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INTRODUCTION

The feasibility of television bandwidth reduction and spread spectrum transmission has been
investigated for a remotely piloted vehicle (RPV) [1]. Two-dimensional transform methods are
capable of providing sample rate reductions by zonal encoding or bit rate reductions by combin-
ing zonal encoding and block quantization. Difterential pulse-code modulation (DPCM) has been
established as equivalent to transform encoding when a lower triangular matrix is used to trans-
form the data to a set of uncorrelated signals [2]. Mixed transform coding was investigated and
frund to be intermediate in performance between the two-dimensional forms of transforms used
to encode the horizontal and vertical directions of the image, with the singular exception of the
mixed transform composed of an orthogonal transformation and DPCM. For this exception,
performance as good as optimum (Karhunen-Loeve transformation and block quantization) was
achieved,

Because of the results summarized above, emphasis was placed on investigating transforma-
tions which could be easily implemented in real time using compact serial access hardware and
would achieve as good a performance as possible while minimizing the amount of memory need-
ed at the transmi‘ter in the RPV. A direct two-dimensional implementation of the Fourier trans-
form was conceived, investigated, and found to be feasible for nearly square arrays as reported in
appendix A. Further investigation was made of the mixed transforms using generalized DCPM.
Their performance in a noisy channel was evaluated and found to be superior to conventional
DPCM systems as reported in appendix B. Surface acoustic wave (SAW) and charge transfer
device (CTD) hardware implementations of the Fou-ier transform were constructed and evaluat-
ed and are presented in Appendices C and D. Continuv? investigation was made of the transform

extrapolation techniques and is reported in Appendix E. Further development of the Signal

Precessing Interpreter is reported in appendix F. A feasibility study of a row-to-column convert-

er is given in appendix G.
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SYSTEM AMALYSIS

There are two basically different approaches to the redundancy reduction and spread spec-
trum transmission of video images for a remotely piloted vehicle: (1) sample reduction through
transform encoding and analog transmission: (2) bit rate reduction through transform encoding
and block quantization or differential pulse code modulation. The former is the simplest con-
ceptually, and the easiest to implement but imposes restraints on the spread spectrum encoding
and on the transmitter. The latter is more difficult to implement but imposes few restrictions on
the spread spectrum encoding or on the transmitter and requires buffer memory and quantizers.

In either implementa.‘on, transform source encoding is used to redistribute the variance
associated with the image samples and then channel encoding is used to provide noise protection
and jam resistauce. [t is at the receiver that the major difference between the two techiniques
appears. The first is essentially a pulse compression technique, which is possible since the redun-
dancy of the image is removed and spread spectrum redundancy introduced in its place. Thus,
the receiver can consist of a simple matched filter matched to the RPV signal, g¢nd no synchro-
nization is required between the RPV and the receiving station. The second implementation is
essentially a digital communication system in which channel synchronism must be established in
order to decode the spreud spectrum channel encoding.

The degree of A J protection that can be obtained using the digital encoding system in the
RPV is not limitea by pulse compression design considerations. The ability to opeiate with simple
hard limiting modems further enhances this alternative. However, some encoding memory will be

required in the vehicle and synchronism of the received transmission will be required prior to code

demodulation and image reconstruction.
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TRANSFORM ENCCDING

The capability of transform encoding to provide either a sample rate reduction through
zonal encoding or a bit rate reduction through block quantization is well known and document-
ed. [3] The application of these techniques to RPV image bandwidt" reduction and spread
spectrum encoding is complicated by the large amounts of signal processing required and the
need for intermediate memory for two-dimensional transforms. In special cases, these limitations
can be circumvented and real time processing i: possible with fixed impulse response filters.
Previous results established that for a one-dimensional data vector of size N, the Haar and the
Fourier transforms could be impler iented vith, respectively, log, N + 1 and 4 real filters.

A new result is obtained. The two-dimensional Fourier transform may be implemented with
four real filters and no intermedia‘e memory when the size of the two d:mensional transform, N,
is th2 product ot the two ore-dimensional transform sizes N and N7, which are relatively prime
(i.e., Ny and N7 have no common factors). The size of the filters required for implementation are
then determined by the transform size N and is either N if rocirculating transversal filters are
used or 2N-1 if recirculation is not used.

Mixed transforms offer the possibility of improving the performance of two-dimensional
transform encoding by combining .he implementation advantages of 2 serial transform in the
horizontal directior with the reductio. of intermediate memory possible by the use of another
transform in the vertical direction. Since the performance is intermediate between the perform-
ance achieved by corresponding 2-D transforms of the separate types, the Cosine transform is
recommended as the horizontal transform. The vertical transform may then be either the mini-
mum memory implementation of the Haar transform or the generalized DPCM Sample reduc-
tionexperiments and bit rate reduction comparisons indicate that the combination of th= Cosine
and the generalized DPCM should be superior in performance to other mixed transforms. For
medium error rate channels, the combination of spread spectrum techniques with digital trans-

mission should provide the required output error rates.

TWO-DIMENSIONAL. DISCRETE FOURIER TRANSFORM

A class of two-dimensional discrete Fourier transforms (DFT), described in Appendix A are

shown to be equivalent to a one-dimensional discrete Fourier transform whose size is the product




of the dimensions of the two-dimensional transforms,

This isomorphism allows the two-

dimensional DFT to be computed in real time using the serial access implementation of the Chirp

Z transform (CZT) with four real filters and parallel implementation of the complex arithmetic.

No memory is required to store intermediate results. This may be contrasted with the case when

the two-dimensional DFT is implemented by concatination of one-dimensional DFTs and inter-
mediate one-dimensional trensforms must be stored prior to transformation in the orthogonal
direction. Unfortunately, the input scan required for this two-dimensional DFT is not lexical and
thus not directly compatible with conventional raster scanned imagers.

It is shown in Appendix A that the input scan for the two-dimensional DFT is provided by

iterated translations on the torus which results by folding the two-dimensional image left to right
2ud top to bottom. This implies that a linearly addressable imager such as a vidicon can be
scanned by applying appropriate “saw-tooth” sweeps to both the horizontal and vertical deflec-
tion circuits simultaneously. Howevei, for a continuous sweep sensor such as a vidicon, the

continuous output signal is not directly the values of the two-dimensional image, and the imager

output must be sampled at the appropriate times.

The sampling interval is determined by the dimensions of the two one-dimensional arrays
and can be interpreted as the time required to go to the subsequent image point in the two-
dimensional space of the input, which may not be adjacent to the preceding point. For the
special case when the transform sjzes differ by one, then the subsequent sample point is

adjacent to the preceding sampie point until an edge is encountered, and the scan is a raster on

the torus and is inclined at an angle of approximately 45° to the horizontal axis of the original

image. The sweep generation to achieve the required sweeps for the two-dimensional array is
clectronically simple and decomposes into two separate sweep generators, one for horizontal
sweep and another for vertical sweep. Each sweep generator can easily be implemented as a
recursive loop where the initial condition and sweep increment are determired by the particular
blo >k size and aspect ratio chosen.

Fora discrete image sensor such as a charge coupled device (CCD) or charge injection de-

vice (CID), special attention must be given to the format of output from the image sensor. For

the CCD array which has fixed lexical output scan, an aiditional memory or scan converter is

required. For a given two-dimensional block size, this requires approximately the same amount

of memory as is needed in the row-to-column scan converter used for the calculation of the DFT

by concatination of the two one-dimensional transforms. For the CID image sensor, this

4




limitation does not apply and an independent horizontal and vertical addressing of the imager is
possible. Thus for the CID imuger, direct interfacing of the scan generators to the imager is P OSsi-
ble and would allow direct implementation of the two-dimensional transform with only three
major components: (1) a random access C1D array, (2) digital horizontal and vertical scan con-
verters, (3) a serial access CZT transform of size determined by the nuraber of points in the two-
dimensional array.

This approach is attractive for small arrays where the number of states required to address
the imager is small and the size of the one-dimensional transform is not too large. Current tech-
nology would probably limit this approach to arrays of the size 99 X 100 elements or 100 X 101
elements. For large: arrays, the size of the one-dimensional transform would exceed 104 and its
implementaiion by transversal filters would be difficult. However, the use of direct implementa-
tion of two-dimensional Fourier transforms within blocks can be applied to larger arrays in con-

junction with other processing techniques between blocks.

MIXED TRANSFORMS

Mixed transforms can be used either for intraframe encoding or interframe encoding de-
pending on the available memory and the type of mixed transform implemented. Three mixed
transforms have been considered for intraframe ¢ oding: (1) the discrete cosine transform
(DCT) with the Haar transform, (2) the DCT with generalized DCPM, (3) small block size two-
dimensional Fourier with generalized DCPM. In order for a mixed transform to be éompetitive
with one of the conventional two-dimensional transforms, it must offer either supeor perform-
ance or simplicity of implementation.

Symmetrized transforms which have cosinc basis vectors have this property. Of these trans-
forms, the odd length cosine transform appears superior in implementation since it can be imple-
mented as ilic rev! part of a CZT and since the transform samples are real and are the samples of
an auto correlation function which may then be extrapolated by well known techniques. In
simulations of transform performance, the cosine transform has been shown to closely approxi-
mate the behavioi of the “optimum” Karhunen-Loeve transform. All of these conditions suggest
that the cosine transform should be considered as the horizontal transform in a mired transform

implementation.

The minimum memory requirements of the Haar transform and its implementaticn by both

transversal filter and “fast” digital algerithms with a minimum of computational steps makes this



transform attractive as a vertical transform for use with the cosine transform.

In some applica-
tions, digital implementation of the two-dimensional Haar transform are attractive. In analog
systems using mixed transforms where sample rate reduction precedes ana log transmission, the

zonal filter used for coefficient retention must be asymmetric with less reduction made in the

Haar coefficients than in the other transform coefticient.
The benefits of mixed transformation implementation and minimum nmemory may be

achieved for digital transmission by combining a one- or two~dimensional transform with general-

ized DPCM in a hybrid system. The basis of operation of the hybrid transform is that the trans-

form decorreiates the image within its restraints of transform type, unitary dimensionality, and

block size, while the generalized DPCV, removes the correlation between transform blocks. This
hybrid system is particularly attractive for RPV application since its performance is approximate-

ly as good as the “optimum” Karhunen-Loave transform and its implementation requires mini-

mum memory.




HARDWARE IMPLEMENTATION

When the orthogonal transformation used in an image processing application is implementa-
ble by transversal filter techniques, real time opcration may be achieved with small, low-power,
lightweight hardware. For moderate accuracy tiansforms (e.g. 7 to 10 bits equivalent input
accuracy), sampled data analog transversal filters such as SAW and CTD are attractive.

To investigate the feasibility of these techniques both SAW and CTD Fourier transforms
were constructed and evaluated. The SAW transform was a 32 point discrete Fourier ti nsform
(DFT) implemented at IF with parallel arithmetic on an ST-cut quartz substrate. The CTD trans-
form was a 100 point modified even cosine transfcrm implemented at video with parallel arith-
meiic using bucket brigade devices (3BD). Both implementations were successful. Spectrum
analysis was performed using both implementations . 1d is reported in appendices C and D.

Corm~aring the performance capabilitics of the two implementations, the development of
CCD transform implementation is recommended for the RPV image bandwidth reduction. The
CCD will allow operation directly at video frequency with smaller size than a comparaole SAW
implementation; it also achieves better mass production capabilities and lower production costs.

