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Summary 

Maximum likelihood estimation of the parameters X    and u 

of a simple (linear) birth-and-death process observed continuously 

over a fixed time interval is studied. Asymptotic distributions 

for large initial populations and for large periods of observation 

are derived and some nonstandard results appear.  The related problem 

of estimation from the discrete skeleton of the process is also 

discussed. 
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1.  Introduction 

Let X  "be the population size at time t of the (linear) 

"birth-and-death process, that is, the Markov process in which 

iXh + o(h), j=i+l, 

P<Xt+h 
= J I Xt = i> = I1'  i(X+y)h + °(h)' j=i> 

iyh- + o(h), j=i-l, 

o(h) , otherwise. 

i=0,l,2,...,  X >_ 0 9 y >. 05  and assume throughout that Xn  is 

degenerate at some x > 0.  We shall consider maximum likelihood 

estimation of the parameters  X and y assuming that the process 

has been observed continuously over some time interval. 

The maximum likelihood estimators are the occurrence-exposure 

rates X = B /S, ,  y = D /S , B  and D.  being the number of 
X   "G t   t      t t 

births and deaths and S, = /_X du the-Ltotal time lived by the t   0 u J 

population in the time interval  [0,t]„  The sampling properties 

of these estimators have been studied by a number of authors, to 

be referred to in Section 2, who assumed various stopping rules 

depending on the number of births and deaths. 

In this paper the sampling properties of the estimators will 

be studied under the assumption of a fixed interval  [0,t]  of 

observation.  Exact results are as yet scarce; see Section 2. 

Asymptotic results for large initial population sizes are standard 

and stated in Section 3.  Asymptotic results for large t are 



studied in Sections  k and 5.     Two  aspects  of the birth-and-death process 

cause novel  features.     Firsts,  if    Ä  > y,     X,   -> 0     (""becomes  extinct") 
xo with probability     (u/A) and    X    -*• °°    otherwise, whereas  if    X j£ y, 

X • "*" 0     a»So     Accordingly,,  Section  k gives  asymptotic results   conditioned on 

X '   ~* °°    and Section  5  results   conditioned on extinction.     Secondly,  given 

X   -> oo3     X /E(X  ) -> W    a.8.     where    W    is nondegenerate.     Asymptotic 

normal theory no longer holds but is  replaced by  "Student"-distribution 

results«     The proof uses  a generalization of Lamperti's  random time 

change transforming the birth-and-death process  into  a compound Poisson 

process,  and then transforms the time scale back in a Billingsley  (1968)- 

type approach. 

Finally,  estimation under the  assumption that the process  is only 

observed at equidistant points  of time  (the so-called discrete  skeleton) 

is  discussed in Section 6  and the  results  are  shown to improve the early 

work  of Immel  (l95l)   and Darwin   (1956)°     Furthermore,  it  is  pointed out 

that by making the  discrete  skeleton infinitesimal, the  results  for 

continuous  observation are  recovered« 

The results are related to recent work by Dion (1972) on estimation 

in the Galton-Watson process and results by Jagers (1973c) on estimation 

of-the offspring distribution of a Bellman-Harris  process. 

The particular  cases     y = 0     (the pure birth process)   and    A = 0 

(the pure  death process)  have been studied previously.     Keiding  (197*0 

gave  results   for the pure birth process,  using different proofs,  and 

Beyer,  Keiding and Simonsen  (forthcoming)   give exact  and L -convergence 



results  for the pure birth process  and the pure  death process  as well  as 

a numerical evaluation, of the  asymptotic  results   (for these particular 

processes),   given in Sections  3 through 5 of the present paper. 

The literature  on estimation in the pure  death process  is  vast, 

this  problem occurring in  a variety of life-testing situations.     We 

shall not  attempt to  review this  literature but  call  attention to the 

review by Cox  (1965)   and a paper by Wolff  (1965)  on estimation in 

birth-and-death processes  of queueing theory»     Further specific  references 

are  given: in Sections  2  and 3. 

