be small whenever 1^(^)11 and 11^(^,^)11 

are small,  so that Conditions 3.3.1. üi and 3.3.1.vi with t> = i+Tj can 

"be used to show that there exists n_ S: n^- such that for n > n,. 

• •*. 

P{      sup max        Ix.fE (*  ,Y )}|  > -t} < e*. 
,     o    t,     \     »TO n ~n Wi.'~n/J'       2J 

insS4l](W    J=1>2>-..,P 

Now if l-^  is some particular point in S^-(jr^) and Bjj^) s £f (i^.^)» 

the above probability statement implies (by the same method used to show 

IA (Y )i ^  0 above) that for n > n„ 

p* 12^)1'=0} <e*. (6) 

This proves Condition 3.2.1.vi.a except for an event of at most 

probability e*. 

Using the same reasoning as that used for A~ (Y ) it is true ~n   ~n 

that when ||E  (*  ,Y )|| is small 

B_1(Y )  =  [I + E*  (4.   ,Y )]_1 
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y y 

= I + E    •(*.   ,Y ). 

Thus 

[JB^CY )||    =  Hi + E**(4_   ,Y )| 

* y + CCA^II 

But ||E^ (t±a'J )H w111 be sma11 "whenever ||E (J^-JY )|| is small and 

3.3.1.Ü1 and 3.3.1.vi can be used to imply this.    Thus again using 

3.3.1.iii and 3.3.1.vi "with b = l+TJ,  it can be shown that there exists 

ng ^ n    such that for n > nQ    P{||E^ (A^J^H > 5} < e*-    This,  of 

course,  implies that 

P{||B;1(Yn)||>f}<e* (7) 

This proves Condition 3.2.1.vi.b except for an event of at most 

probability e*. 

If ^ is any point in S]+ (^ then ||jf (^-^)\\z—±— 
<~n 2MB     (Y ) 

if and only if (^ (j^)  - BJYJU  •  I^CjjII * *• 

Note that 

.   liar Cin'V - £n^H 
~n 

=  Hi + E*(4   ,Y )   -   [I + E*(*.   ,Y )]|| 
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ltea<V£x> 
* 

- E  (*_   ,Y )|| 
'Ha v^ln'^-a'" 

^taV» + I^Üün^ll ' 

* Ife^Oyil * | ^d it&v^ii * 5 for ^ 4 e VW then 

||J, (*,Y )   - B  (Y )||   .  fJB~1(Y )|| 
• '~f    x^jn '/ji ' -on x-on '" I l~jn     ^.^n 7 I' 

/-on ''Ml     'HI' 

* rlfc&WÜll.+ I&W5.M IIB"1^ )|| 

,1      lx       6      12      i 
- A5 + 5;    5    25 < 2. 

Again using 3.3.1.iii and 3.3.1.vi, there exists n a IU such that for 

n > n^ 

jr   sS},<rA#nJ V*Qn 

It follows that 

p{ sup •  ||j. (* ,y ) 
~n 

- B (Y )|| > ^ -} 

"~n wr 

?{  sup    ||E*(jr ,Y )|| > | or HB_1(Y )|| > f} 

<: 2 e* (8) 

because n > nq s UQ. This proves Condition 3.2.1.vi.e except for an 

event of at most probability 2 e*. 
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It has now been shown in (l)-(8) that the conditions of Theorem 

3.2.1 are true for each n > nq except for an event at most 

e*+e*+2e*+e*+e*+e*+e*+2e*=10e*=e. Thus Theorem 3-2.1 applies and 

there exists $ (Y ) a solution of G (* ,Y ) =0 such that 

%  (Y )eS,„(j^) with probability greater than 1-e for n > nQ. 

But if G (* (Y ),Y ) = 0. 

* (Y )-*_ = -A_1(Y )a (Y ) - A'-^Y )R ($ (Y ),Y ). 

The first term converges in distribution to 71  (0,J~ ), as was shown 

above. That the latter term converges in probability to 0 is seen by 

the following remarks. 

P{||A
_1
(Y )B (j (Y ),Y )|i >6} 

+ P^ln^ * V^0n)3' 

But the first term is small for n large as shown in proving (3). The 

latter term is small for n large by the entire first part of the theorem. 
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-1/ The resulting inequality proves that A" (Y )R (j? (Y ) ,Y )-£-» 0. Then 

the lEultivariate version of Slut sky's Theorem implies that g 

%Sln} ~ Ion"—* 2p(£'£~ )* Then Theorem 3.3.1 is proved with h = kT\ • 

and n = n as above. 11 ( 



CHAPTER k 

ASYMPTOTIC THEORY FOR THE ANALYSTS OF VARIANCE MODEL 

h.1. Introduct ion 

In this chapter the maximum likelihood estimates are proved to 

"be consistent and asymptotically normal as the size of the experimental 

design increases. This is done in Theorem 4.^.1, the main result of 

this paper. In Section k.2.  the assumptions used to prove the asymp- 

totic properties are discussed; in Section h.3  the setup used to prove 

Theorem h.k.l. by application of Theorem 3.3.1 is explained; Theorem 

U.lj-.l is stated in Section h.h  and proved in Section U.5. (The details 

of the proof are given in Appendix A.)  In Section h.6  it i.s „noted that 

the maximum likelihood estimates are asymptotically efficient In the 

sense of attaining the Cramer-Rao lower hound for the covariance matrix. 

Asymptotic theory is useful as a practical tool -when the experi- 

mentor has confidence that his experiment is "large enough" for the 

good asymptotic properties to hold. In the case of independent, 

identically distributed observations, one hopes one has taken enough 

observations; in the case of the analysis of variance, one hopes the 

size of the design is large enough. The device used to prove the 

good asymptotic properties in the analysis of variance is a "conceptual 

sequence of experiments." For each n of a sequence of values of n 

increasing to infinity, an experimental design is considered. Each 

experiment may be an extension of previous experiments or it may be 

an entirely different design. The only requirement is that the 

I 
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sequence of experiments hare the properties required in Section k.2. 

Thus any particular experimental design encountered in practice may- 

be thought of as a part of some sequence of designs; the experimenter 

hopes that the size of his particular design is "large enough" for 

the good asymptotic properties to hold,  (in the independent, identi- 

cally distributed case, there are results attempting to consider how 

large is "large enough"; no such attempt is made in this paper. This 

may be a fruitful subject for further research.) The assumptions of 

Section ^.2 may seem to be restrictive upon first examination; however, 

they rule out no experimental designs of practical interest. • Thus 

Theorem Ij-.^.l has wide applicability in the analysis of variance. 

In Section h.3  the reparameterization required for the application 

of Theorem 3.3.1 is discussed. It is shown that for each n the parameter 

vector jf is obtained from 8 by multiplying each component of 9 by the 

appropriate normalizing factor. The derivatives of the log-likelihood 

up to second order, which are needed for Theorem U.lj-.l, are computed 

and a matrix used to compute the asymptotic covariance matrix is 

defined. Theorem k.k.l  is stated in Section k.h  and is proved using 

a sequence of lengthy lemmae, each of which proves that one or more 

of the conditions of Theorem 3.3.1 is true. These lemmae constitute 

the details of the proof and may be omitted without loss of continuity 

to the reader; they are presented in Section A.k. 

I 
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k.2    Assumptions for Asymptotic Theory 

The assumptions needed to carry out the asymptotic theory 

arguments will be stated and then briefly explained in this section. 

Under consideration will he a "conceptual sequence of experiments", 

each following the basic model for the analysis cf variance described 

in Section 1.3- An experiment in this sequence may be an extension of 

previous experiments or an entirely different design. However, all 

such sequences must have the properties described by the following 

assumptions. 

ASSUMPTION 4.2.1. n and each m., i=l,2,...,p , tend to infinity; 

each m. can be considered a function of n.  _ x  _ 

ASSUMPTION 4.2.2. Let m = n; then for each i,j=0,l,...,p , either 

m. m. 
lim  — P. - or lim —*— = p.. exists. m.    in —     m.    -11   
n-K»   3 .  . • °   • n-*»  x    J 

(if p. .= 0, then let p..= «° for notational convenience.) 

Now without loss of generality, let the U. be labeled so that for 

1 < j,  p.. > 0; i.e. the m. are in decreasing order of magnitude. 

Generate a partition of the integers [0,1,...,p,}, S ,S ,...,S , so 

that for indices i in the same set S , the associated m.'s have the 
s x    . 

same order of magnitude. Such a partition is generated as follows: 

i) i0=  0; S0= {0}; i±=  1. 

ii) For.s=l,2,...  , it is true that i e S . Then for s   s 

i = i +1, i + 2,... ' , include i in S until o.  . ==; s's'    ' s       1,1 
s' 

call the first value of i where this occurs i .,; then i ' e 3 .. S+l'        -S+l   s+l 
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m 

iik 

iii)    Continue as in Step ii until p   has been placed in a 

set.    Call this set S . c 

There are then c+1 sets in the partition, S ,S ,. ,.,S , and 

S = fi , ...,i ,--l} (where i .= p,+l to insure S is correct). s   s   '   S+X c+1  1 c 

•*• 

Define sets S as follows: s 

*   c 
3 s U S  ,  s=l,2,...,c , 
S  t=s t 

Cl s * • 
* 

The S are then sets of indices whose associated m. have the same or s x 

smaller orders of magnitude when compared with m. . 
s 

For-each i=l,2,...,p.., i e S for some s=l,2,...,c. Define X      s 

sequences v. (depending on n) as follows: 

v. H rank [U. :U. ._: ... :U ] 
s  s        -^1 

- rank[U. : ... :U. _ :U. _: ... :U ] , 
s *1 

1—1,2,...,p. , 

v^ = n - rank[Un: ... :U ] . 
0 ~1     <^p, 

v. 
i 

m. n-*»  l 

i 
ASSUMPTION k.2.3.    Let r. = lim —• ,  1=0,1,...^; then each of        J 

t 

the r. exists and is positive. } 
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For each U., i=l,2,... ,p., let the columns of U. be given by 

U. = [J^u^,...^] . ~0.    L~l  '~2  '    Vfll. 
1 

ASSUMPTION 4.2.4. For every i and every j e S 3^1,  "where 

i e S , there exist two nonnegative constants, iL and R_, both less 

than or equal to one, such that 

**     M)/A±)  2 
E

n v (i)'(i) ; * ^ 
ük <<k 

for all but ILm. values of k in the set {l,2,...,m.}. Furthermore, 

R.. and R„ are such that 

V (1-Ri)R2 * HTSTTI ' 

•where M"(S )  is the number of indices in the set S  . —_——   g —————^—__________________________________ g 

ASSUMPTION 4.2.5. Let 9^ = (o^.aj), *here o^ (a^^,... ,aQp V, 

pl be the true parameter point -which is being estimated and _._= E. _, a_.G.  ; • * ! — ~-U    <J=w   0^~3 

be the true covariance matrix. Then there exists a sequence v  ,      pi+1 

(depending on n) and a P0XPn positive definite matrix C such that 

lim   1     X'ET-Sc = CL . __ v _n 0 ~  ~-0 



remains an integral part of U.; it does not get overwhelmed by the 

other columns of U.. It could be said that this assumption requires 

that the i  effect not be "asymptotically confounded" with the effects 

associated with the other U. mentioned above. Such "asymptotically 

confounded" design sequences are of little interest and nothing is lost 

if they are ignored. It should be noted that this assumption implies 

that v. and m. are of the same order of magnitude and hence v. -* °°, 

i=0,l,...,n by Assumption 4.2.1. 

Assumption 4.2.4 is somewhat more difficult to explain. Its use 

) 

^    1 ] 
! 

The following is an attempt to briefly explain these assumptions.       I 

The object of the assumptions is to rule out certain sequences of 

experiments for which the limiting distributions either degenerate or 

"blowup" (See Section 1.1.). For example, asymptotic theory requires 

an expanding sequence of experiments, which is what Assumption 4.2.1 

requires. Assumption 4.2.2 requires that the expansion should be 

orderly — sizes of various parts of the design should relate to each 

other in an orderly way. There is no need to consider disorganized 

sequences and so nothing of importance is lost by these first two 

assumptions. 

The next three assumptions require that the sequence not be a 

degenerate one. That is, the matrix J defined in Section 4.3 must not 

degenerate; it must be positive definite. These assumptions insure 

that this is so. The v. referred to in Assumption 4.2.3 is the dimension 

of the part of the linear space spanned by the columns of U. which is 

orthogonal to the snace spanned by the columns of the other U. where 

* . 
j e S , j ? i and i e S . Thus v. is the dimension of the part of U. 

s S        1 ^ ~i 

not dependent on the other U.. Assumption 4.2.3 says that this part 

\ 
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occurs naturally In Section A.U.I and it is explained there also. 

This assumption could be described as a requirement for "almost 

orthogonality" of the designs (orthogonal in the language of experi- 

mental design). If in fact the designs are orthogonal In this sense, 

R = 0 and R?-» o as n -1 <».. The seeming restrictiveness of this assump- 

tion is Just that; it seems to be restrictive but it rules out nothing 

of any real interest. Any reasonable crossed or nested design sequence, 

whether balanced or not, will satisfy this assumption. Further light 

may be shed on this subject in Section 6.5. There an example is given 

of a design sequence for which Assumption 4.2.4 does not hold even 

though Assumption 4.2.3 does.  (For the design sequence in Section 

6.5j it can be shown that J is not positive definite, even though 

Assumption 4.2.3 holds. Thus some stronger assumption like Assumption 

4.2.4 is necessary in this problem.) Note that Assumption 4.2.4 

requires that the columns of U. not be "too" dependent on the columns 

of the other U. just as Assumption 4.2.3 does, but that "too" dependent 
«J 

is defined in a slightly stronger sense than in Assumption 4.2.3. 

Assumption 4.2.5 again rules out certain degenerate design 

sequences. These sequences are such that the fixed effects cannot be 

estimated properly. Again there is no loss in not considering such 

design sequences. Thus in all cases the assumptions above eliminate 

only disorganized or degenerate sequences of experiments which are of 

no real interest in any case. 
A, 

The sequences v?, i=0,l,...,p.+l, will become the proper normal- 
i_ 

izing sequences for the estimates of the parameters a  and a. v? is the 

\ 
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sequence used for a., i=0,l,...,p , and v2 . is the sequence for ot. 

'Note that only one normalizing sequence has been allowed for all the 

elements of a.    This usually is the correct thing to do; however, with 

a nontrivial amount of work of the same sort used in the remainder of 

this chapter, the theory can be extended to allow different rates for 

each element of a. 

^.3 Final Setup for Asymptotic Theory 

In this section the transformation from £ to k    for each n is 

defined. The normalizing factors used will ben. = v?, i=0,l,...,p,+l, 

where the v. are defined as in Section U..2. All the v. and hence the 

n. are considered as sequences (depending on n) increasing to infinity. 

The re-Darameterization used will be 9 -» t » with 8' = (or',a')  and 

j/ = (3',T7), where 3 = n  , a  and [T ]. = n.o., i=0,l,...-p.,. 
Pi 

The 

"true" parameter 8~ then transforms for each n to ii' = (g' ,T' ) 

The log-likelihood- then becomes 

\^>V=loZLn^>V 
n T 

= - 2 l0' 

S 8 
>g 2rr - \ log IT |-|(y-X -^—) V^y-X ^—) 

P-L+l        P-L+1 

1 The notation is abused somewhat by the use of X  (jL,^ ) and later 

XCy^jr) to represent the log-likelihood function in terms of ^because 
X (£»6) is also used to represent the log-likelihood function in terms 
of jTand A(v,8) ^ ^Jj^)  when £ = ju However, it is clear from 
context which~f unction X  is bexng referred to. 
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*1 [T   ]. 
-where T    =    Z — X G ~n      .   _ n. ~. 

i=0 l l 

Now choose a norm for a p = p +p +1 dimensional vector 

a_ = (a_,a, ...,a )' as follows:     j|aj| =        max        |a.j   .    Note that 
_L—-.LJ^J • • • >£* 

if $    is an estimate of jr    and Q    is the corresponding estimate of £ 

obtained by applying the inverse of the above transformation,  then if 

Ijjr - ($0nl| •'< b for all n > n    then this implies that for all such n 

l[In]i- [Ion]i!  -K^äiV CT0i}l  <b>  «.1—..P! ^d 

IfiV  Cß0n]ji   =  l^&VV1  <*>  3=1,2,...,p0.    This of 

course implies [a].- o~-, <-— , i=0,l,...,pn and r ' ~ l  01'   n.     ' '    1 

j [a ].-df_.j  <  ,  j=l,2,...,p ;  that is, the estimator 0    is 
p_+l n 

approaching 9», the true parameter, with each component converging at 

perhaps a different rate. 

It is now necessary to write out the derivatives of the log like- 

lihood up to second order to get the functions used in Theorem ^.^.1. 

At this point the notation of dependence on n will be suppressed. T 

and ß will be "used without the subscript n, understanding that every- 

thing—£,  x and G. included—depends on n. All logic is carried out 

for a certain value of £ which may be required to belong to a certain 

set (which set will have large probability). 
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The appropriate derivatives are given below. Matrix and vector 

derivatives are used •where appropriate and expressions have been 

algebraically simplified where possible. In each case the indices 

i and j run from 0 to p,. 

!£• = -±— X'T_1(y-X —=-) , 
p +1 px+l 

a PnXl vector; 

B B 
4*   * [_tr T

_1G. + (y-X -^^-)/T~1G.T"1(y-X -^—)]; 
x   i Pl+1 px+l 

o2X 
T— _^5      -A. i  A , oSaß'   2 ~ ~   n  _ 

a PnXp0 matrix; 

o2X      ^      ,   ,     3 
= ^  X'T^G.T-^y-X —Z—) , n.n  -, ~ ~ ~i~  ^ ~ n  ,  ' 1 ~      1 p.j+1 px+l 

a P0Xl vector; 

2 
d \      = 7r^~ [tr T^G.rt. -oT.ÖT.  2n.n. L  ~ zd~   ~j 

B B 
2(y-X -=-)' T^G.T^G.T^Cjr-X -^-) ] 

P-j+1 °       px+l 

1 
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If under some conditions, the second derivatives can be shorn to 

be continuous in a neighborhood of jf_  (the true parameter), then under 

those conditions, a Taylor series can be employed, yielding 

ax(a>i)        aUj&jt) 
9li 

Ai 
+    E 

Mo„   >i   a*ia*J A-iS 
«Vl -  %nV 

•where Jr* = p,jjr_ + (l-u.)jr and |i, e(0,l). This can be written as a 

vector equation as follows: 

G  (* ,Y ) = a (Y ) + A (Y )(* - 4. ) + R (* ,Y ), ~nv'ki3'-n/  ~nWr  ~*r<-n' ^^a   't-0n/  HI^'MI" 

where 

^A^i " 

[a (Y)]. 

at, . 

a+i 

i=i 
n 

i=ion 

[A (Y )].. 

and 

at.at- 
i=A): >n 

P (  3 X(x>i) 

J=l 
a*.a*. )»W.r  [A>nV 

(Observe that'a (Y ) and A (Y ) only depend on Y since 4_ is considered v ~nx^i'    ~nv~*r   J  ^     ~     ^on 

known.) For G as defined above ~<n 
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r& <W j. 
^in'^i 

<~-n iJ 3t- 

Mn 

Mn 

5 1,0—lj2,...,p. 

I 

All the items required to apply Theorem 3.3.1 have now been presented 

with the exception of the matrix J which will be defined below. Theorem 

3.3.I will yield a sequence of estimates j? (Y ) off. which will be 

translated back to a sequence of estimates 0 (Y ) of 9_. The sequence 

§ (Y ) will be a sequence of consistent and asymptotically normal roots 

of the likelihood equations. 

let a pXp matrix J be defined in the following manner. 

f£]ij= lim [" *o ( 
nr*00 

5 *(M) 
thn 

)J >    i,J=l,2,...,p. 

It is required that this matrix be positive definite. That the matrix 

is positive definite is proved in Section A.U.I. Some comments can be 

made appropriately at this point, however. Recall that 

y r» 71  (x ——— ,'?)  when jr = jr. ,. the true parameter . Further recall 
n~npi+1 

2 In all-sub sequent writing, the dependence on n will be maintained 
for the vector $  which will be called L , f  or jr^ on occasion; 

however the T matrices and ß vectors corresponding will be called 
only T_, T, or T0 and ß_, ßT or ß0 even though they are correctly 

T_ , T..  etc. There is still, of course, a dependence on n even 

though it is suppressed in the notation. 
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that 

"° 1=0   ni  ~X 

*! n.cr.. 

i=o  ni -1 

E o>. G. 
1-0 0i~* 

So 

and 

& V
1 *o 

p1+l n 
P-L+l 

= 2o 

for all values of n. Thus v^ ~7( (Xc^,21j when jf=ju^ for all values 

n. Then it follows from the definitions of second derivatives given 

above that 

I    (    ^ 5o V BW 
t=ton 

)•- n V1 

n 
IT" I' S1 £ 
V1 

2o 
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by Assumption 4.2.5; I 

- rfcn x pl+1 . pl+1 x ~ 

= 0  ,     1=0,1,...^ , 

because o\.(y)  = Ja-,  and 

i 
i 

' S0\ ÖT.ÖT.     .   ,     ) - 2n~nT tr S £&) £j 
i     3 

ß/% T 1 1 ß/- 

i J PTL+1 P-L+1 *    | 

1 -1      -1 
tr IL G.£,TG, 2n.n.        ~0 ~i~0 ~j 

13 

by Lemma B.l.    Thus it remains to study the properties of the (p1+l)x(p,+l) 

matrix C_   defined by 

(£Aj = ^ lim tr S^iS^j' ij3=o.l,.••»Pi- 
n~*° 

It can easily he shown that the lim inf and lira sup exist for the last 

expression-as will be done below. One of the assumptions of Theorem 

k.k.l  is that the limit in fact exists — that the lim inf equals the 

lim inf. This is not a grave assumption; again it merely eliminates 

disorganized sequences of experiments. The lim inf and lim sup can be 



55 

shown to exist if it can be proved that the sequences are bounded. 

Observe that 

tr jA.sA. = tr £~\u'E~1U.U? 

by definition of the (J., 

= tr UfZ"1[J.U./S:1U. 

= tr (u(S~1U.)(ufE:1[J.) 

£ 0 

because for any matrix A, tr AA = SI a. . a 0. • Furthermore 
ID      ü 

,              i       _i            min(m ,,m.) , 
-tr X~G.Zn G.    £ IT-

1
*- • 

Vj      ~° ^ ~* ninj CT0ia0J 

by Propositions A.3.8 and A.3.9 with E,= EL = ST    , 

£       B 

CT0iCT0d 

by Proposition A. 3.10,where B is a finite constant not depending on n. 

If B is defined as 

B* =    max       , 
i,j=0,l,...,p1 

CT0iCT0j 
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then. 3* is finite because 6,. is in the interior of the parameter space 

and thus all the an. are positive. Therefore 

k.k    Consistency and Asymptotic Normality of Maximum Likelihood Estimates 

Theorem-h.k.1,  the basic theorem of this paper, states that in the 

model of Sectional.3 and under the assumptions in Sections 1.3 and *f-,2, 

there is a root of the likelihood equations which is consistent and 

asysiptotically normal. Consistent estimates of the various parameters 

are-defined to be estimates converging in probability to the true para- 

meters. However, it has been noted that the estimates of different 

parameters may converge at different rates. Similarly, the estimates 

n 
.  ' 

0 * 2n3C tr &\h\ * \ B* >  i,3=0,l,...,Pl , 
1 3  • 

for all n. Thus the sequences are bounded and either the limit [C. ]. . 

exists or the lira inf does not equal the lira sup. It remains to show      * 

that the matrix C, is positive definite. This is done as a part of the 
:  { 

proof of Theorem if-.^.l which will be stated and proved in the next t 

sections. 1 f 

) 
BBS 
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are asymptotically normal, but only when normalized by the correct set 

of normalizing sequences, which may be different for different para- 

meters. 

This theorem will be proved by using the setup of Section 4.3 to 

apply Theorem 3.3.1 to this problem. The proof is given separately in 

Section 4.5. The details of the proof are given in Appendix A. 

THEOREM 4.4.1. Consider the mixed model of the analysis of variance 

described in Section 1.3, under Assumptions 1.3.1-1.3.6. Consider a 

conceptual sequence of experiments as described in Section 4.2, under 

Assumptions 4.2.1-4,2,5. Let the parameter space ® be a subset of R 

(p=P0
+P-i +l) and let a typical point of that space be represented as 

P0 
0' = (or',a'), where a  e R  and cr = (o\.,c\,,. . .,o V has nonnegative ~   "-~ »~ , ~ K 0' V P-i  —:  

components. Let the true parameter point 0^ be such that 

n., i=0,l,...jPn+lj increasing to infinity be defined as in Section 4.3 

2o= (°oo'°oi'" ",aOn ^  has all positive components. Let sequences 

1     -1-1       3 
and assume that lim   tr 2. G.2„ G. exists , i, j=0,.,... ,p.. Let 
     n.n.   ~0 ~i"-0 ~i — •—?     ' 1    n-w  x 3 ° 

3 Note that this assumption only requires that the lim inf equals the 
lim sup for this sequence. Both of these can be proved to exist by 
the other assumptions. Thus this is not as grave an assumption as 
it might seem (See Section 4.3-). 
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5o     ° 
J be a pxp matrix defined by J = ~        , -where CL  is a PnXp   matrix 

0        O, 

defined by CL . < lim   -g- X'E" x and C,  is a. (p1+l)x(pn+l) matrix 
rj-sco      XI 

P-L+l 

defined by [C ]„ = § lim ^- tr g^.g^G , 1,3=0,1,...,V. 
~u n-*»  i j u 

Under these conditions it follows that J is positive definite. Further- 

more, for each n there exists an estimator 8 (Y ) = [6/r(Y  ), CT'(Y )] 

of 9 with the following properties. 

i) Given e > 0 there exists b=b(e) such that 0 < b < <» and 

n =n,_(e) such that for all n > n^ 0 Q\        o 

n 
axfoe) 

de. 8=8   (Y ) 
= 0,  i=l,2,...,p ; 

[a  (Y )].- er..      <   - J     J—-LJ^J • • • jPp.3 

V1 

&Äi»l- %i n. ,  i=0,l,...,p1j- > 1-e. 

ii) The pxl vector whose first p components are 

th n        [<y  (Y )  - cv_}  and whose  (p^+i+l)       component is 
P-,+1 wi ~n        ~0         -MD  *•  

1 
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n.f[a (Y )].- o\^.}, i=0.1....,p,. converges in distri- 
l ~n ~n/ l  Oi '     '    1'  B  

bution to a 77 (0,J~ ) random variable. 

The proof of Theorem k.k.l  follows in Section h,5. 

k.5'    Proof of Theorem U.U.I—Consistency and Asymptotic 

normality of Maximum Likelihood Estimates. 

As suggested in Section U.3, Theorem U.U.I will be proved by 

applying Theorem 3.3-1 to the reparameterized problem given in Section 

if. 3« Recall that for each n the transformation used is £ T» i-., where 

9' = (<*•',a'), *' = (ß'jT7), 3 = n _,, a,  and [T ].= n.o., i=0,ls... ,p.. ^   V, »~ '  XQ  v£n-~n'' £n  p,+l ~     ~a l  l l    '      1 

Then a Taylor Series is used to write the log-likelihood as follows: 

oAfejr)    d\(X>jO 

at, 
i=ln 

M. 

i=io: 

p   3 ^fci) 
.  ,        dijf. dijr. (W,   -   %J.i> 

n J=T!I rin 

where jr = JJ,*^ + (l-u.)ilr and |j, e(0,l). As in Section U.3? this can be 

written as a vector equation in proper form for the application of ' 

Theorem 3.3-1. 

G (* ,Y ) = a (Y )  +  A (Y )(* - t~ ) + R U ,Y ) ~nv't-n'~n/  ~*r~n   <~-n.^~n' y&n    ''-On   Mix'<-n'~-ir 
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where 

[G (ilr  ,Y )].  = 
oXfejO f 

i-ia 

[aJYJJ'.= 
axfei) 

MI MI    i öijr. 
l=lon 

[A (YJ]. 
a x(2>i) 

•MIW   x j 5i[r. dijr. 
i=ion 

P ,3^(2,4)      ö2X(y,l) 

a (Y ) and A (Y ) depend only on y because iin    is derived from 9^ which 

is known. 

Theorem 3.3.1 states that under certain conditions (Conditions 

3.3.1.i-3.3.1.vi) the following statements are true. 

Given e > 0, there exists b=b(e) such that 0 < b < » and n = n0(e) 

such that for each n > n 
0 

pi there exists a root j?  (Y )  of G (jr  ,Y ) = 0 such that 

UQ  S %%r?} * 1-S  I 
furthermore, 

! 

1 

|   (Y )   - 4_      -    ??  (OJJ"
1

) Mi MI'       MDn ^ipx~'~    ' 



These statements are easily translated back to the current 

problem.    Define the estimator 9 (Y )  as follows: ~-n ~n 

&n{V = U  (Y ))  '-Sa&J  = U (Y)J  ' ~n Wi 'Mi ~n 

where 

<*   (Y ) = - 

V1 icy 
and 

[a (Y )]. s   — [T (Y )].   ,  i=0,ls. L~nv'Vir Ji        n.   L~nv~n/Ji ' '   ' 
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Thus 9 (Y ) is formed by the inverse of the transformation 9 -». * . 

Then the statement that G (f (Y ),Y )= 0 is eauivalent to the 
'MV'Mi^'-n' 7~n'      ~ 

statement that 

SS = 0     , 

But 

axfoj) 
OT. 

öß 

t^V 
~-   U    j    1—L/.J -L ^ • « • ;»!?-]     • 

i    a*te»$ i 

£=U4> 
n 
p^l 5a 9=9  (Y) ~ ~n ~n 

li. The reader should again note that X represents different functions 
on the left hand and right hand sides of the next two equations. 
See the first footnote of this chapter. 

1 
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I   I jl  f 

ax(y^) 
3T. 

l i=UV 
ax foe) 

n. 
l 

OCT. 
l e=e (Y ) x 

ax(y,9) 
Thus G (* (Y ), Y ) = 0 is equivalent to —/~~- 

9=8 (Y ) 
 ^r—n 

=. 0, i=l,2,...,p. 

Furthermore, the statement that j? (Y ) e S.Ct,-. ) is equivalent to the 

statement that | CßjY^.- [P^l < b, j=l,2,...,pQ, and 

|[T (Y )] - [T_ ].| < b, i=0,lj...,p , which is in turn equivalent to 

1 L-*r~n 3      Oj ! n 
P-L+l 

J=l,2,...,p_ and | [5 (Y )],- -, | <-JL , 
•0 -HI >-n i 0i' 

i=0,l,...,p . In addition, the vector jL(Y )-^n = ( ~ 
&.(?>£ £n ---n ~0n 

)• 
and 

T (Y )-T_ 

i=0,lj...,p,. Thus the conclusions of Theorem 3.3.1 imply the con- 

clusions of Theorem U.4.1 for 8 (Y ) as defined above. It then remains 

to show that all the conditions of Theorem 3.3.1 are satisfied under 

the assumptions for the problem as reparameterized. 

