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A LOCALLY ORGANIZED PARSER  FOR SPOKEN  INPUT* 

ABSTRACT 

This .-eport describes LPARS, a kically organized parsing system 

designed to recognize continuous speech, accepting as its input a 

string of phonemes wriich contain? ambiguity and error. LPARS 

is locally organized in the sense f tat it can construct local parse 

structures from word candidates found in all parts of the input 

utterance. These local structures are used as "islands of relia- 

bility" and, together with synitctlc and semantic information, guide 

the search for words to complete the utterance. 
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A  LOCALLY  ORGANIZED   PARSER   FOR  SPOKEN  INPUT 

I.   INTRODUCTION 

A.     BRIEF  OVERVIEW 

Recognizing a spoken utterance by machine is a task much different from that of recognizing 

a text sentence.   The difference rrises both from the difficulty of front-end phoneme recognition 

and from the articulatory variability of speech.   As a result, phonetic segments often cannot be 

identified uniqaely with any real accuracy ^nri. therefoie, an utterance processed by a phoneme 

recognizer can contain a great deal of local ambiguity and error.   In practical terms, this means 

that the words are not rpcognizable immediately, as they are in text. 

Humans use a great deal of syntactic and semantic information to help them handle this 

ambiguity.    They possess much knowleuge of the things they talk about,  and of how words can be 

put togethe»" to describe these things.    Most previous work in machine speech recognition, how- 

ever, has dealt primarily with acoustical processing,  such as phoneme recognition,  pitch and 

intensity analysis,  etc.,  with little attempt to Integrate syntactic and semantic knowledge info 

this analysis.   Any work on the recognition of continuous speech which relies soi^'y nn such a 

low-level approach is 3» Ine mercy of the inherent local ambiguity 

Tiie present researcn demonstrates how a greater degree  of  language competence can be 

integrated into this recognition process. 

This report develops an approach which uses semantic and syntactic Information to assist 

machine recognition of speech.   The approach is implemented in LPARS, a Locally organized 

PAHSer designed to process continuous speech with the help of syntactic and semantic informa- 

tion.    Its approach differs from traditional parsing methods in that it has no inherent left-to-right, 

or nght-to-leit,  bias to its operation.    Rather,  it allows  syntactic  structures to be recognized 

locally in any part of the sentence.    In fact,  several parse structures may be built «p simulta- 

neouTlj in different parts cf the sentence and later connected by searching for words that might 

reasonably exist between them. 

The approach Is highly data-cürected, letting previously recognized structures help guide 

the search for other words in the utterance.    Both syntactic and semantic constraints are used 

to help guide the analysis.   Thus, the system is n   "vertically organized" one in the senst 

that it allows syntax and semantics to give feedback to, and help guide, the lower-ievel word- 

recognition process. 

The emphasis in the present work has bern to explore the various issues involved in the de- 

sign of a local parsing system,  and then to demonstrate that such a system can be created.   Thus 

empi isis has not been on developing a finely tuned system with high performance characteristics. 

The remainder of this introductory section gives an overview of the approach taken.   Sec- 

tions B ana C describe in more detail the sources and nature of local ambiguity and error in 

speech.   In Sec. D, two basic concepts are presented:   that of plionetic distance, and that of a 

vertically organized system.   These two basic concepts are central to understpnding the approach 

described.   Then    in Sec. E, a simplified example is worked through to give a concrete picture 

of how the approach is implemented.   Tim Introduction concludes by discussing related work 

(Sec.F) and by outlining how the presentation of the approach is develop d in the rest of this report. 



B. LOCAL   \MBIÜIIITY  AND ERROR IN  SPEECH 

In the early I960'g, researcners working on speech recognition approached the p lem 

from the local standpoint of recognising sound segments in the utterance in much the sane spirit 

is ore might try to recognise letters on a printed page.   At that time, most work concentrated 

on the recognition of isolated words and phrases; thus, no extensive use of syntactic =nd se- 

mantic constraints between different parts of the utterance was possible.    In fact, it was initially 

hoped that phoneme recognition could be ieveloped to sufficient accuracy thatHhe parsing of con- 
1  2 

tlnuous speech could be accomplished in much the same fashioi. as the parsing of text.  ' 

This approach was not very profitabK .   It was difficult to develop algorithms which could 

even approach the desired level of accuracy.   Furthermcre, it became appa.-ent that the difficulty 

was not entirely the fault of the algorithms used, but rather the result of local ambiguity inherent 

in speech itself. 

There are two fairly distinct but related sources cf local ambiguity and error in speech: 

(1) articulatory variation, and (2) machine recognition limitations. It is worthwhile to discuss 

both briefly. 

1. Articulatorj Variation 

A sequence of spoken phonemes differs from a sequence of letters written on a page, because 

the articulation of phonemes is a dynamic series of events which takes place as the vocal appa- 

ratus changes from enc configuration to another.    Each phoneme can be thought of as an idealized 

representation of a target configuration *hich the vocal apparatus attempts to attain. 

The exact manner and the degree to which the target configurations ar« attained may vary 

in different attempts to vocalize a single utterance.    Thus,  the underlying phenomenon of speech 

itself is not constant or consistent; it is a dynamic phenomenon which is not reliably reproduc- 

ible.    Furthermore, the acoustic cues v/hich might,  if present,  uniquely identify the phonetic 

segments «re often absent or barely noticeable, 

2. Machine Recognition '    nitations 

Gra iting ihe inherently ambiguous character of speech itself, it is not surprising that the 

problem of nlgorithrrically segi.ienting and classifying spoken phonetic segments is a difficult 

one.   A se-ies of dynamic phenomena must be processed using recognition criteria which sta.tip- 

tically are as accurate as possible.    Since the cues which uniquely distinguish certain phonemes 

can be quite subtle, it is difficult to write an algorithm to pick up these cues only when they are 

"really" present.    Despite a number of different atU'mpts to develop phoneme recognizers, the 

amount of ambiguity and error which characteriz«"; ,,-xisting phoneme recognizers is quite large. 

C. PRACTICAL   IMPLICATIONS OF   LOCAL AMBIGUITY 

In pnetice, the local ambiguity described above implies that words are not. easily recogniz- 

able.    In this respect, it is useful to make a somewhat arbitrary distinction and identify two 

separate problems. 

(1) Small       tressed "funct; m" words. 

(2) Longer "content" words which are considerably garbled (by excessive error and 

fmbiguity). 



i.     Small Unstressed Function Words 

Small unstressed wordj such as  "a",  "the",  "and",   "of",  "is",  etc. tend not to be 

articulated clearly and are sometimes barely articulated at all.    For example, the phrase "Uni- 

versity of Michigan" can be spoken qu't> intelligibly without, or with just a hint of, the word "of". 

This poses no problem to a human listener because semantic and syntactic knowledge primes him 

to expeci the word "of" to be present. 

The recognition of such words clearly poses difficulties for any speech recognizer which 

does not use context to indicate where such words might be present.    Indeed, even if the word 

is well articulated, i:s small size, in the presence of front-end error, mignt still make it diffi- 

cult to find rerably without contextual cues. 

2.     Loiger Words Whk'i Are Garbled 

Longer "content" wordf offer more phonetic information to match against the inpi'*.   Also, 

such words contain stressed syllables, which tend to be articulated more clearly than unstressed 

syllables.   If the system is to work at all, such long words should be fairly reliably recognizable. 

Frequently, however, some longer words may be quite garbled by the combination of articulatory 

variability and frcnt-end error.   Any attempt to distingu.sh all such words on the first scan 

through th1; senten- -. would be liable to delrge the system with an overwhelming number of word 

candidates, most of them wrong. 

It is therefor    much more re-.ionable to look for such words very selectively, only when 

one has built up i groat deal of contextual information indicating the exact section of input where 

such a word might •' -iist. and indicating a small list of word possibilities that might meaningfully 

be present. 

It is clear that huir.ans deal with the ambiguity described above because they possess a great 

deal of knowledge of the things (objects, events, actions, etc.) being talked about, and of how 

utterances are formulated in English to describe ihese things.    For instance, if a speaker pauses 

in the middle of a sentence, a listener can often predict that one of a limited number of words 

is likely to be spoken next.   Certainly the listener can reasonably discard as possibilities most 

of the words in his vocabulary. 

The present work explores how such knowledge can be incorporated into a machine so that 

it can be used in a systematic fashion. 

Tradeoffs in a Specsch Recognition System 

An interesting issue related to this problem concerns the tradeoffs possible between in- 

creased refinement in the local processing of an utterance 'i.e.,  refinement of phoneme recog- 

nition algorithms) on the one hand, and the use of more global information on the other.    In other 

words, how much real information does increased local refinement yield when seen in terms of 

the system as a whole?   One would suspect that intelligent heuristics in the higher levels of a 

system might make a great deal of lower-level refinement unnecessary.   Other parameters in 

this tradeoff are vocabulary size, syntactic and semantic complexity,  tne iegree to which small 

words are allowed to be used, and the degree to which the vocabulary is partitionable so that at 

different stages of discourse only part of the total vocabulary is likely to be used.   This report 

takes an initial step toward exploring some of these tradeoffs. 



D,     TWO BASIC CONCEPTS 

Some aspects of the system presented here may at first seem somewhat counter-intuitive. 

This section outlines two concepts central to the approacli:   that of a vertical system (one with 

vertically organs   :d feedback),  and that of phonetic distance.   It is our hope that an understand- 

ing of these two concepts will help to put the approach into sharper perspective. 

i.     Vertically Organized System 

LPARG is a vertically organized system.    Vertical system organization is useful where a 

great deal of local ambiguity exists.    A vertical system is one which allows tne various levels 

of analysis to interact with one another.    In the case of speech recognition, the various levels 

are semantic,  syntactic, and lexical analysis (and perhaps phonemic analysis).    Figure 1-1 il- 

Ivstrates the structure of such a system. 

SEMANTICS 

\I SYNTAX 

TIONV WORD RECOGNITION 

 f 
input 

Fig.I-l.    A vertical system. 

A vertical system is so named to distinguish it from a "strictly hierarchical" system which 

does not have the feedback from higher- to lower-level analysis.   An example of a strictly hier- 
arcbijal system is a programming language translator,  typically having a lexical analyzer which 

recagmzes identifiers,  numbers, operators,  etc. and passes them on to the parser which deduces 

their syntactic structure and turns this over to the semantic analyzer which generates machine 

instructions.   Such a system is not a vertical one because,  for instance, the parser cannot tell 

the lexical analyver what tokens it might look for next. 

Section I-F-4 i^scusses two other examples of vertically organized systems:  the M.I.T. AI 
3 4 vision system,    and T.A. Winograd's natural language parser.      Vertical organization in the 

vision system allows higher-leve! analysis to be invoked even thcugh some lines of a scene may 

not have been recognized. Similarly, in speech analysis, all words need not be recognized r.n- 

rnediateiy by the lexical analyzer. Contextual information can be used to help determine bound- 

aries in unclear sections of the utterance, and to propose words that might occur there. 

Thus, in I.PARS, the lexical analyzer first makes local testa for words which can be recog- 

nized ftirly reliably.    This processing results in a list of "word candidates," some of which may 

be wrong.   The word candidates are turned over to the higher-level routines which direct tests 

to discover additional words.    Fundamental to this analysis is the ability to parse outward from 

a number of recognized portions of a sentence in an organized manner. 

2.     Phonetic Distance 

The concept of phonetic distance goes hand in glove with that of a vertically organized system. 

Phonetic distance is used when matching the phonetic spelling of vocabulary words in the diction- 

ary against strings of phonemes recognized by the ^ront end of the s>3tem.   As an example,  one 



simple msiä.-e of phonetic distance might be to define the distance of a word from a section of 

input as equal to the number of phonemes that differ.    Thus, FROM would be a distance of 1 

from both FROL and TROM. 

In practice, of course, some differences are greater than others.    The voicing difference 

between B and  P, for instance, is presumably not as great as tue difference between B and S, 

Consequently, it is useful to aiiow such phonetic distances wider range for more accurate dis- 

criir.ination.    The concept of phonetic distance must aL'o be extended to account for deleted and 

inserted phonemes. 

It is not immediately obvious how such distances a^-e best measured.    To irake such meas- 

urements certeinly requirss a statistical evaluation of the particular front end being used.    These 

issues are discussed more fully in Sec. III.    Hopefully, it will become clear that precisely how 

such phonetic distance is measured is not central to the ideas presented in this report (although 

the effect of these measures is definitely central). 

The concept of phonetic distance fits very naturally into a vertical system.    In a vertical 

speech system, initial scans through the input can be made at low phonetic distance to find words 

that are not too garbled.   Higher phonetic distance tests for more garbled words can be macie 

jelectively, based on semantic and ajnuactlc information. 

E.    SIMPLIFIED EXAMPLE  OF   LPARS IN OPERATION 

LPARS is designed to process spoken input by building up parse structures in any part of a 

sentence, and then by using these structures to help guide the search for further words to com- 

pJi-.te the sentence. It differs from most parsers in the local nature of its syntactic processing 

and in its highly vertical structure. 

This section gives a brief introductory description of LPARS itself and of how it performs 

lexical, syntactic, and semantic processing.    Then, a simplified example of LPARS in operation 

is worked through to help put into focus the various parts of the system. 

1. Some Particula^a 

LPARS' vocabulary contains approximately 70 words.    It recognizes a very restricted, but 

linguistically interesting, subset of English.    Its semantics are defined in terms of a particular 

scene (a small two-room house containing people, furniture, fixtures, etc.) about which one may 

make statements, ask questions, tell a very simple-minded story, or command the system to 

manipulate the ?cane. 

2, Operation of LPARS 

fis input,  LPARS expects a siring of phoneme candidates from a front-end phoneme recog- 

nizer.    For the present work, the input was prepared by a phonetic scrambler program which 

simUated front-end behavior,  rather than by a real phoneme recognizer.    The input phoneme 

camlidates may be ambiguouj (i.e., several possibilities may be given for one segment).    The 

inpit is also expected to contain a fair amount cf error. 

LPARS operates by lirst making an initial scan through the sentence, seeking longer words 

which are not too garbled.    The scan returns a list of irord candidates which match within a given 

erro- tolerance to specified sections of the input.    It is likely that somj of these word candidates 

are unco» rect, and, indeed, some may overlap. 



INPL,T SENTENCt: 

'THE LARGE COFFEETAELE SUPPORTS THE GREEN DICTIONARY' 

(1) INITIAL SCAN:  rOFFEfcTABLE, GREEN 

(2) -JDCAL HIGHER DISTANCE SCANS: 

STf.CH CO.:ElT;.BLE 
(od.) (prep) 
;det'; (verb) 

LARGE NIL 

(det) 

GREEN ENOCH 
(odj) (noun) 
(def) DICTIONARY 

THE 
(verb) 
(pfepl 

THE NIL 

v3)  PARTIAL PARSE TREE CONSTRUCTION: 

S 

STPCH SENT 

NP 

A 

the large cofleetable 

ENOCH 

•He green dicfionory 

(4) CONNECTION OF PARTIAL PARSE 

<■--.  

TREES: 

STRCH                SENT-' 
/ 

NP 

_yHJ 

*NP 

A 

-b 

ENOCH 

(5)  RECOGNIZED SENTENCE: 

STRCTT 

Mr 
A 

SENT 

VERB 

supporh 

MP 

A 

ENOCH 

Y\%. I-Z.    Simple example of    FARS in operation. 



These word candidates are turned over to the higher-level part of the system which initiatea 

scans for small words and for more highly ^     jled words in the areas adjacent to and between 

the words found in the initial scan, and groups the words together into parse structures.    This 

processing ia done systematically in an attempt to uncov?r the eitire utterance. 