The  asymptotic  results  in Sections   3 through 6 specialize  in  an 

obvious way to the pure birth and pure  death processes.     We  shall not 

state this   specialization explicitly in each  case and will therefore 

assume through those Sections  that    A > 0    and    u > 0. 



2. , Maximum likelihood estimation, from continuous observation 

Theorem 2.1. . The likelihood function is proportional, to 

W -(x+u)st 

where B  and D  are the number of births.and;deaths,1respectively, 

and S, = T X du is the total time lived in the population during 
—,—      t 0     u.         • :—! £-^:—• • —— 

[0,t].     (B  ,D  ,S, )     is minimal sufficient  and the maximum likelihood 

estimators  are  given "by     A = B,/S       and    y = D, /S,    . 

Remark.     N,   = B,   + D,     is to he understood as the number of discontin-          t t t - 

uities  of    X  ,     0  < u < t.     At    B,     of these.    X      jumps    +1.  at    D, u =     = t 3uu ' t 

of them,     X      jumps     -1.     Thus     B      and    D      depend on     {X  |0  <^ u <^ t} 

only and it  is  seen that    X    - xQ  = B,   - D.. 

Proof.     The likelihood function seems  to have been derived first by 

Darwin  (1956).     The other results  are  immediately  derived from the 

likelihood function. 

Remark.     The  characteristic  function  and some other results   concerning 

the  distribution of the minimal  sufficient statistic were  given by 

Puri   (1968).     For discussions  of the  distribution of    jj    when    A = 0 

see Hoem  (1969b)   and his  references. 

Exact  and approximate  small-sample properties  of    A    in the pure 

birth process   (y = 0).   and of.   y    in the pure death process   (A = O) 

are  given by Beyer, Keiding and Simonsen  (forthcoming). 

Alternative  Stopping Rules.     Stopping rules making the observation time 



t a random variable have been studied by a number of authors.  Thus 

Moran (1951, 1953) observed conditional on N  and on the particular 

sequence of births and deaths (thereby avoiding untimely extinction). 

Kendall (1952) observed conditional on D = xn  and Bartlett (19559 

Sec. 8.3) described briefly observation conditional on N  or D, 

In all such cases, the likelihood function,.-arid hence the maximum 

likelihood estimators, properly interpreted, remain the same (which, 

it seems, was not always realized by these authors) but the sampling 

properties, of course, differ.  Anscombe (1953) studied sequential 

estimation with the criterion that A - u ^e estimated with a prescribed 

small standard error a.  He obtained the stopping rule:  observe until 

1/2 
S >_ N  /a,  (Some device must be prescribed to avoid extinction before 

Xi  —     Xi 

then, )    Asymptotically   (as    N    -*• »)  unbiased estimates  of    X + u    and 
1 /p _i/p 

X - u    were obtained as     al and    a(B—D  )W~       ,  respectively.     We 
~C t      "C      "C 

remark that  since  under this  stopping rule we may substitute    S,      for 

1/2 N       /a, these  estimators  are nothing but    N./S.      and     (B -D  )/S, , or 

the maximum likelihood estimators  once  again. 

The point  is  perhaps best  illustrated by the reparametrization 

(<j>,9)  =   (X + u,u/X).     Then the likelihood function will read 

Nt  -*S     D N 
cf>    e 9     (1+6) so that     tj)    and    8    are L-independent,  and 

furthermore,  given    N   ,     S       is  S-sufficient  for    <j>    and    D.     S-sufficient 

for    9     (in Barndorff-Nielsen1s   (1971)  terminology).     The probabilistic 

interpretation of this  reparametrization is that    <j>    governs the  "split 

time" process   (Athreya and Ney  (1972))   and    6    the  imbedded random walk, cf. 

Moran  (1951, 1953). 