The first thing to be shown is that the matrix J defined in Theorem 

ii-.^.l is positive definite so that it can be used in Theorem 3.3.1. 

(The existence of the limits is guaranteed by the assumptions of Theorem 

k.h.l.)      Recall that a matrix J was defined in Section ^.3 by 

[J] 
ij 

lim [-S0 ( a*,a*. 
tion 

)] i.j=l,2,, 

as 
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This matrix is easily seen to be the same J defined in Theorem U.U.I. 

This matrix is shown to be positive definite in Lemma A.U.I in Section 

A.U.I. Now it must be proved that the assumptions of Theorem U.U.I 

imply the six conditions of Theorem 3.3.1. This is done in a series 

of four lemmae.. First each condition is reduced to a simpler statement 

and then these statements are proved separately, each in a separate 

subsection. The conditions are not considered in the order i-vi but 

are considered in approximate order of increasing difficulty. 

Condition 3.3.1.ii requires that a (Y ) -» 7? (0,j); that is, 

d. 

i=^On 

7[  (0,J). This is proved directly in Lemma_A.U.2 in 

Section A.U.2. Condition 3.3.l.iii requires that if D (Y ) = J+A (Y ), 

then D (Y ) ^ 0. It is clearly sufficient that the convergence in 

probability occurs for each element of D (Y ); that is, it is 

sufficient to show that [D (Y )]. . ^ 0, "i.j=l,2 -p. .But 

[D (Y )].. [A (Y )].. + [J].. 

^feA) 
ri Tj 

+ lim ! S, at-ö,h  i,i,_,i,   rZZ L    °\  Si^t =hn    *- 

a^(2>'i) 
1 *J  '*=W 

<? 
l%n 

0 

/ j 

On 
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+ *oUt.a*. rllmd?cA at.at. A 
10      «*   " X    3      Men   3 

Thus [D (Y ) ]. . "breaks into two terms.    The second obviously converges r 

t 
to zero by the definition of limits of real numbers. "Thus it is | 

sufficient to prove that the first term converges to zero in probability 

for each i and j. This is proved directly in Lemma A.1+.3 in Section 

A.lj-,3. 

These first two conditions are proved directly; the remaining four 

will be proved indirectly in the following manner. Suppose there is a 

sequence of events, say [X }; it is of interest whether P{X } -» 1 as 

n -» co. This can be shown by showing that there exists another sequence 

of events [Z  } such that Z => X for all n and that P{Z } '-* 1 as n -» «. 
. L nJ n   n nJ 

The object is to prove the probabalistic statement P{X } -» 1. This is 

done in two steps—one probahalistic and one not. Proving P{Z ] -» 1 

of course involves probability concepts; however, Z => X is not a 
n   n 

probabalistic statement and its proof is usually algebraic. 

The first condition to be treated in the above manner is Condition 

3.3.1.vi. This condition requires that for each b > 0, given e > 0 [ 

and 8 > 0, there exists n (h,s,8) such that for all n > nQ 

%f  Sb(V 

where E U ,Y ) = J  + J_ U  ,Y ).  Again it is sufficient to prove the 
r-n 

bound for each element of E  (i|r   ,Y ).    Now 
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t&Si*>Vhi = [
^G i**>Vhi+ «# ~& iJ 

5 *(frA) 
-  lim <$ 

i|f=ilf       n-*» o( 
^(y,i) 

Men 

Afci) 
oi[r.öi|r.     I,   ,   ~      3*.öi|r.       ,    , 

+    v.  -V •— - <*. 
,( 

^<2>i) 
diKo*.        ,   , 0\    of.5*. 

MQ 
) 

n 

+ <?, >( 

^fei) 
0\    oijr.df. 

l=lor ^ 
in<?0( lim 

.to 

). 

Thus  [E  (#  ,Y )].. "breaks into three terms.    The second goes to zero in 

probability,  as was shown above,  and- the third goes to zero by defini- 

tion of limit,  as shown above.    Thus it is sufficient to bound in 

probability the first term.    This is done by using Conditions A.2.1 

and.A.3.1 "which were shown in Sections A.2 and A.3 to occur, in proba- 

bility.     It is shown in Lemma A.U.^ in Section P^.h.k that for b as 

above,  if Conditions A.2.1 and A.3.1 are true then 

sup 
o2X(Z,jr) 

VVW   B*ia*J 
&&*) 

Ä      *^1 £=4on 
j - 0 
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as n - <*>, i,j=l,2,...,p. Now to get n (b,e,8) for Condition 3.3.1.vi, 

first choose IL. so that for n > n 

1 
i 

* 

Aix.j) 
-*ol 

i &(x>V 
at4Sy<    i t       °*>  a*.B*. 1 '=     'A=fcn 1.   J A=ion 

)l < 4 
3 ' 

i,j=l,2,...,pj- U--    , 

(•which can be done by Lemma A.h.3).    Then choose n   :> n    such that for 

n > n„ 

)- ^ <U   a^.a*. 
i=io."    n~• m 'x   [j i=Jfe 

)l<! • 
n 

i,j=i,2,...,p, (-which can be done by the definition of limit). Then 

choose n s rr such that for n > n_, 

PjConditions A.2.1 and A.3.1 are true! :> 1 - ^ , 

(which can be done by Proposition A.2.1 and the definition of limit). 

Finally, choose n (b,e,5) a n„ such that for n > n 

sup        | 
Afcil I ^(2>i) 

l<f • 
^1 e VW x    J     -irin Vl FJ     'i=lon 

(•which can be done by Lemma A.^.1)-). Then this nQ is the desired object 

of Condition 3.3.1.vi. This full line of reasoning will not be reproduced 
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for the next three conditions. Analogous arguments of this type are 

used for each of the three. 

Condition 3.3-l.iv requires that for each b > 0, given e > 0 and 

6 > 0, there exists n (b,e,6) such that for n > n 

V Sb(ion) 

As above, each element [1 (l ,Y )]. maybe considered separately. Now 
*
S
TJL 'Ml /MÜ  X """ 

P /oUy,*) 
[R (* ,Y )].= E ( - ~, 

3=1  vi yj 

5 Uz>A) 

Mon 
)<CÜj - [*0nV > 

where jg = p,,^ + (l-^) j^ and n e(0,l). But for j^ e ^(y, 

Uin^j " •flon^jl < b» d=1>2»« —»P» furthermore 

.IK - fcjl - IKwJfc- (i-iOfcJI 

= (^)ll^- fan» 

* (i-n)i>, 

so that j^ e sb(^0n)- Therefore it is sufficient to prove that 

sup 
Afoi) 32x(x,i) 

^esb(ion)    ^    i%    at!*,    ^ 
j   2. 0 ,   i,j=l,2 }••• Ji . ,"D. 

I 
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But this is exactly what is proved in Lemma A.4.1+ using Conditions 

A.2.1 and A.3-1. Thus Condition 3.3.1.iv is proved. 

Condition 3.3-l.v requires that for any b > 0, given e > 0, there 

exists n (b,e) such that for all n > n 

F! the elements of JL (ijr ,Y  ) are continuous 
*«n ' . 

functions of jf in SuCju ) r ä 1_e- 

By the same logic as used above it is sufficient to prove that if 

Conditions A.2.1 and A.3.1 are true, then 

Ö
2X(Z,£) 

^G ^n'^n^ii = M hit— is a mi£or!Dly continuous function of * in 
~H 1 'J 

S (jr-j ), i, j=l,2,... ,p. This is done in Lemma A. k. 5 in Section A.1!.?. 

Condition 3.3.l.i requires that for each h > 0, given e > 0 there 

exists n (b,e) such that for all n > n 
0 0 

for all^e S^)} * 1-e; 

that is,  the Taylor Series expansion given at the beginning of this 

section must be valid in S^CjVv  ) with large probability.    For the 

expansion to be valid,  it is sufficient that all second derivatives 

are continuous functions of *    in S,(ju ).    Again it is sufficient to 

show that if Conditions A.2.1 and A.3.1 are true then 
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••••>, ->.— is a uniformly continuous function of j? in S (jr_ ) , 

i,j=l,2,...,p. But this is vhat is proved in Lemma Aj+,5. Thus 

Condition 3.3.1.i is proved. 

As -was shown above, the proofs of these six conditions enable 

Theorem 3.3-1 to be applied, -which is used to prove Theorem k.h.1 in 

the manner demonstrated in the beginning of this section. The five 

lemmae used to prove these conditions, plus other details, are given 

in Appendix A. The reader may easily omit these details without loss 

of continuity, j j ] 
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4.6. A Note on the Asymptotic Efficiency of the Maximum Likelihood 

Estimates 

It has been shown in the previous sections of this chapter that 

the maximum likelihood estimates in the mixed model of the analysis 

of variance are consistent and asymptotically normal. It then is of 

interest -bo know whether these estimates are asymptotically efficient 

in some sense.. Efficiency has been defined in several different ways 

by various authors. The maximum likelihood estimators in this problem 

are efficient in the sense that the Cramer-Rao lower bound for the 

covariance matrix is asymptotically attained. The Cramer-Rao lower 

bound for the covariance matrix is the inverse of the Fisher information 

matrix, which is the expected value (under the true parameter) of the 

Hessian matrix of second derivatives. In the case of independent, 

identically distributed observations, this definition needs no elabo- 

ration; in the problem under study here more explanation is required. 

The matrix considered in the independent, identically distributed 

case is derived as follows. The likelihood for n observations is just 

n times the likelihood for one observation; therefore, the expected 

values of the derivatives for n observations are n times the expected 

-values of the derivatives for one observation. The entire matrix is 

then normalized by l/n- and the limit taken. This is the rigorous 

definition of the information matrix J.    That is 

[J]. . -lim ± sn {  » £r     ) 
n-«o        l j 

!1 

I 

*0 
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= -lim^o{n 
38.se. 

i 3 i=^o 

*„{ 39.B9. 
1 J £=So 

} ,  i,j=l,2,...,p. 

Thus although a limit of matrices is considered, •what is arrived at is 

the information matrix for one oh servation. 

• In the problem considered here there is no one observation -which 

does not depend on n. Thus limits analogous to that above must be 

considered. However each parameter may require its own normalizing 

sequence. For notational convenience let n. be the correct sequence 

th 
for 8.; that is, the pxl vector -whose i  component is n.8. has a 

limiting normal distribution.  (Note that each sequence n. depends on 

n.) This does not agree exactly "with the notation of previous sections 

but does make the exposition in this section easier. The definition of 

an information matrix in this case "which is analogous to the definition 

in the independent, identically distributed case is 

w]id -^ ^k so i-wk- n-w  l o i 3 
} 

^0 

X, J— -L,<i, • . . ,p. 

A sequence of estimates is then said to be asymptotically efficient if 

the estimates are consistent and asymptotically normal and if the 
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asymptotic co-variance matrix is the inverse of the information matrix 

J? defined above. 

The estimates in the analysis of variance were shown to be consis- 

tent and asymptotically normal in Theorem U.^.l. Furthermore, the 

asymptotic covariance matrix was J , where J was defined in Theorem 

U.^.l, But the matrix £ is just exactly the information matrix 

described above and hence the maximum likelihood estimates in the 

mixed model of the analysis of variance are asymptotically efficient 

in the sense of attaining the Cramer-Rao lower bound for the covariance 

matrix. 

t 

I 
j 



CHAPTER 5 

COMPUTATION OF THE MAXIMUM. LIKELIHOOD ESTIMATES 

5.1. Introduction 

This chapter contains discussions of computational procedures for 

the calculation cf the maximum likelihood estimates in the mixed model 

of the analysis of variance as described in Section 1.3.- In Section 

5.2 an equivalent form of the likelihood equations is derived. A ' 

simplification which occurs when each G. can be simultaneously diagon- 

alized and also a case where explicit solutions to the likelihood 

equations exist are described in Section 5°3- Since explicit solutions 

seldom exist, an iterative procedure is proposed in Section.5.*+ to 

.solve the highly nonlinear likelihood equations. The iterative pro- 

cedure proposed here was first suggested by Anderson (l971b), (1973). 

J. K. K. Rao (1973) has pointed out in a personal communication to 

Anderson that this iterative procedure is in effect the method of 

scoring; this is also discussed in Section 5.k.    In  Section 3-5  it is 

demonstrated that when explicit solutions exist, the iterative procedure 

of Section 5.^ yields those solutions in one iteration from any starting 

point. In Section 5.6 the problem of avoiding negative estimates is 

discussed. 

In Sections 5.7 and 5.8 the iterative procedure of Section 5 ••-**•- is 

compared with a procedure suggested by Hartley and Sao (1967). Using 

four sample problems given in Hartley and Vaughn (1972), it was found 

that The Iterative Procedure was computationally more efficient than 

( 73 
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i 
i 

the Hartley-Rac-Vaughn algorithm,  (in the remainder of Chapter 5 the 

iterative procedure proposed in Section 5.^- will be referred to as 

"The Iterative Procedure" and this will be abbreviated TIP. The 

algorithm developed ay Hartley, Rao and Vaughn will be referred to as 

the' Eartley-Rao-Vaughn algorithm and this will be abbreviated as the 

H-R-V algorithm.) A Monte Carlo study of Uhe  Iterative Procedure 

revealed that it was indeed a computationally efficient algorithm. 

Although it has not been proved here that The Iterative Procedure 

always converges, the Monte Carlo results indicate that it will always 

converge unles-s the convergence is to a set of negative estimates 

which, make Z(c)  singular. These negative estimates occur only 

infrequently and such negative estimates are not of interest in any 

case. A numerical technique which was used as a modification of 

The Iterative Procedure made it even more computationally efficient« 

5.2. The Likelihood Equations and an Equivalent Form 

As shown in Section 1.3 the likelihood equations which must be 

solved to obtain maxiirrum likelihood estimates of a  and <y  are 

Pi P, 1 1 
[X'( 2 o-.G.V^te = X'( Z    o.G.Y^y 
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and 

Pl Pl Pl 
tr(  2    a.G.VV* trf 2    a.G.YVf 2    a.G.Y^C,  i=0,l,...,pn   , 

>0    j~j/   ~<L        xJ=0    J-J/    ~ay.=0    a~j. 

•where 

These may be rewritten with 

Pl 
2(CT) = 2 a.G. 

as 

[X
/
S"
1
(CT)X]Q' = X/E"1(CT)V , - 

tr 2~1(o-)G. = tr S"1(a)G.2"1(cr)C, i=0,l,...,p_. 

(Note that 2(a) has an inverse "because a_> 0, a. Sr 0 i=l,2,.,. ,p.., 

implies 2(a) is positive definite and hence nonsingular.) An equivalent 

form of the second set of equations is obtained as follows. The follow- 

ing identity is true 

I = 2_1(a)2(a) 

pl 
= 2"1(a) r 2 CT.G.l 

j=o °~J- 

Pl 
2 a.  2"1(o)G. . 
J=o J 
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Substitute this identity into the second set of equations yielding for 

a typical left hand side 

•f 

tr S_1(o-)C-.  = tr E"
1

(CT)G.   I 

= tr E"1(cr)Gn.E"1(cy) f E    e.G.] 

= E    CT    tr E •
L
(CT)G.E~

J
-(CT)G. 

= [B(a)sJi . 

•where cr = (O_,CT, ,... ,o    )' is a (p-.+l)xl vector and B(CT) is a ~ 0    1 T>- 1 ~^~/ 

, .th (p +l)x(p,+l) matrix whose i,o"ü" element is given by 

Ws)hrtr S"1^^"1^)^ UJ=o,i,...,vr 

How define a (p1+l)xl vector 0(0,0)   (because C depends on a) by 

[c(S,ar) ].= tr ^(^(cJC , i=0,l,... ,pr 

Then the second set of likelihood equations can be written in matrix 

form as . 

B(CT)CT = 0(0,0-). 
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This form is equivalent to the original form since it results merely 

by multiplying by an identity matrix,  (if (a)Z(cr) = I for any vector 
r*t    t***    r—f 

a.) 

5.3« Simplification of the Likelihood Equations When Each G. Can Be 

Simultaneously Diagonalized 

In this section some results of Anderson (1969) are restated and 

expanded. Suppose that there exists an nxn orthogonal matrix 

P (i.e. PP' = P'P = I.) such that P'G.P = A. -where A. is a diagonal 

matrix, i=0.1,...,p,. Then G.= PA.P' and 

Pl 
c . . 

•1 

E(CT) = S O-.G. 
3=0 

Pl 
= S CT.PA.P' 
d-0 J^~ 

Pl 
= pf 2 O-.A.IP' 

= PA(a)P'. 
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Furthermore, 

Let V = P'CP and rewrite the second set of likelihood equations as 

> 
follows. 

For the left hand sides, 

t 

tr E-±(o-)G. = tr PA'^OOP'PA.P' 

=  tr A"1(a)P/PA.P/P 

-  tr A" (a)A. . 

I 
I 

For the right hand sides. 

tr lf1(a)G.2~1(c7)C = tr PA~1(cr)p'PA.P/PA~1(o-)P'c, 

= tr A"1(o-)A.A"1(o) V 

Let the diagonal-elenents of A. be X^ , k=l,2,...,n. Then the likeli- 

hood equations become 

I 

n 
E — 
-.i Pi 

(i) 
k  vkk 

k=l ^1 
E a.A (J) 
j=0 

j k 

n 
2   
k=l ,-Pl  / .v-,Q 

E a.xi3)12 
3=0 J * 

i=0,l,., 

>I 
•JP-L J 

th , 
•where v,,. is the k  diagonal element of V. Similarly, the equivalent 

J 

t 
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form of the likelihood equations becomes 

Pl r n   X*
1^ , n   X^ vv> 

s J s __J* £ L CT_ = E  k £L_ , i=0,i 

L^=o k J      Li=o k J 

0=0 TE=1 -• *1  ,.» '  J k=l r 
Pl 

Another simplification occurs if a can he estimated independent of 

cr. This will occur if X is of the form X = QF -where Q is nxp^ and 

consists of p^ of the columns of P and F is p^Xtu and nonsingular. 

'^'-i 

Without loss of generality let P = [Q:Q]; that is let Q, be the first 
/Nrf f<f     "^      3 

p_ columns of P. Also let 

A(cr) =       ~~   be' partitioned as P. Then ?'Q= ~  Q= ~  and 
0   A(cr) i_ Q / -J~ - „ - 

/•w /•*•* 
0 

a  =-[X/2"1(a)X]"1X's'1y 

[F/Q/PA"1(CT)P,QF]":LF/Q,PA"1(CT)P/y 

I Q,' 
[F'[I 0]A"1(a)T ~ Vf V[I OlA'-CoOf ~ ] y 

0 Q 
/s^ 

= [F^-^^Fj-^'A^^Q'y 
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r*>        r*y*r*y r^»        /M /M     IS*   t*~>   Kt 

E~Vx 

"which is independent of a. 

One further simplification occurs "which allows a closed form 

solution of the likelihood equations. Following Anderson (1969:58-59), 

let each 

A. = 

u-, . I 0 

0 "211 

0 

0 

0 

u   . I 

where the orders of the identities on the main diagonal are n-.,n2,...sn 

and the iv's do not depend on i. The object is to take account of the 

cultiplicities of the roots of S(a) or equivalently the diagonal elements nr 

of A(a).    Define Vk for k=l,2,...,p   by 

n. 

V,= ~   S    v.., 1    nx   .=1    jo» 

, Vn2 
2    n2 j=n1+l    "' 
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1   n 
V  =    S    v.., 
p2  np0 j=n-n +1 D3 

2    p2 

where the v.. are defined by V = P'CP = P7(y-X c?)(y-X £).'P. The likeli- 
33 

hood equations then simplify to 

[X'E_1(a)X] a = X'E'^CTW 

and 

v    k^ki   _ y  "k ^ki k    ._ n , 

k=l j- pl    -,   M r 
pl     -, 2 "L 

^0
CT^kJ [^^el 

If 5 can "be solved for independent of a and if the above notation 

change is made, then a,  Vn,V0,...,V  are a sufficient set of statistics 
~       1    «- Po 

for the problem.    Explicit solutions can be found in the case of 

pp= p,+l.    Then the equations 

Pl 
JZ   a   u^. = Vfe      k=l,2,...,p2 

have p„ equations in p.,+1 = p? unknowns and can be solved for a.  (As 

Anderson points out, the matrix of coefficients will be nonsingular 

\ 
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because G_,G_.,...,G  are linearly independent [Assumption 1.3.5L 

which implies that A~,A,,...3A  are linearly independent.) Substitut- 

ing these values of cr into the denominators of the likelihood equations 

yields 

I2 "k ^ki .. I2    \»Kl\ 
k=l \ k=l    vf 

k 

'which shows that the cr obtained above is indeed an explicit solution of 

the likelihood equations. 

Explicit solutions are interesting and helpful -when they exist but 

unfortunately they often do not exist. Thus an iterative procedure is 

required to solve the very nonlinear likelihood equations. Such a 

procedure is discussed in the next section. 

?.U. The Iterative Procedure 

Writing the likelihood equations in the equivalent matrix form 

suggests a convenient, simple iterative procedure for their solution. 

It is basically the method of functional iteration -which is used often 

i 

I 
I 
\ 

i  . 

} 

I 
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in numerical analysis. The equations to solve are 

[X'Zf^X] a  = X/E'1(a) jr 

and 

B(CT) cr = c(CTjQf). 

Since it is assusied that X has full rank and that XT (a) is positive 

definite, -X 'if (cr)X is nonsingular and the equation for a can be 

solved to give 

• a(a) = Cx'sT^X]-VE-1
(CT) y . 

Then there is only one equation to solve for a, namely 

B(cr) a = c[o-,a(o-)] . 

If B(cr) is nonsingular the equation may he restated as 

CT = B~ (CT) e[o-,or(cr)3 . 
/V    •"** r**       r>*   n~*   ***   r** 

If• a (p,+l)xl vector a "which satisfies the last eouation can be found, 

then a  and a = a (a) -»rill satisfy the likelihood equations. The last 

equation suggests the following iterative procedure.  (This iterative 

procedure will he referred to in this and.successive sections as The 

Iterative Procedure, to be abbreviated TIP.) 



8k 

Let o> QN be any initial guess for a.  (The problem of choosing 

CT/0\ is discussed later in this section.) Then for i=0,l,2,... 

2(i+i) =S"1(£(i)) 
clZ(i)> °L(°{±)^  • 

This process continues until £/.+-,\ is sufficiently close to o>.\ in 

some norm. If the iterative procedure is to make sense it must be 

proved that B(a>.0 is nonsingular. This is done in the next proposi- 

tion, -which is stated and proved as Lemma 2.1 in Anderson (1971:11-12). 

It is restated and reproved here for completeness. 

PROPOSITION 5.^.1. I| £r±\  is such that E(oy.x) is nonsingular then 

B (cr,.\) is positive definite. 

PROOF. 

But 

Pl Pl 

v J i=0 k=0   ~ ' J J 

Pl Pl 
= S  E tr S"1(CT,.OG.S"1(CT/ ,)G, 6.6, , 
j=0k=0   ~ MiJ'-SJ- MD^J k 

Pl    -, ,       Pl 
tr E_1(a/.x) r 2 6.G.V1(a/-.x) \ S fi. G. 1 , 

~  ~(i) L.=0 J~U~ Mi) l_k=0 l^kj 

! 

Given any (p +l)xl vector £ = (6 ,6 ,...,6 ')', it must be shown 

that £7B(a/.-v )£ is positive. 1 

{ 

i 
• ••• i 

i 
i 
i 

i 
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pl 
= tr I" E^CCT^.O ( S 6.0.) j2 , 

L ~ Mi)' \. n j~i/J » 

-1    / x   \ 
•which is positive unless £ (ov.N)( 2 6.G. j = 0. But it is impossible 

for £ (a/.\)( E 6 .G. 1 to be 0 "because the G. are linearly independent 

and E (ov. \) is obviously nonsingular. | | j 

It should be noted that so long as [a/.->]n, the 0° component of 07. \, 

is positive and the others are nonnegative E(av. 0 will always be non- 

singular. Thus so long as the iterative process avoids negative values 

it will continue unimpeded.  (For a discussion of negative values for 

components of a, see Section 5.6.) 

J. N. K. Rao has pointed out that The Iterative Procedure is in 

effect the method of scoring. That this is so can be seen by the follow- 

ing remarks. The method of scoring obtains iterations in the following 

manner. Given an estimate 6,/^N of the pXl parameter £, calculate 

w?(9/k\)> "the pXp information matrix whose i,j  element is given by 

r  B A(jr,e)      > 
[^(k))]ij *"'*l oe.oeT nn    J » i.J-i.2» —»P. «*• 

i 3 ^Ä(k) 
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öx(y,e) 
"1)9 e=e 

(k) 

, the pXl vector -whose i      component is —5-—^—- 
o9. 

/Vf /Nrfl 00 

Then the next iterate 9/k, •, \ is given by 

Äfce) 
&(k+i) ~ Ä(k) + jf (£(k)} ~r 

&=ä(k) 

It is easily seen that *£(6/%A ) for the case under study here is given 

"by (The notation used here is same as that used previously in this 

section.) 

I 

I 

^(k)) = 

X
,
E~
1
(CT/VX)X      0 

r*J  /-*>    ~l 

2,'      fefe(k)> I 

Furthermore. 

»fee) 
de 
~  -ÄBSk 

~X 

Se 

i 

where 

£1- *X\*)KZ'&°JM)1 
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= ifos(k) «(2(k)) 3 " B(2(k)) £(k)}i >   i=0A,... ,P,_ 

351611 £(k+i)
= ^'k+D'ScVi)5' is given by 

£(k+i) =^(S(k)) + trS"1^))^"^"1^],)^-^^)) 

= rs^wsrVr1^! • 
and 

S(k+i) = 2(k)+S"1(2<k)) £C2(k)^fe(t))] - £(k) 

?"1(2(k)) £te(k)'£(2(k))] 
/•^ y->l 

Thus the method of scoring yields the same equations.as The Iterative 

Procedure. 

The Iterative Procedure described above has the advantage of being 

simple, easy to describe, and easy to program.  (A computer program 

implementing this algorithm is described in Appendix C.) Other methods 

for solving the likelihood equations have been developed. Hartley and J.EF.K. 

Bao4(1967) suggested solution by the method of steepest ascent. They 
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numerical "Ly integrated out a system of simultaneous differential 

equations to obtain solutions. They gave a proof of the convergence 

of their algorithm. Hartley and Vaughn (1972) presented a computer 

program written "by Vaughn (1970) implementing the Hartley-Rao 

algorithm. This program is quite complicated; it proceeds 

in the following manner. A least squares approximation is obtained to 

the differential equations to be solved. This approximation is numer- 

ically integrated ~by the Runge-Kutta method until a solution is obtained. 

These two steps are repeated until convergence is obtained. The reason 

an approximation must be used is that numerical integration methods may 

require large numbers of iterations and a large amount of effort is 

required.to evaluate the likelihood equations. A comparison of The 

Iterative.:. Procedure and the method of Hartley, Rao, and Vaughn on some 

sample problems presented in Hartley and Vaughn (1972) is given in 

Section 5-7- It can be said at this point that The Iterative Procedure 

seems to be computationally much more efficient, at least in most cases. 

Choosing the initial estimator cr/_>. is of some importance in The 

Iterative Procedure. The closer cyn\ is to the true solution, the 

easier it will be for the algorithm to iterate to that solution. 

Anderson (1971b:12-13) considers the case where the mean of £ is either 

known or completely unspecified and there are II observations on j.    He 

suggests £/0N the solution of the equations 

pl 
S a. tr AG.AG. = tr AG.AC , 1=0,1,...,p.. , 
3=0 3 ~^-—3     —1— 

I 
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where A is an arbitrary positive definite matrix and 

£ = I 4i(*k"fc> <Zk-li)' if M is ^m or £ m iÄ"£ (2k-Z)' if 

u, is completely unspecified.  In both cases C is an unbiased estimate 

of Z  and hence afn\  will be an unbiased estimate of a.    One choice 

suggested for A is I, the identity matrix. It has been found in sample 

problems that the above method does not work very well in practice. 

It often seems to take many iterations to reach convergence from the 

above oyn\ while other types of guesses work better. Anderson mentions 

some other methods for the case above. For the analysis of variance 

the following methods may work well. The usual analysis of variance 

estimates, if they are available, or approximations to them can be 

used. A rough approximation to the sum of squares for each factor 

may work fairly well if that is all that is available. Prior knowledge 

may be put into the initial guess if desired. If no Information at all 

is available, o'rrfi  (l,0,...,0) maybe used; this corresponds to choosing 

A - I in the Anderson method above. The choice of the initial guess is 

not critical but some attempt should be made to make reasonable choices. 

The advantages and use of this method have been alluded to. At 

this point an attempt must be made to answer the three critical questions 

one must ask of any numerical procedure. 

1) Does it converge? 

2) If it does converge, to what does it converge? Is the 

result, a root of the likelihood equations? 

3) Is the answer unique? 

I 
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Unfortunately complete answers are not known to any of these questions. 

An answer to all three is given in the next section for a special case. 

To study the first two in general Monte Carlo studies were used. These 

results are described in Section 5.8. More complete answers to these 

questions may be found after further research. At this point the 

excellent Ebnte Carlo results and the fact that The Iterative Procedure 

is in fact the method of scoring, which has been accepted for many 

years, encourage the use of The Iterative Procedure even though these 

questions remain unanswered. 

5.5. A Case PThere the Iterative Procedure Gives Exact Solutions in I 

One Iteration 

In the event that the conditions described in Section 5.3 for the 

existence of explicit solutions of the likelihood equations are satis- 

fied, The Iterative Procedure works very well indeed. In fact it will 

yield the exact solutions to the likelihood equations in one iteration 

starting from any initial guess. Recall that these conditions are the 

following. 

CONDITION 5.5.I. There exists an nXn orthogonal matrix P such that 

P'CP = A. i=0,l,...,p.., where 

$ 
f 

I 
i 
t 

! 
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A. = 

Li, . I 

0 

0 

0 

0 

0 

0 

^ I. 

•with the orders of the identities n ,n ,...,n     respectively. The IL '• 

do not depend on i. 

CONDITION 5-5.2. X = QF -where Q consists of (without loss of generality) 

the first p„ columns of P and F is a nonsingular t>^Xp^ matrix. 1  u • ~ —^— *w w •     Ü  o  —~ 

CONDITION 5.5.3.  P2= p^+l. 

When these conditions are true a solution to the likelihood equations 

,-1 is c? = F    o/y and a the solution of 

_S   o\. jikJ = Vk,    k=l,2,...,p2 , 

where the V, are defined from the matrix V = p'(y-X?) (y-Xc?) 'P as follows 

n. 
l . 