3.     Simple Example 

Figure 1-2 gives a simplified example of LPARS in operation.    The '.nput utterance being 

processed,  "The large coffeetable supports the green dictionary" is spoken, analyzed by a front- 

end phoneme revognizer, and a strit.g of phoneme candidates is produced for input to LPARS. 

LPARS fir.Jt makes an i.iltial scan through the sentence at a low phonetic distance looking 

for longer words whirh are not too garbled.    Let us assume that in this instance the two word 

candidates "coffer ible" and "green" are found.    These word candidates are turned over to the 

high-level part of the system, together with a start-of-sentence character (STRCH) and an end- 

of-sentenoe character (ENOCH) which the system adds. 

The higher-level analysis consists of three fairly distinct stages, as Fig. 1-2 indicates. 

First, scans at higher phonetic distance are made br-sed on fairly local cues, in the p.reas sur- 

rounding the word candidates.    In this example, these initial higher-distance scans are very 

simple.   A scan in front of the noun uncovers tne adjective "large", and a further scan in front 

of that word uncovers the determiner "the".   A seal, to the right of the noun for prepositions and 

verbs fails to find any word candidates.    This means that the verb "supports" is too garbled to 

be picked up either by the initial scan or by the higher-phonetic-distance selective scan.    Similar 

soans around the adjective "green" uncover the words "dictionary" and "the", but again fail to 

find the verb. 

After   hese higher-distance scans have taken place, the system builds up local parse struc- 

tures in the spntence.    il all th» words in the sentence have been found, then the entire sentence 

is constructed.   Otherwise, the result is a number of partial parse trees in -hfferent parts of 

the sentence. 

The system attempts to construct as many such partial parse trees as it can with the words 

it has found.    In this example, it constructs only two trees.    The first tree (STRCH the large 

coffeetable) is straightforward; the second tree (the green dictionary ENOCH) is  somewhat 

unusual since it contains an "ancestor link" (the link labeled *).    Such ancestor links are neces- 

sary in 'PARS because of a fundamental problem of local parsing:   namely,  that it is not always 

clear fi   n  a small amount of local context what the global relationship is between two adjacent 

syntactic units.    In this case,  the exact relationship of the noun phrase to the end-of-sentence 

character is not clear.    Or. the other hand, for the purposes of . uilding local structure,  LPARS 

need not k.iow the actual relationship.    The ancestor link allows LPARS to .ecognize that rrany 

syntactic relationships ar« possible, but to defer commitment until later whf.n an attempt is made 

to join this structure to other structuies by proposing words between them. 

Tne third and final step in the parsing process consists of connecting partial parse tre^s to 

one another by using the grammar to propose words that might exist between them. Any words 

proposed are tested against the input at even higher phonetic distances than the previous scans. 

In the example given here, the algorithm discovers that the two parse trees can be connected 

by a verb.    It therefore initiates a h'gher-dlstance scan which succeeds in finding the verb "sup- 

ports".    Thus, the entire sentence is recognised. 



One of the advantages of the local approach is that this algorithm can attempt to connect 

the moat promising partial parse trees first (for instance, the longer ones).    In this way, the 

local organization allows the system to take advantage of the maximum amouat of well-matcning 

information from all parts of the sentence to direct attention to areas where highly garbled 

words might exist, and to indicate what words might reasonably make sense there.    A ipft-to- 

right parser would be unable to take advantage of such information. 

Notice that this example is a simplified one — no erroneous words were found.    In a more 

realistic example, erroneous words would be found, some local structureä containing these 

words would be built up   and,  additionally, some erroneous local parsings of the correct words 

could be constructed,    '»-tpefully, attempts to build out upon the erroneous structures would 

eventually prove unsuccfessful, while attempts to build out upon the correct structures would 

us iall% succe»"!. 

Notice also that, in this example, semantics have not beer, mentioned.    Semantics enter 

i rto LPARS' analysis primarily by reducing the number of words that need be sought by the 

higher-distance scans.    For instance, tests for adjectives preceding a noun need only look for 

adjectives that may legitimately modify that noun. 

4.     Summary Overview 

Figure 1-5 gives a condensed overview of the procedure we have Just worked through. 

LPARS receives its input in the form of phoneme candidates.    It makes an initial scan at a low 

phonetic di  'ance yielding a list of word candidates, some of which may be incorrect.    It uses 

these to initiate higher-distance scans, to construct partial pars    trees, and,  if lucky, to un- 

cover the entire sentence.    Finally,  LPARS investigates ways to connect the partial pai-se trees 

together to build up the whole sentence.    Section VI describes this process in more detail. 

INPUT 
(phoneme candidates) 

*  
INITIAL SCAN 

(low phonetic distance) 

word candidates • 

 I  
HIGHER LEVEL ANALYSIS 

(selective higher-distance scans) 

partial parse trees 
^\ 

CONNECTION OF PARTIAL 
PARSE  TREES 

(high-distance scons) 

sentence 
candidates 

Fig. 1-3.    Overview of LPARS. 



F.     RELATED  WORK 

Two useful surveys of speech literature, with extensive bibliographies, are given in Refs. 1 

and 2. Previous work related to the present research can be separated into four fairly distinct 

topics. 

1. Isolated-Word Recognition 

Numerous different approaches hava been taken to the problem of recognizing single words 

spoken in isolation, given a fairly small vocoulary.   Gold,   and Bobrow and Klatt   achieved 86- 

to 95-percent recognition,  each using a vocabulary of 54 words.    In both cases,  recognition was 

done without trying to segment and identify the phonemes that made up the utterance. 
7 8 

Medress   and Vicens   developed system's which performed the intermediate step of attempt- 

ing phoneme identif;cation before trj ing to identify the word spoken.    These systems achieved 

recognition accura-y , unilar to that of Gold and Bobrow.    The Vicens system used a vocabulary 

of 561 words. 

In the present research, we assume that input to LPARS is in the form wh?ch is output by 

the Medress and Vicens systems:   a string of phoneme candidates which may contain large 

amounts of ambiguity and error. 

2. Continuous-Speech Recognition 
g 

Vicens   also coupled his phoneme recognizer to a very primitive continuous-speech system 

which worked by making an initial scan through the utterance searching for a certain highly recog- 

nizable word, ajf' then used a very constrained syntax together with a very small vocabulary to 

guide its search for the rest of the words in the utterance.    LPARS can be thought of as an exten- 

sive generalization of this simple system. 
9 

Reddy   recently demonstrated a system which recognizes spoken chess moves,  expressed 

in a simple nonrecursive syntax. 

The system of Tappert and Dixon    '      achieved good results by attempting to it'entify "trans- 

ernes" (phoneme-phoneme transitions) before matching the utterance as a whole.    Rabinowitz, 

working with Tappert and Oixoi,  experimented with a left-to-right continuous-speech recognizer 

for a simple nonrecursive syntax, with success rates ranging from 65 to 90 percent. 

3. Natural-Lcnguage Processing 

Most work done in recognition of natural-language input has concentrated on left-to-right 
13 14 4 

algorithms.    The work of Woods    '      and Winograd' ... '»atural-language parsing is closely re- 

lated to the present research. 

Woods uses the fo- malism of an augmented transition net grammar to capture the regulari- 

ties of syntactic' structure. Our work also uses this augmented transition net formalism, but it 

is incorporated into a local rather than i left-to-right framework. 

Winograd uses PROGRAMMAR procedures and a set of systemic syntactic features to embody 

his parsing logic.    Vhe syntactic features used in our work are very similar to Winograd's. 

4. Vertical Systems 

The M.I.T. AI Laboratory vision system uies the besic idea of a vertical system (see Ref. 3) 

which allows global structure to be ujed to help guide the more local processing, thus saving a 

great deal of unnecessary work.    In recognizing a scone of h'^cks, for instance, not all lines 



must be recognized by the line recognizer before higher-level analysis is invoked.    In such 

situations   higher-level analysis can propose possible missing lines and direct finer statistical 

tests to look for them. 
4 

An interesting part of Winograd's system   is its ability to call un semantic analysis with 

partially recognized structures,  in a vertical fashion, allowing semantics to abort nonsensical 

local parses eatly in the analysis.   Thus, semantics plays a confirmational role, answering 

"ycs-no" questions, but does not exercise overt control. 

In LPARS,  semantics performs a more active function by suggesting possible action in a 

"creative' role,  such as supplying a small list of word possibilities to test locally against a 

specific section of the input. 

G.    OVERVIEW OF SECTIONS II THROUGH VIII 

Section II describes the transition network formalism, the set of syntactic features used to 

augment it,  and the fairly simple semantic component of LPARS.    The transition network for- 

mal!' n formn the backbone of LPAKS" parsing activity. 

The various sub-parts of the LPARS system are described in Sees, ill,  IV,  and V.    Section III 

describes how "scrambled" input is prepared for LPARS by a front-end simulator,  and how word 

recognition is performed.   Section IV describes the ir.tial stages of LPARS' processing: the 

initial scan,  and the ft-irly local higher-phonetic-distance matching.    It aljo discusses some 

interesting ways in which this part of LPARS could be extended.   The two main algorithms used 

by LPARS in its local syntactic processing are outlined in Sec. V. 

Section VI describes the overall coordination of the LPARS system, and discusses some 

basic problems and considerations i-.i the design of a locally organized system such as LPARS. 

The experimental evaluation of LPARS is described and seme sample runs are exhib^ei 

in Sec. VII. 

Finally,  Sec. VIII summarizes the various issues which have been aeart with in developing 

the local approach toward parsing,  and discusses some interesting implications of the approach. 
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II.   A TRANSITION NCTWORK GRAMMAR WITH SYNTACTIC  FEATURES 

LPARS uses an augmented transi'ion network grammar as the basis for its syntactic activity. 

The transition network formalism used by LPARS is somewhat different from previolis transition 
13 14 net parsers such as Woods'.    '       A few of these differences are primarily in form; others are 

significant changes made to accommodate the local nature of LPARS' operation. 

We now describe how LPARS has adapted the transition net grammar to accommodate its 

local parsing purposes.    Section A introduces *he transition retwork formalism; Sec. B describes 

how LPARS augments its transition net grammar by a set of syntactic features,  and discusses 

some of the advantages gained thereby;  in Sec. C, the syntax used by LPARS is presented, and 

its restrictions are discussed; Sec. D describes the semantic component of LPARS; and,   fin3lly 

the action routines which are associated with the arcs of the grammar are discussed in Seo. E. 

The action routines keep track of the syntaciic features and examine the semantic features of 

structures bein^ parsed, to enforce consistency between different parts of the sentence. 

Two basic problems are confronied here: 

(1) How to organize a grammar so that recognition can be started easily anywhere 

within a sentence 

(2) How to organize a grammar so that, when local structure building occ.rs,  any po- 

tentially exponential inefficiencies are kept within reasonable limits. 

A.    TRANSITION  NET   FORMALISM 

This section describes the basic structure of a transition net grammar.    The description is 

kept quite informal; however,  as the chapter progref ses and more detailed examples are pre- 

sented, the nature of the transition network as used in .'PARS will become more concrete. 

A transition net grammar consists of a number of finite-state networks (nets) each defining 

a no1"ierminal syntactic clasi» (i.e.,  noun phrase,  senterce,  etc.).    The  idea of representing non- 
14 

tei ninal syntactic classes by such transition diagrams was previously developed by Woods, 

whom  • e quote: 

"The transition network grammar model is an extension of the notion 
of state transition diagram well-known to automata theory.    A transi- 
tion network grammar consists of a network of nodes with arcs con- 
necting them.    The nodes represent states of a hypothetical parsing 
machine and the arcs connec^ng them represent possible transitions 
and are labelled with the types of eventt. in the environment of the ma- 
chine which permit transitions.    In the ca,=e of a transition network 
grammar, the types of events are the occurrences of words and phrases 
in the input string upon which the grammai  is operating." 

Figure II-l giv^g a t-imple example of such a grammar. 

Each net is made up of a number of states connected by arcs.    Each arc is labeled either 

by the name of a terminal syntactic class (noun, verb, determiner,  etc.), or by the name of a 

nonterminal.    Term,nal arcs cc     espond to transitions permitted by a single word being proc- 

essed in the input stream.    Nonterminal arcs require the recursive invocation of a nonterminal 

net to recognize a phrase or clause.    In LPARS,  an arc can also be labeled by LAMBDA; this 

arc allows an immediate transition without processing any input.    Eacli net contains at least one 

initial state (-narked Q ) and at least one final state (marked 0 ), 
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SENT: 

NP: 

PP: 

AOJ 

PREP NP 

Fig.II-l. 

Associated with ea'-h arc. and with each initial and each final state, is tn action routin' 

which makes tests to determine when a transition is permitted and when a state can be an initial 

or a final s*ate.    These tests keep track of a set of syntactic features and other information about 

the constructs being parsed    Thus, the transition net is raugmented" by the activity of theae 

action routines.    The operation of these routines is discussed in Sec. U-E. 

Thus,  for each nonterminal, a transition network defines the structures wl "jh can form 

that nonterminal.    For instance,   m the simple grammar above,  a noun phrase (NP) is defined as 

t determiner (DET),  followed by zero o*- more adjectives (ADJs),  followed by a noun,  and fol- 

lowed optionally by a prepositional phrase (PP).    For a string of words to be accepted by a transi- 

tion net, that string must permit a sequence of transitions through thp net beginning on an iu.Ual 

state and ending on a (inal state.    To allow this, the action routines associatfd with the arcs 

traversed, and with the initial and final states,  must permit the sequence of transi» ions. 

In a left-to-right parser, these transition nets can be t.iought of as a flowchart of the parser's 

action when analyzing a sentence.    In a system such as LPARS,  which performs local parsing, 

the transition nets are best thorght of rather as defining acceptable left-to-right adjacencies for 

syntactic structure. 

B.     SYNTACTIC   FEATURES 

Central to the LPARS' syntactic formalism are a set of ^•■-tactic features with which i.^ARS 

augments the transition net grammar.    Synta'-tic features maW     ' easier to organize the gramiiar 

so that parsing ca:i be started in the middle of a transition       ,  yet still proceed in rui organized 

fashion.    Syntactic features also allow a quite compact grammar to be created.    This section de- 

scribes how '.hese syntactic features arc used and why they are important     To this end, we first 

work through f simplified example. 

i.     Example:   Relative Clauses 

A relative clause can be thought of as a permutation of the structure of an English sentence. 

In transformational theory, a relative clause is thought uf as being formed by moving a noun 

phrase to the front of a sentence,  replacing it with a relative pronoun.    For example,  if one as- 

sumes the following simple underlying structure for a sentence: 

NP-V-NP-PP (noun-phrase, verb,  noun-phrase, prepositional-phrase) 
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as in "the man places the book on the table", then the relative clauses shown in Fig. 11-2 can be 

created.    (In this figure, the terminal WH represents a relativs pronoun:   who, whom or which.) 

ORIGINAL SENTENCE: 

0. NP NP        PP        (declarative) 

RtLATIVE CLAUSES: 

1. WH V NP 

2. Whi NP V - 

3. PREP WH NP V NP 

PP        (subject t.c.) 

PP        (object r.c) 

(peepositiorKj! r.c.) 

Fig.II-E. 

In structure 1 (WH   V   NP   PP),  the first NP (already at the start of the clause) is relativ- 

ized:   as in ". .. who places the book on the table. . . ". 

In structure Z (WH  NP  V   PP), the second NP is brought to the head of the clause and rel- 

ativized:   as in ". . .  which the man places on the table. . . ". 

In structure 3 (PREP   WH   NP   V   NP), the third NP together with the preceding preposition 

is brought to the head of the clause and relativized:   as in ". . . on which the man places the 

book. . . ".    Notice that a fourth structure can also be formed with the preposition r>    aining at 

the end of the clause:   as in ". . .  which the man places the book on. . . ". 