SAW devices provide an existing technology by which real time video processing via the CZT
con be implemented. A 32 point complex DFT implemented with parallel arithmetic and
aperiodic convolution is described in Appendix C. Although filters with 512 taps could be con-
structed on quartz using large azea photolithography, a CZT of 50 microseconds of video would
require a delay line in excess ot 300 mm. This size couid be reduced to something in excess of
150 mm by substitution of Bi, 2Ge02 as the piezoelectric substrate. However. iiis material is not
isopaustic, ar delay time compensation is requir~d. Another con<ideration when using SAW

devices for video processing is that these Jevices are band-pass devices which need to operate at
an intermediate frequency (IF) and IF amplifiers and detectors must be used with the SAW de-
vice in order to achieve video operation.

If the transmission vate of the processed video is less than the real time video input and

minimum memory is a consideration, then transforms of smaller size than 256 or 512 should be
considered. A 32 point transform offers a good compromise between transform efficiency which

increases with increa.irnig t-ansform size and coefficient storage memory which increases

b . e e, o




discontinuously from a fractional line store memory to a frame store memory when the coeffi-
cient computation rate exceeds the coefficient transmission rate. Although a frame store mem-
ory is possible using recirculating SAW delay lines, this much memory can be organized more
efficiently by the addition of specialized control.

With the availability of analog fraine storage memory, it is possible to compute the two-
dimensional Cosine or Fourier transform by concatination. If the DFT of the video is computed
and stored row by row for a whole frame, then converted to column by column format and the
DFT computed on these columns, then the two-dimensional Cosine or Fourier transform results.
The feasibility of the required row to column transformations using BilzGeOZ recirculating delay
lines was investigated at Stanford University and is reported in Appendix G.

Under some conditions it is possible to compute the two-dimensional Fourier transform

directly using a one-ds:»nsional CZT of large size without the need of row-to-column conversion
or other intermediate meniory. If the block size of the two-dimensional area, N, is the prodguct
of two relatively prime numbers, N, and N-, then an input scan can be found which orde:s the N
tv.c<imer sional data points so that they may be transformed by a one~dimensional transform of
size N. This configuration is described in Appendix A. Unfortunately, the two-dimensional
cosine transformation can not be computed directly using this reordering, and modification of
the video sensor is required in order to provide the required input scan. This technique appears
attractive for intermediate block sizes in conjunction with another transform such as DPCM.
Under these conditions che transform efficiency of two-dimensional encoding can be com-
bined with moderate one-dimensional CZT implementation.

A BBD with 200 taps was used to construct a CZT approximation to a cosine transform.
This component was developed by Texas Instruments for Rome Air Development Center and
consists of a cosine and sinec BBD on a common silicon substrate. The tap weighting, however,
is not correct for an exact cosine transformation, and thus the circuit was used in a spectrum
analysis mode as described in A ppendix D. These devices operate at a clock rate of several

hundred kilohertz and, thus, arc suitable for slow scan television processing.
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REPORT SUMMARY

This report describes the progress on the second phase of a NUC program on image bandwidth

reduction for application to the ARPA RPV problem of sending television images over spread

spectrum channels. This report details the first quarter of a hardware development and imple-

mentation phase,

Hardware has beeh constructed to perform linear transformations on the television signai. Both
surface acoustic wave and charge transfer devices were built and tested. It was decided to proceed
with charge transfer devices for the final design. The study of performance tradeoff as a function
of block size and transform has continued. It has been determined that a Cosine transform to-
gether with a DPCM transform in the second dimension offers near optimal performance,

A prmcxpal result of this quarter is the determination that the DPCM and Cosine mixed trans-
form are an optimal performance system. A second result j is that charge transfer device hardware

has been built which approximates the final prototype hardware.
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ABSTRACT

Many problems of image processing and other processing of two~dimensional
data require the rapid generation of two-dimensional Fourier transforms in a
form suitable to subsequent electronic processing or utilization. Thig paper
describes a two-dimensional transform architecture which is suitable for real-
time image processing and which may be implemented with sm:ll, ight-weight
special purpose hardware.




INTRODUCTION

Two-dimensional Fourier transforms are ordinarily generated either optically
or through the use of a digital computer. Both of these methods suffer from
severe limitations in many signal processing applications. A general purpose
digital computer large enough to perform two-dimensional Fourier transforns
in real time for many signal processing applications is large, heavy, expensive,
and consumes a large amount of electrical power. Coherent optical two~
dimensional Fourier transform implementations are 1imited by their input-output
media and interface poorly with electronic systems.

A third method for performing two-dimensional Fourier transforms is to
perform a row by row one-dimensional transform with serial access hardware
such &s that described pPreviously [1-3], store the one-dimensional row transforms,
and perform a colum by colum one-dimensicnal transform. This method, however,
requires an auxiliary memory to store the one-dimensional transforms of the
entire data field. The auxiliary memory tends to be expensive in terms of
oost, weight, and power consumption. It is therefore desirable to seek a
method of using the one-dimensional serial-access Fourier transform device with

a minimum of auxiliary hardware to perform two-dimensional Fourier transforms.

14




A TWO-DIMENSIONAL DFT ARCHITECTURE USING ONE-DIMENSIONAL HARDWARE

The two-dimensional discrete Fourier transform (DFT) system will use an
input scanning device and a one-dimensional discrete Fourier transform device
as showm in Figure 1. Th~ two-dimensional transform block size N1 by N, is
chosen such ‘hat N, and N, are relatively prime integers (i.e., they must have
no camwon divisor). The one—dimensional Fourier transform device has a block
length of N = N/N,.

The purpcse of the input scanning device is to so order the input data that
the one-dimensional Fourier transform of the length NlNz serial data string is
identical to an Nl by Nz two-dimensional Fourier transform of the Nl by N2
input data samples. If desired, an output scanning device may also be used to
provide the transform output points in normal order.

The required scan may be derived from Preisendorfer's [4° representation
of a one-dimensional discrete Fourier transform matrix as a direct product
matrix. Preisendorfar shows how the one-dimensional DFT in equation (1) is
equivalent to the two-dimensional DFT in equation (2) when N = N.N_. and N

1™ ' N
are relatively prime.

N -i21r(mli1)

?q =pre (1)

B=0 forpg = 0,1, . . . N1
j.k j-k ;
N1 N1 ~iom| L1 4 272
N N
gk ,k) i3 ' 2
g 1'% = ZO Zg(Jlrjz) > (2) ?:
for Jl'kl 0, 1, Nl-l k
j2’k2 = 0’ l' Nz-l
15
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In order to make the two transforms equivalent, it is necessary to find a
pair of one-to-one functions P(jl, j2) and Q(kl, k2) such that

3k
ro _ R, 3 1
5 T —NE_ (Modulo 1)
or
R =

j lklNZ + 3 2k2Nl (Modulo NlNZ)

This may be accomplished by letting

P(Jl. 32) = 31N2 + Jle (Modulo N)

Q(kl, k2) klUlN2 & kZUZNl (Modulo N)

where the constants Ul and 02 are the solutions of
Nzul = ] (Modulo Nl)
N102 = 1 (Modulo NZ)

Equations (7) and (8) will have solutions if and oniy if Nl and N2 are nutually
prime. Under this condition, the mappings described by equations (5) and (6)
will satisfy the requirement of equation (3).

Equation (5) may be interpreted as a prescription for building the inpnt
scan generator. As jl ranges from 0 to Nl-l and j2 ranges from 0 to Nz-l, P
will take all values from 0 to NlNz-l. These may be tabulated and rearranged
in increasing order.

16
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P(3; (0, 3,(0))

P(3; ), 3,1

_—— -
i

T

P(3; (1), 3,(01))

The values jl(O), B ow jl(N-l) and j2(0), - ¥ gy jz(N—l) may be stored
in a pair of read-only memories to provide the input scan generator.

To eliminate the ROM's, we note that

(LM + 3,60, 3 +326) = p(i1(e)s Gp(s) + (), 5,0)

Therefore

J(st) = 3p(s) + 3, ) (Mod N,)

j2(5+1) jz(s) + jz(l) (Mod N2)

So that only simple recursive digital filters are needed for the input scan
generator of Figure 2. With only a change in the prestored constants, replacing
3; (1) by k,(1) and j,(1) by k,(1), tne circuit of Figure 2, will also function
as the output scan generator. Representative input and output scans are shown
in Figures 3 and 4.

A typical application of the two-dimensional Fourier transform device would
be in a reduced redundancy television system, as shown in Figure 5. The
selection table and selection gate may be used so that only selected spatial
Fourier transform coefficients will be transmitted through the channel.

In addition to eliminating the intermediate transform memory, it is also
possible to eliminate the ROM's used in the CZT implementations of the one-
dimensional DFT,

-i2m

let W=¢eN

17
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2
ﬂnnﬂmediscretedﬁ.rpsneededbytheCZT, pK=v}(/2, satisfy the recursion
relation

- 2
Prez = WP /B
or
— 2 *
Peyza = WP, B

This may be implemented by the recursive digital filter shown in Figure 6, in
which only the s*'.4le constant W need be stored.

18
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CONCLUSTONS

'As contrasted with previous digital two—dimensional Fourier transform
devices, the device de-cribed here can be extrenely fast since a large number

of rultipliers are effectively utilized in the correlator or convolver of the

on2-jimensional DFT it uses. As contrasted with previous optical two-

dimensional J'ourier transfom devices, the device described here interfaces
extremely well with e ectronic signal processinc systems, and lends itself
to potential mass production via intecrated circuit fzhwication techniques,
representing a potential very large savings in cost for quantity production.

The one-dimensional DFT which is utilized may be implemented using
accustic surface waves, charge coupled devices, digital ISI correlators, or
other serial access transversal filters or oorrelators.

Transforms of higher dirensionality may be implemented by adding

additional sections to the scan generator. The only fundamental constraint
is that the size,

product of the individual dimension sizes Nl' . a ey Np, and ew.ry pair NR'NS

must be mutually prise.

N, of the cne-dimensional DFT device of Figure 3 must be the
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INPUT SERIAL ACCESS
CLLOCK - SCAN & 1-DIMENSIONAL —— OUTPUT
GENERATOR DISCRETE FOURIER TRANSFORM
4 /
2-DIMENSIONAI. DATA FIELD /
2000000000 /
. eeco0o00cces e
¥ o0 00000060 o
: ®oeeee000o00 00
1 ©e00c000o000 00
©e00000000 00

Figure 1. Two-dimensional discrete Fourier transform device.
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MOD N,
() UNIT DELAY
ZERO —p- I
» -0
MOD N,
ip(1) UNIT DELAY

—
> j1-COORDINATE
SCAN QUTPUT

INITIALIZATION SWITCH
(UP AT FIRST SAMPLE TIME,

| THEN DOWN FOR N-1 SAMPLE
| TIMES, WHERE N=N; Ny)

.
-

i2-COORDINATE
SCAN OUTPUT

Figure 2, Input scan generator for two-dimensional discrete Fourier transform.
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4 11
3.4 Ny =3 Ny=8  N=24
0 8 16
3 11 19
6 14 22
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12 20 4 ~_
15 23 7 .;
18 2 10 1
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I"J
3.5 N, =3 N,=10 N=30 ?
-, 0 10 20
3 13 23 i
; 6 16 26 ,
9 19 29
12 22 2
, 15 25 5 ,j
18 28 8 :
21 1 11 :
1 24 4 14 i
27 7 17 ,4

- Figure 3. Representative Input Scans
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36 Np=4 wy=5  N= 2

0 5 10 15
" 4 9 14 19
; 8 13 18 3
| 12 17 2 7
) 16 1 6 11

37 N =4 Ny=7  y-o2g
' 0 7 14 21
E 4 il 18 25
1 8 15 2 1
' 12 19 26 5
16 23 2 9
20 27 6 13
24 3. 10 17
3.8 Nl_4 N2=9 = 36

0 9 18 27
4 13 22 31
8 17 26 35
12 21 30 3
16 25 34 7
20 29 2 1
2433 6 15
22 110 19
32 5 14 23