1  nl j=l " 
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-  Vn2 
V0 = -i-   S    v.. , 
2  n2 j=n1+l  " 

1   n 
V =* —  2     v.. 

The following Proposition is true. 

PROPOSITION 5.5.1- If Conditions 5.5.1-5.5-3 are true, and oy v is any- 

initial guess for a such that S(C>0N ) is nonsingular, then Sie Iterative 

Procedure yields 

S(i) =S."1(£(o)) £[S(o)'i(S(o))] 

p
i 

-where ov-,v is the solution to E a. [i, . = V., k=ls2s ...,pQ. 

PROOF. 

Let 

f i 
• • 

O/QN,  = (a^    , o^    ,...,cr  ')'.    Then the mtrix B(a>  ->) is given i 

[B(CT/^X)]. . = tr E~1(<r,rtx)G.E~1(cx/r.x)G. L~^~(0)/Jij ~     ~{0) '~Q~-    v~(0) ~«] I 
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* "k "kl \,1 
k=1 Pl  roi     2 

The vector £(£/0\ s£)  is given by (Note that a is Independent of 07nw) 

fefe(o) 40 h = E 
k=l 

2   \ hd \ 
Pn 

,  •" (0)   x2 

je=o *   kX 

Thus the equation to he solved for C/,\  is 

2 [£   k ki S3—] CT.= E      M k 

P. 3    v--. P 
d=° k=1( I1 o<°>u )2 

k=1
- x (a)       2 

Since E(oy0\) is nonsingular, B(£/n\) is positive definite and, there- 

fore there is exactly one solution to the above equation. But xy,  the 

solution of E a. p,, - = V. , k=l,2,...,pOJ is a solution as is verified 
i=0 ^  ^ 

by the following substitution in the left hand side of each equation. 



9h 

pl 
PlrP2 \^^i     i       - p2 ^ ^( = ^ ffj> 

^ k=1  Pl (0)   ,2   '  k=1 (
VJ-    (0)   .2 

m    I2      \^±\ 
P-, k=l  ^1 , . 

c s 4°), ) 
j2=o *  V* 

•which is the right hand side of the equation. Thus the unique solution 

°*/,\ is just o the solution to ~(.1J       ~ 

Pl 

.S CTo ^kj = \ for k=1>25--->P2- 111 

It is reassuring to know that if there exist exact solutions, The 

Iterative Procedure will pick them out immediately even if the user of 

the method is„unaware that they exist. The Hartley-Rao-Vaughn algorithm 

does not have this property. However it does have the property that it 

contains built in traps to guarantee that it never produces negative 

estimates. Of course the maximum likelihood estimates are never nega- 

tive. The Iterative Procedure as presently constructed does not inher- 

ently avoid negative estimates. However, it can be adjusted so that 

the final answers are nonnegative. This is discussed in the next 

section. 

I 
i 
1 
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5.6. Avoiding Negative Estimates 

The general problem of negative estimates of variance components 

has "been discussed by many authors.  (See Searle [1971:22] for a 

summary.) Of course, maximum likelihood estimates cannot be negative; 

negative estimates do not belong in the parameter space and hence are 

ineligible for maximum likelihood estimation. 

The Iterative Procedure defined above does not by its nature 

converge to nonnegative estimates. In fact it may very well converge 

to negative estimates. However, a simple modification allows one to 

avoid negative estimates as final answers. The general solution when 

any estimates are computed as negative is to fix them at zero and solve 

the remaining likelihood equations subject to these constraints; that 

is, if o\ would have been negative for i e S, where S is some set of 

indices, the new equations become 

a» "' 

3\ ^=  0 , 0=0,.,...^ 3  | S, 

o\ = 0   i e S. 
l 

This is the method used by Hartley, Rao, and Vaughn in ±heir algorithm. 

They are able to build this device right into the iterations. This 

cannot be done in The Iterative Procedure,  (it was tried but did not 
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work out well; it Induced nonconvergence.) However, it is easy to see 

how to get around the problem. The new likelihood equations are just 

the equations for the following new model. 

Pl 
y = Xv + 2 U. b. , 

~~  j=o ~'3 ~J 

J4S 

where U_ = I and b. = e and the other U. and b. are as defined in 

Section 1.3. But this model has exactly the same form as the old 

model for which The Iterative Procedure gave negative estimates; it is 

just smaller. Thus when The Iterative Procedure yields negative 

estimates,, all that must be done is to reformulate the reduced problem 

above and re submit this to The Iterative Procedure. One continues in 

this manner until no negative estimates are obtained. This procedure 

avoids entirely any negative estimates being reported as maximum like- 

lihood estimates. The computer program presented in Appendix C does 

not automatically perform the above operations, but with a simple but 

major overhauling of the program, this could be accomplished. Then The 

Iterative Procedure would be comparable to the Hartley-Rao-Vaughn 

algorithm. 

One serious problem of negative estimates in The Iterative 

, Procedure was alluded to in Section 5.1. The problem is, that if at 

any stage, a negative estimate for any of the cr.'s occurs, then the 

matrix S(a) may be singular or nearly singular. When this happens The 

Iterative Procedure will become very unstable and may even blow up. In 

1 
I 
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fact, this actually occurred in the Monte Carlo studies of The Iterative 

Procedure and -was the only cause of nonconvergence of The Iterative 

Procedure (See Section 5.8.). Unfortunately no technique exists at the 

moment for eliminating these difficulties. The subject is undergoing 

further study. 

Even with these difficulties The Iterative Procedure still performs 

very well in comparison with its competition, the Hartley-Rao-Vaughn- 

algorithm. Some comparisons are given in the next section. 

5.7. Comparison of The Iterative Procedure with the Hartley-Rao-Vaughn 

Algorithm 

Hartley and Vaughn (1972:135-1^) give four examples of maximum 

likelihood estimation involving real data. These examples will not be 

reproduced here; the performance of the Hartley-Rao-Vaughn (to be 

abbreviated H-R-V for the rest of this chapter) algorithm as stated in 

Hartley and Vaughn and The Iterative Procedure (to be abbreviated TIP) 

on these problems. These comparisons will point out the computational 

efficiency of The Iterative Procedure. The H-R-V algorithm computes 
a. 

variance ratios (that is, it computes cr and y.  = — for i=l,2,...,p ) 
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instead of variances. The results of TIP have been converted to this 

form for comparison. The problems were fed into the computer program 

described in Appendix C using the same initial guesses Hartley and 

Vaughn used (converted of course to variances). Efficiency will be 

1 
measured by comparing the number of inversions of a matrix of the 

form E(o-)which are required (each method must perform such calculations), 

Both methods require many other calculations, with the H-R-V requiring 

many more, but these inversions are the major computational effort. 

The Iterative Procedure requires either one or two inversions per 

iteration (See Section 5.8 and Appendix C.)while the H-R-V algorithm 

. (p1+l)(p1+2) 
requires — - — + 1 inversions for each iteration to make its 

approximation (Hartley and Vaughn [1972:133]).  It will be seen that 

each procedure requires approximately the same number of iterations to 

converge, with consequent great savings for The Iterative Procedure in 

computational effort. The results of the four sample problems given by 

Hartley and Vaughn were as follows. 

1) The Twofold Nested Model 

yijlT * +  ai + V- eijk' i=1'2-'-1' 

k=l,2,...,K, 

1. Of course the inversion may be only done implicitly as in solving 
a number of linear equations. 
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where u- is fixed and the a's, b's and e's are the random effects. Such 

a model is described in Section 6.3 with the a's as fixed effects. For 

this model, there exist exact solutions and so as in Section 5.5, She- 

Iterative Procedure achieves them in one iteration,  (in the sample 

problem of Hartley and Vaughn, 1=^, J=3> K=2, for n=2U.) However, the 

computer requires one more iteration to recognize convergence, so TIP 

requires two iterations to achieve the final result, which agrees with 

the exact solution. A total of two inversions of the matrix E(o) are 

required. The H-R-V algorithm required three complete cycles and hence 

I" (2+1} (2+2)   ~! 
required a total of 3* -* TT L + 1 = 21 inversions to obtain answers 

which agreed with the exact answers to only two decimal places for the 

variance ratios. Of course, had a more stringent convergence criterion 

been applied,. H-R-V would have attained better agreement with the .exact 

answers at a cost of more iterations. 

The final results were 

% •Yi Y2 

Exact 0.0665*42 39.106 224-.20I4- 

H-R-V 0.0665^9 39.095 2U.I999 

TIP 0.0665^2 39.106 2k.20h 

2) Twofold Nested Model When One Variance Ratio is Zero 

This model is the same as above but for these data the variance 

ratio for the a effect is calculated as negative and hence set to zero. 

I - 
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(in the sample problem of Hartley and Vaughn, 1=5, J=2, K=2, for n=20.) 

The Iterative Procedure requires two iterations to recognize the 

negative variance and two more to compute the final answer in the 

reduced model as described in Section 5*6. Thus a total of four 

inversions were required. The H-R-V algorithm required four complete 

cycles and hence ^.7=28 inversions to obtain the final answers. Both 

answers agreed with the exact answers. 

The final results were 

CTo 7i ^2 

Exact 0.0387 0.0 0.35695 

H-R-V 0.0387 0.0 O.35696 

TIP 0.0387 0.0 0.35695 

3) Unbalanced One-Way Classification 

yij= ^ + ai + e±y      i=lj2,...,I, 

This model is discussed in Section 6.k.    The a*s and e's are random 

effects and u is a fixed effect. No exact solutions exist here. (In 

the sample problem of Hartley and Vaughn, 1=5 and the J.'s are 5>3,2,331> 

for n=l4.) The Iterative Procedure requires five iterations involving 

a total of 6 inversions to converge. The H-R-V algorithm required five 

iterations with a consequent 5"»  p  + 1J = 20 inversions. The 

answers agreed to three decimal places.  (Hartley and Vaughn only gave 



101 

the answers to three decimal places in this problem.) 

The final results were 

H-R-V 

TIP 

0 

0.773 

0.773 

Yl 

0.:71 

0.671 

k)    Two-Way Classification with Interaction 

yijk ^  + ai + *j + cij + eijk ' 
•i=l P     T 

?  3 * • . i^-s 

where p, is a fixed effect and the a's, b's, c's and e's are random 

effects. This model is discussed in Sections 6.1 and 6.2. Kb closed 

form solutions exist for this model. . (in the sample problem of Hartley 

and Vaughn 1=2, J=3, K=3> for n=l8.) The Iterative Procedure required 

12 iterations involving a total of 13 inversions to reach a solution. 

The H-R-V algorithm required 15 iterations with a consequent 

15.112—JA2—L +  ij = 165 inversions. The answers for the two procedures 

only agree to two or three digits but as far as is possible to know The 

Iterative Procedure gives more accurate results. (For example o_ can be 

solved for exactly in this model; see Section 6.2.) Again the H-R-V 

algorithm could be made to converge more closely, but at the cost of 

mori iterations. 
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The final results were 

CTo Yl y2 Y3 

H-R-V 69.75 9.5^ 12.82 q.326 

TIP 69.78 9-52 12.79 0.327 

These four examples point out that The Iterative Procedure seems 

to be computationally much more efficient than the H-R-V algorithm. To 

"be sure, it may "be unfair to compare in cases l) and 2) where The Itera- 

tive Procedure gives exact solutions and the H-R-V just iterates. Still, 

it is an advantage to give exact solutions when they exist. In the cases 

where exact solutions do not exist the comparison is just as dramatic. 

One can hardly generalize from four examples, but it is true that a 

general pattern develops that if one method requires many iterations, 

so will the other; however, the H-R-V algorithm pays a much higher     ,• 

price per iteration. This pattern continues in the Monte Carlo studies 

in the next section. The H-R-V method has an advantage that it has 

been proven to converge. Such a result has not been proved for The 

Iterative Procedure but Monte Carlo results have been most encouraging. 

These are presented in the next section. 

1 
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5.8. Monte Carlo Results 

As noted in previous sections, it has not been proved here that 

The Iterative Procedure is guaranteed to converge. Thus an attempt 

has been made to demonstrate its effectiveness by Monte Carlo methods. 

The results have been most encouraging. The following procedure was 

used. Only one model, the two-way crossed balanced design described 

in Sections 6.1 and 6.2, was used. There were two reasons for this. 

First, the iterative equations can be easily programmed and do not 

require massive amounts of computer time to reach a solution as might 

be required with more complicated designs. Second, there is no closed 

form solution to these equations so the iterations are nontrivial. 

Problems which might possibly occur can occur under this setup as 

easily as under any other. This layout seemed to offer the best 

possibility for finding whatever problems The Iterative Process might 

have in the most economical way. 

The actual Monte Carlo process was carried out as follows. 

Sufficient statistics exist for this model (see Section 6.1) and can 

be generated with pseudorandom ehi-square generators once I, J, K and 

a set of "true" parameters o~,  o\., 0pJ o~„ have been- chosen. - These 

statistics were then fed into The Iterative Process. If convergence 

occurred, any negative estimates were set to. zero and the equations 

resolved with those estimates restricted. When final solutions were 

obtained they were recorded and fed into the Hartley-Rao-Vaughn 

algorithm to confirm that they were indeed solutions of the likelihood 

equations. If 300 iterations occurred without convergence the process 

\ 
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stopped and the sufficient statistics were recorded and later fed into 

another program to analyze in more detail why convergence failed to 

occur. Over 15,000 separate Monte Carlo repetitions were run for 

various I, J, K, ov, a,, a„, a- combinations.  (See below for more 

detail on the types of combinations used.) 

'The results of the Monte Carlo analysis support the contention 

that The Iterative Procedure is indeed an effective, efficient method 

for calculating maximum likelihood estimates in the mixed model of the 

analysis of variance. Two problems.were discovered during the Monte 

Carlo runs, one of which was easily rectified and the other of which 

was more serious. These problems will be discussed next followed by 

the large quantity of favorable results of the Monte Carlo trials. 

When.the Monte Carlo runs were started it was found that sometimes 

it seemed like The Iterative Process was not converging when in fact it 

was.  (This occurred less than 0.8$ of the time.) The problem was that' 

the convergence was so slow that it might have taken up to 10,000 

iterations to converge. For instance the sequence 11000, 9000, 10999, 

9001, IO998, 9002,... is converging to 10000 but will require 2000 

iterations to get there at the rate it is going. The Monte Carlo results 

seemed to indicate that whenever the slow convergence occurred, it was 

in the oscillating manner indicated above. A natural correction for 

this problem seemed to be to average consecutive iterations. This 

proved to be an excellent idea as it eliminated entirely the problem of 

reporting lack of convergence due to slow convergence and improved other 

slow convergence rates by a factor of from 10 to 50 or more. However, 

1 
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care must "be taken in applying this technique since if applied indis- 

criminantly, it can lead to a false convergence •where a sequence of 

iterates regenerate themselves by averaging,  (This actually occurred 

in early studies.) The false convergence can be easily eliminated by 

simple programming steps -which are described in Appendix C. All 

further results reported here are results after the above modification 

was made to The Iterative Process. 

A more serious problem •which occurred was mentioned briefly in 

Section 5.6.    When negative estimates were generated in one iteration 

in such a configuration that E(o~) became singular or nearly singular, 

the process became very unstable often oscillating between several 

points of singularity. Once such unstable points were reached con- 

vergence almost never occurred. Ho totally satisfactory solution to 

this problem was found. However, some facts became evident. First, 

the problem can only occur when some of the estimates are negative; 

for positive estimates convergence occurred 100$ of the time. Second, 

the problem tended to occur only in situations when I, J and K were 

small and when 0_, a., o*p, and o\, were chosen to increase the probability 

of negative estimates occurring.  (For instance if the_interaction 

variance o\ is large with respect to the row and column effect variances 

Op and"'or» or if the error variance <y is large with respect to a, then 

the probability of this problem occurring seemed to increase.) It is 

somewhat reassuring to note that such configurations occur infrequently 

in real data. 
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Although, the above problem is serious, it may possibly be overcome 

by restarting from a new trial solution. If this fails it is possible 

to act as if the final solution had been reached at -whatever point the 

blow up or oscillation occurred. Any estimates -which are negative at 

this point are set to zero and the equations resolved. This second 

method is not totally satisfactory but will work in most cases. 

The results of the Monte Carlo study not only pointed out two 

problems—one of which was completely rectifiable the other only 

partially so—but also produced many encouraging results. The first 

positive result was the fact that in over 15000 runs with various I, J, 

K, cr-o'a.., Op, o„ combinations, (see below for more detail) The 

Iterative Procedure converged 98.7$ of the time when the failures due 

to slow convergence are included and 99+$ °f "the time when the averag- 

ing correction is made. In every case where convergence occurred, the 

Hartley-Rao-Vaughn algorithm converged in one iteration starting with 

the final results of TIP as an initial guess. This verified that in 

every case where TIP converged, it converged to a solution of the like- 

lihood equations. 

Another positive result of the Monte Carlo study was that The 

Iterative Procedure seldom required a large number of iterations to 

reach convergence. The number of iterations seldom exceeded 20 although 

in a few-cases it- was over 200. The averaging modification mentioned 

above further reduced the number of iterations required. This contrasts 

with other procedures which may require large number of iterations. For 

instance, the Hartley-Rao-Vaughn algorithm may require a thousand or more 

> 
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Runge-Kutta iterations for each approximate solution and there are as 

many of these approximate solutions as there are overall iterations, 

(it was for this reason that in the Monte Carlo study, the H-R-V 

algorithm was used only as a check rather than being allowed to 

iterate.to a solution.) 

It was also noted that if the "true" parameters were chosen so 

that negative estimates were unlikely to develop (see above), the 

percentage of runs where convergence occurred went up and the number 

of iterations went down. As long as no negative estimates occurred, 

The Iterative Procedure converged every time. It seems that such a 

configuration of parameters is likely to occur in real data. 

Another very important aspect of The Iterative Procedure which 

was highlighted by the Monte Carlo study is that as the size of the 

design increased, so did the computational efficiency of TIP. The 

percentage of runs where convergence occurred increased (reaching lOQJo 

for large designs). The average number of iterations per run decreased 

(getting very close to the absolute minimum of 2 for large designs and 

attaining this minimum for very large designs). 

The positive results mentioned above are illustrated by the data 

in the following two tables. In each table a box represents 100 Monte 

Carlo runs at the particular I, J, K and o\., o"1, op, cr_ combination. 

The number in the upper left of each box is the percentage of runs on 

which convergence occurred and the number in the lower right is the 

average number of iterations per run for the runs represented by that 

box. Table 5«8.1 illustrates what occurs as n becomes large. Two 

{ 
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Table 5.8.1- 

Percentage of Runs on -which Convergence Occurred and Average 

Number of Iterations Per Run on Sets of 100 Monte Carlo 

Runs -with Various I, J9Kfa0 ,O1}GS ,a3 Coiribinations 

2 
1 
3 

30 

2 
10 
3 
3 

20 
1 
3 

30 

Average 

(n=60) 
99-0 100.0 98.0 99.0 99.0 

5,k,3 

^.77 3.98 7.56 h.m 5.28 

(n=5to) 
100.0 100.0 100.0 100.0 100.0 

15,12,3 

2.53 2.^7 2.85 2.59 2.71 

99.5 100.0 99.0 99.5 99.5 

Average 

3.65 3.23 5.18 3.71 3.9^ 



Table 5.8.2 

Percentage of Runs en which Convergence Occurred and Average 

Number of Iterations Per Run on Sets of 100 Monte Carlo 

Runs with Various I} J,?.,^^^ ,o~2 ,CT3 Combinations 
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m 

1 
1 
3 
2 

10 
3 

30 
2 

10 
1 

30 
25 

10 
10 
10 
10 

10 
7 

Uo 
20 

Average 

(n=27) 

3,3,3 

(n=2lt) 

3,^,2 

(n=36) 

3,^,3 

(n=32) 

(n=U0) 

^,5,2 

Average 

I 

100.0 99.0 

1 

99.0 99.0 97.0 98.8 

8.55 8.20 e.ke ll.lh 8.57 8.70 

97.0 98.O 100.0 98.0 100.0 98.6 

9.01 10.59 6.15 11.3h 7.15 8.83 
97.0 98.0 100.0 97.0 100.0 98. If 

7.10 7.71 5.J+5 10.9^ 7.73 7.95 
99.0 98.O 99-0 96.O 100.0 98 .h 

6.96 5.59 5.55 9.92 5.93 1         6.77 
99.0 100.0 100.0 96.0 100.0 H?9.0 

1 

5.35 5.02 ^.53 "   ' 6.9k 4.91 L       5.3^ 
100.0 100.0 100.0 98.0 100.0        j 99.6 

1 • ' • 1 

k.lk 

1 
1 

h.h6  !        J+.26 5.8U 5.06 1         1*.87 
98.7 98.8        ; 99.7 

j 
97.3 99.5 98.8 . 

6.9^ 6.92 

i 

|           5.^0 %h6 6.55 
1 

7.0J+ 
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different I, J, K combinations were studied—one with medium n=6o and 

one with large n=5*K). For large n the percentage of runs converging 

was 100$ and the average number of iterations was only 2.6l.  (For the 

same o , CT1, CT_, CT combinations with n=6000, the average number of 

iterations was 2.0,the absolute minimum.) It is easily seen that 

some a , a  , cr , ov, combinations are more difficult than others (in 

terms of number of iterations and to a smaller extent in percentage of 

runs converging) but that no combination is too difficult. This is 

probably accounted for by the fact that n is not small in either case. 

However, note that for all o combinations, there is a marked improve- 

ment upon going from the medium n to the large n case. 

Table 5.8.2 illustrates results for several cases of small n (^ ko). 

It becomes apparent that there are no startling.differences among the 

various I, J, K combinations although there seems to be a trend toward 

doing better if instead of n=I<IK, only IJ is considered.  (This leads 

to a suspicion that it may not be n but the m. that are really important.) 

Increasing K did not seem to help. The trend is most easily seen in 

the decrease in the average number of iterations. Although there were 

not many differences in I, J, K combinations, there were noticeable 

differences among the o"0, a,, op, o\, combinations. Those for which cr, 

is not small relative to ov and cr-, (the first, second, and fourth) seem 

to do worse than the others both in terms of percentage of runs converg- 

ing and average number of iterations. This agrees with the ideas advanced 

above. When the estimates were to be positive the convergence was swift 

and sure. One other pleasant aspect of Table 5*8.2 is that even for 
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in 

these small designs the overall average percentage of runs converging 

was 98.8$. 

As a summary of the Monte Carlo results the following can be said. 

It has not yet been proved in a theorem that any of the desirable 

properties mentioned in Section 5.k  are true for The Iterative Procedure. 

However, the following have been demonstrated. 

1) The method usually converges (99+i°  of the time) and when it 

does it converges to a solution of the likelihood equations. 

2) As the size of the design gets larger the method becomes 

more computationally efficient and even for small designs it 

is quite efficient. 

3) If the parameters being estimated are configured well in the 

sense mentioned above, as they often are in real data, then 

the method is. more effective. 

k)    The method does have a problem with negative estimates which 

can be partially overcome by the methods mentioned above. 

In short, although it is not perfect, The Iterative Procedure seems to 

be a highly efficient, effective algorithm for solving the problems it 

was intended to solve. 



CHAPTER 6 

EXAMPLES 

6.1. An Example of Application of Asymptotic Theory—The Two-Way 

Crossed Balanced"Random Effects Model 

The model used here is given first in the form conventionally used 

in the analysis.of variance. 

y. .. = u + a. + b . •+ c. . + e. ., , 

•L=ij^> • • • ji> 

Here a- is the overall mean effect and the a's, b's, c's and e's are 

random variables. Now list the y's in lexicographic order (see example 

below) as a vector to get the following model. 

Z ' * + 2i*i + SsSe + ^3 + e, 

where 

jjr is nxl, n = IJK, 

. X is an nxl vector of l's, 

or is a 1X1 unknown constant, 

U- is an nXIJ standard design matrix for the AXB interactions, 

Up is an nxl standard design matrix for the A effects, 

U_ is an nXJ standard design matrix for the B effects, 
~3 °^ 

112 
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b. is an IJXl random vector containing the Ax3 random interactions, 

bn is an 1X1 random vector containing the A random effects, 

b„ is a JX1 random vector containing the B._random-effects, 

e is an nXl random vector containing the errors. 

The parameters and constants in this model and their correspondence to 

the usual analysis of variance set up are given below.  (ATTOVA stands 

for analysis of variance.) 

Corresponding 
Parameter    ANOVA Parameter 

a p. 

ao 
2 

a 
e 

al 
2 

aAB 

°2 
2 

CTA 

°3 
2 

0B 

Corre sponding 
istant ATTOVA Constant 

n IJK 

% X 

Pl 

P 5 

m_ J 



HU 

The actual form, of the likelihood equations will he given later 

in this section.    At this point £, X U , U^, U   for the case 1=2, J=3, 

K=2 are given as illustrations. 

Xr 

y 111 

'112 

'121 

'122 

'131 

'132 

y, 211 

y 212 

'221 

y 

'231 

y 232 

' 1 " 
•f 

1 

1 

1 

1 

1 

x= 1 

1 

1 

1 

1 

1 

~L 

10 0 0 0 0 

10 0 0 0 0 

0 10 0 0 0 

0 10 0 0 0 

0 0 10 0 0 

0 0 10 0 0 

0 0 0 10 0 

0 0 0 10 0 

0 00010 

0 0 0 0 10 

0 0 0 0 0 1 

0 0 0 0 0 1 

1 

"i o" "l 0 0• 

1 0 10 0 

1 0 0 10 

1 0 0 10 

1 0 0 0 1 

1 0 0 0 1 

0 1 
~3 

100 

0 1 10 0 

0 1 0 10 

0 1 0 10 

0 1 0 0 1 

0 1 0 0 1 

—               ** . 
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l 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

2o= 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 10 0 

0 0 0 0 0 0 0 10 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 "0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

*• 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 G1= 

0 0 0 

0 0 0 

0 0 0 

10 0 

0 10 

0 0 1 

110000 0 00000 

110000 000000 

001100000000 

001100000000 

00001100 0 0 00 

0000110 000 00 

0000001100 0 0 

0 00000110000 

000000001100 

0 0 0 0 00001100 

000000000011 

000000000011 J 
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%r 

1111 110 0 0 

1111 110 0 0 

1111 110 0 0 

1111 110 0 0 

1111 110 0 0 

1111 110 0 0 

0 0 0 0 0 0 111 

0 0 0 0 0 0 111 

0 0 0 0 0 0 111 

0 0 0 0 0 0 111 

0 0 0 0 0 01 1 1 

0 0 0 0 0 0 111 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
~3 

111 

111 

111 

111 

111 

111 

110 0 

110 0 

0 0 11 

0 0 11 

0 0 0 0 

0 0 0 0 

110 0 

110 0 

0 0 11 

0 0 11 

0 0 0 0 

0 0 0 0 

0 0 11 

0 0 11 

0 0 0 0 

0 0 0 0 

110 0 

110 0 

0 0 11 

0 0 11 

0 0 0 0 

0 0 0 0 

110 0 

110 0 

0 0 0 0 

0 0 0 0 

110 0 

110 0 

0 0 11 

0 0 11 

0 0 0 0 

0 0 0 0 

110 0 

110 0 

0 0 1 1 

0 0 11 

The asymptotic theory for this model will now be set up. Let I 

and J both approach infinity in such a way that — -* p, 0 < p < <*>; K is 

fixed. Then the matrix of the p.. defined in Section U.2 is 

0 1 2 3 
0 1 K +CO +G> 

1 
1 
K 1 +CO +03 

2 0 0 1 P 

3 0 0 
1 

1 
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Therefore 
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It can be seen by inspection of the above matrix that c=2 and the sets 

S , s=0,l,2 are S = {0}, S {l}, S = {2,3}, -where c and the S are 
S (J J_ c. S 

defined in Section if. 2.    Then it can be seen that 

rank(lL :U_:U_)  = IJ , 
l~^l_    «•wfcf    "-Q 

rankCUg-.U )  = I + J-l , 

rank(TJp) = I , 

rank(U_) = J . 

v_= n - rank(Un:UL:UL) 
u ~± ~£ ~3 

= IJK - IJ 

= IJ(K-l), 

vx = rank^U-^)  - rank^:^) 

= IJ - (I + J - 1) 

= IJ - I - J + 1 

= (I-D(J-I), 

v_ = rank(U 'U_)  - rank(U_) 

•= I + J - 1 - J 

= 1-1, 

v    = rankCUg-.Uj  - rankCUg) 

= I + J-1-I 

= J - 1. 
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Fo: r a,  v +1 = v. .  It turns out that either I or J or any linear 

combination of the two will work. Arbitrarily, choose v. = I. Notice 

•    \)    • v • 

that — approaches a reasonable limit in all case's here. 

It can he shown with some work that Assumption 4.2.^ is true here, 

in fact tr D^IJ^^1 = I = (i) I and tr D'^U^D-1 = f = (f) J. 

Thus in each case R-. may be taken to be zero with E0 equal to either 

— or —both of which converge to zero. This is because this experimental 

design is orthogonal in the sense of experimental design. 

Now the matrices H and P defined in Section A.l are defined for ~s   ~ 

the example given earlier in this section. One of the many possible 

representations of ? is 

/12 0 0 0 0 0 2 -1 /2 2 0 /2 

-/12 0 0 0 0 0 2 -1 /2 2 0 /2 

0 /12 0 0 0 0 -1 2 /2 -1 /3 /2 

0 -/12 0 0 0 0 -1 2 /2 -1 /3 /2 

0 0 /12 0 0 0 -1 -1 /2 -1 -/3 /2 
1 

_ 1 0 0 -/12 0 0 0 -1 -1 /2 -1 -/3 /2 J 

/2k o 0 0 /12 0 0 -2 1 -/2 2 0 /2 

0 0 0 - /12 0 0 -2 . 1 -/2 2 0 /2 . 

0 0 0 0 /12 0 1 -2 -/2 -1 /3 /2 

0 0 0 0 -/12 0 1 —2 -/2 -1 /3 V2 

0 0 0 0 0 /12 1 1 -/2 -1 -/3 /2 

0 0 0 0 0 -/12 1 1 -/2 -1 -/3 /"2 . 

V, / s^ ^- 1 
V y 
So S2 
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The columns making un H„, H., and H0 are noted -under the matrix P. It 

It is easily seen that 

and 

rankC^) 

rank^) 

rank(Hg) 

= IJ(K-l) = 2»3*1 = 6, 

= (l-l)(j-l) = 1.2 = 2, 

I+J-l = 2+3-1 = k. 

It is also easy to verify that the following matrices are zero matrices, 

HUH; = 0, U'H, = 0 
'1    <-«-/^   <s/-yvj     /^ 

The above illustrates the concepts in Section k.2  for this case. 