These three relative clause structures can be labeled "subject relative clause" (SRC), 

"object relative clause" (ORC),  and "prepositional relative clause" (PRO; these names indicate 

the noun phrase in the original declarative (DCL) form which was relativized.    Later in this ex- 

ample, these names are used as "syntactic features" to help guide the parsing process. 

Thus,  Fig. H-2 outlines in tabular form a set of "linguisiic facts" describing the structure 

of a declarative sentence and of three *.ypes of relative clauses.    Figure iI-3 shows a possible 

way that these structures might be represented in a tra.isiUc-n net grammar. 

Fig. II-3. 

In this transition network, each structure is spelled o it by a separate branch of the network. 

Notice,  however, that there is a great deal of similarity between the different branches.    This 
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approach to representing syntax,  alt.iough inelegant, would probably not be too costly in a left- 

to-right parser, since the parser would P'.i progress too far down a dead-end branch before 

backing up. 

For LPARS, however,  such an approach would Le very inefficient because,  due to its local 

parsing activity,  the syntactic part of LPARS must ,-onstruct as many valid parse structures as 

possible from the words passed to it.    Since LPAf,;S has no way of knowing the correct left-to- 

right context in which a set of words might exist,   it must assume that any context is possible. 

Thus,  for example,   if it finds a noun phrase to the left of a verb,  LPARS must construct one 

parse tree for every instance in the grammar where an NP arc adjoins a verb arc     If there are 

thirty such instances, then thirty parse structures must be created. 

It would be inefficient for LPARS to represent a good-sized subset of the different structural 

permutations of an English sentence by "spelling out" each permutation as in Fig. 11-3.    Such a. 

system would not only be inelegant,  but would not allow efficient extension.   The inherent ineffi- 

ciencies would rise exponentially as more-and-more syntactic structure was incorporated. 

LPARS avoids this problem by using syntactic features which ailow us to collapse a number 

of different permutations of a sentence, for instance, onto a single transition net skeleton. Let 

as see how this is done, continuing the relative clause example. 

The linguistic facts portrayed in Fig. II-2 can be described using a transition net with four- 

syntactic features;   DCL,  SRC, ORC.  PRC,  standing for each of the four possible sentence per- 

.nutations.    Each syntactic feature represents a particular phenomenon which might or might not 

be present.    Therefore,  each syntactic feature has associated with it a Boolean value of either 

"+" or "—" indicating whether that phenomenon might be present or not. 

Let us see how s ich features can be incorporated into a transition net.    Figure 11-4 shows a 

transition net for the declarative sentence     The feature (DCL+) is associated with each arc.    (In 

the LPARS system,  these features are actu3lly built into the action routines which are associated 

with each arc.) 

DCL+ DCL+ DCL* DCL+ 

Fig. 11-4. 

Now let us incorporate the subject relative clause structure into this net.    To do this, we 

add an arc labeled WH with the features (DCI^,  SRC + ) and label the other arcs with the appro- 

priate SRC feature as shown in Fig. !l-5. 

Fig. II-5. 
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The syntactic features associated with eacl ai c represent tests which must be performed 

in the actio.i routine associated with the arc. Exac ly how these tests operate is described in 

Soc.II-E. 
Now let us add the obj.-t relati/e clause structi re.    This can he done by adding a second 

possible initial state,  a WH-labdled arc from that stite to the first initial state,  and a iJVMBDA 

arc to bypass the second NP, as shown in Fig. II-6. 

DCL- DCL+ 'X;L+ DCL+ DCL+ 

SRC- SRC- SRC+ SRC + SRC+ 

ORC+ ORC+ ORC+ ORC- OkC* 

\   WH NP / v  / NP / pp / 

S) 

Fig. II-6. 

A LAMBDA arc is one which can be traversed without parsing any input.    Notice that it is 

only necessary to add a small amount of structure in the form of states or arcs when each now 

structural permutation is incorporated into the existing n-H.    Most of the structure is carried in 

the syntactic features associated with the arcs. 

Finally, the prepositional relative clause structure is added as shown in Fig. II-7. Here, 

an additional initial state and an arc labaled PREP are addet!, and a previous state is made a 

possible final state. 

DCL- DCL- DCL+ DCL+ DCL*-             DCl> 

SRC- SRC- SRC- SRC+ SRC+             SRC+ 

ORC- ORC+ ORC + ORC+ ORC-            ORC+ 

PRC+ PRC+ PRC+ PRC+ PRC+             PRC- 

\  PREP \   WH 

P 
\   NP 

/   WH 

DCL- 
SRC+ 
ORC- 
PRC- 

\ ' \   Nf          \    PP 

/ LAMBDA 

DCL- 
SRC- 
ORC+ 
PRC- 

'© 

Fig.!l-7. 

To make this net complete, a set of initial and final state test? must be created to indicate 

which permutation can begin and end on the various initial and final states.    Thus, the following 

feature sets must be associated with the initial and final states: 
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Initial States 

1. (DCL-. SRC-, ORC-, PRCH 

-. (DCL-. SRC-, ORC+. PRC-) 

3.    (DCL+,   SRC+.   ORC~,  PRC-) 

Final States 

6. (DCL-,  SRC -, ORC-,  PRC+) 

7. (DCL+,   SRC+,   ORC + .   PRC-) 

This new net captures the same set of linguistic facts as Figs. II-2 or 11-3. 

The list of features associated vuh each arc can be considered an elimination list.    In this 

simple example,  if parsing is proceedirv   from left to right along the arcs, one can keep a fea- 

ture list and cross off any feature m    led ''-" on iüe arc that one is about to take.    If all features 

are crossed off,  then that arc cannot be tatcen;  if not, then any features that remain are possible 

globai interpretations for the structure parsed so far.    In LPARS, the tesls which keep track of 

these syntactic features are performed in the action routines (as descr     d in Sec. il-E) 

Notice that the parsing process can be started at any place in the net (not just at an initial 

state), and still proceed in a syntactically meaningful fashion.    Notice also that this new transi- 

tion net does not have the undesirable features of the net in Fig. 11-2,    If a noun phrase is found 

to the left of a verb, only one parse structure need be created,  as shown in Fig. 11-8. 

NP 
A 

SENT 

Fig.ll-b. 

VERB 

Section V describes the parse structures created by LPARS in more detail.    This parse 

structure would have associated with it the syntactic features (DCL+,  SRC-, ORC+,  PRC+) in- 

dicating that it could be part of a dec!arative sentence or of an object or prepositional relative 

clause.    AJ parsing continues, these features restrict the arcs which can be taken. 

In this way,  syntactic features provide a way of letting structure recognized in one part of 

a sentence influence parsing done in another part of the sentence, while keeping a very stream- 

lined transition net skeleton. 

The crossing off of syntactic features in this simple example was very straightforward.    In 

a more complex example, the logic in the action routines might involve more complex tests be- 

fore crossing off a given feature     Thus,  more complex functions can bf associated with the arcs 

to test the syntactic features. 

The basic concept of keeping a list of syntactic features, which indicate different possible 

global interpretations for the structure parsed up to a given point,  is a very general one and is 

extendable to a wide range of syntactic phenomena. 

There are two major advantages gained by using syntactic features:   (1) They allow the gram- 

mar to be expressed compactly, thus cutting down on potwntially exponential inefficiency; and 

(2) the  syntactic feature logic tends to have little left-to-right bias,  and therefore makes it eas- 

ier to create a system in which parsing can start at any r.cde within a network, yet still proceed 

In a well-defined fashion. 
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2. Tradeoffs in Grammatical Complexity 

In uainj» syntactic features to achieve a streamlined syntactic skeleton, we are really trading 

off betweevi complexity of the transition net structure (arcs and states) and complexity of the logic 

in the action routines that process syntactic features.    This tradeoff allows a reduction in the 

number of partial parse structures which must be constructed, but increases the amount of in- 

formation (in the form of syntactic features) v/hich must be associated with the parse structures. 

For the purposes of l.PARS, this tradeoff is a useful one. 

3. Generality of This Approach 

As described above,  LPARS uses a tratisition nut grammar augmented by syntactic features 

as the basis for its parsing.    The grammar which LPAPS uses is, however, a very re itrictel 

one.    It is therefore worth discuss ng how general and e/tendible the approach is. 

This section broaches this issue by first relating syntactic features to trrmFtormational 

gra.nmar    '      and then to the systemic grammar used by T. Winograd   in his natural language 

parser.    It turns out that syntactic features,  if created by looking at a set of transformations, 

can be related quite directly to these transformations.    Syntactic leatures are also very similar 

to the systemic grammar features used by Winograd.    These comparisons are made to help put 

the syntactic features discussed in this report into perspective with respect to other syntactic 

representations. 

a.     Syntactic Features vs Transformations 

A transformational grammar incluoes a set of rules which take the "deep structure" of a 

sentence (its underlying form) and successively transform it to generate a "surface structure" 

(the form which would be spoken or written).    Most linguistic theory is couched in this generative 

transformational framework. 

This section argues that a transition network with a set of syntactic features can he related 

quite directly to a transformational grammar, if the transition network is built up by systemat- 

ically applying different .ransformations to a simple sentence structure. Section II-B-1 gave a 

simple examplt of how this can be done for relative clause formation. 

It is not a trivial task to change a transformational grammar into an equivalent transition 

net grammar augmented by syntactic features.    There are, however, a number of principles 

which can serve as guidelines.   The simplest principle is first to take a transition net representa- 

tion of a declarative sentence (a simple example is shown in Fig. II-9). 

Fig. 11-9. 

The transformations are then taken one-by-one in the order in which they can be applied 

and,  in a heuristic fashion,  appropriate st^-'fture is added to the transition net for each trans- 

formation in turn.    A very simple example jf how this can be done was given in Sec. II-B-1.    In- 

corporating the effects of a transformation into a transition net structure involves usually adding 

some arcs, sometimes adding additional states,  and always adding one or more syntactic features. 
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This ir»c7    nental incorporation of transformations was used to create the transition net 

grammar of LPARS.    It is not clear how easily one can create an efficient transition net for a 

complex grammar by this process.    The LPARS grammar does not, for instance,  incorporate 

any of the complex cyclic t" 'cts that can arise in some transformations.    In general, the crea- 

tion of an efficient transitior  net/syntactic feature grammar from a set of transformations is 

probably more an art than, a science, although one might be able to automate the procass. 

The basic point, however,  is that a transition net grammar with syntac;ic features can be 

written so that its creation, and therefore its structure, bears quite a direct correlation to a 

set of transformations. 

An incider.tal point in this regard is that LAMBDA transitions can model quite naturally the 

effect of a transformation which moves a structur» from one part of a sentence to another.    For 

exampl«?,  let us assume that a transformation can move a NP from one place to another.   We 

can create a feature labeled A to represent th:s change,  and then put the structure shown in 

Fig. 11-10 into the transition net. 

A+, B- A-, B+ 

NP / NP / 

LAMBDA \ LAMBDA \ 

A-, B+ A+, B- 

Fig. 11-10. 

If the transformation can move the NP from position 2 to position 1,  the feature (A + ) impliei 

that the transformation has been applied,  and (B + ) implies that it lu.s not.    When parsing,   if the 

NP is recognized in position 1,  then the features {A + ,  B—) imply that the LAMBDA transition 

must be taken later.    Similarly,   if the LAMBDA transition is taken in posi*'on 1, the features 

(A-,  B + ) imply that the NP arc must be taken in position 2     (An illustration of this very phe- 

nomenon was seen in the relative cliuse example.    The ORC feature implies that the direct ob- 

ject NP has been moved to the front of the sentence and relativized.    Thus,  a LAMBDA transition, 

with the ORC feature Libeled 'M" and other features labeled •—'',   is included in the net to bypass 

the direct object NP.) 

b.     Syntactic Features vs Winograd's Grammar 
4 

In T, Winograd's natural-language parser,   a set of 'systemic features" was used which was 

based on the notion of a systemic grammar.    These features allowed syntactic constructs which 

have been recognized to interact with parsing done later in the sentence.    The syntactic features 

which LPARS uses to augment its transition net are very similar,   if not completely identical in 

spirit, to these systemic features. 

The features used by Winograd incorporated many more different syntactic structures than 

does the limited set of syntactic features used by LPARS, but were implemented only in a left- 

to-righ; oarser. 

It would probably he quite straightforward to extend the LPARS grammar directly to incor- 

porate the systemic set of features useo by Winograd. 
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c.     EV.endöbility and "Syntactic Economy" 

The basic issue in discussing the extendabihty of the LPARS parsing aoproach is not really 

whether syntactic featuns can accomrnodate a wider range of syntactic structure.    We feel that 

Winograd's system demonstrates that this is possible.    The real issrue is whether, at the same 

time, the system can retain the desired "syntactic economy" in the sense of a streamlined transi- 

tion net skeleton. 

The use of syntactic features allows LPARS to represent many different permutations of the 

structure of a sentence on a single transition net skeleton.   Thus, for instance,  if a NP is found 

to the left of a verb, as discussed above, only one syntactic structure need be created.    There- 

fore,  a potential exponential explosion is avoided. 

It is certainly conceivable that with a more comprehensive grammar,  such a dramatic col- 

lapse onto a single syntactic skeleton might be difficult to achieve.   On the other hand,  a great 

deal of collapsing of syntactic structure onto common syntactic framework ce'.  ilnly would be 

possible. 

Thus,  the important point,  from the standpoint of this report,  is that the use of syntactic 

features to augment a transition net is a very powerful tooi which allows many different syntactic 

structures to be combined in a single syntactic skeleton, and which dramatically reduces the po- 

tentia' exponential inefficiencies inherent in a local approach to parsing, and therefore makes 

these potential inefficiencies much more readily managed and easier to tolerate. 

The problems of ultimate extendabihty of this approrch to a comprehensive grammar have 

not been systematically explored 

C.     '..PARS'  GRAMMAR 

The grammar which LPARS uses contains the four syntactic features discussed above,  along 

with seven others.   These syntactic features allow LPARS to accommodate an interesting, al- 

though admittedly restricted,  subset of English syntax. 

LPARS' grammar allows the system to recognize the following sentence structures:   declara- 

tive,  imperative, the three relative clpuses discussed,  yes-no questions, and three types of 

WH-type questions.   The sysiem accommodates both active and passive forms of all these forms 

(except the imperative). 

1.      1.PARS' Syntactic Features 

This section discusses each of th ; eleven syntactic features used by LPARS and demonstrates 

their effect in sample sentences. Thes- features can he separated into two groups, or "systems," 

of features.    The implication of the separation for LPAHS' operation is diacussed later. 

The first system of syntactic features is: 

DCL (declarative) 

IMP (imperative) 

QQ (simp'e question) 

SRC (subject relative clause) 

ORC (ob|',-ct relative clause) 

PRC (prepositional relative clause) 

As 
or 

As 

As 

As 

As 

n "The table supports tht> book" 
The man puts the book on the table". 

n "Place the book on the table". 

n "Does the table support the book?" 

n "which supports the book". 

n "which the table supports". 

As in "on which the man places the book". 
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SQ (subject question) 

OQ (object question) 

PQ (prepositional question) 

\s in "What supports the book?" 

As in "What dees the table support?" 

As in "On what does the man place the 
book ?" 

The other system of syntactic features includes only two features:   ACT (active voice)    and 

P.iSS (passive voice). 

All the examples given above illustrate the active v^ice.    San.ple passive sentences are: 

"The bcok is supported by the table." and "What is placed on the table by the man?" 

Z.     LPARS* Transition Network 

Fit"'re il-H shows the set of transition networks used by LPAKS; they define four 

nonterminals: 

SENT 1 a sentence, bracketed by start and end oharactei s 

SENT a sentence in any of the different permutations 
discussed above 

NP a noun phrase 

PP a prepositional ohrase 

(Notice that this grammar differs slightly in form from some grammars since there is no "verb 

phrase" nonterminal. Rather, the SENT nonterminal has incorporated directly the verb ph. ase 

structure.) 