2
0 6 12 18 24
5 11 17 23 29
10 16 22 28 4
15 21 27 3 9
3.10 Nl =5 N2 =7 N = 35
e 7 1 21 g
> 12 19 26 33
10 17 24 ki | 3
15 22 29 1 8
25 32 4 11 18
30 2 9 16 23

Figure 3, Representative Immut Scans
(Continued)
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. Figure 3. Representative Input Scans
£ (Continued)



3.15 Nl =7 N2 =9 N =63

0 9 18 27 36 45
7 16 25 34 43 52
14 23 32 41 50 59
21 30 39 48 57 3
28 37 46 55 1 10
35 44 53 62 8 17
42 51 60 6 15 24
49 58 4 13 22 31
56 2 11 20 29 38

3.16 N, =7 N, =10 N=170

0 10 20 30 40 50
7 17 27 37 47 57
14 24 34 44 54 64

21 31 41 51 61 1

28 38 48 58 68 8

35 45 55 65 5 15

42 52 62 2 12 22

49 59 69 9 19 29

56 66 6 16 26 36

63 3 13 23 33 43

317 N =8 Ny=9  N=72

0 9 18 27 36 45 54 63

8 17 26 35 44 53 62 71

16 25 34 43 52 61 70 7

24 33 42 51 60 69 6 15

32 41 50 59 68 5 14 23

4n 49 53 67 4 13 22 31

48 57 66 3 12 21, 30 39

56 65 2 11 20 29 38 47

64 1 10 19 28 37 46 55

318 N =9 N,=10 N=9

0 10 20 30 40 50 60 70 80 :
9 19 29 39 49 59 69 79 89
18 28 38 48 58 68 78 88 8
27 37 47 57 67 77 87 7 17 ‘
36 46 56 66 76 86 6 16 26 ,
45 55 65 75 65 5 15 25 3 g_
54 64 74 84 4 14 24 34 44
63 73 83 3 13 23 33 43 53 ;
72 82 2 12 22 32 42 52 62 !
81 1 11 21 31 41 51 61 71

Figure 3, Representative Input Scans
(Continued)
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21
12

24
15

27
18

10

22
13

25
16

28

20
11

2
23
14

5
26
17

8
29

Figure 4. Representative Output Scans




4.6 N=20 N, =4 N,=5 U =1 U. = 4

0 5 10 15
16 1 6 11

9 14 19
47 N=28  N=4 N=7 U =3 oy =2

8 1 22 15
16 9 2 23
24 17 10 3

4 25 18 11

20 13 6 27

4.8 N =36 N. =4 N =9 u =1 u =7
0 9 18 27

20 29 2 11
12 21 30 3
4 13 22 31

24 33 6 15
16 25 34 7
8 17 26 35

4.9 N =30 N, =5 N, =6 U =1 Up=5

0 6 12 18 24

25 1 7 13 19

20 26 2 8 14

15 21 27 3 9

_ 10 16 22 28 4
. 5 11 17 23 29

4.10 N=35 N, =5 N, =7 U, =3 U, =3

0 21 7 28 14

15 1 22 8 29

3 30 16 2 23 9
1 10 31 17 3 24
25 11 32 18 4

5 26 12 33 19

20 6 27 13 34

Figure 4. Representative Output Scans
(Continued)
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Figure 4. Representative Output Scans
(Continued)
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4.15

4.16

4.17

4.18

21
42
63
14
35
56

28
49

81
72
63
54
45
36
27

36

29
57
22
50
15
43

50

22
43
64
15
36
57

29

9

65
57
49
41
33
25
17

90

10

82
73
64
55
46
37
28
19

N1 =7 N2 =
9 45 18
37 10 46
2 38 11
30 3 39
58 31 4
23 59 32
51 24 60
16 52 25
44 17 53
Nl—7 N2—
30 10 60
51 31 11
2 52 32
23 3 53
44 24 4
65 45 25
16 66 46
37 17 67
58 38 18
9 59 39
Nl-8 N2—
18 27 36
10 19 28
2 11 20
66 3 12
58 67 4
50 £9 68
42 51 60
34 43 52
26 35 44
N1—9 N2—
20 30 40
11 21 31
2 12 22
83 3 13
74 84 4
€5 75 85
56 66 76
47 57 67
38 48 58
29 39 49
Figure 4.

54
19
47
12
40

33
61
26

10

40
61
12
33
54

26
47
68
19

45
37
29
21
13

69
61
53

10

50
41
32
23
14

5
86
77
68
59

27
55
20
48
13
41

34
62

54
46
38
30
22
14

6
70
62

=1

60
51
42
33
24
15

6
87
78
69

(Continued)

.30

63
55
47
39
31
23
15

71

70
61
52
43
34
25
16

7
88
79

9

80
71
62
53
44
35
26
17

8
89

Representative Output Scans




e e um

o D MR

SELECTION
TABLE
I I f
| 1-DIMEN 1
: | |'™MAGING |y | SIONAL |__[ |SELECTION| | - . o
i | DEVICE pebe GATE MODEM CHANNEL MODEM
' DEVICE @
3 T
3 | & | Y
: | INVERSE
3 | TRANSFORM
I{ oA | | oA | AND
] | [ 4 JISPLAY
| 2R ©
| el S b _]
| INPUT )
: | scan output | .
i | | cenERATOR SCAN !
| | GENERATOR I j
o |
' | — DELAY I i
I | 1
| | 9
| CLOCHK I :
3 l I
T .
] Figure 5. Reduced redundancy image transmission systen: using two-dimensional discrete Fourier
4 transform device.

31




OUTPUT
Py

COMPLEX
COMJUGATION

& .
P

Figure 6. Recu;sive filter for discrete chirp generation.




APPENDIX B

HYBRIC CODING OF PICTORIAL DATA

33 i




HYBRID CODING OF PICTORIAL DATA*

by

: A. Habibi
; Department of Electrical Engineering
University of Southern California

Los Angeles, California 90007

Abstract

Two hybrid coding systems utilizing a cascade of ¢ unitary transformation

and DPCM systems are Proposed. Both systems encode the transformed data by a

{ bank of DPCHM systems. The first system uses a One-dimensional transform of the

data where the second one employs two-dimensional transformations, Theoretical

results for Markov data and experimental results for a typical picture is pre-

sented for Hadamard, Fourier, Cosine, Slant, and the Karhunen-Loeve transforma-

tions. The visual effects of channel error and also the impact of noisy channel

on the performance of the hybrid system, measured in terms of the signal to noise

ratio of the encoder, is examined and the performance of this system is compared
to the performances of the two-dimensiona] OPCM and the standard two-dimensional
transform encoders.

This research was Supported by the Naval Undersea Center, San Diego, under
contract N00123-73-C-1507 and by the Advanced Research Proj

b Department of Defense and was monitored by the Ajr Force E
1 under contract F08606-72-C-0008
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I. Introduction

In search for efficient techniques of transmitting pictorial data over
digital communication channels has led various researchers to a common approach
to the problem. Briefly, this approach is processing the correlated data (images)
to generate a set of uncorrelated or as nearly uncorrelated as rossible set of
signals which in turn are quantized using a memoryless quantizer. The quantized
signal is then encoced using either fixed or variable length code words and is
transmitted over a digital channel. This is the general approach taken in de-
signing differential pulse code modulators (DPCM) and the techniques that use
unitary transformation and block quantization as well as many other techniques
developed in recent Titerature [1-6]. Both DPCM and transform coding techniques
have been used with some success in coding pictorial data. A study of both
these systems has indicated that each technique has some attractive characteristics
and some limitations. The transform coding systems achieve superior coding per-
formance at lower bit rates, they distribute the coding degradation in a manner
less objectionable to a human viewer and show less sensitivity to data statistics
\picture-to-picture variation) and are less vulnerable to channel noise. On the
other hand, DPCM systems when designed to take advantage of spatial correlations
of the data achieve a better coding performance at a higher bit rate, the equip-
ment complexity and the delay due to coding operation is minimal, and the system
does not require the large memory needed in the transform coding systems. Per-
haps the most desirable characteristic of this system is the ease of design and
the speed of the operation that has made the use of OPCM systems in real time
coding of television signals possible. The Timitations of this system are the

sensitivity of the well-designed two-dimensional DPCM systems to picture statis-
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tics and the propagation of the channel error on the transmitted picture.

In this paper, two coding systems that use a cascade of unitary transfor-
mations and a bank of DPCM systems are proposed. Thesa systems combine the
attractive features of both transform coding and the DPCM systems thus achiey-
ing good coding capabilities without many of the limitations of each system.

The first system Proposed here exploits the correlation of the data in the hor-
izontal direction by taking a one- dimensional transform of each line of the pic-
ture, then it operates on each column of the transformed data using a bank of
DPCM systems. The DPCM systems quantize the signal in the transform domain
where it takes advantage of the verticai correlation of the transformed data to
reduce the coding error, The unitary transformation involved is a one-dimen-
sional transformation of individual lines of the pictorial data, thus the equip-
ment complexity and the number of computational operations is ccnsiderab]y Tess
than what is involved in a two- -dimensional transformation. The visual effect of
channel error on the encoded pictures and its effect on the performance of the
system measured in terms of the signal-to-noise ratio of the encoder using a
binary symmetric channel is examined. The System shows little degradation at
small or moderate levels of channel noise, however its performance is degraded
significantly at high levels of channel error. The system is particularly
attractive in the sense that the principle can be expanded to utilize interframe
coding of television signals. Such a coding system would start by taking a
two-dimensional transformation of each frame of the television signal, then it
would encode the transformed signal in the temporal direction by a number of

parallel DPCM encoders, thus exploiting the correlation of data in temporal as

well as spatial directions.
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The second system proposed uses a two-dimensional unitary transformation

on the pictorial data divided into small blocks. The elements uf each block in
the transformed domain are ordered in a one-dimensional array and are coded by
a bank of DPCM systems. A small block size reduces the number of arithmetic
operations needed to obtain the transformed data, but it reduces the effeciency
of the transformed system since the elements of various blocks remain correlated
in the transformed domain. However, DPCM coding of the elements in the trans-

formed domain take advantage of this correlation and improves the performance

of the system.

IT. One-dimensional Transformation and DPCM Coding

In the system proposed here the pictorial data is scanned to form N lines
with appropriate vertical resolution, then each line is sampled at a Nyquist
rate. The sampled image is then divided into arrays of M by N picture elements
u(x,y), where x and y index the rows and the columns in each individual array
such that the number of samples in a line of image is an integer multiple of M.

One-dimensional unitary transformation of the data and its inverse are modeled

by the set of equations

M
uj(y) = >_:] u(x,y)e;(x)  i=1,2,... M (1).
" y=1,2,...,N
M
u(x,y) = = u;(y)e.(x) (2)
i=1

where ¢i(x) is a set of M orthonormal basis vectors. The correlation of the
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transformed samples ui(y) and ui(y+r) is given by

M
Cilrd = T ROGR.Y +r )0y (x)ey(R) (3)
x=1 x=1

=

where R(x,X,y,¥) is the spatial autocovariance of the data.

Note that this equation indicates {1) the correlation of samples in each
column of the transformed array is directly proportional to the correlation of
sampled image in vertical direction, (2) the correlation of samples in various
columns of the transformed array is different. Thus, a number of different
DPCM systems should be used to encode each column of the transformed datz. The
block diagram of the proposed system is shown in Figure 1. A replica of the
original image u*{x,y) is formed by inverse transforming the coded samples,

i.e.,

h~s

uw(xsy) = I vily)e.(x), n<M (4)

i=]

The mean square value of coaing error is

™

i

m
E i

M 2
z Lu(x,y)-u*(x,y)] (5)

N
z
=] x=1

y=1
Using equations (1) to (4) and assuming that qi(Y), the quantization error
encountered in the 1th DPCM system, is uncorrelated with ui(y) the coding

2 .
error, € is
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e = R(0,0,0,0) - I C(0)+E px T I Lu; (¥)-v4(¥)] (6)
i=] y:' x=1

where the first two *erms are introduzed because of using n (rather than M)

DPCM systems. Study of DPCM systems has shown that (1]

E [ui(y)-vi(y)]2 = IE q%(y) 5 K(mi)ef (7)

where e? is the variance of the differential signal in the ith DPCM and K(mi)
is the quantization error of a variate with a unity variance in a quantizer

M
with (2) ' levels.