3,  Asymptotic results „for large populations. 

The birth-and-death process with    X    = x      can be  interpreted as 

the sum of    xn    independent birth-and-death processes with the  same 

parameters  and    x^.. =..1..   The  following asymptotic results  for    xn 

and fixed    t    may therefore be obtained from standard asymptotic 

maximum likelihood theory. 

Theorem 3.1    As     x -> <»,   (A,y)  •>  (X,y)  a.s.     and 

^(e^-l)) 
Vl/2 

->•    Normal 

the factor, in { } being replaced-by x_t when. X = y. 

Proof. It was shown by Puri (1968) that 

X - y   xo 

(appropriately modified when    X = y),  and since by the  strong law of 

large numbers     B /x    -> EB  ,     Dt/
X

0 "*" ED
+       and    ^^O ~* ESt     aS    X0 "*" °°' 

the strong consistency follows.     Asymptotic normality follows  from 

standard theory, we need only compute the  information matrix.     But 

-D^logL -D^logL 

-D D^logL -D^logL 

/B,.X~2 0 t 

0        Dty"21 



and the result follows by taking the expectations. 

Remark.  Sverdrup (1965) gave a careful study of similar properties 

for related processes, cf. also Kendall (19^9) and Hoem (1969a, 1971) 



U.     Asymptotic re suits... for large periods  of observation: given non-extinction 

In the  supercritical  case, that  is, when    A > y3   it  is well known that 

X /E(X •)  = Xt/{xQexp(X  - y)t} •> W.a.a.     as t -*••», where    P{¥ =  0} = 
X0 

P{X    •> 0} =   (y/A) and the  distribution of    W,  given.   W. > 0,  is  gamma 

-1 xo xo-1 ~xow 

(xQ,x0   ),  that  is, has  the density    x    w e /T(x  ),  w > 0     (Harris 

(l963)).     Similar results  hold  for a.s.   convergence of the minimal 

sufficient  statistic which implies the  following consistency result. 

Theorem kd 

(a)   As    t -> 

-1 -U-y)t f   * \    I   \      w X0e K PH    Xly"    a°s' 

> (b)    As    t -» °°,     (A,y) ->  (A,y)   a.s.    on the  set    {X, ••*• «=}. 

iv Proof,     (b)  is  a corollary of  (a).     To prove   (a), we may use Jägers' 

(1973a)   results  on  almost  sure  convergence of random functionals  of 

( general branching processes.     In  fact,  the birth-and-death process  is 
) 

a general branching process with Malthusian parameter    A - y,  life- 
's 

length distribution function    L(x)  = 1 - e and expected reproduction 

j process  given by the  density    Ae       dx.     In the  case    xn =1,   (a)   is now 

obtained directly  from Jägers'   Corollaries  1,2,  and 5,  and the general- 

ly ization to    x~> 1    is  immediate. 

The asymptotic behavior of the estimators  on the  set 

J {W = 0}  =  {X    -*• 0}    is  described in Section  5 below. 



Theorem k,2    As    t -y », 

slt
/2a - A)A-1/2 

ql/2r ,   -1/2 
St     ly - yJy 

in the  conditional  distribution,  given    ¥ > 0, where    A,  B    and    ¥ 

are  independent,    A    and    B    are normal     (0,l)     and    ¥    is     gamma 

(xQ,x0  ). 

Proof.     The  almost sure  convergence of    S   ,  properly normalized, was 
1   ' \j 

shown in Theorem k.l. 

The  asymptotic normal distribution is  obtained from asymptotic 

normality in a certain compound Poisson process which is  converted into 

a birth-and-death process by a random time change,  and then applying 

Billingsley   (l968)-type results to verify that the asymptotic normality 

holds  after the random time  change. 

Let  a compound two-dimensional Poisson process     (Q   ,R  )    be 

defined in the  following way.     At each event of a Poisson process     U 

with intensity    A + y    the two-dimensional  cluster size     (M,N)  =   (1,0) 

or     (0',l)     with probability    A/(A + y)     and    y/(A + y),   respectively. 