LAMBDA 

PROFN/LAMBDA/ 

LAMBDA 

LAMBDA 

DET        NOUN 

SENT 

HP; 

STRCH       SENT       ENOCH 

SENT): 

Fig. 11-11.    I PARS' transition network grammar. 

The grammar also allows fourteen terminal syntactic classes -.vhich can be grouped into 

four rough categories; 
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(a) Six of the terminals are straightforward: noun, orb, adjective {AD.1), determiner 

(DET), preposition (PREP),  proper noun (PROPN). 

(b) Four are special function words: 

WH - WH-type words (such as "who",  "whom",  "which", ^.nd "what"). 

DO — the function word "does". 

BE — the function word "ia". 

BY — the function word us id to nvke a pase'v? form,  "bj". 

(c) Two are art'ficial terminals included to let the grammar know whether it has rec- 

ognized all the input: 

STRCH - the beginning cf the input 

ENUCH - the end of the input. 

(d) The final terminal, AFHX, is really a subword morph (word affix) It represents 

the ending of a verb, which in LPARS can be "s" (active present tense), "ed" (pas- 

sive), or NIL (imperative cr root). (LPARS expects all verbs to be regular.) The 

AFFIX arc is treated very inuch like a LAMBDA arc by most of LPARS1 algorithms. 

3.      Restrictions of LPARS' Grammar 

As is now probably very clear,  the syntax which LPARS rec  ^nizes is quite restricted. 

This section describes some of these restrictions explicitly and discusses why they were made. 

(a) Limited sentence structures:   The emphasis In LPARS is to develop a localized 

approach to parsing.    Therefore,  we have kept the syntax quite limited to allow us 

to focus more fully on the basic problems involved In the local approach. 

(b) Sma'.l Morph Problems:   Due to the crudity of current phoneme recognizers, we 

decided to limit the amount to which small words and small morphs wero allowed. 

This decision results in a number of restrictions:   only singular noun phrases are 

allowed (therefore,  no subject-verb number agreement checks are necessary); 

only present tense is allowed,  although both active and passive and root forms of 

the verb can be used (thus,  no complex affix hopping considerations need be con- 

sidered»; a'so, the use of pronouns is not hanaled. 

(c) To make tne grammar simpler and more manageable, a few other restrictions are 

made:   only one clause can .nodlfy a noun (although an arbitrary number of recur- 

sively nested modifying phrases is allowed);  also, conjunctions are not allowed. 

(d) A further restriction   which deserves separate mention,  is that left recursion is 

not allowed (i.e.,   allowing a nonterminal to start with itself).    The local parsing 

algorithms discussed in Sec. V would have to be somewhat mouified to accommodate 

left-recursive structures. 

These are some of the most glaring restrictions which LPARS makes.    Clearly, there are 

numerous complex and ..ot-so-complex linguistic constructs which LPARS also does not account 

tor.    None of these restrictions is made necessary by any inherent incapability of the LPARS 

approach.    Rather, wf, felt that, due to the crudity of current front-end analyzers,  it would be 

overly ambitious to tr- to incorporate too much structure at this time, parts-ularl- structure 
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that depended loo much on small function words and smä... morphs such aa noun and verb endings. 

Also, the primary focus of the present work is OT developing the basic structure of the local ap- 

proach,  in a limited sys.em using techniques that are general and extendable    Once such an ap- 

proach is understood, extension is a much easier task. 

D.    SEMANTIC FEATURES 

This section describes the semantic component of LPARS.    Consisting primarily of semantic 

feature checks,   LPAilS' semantic processing is quite limited.    Semantic featu.-es are a widely 
17 4 

used means of incorporafng a semantic component into a syntactic formalism.    ' 

Each word in LPARS' vocabulary has a list of semantic features describing attributes of 

that word.    Each semantic feature consists of a name and either a value or a list of possible 

values. 

1. Semantic feature Checks 

The feature list of the noun "table" includes the features (ANIM MINUS SUPP-SUB PLUS 

CONT-SUB  MINUS): 

ANIM   MINUS    means that a table is inanimate. 

SUPP-SUB   PLUS    means that a table can support objects 

CONT-SUB   MINUS    means that a table can^t contain objects. 

The feat-ire list of the verb "support" includes the features (CONT   MINUS   SUPP   PLUS): 

CONT   MINUS    means that the action is not that of containing. 

SUPP   PLUS    means that the action is that of supporting. 

The feature list of the preposition "on" similarly includes the features (CONT   MINUS  SUPP 

PLUS). 

Two examples of typic     semantic feature checks involving these features follow. 

Example ». 

If a verb has the feature (SUPP   PLUS), check that the subject of that verb has the feat re 

(SUPP-SUB   PLUS).   Thus,  "The kitchen supports the book." would not be recopnixed as an allow- 

able sentence,  while "The table supports the book," would be accepted. 

Example 2. 

If a preposition has the feature (SUPP   PLUS),  check that the object of th?t preposition has 

the feature (SUPP-SUB   PLUS).   Thus, the phrase "on the kitchen" would not be recognized as 

a prepositional phrase,  whereas "on the tabL" would be recognized. 

2. Semantic Feature Checks Used by LPARS 

There are five different general cases of semantic feature agreement enforced by LPARS. 

These are all enforced by testing appropriate features,  namely: 

Subject-Verb Agreement:—  The subject must be capable of performing the action asso- 

ciated with the verb.    If the sentence is p.issive,  of course,   it    5 the "deep-strugturc" 

subject that must be checked for this agreement 
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The table supports the book. 

• The table contains the book. 

The book is supported by the table. 

• The book is contained by the table. 

The man places the book on the table. 

• The sofa places the book on the taole. 

Verb-Object Agreement:— The object must be capable of having the verb action per- 

formed to it. 

* The table supports ihe kitchen. 

• The man places the fireplace on the table. 

Preposition-Object Agreement:— Since a prepos'Uon denotes a relation, the object cf 

a preposition must be able to maintain that _ *.iaiionship with other   .bjects. 

on the table 

* on the kitchen 

* in the table 

Modified Noun-Prepnsitlon Agreement:-  Similarly, the noun modified oy a preposi- 

tional phrase must be able to mairtain the relationship specified by the preposition with 

other objects. 

• the fir» jlace on the table 

* the livingroom in the bookcase 

Adjective-Noun Agreement:- Only certain adjectives can modify a noun. 

the friendly person 

* the green perpon 

* the rectangular man 

the small dish 

As with most attempts to 'ntroduce order into linguistic phenomena,  it is certainly possible 

to imagine violations of these simple semantic feature constraints.    For instance,  it is conceiv- 

able that in free speec!'. one might refer to "the rectangular man.''   As a result, a set of feature 

checks of the sort used by LPARS is useful only ./hen the scene being talked about is restricted 

and well understood. 

Section II- E describes how the enforcement of these semantic feature checks fits into the 

transition net grammar. 

3.     Semantic Features vs Syntax 

i 8 It has been argued     that "semantic" feature constraints of Hie sort used by I.PARS (often 

called "selectional restrictions") are really syntactic in character.   This argument can be under- 

stood by observing that one can transform a semantic feature grammar into an equivalent gram- 

mar without any semantic features by using many more nonterminal and terminal syntactic classes. 

Instead of allowing nonterminal nodes to be flagged with the semantic features of component words, 

the new grammar would have a special nonterminal for each combination of semaritic features 

possible in the old grammar.    In this new grammar,  all the semantic feature information is im- 

plicit in the name of any given syntactic class. 
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This argument is a valid o." 

entiy incorporated into I PARS. 

It points up ine limitations of the semantic processing pres- 

4.     Extensions to the Semantic Pro'-o-ssinp 

One interesting extension of LPHRS
1
 semantic component would be to let the parsing tak» 

place in the context of a particular "scene" being talked about.    Thus,  if the words "the dictionary 

on the table" are parsed,  these would only be formed into a noun phrase with a modifying prep- 

ositional phrase if an instance of such an object existed in the sr ?ne being discussed. 

Similarly,  x-elat/e clause constructs juch as "which th* man placed on the table" would only 

be recognized if some event had occurred in the course of previous interaction which could be 

related to the event be.r.g described in the clause. 

This extension of the systen? could be a major projec'. Yet it would fit quite naturally into 

the overall l.PARS framewor Such an approach would involve using semantic processing of a 

claarly non-syntactic variety. 

E.     ACliON  ROUT I NFS 

We now describe the operation of the action routines associated with the arcs and terminal 

states of the grammar. The action routines examine syntactic and semantic features to deter- 

mine when us'.1 of the arc or terminal state is to be allowed. Central to these routines are the 

information lists which they operate upon. 

1.     Information Lists 

As parsing proceeds,  the relevant syntactic and semantic information is kept in information 

lists which are attached to each parse structure built up.    For terminals,  the information list 

consists of the list of semantic features associated with that word.    For nonterminals, the in- 

formation list is constructed by the action routine^ as describee below. 

An information list has the form of a L13P property list:   an alternating sequence of tags and 

values (TAG1   VALUE1   TAG2   VALUE2   . . . ).   A value may itsel' be a property list in turn. 

This property list corresponds quite closely to the set of registers which Woods      uses to aug- 

ment his transition net grammar.    Therefore,   in this section,  the tag-value pairs arc referred 

to as registers. 

As parsing tak'>s place,  the action routines examine the information in these registers to 

see if the use of an arc or terminal state is to be aliowei'     If so,  they place updated information 

into the registers (actually into a new copy of th-: registers) which can be examined in turn by 

later action routines. 

a.     Registers Used by the SENT Net 

This section describes the registers used by the action routines in the SENT net.   These 

registers are: 

FEATLIST (syntactic feature list) 

SSUB (surface subject) 

The value of this register is the list 
of syntactic features, together with 
their values (PLUS or MINUS). 

This register contains the semantic 
feature information describing the 
surface subject of the sentence.    The 
rogister '.s set by the action routine 
of the NP arc which corresponds to 
the surface subject. 
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X)BJ (surface object) 

BY-NP ("by" r.   -n phrase, 
or "pccsive subject") 

WH (WH word) 

PREP (preposition) 

PP (prepositional phrase) 

VERB (verb) 

This register contains the semantic 
featur."; information describing the 
surface object oi the sentence. The 
register is set by the action routine 
of the NP arc which corresponds to 
the surface object. 

This register contains the semantic 
information describing the deep struc- 
ture subject of a passive sentence (i.e., 
the NP "the table" in "The book is sup- 
ported by the table."). The "egister is 
set by the action routine corresponding 
to this NP in the net. 

In WH-type questions ap.l relative 
clauses,  this roister '.8 set to contain 
the semantic inf nrnat.on describing 
the WH word (i.e., wlat, who, whom, 
which). 

In a prepositional relative cause (PRO 
or a prepositional question (PQ),  this 
register contains the information de- 
scribinp the preposition. 

In a sentence with a verb requiring a 
prepositional phrase (such as "place", 
or "put"), this register contains the 
semantic information describing that 
phrase. 

This register contains the semantic 
information describing the verb. 

If, during the parsing of a given sentence (or sentence iragment),  any of these structures 

has not been recognized, then the associated register contains NIL. 

2.     Two Examples 

We now give two examples of how these registers are used.    Let us assume that we are using 

the SENT net to parse the phrase "which the table supports".    In parsing this structurr,  a num- 

ber of arcs are traversed in the SENT net.   To determine that an arc can be traversed, the action 

routine associated with that arc -nust be called.   That action routine accepts as input two informa- 

tion lists: 

(a) The information list of the SENT net parsed so far. 

(b) The information list of the terminal or nonterminal currently being parsed (in this 

example, the WH,   NP,   and VERB successively). 

The action routine returns NIL if the arc cannot be traversed.   Otherwise,  it returns a new 

information list ropr-senting the entire SENT structure parsed,  including the current arc. 

Ex ample 1 

•which" The action routine associated with the WH arc in the grammar 
seta ihe WH register to contain the information of the word 
"which".   It also pets the FEAT LIST register to indicate that 
the structure is either PRC, ORC, or CP.C,  either active or 
passive. 

"the table" The action routine associated with the surface f.ubjtct NP sets 
the SSUB register to contain the Semantic infoi-matlon asso- 
ciated with the NP "the table".   It sets the FLATL'ST register 
to indicate that the structure is either PRC  ir ORC,  and that 
It Is active. 
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"cupports" The action routine associated with the verb arc ia railed,  and 
since the sentence is active,  it checks to see if the NP de- 
scribed by the SSUB register can be the subject of the verb. 
Had the sentence been passive,  it would have checked to see 
iftheSSLB   NP  could be the object of the verb.   If the S3UB 
NP had njt been r«-cognized (as would have been the ca^e when 
parsing a sentence fragment starting with the verb), tnen no 
check would have been made.   The action routine then sets 
the VERB register to contain the semantic informat on describ- 
ing the ver*-     The information in the FEATLIST register stays 
the same. 

Ey.jnple 2 

If the words being parsed are '* which the kitchen supports', the parsing would not succeed, 

nnce the semantic checks are not satisfied.   The parsing of the WH and the NP would be the 

sau^e as in the previous example, but th«- action routine associated with the verb wnuld return 

NIL after it finds that the NP cannot be the subject of the verb. 

3. Brief Summary of Action Routines 

Each transition arc action routine takes as input two lists of information:   one made i'p by 

the previous parsing in the net, the other from the terminal or nonterminal currently being parsed. 

The routine processes these two lists of information to make sure that the arc can be trav- 

ersed.    If so, a new updated list of information is returned. 

The initial and final state action routines are similar but accept only a single input, the l-st 

of information made up by parsing of previous arcs in the net, and determines whether the struc- 

ture which has been parsed can begin or end (as appropriate) at that particular state. 

4. Parsing I vocally 

Since LPARS uses the transition net to parse locally,  the action routines must be written so 

that the system can start left-to-right parsing from any place in the net.    It is not difficult to 

structure the action routines to allow this flexibility, but it does require some thought. 

One potential probltm is that semantic feature checks cannot assume that a given construct 

will always have been parsed just because it is to the left of the current arc being traversed. 

For Instance,  when parsiug a verb in a declarative sentence, one cannot assume that the surface 

subject will always have been recognized.    As a result, any semantic test must first ascertain 

that the required registers contain semantic information. 

Similarly,  syntactic feaiu-e checking must be set up so that it can start anywhere in the net. 

This is not difficult to achieve.    In fact,  one of the major advantages of using syntactic features 

is tnat the syntactic feature logic consists mainly of crossing off all features which cannot use 

an arc or terminal state, and thus has little built-in left-to-right bias. 
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ill.     LEXICAL  RECOGNITION  AND  PHONETIC  SCRAMBLING 

This section describes the approach to word recognition taken by LPAHS.    Since LPARS is 

not connected to a working phoneme recognizer,  there are two parts to this description: first, 

how LPARS generates "scrambled inpdl" which simulates input obtained from a phoneme recog- 

nizer; and second,  how the word recognition algorithm processes this input to reconstruct wcrds 

which might be present. 

In designing the phonetic scrambler and the word recognizer,  a balance has been attempted 

between simplicity on the one hand, and acceptably realistic simulation of real phonetic input on 

the other.   The main emphasis of the present work is on the use of higher-level linguistic con- 

straints to guide lexical analysis,  rather than on developing sophisticated meth   's of performing 

lexical analysis with a given front end. 

There are some quite complex phenomena which can affect lexical recognition with a real 

front end.   These phenomena include coarticulation;  supra-segment".! effects involving pitch, in- 

tensity,  and stress;  speaker-dependent effects, etc.    The preaent research ignores these phe- 

nomena for two reasons.    First,  any attempt to deal meaningfully with tnem in the absence of a 

working front end would be difficult.   Second, incorporating 3'ich phenomena into ti.   lexical nroc- 

essing of the LPARS system might cloud the fundamental higner-level issues involved in LPARS 

design. 