Analysis of Lloyd-Max quantizer has shown that K(mi) can be approximated

farily accurately by

K{m:) = b e ! (8)

where the best fit for a Gaussian variate is obtained using a = 0.5 2n 10 and
b=1.0[4,5,7]. Study of other quantization techniques has indicated similar
results for various probability density functions [8]. Figure 2 shows the
functional form of K(mi) and the accuracy of approximation (8) using a = 0.5

2n 10, b = 2.0 for a random variable with a double-sided exponential probability

density function using an instaneous companding quantizer [9].

From published results [1], [6] the variance of the differential signal in

h

a "PCM system with the mt order linear predictor is




where Aij are related to Ci(j) by m algebraic equations.
Substituting (7) and (8) in (6), 62 is

) n -am,
e =R(0,0,0,0) - I

i=1

3

b 2
Ci(O) + M-ifl e e (10)

where the error is defined in terms of n and m, » i=1,...,n. Treating m; as
n

continuous variables and minimizing e2 with a constraint I my = Mb will give
i=]

M

. | -1

i n ¥ a ine n

. i (1)

is minimum* and the quantizer in the 1th DPCM

~n

where n is chosen such that e

m, 3
system will have (2) ! 1evels. m; as obtained from equation (11) is modified .

as discussed in [4] and [5]. Note that expressions (10) and (11) are similar

to those obtained for coding the transformed data by memoryless quantizers,
the difference being that here the variance of the differential signal rather

é than the variance of the transformed data is used. '

Figure 3 shows the theoretical value of the.coding error as given by (1)

4 in terms of the peak-to-peak signal to rms noise ratio for a discrete random

field with an autocorvariance

R(x,R,y,5) = e @x=X]-8ly-3] (12)

using Karhunen-Loeve, Hadamard, discrete Fourier, discrete Cosine (1], and

Slant [12] transformations for o = 0.0545, B = 0.128. These curves are obtained

using a bank of n DPCM encoders with one-element predictors. The quantizers in

the DPCM systems are of instaneous-companding type and are designed for the

S e T b s G o s

*Ready and Wintz minimize €2 with respect to both

_ n and m, . It gives the same
end result requiring less computations [10].

40




probability density functions of the gifferential signals in the DPCM sys-
tems. Experimental results (see Figure 4) indicate that the probability density

functions of the differential signals are double-sided exponential functions.

Figure 5 shows that increasing the block size M improves the theoretical
performance of the proposed one-dimensional systems, however the improvement
becomes negligible for values of M larger than 8. This makes this coding sys-
tem less sensitive to the block size than the standard transform coding systems

which use memoryless quantizers.

ITI. Two-Dimensional Transformation and DPCM Coding

The most severe limitation of the two-dimensional transform coding tech-
nique is the large number of operations needed for coding pictorial data and
the resulting equipment complexity. This limitation becomes less significant
when the picture is divided into smaller block sizes then encoded, but this
also limits the efficiency of the system since the elements of various blocks
remain correlated in the transformed domain. A coding system utilizing two-
dimensional transformation and a bank of DPCM systems would exploit this correla-

tion, thus improving the coding efficiency of the system.

In this system the sampled image u(.,.) of N by N elements is divided into
arrays of M by M elements. The location of each array in the image is indexed
by subscripts (k,2). A two-dimensional unitary transformation of each block of
image is obtained and is ordered to form a one-dimensional array Ui’ I 3 Dulheeng
M2 where Ui(k,l) refers the the ith member of this array which is obtained by
)th

transforming the (k,% block of the data. This transformation and its inverse

are modeled as
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M M
Us(ks2) = = 3 u(kM+x,2M+y)®1(x,y) (13)
y=1 x=1

2
M
u(kMéx,aMey) = 3 Ui(k,l)¢i(x.y) (14)

i=1

where @i(x,y) are a set of orthonormal basis matrices. The elements of Ui(k.l)
arrays for various values of iy (i=1,2,...,M2) are corvelated, thus could be
coded by M2 DPCM systems. The analysis of this problem is similar to one djs-

cussed in Section II. The coding error and the bit assignment rules are

n n  -am.
e® = R(0,0) - 1 c.(0)+b | e g2 (15)
P i M.Z j
i=] i=]
M n
Sb,1 2 2
where
M M M M " .
Ci(r) =L I I T R(x-M T-x,y-y)¢i(x.y)¢1(x,y) (17)
¥=1 y=1 x=1 X=1

and ef is the variance of the differential signal in ith DPCM system.

2 0 .
e]' = C1(0) - JE] A'ijc'i(‘]) (]8)

Note that in (16), R(.,.) is the autocovariance of the image u(.,.) and it is

assumed that u{.,.) is a covariance stationary random field.

The last term in (15) indicates the improvements due to the use of DPCM
systems. Replacing the DPCM systems by memoryless quantizers will give a sim-
ilar expression for 52 where ef is replaced by Ci(O). Thus the coding improve-

ment due to the use of DPCM encoders depends on the relative values of e? and
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Ci(O) which in turn depends on R(.,.) and the block size M. In addition, note
that the coding error of the two-dimensional transform encoders are obtianed from
(15) using Ci(O) for °§ and b = 1, since it is generally assumed that the trans-
formed data possesses a normal distribution and according to (8), b = 1. This
assumption is not accurate for small block sizes and this partially accounts for
the difference between the experimental and the theoretical performance of the
standard two-dimensional transform encoders [4]. 1In the hybrid systems ez is
evaluated for b = 2 which gives a larger theoretical value for the coding error,
however experimental results indicate that the differential signal in the hybrid
systems posses an exponential density regardiess of the block size (see Figure 4).
This results in a better agreement between the theoretical and the experimental

results in the hybrid system.

Figure 6 shows the performance of the two-dimensional system for the ram-
dom field that was considered in Section II. Here a block size of 4 by 4 is
used, the bit assignment is according to (16), ard the DPCM encoders are identi-
cal to those employed for the one-dimensional system. Figure 7 shows the per-
formance of the two-dimensional systems for various block sizes M. The results

are similar to those observed for the one-dimensional system.

IV. Experimental Results and the Noisy Channel

The coding systems discussed in Sections II and III were simulated on a
digital computer and were used to encode the picture shown in Figure 9a. This
picture is composed of 256 by 256 picture elements, each element quantized to
64 levels. Values of o and B for (12) were approximated from Figure 9a and are

0.0545 and 0.128 respectively. The experimental results for the hybrid system




using one-dimensianal transformations is obtain using a block size of 16 and

for the hybrid System using two-dimensional transformations for a block size of
4 by 4. The results of the proposed systems for the cascade of one-dimensional
Hadamard, Fourier, and Karhunen-Loeve transformations with the DPCM systems as
well as the cascade of two-dimensional Hadamard Transformation and the DPCM
systems are plotted in Figure 8. This figure also shows the performance of a
simple third-order DPCM system discussed in [6] and the performance of the
encoder using two-dimensional Hadamard transform and a block quantizer discussed
in [4], which is included here for comparison. The two-dimensional Hadamard
system uses a block size of 16 by 16 and gives a better signal-to-noise ratio
than the two-dimensional hybrid system at low bit rates, however the two-dimen-
sional hybrid system performs better at high bit rates. Note that the two-dimen-
sional hybrid encoder uses a block size of 4 by 4 and its performance would have
been inferior to the performance of the two-dimensional transform encoder at all
bit rates if it were not a hybrid system. The one-dimensional hybrid systems
perform better than the two-dimensional and also the simple DPCM system. The
performance of the two-dimensional hybrid system is similar to the performance
of the simple two-dimensional system in the sense that it performs better than
the DPCM system at Tow bit rate, however it is worse at a higher bit rate. The
encoded pictures corresponding to the one-dimensional and the two-dimensional
hybrid systems as well as the system using two-dimensional Hadamard transform
are shewn in Figures 9, 10, and 11 for one and two bits per pixel. Good coding
resi(ts are obtained at a bit rate of 2 bits/pixel where the pictures encoded

at one bit/pixel are acceptable; though some degradation is noticeable. We

also note that the pictures encoded by the hybrid Systems are less degraded than
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their counterparts encoded by the two-dimensional transform coder.

To study the effect of channel error in the performance of the hybrid en-
coders a binary symmetric channel was simulated on a digital computer tc link
the transmitter with the receiver. This channel would vperate on each binary
digit.independently changing each digit from 0 to 1 or from 1 to 0 with probability
p and leaving the digit unchanged with probability 1-p.  Then the same receiver
discussed in Section II is used to reconstruct the encoded picture from the
string of binary digics at the output of the channel. Figure 12 shows the degrada-
tion of the one-dimensional hybrid system using Hadamard transformation and the
DPCM encoders, in terms of signa’-to-noise ratio, for bit-error probabilities of
p = 10'2, p = 10-3, and p = 1074, It is observed that the performance of the

hybrid system is affected very Tittle for a channel noise corresponding to a

bit-error probability of 10'4, however it increases significantly at bit-error

3

probabilities of 107~ and 10'2. Also, it is noted that the effect of channel

error is more emphasized at higher bit rates, particularly for bit-error pro-
babilities of 10'3 and 10'2. Figure 13 shows the encoded pictures using the
above hybrid system at bit rates of one and two bits per pixel for bit-error
2 ]0-3

probabilities of 10° , and 10-4. These figures show that aside from the

exceptionally high bit-error probability of 10-2, the degradation of the encoded
pictures because of noisy channel is not significant. Visible degradations are
in the form of short runs of 16 pixels (the block length of one-dimensional
transformations) which is due to the error in the output of the DPCM system
that encodes the lower components of the transformed zignal. We note that there

is no propagation of the error in the vertical direction as is commonly observed

in simple DPCM systems.
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The hybrid system we have investigated is one that uses the optimum coeffici-

ents A], A2""’An in the predictors employed in both the receiver and the trans-
mitter of the system (see Figure 1). These coefficients depend upon the statistics
of the particular picture that we are encoding. To make the encoder independent

of the signal statistics, a common value of unity can be used for A] through An.
This makes the bank of DPCM systems similar to the differential encoders that

have been used in practice [3]. Figure 14 shows the performance of the hybrid
system discussed above using a common value of unity for Ai’ i=1,...,n at various
bit rates and bit-error probabilities. This figure also shows the performance of
the same encoder using optimum coefficients and a noiseless channel. The degrada-
tion due to making these coefficients unity is aboutone dB and it is almost the
same at various bit rates. The behavior of this system for various bit-error
probabilities is very similar to the performance of the encoder using optimum

coefficients shown in Figure 12.

Encoded pictures using this suboptimum 2ncoder for one and two bits per
pixel at various bit-error probabilities are shown in Figure 15. Comparison of
Figures 13 and 15 shows tnat there is no noticeable difference in the performance

of the optimum and suboptimum encoder.