How proceed to actually -write down the likelihood equations for this 

model. It turns out that all the G. matrices can he diagonalized by a 

single orthogonal matrix and that X is a characteristic vector of each 

G.. As noted in Section 5«35 this greatly simplifies the likelihood 

equations.  in fact, G,= (l-r X I, X I„). G,=  (l_ X IT X SL), rJJ       ~1   <MJ   ~H  ~X   ^vl   '"-0 .  -Hi 

G = (ITXET.XL). and G_= (ET X IT x E..), where X denotes the ~d      ~1 <~o      ~iv     ~3  ~I  '-o  <M£ 

Kroenecker or direct product of two matrices and IT, IT and T are 
•I' ^J ^K 

identity matrices and ET, ET and E„ are square matrices whose elements 

are all 1 of sizes I, J and K respectively. The matrix that diagonalizes 
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them all simultaneously is P=(PT X P_ x P..) -where PT,  PT and PT, are any 
~ ~I  «MT  <~K       ~I 'MJ    ~K 

orthogonal matrices with first column proportional to a vector of ones 

of size I, J and K respectively. 

Using the above diagonalization and the fact that X is a character- 

istic vector of each G. it can he shown that the estimate of or can be 

made independent of the estimate of o\ The likelihood equations are 

written using the following terminology from the analysis of variance. 

1      I      J      K J      K 

IJKi'lÄM^ •7l»"JIAwL7ldk 

J      K. X 

T TTC •     T TTC 

SST = 2      ES (y.  , - y      f SS    =    E      E      2 (y      - y      )2 

1    i=i 3=1 k=l   1JK     "• e     1=1 3=1 k=l   1JK     10* 

I 2 J • p 
SS    = JX    E    (y   . - y      r SS    = IK    E    (y      - y     T 

xi . __.. J. • • • • • JJ -1—1 • ü • • • • 

I       J p 
SS      = K    E      E  (y      - y      - y      + y      ) 

i=l 1=1      "*' *J" 0    •    •' 

The likelihood equations are 

 IJK         _ IJK  
(a0 +Kax + JKa2 +lKa3) 

a " (a0 +KCTX +JKcr3 +IKa3 ) y., 
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+        „I-1_,      + J-1 

a0+KCT1HvJKCT3+IKa3       a0-r'Ka1-rJKos.     UQ+KOX+IKOQ CJO+K^ 

(I-D(J-I)   ,   IJ(K-l) 

SSA + 
SSB + .... SSAB SSe 

 K  +      K(J-1) +      K(I-1) ,   K(I-1)(J-1) 
CTo+Kai+JXCTg+IKas      ao+Kc^+JKJOg      ag+Kai+JKaa T        CT0

+KCT
I 

K(SSA) K(SSB) K(SSAB) 

(a0+Ka1+JKcr2.)a + Tä^KÖ^mä^ + (a0+Ko-3 )*  ' 

JK JK(l-l) 
JK(SSA) 

ao+Ecr!+^02+1X0-3      o"0 +Kaz + JKa2  " (ao+Ka^+JKog.) TT       5 

IK(SSg) 

a0 +KCT!+JEcr2+IK03  T ö^HCÖ^+DCÖ^  ~ Xö^+KÖT+SäaT3" 
IK IK(J-I) 

Ho closed form solution exists. The iterative solution is given 

in Section 6.2. The matrix J defined "by 

1' r / ax(2>£) I  M 
(J). .= lim ——- $  ( — -      J  is calculated in. the following 

1 J 1 J" !£=9o 

manner. 
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It is true that 

x7iA = IJK 

•Therefore 

-O ~      o-oo+Koi+JKo-Qg+IKaoa 

2 i ^0 Ä      I      aoo+Kaoi+JKos+IKoTog 

<?02 + PO-Q3 

How C. -whose (i,j)" element is given by -i- lim  tr E- G.2~ G. ~1       ' ö     ^ 2    n.n.   -O 'Vi'O ~j 

i,J=0,l,2,3j must be calculated. The following table will suffice. 

•••--••••--• Table 6.1.1 

Definition and Limits for the Elements of CL 

i 3 —i- tr E^G.E^G.        Limit of —~ tr E^G.E^G. d n.n.   MD ~b-0 /wj n.n.   ~0 ~i~0 ~g 

1        f 1  1 1 
U(K-l)  L(a00+KCT01 + JKo02.+Zto03)

2 0=7      (K-DCobo+Koi)*'" 

(1-1) , (J-l) 
(<T0o

+Ecroi+JEo'0i3)a   '   (c^+KÖbT+^ööIT3 

+ .(I-1)(J-1)M + 
IJ(K-1)  1 
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i    3 
1     tr lAxV n.n.        ~0 ~i~0 ~j Limit oj !      tr E^G.EA- 

n.n.        ~-Q ~i~G ~1 
i 0 

0    1 r- K K 

[IJ(K-1)(I-1)(J-1)32 L(CT00+Ka01+JKa02+r^CT03)
2       (K-l)2(a00+Ka01)

: 

, K(I-1) [ K(J-1) 

(aoo+Koj+JKaog)8 (cr00+Ka01+IKa-03)2 

+K(I-1)(J-1)  1 

(o-00+Ka01)
3 

0    2 JK 

[IJ(K-l)(l-l)]2 "(aoo+Kaoi+JXaog+IKaos}2 

JK(l-l) 

(apo+Ka01+JKa03) 2 - 

0    3 •i rf- IK 

[IJ(K-1)(J-1)]2 L  ((Joo+Koi+JKaog+IEaog) >s 

IK(J-l) 

(a00H-Ka01+IKa03)
: ] 

1    1 
K2 

(I-D(J-I) l-(CToo+KCToi+JKo.o2+IKo3)3 
K 

(a00+Ka01)
B 

K2(I-D K2(J-1) 

(a0o+Ka0l+JKao2 )2      {a00+K<j01+IKo03y 
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i    j -~r tr ^G.^G.        Limit of -~- tr S^G.E^G. 
i J J i 0 d 

+K
2(I-1)(J-1)  1 

(CT00+KCT01)
2 

1    2  r[- JK2 

[(I-1)2(J-1) ]2 L(cx00+K:a01+JICc;02+IKa03)
5 

(a00+Kcr01+JKCT02)
3 

1   3        1 r[ IK2 

[(I-1)(J-1)2]2 L(a00+Ka01+JKa03+IKa03): 

(CT00+KCT01+IKO-03)
2 

2    2 

2 3    —i rr 1^ ] 
[(l-l)(J-l)J2 L(a00+Ka01+JKcr02+IKa03)

2-J 

0 

J
2

*:
2 l 

(I*1} L(o-00+Ka01+JKob2+IKo-03)2 °°* 

+  ^(I-I? ] 

(CT00+KCT01+J1KO-02)
2 

3   3 i    r IT  1 
(J_1)   L/ ,,,        •j.-nr«.     ^-nr^      ^2 °03 
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i    0 
]      tr E^G.E^G. Limit of ~i— tr Z~1G.£~1G. n.n.        ^o ~i~0 ~j 

10 
n.n.        ^o 'vi~0 ~g 

(a00+Ka01+IKCT03)2 J 

Thus it follows that 

£i= 

2 L o^o + (K-IXOOO+KO-Q!)^  2 L 
K 

l[ K 

(K-l)2(a004-Ka01)
2 

0 

(K-l)2(o00+Ka01)
: ] 0    0 

]       l[ K2 

(o-00+Ka0i)
: 

0 

0 

0    0 

1 . 1 
2 ^T 

0 

0 
2 0^3 J 

Hence 
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-1 

2o^ 00 

(K-1)2K 

0 

(K-l)% 

"2of x +• 2 -Sao , T + If -ShaSu. 
K(K-l)      K 

0 

0 

0     0 

0 

2c? 03 

0   2of3 

The C, obtained above may be compared with the asymptotic covariance 

matrix obtained -when, the usual analysis of variance estimators are 

normalized by the same normalizing sequences. Recall that the usual 

analysis of variance estimators are 

SS 
0"« = 0 " IJ(K-l) 

i r SS
A SSAB  1 

a2 = JK LTÖ7 " (I-D(J-l) J ' 

~   1 f  SSAB      SSe 1   ~   _1_ r SSB     SSAB    1 
ai - K L(I-I)(J-I) " IJ(K-I)J

5
    

CT3 " iK LTJ
1
!! " (1-1)(J-l) J ' 

and that 

SS a°°  XIJ(K-1)     ' 
SSA ~.-(°bo+Ea'oi+JKoba) .X(i_i) 

2 2 SSAB ~ (°bo+Kobi) X(I_I)(J-I)»       
SS

B ~ (CToo+Koi+IKo-03) X^J^J 
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12? 

and that all sums of squares are independent. One discovers using—the 

above that the asymptotic covariance matrix of the cr' s is just C1. 

Thus the maximum likelihood and the usual ANOVA estimates are asymptoti- 

cally equivalent in this case. Note that in either the usual ANOVA 

situation or the maximum likelihood situation had an attempt been made 

to normalize each estimate by the same sequence (for instance n2), 

something would have gone wrong no matter what sequence was tried. 

That is, one of the asymptotic variances would have been zero or 

infinity. 

To make this example totally complete would require a demonstration 

that the various lemmae in Chapter k  are true in this case (which can 

be done in a straightforward manner by brute force). This will not be 

done here. It has been shown how the concepts of Chapter k  apply in 

this case. In the next section the actual computation of the estimates 

is illustrated for this model. 
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6.2. Example of the Iterative Procedure—The 2-Way Crossed Balanced 

Random. Effects Model 

The specifications for the model and the likelihood equations have 

already "been developed, in Section 6.1. The equation for a may be 

solved independent of the estimates of the a.'s yielding a  = y 
X • • • 

The equations needed to iterate' and solve for cL, a,, ap, 6\_ are of the 

form E(ovkN )£/,,,%= £(o"/, \) -where B(CT/, 0 is a 4xU matrix -whose elements 

(k) 
are given in Table 6.1.1 with a. '  substituted for a-., 1=0,1,2,3 and 

£(°7>0 ^s a ^x- vector consisting of the right hand sides of the like- 

lihood equations given in Section 6.1 with a.      substituted for 

a., i=0,l,2,3. After much algebraic manipulation these equations can 

be solved to yield the following iterative equations.  (Define 

SS SS SS SS 

"V mm > mr xi^y > MS
B= vm > "to" (I-DU-D •> 

o^  = MS 0 e 

• [MSA + MSB - MSJ 

fen* 
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»riL 5 [-B-^] - i [(aW*W)^(^)(a0W*W+^V] 

' K + ^B - ^AK 

where  X - [(a^+ Ea^)
2 + (J-l)(a<

k)
+ Kof + JKa^)' 

+ (l-l)(a^k) + Ko{k) + IK^k)) 2 
3 

(l-l)(j.l)(ffW+ Ko{
k) + JK4k)+ U&T^)

2]"1 

Observe that at each stage the new iterated estimator is the usual 

analysis of variance-method of moments estimator plus a correction term. 

The correction term is a product of the quantity MS.+MS -MS  and a 

term •which depends on the old estimates -which were iterated. If in 

fact MS.+MS -MS. is zero then there is no correction and the maximum 

likelihood and usual estimates coincide. The reason for this is that 

if MS.+MSB-MS._= 0, the likelihood equations admit an explicit solution 

and therefore, as was shown in Section 5*5? the iterative process must 

yield this exact solution in one iteration. This procedure is easy to 

program on a computer or programmable calculator and may be used to 

easily compare the two types of estimates. 

No closed form expression is possible for the maximum likelihood 

estimators so their behavior cannot be studied directly in this case. 

A case where explicit solutions do exist and where the behavior of the 

estimates can be studied directly is presented in the next section. 
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6.3. Example -where Explicit Closed Form Solutions to the Likelihood 

Equations Exist—The Two-Way Balanced Nested Layout as a Mixed Model 

This model, given in the usual analysis of variance notation, is 

y. .-,. = a. + b. . + e. ., 
"ijk   l   ig   ijk 

•where y. ., is the observation, a. is an unknown fixed effect and the 
ljk l 

b. . are independent, identically distributed as 77(0,^) and the e. ., 

2 
are independent, identically distributed as 7?(0,o- ) and the b. . and e        id 

e.., are independent. Listing the y's in lexicographic order as in 
ljk 

Section 6.1 the following model is obtained. 

y = X* + UK + e, 

where 

£ is nxl, n=IJK, 

X is an nXl standard design matrix for A effects, 

a is an Ixl vector of unknown constants, 

U, is an nXU standard design matrix for interactions, 

t.  is an IJXl random vector containing the random effects for this 

model, 

e is an nXl random vector containing the errors. 

The parameters and constants in this model and their corresponding 

parameters and constants in the usual analysis of variance set up are 
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Corresponding 
Parameter       ANOVA Parameter 

a. a. x i 

2 
v e 

CT1 CTB 

Corresponding 
Constant ANWA Constant 

n IJK 

*0 I 

Pl 1 

P 1+2 

"i IJ 

g,  X, U, are illustrated "below for the case 1=2, J=3, K=2, 
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y; = 

ylll 

• 

1 0 lOOOOO 

yil2 1 0 
! 
[l 0 0 0 0 0 
1 

yi21 1 0 
I 
I 

joioooo 
1 

y122 1 0 
• 

0 10 0 0 0 

yl31 
1 0 0 0 10 0 0 

yl32 
X = 1 0 0 0 10 0 0 

y2ii 0 1 0 0 0 10 0 

y212 0 1 0 0 0 10 0 

y221 0 1 0 0 0 0 10 

y222 0 1 0 0 0 0 10 

y231 
0 1. 0 0 0 0 0 1 

y232 0 1 0 0 0 0 0 1 

It can be shown that Gn  and G, are diagonalizable and that X 

consists of characteristic vectors of G. and G, with each column of X 

having the same characteristic value. Using this information it is easy 

to show that the likelihood equations are as follows. For or, 

(x'S'-bOo' = X'E"1^- reduces to (o_+Ko-J~1JKa'.= (o-^+KaJ_1JKy.  , 
^~ ~  ~'^    r*j   ~      K, 0     1 1      0     1 1.. 

i-l,2,...sI (y   defined in Section 6.1) which yields a.-  y. 

independent of the choice of a„ or a,, i=l,2,...,I. Let 
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I  J 2 
SS = K H  £ (y. . - y.  ) . Then the equations for an and o\. are 
B   i=l j=l 1J'  1" ü    l 

IJ   + IJ(K-l) =   
SSB   , SSe 

Tv^T       o-0      -v.  .-_ >2 ' 2     > (o^Ka^      a 
0 

IJK      K(SSB) 

(OQ+K^) 
(CTQ+K^) 

2 

It is easy to solve these equations to obtain 

SS 

baIJpyB-Me    ' ov = 

SS. 
B MS 1      K L    U ej ,]• 

To show that the iteration B(o/, \)av, , \ = c(£/,0 yields these 

solutions in one iteration, set up B(oy,\) and c(o/, O as follows. 

~ ~(k) 

IJ       IJ(K-l) 

IJK 

IJK 

(a^K^f 

IJK 

(O^KKC^)2 



23k 

C(CT,.'0'   = 

r ssß ss 

K(S3B) 

(k) (k) (k) Solution of these equations for any cd      and o^  y -where od      > 0 and 

cd  ;+Kcc      4= 0 yields exactly CT_  and a,  given • above. 

The asymptotic theory for this case is easy since the non- 

asymptotic distributions of all the estimators are known.    It is well 

known that SSe ~ a     T^jfe-l)*    SSB ~ ^CT°° + Kao^ xi(j-l)' 

a ~7?_(aft>   Wnn^pi)  I)j  g^ that a is independent of both SS^ and 

SS  .    Prom this it follows that a and a„ are unbiased but that a-,  is 
e ~ 0 1 

biased with expected value #0(S-i)  = (l + —)a01  - •=•= a00  .    Furthermore, 

the variance-covariance matrix of (a', a0, aj' is 

(ann+Kan1) 
JZ 

0 

2c£ ao_ 
LT(K-l) 

IJK(K-l) 

_2o|o. 
IJK(K-l) 

IJK 

(j-l)(crnn+Kon1)
s        a*n  "j 

j TK-IT
J 
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Two cases of asymptotic behavior may now be considered. In'both 

cases I must remain fixed because it is the number of fixed parameters. 

Since this is true, J must become infinite; otherwise m.= IJ will not 

become infinite. The two cases then will be K fixed and K becomes 

infinite. To be sure, nothing is gained if K becomes infinite but it 

does introduce items of pedantic interest. 

Case I: K fixed. 

It is obvious either by examination of the variance-covariance 

matrix or by a return to definitions that the correct normalizing 

sequences are 

nQ = [IJ(K-l)]^ 

n2 = [JK]
2. 

Then J    ,  the limiting covariance matrix, becomes 

J"1- 

!(o00+Ka01)l 

0' 

0' 

0 

2°oo 

2^n ^ 
K(K-l)2 

0 

2gnn   L 

K(K-l)2 

|[Cc700+KoOI)
2

+-^y] 
K: 

This matrix can be obtained either directly from the finite covariance 

matrix or by the definitions of Section U.3. In either case the above 

matrix is obtained. Note that nn and n.. are of the same order of 

i 
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magnitude in this case. However in the second case this will not be 

so. 

Case II: K becomes infinite. 

'In this case the correct normalizing sequences are 

nn = [IJ(K-l)]
2 

0 

n.. = [IJ]: 

n„ = 
i 
J2 

The limiting eovariance matrix is then 

°biIT 

0' 

0' 

0 

2ofo      0 

0 2ofi 

In this case n and n.. are not of the same order of magnitude and so 

the asymptotic eovariance between an and 6\. becomes zero. In case I, 

JL •     2, 
normalizing all estimators by n2= [IJK]2 could work but in case II it 

would not work at all. 

In both cases the maximum likelihood estimates are asymptotically 

equivalent to the usual analysis of variance-method of moments estimates 

as can easily be verified. 
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6.k.    Example of an Unbalanced Layout--The One-Way "Unbalanced Random 

Effects Model 

The model, given in the -usual analysis of variance notation, is 

y±3 = P  + ai + eij5  J=1»2J--«»J1J 1=1,2,...,I; 

where y. . is the observation, u, is an unknown mean, the a. are 

2 independent, identically distributed as ^(0,a.) and the e. . are 
A        ij 

independent, identically distributed as 7)(0,o  ) and the a. and e. . are 7 e'        l    ij 

independent. Listing the y's in lexicographic order the following 

model is obtained. 

y = X* + ILb. + e, 

2 is nXl, (n =_S J±), 

where 
I 
S 
i=l 

X is an nXl vector of ones, 

a is a 1x1 unknown constant, 

U., is an nxl standard design matrix for this 

model, 

b.. is an Ixl vector containing the random 

effects, 

e is an nxl vector containing the errors. 

The parameters and constants in this model and their corresponding 

analysis of variance parameters and constants are 
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Parameter 
Corre spondlng 
AMOVA Parameter 

a H 

0 

JA 

Constant 
Corresponding 
AITOVA Constant 

n S J. 
i=l 

^0 

pl 

p 

1 

1 

3 

I 

The case 1=2, J-,=2, J?=3 is illustrated. 

l = 

y ii 

'13 

'21 

y 22 

'23 

X = 

1 

1 

1 

1 

1 

Ui = 

"l 0 

10 

0 1 

0 1 

oxj 
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Let y 
i. 

J. 

J. 
l 

The likelihood equations are as follows. For a 

the equation is 

r I    J.   -,     I r J.y.   -i 

For on the equation is 

CJ-l). 

i=i'-(Vüi¥  CTo 
= r 

i r^u-Y 

i=l "(CTQ+J^)   .   o-j 

J. 

3=1  "   '   ^ 
i 

0 

For 0, the equation is 

J.r_Ji rjf(r  "2 

i=l   0 l 1    i=l (OQ+J.CO 

These equations are very messy.  They must be solved sinailtaneously 

for ot,  0"n and o\ and no real simplifications are possible. The 

iteration equations are given by 

0" <k+D 
= ä""(2(k)) £f£(k)' £

(£(k))3' k=1'2-- 

where B(o/,\) is the following 2x2 matrix 



lJW> 

£fe(k))= 

At . .   vr  (k)±T    (k),2 

A tf^?} / 
J2 

]=1
   [CTo  +Jjai   ] 

=} 

and £[07, \ > S^S/v^) 3 is ^e following 2x1 vector 

Sfe(k)>2.(2(k)): 

} 

I    rJ^Cy.- - a(°7v03 A(: {k]_ 

j=i ^ [^'+J
d
orik)]2 

} 

and where 

"(•W 

i / , y.i-,, \ 

H .      .        vr      (k)       _ (k)J 
j=l    [a*    +J^CTi    ] 

These equations are iterated until convergence is obtained. It is 

easily seen that it would he difficult to perform these iterations by- 

hand hut easy to program them on a computer. A computer program which 

m 
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handles the completely general case is described in Appendix C. 

6.5.    Example of a Sequence of Designs not Satisfying Assumption h.2.k 

Recall that Assumption i+„2„lf states that for every i and every 

je S ) 3  * i -where i e S , there exist two nonnegative constants R. 

and R2 both less than or equal to one such that 

mi Jti'Jti 

for all but R,m. values of k in the set {1,2,...,m.} } where u ^ is the 

£  column of U. and TV3"' is the k° column of U.. Furthermore, R and 

R    are such that 

Ri+ <x - V R
2 * Ksin • 

where N(S ) is the number of indices in the set S . 
s s 

The following is an example of a sequence of designs ruled out by 

this ^assumption. It is given to illustrate "that design sequences 
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eliminated by this assumption are not design sequences that would he 

interesting in any event. Let p = 2 and let XL , nXHL, he any legitimate 

design matrix (i.e. exactly one 1 in each row) with at least two l's 

in each column. Construct Up nx(nL+l) as follows. For each 

3=1,2,...,n_ the (j+l) ,. column of U- is just like the j      column of 

U, with one execution. The last 1 in the column is made a zero and 

that 1 is ulaced in the same row in column 1 of tL. For instance, a 

typical tL and Up might he 

u: 

1 0 

1 0 

1 0 

0 1 

0 T 

0 1 

22 = 

0 1 0 

0 1 0 

1 0 0 

0 0 1 

0 0 1 

1 0 0 

Now since mp= m-,+1, XL.  and m_ clearly have the same order of magnitude 

if a sequence of U's and corresponding Up's constructed by the above 

method is considered. Furthermore v,= HL-1 and v~= m = m_-l by the 

method of construction. That is, Up has been constructed so that the 

columns of U. and U_ have no linear dependencies except the one forced 

by the constraint that there is one 1 in each row. Thus Assumption 

4.2.3 is satisfied. However, Assumption h.2.k  is not. Let u'un = D... '     * ~1~1  ~1 

Then 

(1), (1)  .(1). 

Mi 
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and 

^^.X.^'^.^-1 

42i/ ~K1} = °> £=2'3" ••'m2' ^* k • 

But then for all k=l,2,.... 3nL. 

i+[a^ ] - 2ai 'H I 

[<£-']" 

= 1"^P + ^¥ 

fl) This is a monotonically increasing function for ä}      fe 2, so its 

minimum occurs for d> y = 2 and gives the bound (-since d/ ;ä 2 for all 

k=l,2 j...,m1 by definition of this problem) 

ffi2 u(2)' u(l) 2 

„L \ fi\,  ?TT, '* 1 " 2  ~2 ~ 2 '  •*=l»*»«--*a1- J2=I r'r . 22 71 

But Assumption U.2.U demands that at least for a proportion of the k. 

that the quantity in question be less than or equal to Rp. Clearly 

^p '* 2* Sut then it is impossible to choose any nonnegative R less 

I " 
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than 1 such that 

because: 

\  + (1-Ri)R2 * N(S1)+1 
= 24i = 3 

i^ + (l-H^Bg >\+  (!-&,_)£ 

_ i T?   + i ~ 2 K! + 2 

4 
Thus Assumption U.2.U cannot be satisfied for such a design 

sequence. But such a sequence of designs would never he of interest 

in any case since' almost all treatment combinations overlap. In general, 

cases that get ruled out by this Assumption k.2.k  are not of practical 

interest. AU reasonable experimental design sequences pass this 

assumption. 

Another interesting fact is that some sort of assumption like 

Assumption 1+.2.14- is necessary for Theorem U.U.l. This is true because 

it can be shownthat -when U, above is a standard design matrix for the 

row effects in a one-way balanced layout where the number of ones in 

each column goes to infinity, then the matrix £ needed for Theorem k.k. 1 

is singular. But, as shown above, Assumption k.2.3  will still hold for 

this case. Thus some stronger assumption than Assumption U.2.3 is 

needed for Theorem U.U.I. Assumption k.2.k  is such an assumption and 

as seen above does not rule out any design sequences of consequence. 



CHAPTER 7 

SUMMARY 

7.1. Summary 

The results cf this paper concerning maximum likelihood estimates 

in the mixed model of the analysis of variance can be divided into two 

areas—asymptotic theory and computational procedures. It was proved 

that under quite general assumptions, the maximum likelihood estimates 

were consistent and asymptotically efficient in the sense of attaining 

the Cramer-Rao lower "bound for the covariance matrix. A computational 

procedure was proposed and this procedure performed well in Monte Carlo 

studies. :"" " 

In considering asymptotic properties for this model it was 

necessary to depart from the usual method of proof of such properties. 

The basic outlines of the proofs (Theorems 3.3.1 and 4-^.1) look 

similar to proofs used in other situations. The critical difference 

is that in the model considered here, it is necessary that the sequence 

of estimates estimating each parameter be allowed to have a separate 

normalizing sequence. This necessity is most easily, recalled by noting 

that even in simple balanced models, the sums of squares have degrees 

of freedom which may be of different orders of magnitude. Having a 

different normalizing sequence for each parameter causes many problems 

if an attempt is made to push through the new formulation into the old 

proofs. The Wald-Wolfowitz proof of consistency breaks down in several 

1^5 
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places. The Cramer proof, which is used here does not go through 

directly. However, by the artifice described in Section k.3—building 

the normalizing sequence into the parameter--it is possible to restate 

the Taylor Series expansion type proof in a way 4that makes sense and - 

is provable. 

The idea of different normalizing sequences is the major extension 

of previoiis work-in this paper. It allows previous results concerning 

the analysis of variance to be extended by allowing assumptions to be 

modified.  (The assumptions in this paper have been shown to be restric- 

tive only in the sense of eliminating sequences of designs that would 

not have, been of interest in any case.) The rest of the work on 

asymptotic theory essentially consists of proving the conditions of 

Theorem U.U.I by brute force. An important development contained deep 

in the detail sections is the idea of separating the length of y into 

components relating to linear spaces generated by the U matrices and 

then "peeling off" only as much y (and hence probability) as can be 

taken care of by the normalizing constant that is available. This is 

done in Appendix A where the partitioning is defined in Section A. 2 

and its use is remarked on prior to Proposition A.3.5« 

The computational procedure called The Iterative Procedure, which 

was proposed in Section 5.H, can be motivated in three different ways. 

Anderson (1971b) , who originally proposed it, considered it as an 

analogy to a certain least squares problem. It has been pointed out 

here that the problem can be posed as one of functional iteration. 
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J. N. K. Rao (1973) pointed, out that the method -was in effect the method 

of scoring.  Together these motivations cause one  to have a good deal 

of faith in the procedure, but the final verification of a procedure's 

standing should be a proof or demonstration that the good properties 

mentioned in Section 5.^--guaranteed convergence to a solution of the 

likelihood equations—hold.  It has not been proved here that conver- 

gence is sure but in Monte Carlo studies The Iterative. Procedure con- 

verged over 99$ of the time and when it converged it always converged 

to a solution of the likelihood equations.  It was also proved that in 

a case where closed form solutions to the likelihood equations exist, 

the procedure will converge to them in one iteration from any initial 

guess. It can be said that even though proofs of desirable-properties 

do not yet exist, there is ample evidence to conclude that The Iterative 

Procedure is a very good method for the solution of the likelihood 

equations in this problem. 

This paper would not be complete without mentioning something about 

the rationale for using maximum likelihood in the analysis of variance.- • 

Hartley and Rao (1967) advanced five reasons which were paraphrased in 

Chapter 2. These reasons are validated even mere by the work in this 

paper.  The easy solutions by computer referred to by Hartley and Rao 

have been made even easier by the addition of The Iterative Procedure, 

the large sample optimality they cited has been expanded to cover many 

more cases, and the other reasons remain valid. Thus as a unified 

theory to cover all cases of balanced or unbalanced models, maximum 

likelihood has much to recommend it.  In the case of balanced models, 
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it has been shown for several in Chapter 6 that the usual analysis of 

variance estimates are asymptotically equivalent to the maximum likeli- 

hood estimates. This seems to he a general rule. Therefore, it seems 

that in these balanced models the usual estimates can be used since 

they do have some small sample optimality properties as well as sharing 

the large sample optimality properties; also the average user is more 

familiar with these techniques. The use of the balanced case is to 

show how well maximum likelihood works there (as in the Monte Carlo 

studies reported in Section 5«8) to give confidence in its use in the 

unbalanced case where the usual estimates are very difficult to calculate. 

In summary, maxi mum likelihood is a good method to use for the mixed 

model of the analysis of variance in any situation but is especially 

important for practical use in the unbalanced layouts where other 

methods are very difficult to apply. 

7.2. Subjects for Further Research 

There are several aspects of the topics covered in this paper 

which may-prove fruitful areas for further research. One is an attempt 

to prove the good properties of The Iterative Procedure. This may in 



l»+9 

fact be impossible; every attempt thus far has been stymied by the 

very difficult arrangement of the nonlinear likelihood equations. 

However, if such proofs are possible, The Iterative Procedure will 

certainly be the leading candidate for the best algorithm to compute 

the maximum likelihood estimates. Another area for further research 

concerns asymptotic theory. Some research on just how-large a design 

should be for the good asymptotic properties to be approximately true 

would be very helpful. This might be done in a theorem like those 

used for the ordinary central limit theorem. More probably it will 

have to be done with Monte Carlo studies. 

Another area where further research would be of practical impor- 

tance is the area of likelihood ratio tests.. Anderson (I969) showed 

that likelihood ratio tests are easy to derive and that the criterion 

is just the ratio of determinants of S matrices comouted under different 

models. Hartley and Rao (1967) also note that likelihood ratio tests 

can be used especially easily to test the hypothesis that some of the 

cr.' s are zero, since the reduced model is just another model of the 

same form. Both Anderson and Hartley and Rao point. out that the like- 

2 
lihood ratio test criterion should be asymptotically distributed as x 

random variable under the null hypothesis. However, Anderson's results 

are for the case where the entire experiment is replicated and Hartley 

and Rao's results depend on their asymptotic theory with its restricted 

assumptions. Neither set of results can be extended to the general 

case using the asymptotic results of this paper because the assumption 

here is that all a. are positive; this assumption of positive a. is 
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critical at several steps of the proof. Under the null hypothesis 

some of the a.  equal zero so the results of this paper do not apply, 

(in fact, the asymptotic distributions in certain simple models are 

definitely not normal.) Further research -which will deal with the 

asymptotic behavior when some of the a. are zero will be very useful, 

both for its own sake and in dealing with likelihood ratio tests. 