Thus, the lexical scrambling and recognition scheme used by the LPARS is not presented as 

the last word in lexical recognition of continuous speech.   On the contrary,  it is presente-j as a 

Fimple scheme which is easy to understand, and which preserves the basic characteristics of 

spoken input. 

Our work makes only one fundamental assumption - that the matching of a word against a 

section of input can be done at a variety of levels of comidence.    In »he present work,  phonetic 

distance is used to express these levels of confidence. 

In LPARS,  phonetic distances are determined from the confusion statistics used when the 

scrambler introduces error into the input it prepares for LPARS.   V.'ith a real front end,  of 

course,  phonetic distances would be based on the statistical likelihood of the various errors 

possible, 

A.     PHONETIC  SCRAMBLING 

We now describe SCRAMBLE,  the phonetic scrambler which produces input for LPARS.    The 

scrambler accepts as input a string of phonemes correctly spelling an utterance.    The scrambler 

transforms this correct string of phonemes into a scrambled string containing substantial error. 

The error is created by substitution and deletion of the input phonemes.   SCRAMBLE does not, at 

present,  insert phonemes into the input. 

In making these substitutions and deletions,  SCRAMBLE uses the phoneme similarity table 
19 found in Appendix 10 of the ARPA Speech Report.       This phoneme similarity table (the "PST"), 

reproduced as Appendix A of this report,  ranks each of 36 phonemes against one another on a 

scale from 0 (meaning completely dissimilar) to 100 (meaning identical).    These similarity 

measures arc a bit artificial since they are based on a somewhat abstract nr.tion of phoneme 

similarity,  rather than m a rigorous evaluation of a specific phoneme recognizer.    The table is, 
g 

however, loosely correlated to the Vicens-Reddy front e.id.    Although this table is used by 

LPARS for its lexical processing,  the approach taken is quite general and is not dependent on 

the particular statistics in this table. 
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START 

End of    y 
sentence?/ 

No 

STOP 
Yes 

Read next 
phoneme 

( Delete ?)- 

No 

Yes 

Output 
substituted 
phoneme 

Fig. Ill-1. 

Figure  UI-1  shows in flowchart form how a correctly spelled serUence is scrambled. 

SCRAMBLE examines each phoneme in turn, first deciding whether or not to delete that phoneme. 

If not, SCRAMBLE then decides what phoneme to substitute.   These decisions are made randomly, 

weighted by the numbers in the PST as described in Sees. 1 and Z beiow.    The scrambling might 

have been more complete had insertion of phonemes been allowed.   This would have required only 

a simple modification of the system. 

1.     Substitution 

For each phoneme that is not deleted, SCRAMBLE must decide what phoneme is to be substi- 

tuted for it.    The following example describes tlus procedure. 

Let us assume that the " -rrect input phoneme is  "T".     The PST ranks the simiiarity of 

all other phonemes to "T" on a scale of 0 to 100.    SCRAMBLE must determine which of these to 

substitute for the "T".    For each input phoneme which is not deleted,  the percentage likelihood 

that SCRAMBLE chooses a substitute phoneme in a given similarity range is: 

1 percent between 0 and 40 

1 percent between 40 and 50 

2 percent between 50 and 60 

2 percent between 60 and 70 

4 percent between 70 and 80 

40 percent between 80 and 90 

50 percent bet-veen 90 and 100 

(if nc phonemes exist in a particular similarity rangt,     phoneme from the next higher similarity 

range is chosen). 
This particular mapping was chosen by examining tables in Appendix 10 of the ARPA Re- 

port,19 and trying to correlate roughly the  PST to the performance characteristics of the Vicens 

phoneme recognizer. 
The actual percentages used can be varied to test the system at various levels of input error. 

The values given here are those used in the system evaluation described in Sec. VII.   Figure III-2 
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90 to 100: PJ,D,CH,K,F,TH 

80 to 90: B,J,G,V,DH 

70 to 80: S,H,SW 

60 to 70: Z.SH.ZH^.N^G.Y.I 

50 to 60: W,R,L,U 

40 to 50: A,E 

0fo40: OO.O^W.AA^R.AE 

Fig. III-2. 

indicates which phonemes fall into each of the different similarity ranges with respect  to   "T" 

(A list of the phonemes used,   together with pronunciation,   is given in Appendix A.    The phonemic 

representation used here is ihat of ehe AHPA Report.    Most phonemes are fairly obvious,   except 

possibly "SW" which is the neutral vowel "a". ) 

The result of this scrambling is that,   10 percent of the time,   "T" is scrambled quite badly 

(into a vucalic phoneme or a fricative).    The rest of the time the substitution is made almost at 

random from a number of stop-like phonemes.    Thus,   the likelihood of preserving the "T" is 

quite low. 

Other phonemes (especially vowels) tend to have fewer phonemes ranked as being very simi- 

lar in the PST.    For these phonemes,   the likelihood of preserving the original phoneme is much 

greater.    Thus,   SCRAMBLE simulates a front end which recognizes vowels much better than 

specific consonants.    This is consistent with the Vicens-lleddy front end.   on which the PST is 

loosely based. 

As discussed in Sec.IIl-B,   the phonetic distances used by LPAKS are set up to reflect these 

scrambling statistics.    As a result,   any two phonemes with similarity gr^it,   Lh-in 90 are at a 

phonetic distance of zero from one another,  since at best substitutions are chosen at random 

from the group of phonemes with similarity 90 or above. 

Therefore,  although SCRAMBLE chooses a single phoneme to replace each input phoneme, 

this phoneme really represents a set of phonemes within zero phonetic distance of that phoneme 

(above 90 similarity in the PST).    Thus,  the scrambler simulates a front end which often cannot 

uniquely identify a phoneme,  but can only roughly classify it.    The Vicens-Reddy front end,   for 

instance,  recognizes a stop-like segment as a stop without trying to identify which stop it 

might be. 

As a result,  the string of individual phonemes produced by SCRAMBLE is perhaps best en- 

visioned as a string of possible-p loner-e lists,  each containing several phone Ties.    Thus, LPARS 

input contains implicit ambig'-    • as well as error. 

Z.     Deletions 

SCRAMBLE decides whether to delete a phoneme randomly,  weighted by its similarity to 

both of its neighbors.    A phoneme bordered by similar phonemes is more likely to be deleted 

than one bordered by dissimilar phonemes.   This approach,  suggested in Appendix 10 of the 
19 ARPA Report,     is a reasonable approximation of front-end behavior since,  for instance,  one 

would expect a vowel to be more likely deleted when surrounded by vocalic segments,  and a con- 

sonant to be more likely deleted when part of a consonant cluster. 
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SCRAMBLE deletes aboi'. 15 percent of the phonemes it processes.    It deletes,  at most, 

two phonemes in a row.    The probability of deleting a phoneme immediately after a previous de- 

letion is half that of the normal probability. 

3.     Example 

We now present an example of phonetic scrambling to help give a more concrete feeling for 

LPARS' scrambled input.    First, a string of 27 T's is scrambled: 

Input 

/ '■p T-1  T"  T T T* T  T  T T  T FT* T T T T T V T* HP  T'  T"  T"  T"  T*  T*  T ^ 

Scrambled String 

(TH DTTTHBKFSWCHBBPFFT) 

This gives an idea of the type of substitutions made. The number of deletions made here, 

however, is extremely high, because the likelihood of deletion is affected by the diirüarity of 

adjacent phonemes. 

Next,  similar scrambling is performed with a string of S's and A's; 

Input 

(SSSSSSSSSSSSSSSSSSSSSSGSSSS) 

Scrambled String 

(EE S S ZH H ZH S ZH H S H S Z Z 11 Z SH H) 

Input 

(AAAAAAAAAAAAAAAAAAAAAAAAAAA) 

Scrambled String 

(AE A AR AE O A A A A A AE O A TH A AE A O) 

Notice that the string of A's (vowels) is not as badly scrambled as the T's or S's. 

In the next example,  the string "S A T S A T . .. " is snrambled. 

Input 

(SATSATSATSATSATSATSATSATSAT) 

Scrambled String 

(HASWHOTHIIADHHASAEPHAKHARDS^A) 

Here there is much less deletion,   since adjacent phonemes are quite dissimilar. 

Finally,  the sentence "The green coffeetable supports the dictionary" is scrambled.    Its 

correct spelling is: 

(TH SW GREENK AW FEETAABLSSW PORTS 

TH SW D I K SH SW N AA R EE) 
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Two examples of this sentence, after scrambling, arer 

(I D Y I NG DH AA K E SW AA K Y SH SW B O W F H 

K SWG K AASW AA R I) 
(SW G L W DH AA EE H AA P U B O K L E Z DH DH 1 

P H SW M L EE) 

Offhand,  it might seem unlikely that the original words are retrievable from this scrambled 

hodge-podge.   It is difficult for a person to even match up parts of the scrambled sentence to the 

original     The computer, however,  can do a much more thorough, patient,  systematic job of lexi- 

cal matching than a person can.    In fact,  the scrambled sentence is somewhat misleading to a 

human because it is over specified,  since each phoneme really represents a set of phonemes 

which are equivalent under the scrambling. 

B.    MEASURING PHONETIC DISTANCE 

In LPARS, phonetic distances of individual phoneme substitutions and deletions are added to- 

gether to determine the overall phonetic distance of a word. 

Since the phonetic distances are added together, they must be logarithmically related to the 

probabilities of substitution and deletion.   Thus,  if one word matches an input segment but for 

two errors of l/3 likelihood each,  and another word of equal length matches but for a single error 

of 1/9 likelihood (a more severe error),  the likelihood of each word being present is equal (since 

the likelihood of two errors of l/3 probability occurring is l/3 ♦ 1/3 = l/9).    Therefore,  their 

total phonetic distances must be equal.    This will only be true,  in general,  if phonetic distances 

are logarithmically related to the error probabilities. 

The actual scale used to measure the distances is not important.    LPARS measures phonetic 

distance on a scale from 0 to 120.    Phonemes with similarity scores of 90 to 100 are of distance 

0 from one wiother.    Phonemes with sirr.ilarity scores of 0 to 40 are of distance 120 from one 

another,  representing the probability of 1 percent. 

Figure III-3 snows graphically how error probability and phonetic distance are related in 

LPARS.    With a real front enci,  phonetic distances would be based on the statistical probability 

of the various possible errors.   The phonetic distance associated with both substitutions and de- 

letions corresponds to the probability o' that error occurring in the scrambler. 

(0 20 30 40 

PROBABILITY   OF   eRROR 

Fig. Ill-3. 

51 



C.    WORD  RECOGNITION ALGORITHM 

This section, describes the use of phonetic distance to measure how accu-ately the phonetic 

spelling of a word matches a particular section of input. 

Figure 1II-4 shows a simple example of how the matching is done.    The dictionary spelling 

of the noun "dictionary" is compared with three sample sections of input.    (At present,  the sys- 

tem does not consider multiple pronunciations of a word.)   In LPARS,  the input quality is much 

woi se than these samples might seem to imply.   This example is kept simple for clarity;  nlso, 

the phonetic distances have been chosen arbitrarily. 

Tote I Distance 
Spelling Distono! per Phoneme 

D    I    K    SH    SW    N    AE    R    EE 

Input Samples 

F 1 K SH SW N AE R EE 40 4 
40 

D K    SW 
50 

N AE R EE 50 5 

F 1 K    SW N AE R EE 90 10 

Fig. ai-4. 

In matching a word against a section of input,  the phonetic distances of individual substitu- 

tions or deletions ere added together yielding a total distance for the entire word.   The algorithm 

searches for that combination of substitutions and deletions that yields the lowest total distance. 

LPARS always performs its lexical matching using a threshold maximum distance-pcr- 

phoneme.    During the various levels of LPARS analysis, the threshold gets progressively higher 

and higher as more-and-more context is used to indicate where ü particular word might be pres- 

ent.   Only words which match within the threshold are recognized.   Thus,  if this threshold 

distance-per-phoneme is 10, no matches of the word "dictionary" arc accepted with total dis- 

tance greater than 90 (to ♦ the word-length). 

A very simple algorithm is used to compute the lowest-distance match of a word to an input 

segment.   The algon hm performs a left-to-right comparison of the dictionary spelling of a word 

against a sectiiyi. of input, trying all possibilities of substitution and deletion.    This process is 

essentially a tree search,  of a substitution-deletion tree, to find that branch of the tree with the 

lowest score.    If the score of any partial branch being explored exceeds the threshold distance, 

the investigc.tion of that branch is aborted.    If all branches are aborted,  then the word does not 

match the input segment within the threshold distance.   Appendix C gives a flowchart of this 

algorithm. 

Although the algorithm is very simple,  it does generate a great deal of computation.    In th« 

initial scav, of the utterance,  for instance, virtually every word in the voca'niary is matched 

against the entire input,  i.e.,  starting at every possible phoneme position.   This initial scan,  of 

course,  is do-^e at a fairly low phonetic distance, which limits somewhat '.he amount of computa- 

tion required. 
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D.    SOME COMMENTS 

We now make two comments on the approach taken here toward lexical recognition. 

1. Local Exponential Explosion vs Vertical Organization 

The lexical recognition algorithm clearly has the potential for exponential explosion of com- 

putation as the threshold is raised higher and higher,  and a deeper-and-deeper search is needed 

of the substitution-deletion tree when matching words.   On the other hand,  the initial scan is 

made at a fairly low-distance threshold (looking for words that are not too garbled), and the 

amount of work required to match words at a low phonetic distance is less than the amount re- 

quired for a high threshold. 

One of the advantages of the vertical organization of LPARS is that most of the local lexical 

matching is done at a fairly low threshold, and higher-threshold scans need be done only very 

selectively,  in specific places,  looking for specific subsets of the total ■"■ocabulary. 

2. Extendability of This Lexical Approach 

The lexical recognition algorithm is not presented as the last word in lexical matching;  it is 

a deliberately simple scheme.    With a real front end,  there are many refinements that could make 

the matching more accurate.    The nature of these refinements, however,  is not well aadei'stood 

and constitutes a research problem in its own right.    In this report, the main emphasis is on the 

use of higher-level constraints to help guide local processing.    Even with mor*» '•efined lexical 

matching techniques,  the basic concept of initially looking for words tlw match well,  and later 

selectively searching for words that match lesi well,  would be equally valid 
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IV.    INITIAL STAGES:    LOCAL WORD  RECOGNITION 

The first two stages in LPARS' processing of an utterance are now described.    First, the 

initial low phonetic distance scan through the entire   itterance looking for long words (content 

words) that are not too garbled;  and second,  the higher-distance matching in the areas adjacent 

to and between the word candidates found by this initial scan,   looking for strings of small func- 

tion words,  and lor long words which are more garbled. 

During these two stages,   no ■»tt-jrnpt is madi. to buiki any syntactic structure.    Oily very lo- 

<.      lex-'  -' ana boundary criteria are used in the higher-distance matching described here.    The 

final 01       ' of this processing i;  a set of word candidates recognized in all parts of the sentence. 

Many c'. words may be wrong,  maiy may overlap.    Also,  there may be gaps in the utterance 

which are in,', covered by any word candidate.    The goal of this initial matching is to uncover most 

of the words in the sentence.    7he;ie words are then turned over to higher-level parts of LPARS 

which continue the analysis in a more comprehensive,   systematic fashion. 

input 
INITiAl 
SCAN 'V- word HIGHER-LEVEL 

PART OF LPARS _^.   candidates 

■r 

LOCAL 
HIGHER-DISTANCE i 

MATCHING 

Fig. IV-1. 