Then if     (M. ,N.),   i=l,2,...     are  independent replications  of     (M,N), 
xuJ1       U 

(Qt,Rt) =  (J    Mi5 I V).    Obviously   E(M,N) =  (A/(A+y) ,y/(A+y))    so 

that    E(Q ,E,) =   (At,yt)     and similarly it  is  seen that 

10 



V(B  )  =   (A + y)tE(M2)  =  At,     V(D.)  = ut     and    Cov(B. ,D.)  = 

(A + y)tE(Ml)  = 0.     Since     (Q,,R  )    has  independent  increments, 

it  follows "by the  central limit-theorem that     ( (Q  "-  At) (At)-1'2, 

-1/2 
(R    - ut)(yt) )     is  asymptotically two-dimensional normal with 

mean  zero  and variance matrix.the  identity» 

Let:   Kt = Qt - R    + x0     and define    L.     by    L    = jf0  ' °K    du, 
u 

where    Tn =  inf{t|KT     = 0},     Then    KT       is  a birth-and-death process 
° Lt Lt 

with parameters     X     and    ys which may he  seen in a similar way as  for 

the Lamperti  representation of the pure birth process   (Athreya and 

Ney  (19T2),  Theorem III,11.1)„     Furthermore    QT       and    RT       correspond 
t t 

to B  and D,  as defined above, and L  to S , 

Replace now t by L  in the asymptotic result above to get 

((QT  - AL, )(ALj""
l/2,(RT  - yL HyLj"

1'72) which in light of the 
li. "C t  . 1J, "t Xi t t 

interpretation  as birth-and-death process has the  same  distribution as  : 

(Sl/2(A - A)A~1/2,  S^/2(y - y)y~l/2).    The proof that the asymptotic 

normality will still hold after the  random time  change    t -> L      on the 

set    {L    •> °°}    is now similar to Dion's   (1972)  proof for discrete time, 

ef.   also Jägers   (1973b),     From this proof. we  also  conclude that  the 

asymptotic normal distribution is  independent of    ¥    as  stated. 

Remark,     This method of proof will yield a series  of central-limit 

type theorems  for Markov branching processes„     Such theorems  will be 

useful  counterparts  to  central limit  results  e_,g_,   of the type stated 

by Athreya and Ney  (1972,  Sec,   111,10), 

11 



Corollary,     As    t + <», 

•v-"-—"M ;::;;::;;)> (::: 
in the conditional distribution, given . X -> oo.  The limiting distribution 

1        '    '        ' •      •   '        " -    -    i    i • •• •   • "^ i    i    i    i ii ii • 

is bivariate  Student with  common  denominator  (cf.  Johnson  and Kotz,  1972, 

p.  13^+),  that  is,  each  component is  Student with    2x_   d.f.     and the  com- 

ponents  are  independent  for given    W. 

Remark.     As    x    •> oo    in the  Corollary  above, the limiting distribution 

tends  towards  the two-dimensional standardized normal in accordance with 

the  result  in Theorem 3.1. 

Remark.     The  results  of Theorem k.2  and its  Corollary will still hold if 

considered in the  conditional distribution  given    {X,   > 0}    instead of 

{X,   ->- oo},     By this  remark, which is parallel to one made by Dion   (1972), 

approximate  confidence  limits may be obtained. 

12 



5°     Asymptotic  results  for large periods of observation given 
ultimate extinction 

x 
If    X,   -y 0     as    t -*• oo    which happens with probability     (yA) 

in the  supercritical  case    A > y    and almost surely otherwise,  the 

consistency of the estimators  no longer holds9  since the  sample will 

be in effect  finite  as     t -> «„ 

Since  for a supercritical process with    X > y9  the  conditional 

distribution,  given that    X    •*• 0 s  is  identical to that of a birth-and- 

death process with birth parameter    y     and death parameter    A     (Waugh 

1958)3  the  results  in the present  section are  relevant  for supercritical 

processes, given extinction. 