APPENDIX A 

DETAILS FROM CHAPTER k 

A.l. Definition of a Certain Orthogonal Matrix 

n 
R can be partitioned into orthogonal subspaces as follows. Let 

&- be such that R" = U.  © £(U, :...:U ) and. &C is orthogonal to 0 0   ~i   ~pn     0 

X(U1:...:U ). For s=l,2,...,c-l let V besuchthat 
~1   ~P-i s 

£(U. :...:U ) = AT © £(u.  :...:U ) and U   is orthogonal to 
~i    ~p..    s   v~i ,..    ~p. 's       & 

s    -^1 s+1    -^1 

£(U.  :...:U )o Let V -  £(U. :...:U ).  (The U. matrices are as 
s+1    *i  . c    ^1 

defined in Section. 1.3 and the partition of {l,2,...,p1] into sets S 

is as described in Section lk2.) Then there are c+1 mutually orthog- 

onal vector spaces such that R = '&"_ © J/L ©...© Äf . Let the dimension 
•     r n  0   1      c 

of U   be m and let H be an orthonormal basis for %C .    Then s    s       ~s s 

0    .s, * s2 
H' H  = {~      1 

~S1~S2   4     s = s_ 
m 
Sl 

Thus P = [H.:Hn:...:H ] is an nxn orthogonal matrix: that, is, 

P'P = I = PP'. Furthermore, for any s=0.1....,c and any i e S* ,üfH = 0 

because the columns of H are orthogonal to all vectors in 
~s        & 

£(U.  :U.   ,,:...: U ). This yields 
s+1  s+1      -1 

151 
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pl pl 
( S b. G.\  = E b.U.U'H 
1=0        1=0 

(^Hos4-> -      is+1-i ' 
= 2  b.U.U'H 

. -   1~1~1~S 1=0 

= S  b,G,H_ . 
* 
s+1 i*S*   ^ 

P 

How since T =£ =E a_.G. is positive definite, there exists a lower <~0n~0. _ 0i~i   * ' 
1=0 

triangular matrix A such that 2 = AA.'. But p'EJ? is also positive 

definite and hence there exists f upper triangular such that P'XLP=T'T. 

Then if T = T~ , T is also upper triangular and Q, = A'PT is an nxn matrix 

with the following properties. 

i) Q'Q = T'P'AA'PT, 
^ rw    /s^ r^  sMs/ ****** 

= T'P'ILPT 

= (T7) -V TT 

that is, Q, is orthogonal. 
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2) Q = A'QELrH..: T      'T1  • 

0  "T1 

0 : 0 

•T 

. :T 

T ~cc 

= A'[H*:H*:...:H*] 

s 
where Q = A7!!* = A' £ H,T,  and everything is partitioned so that all 

multiplications can he properly carried out. 

Ihen it is true that 

Pl pl        s 
(  £ b.G.V* = f £ b.U.U'.Y £ IL.Tr ) 
i=0 1~1/^s  S=o 1~1~   t=0 'vfc^GS' 

Vl"1 
= ( 2  b.U.U.'Y E H.T,. ) 

i=0 t=0 

= f   £ b.G.'k- 
i|St. 

* 
~s 

s+1 

because H* only involves H, for t ^ s. (For t£ s5 i e S*  implies 

i e S*,; thus G.H,= 0. Therefore G.H* = 0 for i e S* ,.) t+1     ~i~t; ~ ~i~s  ~        s+1 
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3) Q is orthogonal so Q'Q, = I. This implies 

Therefore 

I = A 

sL 

Q' 

%:%.: — :V 

9k 
f ° 

i ~ 

s+t 

s=t 

A,2. Definition of Condition A.2.1. 

Let Q = [Q^:Q,:...:Q ] he defined as in Section A. 1, -where each 

Q is nXm . Then if £ = AA' as usual, z = A" (y-XO ~ 71  (0,1 ) 

•whenever y • ~ 7? (X*.E_). If w is defined "by w = Q'z, then w ~7?(0,I ) 

also. But w can "be written w = [w'-w/,... ,w']', where 
^ ,_   A>0 ~1   ~c ' 



m 
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w = Q' z = Q' A~  (y-Xar_).    Each w    is m Xl and v   ~ 7\ ~ (0,1 _, )  for 
s s 

s=0,lj...3c. Condition A.2.1 is defined as follows: 

w'w    , .. 
CONDITION A.2.1. For w as defined above, :^^-   £ =k ,   s=05l,...,c. 

m 
s 

The following proposition concerning Condition A.2.1 is true. 

PROPOSITION A.2.1. Under Assumptions 1.3.1-1.3.6 and U.2.1-4.2.5, 

p{Condition A.2.1 is true] —  1 as n -* «>. . 

PROOF. 

P{Condition A.2.1 is not true} 

w'w 
TJ ~S~S  .  11  ^ ,-, -,       L 
Pi —— > Yf)    for some s=0,l,...,cj- 

m 
s 

c  r  w'w U    /• W W        -n -* 

s=0    m 
s 

c  , w' w - m 
p[ ~S ~s   S      T. \ 
" I   ~ 10 J s=0  "   m s 

c  r- w'w - m <- »  W  - M T   •» 

s=0     m s 

But w'w ~ x  and hence <S(w'w ) = m and Varfw'w ) = 2m for s=0.1,...,c, ~s~s   ~ ~s~s    s       x~s~s     s        '  ' ' 
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so by a simple application of Chebychev's Inequality 

c 
P{Condition A.2.1 is not true} <: S  ^ . But each m ^ v±  for 

s=0  m s 

s 

some i e S where^v. is as defined in Section ki2.    Thus each m -» » si s 

as n -* «> by Assumptions lf-,2.1 and k.2.k.    This implies that 

P{Condition A.2.1 is not true} -» 0 as n -* <», -which proves the 

proposition.| j j 

A.3. Bounds for Various Inner Products and the Characteristic Roots 

of Various Matrices. • 

In this section bounds for all the terms -which must be dealt with in 

Section A. h    a^e found. These terms are either traces or inner products. 

The traces are of the form tr E_.G.E0G. and tr E..G.E-G.E„G. for certain 

choices of E.. ,E0 and E_; the inner products are of the form 

I'l'm*'  I'X'ECX-^)> and (JT-ÄQ) ' E^-X^), where E equals  •. 

£ISä> hhMfi3 
or SiäiSeäjS^^ for various choices of Si» &» S35 

E. , £, £ ' and £?.    Bounds will be established for many characterstic 

roots leading up to bounding the desired inner products and traces. 

Let b > 0 be given and let 0 < 5 < •= .    Let jr.     e ^(jf^-)  ana let 

*0    e S.(#n   ).    Let i!r    =  (ß',T _,T ..,...,T      )'  ,  a=0,l,2 and recall •^2n        6WJT "-an    x  a'  aO    al'       '  ap..'     ' '   ' 

that jr.     e s
h(i^ )  implies |[j^    - j^ || < b which in turn implies that 
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|T1:L-T01| < b for all i=0,l,... ,p and | ß -P  | < b for all 

j=l,2,...,pQ. Similarly IT-^-T^I < 6 and Iß^-ßgjl < 6. Recall 

that cr_.=   . Let the following condition hold. 
i 

COHDITION A.3.1. For a fixed b > 0 and with a. and n. defined as in 

CTQ.       ^ 
Chapters 1 and k, —p-   >— ,  i=0,l,...,p_. 

i 

It is always possible that Condition A.3.1 holds because the n. are 

sequences increasing to infinity and all cr are positive. Several 

consequences follow immediately from the above definitions. 

PBOPOSITION A.3.1. For ^ , £ , j^ as defined above, if Condition 

A.3.1 is true, then the following statements are true. 

«o-ju'teo-fii* **j>2 > 

(&"&)'(&-&) sPo6 > 

and 

0 < 

0 < 

Oi 
2 

< _ii 
n. 
l 

2 

CT0i T2i < -== 
n. 
l 

?a0i 
<     k i=0,l,...,p . 
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PROOF. 
P0 

ana 

»0 

Tli _ 2oi    + 
Tli" T0i 

n."   n. n.       > 

,  Tli- T0i = aox + —T— ' 

<ry      .   b 3a0i 
^CTOi + nT   <T-   ' 

1 

li „ b   .    Oi ^ . 
n.        Oi    n.        2 

Similarly 

and... 

T2i = Joi    + 
Tli" T0i      T2i" Tli 

n. "   n. n. n. 
ill l 

^   b. .    6      . x 
CT0i •   CT0i      70Oi 

* CT0i + n7 + nT   < CT0i + "2" + T = "F" ' 
li 

2i        • b        8   .     Oi _   _ in 
  2: cr _.  — > —j— > 0 . 

n.        Oi    n.      n.        4 '' ' 
l li 
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pl T . 
Now define T = 2  -— G., a=0,l,2 and recall T - EL. 

~a . _  n.. ~x     ' ~0 ~0 

Proposition A.3.1 is used to prove the following proposition. 

PROPOSITION A.3.2. If Condition A.3.1 is true, the following statements- 

are true. 

WÄ> s ^    WÄ> * I >    WÄ> * 6 > 

„ax   J^t^CT^)]!  = ma*        JVSV^I  <     --^    5( )   , 
1—Ujl,...,p^ 

max       |xjr~\T,-2_)]|   =        max    |\. [E"1(E.-Tn)] I  * : ^7 r, -   ,   0 „'  k ~0  v-l~0/J1 '  k ~0  WD^l'-' nun      (n.cr~.)   ' k=l,2,...,n ^ i Oi'. 
K=-LSC, ... ,n x=ü,i,...,p. 

max      |X1[T:
1

(T1-E_)]|  =        max    |x, [T^ClL-T..) 11  <  r—££ r-, '   1L~1  v~l ~0'J> I  kL~l v-0 ~V -' nun    (n cr    )   ' 

max     •|Xlr[Tr1(T1-T0)]|  =        max    |x, [T^CT.-TJ ] j  ^  r-^5 Ts ,   ,  „ '  kL~l  v~l ~2/Ji •  ku~l  v<-2 ~1   •* nun    (n.a..)   ' k=l,2, ...,n k=l,2,...,n .  n , vu Ox' 

max       IXJT"1^-^)]!   =        max    lxjg1^-^)] 1  *        ndnln.cv) 
k=l,2,...,n k=l,2,...,n ,   Q , 

vx 0xy 



PEOOF. 

Continually apply Lemma B.7 to obtain 

X      (E_ G ) <: max(0, — ) = -L- 
-  Oi üoi 

since C-.  =    E    0»G. + 1-G. 

3*1 

i) * 
i=0,l,...,p.       u0i 

X      (E~ I-) £ max 
max ~0 ~1        .   „ , 

11'   i ^ 3 
CT„. 2 

1 

1 T9-?/n,- -7 
X      (E Vj <; max <dl    x <; f 

i=0,lj...,p_ Ox 

O" 
X      (T'^J <: max  2i- £ 2 maxv~l ~0y       .   _ . T-, ./n. 

1=0,1,. ..,p,     lr   i 

1 CTrr 
X^,    (T""Tj ^ max • yi- £ ^ 

maxv-2 ~0y       .  _ .. T0./
n- i=0,l,...,p 2r   l 

-1 T?i/nn 7 
X      (T,  T0) £          max , < ± max^~l ~2'       .   _ n T,./n. 2 i=0,l,...,p li'   l 

X      (T'T?.,) ^ max r~ < 6 
max^ ~1'       .   _  ., T0./

n- i=0,l,...,p     2r   l 

\ l6° 
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For the remaining inequalities 

max      KOg^VSp)]!  = max        | ^0^ 
v_i   o r,    k ~°  WL~e/J|       .   -   0 ' X,'ZrtX, j£-±,^,...,n k=l,2,...,n ~k~0~e 

by Lemma B.6, -p 
•^1 T, • -T„ . li    2i V -Ll       £1        /p 

.   _      n.        Mc~i^k 
max i=0        i 

k=l,2,...,n Pl 

. _0      Oi~fc~i~k 

I 

Pl  T      -T 
V

X T2i  Tli     ,„ 
Z     x.G.x, .   _      n.         -vk~i~k. 

11=0        i =        max ]  
k=l,2,...,n pl 

Z   a„.x,'GvX :. .   _    0i'^£~i'^k 
i=0 

because cr.  > 0 and X/G.X.   ^ 0, 

-1/ max |X, [Sl-L(T_-T )]| 
k=l,2,...,n   k^    ^~1 

Pl  |Tll-T21| 

• _n       -&. £k~i~k 
< max _Z _ ,—__ 

K=J-,Cj . a • ;H 1 

Z    cr_.x/G.x, 
.   ~    0i~k~i'^k i=0 

lTli-T2il ^        max 
1=0,1,...,p,       i Oi 
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* —-L7 r —mH        (na    ) 
1=0,1,...,p1 

by Lemma B.3.     Similarly, 

, JT^./n.-a . I 
max      IV^o" ^i-So)]l Ä.    max ]   X     L 

Ä""-l-5.<- 5  •-•"•   j * * X"—"W j ~L <j •  9 e ?_t*~ Ul 

1=0,l,...,p 1  Ol 

mm        (n.CT-.) 
i=0,l,...,p 1 or 

1 

- JT,./n.   -an.j 

2,...,n i=0,l,...,p, li/   1 k=l,2,...,n    * 1=0,1,...,p. 

<: 2b 

1=0,1,...,p_ 

u   rn,-l,w    w ,,,  „ |(T1:L-T    )/n.| 
ma* !\fJi <T-T)]|   <        max  —^  

k=l,2,...,n    K x i=0,l|.»iPi        Tli/  i 
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5/n. 
max    CT /2 

i=0,l,...,p- Oi/ 

26 

. nf
n    (niaOi) ' i=0,l,...,p1 

i    -1,     v . l(T:L.-T2i)/llil 

k=l,2,...,n i=0,l,...,p.,    2i/ i 

 **6 IM 
min    Tn~ö~T * ' ' ' 

• n   1 1 OX 1=0,1,...^ 

PEOPOSITION A.3.3. Let E >£ >E and E. "be anynXn symmetric matrices 

and E„= AA'; then if Condition A.3.1 is true the following statements 

are true. 

X  (A,E-G.E0AA
/E0G.E-A) max ~ ~I«*/L~2~-~ ~2~x~l~/ 

2 i,    ,   '„ M2    1 *        max        1X^^)1 max        \\(^)\      2    , 
k=l,2,...,n k=l,2,...,n a. 

x     (A'E_G.E_G.E0AA'E_G.E0G.E.A)' max ~ ~l~i~2~o~3~~ ~3Xg~2~x~l~/ 
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""    VäfiAl2 , „       MS&>IS 
k=l,2,...,n k=l,2,...,n 

^  lVSoE^'2 TS 
•K— X5 t j • » i jll aOiCTOj 

X   (A7S,G.E_G .E.G, E.AA'EjG, E„G .EnG.E1 A) 

max   I^QS^)!« •_«   Mj^)!2   »ax   |>j,^)|: 

-±,^,...,n        £-1,2,...,n        £=1,2,...,n 

ViS"   n
lxi(So£4)|2;"^-^-- £-1,2,...,n aA40n,an, Oi orOk 

PBOOF. 

The proof is given for the first case only; the other cases are 

proved analogously. 

x     (A'E,G.E0AA'E0G.E,A) maxv~ ~i~a~2~~ ~£;ii~i~/ 

-1-   .-t ~-V.       A ~t A   /T x     (A/
E,M"

X
G.A"

1
'A

/
E_AA

/
E--

AA
~'

L
&-

A
"

X
A
/
E1A) 

* -X       (A-'E.AA'E-A) X       (A^G.A'V^.A"*)  X       (A'E^AA'E^A) max ~ ~1~~ ~1~/    max ~   'XL^   ~   ~i~    '    max ~ ;-»2££ ^2~' 
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~by two applications of Lemma B.8 , 

= X       (I 1EJ2 X       (E:
1

G-.)
2
X       (2„E0)2 

max ~0~1        niax^'-O <-a        max ~0~2 

by Lemma B.95 

< 
k=l; 

max 
? .,n 

l\(^i)l2 
k= 

max 
.-1   P . ,n M5&>' 

|2 1 

*     2 

by Lemmae B.LU and B.7. | 11 

Proposition A.3.J+ deals -with inner products. 

'PROPOSITION A.3.3+.  Let §, and §0 be any p^Xl vectors and F^.F., and F- 

any nxn matrices; then the following statements are true. -..- - 

(f,'x'FnXl0)-2-S (§'§.) (|i|_) \2 (X'S:1!)!   (A'F'AA'F..A) VA1~ ~L-£2     Äl~l V
ä2ä2  max ~ ~0 ~  max ~ ~1^~ r~i~ ;» 

[e'x'F.F_(y-Äj]2 ss-(g'g-) X'.   (X'ST-Sc) X       (A'F.AA'F.A) L
äI~ ^o.r»2vXy (~-~Cr V

äIä1      max ~ ~0 ~     max ~ ~1~-^ ~Q_~ 

-t. -i 
X-f /-^^oO    s^-Of*    ***    ^-2 ~ s****Q 

cCz-So)lä&.Ee(afSo)]2 * \M(A'^%A)fe-fe)E^"V^(ziSo) 

• WV'V^W • 
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PROOF. 

.(§'X'F.X§ )2 = (SJX'A'VF-AA-3^)2 

• * ([/xVVkji^x'A'VV)^ (A'F'AA'F.A) 

by Lermua B.12, 

^ (Si'li)(So§fl)^2 (x/s"1x)x (A'F'AA'F.A) V
*1ä]/ ^agäß' maxv~ ~0 ~' max ~ ~i/-~ ~i~/ 

"by definition of characteristic root. The other cases are proved 

analogously, } | j 

Now A'F'AA'F-.A of Proposition A.3.1* will he of the correct form 

to plug into Proposition A.3.3.  It remains to hound terms of the form 

.(^-3^) 'F^A ^."^(J-^Q) .. This is done using Condition A.2.1. Let Q 

be defined as in Section A.l and let v be as defined in Section A.2. 

Then 

= AQQ'A_1(y-XO 

= AQw 



= &So:&L:---:Sc] So 

= A E Q w . ~  _ ~s~s s=0 

This yields 

fe-So) l&'V Vx-£o> 
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c  c 
= E . E w'Q/A/F'A"tA"1F0AQ v . 
t=0 s=0 

The Cauchy-Schwarz inequality gives a bound for each term as 

But 

(w/O/A 'F 'A~V V AQ w )'2 

£ (wf0iA/F'A"V1FoAQ,w,)(w
,Q,A/F'A"tA"1FoAQ v ).' 

W'ö'A
/
FXA~*A~

1
F0ÄQ W £ w'w X  •(Q'A,FXA"tA"3T0AQ ) ~s~s~ ^;~ ~ ~2<->~s~s  ~s~s max ~s<~ ~2~ ~ ^'vrcis/ 

and w'w ^ — m "by Condition A.2.1. Thus hounds are required on ~s~s  10 s 
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X       (Q'A'F'A" A'TVAQ )  for various choices of P_.    These are provided max ~s~ ~2~   ~   ^QnJä&' ^Q. * 

by the next three propositions. 

PROPOSITION A.3.5.    If F = G-K?~ and if Condition A.3.1 is true then 

the following statements are true. 

aoi 

If i e S*      X       (Q'A'F^A"^"VAQ )  = 0. — s+1   max ~s~> ~2~   <•»   ^QrJZs' 

PROOF. 

Recall Ss+1 = {ig+lJ 
i
s+1

+1J • • • »V-J • Then 

X JQ'A'FXA'VVAQ ) = X  (Q'A/A"V1G.A"tA"1G.A"tA"1AQ ) max ~s~ ~2~ ~ <~,2~^s    max ~s~ ~ ~ ~x~ ~ ~i~ ~ ~~s 

= X  (Q/A"1G.A"V:LG.A"tQ ) max ~s~ ~o~ ~ ^i.~ -^s' 

Y/Q/A"1G.A"tA_1G.A"tQ y 
= sup 

^£- x'x 

Y 'Q'A"1G • A'V^. A_tQ v 
-   sup  _. 
Y+0      Y'Q'Q Y 
AJ f>j <*•• ~s~s~ 



"because Q/Q, = I, ~s~s ~ 
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s sup 
x*0 

= X2  (lA.) max «O ~i 

'Oi 

* 
However, if i e S . then G.A Q = G.H = 0 as was shown in .Section A,l. s+1    -VL~ ~s --~a~s  ~ 

Then the matrix in question is the zero matrix and hence has character- 

istic roots all zero. ||j 

PROPOSITION A.3.6. If F = (S -T,)S"1 where Tn is as above and if 

Condition A.3.1 is true then the following statement is true. 

X  (Q'A#PXA"tA"1P0AQ ) <S max äS«' «2~ >*- '>2~<6/ 
b 

min       (na) 
•2 . 

PROOF. 

X   (O/A'F^TV^AQ ) = X  (Q/A~1(Sn-T. )A"
tA_1(Sn-Tn )A

_tQ ). max ~s~ ~2~ ~ ~2~^s    max ~s~  ~0 ~1 ~ ~  —0 <—l ~ ^ 

Put 

(T -E0)A-\ = ( E1 ilffiLllll. G.) H* 
~1 'O ~   ~s    \.   .        n. ~i/ ~s 

i=0 
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Vl"1    (T^-O 

Xi=0 
n. <^i/ ~s 
l 

k) 

F H 

* -t   * * 
F A    A'!! 

F*A~V 

*nere 
*  1S+1"1 (T0i-T1.) 

F =      E   G., -which is symmetric. 
~        .   _ n. ~a' * 

1=0 i 
Therefore 

\     (Q'A'F'CVV.AQ ) = \     (QVVA'VVA^Q ) max ~s~ ~2~   ~   ~P.-^-Ss max ~s^-*   ~ ~   ~   ~ ~   «-Ss 

= sup 
•y+o 

YVA"VA"V¥A"VY 

x'x 

X 'A'VA-WA"*! 
s sup 

x+0 x'x 

as in Proposition A.3.5: 

-        max   |Xk(gY)!
2 

K— Iji-j • » • )H 
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min 
i-0,1 i  -1 

<VW 

"by Lemma B.7 just as in Proposition A.3.2. J | j 

PROPOSITION A.3.7.  If F0= (Tn"To)s^ "where T, and T0 are as above and 

if Condition A.3.1 is true then the following statement is true. . 

\      (Q'A'F'A'V'VvAQ ) ^ 
min 

i=0,l,...,ig+1-l 
(niaoi} 

2 * 

PROOF. 

Proceed exactly as in the proof of Proposition A.3.6 "but at last 

step, instead of {T-.-T.. . j < "b use (T.. .-T?. | < 6. j j J 

There are two different types of F-, which will be encountered. 

However, the necessary hounds reduce to those of the form above as will 

-1 
"be seen. The first different P„ is Fn= G.T., . But 

-1      -1      -1      -1 
~i   = 5o   + £1   "So 

r-Q /*-» 

where A = T_1- Si1 = zT1(S--T1 JTJ
1
 = T^CE^-TJEI

1
.    Therefore ~      ~1       Mj ~0    ~0 ~1 ~L v^l    <--0 ~1 ~0 

T~^T~    = ILTSIL1 + ABA + El^BA + ABE"1 for any B.     In this case 
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) 

B = G.A^A^G. and so 

Y'Q A'F'A'V^AO Y = v'Q A/T:1G.A~tA*1G.T:1AQ y 

y/O, AE^G.A^A^GJE^AO y 

+ l/^A'^1(?n-Ti)T:i"1G-A"tA"1G.T:1(S/,-TjE"
1AQ y 

+ Y'Q'A'2:1G.A~tA"1G.T:1(E/,-TjE:
1AQ y 

+ Y/Q'A/.i:"1(S--T,)T"1G.A"tA"1G.i::1AQ y 

Ehe first term is exactly as in Proposition A.3.5. The second term by 

the same reasoning as Propositions A.3.6 and A.3.^ is less than 

y'yX2 (T.'TG.) X2    (T^J   max   IxJlA*)!2 . •** ^   maxv'-0 ~i  maxv~l ~0\   .   _     ' k^'O ~ ' ' k=l,2,...,n 

The third and fourth terms are equal and by one application of the 

Cauchy-Schwarz Inequality, their squares are bounded by the product 

of the first two terms. Thus bounds exist for all terms based on 

Propositions A.3.5 and A.3.6. 
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The second different term is F = (T--T_)T- .  This yields a decom- ~i_   ~1 ~_i ~l 

-t -1 position as above with B =(T.-T„)A A (T.-T_.). As above the sauares of 

the third and fourth terms will be bounded by the product of the first 

two terms. The first term will be YVA'-AT- -T0)A""
C
A"
1
(T1 -TO)2"

1
A0. Y, 

-which is exactly the same term that is bounded in .Preposition A.3.7. The 

second term will be ^^'g^^-^) (T^T^)^^^^-^) (^-T^^AQ^; 

it is easily seen that this term will be bounded by 

X'X       m^   !Xk[51(£l-£2
)]l2   ma"x   K%Y^\2-    Thus all terms 

k=l,2,...,n k=l,2j...,n 

are bounded by previous propositions. 

Bounds have now been found for all necessary inner products; 

bounds for traces are covered by the next two propositions. 

PROPOSITION A.3.8.  If En, E_ and E0 are any nxn matrices, then the   -wj_   __£>   ,^J  J£ . i ,  

following statements are true. 

Itr E_G.E_G.I~: min(m.,m.)   max   |X_ (A'E_AA'E_A) 1 • —  
i  ~__v_/v2~j'    v 1/   j' _ _     ' kx~ ~I 2~ '  a  .a __—J-?_.5 . 9 • jH Ui O3 

tr E_G.E_o.E_G, Umin(m. ,m.,m, ) max |X_ (A%AA'E_AA'E_A) I i  ^l~i^2~j~3^-k'   Vi o5. k/    '. kv~ ~1~~. ~2 3~ 'Cpj.a_.a_. 
K~My £-.}. •«?n 

PROOF. 

The proof is given for the first case; the second is proved . 

analogously. E_G.E_G. has rank at most min(m. ,m.) and hence has at ~l~_.~2~n v i'  y 
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most min(m.,m.) nonzero characteristic roots. 

n 
jtrE,G.E0G.|  =  1  Z    X. (E.G.E.G.) I i       ~l~i~2~) •        '   _.     kv~l~i~2~j'' 

n 
S    E     |X. (E_G.E0G.)| 

s iin(iB.,m.)        max        |x. (EnG.E0G.) I   . 
1    Jk=l,2,...,n    k4~1^' 

But 

max |xv(EnG.E0G.)|  =        ^x        Ix, (U;A~tA/E..G.E~AA"'1lJ.) \ 
k=l,2,... ,n    *" ~ ~~~^        k=l,2,... ,n J' 

by Lemma B.ll and G.= U.U', 
~3    ~0~J 

£X       (ufA^A-1!;.)        max |x, (A'E..G.E0A) I maxv~j~   ~   ~J ,_ i   o „ '  kv~ ~i~i~2~ ' 

by Lemma B.8, 

&.—X j <— j * • © j H 

s ^oJS1^-) max      • '|Xlr(u'A"tA'E0AA'E,AA";iU,)| 

by Lemma B.ll again, 

~° k=l,2,...,n 

^X       (S^GOX       (SA.) max  Ix, (A'E0AA'ETA) maxv'0 ~jy  max^-O ~a/ '  kv~'-2~~ ~1~' 
iC=-L yd. y   .   *   *   yL\. 

by Lemma B.8 again, 

<:   max   lx, (A^AA'E-A)! 1 

, , „     ' kv~ ~1~~ ~2~' i <r_.a_. 
k=l,2,...,n Oi Oj 

by Proposition A.3.2. ||j 

EM 
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The reason that X, (A'E-.AA'E^A) cannot be simplified farther is 

that in general max] X, (AB) | -j: max|Xk(A) | max|X,(B)j. However, the 

choices of L, |L and E_ needed in Chapter h  are always of a form that 

allows simplification. In particular, Proposition A.3.9 is true. 

PROPOSITION A.3.9. If T-.,To5A are as above and if Condition A.3.1 is 

true then for the following choices of En and E^, the cited bounds 

result for     max   |x, (A'E^AA'E^A) |. 
  V--I p    n k ~ ~1'v' 2~ 

En E_ Bound for maxlx, (A'E-.AA'E^A) 

%>" 5o (So-Si)£i min (n.O 
i=0,l,...,p. 

S^So-^S1   S^So-ii^i1       ^i 
mm (ni°bi/ 

i=0,l,...,p. 
1 

T"1 T"1 ^ -~1 ~1 

Ti1 "        T:
1
^-^)^

1
 .       • •'   i6s ~1 ~1   x~l ~<i »-2  :  min (n.a..) 

i=0,l,...,p, 

T:
1
^ -TJT:

1
    T^CT,-TJT:

1 6i+62 

! ^2 
mm (niaoi^ 

1=0,1,...^ 
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The following choices of E_, E_ aad E_ yield the cited "boiinds for 
——              w ' '      *vJ-     ^ ~r~— ""O 

max |\_ (A'E..AA
/
E0AA'E-A)|   . ,   ,  0 ' k ~ ~1— ~2~~ ~3~ ' 

E, E0 E_ Bound 
/•w 

-1 -1 „t 
T.x T_x T/ 8 
~i ~JL ~L 

T T T~   iT -T  ^T 3^5 
~1 ~1 ~1 ^~1 ~ßv-2 min        (nToTTT 

1=0,i,...,p1 

2 
S1 T-1^-^)^1 T^-T^T,"1 1285 

i=o,i,...,p1 

3 
(w ' _T "ST" T     fT  _T   ST"-

1
- m'-Vm   _T   W"-*-  ?125 

lain 
1=U9XS s a • jPn 

T, (T:-TP)T:X    T:J-(T1-T0)T:-L       VCT^-TJT:-1-      2i£2——-?' 
mm        (n.CT-.) v 1 Oi 

PROOF. 

The first case is obvious.    The second case simplifies to 

maxix. [Tr  (E^-Tn)]| -which is bounded by Proposition A.3.2.     In cases 
• jg_  ~L  '-<} ~X ' 

three and four Lemma B.lU applies as it does in the sixth case. The 

fifth case is proved here for illustrative purposes. 

max    |X. (A/T:1M'T:1(Tn-TjT:
1AJ=   max |\. (E_T:^_T71(T.I-T0)T;

1
| ' kx~ ~1 ~~ ~1 v~l ~£'~2 ~!  . 0   ' kv~0~l ~0~1 v~l "-ß'^S ' 

by Lemma B.ll, 

X2 (E^"1)  max JX* [(T.-To)^1]1 max^^o-l , , 0 ' *  ~1 *>£ ~2 k=l,2,...,n 
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by Lemma E.I3 and E',1^, 

z k min(niCToi) 

by Proposition A.3.2. Similar logic applies to the second set of 

"bounds. Both sets of bounds are unchanged upon permutations of E., 

E2 and E3. ||| 

Tlais section concludes with some remarks -which firm up the bounds 

obtained in the rest of the section. 