Figure IV-1 shows how tha^e two stages fit into the overall LPARS framework, 

A.     INITIAL SCAN 

When processing an utterance.   LPARS first makes a scan through the enti.-e utt  ranee at a 

fairly low phonetic distance.    This scan searches only Tor content »•        . (which in LPARS' vocab- 

ulary are all at least 4 phonemes in length). 

The scan is maoo by matching the spelling of each word against the input,   starting at every 

possible phoneme position in the utterance.    The scan returns a set of word candidates,  each of 

which consists of a proposed word.   Its starting and endir,g phonemes,  and its total phonetic 

distance. 

The following example shows the result? of scanning a scrambled sentence in this manner. 

at a number of different phonetic disUnces. 

1.      Example 

""he sentence bemg scanned in this example is "The green coffeetable supports the ashtray". 

Th.s sentence is scrambled,  and then scanned at a number of phonetic distances.    (The LPARS 

vocabulary is given in Appendix R,    All content words are at 'oast 4 phonemes in length.    The 

only unusual (mature of the vocabulary is that some worH strings such as "on tr.p of" and "on the 

lei't of" are treated as single-word prepositions.) 
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f'\N 1:    r!*>imtic Distance - 15,   Minimum Word Length - 4 

((CLUTTER   1    4   60)(COFFEhTABLE   7   14   90)) 

This returns a list of word candidates of the following form: 

(WORD    START-PHONEME     END-PHONEME    TOTAL-DISTANCE) 

The word "coffeetable",  for instance,  has been found betwee-, phonemes 7 and 14 at a total 

distance of 90.    Sii ce the threshold distance-per-phoneme of :he scan is 15,  no word is 

found at a total cltonetic distance greater than 15 *  its wordlength. 

SCAN 2:    Phonetic Distance - 20,   Minimum W  rd Ltngxu - 4 

((CLUTTER   1   4   60) (COFFEETABLE   7   14   90) (CLUTTER   ii   17   85) 

(ROBERT   14   18   105) (CLUTTER   16   19   95) (CONTAIN   20   25   115) 

(DICTIONARY   21   28   145)) 

SCAN 3:    Phonetic Distance - 30,   Minimum Word Length -- 4 

((ROBERT   1    '   160) (CLUTTER   1   4   60) (PERSON   1    5   170) 

(FRIENDLY   1   5   155) (GREEN   3   5   100) (COFFEETABLE   7   14   90) 

(CONTAIN   9   13   170) (CABINET   9   15   200) (INFRONTOF   10   18   250) 

(TABLELAMP   11   1«.   210) (ONTHEI.EFTOF   12   18   2<i0) 

(CLUTTER   13   17   85) (ROBERT   14   IS   105) (INFRONTOF   14   22   270) 

(ENTRANCE    14   19    175) (CHRISTOPHER   16   22   205) 

(CLUTTER   16    19   9S)(PI.ACE   16   19    115) (FOOTST(X)L   16   22   19 3) 

(TELEVISION   16   22   195) (INBACKO.     17   22   210)(NEXTTO   17   21    175) 

(CABINET   18   23   200) (PERSON   18   22   170) (CONTAIN   20   25   115) 

(GREEN   20   22   95) (DICTIONARY   21   ^8   145)) 

Notice that,  as the phonf tic distanr»» vhreshoSd increases,   the number of *ords found in- 

creases dramatically. 

SCAN 4:    Phonetic Distance  - 25.   Minirr.un Word Length - 2 

((CLUTTER   1   4   60) (FRIENDLY   1   5   155) (THE   1   ü   0) 

(THE   2   2    15),GREEN    3    '    100) (THE    3   4   5) (BY    3   5    75) 

(THE   4   4   20) (COFFEETARLF    7   14   90) (IN   10   11    45) 

fON   12    13   40) (CUTTER    13    17   GS) (ROBERT   14   18    105) 

(WHICH   14   16   75) (ENTRANCE   14   19   175) (CLUTTER    16   19   9C) 

(TELEVISION   16   22   195) (THE    16   IV   45) (CONTAIN   20   25   115) 

(GREEN   20   22   95) (THE   20   21    5) (DICTIONARY   21    28   145) 

(THE   21   21    20) (THE   23   24   40) (ON   26   2V   40, (WHICH   27   29   10) 

(WHAT   27   2     75MWH;CH   28   29   25)) 

35 



This scan is made looking for words of length 2 or greater, and illustrates why it makes 

sense to nick up small function words using context, rathc-r than scanning for them in the 

initial scan.    A large number of such words is found,  most of them wrong. 

2.     Two Possible Extensions 

a. Using Inter-utterance Context 

One interesting extension of the initial scan described above is to use semantic constraints 

of c global nature to restrict the woras initially searched for.    This approach is very much in 

! eeping with the vertical design of LPARS. 

In an imoractive speech system,  if the previous context of the dialog can substantially re- 

strict the words that are likely to be uttered at particular times,   uien only those words need be 

included in the initial scan.    Only if the results of this scan proved unsuccessful,   need one per- 

form the initial scan using a larger part of the vocabulary. 

This extension would use inter-utterance contexiual information in a vertical fashion to re- 

duce the average amount of computation required p"r utterance.    LPARS presently does not use 

contc.i of this sort.    Resigning a system which uses inter-utterance context in an interesting, 

meaningful fashion is an extensive project in ita own right. 

b. Using Supra-segmental Information 

One of the inefficiencies inherent in LPARS' design is the necessity of matching every word 

at every phoneme position in the utterance.    There is,  however, a great deal of supra-segmental 

informaUon available (see Refs. 20 and 21) in the waveform which might help indicate where 

stressed syllables are, where phrase boundaries are,  etc.    Such information could be very use- 

ful in helping a locally organized system like LPARS restrict the amount of lexical processing 

dene in the initial scan. 

B.     LOCAL HIGHER-DISTANCE  MATCHING 

The words recognized in the initial scan are turned over to LOCALMATC'H,  a routine that 

directs higher-distance matching in areas adjacent to and between these words.    T*p "spt of local 

scans is described in Appendix E. 

Although the LOCALMATCH routine   ould have been written to operate automatically from 

an arhitr"«*" transition net,  it was written procedurally instead from an inspection of the particu- 

lar gt used by LPARS.    Section FV'-C discusses some possible adx-antages of allowing a 

speech-system designer tne flexibility of pro -edurally expressing the logic which directs such 

local word searching. 

Tlie type of logic performed by LOCALMATCH is quite simple,  due in part to the relative 

siinphcltv of LPARS' syntax and semantics.    Typical actions (all performed at a higher phonetic 

distance than the initial scan) include: 

(1) Matching for sernantically acceptable adjectives to the left of nouns (and vice versa: 

matching for sernantically acceptable nouns to the right of adjectives). 

(2) Matching for verbs to the right of nouns (and vice versa). 

(3) Matching for preposHions to the right of verbs and nouns, and for determiners fol- 

lowed by adjectives or nouns to the right of verbs. 
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(4) Mo.^hing for small function-word strings such as "in the", "on the", "which the", 

"in which the", Hwl» the", etc., as appropriate, between two nouns or a noun and 

an adjective which are separated by a small number of phonemes. 

(5) Matching for function-word strings such fcS "the",   "ts the",  "what is the", otc, 

between the beginning of the sentence and a noun or adjective which starts close to 

the beginning of the sentence. 

The LOCALMATCH routine takes advantage of the word boundary information obtained from 

the initial scan, together with local syntactic constraints of the grammar.    This information is 

used to direct searches for small function-word strings that might be difficult to find without 

context,  and to find more garbled longer words next to words already found. 

1. Example 

The following is an exaj of an initial scan and subsequent high-d:stance matching.    The 

sentence being processed is    i he wastebasket which the green coffeetable supports contains the 

dictionary". 

Initial Scan Output 

((STEPLADDER   8   15   150) (COFFEETABLE   18   25   15)   (SUPPORT   2f.   31    5) 

(CONTAIN   33   38   < 0) (PICTIONARY   42   49   95)) 

LOCALMATCH Output 

((CONTAIN   1   5   135) (THE   1   2   0) (PLACE   3   5   <)0) 

(WASTEBASKET   3   10   185) (THE   6   7   0) (STEPLADDER   8   15   150) 

(WHICH   11   12   12) (CLUTTER   11    14   100) (THE   13   14   12) 

(THE   15   17   0) (GREEN   15   17   60) (COFFEETABLE   18   25   15) 

(SUPPORT   I..    31   5)(CLLTTFT   30   32   110) (ROBERT   30   33   120) 

(THE   32   33   0) (THE    33   ^3   0) (CONTAIN   33   38   10) 

(BOOKCASE   34   38   HO) (ENJOY   ji   38   120) (THE   39   41    0) 

(PERSON   42   46   105) (DICTIONARY   42   49   95)) 

2. Semantics in the Higher-Distance Matching 

The LOCALMATCH routine does not use semantics very extensively to help it restrict the 

various words that it matches.    However, there are a few instances in which semantics are used, 

such as when it is looking for adjectives in front of a noun,  it need only look for adjectives that 

are semantically compatible with that noun. 

In general,  however, these scans are based on such local information »hat it is impossible 

to incorporate too many semantic restrictions.    For instance,  in scanning »or a verb next to a 

noun, one cannot require *.hat the verb be able to take the noun as a subject,  for instance,  since 

the noun might be n-.'Sted in prepositional phrases or clauses,  modifying the subject. 

As a result, the information being exploited by the LOCALMATCH routine is primarily the 

word boundary information together with some very low-level syntactic constraints,  rather than 

higljer-level syntactic or semantic inforriiation. 
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If,  however, the semantic coinponent of LPARS was exter.ded to include a scene with objects 
4 

being talked about (ad in Winograd's block world  ),  and to include an interacthe dialog with pre- 

vious events which could be referred to (in modifying clauses),  the semantic pajl of this lexical 

matching could be made much more useful and interesting as discussed below. 

C.     SOME  SPECULATION 

We now discuss,  in a somewhat speculative vein,  some reasons why the LOCALMATCH 

routine in a system like LPARS might be more conveniently expressed procedurally,  rather than 

written to work automatically, given any transition net grammar.    These argumt  's would be 

particularly valid in a system with a much more complex semantic component which made use 

of a scene being talked about,  as mentioned above. 

The crucial point is that the goal of the LOCALMATCH routine is not to systematically ex- 

plore the utterance in a globally consistent fashion.    Rather,  the goal is to use locally available 

words,  together with a knowledge of objects and events being talked about,  to try to identify 

fairly local structures in the utterance describing these objects and events. 

The semantic 1  ^ic that might be useful in L>uch a routine is considerably different from the 

syntactic constraints built into a grammar.    If so,  it may not be necessary (or convenient) to in- 

corporate the semantic lot"''',  which postulates and searches for local structures in an utterance, 

wholely within tho syntactic parsing framework.    We do not say thai it would be impossible to do 

so,  just that it might introduce a level of formalism (transition net) which is largely unnecessary 

for some types of semantic logic ami would therefore be an inconvenient mode for expressing 

that logic. 

1.      Kxample 1:    Recogni7ing Phrases and Clauses 

Suppose a routine that would help search for noun phrases is wanted.    Such a routine might 

be called whenever the 'exica! analyzer discovered an adjective or noun.    T!ie routine could use 

knowledge about which adjectives and nouns could modify one another in 'h-   task domain to drive 

further lexical matching to try to fill out -n entire noun phrase. 

This routine might also query the particular scene being discussed to see what objects are 

possibly being described.    The routine might search the scone,   obtain a list of possible objects, 

and if it were reasonable to assume that a determined noun group was being processed,   it could 

divect scans for additional words that might also describe the object or that might help uniquely 

specify which object was being talked about. 

I,ogic of this sort could presumably use the transition network grammar to direct these 

scans.    On the other hand,  these scans have such a .ocal,   specific character that the transition 

net would be basically superfluous. 

The reason for this is twofold: 

(a) A noun phrase is a very local structure and appears unchanged in many global contexts. 

(b) The logic beinn used to  lircci the scans is highly specific;   it applies only to neun 

phrases and does not generalize to cover many different p&rts of speech.    On the 

other hand,  an advantage of a syntactic formalism like the transition net grammar 

is that it treats all words in a systematic,   homogeneous fashion.    This is not true 

of the logic just described.    One invokes the noun-phrase recognizer only when one 

has found a particular class of word.    One knows exactly what to do next.    There is 

no need,   for instance,   having found a noun,  to use the transition net to discover that 

an adjecti%-e can modify it. 
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A similar argument would !iold for prepositior.al phrases.    Even when one considers more 

complex syntactic structures such as modifying clauses,  th» arguments art probably still quite 

valid.    For instance,  if the system has stored a number of events (i.e.,  X did Y,   X did Y to Z) 

it might be desirable,  having found descriptions of X and Y, to direct scans to see if somehow 

these structures could be incorporated into a relative clause describing the event stored.    Here 

again, one is looking for specific things,  and it might well be easier io express this type of logic 

procedurally, divorced from the formalism of the transition network grammar. 

2. Example ?.:   Searching for Small-Word Strings 

Especially with tne crudity of front-end output,   small words pose a very real problem to a 

speech r ^cognizer, especially when a number of them can occur together. 

As an example, consider the string of words "Is in the".    If twi   nouns (Nl and N2) have been 

discovered, how is one to test the possibility of the string of small words being present between 

them'   Using the transition net grammar, one would ask:   "Can Nl be followed by a small verb, 

which can be followed by a small preposition, which can be followed by a small determiner, 

which can be followed by N2?"     This involves a great deal of threading one way through the 

grammar, with very little lexical information to base any parsing choices upon. 

It would be more convenient to write a program which scanned for the word-string "is in 

the" as a unit,  whenever it observed that two nouns,   Nl and N2,  are x * y phonemes apart and 

that Hi can be "in" N2.    The answer to this question is,  of course,  not obvious and is probably 

dependent on the particular vocabulary and synlu ' used,  on the application,  and on the accuracy 

of the front end. 

3. What l^e Then Is the Syntactic Formalism' 

Sections 1 and 2 above offered some arguments as to why fairly lot al matching might best 

be done outside the transition network formalism.    If these somewhat speculative arguments do 

make sense,  however,  then it is reasonable to ask what such syntactic formalism is good for.   if 

anything.    The answer is that syntactic formalism is needed to assure global consistency of lo- 

cal structures found in the manner described above. 

Since the logic described is based on fairly local criteria and is basically a set of probabilis- 

tic heuristics which looks for reasonable local constructs,  Ihere is no assurance that recognitic 

going on in one part of the sentence is globally consistent with recognition elsewhere.    The tran- 

sition network can be used to assure that the entire str1 Hure is globally consistent,  and to direct 

attention to possible problem areas (bringing information from all parts of the utterance) if a 

well-defined sentence is not initially discovered.    The primary focus uf the present work is.   in 

fact,  on the problem of how io organize a system which uses syntax (expressed in the form of a 

transition network) in this fashion. 
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\      A   l(H\I,  APPROACH  TO PARSING 

A IMIioDi C riON 

This sit iion dpscribea the i«i> UK-al parsing algurithmu used by I.PAHS:   TREK,  which 

builds th»1 local partial parso trees;   aid CONNECT,   which connects pairs of such trees together 

bv proposing words that might exist between them.    The description of these two algorithms has 

been kept at the level of a verbal over-view in this chapter.    More-detailed flowchart descriptions 

are given in Appendix D. 

Both algorithms described here involve only left-to-right processing of the grammar,   even 

though they are used as part of a locally organized parsing system. 

This is the most technical section of the report A reader interested in acquiring a back- 

ground of this material without lor before) going into more detail is advised to read Sees H-l, 

C'-l,   C'-ii,   D-i,   and l)-l-a which give an overview of the two algorithms described. 