Theorem ?,1    For     A ^ y,     ( \ y) •>    (B/S,D/S)   a.s.,   as_    t •» QQ, where 

B    and    D    are  the total number of births  and deaths until extinction 

x at. 

The  distribution of     (BSD,S)     is  given by the  density 

x 
0__ ^b  d -( x+y)s Ta+d-I 

, , ,..   Ay bias        K 

b-0 ,152 3 . „ . 3    d=D4       j _ 

Proof.     Most  of the  results  are  immediate.     The  distributions  of    N 

and of    S     given    N    were  given... by. Buri , (1963) .   . Gani. and McNeil  (l9Tl) 

discussed, further aspects rof'i.the  distribution of    (,N'SS). 

From the  results  in the Theorem5   various  results   concerning the 

limiting distribution of     (X,y)    may be  derived,     A couple of examples 

are  shown below. 

13 



(a)  The expected values  of    (B/S,D/S)     quickly become  complicated. 

Given    N = B + D,     ECS"1)   =   (X+y)/(N-l)     so that .   . 

(X+y)(N-xn) n (A+u)(N+xQ) 
E(f I   »>  •       2(1-1) '  Ef I   ">  " 2(N-1) 

and it  follows  that  for    x    = 1,    E(B/S)  =  (x+y)/2     and for    xQ = 2 

it may be  seen that 

E(]3)  _ 6V
3 + 6y2X - 3A2y + X3 

2 
12yc 

(h)  The estimator    X - y    of the Malthusian parameter    X - y 

is asymptotically equal to    -x /$, whose distribution is  given by the 

density 

xo   u^y+X),ylxoT     , 0    ,,, 1, , 
- — e-. (X) I       (-2X0(UX)   /u), 

2*0 

u < 0, where    I    is  a modified Bessel  function. 

Ik 



6.     Equidistant  sampling 

Until now it has been  assumed that the  complete process 

{X     j   0 ^ u < t}    was  observed.     It may be more  realistic to assume 

that  the process  is  observed at the equidistant points     0,T92T,»..9kT=t. 

The observations    X (sometimes  called "the  discrete skeleton")  then 
nx 

form a Galton-Watson process as is well-known (Harris, 19633 p. 101), 

but the transition probabilities are rather messy./ and direct maximum 

likelihood estimation  does not  seem feasible   !cf=   Darwin  (1956)). 

In this  Section, however, we  shall  show that  interesting results 

may be obtained by assuming that the  following observations   are  available., 

Interpret the  discrete  skeleton Galton-Watson process  in the usual way 

as  a chain of generations  of independently reproducing particles9   and 

assume that  in  addition to    X        itself9  the number    C      of particles 
nr       ' n    * 

among the X,-  , %  that have 0 offspring is known „ 
(n-1)T 

Proposition 6.1 Under the sampling scheme d&sj^rlbe_d_ above 9 the likelihood 

function is proportional to 

k-1 

C £ ' UT ~ ut X -xn+C 
L(A9y) = a 

t'{(l-a)(l-e)}u       3 %    " \ A > 0,y > 0 

wnere 

• f   (A-y)-c  , uje_  - 1 •(. A 
, U-u)x    S

    y   —  t   ;- n Ae  r  • y n=i 

The maximum likelihood estimators of a and $ are given by 

15 



k-1 

IK. .     „ 0 - 1 
« = V l \r    _£_L   3 =  (Xt - x0 + Ct)/ | Xnx. 