PROPOSITION A.3.10.  There exists some constant B such that the 

following statements are true. 

-, m m 

-2— Kax&'STS * 3>  7~H  * B -d —T — * B' 
V+i Baa.ni ffiin^nicroi) 

-1=0   1 i -1 -i=0   1 i -"! 

min(mi,m.) minOn^m ,n^.) 
s=0,l,...,c;     ——^ ^ B and     -    *> »'0      i,j,k=0,l,... jp^ 

"i .j i d A' 

PROOF. 

2 
Recall n      ,  = v     ,,.    Assumption k.2,3 then guarantees the 

p,+1 p-+l ~ & 

/•I ^1 

firs% bound.     Since m    ahd all the n.   increase.to infinity and all the 
s i 

ov,. are finite, the second two terms are either bounded or unbounded 
Oi        • ' 

p 
together. Now by Assumption 1+.2.3, each v.(=n.) is the same order of 

magnitude as m.. But m  = dim W   defined in Section A. 1, thus 
i      s     s 
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/•w 

m'= dim{£(U. :...:U )} - dim{£(U.  :...:U )}. Since 
s .   *! s+1     ^1 

dim{<£(Ui :...:U )} s nu for any i e S 'and dim{£(U. :...:U )} ^ 2 m., 
s      x S      1    0* 

it follows that m.- E  m. ^ m ^ £ m. for any i e S . But then 

^eSs-M       J£Ss 
m.- £ m. 
1  * J 

ms mi J*eSs+l 
— is bounded by E  -"• - £  p..<«and—   x -»1-2   p..= l 
ffii - s* 

mi   J.Sq & mi      . *  ^ 
JsSs        s JeSs+l 

because p..= 0 for i e S , j e S,_. Thus each m has the same order 3l s     s+1 s 

of magnitude as each m. for i e S . It is thus sufficient to show that 
X s 

2 
nan n.= n. -where j e S    at least for n large.    However for 

i=0 1    i  -T x  J s 

m. • 
t < s and i e S and j e S, , p..= lim —*• = + <» by definition of the s       o  n x   _ m. . 

"  n-*> . l 

sets S . Therefore, the minimum m. and hence the minimum n. must s ' 11 

eventually equal n. for some j e S . But then the minimum n. and m j s is 

have the same order of magnitude and the second and third expressions 

are both bounded. 

For the last two statements assume without loss of generality, 

that i a j ä k,    Then i s S ,  j s S    with sät.    If s=t,  either m.  or 
So 1 

m. could be the minimum but then n. and n. both have the same order of 
J l     j 

magnitude and n.n. has the same order of magnitude as 
i J 

» 
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min[m.,m.] >: min[m. ,m.,HL ]. Hence the first expression is bounded and 

since n, -* «° the second converges to zero. If s > t then m. will 

eventually be the minimum and n. and XL   are both of greater order of 

magnitude than n.. Thus both expressions converge to zero. 

Since all expressions are bounded, a common bound for all of 

them can be chosen, j]j 

A.lj-, Leamnae Used to Prove Theorem k,k.l - 

This section contains the lemmae required to prove Theorem lj-.lj-.l. 

Each lemmae is stated and proved in a separate subsection. These 

lemmae are referred to in the proof of Theorem k.h,1 given in Section 
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A.U.l. Proof of Conclusion U.U.I.i--The Positive Definiteness of J 

LEMMA A.U.I. The pXp matrix J defined by 

r / 5 *fei)    \ i 
[J]  = lim [^Q [   a j J, i,j=l,2,...,p-is-positive 

^        x J.  i=ion 

definite. 

PROOF. 

It was shown in Section U.3 that J=j  ~ 
L0 C " 

and that C_ was positive 

definite by Assumption U.2.5. It remains to show that the (p1+l)x(p,+l) 

matrix C. is positive definite, where [C-]. .= i lim   tr T~ G.T~ G.« 
~1   . ' ~1 IJ    

2 n.n.        ~0 ~i«0 ~j 

1, J=0,1, . . . ,p.. . 

Let b_,b.,...,b     be arbitrary constants, not all zero.    It is 
0    1 p1 

required to show that 

Pl      pl 
E        E   b. b.(0.). . > 0. 

i=0    j=0    x    J~llJ 

But 
Pl    Pl Pl    Pl 

2    E      E    b.b.(C.)..=    E      E    b.b. lim -^— tr T^G.T^G. 
.  rt  . „    i jv~lAin    .  _   . _    i j n.n.       ~0 ~i~0 ~; 
i=0 j=0        ° °    i=0 j=0        d n-*»    l j 

Pl   b.      x    ,    
Plb. 

= lim tr T^f E — G.V ( 2 -^G.) 
_ ~0 \. ^ n. ~i/~0 \. . n. ~j/ n-*» 1=0      i 3=0    o 
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1 b.  .. 
lim tJ^U   £ G.) 
n-*» i=0 i 

n 
= lim 2 X 

n-«° k=l 

Pi 

tfeX.^Si)] ^i=0 ni 

Thus the object of attention is positive for any finite n and the only 

problem is that it might degenerate in the limit. The proof that the 

limit is indeed positive proceeds as follows. 

Suppose b * 0; then some of the characteristic roots'-of-" 

-1/ 1 bi  \ T f S — G.J can be identified. Without loss of generality, write 
i=0 i 

T = S= E a-.G. for the rest of this proof. To find some of the 
~0 ~0 . n    Oi~i r 

1=0 

characteristic vectors in this case note that there is a space of 

dimension v_(=n.J orthogonal to <£(Un:...:U ).  (See Section ^.2.) u  u ~i   ^p. 

Let an orthonormal basis for this space be H^. Then ufH= 0 and hence 

G^lff 0  for i=l,2,...,p . This yields 
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plt.   x     h 
(  £ — G.\f = — I • H- 
=0 ni ~1/^)  wo ~ 

since G = I, 

b0     I TV- 

^k (i *°•^ 

b°    «L. 
00 0 

Plb.  x     b 
Thus EQ.-^-.-E ^ G. )ET = -—— H-; then there are v_(=n ) characteristic 

i=0 i "'    v000 

vectors -whose characteristic roots are   . Then CToono 

L~° Vo ni ~iAj       oL CToono J 

£>0 
aoo 

I     * Now let b .= 0 for all j k  S : i.e. let s be the smallest index 
3 T s' 

such that b. 4= 0 for some i e S   Now observe   for i e S . One 1 s* n. s 
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of these must be the largest in the sense that 11m —"- 
n. 

n-*° ibii 
<; 1 

for o e S j * i. Consider this i fixed and now consider vectors 
s 

belonging to £(U.). Also without loss of generality let b.> 0 

(clearly b. * 0). Row use Lemma B.5 to show that a number of 

characteristic roots of ST ( E —«• G.J have a lower bound of the proper 

3=1 j ~J 

order of magnitude; that is, consider 

• 1 b 

inf 
x*0 

xeL 

-x'( E -i&.V 

•where L is a subspace of £(U.). Equivalently, consider 

jib. 
v'u.'f E -i G.V.Y 

inf j=0 3 

y'ufl 2 CT_.G.)U.y 

where restrictions are placed on -possible Y vectors to restrict 

consideration to the appropriate subspace. <£(U.) is a space of 

dimension m.; the number of restrictions placed on y will determine 

how many characteristic roots there are greater than the lower bound 

which is eventually arrived at. 
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First, note that for any je S    _   (recall i e S )  the matrix U.U. 

is an m.Xm. matrix and hence has rank at most m. (because m. has 
3     i 3 3 

smaller order of magnitude than m.).. Hence by restricting y to an 

m. - m. dimensional space it can be insured that U'U.y = 0. Thus by 

restricting ^ to a space of at worst (i.e. smallest) dimension 

m.- Z    m. it can be insured that U'U.v = 0 and hence that G.U.y = 0 

^eSs+l 

for j e S , . This restricts consideration to 

y'uff Z -i G. JU.y 
jeSg o 

// v—  .» 

Y restricted        u^ s+1 

At P 

because b.= 0 for j i S . Wow note that y'ufG.U.y^'ufU.UfU.y^D.y > 0 

because D. is a nonsingular diagonal matrix by the definition of U.. 

Thus the expression under consideration can be rewritten as follows: 

b. b. 
— y'UfG.U.y + Z  '  -i y'ufG.U.y 
i 0 e S    j d 

inf Jj±i. 
#/TT/_ TT _      /   / • „,/TT/, y*0       Z   o0 .y'U:G.U.y + a^y'UfU.v + ir_.y UIG.U.y 

Y restricted . • *   0jX ~1~J~lX   00*--i-i*   0i* ~L~W^ 
X 3 •* Ss+1 

j+o 

?£* 
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b. n. Y'U'U.U'U.V 3  i ^ ~x~3~3~x^ 
. o n. b.     fr.2 

b.   ?eSs a i  x£i) 
= inf _i ei  
y*0 ni v'u'U.U'U.y      Y'^-Y 
^ - ,- * 2  o\, .   ^   + <r „  =r- + o. Y restricted   "  "Oj ,_2 w00  /_2    Oi 

^            -lo* y D.y         y D.v 
,]ffo »^ ^x^         A» ^x^ 

s) j_ 

j*i 

.1*0 

2 bn 
by dividing each term by Y/D.Y, and factoring out — , ~i n_^ 

b.n. Y/D.D71UfU.u'ü.D71D.Y 
•i  . y 3 X  ~ ~1~X ~1~3~3~X"^_ ~X-i-' 

b.      . 
s Inf -i  £i _ 
y*0 ni Y/D.D~1UfU.U'u.D7:LD.Y     y'D.lC^D.Y 

Y restricted  2  o\_   -   X ^—— + a.„    o   + ^- X J^* X^X 00 ^ Ox 

d*i 
,i*o 

b.n.       ?/D71UfU.U'u.D71§ 
1 + 2        3  x      ~ ~x ~i'>q~3~a~<L ~ 

öeS    Vi g'£. s ~ * 
i 3**i ,  

b 
= inf 

f*o   ni |,D71U./U.U'U.D715 5/D7J-§ 
I restricted      2        ov. —    ^  v        — + o„0  

±— + a 

' T      oil 

03" p/p 00      S,F 0i 

^Ss+1 
J*i 
3*0 

•where § = D.y S 
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1 - £ 
JeS, 

Ib. In.  I'DT^J.'U.U'U.DT1? 

lb. In.       _/_ 

b. 
^ inf  — 

£*£   ni 
§ restricted 

J*i 

I^DT'Hjfu.ufu.D:1? 
^   cr   *—«• .— + a     .+' crÄ. 
*   Oj      ,./,- 00   Oi 

s+1 

j*0 

£'£ 

(*•)• 

because X  (D7 ) ^ 1 since each diagonal element of D. is greater 
max ~i ~x 

than 1. Thus matrices of the form D7 ufu.u'U.D? mast be studied. 

Consider the trace of such a matrix. 

trCDTVu.U^U.D:1)  = trCCufU.DT1)'  (ufU-DT1)] 

m.      m. 
i        0 -1x2 

k=l    £=1    ^^^    ÄJc 

y 
because tr A'A = _£ E a.    for any matrix A.    But now let the columns, of 

,0) 
i k 

,0). 

£* 

U. be u>j;,...,uu;; then since D.= ufu.   , 

BMift • 1)'   (i) • u,x u, v 

MC MC 
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Observe that / • w—py s 1 because all columns contain only zeros 

.i   si 
and ones and hence the numerator counts matches of ones in u.  and 

1  . Since there can 
(i) i u/  and the denominator counts the ones in ui' 

be no more matches than there are ones in u}  the inequality is true. 

Furthermore 

m. 
0    P. 

(J)'(i) 
2k 

A^^" 
m. 
0 

because 2 u\~' is a nXl vector of ones by definition of the U.. 
i-1 ~* ~J 

m. (j)'    (i)    2 

Hence    E    ( - r.\ pT~)    is a s,mn °^ squares of items all of "which are 
X=1 2k; si1' 

between zero and one and which add up to one. Then the sum of squares 

has a maximum of one which occurs when one of the summands equals one 

and the others are zero. Otherwise the sum will be less than one 

(usually much less). At this point Assumption k.2,k  quite naturally •. 

applies. It says that for j s S , j + i there exist constants IL and 

R? such that except for R-.HU of the u^.
1 , the quantities 

(i)' (d 
2k  2fe 

J / Ä7' 2£ ' \2 
2 ( /.\t—7-rr   are less than R_ .  Thus 

j?=l V U(l) u,(l^ ; 2 
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\ 

^1 ^X^^^L^ V I      V  (l)'   (l) / J 

(R^) 1 + (nu- R],^)^ 

= mi[R1 + (1 - R1)E2] 

m. 
<r    x 

N(SJ+1 > 
s 

•where N(S ) is the number of indices in S by Assumption U.2.^. Of 
s s 

course, for «j 4 S the hound tr(D73TjfU.UfU.D.~1) <• m. still holds, 

since S I (•)>    /•\   )  ^ 1>  k=l,2,... ,m.. 

*=1 2k  2k 

Now if A is any positive semidefinite mxm matrix with tr(A) £ ILm 

Kl 
it is clear that at most — m of the characteristic roots of A can be 

K2 

*1 greater than K0.  (if they were, tr A > K_ • — m = K'm, a Contra- 
il £     Ap       J- 

diction.) This fact with Kg= 2p1(N(S )+l) and K = 1 implies that the 

denominator of (**) is less than 2pn(N(S )+l) • £.  a_.+ c? + o^. if 5 
^1   s'   ^„ic*  Oj  00  Oi   ~ 

Jel s+1 

J+0 
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WS 

K„ 
is restricted so that it contains no part of the —— m. characteristic 

vectors that go along with the "offending" characteristic roots. 

Furthermore the numerator of (**) is equal to 

1 - E 
ÖeS£ 

b.n. 

b.n. 

S'DT-HJ.'U.U'U.D:
1
! 

IT 

s i v1 + 2f(s-yJ E_  IT  v s' jeS       ä ä 
s 

0*i 

since 
b.n 

b.n. 
1 

2N(S ) x s' 
£ 1 + ^/^. \ for all jeS j+i for all n beyond some 

point as n -• co because lim 
b.n. 

b.n. ^ 1 by choice of i, 

~   ~1 ~1  .  c ~J~J  ~1~1  "A JsSo 

(1 +WT) 

But now 

JSD S 

Oti 
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\ 

since the trace of a s-um is the sum of the traces and since each 

individual trace is bounded above and there are E(S )-l traces. Now s 

using the above argument about traces and characteristic roots again 

! N(Ss)   - 1     . 
•with Kp= 1 - oroYs )    arxä Ki= TJ/O  V + '\   }  if % is further restricted so 

s' %  s 

that it contains no nart of the characteristic vectors associated with 

characteristic roots of D? uf( S U.U')U-D~ "which are greater than 

1 - öTöTö \ then the numerator of (**) is greater than 
S  • • 

-x • (x + 3Tsj) (x" Wry) = 1^7 >0- 

It is now necessary to count the number of restrictions which 

have been made on § at this point. At most £   m. were made for 

^Ss+1    ' 

the first restrictions  (when % was y);  at most 
'•N/ /•>»* 

K-i m. m. 

. .?*  Kl mi = ? *  2pn(H(S ).!) * 2(N(sVl) (because there "" at 

j*0 o*0 

most p, terms in the summation) more restrictions were made to bound the 

K,         (N(S )-l)m. 
-im =     s i-L 
C2 1 • (HCs^+DCl-g^-) 

denominator; at most — m. =  — »  more restrictions were 
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made to bound the numerator. Thus the total number of restrictions is 

less than or equal to the sum of these numbers and the dimension of the 

linear space over -which the inf may be taken will be greater than or 

equal to m. minus this sum. In fact this dimension is greater than 

or equal to 

m± mi(W(Ss)-l) 

r 1 H(Ss)-l , m_ 

^xL1 " 2(N(SJ+l    "   ,„,_ ,   lU_        1 s "   .SQ*    \ m./J 
(5(3 )+l)(l- ^^y)    ,jeS i 

v  s' 

p      1 . 

m. =     -    S ( -2   )    . 

^W^^-^sT)      ^S+I     - 

m. 
1 * But   -f- -* 0 as n -* » for each j s S        so that for n large enough the m. s+_L 
l 

. ,r   
2~WJ --, 

last expression in brackets is greater than K = a T—       j , 3 V'ag^>u-sfs-)>J 

which is positive. 
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How combine the bounds obtained on the numerator and denominator 

of (**") to obtain 

1-2 
b .n. 

§ restricted 

.  „   , b.n. 

f'DT'HjfU.U'ü.DT1? 
J~J- 

%.%. 

inf -i   -Ei- 
?*0 ni ./«-I r/TT  TTA 

^+1 
j*i 
3+0 

I'D.TJ.'U.U'U.D.  I 
cyA. =4=^ + o-nn + er oj £'£ 00        Oi 

b. 
l 

n 

Mu(ssn 
^W^ 5   <V CToo+ ffoi 

3     s+1 
Ö+i 
Ö+0 

5    nT   KU>0' 

Now Lemma B.5 states that there are at least K_m.  characteristic 

_lf 
Pl b.      . b. 

roots of    £~ [ E   -^ G. ) which are greater than or equal to   — Ki   . 
~0   \.  -. n. ~j / n.    f 

=0    j- 



This yields 
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•ID b2 

LW) VonJ~°yJ 3 1n2    ' 

mi      2 2 
^   bi K3 \ 

12 2 bf K0 K,   > 0 
r.      l    3    i 

it-*»    l 

Tims for all choices of b, b'CLb > 0 and hence C, is positive definite. 

This proves that J is positive definite and concludes the proof of 

Lemma A.U.1. |j| 
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A..U.2.    Verification of Condition 3.3.1.ü—Asymptotic Normality of 

öijr 

i=ion 

LEMMA A.U.2..   For £, \(y,ijr),  and J as defined in Section k.5 . 

ojr 
A'fcn 

- V£>£) 

PROOF. 

Let the vector ^~r 

1%: 
= a 

•( 
n 

) , where a^  ' is a 

p XI vector defined by 

a<°> 
'Ml 3ß 

A=ion 

n_   , n ~ ~0  ~ ~ n_  , T 
P-L+l Px+1 

and aA      is a (p +l)xl vector defined by 
»•n 

ra(1)i   -2L vhi   Ji - aff. 
i=^On 
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2n.  L   ~0 ~i \£ n, ^ £o ~i^0 \%>   n_  Jj * 
P-L+1' P-L+l 

But 

and 

1 tlnJi 

~° i=0   ni  ~x 

= S crn.G. 
1=0 0l^ 

£>.' 

l=0,l,...,p1. 

& 
n 
P-j+1 

^On 
n 
P-L+l 

= 2o > 

for all n, so in the remainder of the proof, those substitutions will 

be used. Since £_ is positive definite, let S« = AA, -which implies 

S"1 = A-tAwl. (Recall A_t s (A7)"1 = (A-1)'.)  Let z he an nxl vector 

defined by z H A" (y-XO: • then z ~ ?? C0*1 )•  a   a110- a   ar*2 re~ - ~  ~ \>o ~~o      ~  ^n ~ «HI   —n     ~n 

defined in terms of z as follows: 
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a(o) . _L_ x/A-tB 
~n   n V1 r<mf       /«s^ 

tan h  = ^T (Z'A^G.A'V - tr ElV),' 1=0,1,...,p.. 

/^(0) 

Let 5 .. =-( c(l)j > partitioned the same as a . It is then 

sufficient to show that for any choice of 8, 6'a is asymptotically 

normal with mean zero and variance S 'J6. 

Let 

Pl    6?1) 
"I«       K-ts "1„    ,        ~ 

(o)' 
W(6,n)  = 6'a =    2      ~— [z'(A"'LG.A"t)z-tr ZL GJ+- X'A    z 

i=0 P-L+l 

=- z'F(6,n)z-tr F(6,n) + f'(6,n)z  , 
^w^     ^V» */S-»' *•*»» (V    A/' /Nrf /N* ^^ 

Pl    6?15 

where F(8,n)  = A"1 f S     -i— G.V-t and f(6,n)  =      1     A"1»*0?  . 
v. „  2n_ 
1=0    i Pl+1 

Now calculate the characteristic function of W(6,n). For each n 

there exists an orthogonal matrix P(6,n) and a diagonal matrix 

A(6,n) ([ACfi.njL ,= X.) such that F( 6,n) = P/(6,n)A(8Jn)P(6,n). Of 

course, A contains the characteristic roots of F and P the character- 

istic vectors; the decomposition is possible because F is symmetric. 
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Then the nxl vector w(6,n) =  P(6,n)z ~ 71  (C.I ) aad 

W(6,n) = w/(5,n)A(6Jn)w(6,n)-tr A(6,n) + g'(6,n)w(6,n), ivhere 

jg(£,n) == p^nJfC^n) and tr F^n) = tr A(j5,n). Saw the dependence 

on 6 and n is suppressed in the notation, yielding W = w'Aw - trA + g'V 

•where w ~ 7J  (0,1 ). The .characteristic function of W, 0TT(t) is given, 

for any ts by 

0w(t) = <*Q{e  } 

„ f  it(w'Aw - tr A + g'w)-, 
0l 

= e -i tr A 
0 

Thus Lemma B.2 applies, yielding 

0w(t)  = e"1 tr %-2it A]"* e-^VCl-2« ^ 

Then log 0w(t) = -1 -it tr A-|log|l-2it A|-§* g/(l-2it A)    g 

• n n , » 
Lt    S    L-|2 log(l-2it X  )-|tV( S (2it A)")g, 

k=l    K     k=l • j=0 

•where the last expansion is valid so long as max |Xvj •£ -57- , 
J£—JLyC« • • • jll 

k'        21 

•which is true for n sufficiently large.    Note that 



1=0    l 

Pl 6(1) 

1=0    i 
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\ 

by Lemma. B.9, 

k\ ~0 ._n     2a. ~lj i=0 

^_0  2n. ~k ~iHs: 
_    - 

• _0 0i~k «vir-k 

"by Lemma B.6, -where x. is the associated characteristic vector. 

Therefore 

*1 5(1> 

Kl - x 
*' " Px 

. _0 0i~k ~i^k 

£  max  
•!-n T    -~   2n-°V 1=0,1,...,p     I Oi 

by Lemma B.3. The last quantity converges to zero since n. -• <*> for 

all i; this certainly can be made less than -rr for n large enough. 
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Continuing the expansion of log 0 (t), 

log 0TJ(t)  = 
n n 

'W ""il^" \f1
l0g(l-2it V~ **V =' (21t A)*& 

The second term is 

n 
•# 2 log(l-2it X, ) 
k=l k 

n  co 

= £ S  2 (2it \J J . i 
k=l j=l 

n a, 
± = [2it X - 2t^ + s (2.t  }J . 1 
k=l 3=3 

•while the last term is 

3=0 
4t Ä'& - ft2 2 g'(2it A)g. 

3=1 ~ 

Combining terms, 

n n 

k=l / k=l ^   15=1 . K       ^   ~ • 

n       co 
.+ i.s      s   (2it K)i ± 

k=l    j=3 k     J 

1,2 
*      S  (2it)J g' A^ g. 

3=1 
£   £   £• 



But recall that 

g/g = f'p'pf 

f'f 
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-i-    ä^'Y'A-^-^CO) S^^'XTT^' 

* V1 r*-»   f*s        •/%* . 

-JL.6(o)vE-iX6(o) 
p-L+1 ^ 

6(o)/c   ,(o) 

by Assumption 4.2.5.    Furthermore 

n 
2 S    X' 
k=l    l 

2tr A2 = 2tr F2 

pi  • <«       .   ,   h  .<» 
ät^A"1 £  Ii_ O,A-V

X
   Z 

i=0     2ni    X t- ex*) 
ö=o    ^j "J 

pi  pi 

i=0 j=0 J ^ninj ~^~   ~J~ 

E
1
  ^Wifli^sW,. 

i=0 j=0    x        J      2ninj        ~°   'yL~°    ~^ 
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PT      P 

2        2    6?1)  S^CCJ.. 
1=0    j=0 

= 6^'  Cn   5(1) 

Thus since J So   ° = V 0      C ) tlle ^-rs* ^eDiaining terras of log 0w(t)  converge 

l-u^c' to pt 6 J5 which is what is required for normality. It remains to show 

the last two terms converge to zero. 

• Now 

S1 = | 2  2 (2it Xk)J i | 
k=l 3=3 

n  oo . . 

=£2  2 2V jxja 
k=l 3=3 

As previously noted maxjx  J-* 0 as n -• » so that 2t maxjx. | < §• for n 

large enough and therefore 

S,  <.    2 
n   23t3|Xk|3 

1  kii11^^" 

£l6t3    2    |xj3 

k=l 

o n P 
£ 16t-3 max JX  |    2    |x J    . 

k=l      & 

But    2    |Xk|    -» \ 6^  '' £   tr  ' < «> as previously noted and is therefore 
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DO unded,  arid maxlx, J  ->• 0 so that indeed Sn  -* 0. 

S2S  I  = (2«)VAdfil 
0=1 

=*|  2 (2it)ü'f'P/A'5Pf| 
'    . /w   s*J   r^f   r*w>j* 

0=1 

oo 

=   I  S (2it)JfVfl 
0=1 

OS 

£    S    23V|f/F'5f| 
0=1 

<;  s  2JtJf'n2   [CF'rFJ] . , ~~ max    ~     ~ 
0=1 

>0t0f/n2     [(F/)0P0 
~ ~ max    ~     ~ 

by Lemma B.12.    But f'f - ö'0^' G_ 6^°' < oo and is therefore 

and F is symmetric so that 

^Q ^        - - -a« o.^.  UJ.X^J.^XWXC bounded 

X       [(F')V] = X       (F23) 
maxL ~     ~ J        maxx,~    ' 

•£•     max |X, (F) 
k=l,2,...,n   * ~ k=l,2,...,n 

by Lemma B.ll)-,   so that . 

X2     [(F')¥]5 max|xv(F)|J 

max LV~     ~       . '  kv~' ' 

= max|Xk|     . 
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But again this converges to zero so that it may be assumed 

2t maxj\,| < -§• and therefore 

OS 

S0 <: f'f £ (2t maxlx, I)*3 

= f 'f 
2t maxjx, | k1 

l-2t max] A, 

kt  f'f maxjx. j 
i-V /N^ '    K.1 

0. 

Thus log 0w(t) -» --§t 6'J5 and since J is positive definite the limit W 

is a legitimate characteristic function, continuous at t=0 and 8=0. In /**>   **** 
_l4-2.   /     .  / 

fact e 2    ~ ~~   is the characteristic function of a random variable 

distributed as 7?(o,6'J6).    Tnis proves that W(6,n)   ^??(0,6'J6)  and 
* r-j   r*r*s 

since £ is arbitrary that a    •-»   7? (0,J)3 -which vas to be proved. j|| 



)    20k 

A.A. 3.     Verification of Condition 3«3»Liu—Convergence in Probability 

of b\ to Its Expected Value 

tton 

Lemma A.k. 3- For jr and X(y,^) as defined in Section k.5, 

converges in probability to its expected value, 

^•"-^On 

•*• 3 J ~-*- »*-)»»« )P' 

PROOF. ' 

It suffices to prove that the variance of each element of -.,.., 

converges to zero as n -» «>. There are three forms of second derivatives, 

•which are exhibited in Section U.3. Each will be dealt with separately. 

Since each element of -Jo-coy has variance zero (being a constant), 

the lemma is true for these derivatives. 

A To examine the derivatives of the form -,0^ , it is sufficient to 
• 0-POT. 

~ l 

show that for all p XI vectors £ such that f/£ = 1? Varo{0.(£)} -* 0, 

i=0,l,...,p , where 
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i"*0n 

n ^rrÄ^Vs^^-) i Pl+i 
'pl+1 

from Section k.3, 

~ n.n   ~ i'S'^SdS1^-^). 
x p.j+1 

using the same substitutions as in Section A.k.2. 

Hien <?o{0i(|>)} = 0 and 

Vaxo{0. (£)} = -_§_ I'X'ÄSW&S'S 2 
n.n 
i Px+1 

-ö-i— § 'x 'K}G . E^G . E: V 
n^n^        ~ ~ ~0 ~i~0 ~irO ~ä. 

i px+l 

n^n^       ~ ~ ~   ~   ~i~   ~   ~i~   ~   £& 
i Pj+1 

(Recall that En= AA'.) 

n L~ ~ ~   ~   ~*J    „2      max^   ~i~   ~   Jii£    > 
"P-L+l 

n. 
l 
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by definition of characteristic root, 

r- [k'z'shsi] \ wsV 2 
n ... " n. p1+l 

by definition of A and by Lemma B.$, 

[^Ws'S^lW&V 2  _ 
x    px+l 

again by definition of characteristic root, 

s B 

2    2 
n.   o\.. 
l    Ox 

by Propositions A.3.2 and A.3.10. The last expression converges to 

2 
zero as n -» =° because n. = v. and v. converges to infinity by Assumj 

tions If.2.1 and U.2.3. p 

It remains to show that Var    i    ^_ \_— J- -* -0 as n -+ « } 
i    j      ••—'• i=Ä0n 

i,Ö=0,l,...,P1.    But 

r ö *te»i) I  .  i r    i   r     -i    -i 
3l    OT.OT.       ,    ,   J OL 2n.n. L      ~0 ~x~0 ~: Varo\-äTXn.    ,,   ,  1    3      t=ton X J 

-2<X-&0> 'S\S W^^l } 
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using the same substitutions as above. 

2  ^(^GXVäJ2 
2 2       v~0 ~i~-0 ~i~0 ^0 n.n. c 

by Lemma B.l, 
2(min[m. ,m.]) 

2 2 max-~0 ~i~0 ~j' 
"inj 

because there are at most min[m.,m.] nonzero characteristic roots of 
i5  3 

Zw«  G.*J~  G.9 ~0 ~x<--0 ~«J 

by Lemma B.9S 

by Lemma B.13s 

2(min[m ,m ]) +•,-•+. 
 5 |    

J Xd    (A_1G.A'V-Hl .A_t) 2 2 maxv~   ~i~   ~   ~ri~    y 

n.n. d 

i 3 

2(min[m ,m.])    p p , 
 —5-i—i- \2     (A_1G.A-t)x'i     (A-G.A^) <; 2 max ~   r-a~    ' max ~   ~,i~ n.n. 

10 

0 min[m. .m.l 
s  2  #     i»  y 

2    2 2 2 a„.o-. n.n. 
0i 0j x j 

by Lemma B.9 and Proposition A.3.2, 

. - 0 

by Proposition A.3.10. 