We  first describe the structure of the partial  parse trees which form a central   part of 

I.PAHS processing 

B.    REPRESENTATION OI    PARTIAL  PARSE TREES (PFTs) 

This section describes how I.PAHS represents syntactic structures.    It is assumed that the 

reader has some general exposure to syntactic representation. 

A PPT is composed of termir.    and nonterminal nodes.    Each terminal node corresponds 

to a terminal arc in the transition net,   r.nd each nonterminal node corresponds to a nonterminal 

arc.    Each nonterminal node must have one nr more sons.     The sequence of these sons corre- 

sponds to some permitted path through the ne.work which defines that nontermin.-j'      * rmmber 

of simple PPTs are shown below (Fig. V-1J. 

NP 

de!       noun >P 
t 

-            i 
fh«        mon p»ep 

beside 

Slrch 

Fig. v-1. 

A PPT is const -ucted out of words that are adjacent in the input.    It can span no gaps.    It is 

"partial' in the sense tha» the outer end of a path of arcs taken throuRh an outer nonterminal node 

ntcd not terminate on a permitted state. 
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Two points arp central to the use of Hl'Ts in i.l'AHS: 

(1) Kaeh PPT is very closely tied to the grammar. 

(2) "Ancestor links" can be used to represent the local ambiguity inherent in i   yht 

recursion. 

These two points are expanded upon in the following two sections. 

1. Each PPT is Closely Linked to the Ciramntar 

To understand how the local parsing algorithms ope-ate (especially the CONNECT algorithm), 

one must appreciate how closely the PPT a are tied to the transition network grammar.     The 

sequence of sons of each node represents some permissible path of arcs through the transition 

network ».hich defines that nonterminal.    This path of arcs is contained explicitly in each node. 

In fact,  each node includes the following information: 

(a) a list of eons 

(b) a list of arcs taken {i.e.,  the path through the network» 

(c) the start estate (of the path) 

!d) the end state (of the path). 

Tnus,  given a PPT,  one can get directly to the beginning and end states the path takes through 

the transition network in forming each nonterminal node.    Therefore,   one can readily investigate 

arcs emanating from an end state,   for instance,  to see how the path might be extended.    This is 

an important capability,   since the CONNECT algorithm,   as discussed in Sec. V'-D,   consists basi- 

cally of exploring ways ill which the paths of two ''PTs can be extended and joined. 

Since the PPT is so closelv tied to the grammar,   we often talk of the beginning or end state 

of a nodi,   meaning the beginning or end state in the grammar of the path of arcs taken in forming 

the node. 

2. LPARS' PPTs vs Woods' Structure Building 

The parse structures described here cliffer from those constructed by Woods' transition net 

parser.       In Woods' system,   syntactic structure is built by user-written  BI.II..X)  functions. 

These user-built structures represent a kind of deep structure rather than the path taken through 

the grammar.    In I.PARS,  no attempt is made to construct deep structure as Woods'   system 

does.    The only parse structures built are created directly from the transition net as illustrated 

in Fig. V-l. 

3. Ancestor Links 

The only unusual feature of the PPTs produced by TREE is the use of "ancestor links." 

Ancestor links are used to express the local ambiguity caused by the existence of right recursion 

in a grammar. 

For instance, assume that noun phrase fNP) and prepositional phi?se (PP) are defined as 

shown in Fig. V-2. 

This is a simple example of right recursion since a NP can end in a F P which can end in a 

NP, etc. Thus, if one sees only a noun phrase to the left (f a verb, for instance, one does not 

know if that noun phrase is the subject of the verb, or if it is arbitrarily nested in PPs modifying 
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ADJ 

Flg.V-2. 

the subject. Thus, the string of words "the box supports" could be part of ". . vvh'ch the box 

supports. . ", or "the block in the box supports. . ", or "the cube on the block in the box sup- 

ports. .", etc. 

If ancestor links were not used, there would be an infinite number of ways to connect a NP 

to a verb,  including thrse shown in Fig. V-3. 

SENT 

NP 

A 

\ 
verb 

SENT 

/\ 
NP verb 

PP 

SENT 

NP 
I 

PP 

verb 

..etc 

NP 

A 
NP 

I 
PP 

NP 

A 

Fig. V-3. 

Using ancestor links,  however,  v.henever a NF is found to the left of * verb,  the two struc- 

tures shown in Fig. V-4 can be produced. 

SENT 

/    \ 
NP verb 

A 
PPT 1 

SENT 

NP 

A 
verb 

PPT 2 

Fig. V-4. 

The starred link in PPT 2 is an ancestor link,  and embodies an unlimited number of possible 

global relationships.    The ancestor link implies that the NP is the rightmost descendant of the 

NP arc lu the SENT net,   without speciiying the exact relationship.    Notice that if the noun phrase 

wa.« not a semantically valid subject of the verb,  only PPT 2 need be produced. 

If only a noun had been found to the left of a verb,  only one structure need be produced {see 

Fig.V~5). 

SENT 

noun 
V 

•rb 

Fig. V-5. 

42 



More formaliy, an ancestor link represents an unspecitied chain of nonterminal nodes con- 

necting a PPT to a higher-level node.    (A chain of NTs is one or more NT directly desf-endant 

from one another,  each having only one son 1    The presence of ai ancestor link meana that a 

chain of nonterminal nodes has been deleted and replaced by the ancestor link.    As illuütrated 

in Fig. V-5,   this allows a single ancestor link to  represent an infinite  number of possible 

structures. 

An ancestor link can be thought of as saying "I don't know what is to the left of me.    Many 

structures are possible."   Thus,  such links can occur only on the leftmost side of a partial parse 

tree.    (If left recursion were allowed in I,PARS' grammar,  then ancestor link., could also appear 

on the rightmost side of a PPT.)   TREE automatically inserts an ancestor link whenever a chain 

of nonterminal nodes occurs in the leftmost son of a PPT being constructed. 

The concept of an ancestor lirk is a very simple one.    It is also a very natural one in a sys- 

tem such as I,PARS.    Such links allow the system to recognize a valid,   yet ambiguous,   syntactic 

relationship without being forced to specify what the relationship is.    Later,  when an attempt is 

made to connect the PPT to other PPTs,  the relationship can be resolved. 

More-complex PPTs containing several ancestor links ca;. also be made. Kor example, 

given the string of words "the sofa supports contains the ashtray endch", one of the possible 

PPTs produced is shown in Kig.V-6. 

endch 

ai in:    "The box which the fable beside the sofa 

supports contains the ashtray") 

Kig.V-6. 

Since i.PARSonly allows right recursion, these ancestor links can occur only on the leftmost 

side of a PPT.    Were left recursion allowed,   such links would also be possible on the rightmost 

side of a PPT. 

4.      Partial Parse Tree Terms 

We now define a few terms useful in talking concisely about partial parse trees. 

A "Final Node":   A nonterminal node of a PPT is a final node (a) if the path of arcs 

taken ends on a permissible final state    and (b) if its rightmost son is either ter- 

minal or is itself a final node. 

An "Initial Node":   A nonterminal node of a PPT is an initial node (a) if the path of 

arcs taken begins on a permissible initial state,  and (b) if its leftmost son is cither 

terminal or is itse.f an initial node. 
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To "Invoke":   An arc- in the grammar "invokes" a word if it is labeled by the syn- 

tactic class of the word.    It invokes a PPT if it is labeled by the syntactic class of 

the top node of the PPT. 

A "Context Arc":   An arc of the grammar is p possible context a- ■ for a PPT if it 

invokes th? PPT. 

C.     TREE:   THE  PARTIAL  PARSE   TREE CONSTRUCTOR 

This section describes TREE, the algoritK.i which constructs partial parse trees in various 

parts of the input sentence. In spirit, the algorithm is quite Si.nilar to more traditional left-to- 

right parsing algorithms. A number of additional considerations are made necessary, however, 

by the local nature of the LPARS loproach. 

The TREE algorithm itself does not attempt to recognize or hypothesize any words in the 

input.    Rather,   it accepts word candidates which have been recognized by previous activity of 

LPARS,   and constructs as many different local parse structures as possible using these words. 

If all the words of the inout sentence have been found,  then a parsing of the entire sentence is 

among the parse structures produced.    If not,  TREE will output a collection of partial parse 

trees (PPTs) which are then turned over to a second algorithm,  CONNECT.    CONNECT attempts 

to connect pairs of parse trees together by using the grammar to propose words that might exist 

between them.    It then tests these words out at high phonetic distance against the input (see 

Flg.V-7). 

partial  
words —•-1 TREE] —»- parse    J CONNECT] —-.ertence 

^ees 

Fig.V-7. 

We first present an overview of the operation of the TREE algorithm.    Then we discuss two 

problems which do not arise in left-to-right parsing systems,  but which must be dealt with to 

implement the local approach of LPARS. 

1.     Goal of TREE 

The goal of the TREE algorithm is to construct as many different local syntactic structures 

as possible using the input words.    Let us see what this means in p.-actice.    Suppose the word 

string "the big man" was recognized.    Clearly,   these words could all be incorporated into the 

PPT shown in Fig. V-8. 

NP 

the big man 

Fig. V-8. 

This,  in fact,   is the only PPT which LPARS creates.    Notice,  however,   that there are five 

other "subsumed" structures which can be formed (Fig. V-9). 

A PPT (PPT 1) is "subsumed" by another PPT (PPT 2) if PPT \ incorporates only a subset 

of the words incorporated by PPT 2,  and if the syntactic structure connecting those words is 

identical in the two PPTs. 
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det odj noun NP NP 

I      I       ! /\    /\ 
tli bia man def     adi     adi      noun 

I I i I 
the      big      big     man 

Fig.V-9. 

It might seem reasonable for TREK to create all possible subsumed structures,  on the 

theory,  in the example above for instance,  that "the" and "big" might be correct words but "man" 

might have been in error.    The approach of TREE,  however,   is not to produce any PPT which 

is completely subsumed by some other PPT which   t cnstructs.    If any word is later thought to 

be in error,   I.PARS can break the structure down into smaller parts. 

Thus,  the goal of TREE is to construct as many local PPTs as possible,  with the provision 

that no PPT produced is subsumed by another.    For instance,  given "the book beside the",  TREE 

would produce the four structures shown in Fig. V-10. 

NP NP 

the book      PP the book      SENT 

^ I beside      NP beside 

I 
the (as in:   "the book beside which.. . ") 

2 ] 

SENT 

/    \ 
NP             PP 

/\            /^ 
the book      beside NP 

• 
the 

the book 

(as in:    "put the book (as in:   "put the table which supports 
beside the ashtray") the book beside the sofa") 

Fig. V-10. 

These four valid globpl interpretations of the words are all structurally different Notice that 

PPT 2 does not include the word "the", since only a relative pronoun (such as "which") can follow 

the preposition in the SENT transition net. Notice also, that PPT 4 really represents a potentially 

unlimited number of global relationships because of the ancestor link. 

As discussed above,  the goal of TREE is to construct all possible PPTs.    Another way of 

phrasing this goal is to say that TREE hypothesizes all possible global relationships that might 

exist in the grammar between all sets of adjacent words. 

It is reasonable to ask why a system should go through this intermediate step of constructing 

all possible PPTs.    The reason is that once these PPTs are built,   LPARS can examine them in 

toto,  and decide vhr; ar^as of the input are best candidates for further investigation at high 

phonetic distance 
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2.     Implementation Overview 

The following is a description of the TREE algorithm in general terms,  to give an overview 

of the issues involved.    We hope that this overview will suffice for most readers. 

TREE accepts as inpu a list of words, possibly overlapping, ordered by their position in 

the sentence. It processes these one at a time, thus proceeding from left-to-right through the 

sentence.    Since at each point TREE builds all possible parses,  no backup is necessary. 

TREE stores the PPTs it constructs in a "phoneme position table" (Fig. V-ll) whicd has one 

cell for each phoneme position in the input sentence.    Each cell has a list of all PPTs constructed 

which end  4 that phoneme position in the sentence. 

1   2   3 

Fig. V-ll.    Phoneme position table. 

Let us take the following simple example to see how the table is u.    ,.    Suppose the following 

word candidates were fouiid:   (the   11    12) (big   13   15) {-.nan   16   18).    The numbers represent 

the beginning and ending phoneme positions of each word in the input.    TREE takes each word 

in turn and attempts to connect it to every PPT ending immediately before that word. 

Thus (the   11    12) is taken first.    Since no PPTs end at position 10,  no connections can be 

made,    i the PPT "the" is recorded at position 12.    Vxt (big   13   15) is taken;   it is connected 

to "the",  and a PPT "the big" is recorded at position l^..    At this point,   the PPT "the" is flagged 

to indicate that it is a subsumed PPT.    Similarly,   "man" is connected to "the big",  yielding 

"the big man" ending at position 1«,   and the PPT "the bin" is flagged as subsumed.     The result 

of this activity is shown in Fig. \ -12. 

11 12 i: 14   15 16  17 18 

DET 

the 

\                  \ 
NP             NP 

A      AX 
the big         the big man 

Fig. V -12. 

Notice that once a Pr f which ,ias been incorporated into a larger structure is marked as 

subsumed,  even though it will not be part of the final output of TREE,  it is kept in the table. 

Therefore,  if an overlapping word c&ndidate has been found,  such as (manufacturer   16   24),  it 

can also b^ connected to "the big" yielding the PPT "the big manufacturer" ending at position 24. 

This example is a very simple one.    In practice,   the input being pro-essed may contain 

several words in any section of input.    Words may overlap one another at random.    Alternatively, 

gaps mav exist (if they do,  of course,   no syntactic connections are mado across     ese gaps). 

Notice also that connecting a word to a single previously made PPT may Weld several PPTs. 

As illcstrated in Fig. V-8,  for .'nstance,  adding "beside" to "the book" yields four different PPTs. 

WTienever a word is processed by TREE,   it is connected ir. as many different ways as possible 

to all PPTs which end directly before that word.    In addition,   as discussed beiuw in Sec. 3-f, 

TREE looks to sec if the word can be connected to a rightmost subpPn of each PPT in some other 

syntactic context. 

Hefore adding a PPT to the appropriate phoneme position lict,  of co irse,   TREE first checks 

to make sure it is not subsumed by any previously created PPT already on the list.    Similarly, 
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if the new PPT itself subsumes any PPT already on the list, the previous PPT is flagged.    These 

two checks are iiecessary foi reasons described below in Sec. 3-f. 

3.     Making Syntactic Connections 

There are three different ways in which syntactic connections can be made between a pre- 

viously created PPT which has been taken from the phoneme position table,  and a new word being 

processed.    These different connection modes are:   (a) appending,  (b) pushing,  and (c) popping. 

Modes (a) and (b) are quite straightlorward;  (c) is more complex due to ancestor link considerations. 

a.     Appending 

Appending is the simplest mode of connection and is illustrated by an example (Fig.    -13) of 

the word "man" being added to the PPT "the big".    Here, the end state of the PPT "the b.g" in 

the grammar has an exit arc labeled "noun"; thus, the PPT "the big man" can be formed directly 

NP noun DET NOUN   ^"XE) 

the    big man NP: 

PPT WORD ADJ 

Fig. V-13. 

Mere formally, an appending connection is made to a rightmost nonterminal node of a PPT. 

!t requires that the rif,ntmo£)t son of that node be a terminal or a final nonterminal. It also re- 

quiresthat the rif.itmost state of that node have ar exit arc which invokes the word being procec ,cd. 

b.      Pushing 

Pushing is illustrated by a similar example:   the woi d "beside" being added to the PPT 

"the book".    Here,  the end state of the PPT has an exit labeled PP,   and the PP network can start 

with a preposition.    Thus,  the PPT "the book beside" enn be formed (see Fig.V-14).    (A similar 

successful push connection can be made using the SENT net.) 

NP 

7" 
def noun PP 

the book prep 

i. 
beside 

Fig. V-14. 