To compare the performance of the hybrid system with the encoder using two-
dimensional transform and block quantization for a noisy channel, the binary
symmertric channel discussed aboveis simulated in the system that uses two-dimen-
sional Hadamard transform and a block quantizer for a block size of 16 by 16.
Figure 16 shows the performance of this system in terms of signal-to-noise ratio
at varfous bit rates. for bit-error probabilities of 104, 1073, and 10°2. Two

pictures encoded by this system using one and two bits per pixel and bit-error
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probability of 10'3 are shown in Figure 17. Comparison of these pictures with |y
those in Figures 11 and 13 indicates that the subjective quality of the recul- ﬁ
tant pictures is affected more because of channel noise when coded by the hybrid

system then it is using the two-dimensional transform technique, though the

hybrid system produces pictures with a better overall quality.

V. Conclusions

The hybrid system using the two-dimensional transformations and the DPCM
encoders is essentially the standard two-dimensional transform coding system

where the encoding efficiency is improved by exploiting the inter-block correla-

tion in the data. The system is attractive since a small block size could be

used reducing the computational complexity without affecting the performance of

the system.

The hybrid system that uses one-dimensional transformation and DPCM systems
attempts to uncorrelate the data in one spatial direction by the transform tech-

nique and in the other spatial direction by the DPCM encoders. The quantization

and the channel error are introduced in the transform domain, where it is less

objectionable to a human viewer. The fact that the system uses a one-dimensional

transformation, it is not sensitive to the block size, and allows parallel opera-

tion on the data, makes the system attractive from an implementational viewpoint. 1

The significant result is the improved performance of the system as indicated by
both theoretical and experimental results that surpasses the performance of both
the DPCM and the two-dimensional transform coding systems and the fact that the

performance of the encoder is not impaired significantly for small or mogcrate

levels of channel noise.
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(a) Original

(c¢) Fourier (d) Hadamard

Figure 9. The original and the encoded pictures using one-
dimensional transformations and DPCM systems, 1 bit/pixel,
M = 16.
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(a) Karhunen-Loeve (b) Fourier |

(¢) Hadamard

Figure 10. The encoded pictures using the cascade of one-
dimensional transformations and DPCM systems, 2 bits/
pixel, M = 16.
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(a) 1 bit/Pixel (b) 2 bits/Pixel
Two-Dimensional Hybrid Two-Dimensional Hybrid

(c) 1 bit/Pixel (d) 2 bits/Pixel
Two-Dimensional Hadamard Two-Dimensional Hadamard

Figure 11, (a) and (b) are coded by the hybrid system using two-dimensional
Hadamard transform (4 by 4) and DPCM. (c) and (d) are coded by the systen
using two-dimensional Hadamard transform (16 by 16) and a block quantizer.
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(a)

1 bit, P:10"

(e) 2 bits, P:lO'3

(¢) 1 bit, P=10"2 (f) 2 bits, P=10"2

Figure 13, Coded by the hybrid system using one-dimensional Hadamard
transform and DPCM encoders employing a noisy channel,
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(c) 1 bit, P=10"2

Figure 15. Coded by the h
transform and simplified D

e T T

ybrid system using one-dimensional Hadamard

PCM encoders (A;=1) employing a noisy channel,

11

{f) 2 bits, P=10"

ok Y
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(b) 2bits/pixel , P=10"

Figure 17. Coded by the system using two-dimensional Hadamard transform

(16 by 16) and a block quantizer with a noisy channel.
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APPENDIX C

REAL TIME DISCRETE FOURIER TRANSFORMS
USING SAW DE'/ICES
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REAL TIME DISCRETE FOURIER TRANSFORMS USING SURFACE ACOUSTIC WAVE DEVICES

J. M. Alsup, R. W. Means, and H. J. Whitehouse
Naval Undersea Center, San Diego, California

Abstract

A real time Discrete Fourier Transform (DFT) module is presented using
surface acoustic wave devices. The chirp - z algorithm is used to compute
the DFT. It requires premultiplication of the time signal by a discrete
complex FM chirp. Since the algorithm is complex it is implemented in
real arithmetic by four convolvers operating in parallel. A 63 tap
transversal filter performs the convolution required for a length 32 DFT.
Each transversal filter has uniformly spaced taps whose weights are the
cosine or sine components of a complex chirp. The computation time of
the device is proportional to the number of samples, N, in the time
signal. If N is a power of 2 the compucation time of the Fast Fourier
Transform (FFT) is N TogoN. This device is thus a factor of TogoN faster
than a FFT using a multiplier of the same speed. It is also a low power,
light weight device.

To Appear In Proc. IEE International Specialist Seminqr on Compoqent
Performance and System Applications of Surface Acoustic Wave Devices,

Aviemore, Scotland, Y. K., Sept. 25-27, 1973.
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REAL TIME DISCRETE FOURIER TRANSFORMS USING SURFACE ACOUSTIC WAVE DEVICES

J. M. Alsup, R. W. Means, and H. J. Whitehouse

Introduction

A transformation of considerable importance for signal processing is the
discrete Fourier transform (DFT). It may be calculated using the chirp-Z
transform (CZT) algorithm, [1,2] a method which is suitable for implemen-
tation via acoustic surface wave devices as well as other forms of the
transversal filter. The CZT algorithm decomposes the DFT into a premul-
tiplication by a discrete chirp, a convolution with a discrete chirp, and
a postmultiplication by a discrete chirp. This is illustrated in Figure 1
and by the following equations for an N-point DFT:

=
—

P -jemmn/N
G e 9’

pe= |
1]
o

but,

=2mn = -m® + (m-n)? - n?;

therafore — < . 2 "
, 6 = e Jmm? /N 2 eJﬂ(m-n) /N <e jm? /N 5 )
n=0 n

Since this algorithm requires the use of complex numbers, its implementa-
tion with real hardware requires the use of four convolvers. The real and
imaginary components of the input g, are multiplied by the real and
imaginary components of the premultiplier-chirp and combined in pairs to
drive tne inputs of four chirp convolvers. The convolver outputs are com-
bined in pairs and multiplied by the real and imaginary components of the
postmultiplier-chirp and combined again to provide the real and imaginary
components of the output Gm.

The computation time of the device is proportional to the number of samples,
N, in the time signal. If N is a power of 2 the computation time of the
Fast Fourier Transform (FFT) is N log,M. This device is thus a factor of
1092N faster than a FFT using a multiPplier of the same speed. It is also
a low power, light weight device.

Transversal Filter Convolver

The convolution operation may be implemented in highly parallel form as a
transversal filter. Such a filter is diagrammed in Figure 2 along with
the equivalent matrix multiplication. The filter consists of a delay line
which propagates the input signal g, along with discrete, equally-spaced
taps which sample the signal along the delay line. The taps are weighted
by tre values b, which correspond to the real and imaginary components of

The authors are with the Naval Undersea Center, San Diego, California
92132, USA.
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the discrete chirp: b, = cos (mn?/N) or sin (mn?/N). When N is even the
tap weights repeat and circular convolution can be used. The output of
the filter's delay line is shown as connectable to its input so as to be
able to perform circular convolution. The complete DFT via the CZT
algorithm is shown in Figure 3. Parallel implementation of the complex
arithmetic is shown for simplicity.

Surface Wave CZT Convolver

For signal processing at sample rates above 5 MHz, the acoustic surface

wave technology is a very suitable candidate for implementation of a CZT .
convolver. Not only can the sine and cosine tap weightings be easily 1
implemented (by adjusting the finger overlap in the interdigital trans- '
ducer taps), but all four convolvers required for the algorithm can be ;
fabricated on a single substrate. £

Figures 4 and 5 show a CZT mask used at the Naval Undersea Center to i
fabricate a surface wave 4-channel convolver. In this instance, circular :
convolution is simulated by using a repeating structure of 63 taps to

implement a 32-point transform: the last 31 taps are a replication of the !
first 31 taps. ]

Features of the Design f

The launch transducers, located at the extreme right and left ends of the
mask, have an aperture which is common to two of the tapping structures.
Thus, even though there are four receiving structures which constitute the
four transversal filters, there are but two acoustic paths each of which
is occupied by a sine and cosine pair of tapping structures. Acoustic ;
waves may be launched from either end since the tapping structures are b
symmetric. Since the Taunch aperture is about 318 acoustic wavelengths ;
wide and the maximum propagation distance is about 851 acoustic wave- :
lengths long, it can be established that the farthest tap is well within f
the near field of the launch transducer and that the acoustic waves travel ]
across the substrate in well-collimated beams. The fractional 'far-field
Tength' involved is the ratio 851/(318)2 * .008.

PO

" 4
T

The mask is transferred to an ST-cut quartz substrate as a pattern of
aluminum fingers oriented for acoustic propagation in the x-direction.
The size of the crystal is 3.5 inches by 1.75 inches by (1/8) inch.

R

The launch transducers and each receive tap are composed of three pairs of
interdigitated fingers spaced at .0044-inch intervals. The finger width
and the finger gap are equai at .0011 inch. Since the velocity of pro-
pagation is 3158 m/s, the resulting center frequency is 28.3 MHz.

A close-up view of the tapping structure shows how the finger groups are

weighted (Figure 5). The finger is cut short of the full possibtle

aperture if a weight smaller than one is desired. Finger tips are

retained to minimize possible acoustic diffraction due to differential

mass loading across the aperture. A tap of weight zero is implemented by |

a space (no finger group). ‘3
i
i

The ratio of group spacing to wavelength was originally designed to be
Six, but artwork limitations resulted in a ratio of 5.91. Thus, the

80




inter-tap delay became 0.209 psec and the corresponding chirp sample

frequency, 4.78 MHz. The resulting fractional bandwidth is 4.78/2(28.3)
.084.

The rate of calculation of the DFT is thus determined: 32 points per
6.69 usec. When calculating such a rate in the manner described, it is
assumed that two units are multipiexed so that one is calculating while
the other is loading with new data.

The ends of the quartz crystal were rounded so as to permit propagation
of the acoustic waves around the ends of the back side of the crystal
where they are absorbed by a thin layer of silastic room-temperature-
vinvl (RTV) distributed over the back surface.

The crystal was mounted in a milled aluminum box with separate compartments
in the underside to accommodate electrical matching circuits for each
input and output signal with large RF isolation. The coaxial connectors
are SMA female. The top-side was fitted with a transparent plastic top
inside the standard metal top so as to afford more protection under
routine inspection. Leads were bonded from feedthrough terminals to the
surface electrode busses via conductive silver paint.

Preliminary Experimental Results

Two devices were constructed. One was used to generate the 32-point sine
and cosine chirp samples for premultiplication, and the other to convolve
the multiplied input with the four 63-point chirp transversal filters.

Values used to construct the weights in the tapping structure are given

in the first three columns of Table 1. The impulse response of a 32-point
tapping structure is shown in Figure 6. A bulk-wave cancellation scheme
was used to obtain this desired output, since some spurious signals were
otherwise obtained with the electrode pattern on ST-cut quartz.

Values expected at the output terminals of the appropriately-summed con-
volver electrodes are given in the last three columns of Table 1 for

the case when the input g  is a constant = 1. This case simplifies the
evaluation since two of the convolver operations and the entire post-
multipiier operation become unnecessary. Values actually observed (after

the loading interval) are shown in Figure 7, and the final summed output
in Figure 8.

It is expected that the next generation device will have a better time-
domain response such that the desired cancellation of the component
responses will be more nearly perfect in the region following the dc peak.

Conclusions

The acoustic surface wave implementation of CZT convolvers and discrete
chirp generators appears to hold much promise. Though the outputs
observed to date are not yet satisfactory, they are expected to improve
with refinement and practice. A similar surface wave generator/convolver

utilizing nearly identical design techniques has been shown to perform
with a very high level of accuracy [3].
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Since the computation time of the algorithm is proportional to the number
of samples, N, in the time signal, a time-domain implementation such as
this one is expected to speed up calculation of the DFT by a factor of
1og,N relative to an FFT with identical capacity and speed.