Proof.     Let    \ = \T    and let    C    =0.     Then clearly : {(Z,C) |n=0 ,1,2,.. .} 

is  a Markov ;; chain-•' with stationary transition probabilities 

qi(z,c)  = P{Zn=z,   Cn=e   |   Zn_1=i,  Cn_1=J}    given by    qi(z,c)  = q-^z.c), 

the i'th convolution,    q  (z,c)  = aC(l-a>1"cß^z~1^1_c^ (l-ß)1_c,    and 

cu(0,0)  = 1.     The likelihood function is then derived as 

p{W ck=ck I zk-i=zk-r ck-i=ck-i} •"• p{zi=zi'crci I Wco=o}- 
Theorem 6.1 Assuming that only Xn,X , ...,3t,  = X,  are observed,. the ———————    _____________      (j     _ j^q-,        -^    ____________ j  

maximum likelihood estimator of the Malthusian growth parameter    A - y 

is  given by 

X +..>X! 
T kT A' - y = ilo 

1       ,X^+""+X(k-l)T 

Proof,  We have  A - y = T~ log{(l-a)/(l-$)},  and the result is 

therefore true by Proposition 6.1 if X   and C  were observed. nT       n 

But since  A - y is a function of the X s only, the result holds nT 

in the more narrow sample. 

This proof is  patterned after Harris'   (19U8)   derivation of the 

maximum likelihood estimator of the mean in  an unrestricted offspring 

distribution of a Galton-Watson process  and settles  a question left 

open by Darwin   (1956), who  studied    e as  an estimator of    e 

without proving that  it  is the maximum likelihood estimator.     Darwin 

obtained results  concerning bias  and asymptotic variance  of this  estimator 

16 



as well as asymptotic efficiency relative to the- maximum likelihood 

estimator exp{(B -D,)x/S } obtained from continuous .observation. 

E. R. Immel (1951) also remarked in his unpublished UCLA thesis 

that estimation directly from the discrete skeleton is unfeasible. 

Immel then considered the problem of estimating the parametric function 

6 = y/i in the restricted model with  (logy - logA)/(y-A) = T and 

showed that in this situation the maximum likelihood estimator was 
k-1    k 

given by "Q  = Y X / £ X  .  Immel proved consistency and asymptotic 
_ - ^T  -j  ^T 

normality of this estimator for large :xn within the restricted model 

and proposed to use 9  as an approximation in the general case. 

In the restricted model  0 = e      ,  so that the maximum 

likelihood estimator of e
(,^*"<v;  in the restricted model is  6 . 

From Theorem 6.1 we see. however, that  9 is in fact the maximum 

likelihood estimator of    e in the unrestricted model, which 

indicates that Immel!s proposal of using    "9"    as  an estimator of    0 

in general should not be  followed. 

Comparison with permanent observation.     The infinitesimal 
discrete skeleton 

By applying Dion's   (1972)   results  for the  Galton-Watson process 

one may give  asymptotic  results  as    k -> °o    for the maximum likelihood 

estimators     (T5y~)     of     (A,y)     in this- sampling situation  as well  as 

efficiency results.     This was shown in detail by Keiding  (197*0  for 

the pure birth process  and we  shall not  give the  full details  for the 

birth-and-death process. 

We may9  however,   call attention to the  fact that when    k -*• °°, 

17 



T •> 0, kr -*•  t, the likelihood function of the equidistant sampling 

situation approaches that of continuous observation given in Section 

2.  (When observation is continuouss the number of deaths in any 

interval is (almost surely), given .by the knowledge of the total 

population number at each instant in that interval and3 in particular, 

C. -*• D. .)  It may be seen that not only 'will the estimators 

(X,y) -*- (X,y)  under this limiting process but that also the asymptotic 

distributions are asymptotically equal.  As was assumed by Keiding 

(197^), the infinitesimal discrete skeleton again yields an alternative 

way of deriving the correct results3 but it should be emphasized that 

this success depends on the introduction of the observation of C 

above. 

Acknowledgement. My thanks are due to Steffen Lauritzen for discussions 

through the preparation of this paper. 
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