Thus in all cases, Var    J 

0 I diJi.oJr.     ,   .     J 1 fJ-  t=*on 
0 as n -» eo, -which was 

to be proved.   |11 
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.k.k.    Verification of Conditions 3-»3.1.vl and 3.3.1.JV-—Convergence 

Q2 
in Probability to Zero of   .,. .,. /' 

In 
A- 

t=lon" 
Uniformly for 

ijr    s S, (*.  ) 

LEMMA. A.k.k.    For £ and X(£,j[)  as defined in Section k.3,  and for any 

b > 0,  if Conditions A.2.1 and A.3.1 are true, then 

sup 
ÄCfci) ^(2>A) 

VVW      at^    JM*      ^    *** 
|  - 0 

as n -* <*»,   i,0=1,2,...,p. 

PROOF. 

Let f.    be any point in S^(jr_ ).    Then for the first set of 

derivatives, 

= -    0
1        X'T'-Sc,    a=0,l. 

X~Xan p +1 

(Recall T = S-.) 

It is clearly sufficient for these derivatives to show for any £, ,|p, 

p0xl such that l^~ £^£2= 1 that 0 ^   -±- I^X-'fT"1 - S"1)^ - 0 
n 

•p-L+1 
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independent of ^. But g1- gj1 = T"1^- T^g1 and gX= A-V1 as 

•usual; then 

02 = I -T- £1 I'll?- ^Sel 
u V1 

äI~ ~^-<2 L ^-    max ~ »-«0 ~ J max ~ ~0 «-0 ~1 ~1 ~ 
n • . i 

•Pl+1 

by Proposition A.3.U and the fact that T~ - T~ is symmetric. But 

/*.-!/ -I.s2 ,-li X•QV(A'l£ (5n~T^ ) V*)    S        max |X. [T:
X

(2_-T. ) ] I' max ~ ~0    MJ ~1 ~1 ~        , __   0 '  k ~1    ~0 ~1 J' 

"by Lemmae B.ll and B.l^, 

kb' 

min (n.o--.)' 
i=0,l,...,p 

by Proposition A.3.2.    -5    X       (x'S'^X)  is bounded by A.3.10 and 
n max^~ ~0 

"P-L+l 

Ift)2]* 
thus 0 £ 

min(n.a0.)' 
i=0,l,...,p1 

(B is taken from Proposition A.3.10) and hence 

0 -» 0 independent of jr, .  (Since none of the bounds or convergence 

rates depend on f, •) 
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For the next set of.derivatives, 

* A     I  1  v/m
_1r. m-1/'.. „   ~a 

i=ian      ipl+1 pl+1 

i=0,l,...,p ,  a=0,l. 

Therefore, it is sufficient to show for these derivatives that for all 

§ p^Xl such that |'| = 1 that 

S V^W1^ -2i_)_E:1G.E-
1(T.x A_)"|| - 0 ~ ~ L~l ~i~l JO ~ n_ , n' ~0 ~i~0 ** ~ n_ ,-,_!• ii.n   ~ - i_-o. -J.-J. •- -- u    —w --J.--W •- •- XJ.    ,n 

1 P-j_+J- Pi+1 P-i+1 

independent of jr, . Lemma B.l6 applies here and thus it is sufficient 

to show that each of the following two terms goes to zero independent 

of im« 

0-.= ^T  II'X'CT^G.T:
1
- E^G.El^y-ajl, 1    n.n    ,,   'A ~ v~l <-<i~l      ~0 ~i~0      *•> ~*0  '' x px+l 

(Recall that      = or..) n    ,..      <MJ 
Pl 

Now 

^2    n.n      .   'A ~ ~1 ~i~l ~    n 
l p.j+1 Px+1 

4 * ^'Dteitwid^ w^J 
ni n

Pn+i 
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max ~ ~1 ~i~l <~~ ~1 ~i~l ~' 

by Proposition A. 3.^, 

1 2 ?   3   h    ,       -1 
s ~ • 1 • p.tY . ~- X  (E-T/) 2 ^0      2   maxv~0~l ' n. CT 

i Oi 

by Propositions A.3.1, A.3.2, A.3.3, A.3.10, 

4^H i6 
n

i     CT0i 

- 0, i=0,l,...,plS 

independent of jr. . 

Now a technique is developed •which is used often in this and 

subsequent sections. T~  = E~ + T~ - E~ = S~ + A, where A = T-1_ v"1 
~L  <—0   ~L   "-Q  "-Q.   ~       i^  ~T_  XQ " 

As noted previously, A is symmetric and A = T~  (IL-T_)2~ : thus 

I.T £,-?.7 -|£ £«?£ = 2~ G..A + AG.E" + AG,A. 0n then breaks down into 

three terms, each of -which fits into the following formula from Proposi- 

tion A.3.^ with appropriate choice of F, and Fp. 

j_2  | 'X /F Y (y-3&J "]2£ ~ § 'iT-ö^-X       (X '-A) 1       (A'P 'AA'F A) 
Ln.n ~ ~ ~i^,2v>^ ~0 J        2 ä *L 2        max ~ ~0 ~ J max ~ ~lS~ ~i~' i p,+l "" ' ~ n. n      . 

*T l px+l 

•(x-SoJ'^V^Cz-So) 
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1 

£ \ B \       (A^AA^AHV-X*   )/F/A"tA"LF  (r-Ya  ) 
n. 
l 

by Proposition A.3.10.    Now fit in the —5 where appropriate with F    and 
n. 

...       1 

F ' to obtain the division shown in Table A.U.4.1. 

Table A.UA.l 

Division of •£,  into Terms with Appropriate F..  and F_ 
1 ~l ~<c 

Term F, F 
~1 ~2 

nT SW (So^l^1 

S^-^So1 n. ~n~0 
1 

T:
1
(EA-T1)Z:

1
G.T:

1 (S-TJS"
1 

~1  N-~0 ~1 ~0 ~i~l ~0 ~1 -O 

Proposition A.3.3 now yields the following bounds for X      (A'F'M'F'A) w max ~ ~lr~ ~±~ 

which are given in Table A.^.^.2. 
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Table k.k.H.2 

Bounds for X       (A'F-.M'F.-A) with F.,  from Table A.U.l+.l max ~ ~1—~ ~x~' ~1 * 

Term Bound for X       (A'F'AA'F.A) max ~ ~i~~ ~T/v/ 

2 2 n.a_. 
l Oi 

4b2 

 i6bf  
2 2 2 n.cr .        min (n.o\..) 
1 0ii=0 1 T)      °  °" 

All these bounds go to zero independent of Jr.   ;  thus it is sufficient 

to show that  (^-}&-)'F'A~ A~"Tp(£->&_)  is bounded independent of jr. 

for the two possible choices of F?. The remarks preceeding Proposition 

A. 3.5 show that it is sufficient to show that W'Q'A'FXA" A'T^AQ W is 

bounded for s=0,l,...,c. But propositions A.3.5 and A,3.6 apply here 

and together with Conditions A.2.1 and A.3.1 they yield the following 

bounds. 
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Table A.U.k.3 

Bounds for w'Q A'F_A~ A_1F0AQ W for F„ from Table A.k.k.l 

£2 Bound for w'Q A'F^A'V^AQ W 

n.~i~0 
x 

0 

< 

-IT   m 

11     S 
10 n. 

J0i 

i e S s+1 

<N s+1 

(£o-Si^ 
,2   11 
b • — 

10 

m 

i=0,l,...,i 
(nia0i)< 

s+1 

But Proposition A.3.10 guarantees that the bounds in Table A.+»li.3 are 

themselves bounded and hence for each i=0,l,...,p1 the desired conver- 

gence to zero independent of jr. takes place. 

It now remains to treat the terms 
ÖT.ÖT.   ' 

3" J 

o2! 
dT. or. 

1   z i=t 

ß B 

= 77-{(tr TS.T^G.- 2(y-X -^-) 'T^G.T^G .T_1(y-X -^-)1 2n.n . L        ~a ~i~a ~j       x~ ~ n    ,.' ~a ~i~a ~«]~a v*- ~ n_   . n  J 
an 1 J V1 V1 

i»«3=0,!,...,?-!_,  a=0,l. 



It is sufficient for these derivatives to show that 
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0n= PTTT ltr T^G.T^G,  - tr C^lA.I 0    ctxi. n.   '       ~1 ~i~l ~J ~0 ~i~0 ~g' 
i  3 

and 

0  ^_l(y.x -A.)^..^.^^! A_) ^1   n.n.' \~ ~ n    , .. / ~1 ~i~l ~j~l v- ~ n      ., / 
i 0 Pi+J- ' PT+1 Pi 

•(y-x A-V Ä-^-SV —)l 
Px+1 P-L+l 

each converge to zero independent of *_ as long as Conditions A.2.1 

and A.3.1 are true. 

For the first term write T~ = S"X+ A. Since tr C + tr D = tr(C+D) 

for any matrices C and D, write 0^ as three terms and bound each 

separately. Each is of the form -x ltr E-.G.E-.G.I and hence 
2n. n .'  ~l~i'-~2~:j ' 

1 0 

Propositions A.3.8 and A.3.9 apply to give the following hounds. 
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Table Aj^hA 

Bounds Used to Demonstrate Convergence to Zero of 0n 

Term En E0 Bound for •——Itr E-G.E^G.I ~1 ~£ 2n.n.'       ~l->d'^2~j' 
i 3 

~Q ~i v~o ~iy~0 n.n. 
l -i 

D 

vnf
n (nkCTOk)0OiCTOj 

151=0,1,...^ 

-1^    • ^-1 .-1 ^(m.3m ) 
iL 

~1  \£o ~lJ5o So n.n. Sill (n o., )ffn.a_. 
i J   , _ ..      v Is: Oi: Ox Oj ^=0,1,...^ 

-1.      -1     -1      -1  min^mi'm1-) b2 

3 ££ ^So-^So     Si ^So-^i^So      n.n    "    7^        ", 72 ~ 
i 3 nan    (v ) aQ.a 

k=0,l,...,p. 

Again Proposition A.3.10 guarantees that all these bounds converge to 

zero independent of jr,  and hence 0 -* 0 independent of jr, . 

Handling 0. is fairly messy. Lemma B.l6 applies giving four terms: 

IQ 

012 
= _JL_ , i|c^.x/T-iGi -iG -1(  }j 

n.n. '  n  , ~ ~1 ~<L~1 ~I~1 *- ~~ ' i o     px+l 
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'13 TIT I (Z-Sn) X^.T^G .rt ^^ n.n.   ' x*- ~-0-  ~1 ~I~1 ~J~1 ~      n 
1   .1 B.+J. P^J- 

1        ,   (&Tßl) 111      (IrT-ßi ) 
14      Sn.n^        npi+1   ~ ~1 ~i~l -j-1 ~   np +± 

0 ,   is easy to dispose of. 

4k * ^h [C&-y «0-&5] [/- Nnax&'S3»] 
P-L+l 

• XTriQv(A
/T:1G,T:1AA/T:1G.T:1G .T^A). max ~ ~1 ~g~l ~~ ~1 ~i~l ~j~l <--' 

by Proposition A.3.h, 

S 7^~2 V* B 2    -2-2- 
2n.n. o\-,.o\,. 

i J Oi Oj 

by Propositions A.3.3, A.3.2, A.3.1, and A.3.10. This certainly 

converges to zero independent of jr.. • 

Now 1„ m-l use Proposition A.3,k  again with F = T~  G.T7~ (-which is ~1    ~i ~i~l     v 

symmetric)  and P = G .T~    to obtain 
~2    <vg~2 

2 
1_(R -ß )'(fi -ß )f"  1_X   (X'ETV)] X   (A'T^G.T^A)' d d  ~0 ~1 V

-M} r-i'L 2    maxN~ ~0 ~ J max^~ ~1 ~i~l ~y 

n.n. 
i 3 P-L+l 

' (x-£o> 'S £jA" A' £,£ (K-SQ) 
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Tl^G. -,'.,,- G.T'1 

* \>& • G^Wf ^ ] Ä-V1 [ ^]fe-So>. 

Since the first part clearly goes to-zero it is sufficient to bound- 

(y-XO /F'A~tA~^o(y-2&/0 fcr Fo= ;r G.T"1. But since Conditions A.2.1 
J 

and A.3.1 are true, the remarks following Proposition A.3.7 show that 

all the necessary bounds were obtained while working on the terms for 

•5—~ ; these bounds are contained in Table A.k.k.3- This all 
OT .op 

guarantees that ö „ -» 0 as n -* « independent of jr,  as long as 

Conditions A.2.1 and A.3.1 are true. 0_o obviously follows the same •  -   •• 1.3 

bounds as 0      and hence also converges to zero. 

-1        -1 To handle 6-,n use the fact that T,    = E_    + A and hence 

T~ G.T' G.T"1 - Z~1G.£~1G.£~1 breaks into seven terms of which two 

typical ones are AG.E~ G.E_    and AG.AG.E~  .    Each of the seven terms 

that 0 x breaks into are then of the form iCy/XO 'F^.F^^-XCO 
for 

the following values of F_. F.., F-.  (again the n.  and n. are inserted 
"-O    ~1    ~£ 1 J 

in the appropriate places). 
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Table A. U.U. 5 

Division of 0,, into Seven Terms with Appropriate Choices 

Term F^ Fn F0 <~(J ~i. /~c 

— E'^J.     T"1(S.-T.)E"1        — G.S"1 
n. ~-0 ~a     ~1 v~0 ~,1'~0 n. ~j~0 

— E_1G.    • — S^G.T"1 ' (2--T.. JS"1 
n. £o ~i     n. ~0 ~j~l v~£) ~ly<o 
i 0 

3 g1^)       ^ Ä51 ^ £&- 

^   ^^o ~]/       n.n. ~1 ~i<-0 ~a~l ~0 «-l'MD 

5 E"1(S.-Tn)      ~ Tl1lCJ.Tr:L(S--T1-)S"1 — G.E~ ' ~0  v~0 ~1'       n. ~1 ~i~l  x~0 rJL'r*Q n. ~n~0 

6 — E^G. — T:1(2/V-T.1)Z'"1G.T:1 (Sn-^)?^1 

n.  ~0 ~i n. ~1  N-~0 ~l'~o ~n~L «O -i ~0 
i 0 

7     S^CS.-TJ —— T:VTT1(£--TOI~1G.T~1 (E.-TJS"
1 1

       ~o x^o  ~iy  n.n. ~1 ~x~l v~0 ~1 ~0 ~j~x    ~0 ~1 -0 
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By inspection of Table h.k.h.5.  it is easily seen that all F_ and F_ 

are of such a form as to fit into Table A.^.U.3. Furthermore all F, 
~1 

are such that X  (A'F'AA'F,A) - 0.  (This is done by application of 
max ~ »viz»**» /v/x~> •. 

Lemma B.13 snä  Proposition A.3.2 and.then using Table A.k.k.2.)    These 

two facts together yield that each of the seven terms converges to 

zero and hence that 0_. -* 0 as n -» « independent of jr. . 

Ö2X This now covers all possible cases of -^ ..,  and thus the lemma 

is proved. |j| 

Continuity of    -...'• / 

A.k.5.    Verification of Conditions 3.3»l.v and 3»3.1.i—Uniform 

for i    e  Sh^lo )   in Probability 

LEMMA. A.U.5.    For £ and X(y>jO  as defined in Section k.5 and for any 

b > 0,  if Conditions A.2.1 and A.3»! are true,  then 

o2\(X,jr) 
— is a uniformly continuous function of jr . in  S (j/^ ), 

i5 j—J-j^-j • • • jP- 

PROOF. 

Let 7) > 0 be given and let 'jr.  e S (jh, ). It must be shown that 

there exists 6 > 0 (without loss of generality 6 < -z)  such that for 
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I a^.a* 
A-Jfen" ^ •^ -*ln 

I <T1 

for all i,j=l,2,...,p. Clearly it is sufficient to bound the various 

parts into -which these expressions may "break up by a constant times..a 

function of 8 -which decreases as 6 decreases. As in previous lemmae 

T>_ 
"1     T. 

*    = (ß',T _,T _,...,T      )', T    =2     — G.,  for a = 1,2.    T = S: ^an    v~a'  aCr  alJ ap/   ' ^    .   _    n.    ~a' '        ~0    ~0' i=0      i 

& 
n 

P-L+l 
= 2o 

The derivatives to be considered first are 

A ww = -~— X' T"1 X,     a=0,l,2. 

rfc~-<&a.     p +1 

It is clearly sufficient for these derivatives to show that for any 

li> &• v1 ^that si ir Se Se"x»that 0 = -r-iiS'^-S1^! 
V1 

can be bounded properly.    But 

*        vAiÄi' ^ÄßÄg'' L 2 maxv~ ~0 ~yJ      max    ~ W>      ~1    ~-^ 
n ., 
P-L+l 

1 m-l by Proposition A. 3,1+ and the fact that T0 - T ' is symmetric. But 



12    ' Z? + fi1 - S1 = S1 + Äei ^ere Äßl= S1(^l- Sß^1, and A^ 

is-symmetric; thus • 

x    (A'CT:
1
 - T:

1
)^

2 

max ~ «r-S   ~1 ~ 

= X  (A'A_ A)2 

max ~ ~2l~ 

= X       (A/A01AA/A0_A> max^~ ~21~~   21~ 

= \U'T~ 1AA"1(T1 -T_)A"tA'T:1AA/T:1AA"1(T1 -TJA'V-^A) 

<: X2    (T^JX2     (T;-4:J    max U, [E"1(T,-T0)] |2 

max~1 ~0 • maxM? ~0'    ,  0 ' kL~0 N~l ~-2/J| 

by Lemmae B.8, B.ll, B.8, B.l^, 

A2 

s 4.16 L_ 
min (n.a...) 

•   r\  i 1 Oa/ i=0,l,...,p1 

by Proposition A.3.2.    Combining all the above, note that 

[_    g1      ^max^'So^]2 s ß2 by deposition A.3.10 and hence 
n  • n 
Pl 

*2 ^     6te2     .2 

min    (niaoi) 
1=0,1,...,p. 

This is just of the form desired because there certainly exists a 
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p 

constant such that  p— is less than that constant for 

. n f
11   (Voi* i=03l,...,p1 

all n. 

For the next set of derivatives, 

ÖT.oß 
1 ~ 

1   „lm-l„ „-1/ „ &a = r-: X C G.T (y-X ~=—), i=0,l,... ,p., a=l,2. 

A^n  X Pl+1 V1 

Therefore it is sufficient to show for these derivatives that for all 

§ TD.Xl such that §'§ = 1 that 

-^|g*f TlWYy-X A_).T-lG.T:l(y.X A_Y|| 
n.n 'A ~ [_~2 ~i~2  v£> ~ n     ,, / ~1 ~i~l \~ ~ n      _ /J1 

l p,+l P-,+1 P-,+l 

is suitably bounded.    Lemma B.15 applies here resulting in three tanas 

to bound. 

0n   = ^TTT  ll'x'CT^G.Tr1- T:1G.T:1)(v_Xy  )L vl      n.n      _   'A ~ v~2 ~i~2      ~1 ~o~l  ' V
JC ££<y ' > 

i P-,+1      . ^^ 

0? = —i~  k'x'C^G.T:1- T^G.T^X ^^  I, 2      n.n      _   'A ~ x~2 ~^~2      ~1 ~a~l '~   n      ,     " 
l px+i P;L+i 

0o = 
i   /   , -1      -1,   ^fii'fig)   , 

3      ni\+l             -   -    "p1+l 

Consider 0_ first. 
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*\ * \ <£'£)(&-&>'<&-&>[ ^- W£'I^>]2 WÄSV 
P-L+l 

by Proposition A.3.^, 

«.* 4-V"8'-f- a. a0i 

by Propositions A.3.1, A.3.2, A.3.10. This is again of the desired 

form. 

For 02 as above T~ = T~ + Ag and thus there are three terms in 

(lo-Jg,) 
the difference of the form g'x'F-.X • •    • • which can be bounded by 

/•»* /•**  Ota/ 1~ n 
P-L+l 

Propositions A.3.1*, A.3.2, A.3.3, A.3.1 and A.3.10 as follows in 

Table A.4.5.1. 
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Table A.J4-.5.1 

Division of 0_ into Three Terms with Appropriate 

R. and Bounds for Squares of Each Term 

.erm Eventual Bound for its Square 

i  T^CT.-T JT^G.T: 
~L  ~1 ~d  ~d  ~<L~1 

256p0B
£ 

n.Q^.    min  (n.a~.) 

j=Osl,...,p1 

2  T^G.TZ^-TJT:1 256p0B^ 

n.o--,. min  (n.o_.) 
1O1        a .Qj.' 

j=0,l,...,p1 

T"
1
^ -T0)T:

1
G.T:

1
(T1 -TJT:

1 

~1 v~l ~2 ^ ~i~2 ~1 ^ ~1 

to96p0B^ 

n.07,.      mxn      (n.an.) 

j=0,l,...,Pn 

A 

All of these bounds have the desired form. 

It remains to dispose of 0...    Again there -will be three terms of 

the form §' X F.,Fn(y-X <*_) "which can be bounded by Pro-position A.3.^. 
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Table A.k.5.2 

Division of 0, into Three Terms -with Appropriate 

F,   and F_ 
~1 ~<L 

Term F^ F0 

Tr-W-TjT:1 — G.T:
1 

~1  v~l ~2'~2 n. ~a~G 

n. ~1 £d~2 

n. ~i~l 
l 

(Xi-Se)^1 

jr &\rh^\&    Qi-^li 

Again it is apparent that all these terms will yield proper hounds 

2 even after the further division into c terms using the Q matrices 

and w vectors. For illustration consider Term 2 above. ~s 

x (A'F'AA'F.A) *-!-•-§ maxv~ ~l/-~ ~l~'   2   2 
6U 

n.  a., 
l   Oi 

by Propositions A. 3.3 and A.3.2. Further, as in the comments following 

Proposition A.3.1, ?f  (^-T^T"1 = C^-T^JCg1* A), (A = T'1- g1) . 

Thus w' Qf  A' FX A" A" F_ A Q W breaks into four terms and only 
~S ~S ~  ~<~ ~   ~   <~K; "•' ~S ^S 

two need be bounded. The first term is 

w' Q' A' S"1(T1-T0)A"
t A"1(T1-T0) S"

1 A Q w ; this is covered in ~s ~s ~ "«-0 x~l ~2 ~  ~ N~l ~2' ~0 ~ * ~s 
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2 
Proposition A.3.7 and has a bound involving 6 and the proper 

denominator.  The second term is 

w' Q' A7 C'-iX-TJT_1(T -T )A_t A^T -TjT^ClL-T )Sl1A Qc w 

< v' Q' A7 Xr1(E--T..)A""t A_1(S--T_ JST1 A Q w 

• X   (A'T^T.. -T0)A"
t A~1(Tn-T0)T:

1 A) 

by definition of characteristic root. But the first term is that of 

Proposition A.3.6 and is properly bounded and the second is less than 

k 2 or equal to • •. -? r * 8 . All the other cases also give proper u      min(n.o_ ) &   *    - 
j 

3 =v »-*-»••• J P-i 

bounds.  (All terms are bounded by a correct function of 5 and a 

suitable constant.) This settles the case for 0, and hence for these 

derivatives of the form 
ÖT.oß * 

Now consider the derivatives of the form 

3^ VT(trf^G.T^G.-2(y-X Js-W^.T"^.T^fy-X -^-Vl, .n .L \ ~a ~i~a ~j  w ~ n , ., / ~a ~i~a ~n~a w ~ n . -, /J OT.ÖT . 2n. 
IV^T ^. - P1+r  : - - " - *     PX

+1 

i,j=0Jl3...,p1,   a=l,2 

It is sufficient for these derivatives to show that for all 

i,j=0,l,...,p that 
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and 
io  \' _1    _T     1/      ft- 

i j       P-L+l °        p.j+1 

(y-x A_)'T:1G.T:1G.T:1(y-x Aj)j 
px+l 

J       Pj+1 

are "both bounded by suitable functions of 6. 

For 0_ there are three terms of the form — ltr EnG.E„G.| and ü 2n. n.'  ~l~i~2~;i 

hence Propositions A.3.8, A.3.9 and A.3.10 apply to give the following 

bounds in Table A.lf.5.3. 

Table A.k.5.3 

Division of 0_ into Three Terms with Appropriate 

E.. and E~ and Bounds for Each Term 

Term 
i 3 

^(TV-To)^1      IT1      -^7 ^  8 ~1 >~1 ~2 ~2       ~1       mm(n^a0k)a_.a^ . 

•fe=OjX) • • • jP-i 

En E  '     Bound for ^-^— ltr EnG.E.G.I ~1 ~2 2n.n. '  ~l~i~2~g' 

8B 

2 Tr1       T^O^-TJT:1  -7-7 ^r  6 
~1       ~1 ^~1 ~2'~2   minCr^o-^JCT^o-^ 

k=0,l,...,p1 

•3 T~ (T -T )T~~       T~ IT -T )T  2f5  g2 3 i! ^L±  ig^ig   ~1 ^~1 X2;i2    , /    v2      ö 
min(nkaok) CT0iCT0j 
k=0,l,.. ,.,p1 

All these bounds are of the proper form. 
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JL 
..r . 
1  3 

-1„ m-l„ „-1 „,-!„ „-1    m-ls 0m = zrkr\ (y-*J '(T~ G.T:
X

G.T~ -T: G.T: G .T7 )(y-xO I 11  n.n.' v*- ~~0 ^~2 ~i^ ~j~2 ~1 ~i~l ~j~l  *- ~-0 ' 

(ß -B )' 
0n9 = -Vl ^

)""~1 X'CT^G.T^G.^-T^G.T^G.T:
1
)^-^)! ^12  n.n ' n  ,..  ~ N~2 ~i~2 ^j^ ~1 ~i~l ~j~l ' ^ ~-o' 1 

1 3      PX
+:L 

0 13 n.n.' ^ ~-0 x£ß ~i~2 ~3'~2 ~1 ~i~l ~n~l ~ " 
V1 

*iu- 
1 , W v//m-lrt m-l„ m-l m-L m-l„ m-lw

(V4) 
I  7 -   X/(T:-LG.T:J-G.T:-L-T:XG.T:XG.T:-L)X ^ ~x    | 1  n     ~ N^e -vi-^ ~g~2 ~1 ~i~l ~j~l '~ n  _  ' 

P    +X P    +-L. 
n.n.'    n 

1  J P-j+1 

(B    B ) 
0._ = ^(y-xo^WW^x -1"-*  1 

15      n.n_' N&/--^Cr  ~2 'vi~2 ~,i~2        " ' 
1 3 V1 

(B -B )' 

10      p^+1 

J17 

318 

= —•=—   —-—=— X'T_ G.T_ G.T-TC — n.n.'    n     .,      ~ ~2 ~i~2 ^,i~2 ~   n     ,,     ' 
±3        n +1 

"1 
Pj+1 

1 i (£i~jy'   _i  _!  _i (fo-jy . 
n.n.'    n      n      ~ ^2 ~i~2 ^j^ ~   n    -.     ' 
i J        Px+1 P-j+1 

'19 
1    ."(firfe)'     ,  -1       -1       -i     <&-&> 

n.n. 
1 3 

•~2 ~i/~2 ~j~2 ~>   n 
P-L+l 
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i 

All of these terms can be properly bounded using Proposition A„3.^. 

The first four must be divided into seven terms in the usual way- 

using T~ = T-. + Aon . The last three are easily bounded as follows 

using Propositions A.3.k, A.3.2, and A.3.10. 

a2 
^   ^   P0    „2   to96  .2 
017 * "TS ' B = * "22  6  > 

Vj     aoiaoD- 

a2 
.2   P0D ^2   1^096  .2 
018^"^2 B   "22  5  » n.n.        o\..ov>. 

10 Ox 0o 

.2  . p0 „2   to96  .1*: 
*19*T2 B   "22- 6 

n.n.        o-^.a.. 
i 3 0i 0o 

All these bounds are of the proper form. 

0-.J- and 0n/- are equal except for changing i and j so the same 

2 
bound applies to each. Since a 6 term will come from the (ßn-ßo) 

part it must be verified only that boundedness for the remainder can 

be derived by Proposition A.3.k with F = J T^G.T:1 and F_= J G-Tl1 . 
i J 

1-1 But the same argument used above for F0= — G.T, can also be applied 
~d    n.~i~l 

l 

to this F, yielding a proper bound. Thus 0  and 0,/- can be properly 

bounded. 

Now the decomposition of the other terms is summarized; the source 

of the all important 5 terms is noted. It can be verified by inspection 
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that all bounds will be of proper form. 0 . breaks into seven terms 
Ik 

%-k)' v,„ . tto'h) of the form  X'FnX ———=~   with F = E..G.E0C- .E_. Such terms 
P.J+1      Px+1 

are bounded by Propositions A.3.k,  A.3.3, A.3.2, and A.3.10. 

Table A.IK 5.^ 

Division of 0_. into Seven Terms with Appropriate 

En, E0 and E_ and Source of 6 Term 

Term   E_ E_ E_        Source of 6 Term 
<"-U. 'Ml ~5 

T^^-T^T:
1
       T:

1 

T:
1 Tr-^-TjT:1 

n-1 

3    T:
1 T:

1 

Si £i 

~1 Ss 

S^-Se^1 
£3 

s1^-^1 
S2'H3 

6  Tr^vTjT:1  T.^CT, -TJTI
1
   T:

1 ET, 

7        T:
1
(T.-T0)T:

1
        T^CTT-T«)!"

1
        Tr1(Tn-T^')T:1 

• -        rJ±   y~x ~2 ^2        •   ~1   ^]_ <~2 c-2 ~1.   ~1 —2 <~2 

l*=ß 

T?      T?      V 

~l'.~2'~3 

012 and 0..„ are the transpose of each other upon interchange of 

(£o-£i}' i and j.    0no breaks into seven terms of the form X'F.F^fy-Xo'-) xd n      ,      ~ <~i~vi K* ~~o px+l 

which can be bounded by Propositions A.3.1-A.3.7 and A.3.10. 
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Table k.h.5.5 

Division of 0 2 into Seven Terms with Appropriate 

F.. and F_ and Source of 6 Tern 

Term- •'    • F, 
~i 

1 
1-1 -1 1 i;  rp   J-frji    _rp    x\rp   -"n   m   J- 
n. x 

T:
1

(T1-T )T: G.T:-
1 

2     - T^G.TT-W-TJT"
1 

n.~l ~x~l  ^1 '-2y'-2 
1 

1       -1      -1      -1 T,   G.T,   G.T, 

Source of 
V 6 Term 

1 „ m-i -G.T., Fn n ,~j~l ~1 
0 

1 „ -1 
•= G.T., F, n .~j~l ~1 
J 

cii-^^11 F 
iß n.n. ~1 ~i~l ~j^-2 

**•     ^rr T
^

1G
-
T

I"
1
(
T
I-^)

T
Ö

1G
-^

1 (T-.-TJT:1 F_,Fö n.n. ~1 ~x~l  v~l ~2'<v£ ~j~£. K~l ZQ'~1 ~l'~-2 
J 

5 ~~- T:
1

(T1-T0)T:
1

G.T:
1

G,T:
1 (T-.-TJT:1 F1?F_ n.n. ~L V<--1 ^ ~2 ~i~l ~j~2            ~1 ^2 ~1 ~Q. ~2 

6 VT:
1
(T..-TJT:

1
G.T:

1
(T.,-TJT;;

1 - G.T:
1 F, n. ~1 v~l ~2y~2 ~i~l A~l ~2''-e n. ~n~l ~1 

7   r^T^CT^-T-jTZV.T^CTi-T-^G.T:1 (T..-TJT:1 F, ,F_ n.n. ~L X~X "-£: ~K: ^X~X ~X -~e ~d  ~J~c    ~1 <~c ~1 «*1 <~e x j 

0.... breaks into seven terms of the form (v<-^0)'FJF 5^(^-3^.) 