The surface wave implementation is relatively small and light-weight, and
has a low requirement for electrical power. The potentials for operating
at higher frequencies and over longer acoustic paths (as compared to the

design parameters reported here) point toward larger capacity, faster
acoustic surface wave CZT devices in the future.

1. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The Chirp-Z Transform

Algorithm," IEEE Trans. on Audio and Electroacoustics AU-17, No. 2t
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Access Linear Transform Implementations," Naval Undersea Center TN

1026 (also presented at A1l Applications Digital Computer (AADC) i
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Naval Undersea Center TN 981, San Diego, CA, March 1973.

g X > * g-imn?/N X > G

g-iT?/N e-iTmZ/N

Fig. 1. Chirp Z Transform Implementation of the DFT
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FIGURE 6. SURFACE WAVE CZT FILTER, 32-POINT
IMPULSE RESPONSE: (a) sin 7n%/32; (b) cos 7n2/32.




FIGURE 7. SURFACE WAVE CZT OUTPUT COM-

PONENTS FOR DC INPUT: (a) sin(32) « sin (63);
(b) cos(32) « cos (63).

FIGURE 8. SURFACE WAVE CZT OUTPUT FOR
DC INPUT.
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REAL TIME DISCRETE FOURIER TRANSFORMS USING CHARGE TRANSFER DEVICES

R. W. Means D. D. Buss H. J. Whitehouse
Naval Undersea Texas Instruments Naval Undersea
Center Center

ABSTRACT

A real time Discrete Fourier Transform (DFT) device is presented tsing bucket
brigade devices. The chirp - 2 algorithm is used to compute the DFT. It req-
uired premultiplication of the time signal by a complex FM chirp, convoluiion
with a complex FM chirp and postmultiplication by a complex FM chirp. Since
the algorithm is complex it is implemented in real arithmetic by four convolvers
operating in parallel. A two hundred stage bucket brigade transversal filter
performs the convolution required. The signal is tapped with a source foilower
whose Toad determines the weighting coefficient. The computation time of the
device is proportional ‘0 the number of samples, N, in the time signal. The
computation time of the Fast Fourier Transform (FFT) is N Tog,N if N is a power

of 2. The device is thus a factor of Tog,N faster than the FFT.
Tow power, Tow weight device.

It is also a
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I. INTRODUCTION

Because of their analog nature, charge coupled devices (CCD's) offer the pos-

sibility of performing many of the signal processing functions which until now
have fallen into the realm of digital filtering.! The discrote Fourier trans-
form (DFT) of an electrical signal is one such linear filtering operation which

readily lends itself to implementation with CCD's and is discussed in this
paper.

The technique of using CCD's to perform the discrete Fourier transform (DFT) of
an electrical signal was first proposed by Whitehouse, Speiser, and Means.?2
The technique they have proposed is called the chirp-Z transform (CzT)

the mathematical operations involved multiplication and co
signals. 3

because
nvolution with chirp

The CZT was first conceived as an algorithm for the DFT on a digital computer.
It never gained wide acceptance, however, because the number of digital oper-
ations required for its implementation is the same as for t
Fourier transform (FFT) algorithm. It can be viewed as three distinct operations,
all of which can be performed with analog circuitry. (1) premultiplication by

a chirp waveform, (2) convolution with a chirp waveform, and (3) post-multipli-

cation by a chirp waveform. These three operations are illustrated in the block
diagram of Figure 1.

he Cooley-Tukey fast

Tke DFT of a band limited electrical signal g(t)

at N uniformly spaced instants of time to obtain
then given by the definition

is found by sampling the signal
the N points 9 The DFT is

N-1 .
6 = I gy exp[- &Koy (1)
n=o

The CZT algorithm for evaluation equation (1)

is derived by making the substituy-
tion

2kn = k? + n2 - (p-k)2

(2)

into equation (1) to get




“ime2/n N-1 “k)2/N  —§op2
Gk = o~ 17k2/N . eir(n k)2/N = imn2/N g (3)

n=o0
Equation (3) suggests clearly the hardware implementation 11lustrated in
Figure 1. This algorithm offers unfque advantages when implemented using CCD

transversal filters because all the Processing can be performed in an analog
format.

n

Section II of this paper gives preliminary experimental verification of the CZT
concept. The demonstration is only approximate but it illustrates the simplicity
of the approach. Section III describes the exact CZT implementations. Section
IV concludes with the discussion of applications.

I1. PRELIMINARY EXPERIMENTAL RESULTS

To demonstrate the concept of the CZT, the simplified system shown at the top
of Figure 2 was implemented for approximating the power density spectrum. The

the functions.

T T
h(t) = cos ut2 - 4. t <-4 (4)
2 2
for the COS filter and
T T
g(t) = sinptz . 94 t <9 (5)
2 2

for the SIN filter. They are bucket brigade device (BBD) filters which were
developed for a spread-spectrum receiver.“,5,6,7 The impulse responses and cop-
relation responses of these filters are given in Figure 3.

In the demonstration, the chirp signal shown in Figure 2 chirps from 97.5 kHz to
102.5 kHz in 5 msec. and gives the approximate power density spectrum across this
frequency band. The operation of the system can be understood in the following
way. IT the input signal is a single frequency sinusoid of frequency fs, then
the output of th2 mixer has a difference component which chirps from fs -97.5 kHz
to fs <102.5 kHz and a sum component which is filtered out in a low-pass filter
after mixing (not shown in Figure 2). The filters are clocied at 20 kHz and have
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impulse responses which chirp from -5 kHz to +5 kHz in 10 msec.

The convolution operation is indicated schematically at the botton of Figure 2.
The frequency of the filter impulse response is indicated by the line extending
from -5 kHz to +5 kHz. The input signals are reversed in time as required by

the convolution operation, and are shown for four values of fs equally spaced
across the chirp band: 97.5 kHz, 99.17 kHz, 100.83 kHz and 102.5 kHz. A cor-
relation peak in the filter output occurs when the frequency of the time reversed
input signal "lines up" with the frequency of the impulse response. At the time
instant shown, the 97.5 kHz signal lines up with the filter and gives a cor-
relation peak. Higher frequency signals result in correlation peaks which occur
later in time by the amount of At given by

= K L
At = n(fs 97 .5kHz ) (6)

where-% is the slope of the frequency vs time curve as can he seen from egs. (4)
and (5).

Two filters are used to perform in-phase and quadrature processing, and the
output signal which results from squaring and summing the filter outputs closely

approximates the power density spectrum of the input signal across the 97.5 kHz
to 102.5 kHz band.

The system of Figure 2 does not give the exact power density spectrum.

There are
snall spurious sidelobes due to an approximation made

that an up chirp is ortho-
ganal to a down chirp. The system output also has a dependence upon the phase of

the input signal. This dependence can be reduced by using filters of larger

time-bandwidth product or by implementing the exact in-phase and quadrature
processing to be discussed in Section III.

The actual operation of the system is illustrated in the series of photographs
shovn in Figure 4. The input is o single frequency sinusoid whose frequency
takes on the values indicatad in Figure 2, und the output shows a distinct
correlation peak whose position scales uniformly with input frequency. The
time axis calibratiop is 1.67 msec/cm, and the correlation peak shifts by 1 cm
each time the input frequency increases by 1.67 kHz (u/m = 106 sec™2). The
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correlation peaks should all be of equal amplitude. However, because of the

above mentioned dependence on input phase, there is a small random variation
from one photograph to the next.

III. FOURIER TRANSFORM ANALYSIS

The exact DFT can be implemented by the hardware shown in Figure 5. The com-
plex chirp Z algorithm as defined in equation (3) is implemented by real hard-
ware operating in parailel. The transversal filters discussed in Section II
can implement a cosine transform® vhich is a subset of the DFT. In order to

illustrate this it is first necessary to discuss the symmetries involved in
Fourier transforms.

1 If the input time signal g(t) is real, as it always is in signal processing
3 applications, then the output Fourier transforms have the property that

G, = G¥ (7)

This is an awkward symmetry to make use of in reducing data handling requirements.

However, if the input data is real and symmetric, then the output Fourier trans-
form is also real and symmetric.

This symmetric transform is sometimes referred to in the Titerature as the cosine
transform. It is not uniquely defined and different authors have defined slightly
different cosine transforms. There are two implicit symmetrizations possible on
the input data: (1) The data set of Tength N is reflected about a data point.
This will result ‘n a data set of Tength 2N-1; (2) The input data set of length

N is reflected so that the resultant data set is of length 2N. An example
shoule clarify these two casses.

1) Original data set: [1,2,3,3,4]
Symmetrized data set: [4,3,3,2,1,2,3,3,4]

2) Original data set: [1,2,3,3,4]
Symmetrized data set: [4,3,3,2,],1,2,3,3,4]
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The Naval Undersea Center is interested in implementing the cosine transform
because it is involved in a progiam of television band width reduction. The
ordinary discrete Fourier transform has several faults.
Fourier transform of a periodically repeated signal
discontinuities at the boundaries.

Since it is really a
» it may have artificial

If the signal is made symmetric then the
discontinuities dissappear and the Fourier transiorm will thus converge more

rapidly. It will be shown later that making the signal symmetric does not

take any hardware. In fact it reduces the amount of hardware required to
perform a Fourier Transform.

In order to demonstrate this it is advantageous to go throu
of analysis.

g(t)

gh several stages
Consider a continuous Fourier transform of a finite time signal

I ~jwt
Glw) = [ g(t)e " at (8)
0
Cefine the symmetrized time signal as

t) 0<t«<T
gé-t) -T<t<o (9)

il

9(t)
Then the Fourier transform of é(t) is
= T .
6(w) = f g(t) cosut dt (10)
T
Since é(t) is real and symmetric then G(

w) is real and symmetric and thus

. T .
G(w) =.ff g(t) coswt dt

T (1)
= Z.f' g(t) cosut dt
0
For future comparison it js convenient to write this as
3 T -int
G(w) = 2 Re [ g(t)e ™t gt (12)
0

Notice that the Fourier transform of the symmetric time signal é(t) has been

derived by only working with the non-symmetric time function g(t) and that
only an integral of length T was reguired,
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Let s consider now a sampled signal 9, of N

points and its discrete Fourier
transform. Define the symmetric funct1on

én = gn-l n2] N1 <n<N (13)

9-n n<o

This function can be 190ked on as symmetric about n = 1/2. Its "Fourier" trans-
form is thus
N ~ =2nik(n-1/2)

ék = I g, e N -N+1 < k < N (14)
n=-N+1

Since én is symmetric, then Im G
compute half the set.

. N . -Zniksn-]/Zz
Gk E g e 0 <k < N-1

=-N+1"

=0and G =G

K K+ and it is only necessary to

(15)

By rearranging the summing order and using the fact that g

» 3 e i B e
e e e

this can be shown to be

] N-1

=9, forn>1,

2 +1/2
Gk =2 f 9 cos[ at ] 0 <k < N-] (16)
n=o - =
This can be written in the Yorm
N-1 .
" 2nik(n+1/2)
B T2Re I g, eSy 0 < k< NI (17)

Notice that only the original sampled time function {g } is used and that the

sum is only over N points. Equation 17 can be 1mp1emented by a chirp Z trans-
form by substituting the identity.

2k(n+1/2) = k2 + (n+1/2)2 -(k-(n+1/2))2

(18)
This gives
—irk2
k = 2 Re e1%§ Nz] etin(k-(n+1/2))272N
-in(n+1/2)2/20 (19)
*e gn
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This cosine transform can be implemented by the bucket brigade devices by letting
N = 199 except for a factor of 2 in the total length of the filter. This implies
that only the first 100 cosine transform coefficients will te computed and that
the data is defined to be equal to zero after n = 100,

IV. APPLICATIONS

The CZT algorithm is conceptually a real time algorithm for a sampled data

sytem. The set of points {gn} can be considered as a time sampled function of
a continuous function g(t) of length T. The transversai filter of the chirp Z
transform will have a basic clock frequency equal to the sampling frequency. It
has 2N (or 2N-1) stages so it is approximately twice as long as the input signal.
A time T must pass before the set 9, fills the first half of the transversal
filter. Thereafter, one DFT coefficient is computed for every time step. This
is what is meant by a real time device, i.e. for a data sequence of length N

it takes N clock periods to compute the DFT.