-which can be bounded by Propositions A.3.1-A. 3.7 axtd A. 3.10. 



Table AA.5.6 

Division of 0      into Seven Terms with Appropriate 

F^, Fn and F_ and Source of 6 Term 
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Term F 
~X 

i    Tr-W-Tj   - T^G.T:
1 

~1 v~l ~2   n.'-S ~x~l 

i T^G. n.~l 'Xi 
x 

g1^-^)^1 

Source of 

&>•/ 

6 Term 

^C-.T:
1 

n .~j~l 
j 

F 

^G.T"1 Fi ~1 

- Tl^G. 
n.~l ~i 
x 

n.~l ~j~2 (Si-^)^1 £> 

n.~l ~x 
x 

J Tr1(T1-T0)T:1G.T:1 
n.~l N~r xg'Xß ~j~2 

,-1 
(£l-3ß)S   &'&» 

5   T^CT.-Tj  ~-Tri'G,^^.T <~x ~l ~d        n. n 
i a 

^G.TT-'-G.T:
1 ,-1 

fe-^^i    Eo>5> 

6   T"1^-!!?,,)  -. T0
1G.Tr1(T.-T0)f"

1 

~1 x~l ~2   n.~2 ~x~l ~1 ~2 ~2 ^G.T:
1 

J 
xo»~i 

7   T_1(T -T )  ^r^:
1G,T:1(T1-T^)T:

1G.T:1  (T.-TJT:1  F-^F- 
~1 ~X "~K    n.n.~2 ~X~L ~1 ~<s ~2 ~n~H     <~L ~2 ~1   <*-0 ~1 '~2 

x • j 

As noted before every term above yields a bound of the proper 

form after all decompositions (including the Q w decomposition) have 

been made. Each term also includes a 6 term. Thus all terms have 

proper bounds and the lemma is true. J j| 



APPEICDIX B 

ALGEBRAIC LEMMAE USED HI PREVIOUS CHAPTERS 

The following lemmae are used in previous chapters. No claim of 

originality is made for any of them. They are collected here so that 

the reader may easily refer to them. Only a few proofs are given« 

The other lefimae can he proved- "by algebraic manipulation or applica- 

tion of simple -well known results. References are given where 

appropriate. 

LEMMA B.l. If y ~ 7] (u,3S) with 2 positive definite and B isannxn. 

symmetric constant matrix and h an nxl constant vector then . 

and 

PROOF. 

This lemma is easily proved by algebraic manipulation of the 

moments up to fourth order of the multivariate normal distribution. 

These moments can be found in Anderson (1958:39)« 111 

LEMMA B.2. If z ~ 71 (0,l) and b is an nxl constant vector and A is an 

nxn diagonal constant matrix, then 

J  i(b'z+z'Az)1   tx 0..|-i -I'b'Cl-SiA)""^ jie ~ ~ ~ ~-~ c -    I-2iA   e 'd~ ~  ~  ~. 

23U 

Q> 
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PROOF. 

The proof of this lemma is merely an extension of proofs of the 

characteristic function of a multivariate normal random variable. It 

is done by completing the square. A reference is Plackett (I960:l6-17). 

LEMMA B. 3. If xn,x„,...,x are all nonnegative and at least one x. is 
— 1' 2'   ' p  a  x — 

positive and b ,bp,... ,b are all positive and a.,, a_,..., a have any 

sign, 

P 
2 x. a. 

a.    . T l l a. 
x ^ x=l     , x mxn     r— <.    :— <.      . max    — . 

*—T 9 P "—T 9      T» x—Xji£,...,p   x    2 x' b   x—x3^,....p x 
. . i' i 
x=l 

PROOF. 
x.b. p 

let p. =•—x x— . ( 2 x.b. is positive because at least one x. 
i  P \sl 3 J        •                       0 

2 x.b d 

J=l J J 

is positive and all the b. are.) Then OSp, si and 2 p. = 1. 
J 1       i=l 1 

ai        P 
Let c.= -— . Then 2 p.c. is a weighted arithmetic mean of the c. and 

x b.       . , rx x x i=l 

a. a. 
,is thus between min c.= min r—    and max c.= max — .    IJut- ' x b. x        .      u.; 

p p    x.b. a. 
2    p.c.  = z, 

. XX      .   ,   p 
x=l x=l * 2 x.b. 

j=l J  3 

P 
2 x.a. 

i-l1 x 

P 
2 x.b. 
...    X   X 
x=l 

and the lemma is proved.   |jj 
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LEMMA B.k.     If A is nXn positive definite and B is nXn symmetric and if 

X, (G) ä X~(C) >:. ..s \ (C) are the characteristic roots of any nXn matrix 
t  rs^ £_ '•v XX    ^s"'     '   """ —"••••    •• ' 1  • ——. 11 —— • '  .  Jr„ .1,1 — •-•in— 

C, and if a^,...,a    are any nxl vectors, then 

X.(A_1B)  <: sup x'Bx 

x*0 x'Ax 
/>v>   /-** 

ana 

x'a .=0 

j = X , £- 5 « . • jl--L 

X.('A"^)'S: inf x'Bx 

x4=0 x'Ax 
/•*•*   ******* 

x'a .=0 

j=l,2,...,n-i 

PROOF.-   ••• 

The proof of the first statement is given, in Anderson and 

Das Gupta (1963). The second statement is proved analogously. j|| 

LEMMA B.5. If A is nXn positive definite and B is nxn symmetric then 

(A"1?) 
x*Bx 

x±{~ ~ * iS ^ 

•where £ is a linear space of dimension i. 

PROOF. 

£ has a "basis of i vectors. Let them he ß. ,ß_,...,ß.. This basis 

can he extended to a basis for R by adding n-i more vectors orthogonal 
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to ß.-,ß_,...,ß.. Let these vectors be of. ,ff„,...,a .. Then x e £ if 

and only if x'a.= 0 for j=l,2,...,n-i. Lemma B.k  then applies, proving 

this lemma. |j J 

x^Bx. 
LEMMA. B.6. For A and B as in Lemma B.U, X.(A J3) = ^^ where x. is x'Ax. 

the characteristic vector associated "with X..  , , , _ -,_ 

P P 
LEAMMAB.7. Suppose B„ = E b_. G., B_ = 2 b_. G., all G. are positive 

—" ~1 . _ li ~i' ~0 . _ Oi ~i'   l  c •  
1=0 1=0 

semidefinite and at least one is positive definite and b  > 0, 

i=0,l,...,p. Then 

S b^.x'G.x. 

i) \.(B~\)  = i=2 ,  
' CT^-O ~ly       T> 

S b-.x'G.x. 
i=o 

0l~ü'-^-~;3 

•where x. is the characteristic vector associated -with X., 
 ~G  3 

ii) X, (BirB..) £•   max 
. X *MJ 'vX       -, - 

hi 
i=0,l,...,p  Oi 

iii) If H is an nXm matrix such that x H = 0 implies 

x'G.x = 0,  i=j+l,...,p, for some j=031,...,p then 

X ^-(B'V) m+lx~0 ~1 
max 

bii 

i=0,l,..-.,j  Oi 
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PSOOF. 

Statement i) follows from Lemma B.6 and the definitions of B~ and 

B,. Statement ii) is a simple application of Lemma B.3 to part i). To 

prove Statement iii), observe-that 

x'B,x 

x'H=0 

by Lemma B.M-J 
3 
2 b,..x'G.x 

. n    JL1~ ~l/v 
-       1=0 
:£ SUp    —: •  
xtO    £ .   /_ ~ ~    E b x G.x 

i=0 U1 ^L 

b. . 
^ li s   max   r-— 

i=0,l,...,j Oi 

by Lemma B.3. Note that in both parts ii) and iii) the correspondences 

between Lemma B.3 and Lemma B.7 are as follows: 

Lemma B. .3 Lemma B.7 

X. 
l 

x'G.x 

a. 
l - Ai 

b. 
l 

boi . Ill 
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LEMMA. B.8. Let B be an nxn symmetric matrix and C an nXm matrix, then 
. ,    ... _>     ^^ •   , I,   • I     •¥-•—•.»..   .., — -,     • I I— — I.I „,  .»I-. I.,    J     /^>/    ~~— I      I  I  •   .  I   ' iV.—•••!  I.     ..,,. 

max JX.(C'BC)|  S\       (C'C) max |X,(B)L 
-TO j ~ ~~ '        max^~ ~ n   n   _ '  k'~y ' j=l,2,...,m    0 k=l,2,...,n 

PROOF. 

X.(C'BC) 
X'C'BCX. 

x'c'BCx. 

x'.C'Cx. 

x'c'Cx. 

x^x.       » 

where x. is the characteristic vector associated with X...  (if Cx.= 0 
~0 J      '—3 

that root is not of interest in any case since only the nonzero 

characteristic roots of C'BC are of concern, therefore, since 

x'c'Cx. SS'O 

IX.(C'BC) 
x'c'BCx. 

x'.C'Cx. 

x'c'Cx. 

x'.x. 
~0~d 

^ sup 

2*° 

/O r^-rO 

£T X  (c'c) max ~ ~ 

= X  (C'C)   max   !x, (B)J. IIj 
K.—X)£• £ . . « jll 

LEMMA. B.9. Let A and B be nxn matrices with A nonsingular. Then 
cv "' •" • '• f+*r 

X.(AB) = X.(BA). 1 v<~~    x «-w 
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LEMMA B.10. Let 3 be an nXn matrix. Then X.(B) = X.(B').   ~>        ————   _____  ^ »__/     ^ \^ 

LEMMA B.ll. Let A be an mXn matrix and B be an nXm matrix. Then the 
''  ^rf  -—___—___— i i-— i  -_  •_.  •  fsj .    I  •   ii  .II..._—. •         ^ I w — in-II.-ii  n 

nonzero characteristic roots of AB are equal to the nonzero character- 
-„,„—,,., —,M  •-•„•-,_-,...  i . .•„,-  i_—, ,—.... •••_,HI-I.,_..II. /s^w-.  I—'     i.i.._-    ., ,— .. „  —I,., •   i i ,.   ,,  - ——-,.11 

istic roots of BA. 

LEMMA. B.12. Let x and £ be nXl vectors and A an nXn matrix. Then 

(x'Ay)2 _.(_Wy) X  (A'A). 

LEMMA B.13. Let A be nXn positive semidefinite and let B be nXn. Then 
——__       /V      —_ >*• .'I! — ,_ I • _____ 

max |X, (AB)J  <: X       (A) max I'X, (B) I. '  >-^—' '        maxN~'  _..   _ '  k w' 
-5.~*-i- j -^ j n • « yXl 

PROOF. 

This lemma follows immediately from Lemmae B.8 and B.9 and the 

fact that there exists C such that A=C'C. Iii 
/+J r*f   /N/ r** III 

IEMMÄ. B.lU. For A nXn, . max   |x (A^)| = 
Ä~--L^_ij • # # j n 

max   |Xk(A)|
J , 

3—lj2>3>•• 

LEMMA B.15. If S., and S ' are nXn matrices and t_, t,, t„ and y are nXl 
  ~X   »~_ ——      -______—_—__ ^)  /«X  ~^   K,        •"• 

vectors, then the following^ statements are true. 
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")  fe2)%fe2) -WiW T 

= (z-fe) '(v&>takP+< V£i> '%-£i) te-*o) 

+ Cz-toJ'CVäi^V^^io-^'CSe-äLHVti) 

+ ^V&Cii-ie^^-ie^&C^-tQ) 

+ ^-^%^i-h)+^r^%^-h) 

+ (Vie)'Sßfei-iß) • 

IEMMA. B.16. If S_ and Sn  are nxn matrices and t^, t_ and y are nxl 

vectors, then the following statements are true. 

= (z-i0),(£1-s0)(x-i0) 



APPENDIX C 

A COMPUTER PROGRAM TO IMPLEMENT 

THE ITERATIVE PROCEDURE 

C.i. Algebra Used in the Computer Program 

A Computer program has been 'written to implement The Iterative 

/ 
Procedure, which was introduced in Chapter 5. This section contains 

a brief description of the algebra used to write the program. This 

algebraic manipulation was used instead of more straightforward 

methods of calculation in order to reduce core storage requirements 

in the computer. The straightforward methods require the storage of 

several nxn matrices in order to compute the quantities required for 

the solution of the iterative equations (S and perhaps each of the G.)« 

Since this requires a great deal of core for even moderate n, some 

improvement is needed. The algebraic manipulations given here reduce 

the maximum dimension of the matrices which must be stored to 
pl 

m =  E. , m.. This is usually much smaller than n. For example, in 

the two-way balanced layout described in Section 6.1 , n=IJK and 

m=IJ+I+J; even for small I,J,K appreciable savings can result. For 

instance, if I,J,K is 2,3,3 n=l8 but m=ll and if I,J,K is 3,6,k 

n=?2 but m=27. The basic result used in these manipulations is due 

to Woodbury (1950) and is stated as Proposition C.l.l. 

PROPOSITION C.l.l. Let £ = CT_I + UDU' where T,  and I are nXn and U is 

2kZ 



2U3 

nxm and D is mxm diagonal and nonsingular. Then 

2"1 = _A_ (I-UC^D^+U'U)"1!!'). 

PROOF: This proposition is a special case of a result of Woodbury 

(1950). HI 

The matrix "which must be inverted for this computer program may- 

be-written in the above form, -where U = [U_:U_:...:U 1 and 
* ~ '—1 ~2 "JD 

D = 

D, 

0 

0 

0 

22 

0 

0 

0 

D 
-Pi 

where D.= o\   I    .    Thus m = S.   .  m..    Let PsHue T3artitxoned as 
ML      l Mn. i=l    l ~     /— ~ 

l 

F = 

-11 

F 
PX1 

~lp 1 

^1P1 
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2hh 

•where F. .= Ufu..    Let E = (aJ)~ + F) be partitioned similarly.    Let 

%=H'x 

w. 

2fi 

(o) 
1 

(o) 

(o) 

•where w.    = U.V.    Lei 

H = U'X = 

H-, 

H 

where H.= U.' X.    Let 

and 

^n = X X 

h^-l'z ^0 
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Then F and E are mXm, w_ is mXl, H is mXp-, A_ is p„Xp^ and b. is p„Xl. 
~    ~       ' ~0       ~      0 ~0    0 0    ~0    0 

These quantities and y'jr are the only quantities needed to compute an 

iteration of The Iterative Procedure. Note that w_. F, -H. A., b. and 
'Sj ~ ~ »MJ *~0 

yV may all be computed as the data are read in, thus eliminating any 

need to save the large matrix U. E can then be formed at the start of 

each iteration and the matrices Q ='E "T and P = E if can be formed by 

solving linear equations. Thus it is never necessary to actually invert 

E. 

The quantities necessary to perform one iteration of The Iterative 

Procedure are the elements of the matrix Bfov.O and the vector 

c[o"/.\j a(o>.03 defined in Section' 5.h.    The iteration required i is 

then 

,-1 tJ/.-x  =B    (07.\)  c[o-/.\,Q'(a/.\)] ~(i+l)     ~     ~(i)       ~(ij ~ ~(x) 

•which can also be solved -without inverting the matrix B(o>.\.). Thus it 

is never necessary to invert any matrix to use The Iterative Procedure. 

To obtain the elements of c, a must first be calculated from the 

equation 

or 

X'TThi a = X'E-Iy , 

But 

Acy =b . 
/*»«   *w <•*-• 

A = X'E •^ 

J0 
X'(l - UE"1U')X 
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= — (x'x - x'wf-Vx) 
(J r*+   rsd r*i   ******       t+*  f**r 

Also 

0 

= — (A.  - H'P), 

= — x'(i - uE^Oy 
fT       ***>       **** r*****       /w      r** 

0 

= — (x'y - X'UE'-Hj'y) 
0 

i (b. - P' w.)   . 
a0   ~0     ~   ~0 

<5 = A_1b a is obtained as a = A "b and the elements of c are calculated from the 

[c],   =  (y - X a)' E"3X5,S"1(y - X a),     1=0,1,...,p.. 

For i=l32j...,pn  this reduces to 

(y - Xa)' E^G.lf^y - Xa> 

= -% (y-X5)/(l-UE~V)U.U./(l-UE"V)(y-X?) 
ffo 
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= \ [uf(i-UE"1u,)(y-^)]/[uf(i-uE"1u,)(y-^)] 
'0 

.2 ~i~i  ' 

•sphere 

t. = uf(i-uE~V)(y-x5) 

But if w is defined "by 

w = U'  (y - X a) 
rf-s* ,^/ Ä/ f*t   r*t 

vn - H a 

2fe 

partitioned the same as -w , then 

t.  = U'(I - TJE"V)(y - Xa) 

= Uf (y - X (5)   - UflIS~V(y - X a) 
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I 

pl 
= w. - T,    Q. ."w., 

-where Q and P axe partitioned just like E and H respectively. For i=0 

it is necessary to calculate 

(y - Xa)' E'V^y - XÄ) 

'= 4 (y - x Ä)'(i - UE-V)(I - UE~V)(y - x 5) 
ao 

= -% {(y - X <S)'(y - X <S)-2(y - X <$)'UE-V(y - X•*) 
ao 

(y - X 5) ' UE"1U/UE"1U/(y - X <*)]• 

"2 U "      
CTÖ 

•iy'y-2y/x5^,X/XÄ-2[U'(y-Xa)],E~1U/(y-X$) 

+  [E'VCy-xSM'u'uCE'fyy " »$)]) 
«•S/ •*• Xrf    /**rs^ /^-»   .-w    /N^ t***    f*r r*~rss J 

= -7T iy'y-2b' 5 .+ c? A^ a - 2v'z + w'Fwj- 
CTo 

where Z = E~ w and z is partitioned as w. 
/•s*     ^»rf 



ETow [B]i- must be computed,     i,j=0,l,...,p .    For 1=0=0. 

[B]nn = tr S"1 S"1 

i tr(l - UE~V)(l - UE'V) 
CTo 

= 4 f tr I - 2tr UE-1^ + tr UE^'UE-1!!']- 
ao 

-—• (n - 2tr E'-Hj'u + tr E'^'UE'^'üT 
a0 

= ~ {n - 2tr Q + tr Q2} 

°0 

For j=0,  i=l,2,...,p 

[B],_ = tr E"1 S"1 G. 
~ 10 ~     ~     ~a 

•4'tr(l - UE'-HJOCI - UE"1U')U.U./ 

2^9 

CT0 

— {tr U.U.'- 2tr UE-1U'U.Uf+ tr UE~1U/UE~1U'U.U',i- 
°0 

•% |n - 2tr UfUE"2!!^.  + tr UfE'-Hj'UE'-Sj'U.'!* 
CT0 
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pl pl pl 
, ^ {n - 2 E tr F^. + E  E tr ^.Q.J 

CTQ     k=l    "  "  X=l k=l 

For i,J=l,23...,p 

[B]. . = tr E'VE^G. 
~ 13    ~ ~i~ ~j 

= ~ tr(l - T3E"1U,)U.Uf(l - UE"1u')U.U' 

- ~ trU!(l - UE"1u')U.Uf(l _ UE'-HJ^U. 
CT0 

~ tr[UfU.- UfUE_1u'u.]'[ufU.- UftfEf-Vu.] , 
ao 

pl pl 
= -4 tr[F. .- E F.,Q. .]'[F. .- E F..Q. .] . 

^2  L~ij k=1 -vik^k^ 
L~io k=1 ~ik^kj 

The above formulae demonstrate that indeed only the matrices F, H, 

w^, A^ and b^ described above need be carried in the calculations. Thus 

it is never necessary to save the large matrices U and X. This enables 

problems of a reasonable size to he run using this program, -which would 

not be possible if matrices of dimension n were needed. 
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The above algorithms are used in a sequence of subroutines which 

compute the requirements for each iteration. There is one more algebraic 

facet of the program of •which the user should be aware.  In Section 5.8 

slowly converging sequences which oscillated above and below the final 

value were mentioned. This program has a feature designed to eliminate 

this problem. Whenever two iterates 07. ^ and 07. v are sufficiently- 

different, 07. , \ is formed by taking another iteration from ov . \ and 
Ki+1) i) 

then averaging.    If averaging is necessary a        is calculated from 

07. \   as 
2<i) 

o   = B~ (o-/.>)c[CT/.v,a(a,.>)]. 

and then 07.,_% is formed as 
~(i+l) 

(!)• 
2(i+l) =2(£(i)+S ;> 

This feature eliminates the oscillating, but care must be taken that 

it not introduce a false convergence of its own. This is done by 

insisting that the last iteration must be one not involving the averag- 

ing process. The averaging and the .safeguard process have worked very 

well on sample problems. 
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C.2. Setup and Output of the Computer Program 

The computer program is designed to deliver as much freedom and 

convenience to the user as possible. The user must supply only two 

control cards. The first card contains the number of observations, n, 

the number of levels of fixed factors, p , the number of random factors, 

p,, a number indicating how often the iterates are to be printed (see 

below) and two yes-no statements. The first is yes if user supplies 

initial guesses and no otherwise. The second is yes if the short cut 

notation for the U matrix is used and no otherwise.  (See below for 

explanation of the short cut notation.) The second control card 

contains the number of levels at which each random factor appears, 

m., i=l,2,. . .,p-,.  (Thus there are p.. numbers on the second control 

card.l 

After the control cards come the data cards. The data is read in 

by rows or observations. There are two cards per row. The first card 

contains the appropriate row of the U matrix. This may be in the form 
pl 

of zeroes and ones (there will be m = 2. n m. numbers.) or in short v i=l l 

cut notation. In short cut notation only p1 numbers are used, each 

number stating in which column of U. the one appears; this is a unique 

description because by definition there is exactly one 1 in each row. 

The second card contains the appropriate row of the X matrix and the 

observation on y. There must be n pairs of cards, one pair for each 

observation. The last card for a problem states yes or no—yes if 

another problem follows and no otherwise. 
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The output of the program consists first of the intermediate 

iterations the user asked to be printed. If the user placed a K on 

the first control card in the appropriate position, then the results 

after each K iterations are printed. Then follow the final results 

and the number of iterations required. The estimated large sample 

covarianee matrices for a  and a  are also printed: these matrices are 

estimated by [X/Z"1(o)X]~1 and 2B_1(o) respectively. 

This computer program can handle fairly large problems with 

relative ease. The size of the largest matrix which should be inverted 

(or set of equations to be solved) is certainly less than 100 and 

probably closer to 50.  (The reasons are twofold—computational 

accuracy and time requirements.) If S were inverted directly the 

size of problem would be severely limited. However, using the indirect 

methods above mach larger problems can be accommodated. Since very 

often n is approximately a multiple of the product of some of the m., 

even when the sum of the m. is restricted to be small, n could be large. 

For instance, even if the sum of the m. is less than 60,  the possible 

values of n could be well over 1000. The simplicity of the control 

cards and data input makes the program easy to use even for the 

statistician who is unfamiliar with computer programming. It seems to 

be an effective and efficient program, judged by its performance on 

sample problems. 

Copies of the program deck are available from the author upon 

request along with more detailed documentation and sample problems. 
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APPENDIX D 

COMMENTS ON THE PROOF OF CONSISTENCY OF THE MAXIMUM 

LIKELIHOOD ESTIMATES GIVEN BY HARTLEY AND RAO 

In Section 1.1, it was mentioned that H. 0. Hartley and J. N. K. 

Rao (1967) gave a proof of the consistency of the maxi.Tm.iTn likelihood 

estimates in the mixed model of the analysis of variance. It was 

remarked that the theorem was true but that the assumptions used were 

not all stated correctly, that the assumptions were restrictive and 

that important details were omitted from the proof.  In this section 

some brief comments will be presented to elucidate these remarks. The 

notation used will be the notation used in this paper rather than that 

used,by,Hartley and Rao in order to preserve continuity. 

The assumption stated incorrectly occurs on page 102 of the paper 

and is labeled T.iii.  It requires that for each design in the sequence 

of designs the matrix M= [X:U.:...:U ] have a basis W = [X:U ] where 

U contains at least one column from each U.. An assumption of this 

sort is necessary to insure estimability of the parameters. That this 

assumption is not sufficient can be seen in the following counterexample. 

Let U, be any matrix such that the basis of [X:U.,] is [X:U ] where U 

contains at least p.. columns from U,. Then let U.= IL , j=2,3,... »P-, . 
1 ~± ~j ~± 1 

In such a model instead of each individual o\ ,aOJ...,a      only 
12'    p 

a,+a„+...+0  can be estimated, yet this model satisfies the given 
1 2     p^^ 

assumption.  One possible way to correctly state the assumption is to 
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use two separate assumptions like Assumptions 1.3.*+ and 1.3.5- 

The assumption which is restrictive is 7«i (p. 101) which requires 

that all the diagonal elements of the matrix üf U. (of which there are 

m.) be less than or equal to some universal constant R for all n, 

i=l,2, 
'l" 

It was claimed in this paper that this required that 

the number of observations at any level of any random factor to be 

bounded and that it forced all normalizing sequences to be the order of 

n. That this assumption would be restrictive was shown in Section 1.1 

by reference to Section 6.1. That the claims are true can be seen by 

the following argument. As Hartley and Rao point out, a diagonal 

element of U.7 U. represents exactly the number of observations at the 

th ••--• 
appropriate level of the i.  factor and the sum of these elements must 

be n.  (Assumption 1.3.6, which was also used by Hartley and Rao (p.95)? 

can be restated to say that every observation is allocated to exactly 

one level of each factor and that each level is allocated at least one 

observation.) Thus there are m. such elements,, each less than R (which 

demonstrates the first claim) and greater than zero, and adding up to 

n; it follows that m. s ii/R, i=l,2,... ,pn, which was to be shown. 

In an attempt to show that the details of the- proof of consistency 

omitted by Hartley and Rao may be important, a short outline of the 

method of proof will be attempted. The object is to apply the method 
1 

of Wald (19I+9) and Wolfowitz (19U9) to [L^jB)]11 where L(jr,6) is the 

likelihood function. One shows that for each T] > 0 and e > 0 there is 

an h = h(T|) and an n. = n (T],e) such that h < 1 and such that 
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sup 

where Q(T|) = {9:||9-8 || > T)} and 0 is the true parameter point. (That 

is, the likelihood function cannot be large unless 0 is near 9_.) This 

_is done by showing that 

Po{ SUP ,  s  n l0g L(Ä'£) " E log Lfe'^)) > lo§ h} < S * 
6 s Q(T1) • J 

The following are some of the things which must be shown in order to 

use the Wald-Wolfowitz argument. 

(1) J log L(y,e)  2* 6\J;r log L(y,9)] for all 9. 

(2) «*0[i leg L(y,9) - i log Ky^) ] < 0 for all n. 

(3) lim cS [^ log L(y,9) - J log L(y,9_) ] < 0. 
n-**> 

(4) Continuity and limit conditions on L(y,9). 

Hartley and Rao prove (l) as Lemma 7-1 (p. 102). They state that (2) 

and (U) follow from the assumptions; this is true, although a great 

deal of work is necessary to prove (k).    They do not mention (3) at all. 

However, Condition (3) is very important. It is necessary that the 

expected values in (2) approach a strictly negative limit in order to 

insure that the probability of any particular difference of log likeli- 
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I hoods being negative will converge to one.    To see that (l)  and (2) 

above are not enough,  consider the sequence of random variables 

Z   ~ 7?(- — ,-^).    Then Z     •&*   <SZ    and SZ   < 0 for all n but 1 n n        2' nnn n 

I P{Zn < 0} = 0.8413 for all n. Thus a condition like Condition (3) must 

| be proved; to prove this condition it is necessary to use arguments of 

the same type used in Section A.4.1 to show that the matrix J was 

positive definite. It was shown in Section 1.1 that arguments about 

the positive definiteness of J were closely related to problems of 

I degenerating distributions. That such arguments must also be taken 

! into account in this version of a consistency proof is entirely reason- 
I 
1 

able since this result is a stronger result than Theorem 4.4.1 and so 

this version should take into account any difficulties that arise there. 

Condition (3) can be proved using all the assumptions—including 7.i, 

but it is not true when different parameters converge at different 

rates. Thus this proof of consistency can be used under all of Hartley 

and Rao's assumptions but will not work in the more general cases be- 

cause the limit in (3) degenerates to zero. 

Interestingly enough, although the assumptions 7.1-7. üi are 

necessary to prove consistency, they are not necessary to prove (l). 

In fact the only necessities are that the elements of X be bounded and 

that 0 be an interior point of the parameter space. To prove (l) it 

suffices to prove, as Hartley and Rao did in Lemma 7.1 (p.102), that 

Var0[^ log L(jr,e)j = 0(£). But 
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log L(x,e) = § log 2TT - i iog|s| - iKjr-x*) s"1^,^). 

Therefore, 

Yar [log L(y3e)] = 2tr(Z"1Sn)2 + k(a^Jx^h^rtfc^v  ), 

by Lemma 3.1, 

<: 2i<L^(S'1^)  + U(a-0'(ar-ar_)X       (XlA) max ~   ~0 ~ ~0      ~ ~0    max ~0 ~ 

•x    (ifV)2 
maxv~   ~Cr 

by Proposition A.3.^, 
ou.   v2 

<; 2 5        max ( —i   )  [n+2(a-cyJ'(Q'-<y  ) 
1=0,1,...,Pl       i ~" 

X       (X_1ILX)] max ~   ~0~' J 

by Lemma B.7.    But 

X       (X'EI-Sc) £ X       (X'X) X       (if1) max^ 0 ~' maxv~ ~      maxv~0 ' 

by Lemma B.8 

= x     (x'x) .-   1/v v maxv ; X   .   (XL) 

£ X       (X'X) -i- 
max ~ ~   CToo 

because-Xmin(S0)  s• CTQQ.    But if the elements of X are bounded then 

Xmax(x'x) < Kn for some constant K.    Therefore 
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Var0[i lo6L(y,e)] * i[2   raax   (3») + Mtf^(ap  J..JL j 

I which was to be proved. 
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