By this definition the chirp Z algorithm can be compared with other algorithms.
The basic algorithm as defined in equation (1) takes N2 steps to compute. If N
is a power of 2, then the Cooley-Tukey alqorithm called the Fast Fourier Trans-
form (FFT) required N log, N steps to compute. The transversal filter implemon-
tation of the chirp Z algorithm achieves its high speed not by reducing the
number of multiples like the FFT but by putting the equivalent of N parallel

multipliers all on the same chip. This reduces the number of computational
steps from N2 to N.

A real time Fourier transfcrm device will find many applications in radar, sonar

and pattern recognition. One of the most promising is the bandwidth reduction
of television.?
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Fig. 1. Chirp Z-transform lmplementation of the DFT

—COS _()T]

_
IN - t . ouT .
SIN ()2 b ) k

CHIRP "
27.5>102.5 kHz

97.5 932 1008 1025
I, —._Correlation Peaks

Fig. 2. voe: Block D agram of a Configuration for Approx-
imating the Power Density Sprectrum. The filters markes!
COS and SIN are clocked at 20 kHz so that their impulse

l responses chirp from -5 kHz to +5 kHz. A low pass filter
which is not shown follows the mixing operation and
eliminates the sum frequency components.

BOTTOM: Schematic of the Convolution Operation Performed - 7,
Within the Filters. (See text). ]
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The impulse response and cor-
relation response of the two
filters required for the sys~-
tem of Fig. 2. These filters
are each 200 stages long and
are both integreted in a
single BBD IC.
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Fig. 4. Power density spectrum output

for sinuscidal input

105

Preceding page blank




Mpwyiry xspdwo) jo uonriuswaidwi [a[rIRg Yylim wWyiod|y 1ZO®mAa1dad ¢ -Hig

N
Emcu

- |

SNOILTOANOD
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APPLICATICN OF IMAGE EXTRAFOLATION
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Abstract

A generalized technique is developed for estimating the missing

spectral components of the mathematicz| transformation of « data vec-
tor. The method has application in transform data coding systeme and
time series analysis problems. ;

The spectrum extrapolation matrix operator is derived upon

principles of minimum mean square error estimation. Performance of
the extrapolation method is analyzed, and experimental results of the

application of the method to one and twe dimensional signals is presented.
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1. Introdvc«tion

Ir. transform data coding systems one of the coding techniques is to
transmit only those data transform coefficients of low frequency or those
components of low magnitude {11 At the decoder it has been common prac-
tice to insert zeros for the missing components prior to the inverse
transformation operztion that reconstructs the data. However, it is known

that for all transformations, other than the Karhunen-Loeve transform,

El_l the coefficients are partially correlated. Hence, it should be possible to
utilize knowledge of this correlation to estimate the missing coefficients
rather than arbitrarily setting their values to zero. Another relate” pro-
blem occurs in time series analysis in which it is often required to esti-
mate the power spectral density of a process given only a few points of
the autocorrelation function (2], A general solution to this class of pro-
blems :as been formulated within the framework of linear minimum mean

square estimation theory,

2. Generalized Spectra

Consider an N element vector f which is a sample of a random pro-
cess with zero mean and known covariance matrix Ef. This vector under-
goes a linear transformation defined by the N x N element operator matrix
A. Typical transformations of interest include the Fourier, Cosine, Hada-

mard, Haar, Slant, and Karhunen-Loeve transforms [3-8]. The N element

vector f denotes the one dimensional transformation of f as given by
f=af )

where the elements of__£ represent the spectral components of an expansion

of f in terms of a set of basis vectors which are the rows of A, Since { is
zero mean, _f_ also possess a zero mean. Also, for a unitary transformation

it is easily seen that the covariance matrix of the transformed vector is

Ky - AR AT (2)
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3. Spectrum Extrapolation-Noise Free Condition

Figure la contains a diagram illustrating the generation of the gen-
eralized spectral components of a signal, the selection or truncation of
these components, and the estimation of the discarded components. In the
diagram the complete vector of spectral components _:f_ is operated upon by
an M x N (M< N) selection matrix S that extracts certain elements of f and
records them in an M element vector f-T' The selection matrix contains
a unit element at S(i, j) to transfer the jth element of i‘ to the i th element of
iT' This selection matrix represents the sampie selector of a transform
data coding system, or it can be considered to represent the incomplete
knowledge of a correlation function in the problem of power spectral density
estimation,

In the diagram of figure la, the vector _:)S_ is multiplied by an N x M

estimation matrix W which provides an estimate’? £. of the complete set of
spectral components of_i . An inverse unitary transformation é_-l then re-
constructs an estimate, _f_ , of the signal vector, f. In essence, the esti-
mator linearly extrapolates the values of the observation of known spectral
components to determine the unknown spectral values. The extrapolation
is meaningful because of the information provided by the expected correla-
tion of the elements of the observation.

The estimator matrix Wis chosen to minimize the mean square error,

€, between the signal vector and its estimate as defined by*
" A XT
e = tr(E{(f-H(f-) "} ] (3)

The optimum choice of Wto minimize the mean square error can be found

by forcing the dynamic error (_t;-i) to be orthogonal to the observation iT (9].

notation: E{. } = expected value; trztrace of a matrix; * = cemplex conjugate;

T =transpose,
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Thus, by setting
E{Ed) T} =0 (4)

where 0 is an NxM matrix of zeros, one obtains

i ¥ *

A E{{r-a” wsanean™T J=0 (5)

' This leads directly to the optimum solution i
N w=aga's"sakals 1! (6)

Premultiplying W by the selection matrix S yields

| SW =1, (7) {

b !

3 where | M denotes an MxM identity matrix. Since

| 2 £ = wi, (8)

. it in clear from equation (6) that

] P ) |
" sf=swf -4 (9) N
i *
o Thus, the estimator simply copies the elements of iT into the appropriate :

A

i elements of f. The remaining elements of_z are obtained by a linear com-

o bination of the elements of -'fT' Examination of the extrapolation matrix '
L. computed from equation (6) indicates that the first M rows of W form an
& identity matrix. The remaining N-M rows of W contain elements whose
a weightings are proportional to the correlation between the coefficient to
- o be estimated and the spectral observations. For a Karhunen-Loeve trans-
e formation, all transform coefficients are uncorrelated, and hence spectrum ':’i
o extrapolation is not applicable. In this instance the bottomm N-M rows of w 3
( 3'- are all composed of zero elements.
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The spectral estimation problem diagrammed in figure la could

have been formulated initially to estimate the signal i directly from the

spectral observation iT' Let this estimator be denoted as U where

$= ud (10)

However, since A is a unitary matrix, the measure of the error is pre-

served by the transformation, and it is easy to show that

u=alw a1

Thus, the original solution is optimum,

4. Spectrum Extrapolation - Additive Noise

In physical situations the observation usually is contaminated by

noise. If the noise is additive, as in figure 1b, the optimum estimator that

minimizes the mean fquare error, e, will, in effect, perform an additional

task of noise filtering, Applying the orthogonality principle, one obtains

E{dwT)- 0 (123)

or

E{UAT W @sa gl ™™+ 0T 4167 7

=0 (12b)

— - -

For the usual case of zero mean nojse in which the signal and noise are un-

correlated, the optimum estimator is found to be

W=aka's" sakatsTig 17 13)

where K is the noise covariance matrix.




5. Computatioral Considerations
In the noise free case of spectruin extrapolation, it i# possible to
reformulate the expression for the extrapolation matrix of equation (6) to

permit computation usin; a pseudoinverse [10] algorithm. Let
B=SAH (14)

where E—f is obtained by » factorizatiun of the covariance matrix K

K. That

is

T

K, = HH, 15)

A general factorization tachnique is given by

H=EAM o

where E is a matrix containing the eigenvectors of L(f as column vectors,
Aa in a diagonal matrix whose elements are the square roots of the eigen-
values of_I_{_f, and M is an arbitrary unitary matrix, which may be chosen
to force Iif to be of lower triangular form. With this factorization the ex-
trapolation matrix expression becomes

w=aH3B" (38" 7)

f
where it is observed that the matrix P EQT(QQL)-I can be computed as the

pseudoinverse of B. Algorithms exist for the efficient computaticn of a

matrix pseudoinverse 1],

) 6. Two Dimeasional Formulation b
{4 The spectrum extrapolation technique can be extended to two dimen- ‘f
. sional transforms quite easily. Consider a PxP data matrix F which is column 1
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scanned to obtain the N=P2 data vector f. Substitution may thes be made

directly into equation (1), to apply the subsequent one dimensional process-
ing algorithm. A special situation of interest occurs when the data covar-
iance matrix, transform matrix, and selection matrix are all of separable

form such that the following direct product relations hold

By = Ky xEy (18a)
A =A xA (18b)
S =S xS (18¢)
8 =SS,

where l{-fx and K. zre (PxP) row and column covariance matrices, Ax
AY =

and éy are row ana column transform matrices, and §x and _Svare row
and column selection matrices. For the noise-free case it is easily
shov,u tha:

W=W (19)

XW
x =y

where

w =A Kk AlsTl A x, alsty?
-x =x=fx=x =x x—x—fx=x —x

-1 T -1 .T,-1
w A K A'S A K _AS
Ty TyTiyTy Ty EY‘Y‘fY‘Y W]

In this case spectrum extrapolation can be sequentially parformed on rows
and columns of the truncated two dimensional array of transform coeffi-
cients, thus permitting a significant reduction in computational complexity.
Unfortunately, the two dimensional extrapolation matrix ¢{ equation (13)
for a noisy observation is not separable when the separability conditions

of equation {18) hold, even if the noise is separable and uncorrelated.
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7. Performance Evaluation

The usual alternative to spectrum extrapolation is simply to set the
values of the discarded spectral components to zero and perfurm an inverse
transformation. For such a strategy the reconstruction matrix is simply
W= §T and the estimated vector becomes

- o' s saf (20)

>

Substitution into equation (3) yields the sub-optimal mean square ersor

b0 = tr KL -AT' ST 5 4)] (21a)
or
g, = tr l';gng - §T§)] (21b)

If the optimal reconstruction matrix of equation (6) or equation (13) is em-

ployed, the resulting mean square error is found to be

8 = trEI_{#N -WS)] (22)

Therefore, a reduction in mean square error by the amount

6y =8 -6 = tril{f(w -§T) s] (23)
can be realized by spectrum extrapolation.

Figure 2 contains plots of the mean square error of transform com-
ponents with and without spectrum extrapolation for several transforms.
Ia this example the data vector is of length 32 and the last 24 elements
bave been truncated. The data is modelled as a first order Markov pro-
cess with an adjacent element correlation of 0. 9", The figures indicate
significant reductions in mean square error are obtained for the Hadamard,
Haar and Slant transforms. No error reduction is possible with the
Karhunen-Loeve transform since the transform coefficients are uncorre-

lated, and there is no information available for extrapciation. There
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R0y

(b) 4:1 zonal selection (c) 4:1 zonal selection
spectrum extrapolation

(d) 10:1 zonal selection e :1 zonal selection
spectrum extrapolation

Figure 4: Hadamard transform spectrum extrapolation examples.

Reproduced from
best available copy.
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is almost no improvement obtained with the Cosine transform because of

its close similarity to the Karhunen-Loeve transform for Markov process
data.

8. Experimental Results

Computer simulation experiments have been performed to evaluate

the spectrum extrapolation process. Figure 3 contains an example of spec-

trum extrapolation in the Hadamard transform domain for two one-dimen-

sional signals: a sin A/ waveform and a pulse superimposed on a quadratic

background. Figure 4 illustrates two dimensional spectrum extrapolation in

the Hadamard domain. In this example a 256x256 pixel image was trans-

formed in 16x16 pixel bocks. The transform coefficients lying outside of

8x8 and 5x5 low sequency zones, for the two experiments, were truncated,

The improvement in subjective quality is arparent from the photographs.

9. Summary

A relatively simpie technique for extrapolating the values of missing

transform coefficients in transform signal processing systems has been
demonstrated. The technique possesses the interesting feature that it is
an entirely aposteriori method. Thus, in a transform data coding system
it is possible to obtain an increase in data reconstruction accuracy by pro-
cessing at the decoder, without affecting the structure of the coder. Thus,
in a data coding system, it may be worthwhile to utilize a transform with

a relatively poor energy compaction property, but one possessing an
efficient computational algorithm or implementation technology, and still
achieve a desired level of system performance by spectrum extrapnlation

at the decoder,

Several interesting extensions of the spectrum extrapolation process

remain to be explored. First, in many applications there is a priori know-

ledge available as to the structure of the reconstructed data which should be
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used in the estimation of transform components, For example, in image 7
coding it is known that the image reconstruction cannot possess negative i
points or points of extremely large magnitude. A second extension in-

volves discovery of a method for interpolating the values »f quantized g
transform coefficients for digital transform data coding systems in which

gross quantization is applied to achieve a bandwidth compression. Finally,

the development of recursive estimation algorithms to be used in conjunction

with pipeline transform generators would be of interest.
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SIGNAL PROCESSING INTERPRETER: ADDITIONS AND MODIFICATIONS

by

B: R. WOOD
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ABSTRACT

This note describes additions and modifications to a signal processing
interpretef which was developed as part of the ARPA sponsored program for image
transmission via spread spectrum links. The signal processing interpreter
SPIN3 is an interactive program for use at a time-sharing demand terminal. It
provides the user with the equivalent of a calculator designed to perform
signal processing operations and provides the software equivalent of a large
number of modules for breadboarding a complete signal processing system.

This interpreter is meant to be used by engineers and scientists who are
familiar with signal processing, but who may have no knowledge of programming.

The signal processing interpreter is particularly useful for the rapid
investigation of systems whose complexity precludes a compiete analytic study,
and whose utilization of new components may make hardware breadboarding
undesirable because of cost and procurement time limitations.

The present note describes software additions and modifications generated
during the period July through September 1973 and is meant to be used in

conjunction with the Signal Processing Interpreter Preliminary Description

and User's Guide [1].
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NEW COMMARDS AND NEWLY IMPLEMENTED COMMANDS

quantizer
correct

noise generator
add

clear

clear x

roll up

roll down

print all commands
scale
reciprocal

real part

imag part
expand

decimate

right circular shift
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MODIFICATIONS

1. A re-read has been provided when read errors occur while entering commands
or inputting a vector. The effect of this is that noise on the telephone
link or user format errors will now only result in an error message and

a request to re-enter the command or data point.

2. rrevious input/output inconsistencies due to differences between Fortran
and Algol corventions have been eliminated.
ﬁ a. All vector indices are now consistent; they run from 0 to N-1.
; These indices will appear in listings of vectors, plotting,
and inputting.
b. The implementation of the command CONSTANT FUNCTION has been
rewritten to use a comma as the delimiter between the real and

imaginary parts. This convention is now standard for all

complex inputs.

3. The output printing has been cleaned up to minimize unnecessary line feeds

and printing of redundant information.
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DETAILED DESCRIPTION OF THE NEW COMYANDS AND NEWLY IMPLEMENTED COMMANDS

QUANTIZER - requests the user to enter an integer. The x vector is scaled

so that the largest absolute value of the real or imaginary part of x is set

equal to the specified integer. The real and imaginary parts are then rounded %
to the nearest integer. 3
CORRECT - permits the user to change the value of a single component of a f
vector. The user is asked to specify the index of the point to be changed, ’
and is then asked to specify the new value in the format recal part, imaginary ?
1 1
] part. :

NOISE GENERATOR - 9enerates a zero-mean random vector using a multiplicative 3
congruential method described by Kruska [2]. The user supplies a value for the 3

desired variance and an integer in the range 0-8191 for the desired initializa-

tion point.

ADD - Ppads the shorter of the X and Y vectors with zeros to the length of the

T el b

longer one. The X vector is replaced by the sum of X and Y, and the stack is

lowered.

JCLEAR. - sets all vectors to zero, with all dimensions set equal to 1.

CLEAR X - sets the X_vector equal to zero, and sets the X dimension ~qual

to one. ) 3

ROLL UP - performs a cyclic permutation of the vectors X, Y, Z, T and a

similar permutation of their dimensions NX, NY, NZ, NT. Y is replaced by the

: 138
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old value of X, etc.

ROLL DoWN - performs the inverse of ol Lp-

PRINT ALL COMMANDS - causes the computer to print back each user-entered

command which is recognized. This command is used primarily in running batch

Jjobs, to provide a printout which is readable without reference to the card

deck which was used for submission of the job.

SCALE - requests the user to enter a complex number. The X vector is

multiplied by the number, and the result is placed in X.
RECIPROCAL. - replaces every point in the X vector by its reciprocal.
REAL PART - replaces the X vector by its real part.

IMAG PART - replaces the X vector by its imaginary part, i.e., 1.2,3.4 is

replaced by 3.4,0.0.

. EXPAND - increases the length of the X vector by inserting zeros betwcen the
“ original data points. The ser is requested to enter an integer for the
expansion factor. If the integer k is entered, then k-1 zeros are placed

between each pair of data points and after the last point.

DECIMATE - decreases the length of the X vector by resampling. The user is
requested to enter a positive integer for the decimation factor. If the integer

k is entered, then every kth point is saved.

RIGHT CIRCULAR SHIFT - pProduces a circular shift of the X vector. The user

is asked to enter an integer for the shift value. If the integer is positive,

it causes a right circular shift. If the integer is negative, it causes a left
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circular shift. Since a circular shift by a multiple of NX is equivalent to

a shift of zero, a circular

shift of -k is equivalent to a circular shift of
NX-k

» S0 the distinction between right circular shifts and left circular shifts
is purely conceptual.
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SIGNAL TRANSFORMATION WITH RECIRCULATING SAW DELAY LINES*
by
C. M. Fortunko and H. J..Shaw
Stanford University
Stanford, California

ABSTRACT

A system is described for transforming data by switching it into a
bank of recirculating delay lines in one.time sequence and switching §
out in another sequence. This is applied to row-to-column conversion
when the input data is in the form of an N X N matrix. An experimental
demonstration is shown which uses SAW wrap-around delay line channels,
transforming a 3 ¥ 3 matrix of rf pulses of 16 usec length and 52 MHz

carrier frequency.

¥

The work reported in this paper was supported by the U.S. O0ffice of
Naval Research under the Joint Servi:e Electronics Program by Contract
NOOO1hi-6T7-A-0112-0039.

145




SIGNAL TRANSFORMATION WITH RECIRCULATING SAW DELAY LINES
by

(.. M. Fortunko and k. J. Shaw
I. INTRODUCTION

Data processing in real time can be accomplished by storing incoming

data in banks of recirculating surface wave delay lines and then reading
out these data in such a way as to transform them in a desired fashion.
We consider here some of the properties of such systems and describe the
operation of a simple prototype system, operating at 52 MHz carrier fre-
quency, which performs an operation equivalent to interchanging the rows
and columns of a matrix,

The basic approach to the use of delay lines for such purposes is
illustrated in Fig. 1. The essential item is a bank of identical
recirculating surface wave delay line loops. Input data fed in at the input
terminal of the system are distributed among the delay lines in some desired
fashion by means of the WRITE circuitry. The data enter the delay lines
through interdigital transducers indicated as arrows in the figure. The READ
circuitry extracts the data from the delay lines by switching from one
deley line to another in a time sequence which is different from that used
for writing, to accomplish the required transformation of the data train.

The row-to-column converter can be used to perform the intermediste
serial-to-parallel conversion which is required to implement decomposable
two-dimensional transforms (e.g. Fourief, Hadamard). It can also be used

to interface two system with different speeds.
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) Fig. 1--Block diagram of data transformation system using
closed-loop surface acoustic wave delay lines,
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II. ROW-TO-COLUMN (ONVERSION USING

CLOSED-LOOP SURFACE ACOUSTIC WAVE DELAY LINES

We consider now an example of data transformation. Let the input

data stream be Al1 A E @ AlN .« . ANl voe ANN’ which 1s ovdered

according to rows of the N x N matrix in Fig. 2. We now show that it is

possible to devise WRITE and READ algorithms which will convert this

into a sequence ordered by columns of the matrix, in real time | using only

a single transducer on each delay line.

The transducers of Fig. 1 can be addressed at either of two rates,

once per row or once per bit. To obtain the row-to-column conversion one

of these rates is applied to the WRITE function and the other to the READ

function. Either rate may be applied to either function giving two algo-

rithms for the row-to-column operation. Figures 3(a) and (b) illustrate

these two algorithms. In these diagrams successive horizontal lines

show the signals seen by the transducer in successive delay lines as a

function of time reading to the right, The Squares represent the signals

introduced into the transducers during the WRITE operation, and the

quantities between curved brackets are the signals extracted from the

transducers in the RELD operation. The dashes indicate time slots

containing no signal.

Figure 3(a) is for the case in which the WRITE function is performed

at the row rate and the READ function ot the bit rate. Each row of Fig., 2

is fed intact into a Separate delay line. As indicated by the diagonal

arrays of curved brackets, the sequence of gating on the transducers for

readout is a uniform, periodic scam, 1, 2. . .N,1,2.,.,.N

) . ¢ ey

sequentially from line 1 to line N, in repetitive cycles. The final output

148

T T .,

g e D

e WAl

P T

&
1
;
!
p
3
ik
E
k




i i e e e Ll an

R S LA D T e T

PR SRl 2agl
i

wr

signal is shown at the bottom of Fig. 3,i). 7This output sequence is a real-

time sequence free of gaps, ordered according to columns (time reversed)
of the matrix of Fig. 2.

Figure 3(b) represents the alternate algorithm in which the WRIZIE
and READ switching rates have been interchanged. For any row of input
data of Fig. 2, the first bit enters the first storage loop, the second
bit enters the second loop, and so forth until the entire row has been
stored, one bit in each delay line. During the READ cycle the entire
~ontents of each delay line are sampled, one row at a time. The sequence
(column output) shown at the bottom of Fig. 3(b) is seen to be the same
as for Fig. 3(a), ordered according to the columns (time reversed) of the
matrix of Fig. 2. We see that the algorithms of Figs. 3(a) and (b’
result in output sequences whose rows are columns of the input matrix
as desired. However, both the rows and the elements within these rows
appear in the opposite time sequence to the corresponding columns of Fig. 2.
That is, the output sequences in Figs. 3(a) and (b) are time reversed. For
cases of direct concern here, this is not of consequence. If it is not
desired, however, it can be corrected by time-reversing the input signal
by rows before feeding into the delay line loops. Figure 3(c) shows this
behavior. The signals within each row have been time-reversed before
insertion into the delay line loops. This time reversal could be done
in a device having a time delay of N clock intervals, rather than N X N
as would be required if row-to-row time reversal were also involved. A

parametric acoustic time reversal could be employed for this operation.
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