More formally,   a pushing connection can be made to a rightmost nonterminal node of a PPT, 

It requires that the rightmost son of that node be a terminal or a final nor.terminal.    It also re- 

quires that the rightmost state of that node  iave an exit arc invoking a nonterminal which can 

start (possibly recursively^ with an arc invoking the word being processed. 

Example:   In connecting the noun "man" to the PPT "the big",  an appending connection can be 

made.    In connecting the preposition "beside" to the resulting PPT,  a pushing connection must 

be made to "he PP transition net.    Figure V-15 illustrates these two connections. 
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NP NP 
/  \ '      nan  -».     / VS. 

he big the big man 

NP 

/  j  \ 
the big man »he big man PP 

eside 

Kig, \-t5. 

r.      Popp ng and Ancestor Link Formation 

Popping is attempted if the PPT is a terminal or If it is a final nonterminal.    Popping in- 

volves making a syntactic connection through a higher-level net. 

NP VERB 

SENT: 

Fi,j. '. -16. 

The first step in making a "popping" connection is finding a higher-level context for the PPT 

v/hich ia '.o be connected (i.e.,  an arc which "invokes" that PPT).    For Instance,   in connetcing 

a NP to a VERB,  theie are three NP context arcs in »he SENT net (.<-ee Fig. \ -16).    Each ot these 

context arcs is taken oie at a time,   and an appropriate FPT of the form shown in Fig. V-17 is 

constr' c*ed. 

SENT 
I 

NP 

Fig. V-17. 

Next,   an attempt is mide to connect this new PPT to the verb.    In only one (the leftmost) of 

the three context arcs depi< .-J in Fig. V-16 will this attempt succeed since this is the only NP 

arc immediately to the left of a verb arr. 

In ittempting to connect th« new PPT U) the verb,  the algorithm will trv all three moaes of 

connection:   apoending,   pushing,   and popping (if the new PPT ends on a final state".    Thus,  the 

popping process is recursive,  as the algorithm tries all possible combinations of multiple popping 

that might yield a connection (as described in Sec. ?-d _elo«i. 

There is a problem invxlved in this recursive popping,   nam'-ly,  the algorithm (as stated so 

far) could get   .ito an infinite lo^p.    For instance,  since a noun , irase can end a prepositional 

phrase which can,  in turn,   end a noun phrase,  the algorithm could merrily pop up endlessly from 

one to another.    It can be seen that this is the ancestor link problem in a new guise.    The easiest 

solution to this problem is just to keep a list of the arcs al-eady poi-^c ' *hrough at each point and 

abort the recursive popping if an arc already popped through is approached again. 

In practice,  by visually inspectinp the grammar,  one can insert tests that abort a number 

of pops so that not all possi^'lities  .re attempted.   These tests are put in to impro/e efficiency, 

but do not alter the basic nature of the algorithm. 
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Mere formally,  a popping connection can he made in the following cin.j'-.^tanceä:   (1) If the 

FPT is terminal,  or if the FPT is a final nonterminal node;  (2) if there exists a context arc 

(which invokes the PPT) which has not been popped through in forming the PPT;  and (3) if the 

new PI'.' formed by popping to this arc can be connected (via appending,  pushing,  or popping) 

to the word being processed. 

d.     Examples of Popping 

The algorithm is able to abort the recursive popping successfully &nd still get all possible 

local structures because it is set up to construct ancestor link structures while making these 

popping connections.    As describ d in Sec. 3 above,  an ancestor link represents an unspecified 

chain of nonterminal nodes.    Such an ancestor link is created wH~n the ilgorithm pops through 

successive nonterminal nodes. 

A number of examples vsing different PPTs can best serve to explain how popping and an- 

cestor link formatier take place. 

Example 1 

NOUN 
I 

man 

When pooping with a terminal, one first takes each a.c invoking that terminal and attempts 

connections.    Thus,  the PPT shown in Fig. V-18 would be constructed,    in this case,  a second 

NP 

I 
noun 

Fig. V-18. 

pop can be made recursively since the new PPT ends on a final state.    Before attempting the 

recursive pop,  however, the algorithm first examines the PPT to see whether it should be trans- 

formed into an ancestor link structure.    The rule is:   if a nonterminal which has only a single 

son is to be popped,  then the nonte/minal is replaced by an ancestor link structure.    It is possible 

to use this simnle rule for two reasons: 

(1) The CONNECT algoriihm,  which processes these PPTs,  is set up to expect PPTs 

constructed in chis fash   n. 

(2) In LPARS' grammar, there are no nonterminal nodes which can be made to begin 

and end on permitted states yet still have only a single son. The rule would have 

to be somewhat modified to accommodate such nonterminals. 

In the above example, since the new i]PT to be popped is a nonterminal with a single son, 

the alportthm automatically inserts an ancestor link structure, transforming the new PPT as 

sef n in Fig. V-19. 

7 
noun 

Fig.V-19. 
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Even though the NP node has been deleted, t.ie algorithm must remember that it is dealing 

with a NP and therefore use NP context arcs in making connections.    This PPT, for instance, 

couid be connected to a verb as shown in Fig.V-20. 

SENT 

noun v^rb 

Fig.V-20. 

Since a NP can end a sentence,  a third recursive pop can be generated of the PPT (see 

Fig. V-21). 

SENT 

nou.i 

Fig. V-21. 

Again,  the algorithm inspects the PPT before allowing the recursive popping to take placs 

and, in this case,  propagates the ancestor link deleting the SENT node and obtaining the PPT 

shown in Fig. V-22. 

V 
-■oun 

man 

Fig. V'-22. 

Thus, the same ancestor link structure is passed up through successive levels of popping. 

Again,  although now both the NP and SENT nodes have been deleted, the- algorithm must remember 

♦hat it is dealing with a "ENT.    This "propagation" of the ancestor link is done because any inter- 

vening nodes are superfluous until the structure is finally connected to the word being processed. 

.'or instance, the PPT could be connected to an ""endch" as shown in Fig. V-23. 

SENT1 

■/■  \. noun enden 

Fig. V-2 3. 

Example 2 - a Partial NP 

T       .-"PT is handled in a fashion very similar to Example 1.    Here,  however, the ancestor 

link structure which 13 passed up is shown in Fig. V-24. 
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•/ 
NP 

/\ adj     noun 

Fig. V-24. 

Example 3 

SENT 

NP      verb (as in "which the table supports") 

det        noun 

This partial SENT PPT is handled in exactly the same fashion as Example 2.   The ancestor 

link structure used in the popping is shown in Fig. V-25. 

7 
SENT 

NP verb 

Fig. V-25. 

e.     Tests to Abort Popping in Certain Circumstances 

The grammar used by LPARS is restricted;  therefore,  the efficiency problems involved in 

multiple popping are not prohibitive.    With more complex grammars, this problem could become 

more significant. 

One potentially useful technique for improving efficiency is to inspect the grammar and insert 

logic to abort various possible pops bc'ore they are attempted.    This could be useful in two gen- 

eral situations. 

(1) When tht word being connected does not follow a particular PPT. 

(2) When one is popping with an ancestor link stiucture,  and there are several ways 

that the PPT can pop to a higher-level context.    For example,  there is more than 

one arc which allows a NP to end a SENT.    Thus, the algorithm as stated can con- 

nect a NP to an ENOCH once for each of these contexts, yet the resulting structures 

would be identical since the intervening nodes popped through would be deleted.    One 

obviously inefficient solution to this problem is to let several identical parse trees 

be formed,  but let LPARS ignore the duplicates.    Another aroroach is to inspect 

the grammar and insert logic to abort popping so that only one structure is ever 

built in such situation«. 

In any case,  this issue (although important for practical reasons of efficiency) is not central 

to the basic algorithm.    It is perfectly possible to let TREE explore all possible popping paths 

every time,  using only the general mechanism that aborts if the popping starts to repeat itself. 

In effect,  this amounts to letting TREE use the grammar "interpretively."   By inspecting the 

grammar,  one can manually "«-ompile" a set of tests that let TREE operate more efficiently. 

In fact,  it is probably possible to construct a set of rules that allows LPARS to inspect the gram- 

mar and construct the tests automatically.    This possibility is not pursued in the present work. 
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f.      Two Problems 

There are two unique problems to be faced by a local parsing strategy,  problems which 

do not arise in a totally left-to-right parsing approach.    These problems arise in attempting to 

pursue the goal of finding all possible "maximal" local structures (maximal in the sense that 

none are subsumed by others). 

Problem 1 

The first problem might be called that of "finding all contexts for possible syntactic connec- 

tions to rightmost subparts" and can be illustrated by considering the following hypothetical input: 

"the man places the book supports".   Among the PPTS which can be created from this string are 

the two shown in Fig. V-26. 

StIMT SENT 
* X"     \, s^ /   "\ 

S NT supports NP          supports 
/N ̂ ■■—-^. /\ 

NP places NP the book 

/\ A 
fhe man the book 

(as in: "the fable on which 
the man places the b^ok 
supports the ashtray") 

Fig. V-26. 

The problem is illustrated as follows.   Since TREE creates PPTs by examining the words 

left-to-right,  at some point it has created the PPT shown in Fig. V-27,  and is attempting to add 

to this structure the verb "supports" if possible.    As shown in Fig. V-26,  not only can "supports" 

be connected to the entire structure   but it also can be connected to the noun phrase "the book" 

in a different   yntactic context. 

SENT 

NP pieces NP 

the man the book 

Fig. V-27. 

Thus when examining a new word,  THEE must do more than just continue any parsing that 

it has already developed.    It must also see if any rightmost subparts of structures that it has 

built up can be connected to the new word.    There are twt» general cases of this problem: 

(1) In the axample above (Fig. V-26) where a rightmost son of the PPT can be connected 

to the word in a different syntactic context. 

(2) The other example in where one can connect the word to the PPT but only if some 

of the leftmost sons of the PPT are deleted.    For instance,  consider the word string 

"which the table supports the ashtray".    The string "which the table supports" can 

be formed into a sentence fragmeit.    Yet "the ashtray1' cannot be joined to this 
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entire fragment.   The word "which" must be removed first, after which the structure 

"the table supports the ashtray" can be formed. 

This problem is not a difficult one to solve once it has been understood, but it does require 

a somewhat different parsing strategy than does a purely top-down left-to-right system. 

Problem Z 

The second problem arises directly from the solution of the first.    Namely,  in solving Prob- 

lem 1,  TREE may at times construct a parse structure using a right nost subpart of one parse 

structure, but this parse structure may be subsumed by some other parse structure which TREE 

has created.    This second problem, the eliminaticT of redundant pr'n«i, can be illustrated by the 

string of words "the book beside the".   The string "the book beside" generates, among others, 

the two PPTs shown in Fig. V-28. 

NP NP 

the book      PP the book     SENT 

beside beside 

(as in:   'the book 
beside which... ") 

PPT 1 PPT 2 

Flj;. V-28. 

When "the" is added to PPT 1,  it yields PPT 3 (see Fig. V-2QK   However,  any attempt to 

PPT 3 

Fig. V-29. 

add "the" to PPT 2 will clearly fail.    On the ether hand,  "the" can be connected to a rightm-.,: 

subpart of PPT 2 ("beside") in another syntactic context,  yielding PPT 4 (see Fig. V- »u).   But, 

PP 

beside NP 

the 

PPT< 

Fig.V- 30. 

PPT 4 is subsumed by PPT 3 and 'herefore is not wanted.    In practice,  LPARS creates each PPT 

tentatively and throws it away if it is subsumed by a previously constructed PPT,  or by a PPT 

construi .ed later. 
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The two problems discussed above arise from the local nature of LPARS1 parsing.    Prob- 

lem 1 arises from the need to form all possible syntactic connections.    In the process of finding 

these, however, the algorithm may also find some redundant structures.    This gives rise to 

Problem 2, the need to throw such redundant structures away.    Possibly,  a more elegant solution 

allows the construction of all valid parse trees without the redundancy inherent in the present 

algorithm 

4.     Some Remarks on TREE 

This section makes two remarks about the nature of the TREE algorithm and its relationship 

to other parsing methods. 

a. Efficiency Considerations for the Local Approach 

The TREE algorithm may seem to be inefficient.    It certainly can construct a iair number 

of different parse structures out of the same woros.    It must be remembered,  however,   that all 

parsers do this to some degree using backup,  the only difference being that,  when backup is used, 

only one partial structure exists at a time. 

Some left-to-right parsers,  such as  Barley's,      do construct multiple parse trees.    In 

theory,  srch an algorithm is just  as efficient as one using backup.    Of course,  TREE would 

probably construct more partial parse aiructures than Earley's parser,   given the same grammar 

and the same input,  be ause Earley's algorithm expects to be given all the tokens in the sentence 

and thus need only construct PPTs which make sense in the possible left-to-right contexts present. 

However,  the basic point is that,   although the number of PPTs constructed by TREE m^y at 

first appear large,  this is partly because TREE does not use backup to effectively erase part of 

its work,  but rather sets it all up for everyone to see.    in fact,  by doing nil the work once and 

for all before calling the CONNECT routine,   it helps make I,PARS a more efficient system than 

if it had to redo this parsing many times as CONNECT tried out different possible ways of hypoth- 

esizing unfound words between structures in different parts of the sentence. 

b. Inique Features of the TREE Algorithm 

The local nature of the TREE algorithm results in a number of unique problems which do not 

occur in other parsers.    It is useful to outline those specifically: 

(1) The ancestor link problem is unique to an approach which attempts to create local 

structures. 

(2) The necessity of finding all possible syntactic connections between structures being 

built up is a unique part of the local approach.    In the particular left-to-right ap- 

proach to building local structures used ny TKEK,  this necessity gave rite to the 

two interesting problems discussed in Sec.C-3-f above. 

(3) The need to have a syntactic formalism which lets oarsing originate anywhere in 

the grammar and proceed in an organized fashion is unique to the local approach. 

D.     THE CONNECT  ALGORITHM 

The task of the CONNECT algorithm is to take two PPTs constructed by the TREE algorithm 

and use the grammar to propose possible A'ord-strings which might exist between the two f PTs 

(see Fig. V-31). 
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[ZU    LZZl 
LPPT RPPT 

Fig. V-31. 

We often refer to the two PPTs as the left-hand I-PT (I.PPT) and the  right-hand PPT 

(RPPT).   These PPTs bound an input segment which is to be investigated.    CONNECT proposes 

word-strings,  consisting of at most one content word plus a small number of function words 

which might fill the input segment.    Then,  CONNECT tests these hypotheses against the input 

segment at a high phonetic distance.    If any match succeeds, the combined PPT is added to the 

collection of PPTs being investigated.    When processing two input PPTs in this fashion,  CONNECT 

tests out all possible hvpotheses which are syntactically and semantically permissible. 

1. Why Only One Content Word? 

It is reasonable to ask why CONNECT searches only for word-strings containing,   at most, 

one content word plus a small number of function words.    Clearly,  one might have allowed 

CONNECT to propose a longer string of words.    Some limit must be set,  however,  and the design 

philosophy of I.PARS is to keep this limit fairly low.    At the opposite extreme to this philosophy, 

one approach to sentence recognition might be to generate all possible sentences and match each 

against the entire input.    This approach is clearly inefficient.    The while structure of LPARS 

is designed to avoid such an approach.    Thus,  the idea of proposing a large number of long word- 

strings without looking at the actual phonemic input is avoided as much as possible by LPARS. 

If there is a large section of input between two PPTs,   LPARS can make a higher distance scan 

t.hrouph that section and use the words found as input to the TREE algorithm,  or use other fa) - 

back mechanisms as is discussed in Sec. VI. 

It would be simple to expand the "single content word" constraint described above to make 

it more flexible.    One might also allow word-strings consii-ting of two content words and,  at 

most,  one function word.    Alternately,  if the input section between is fairly small,  one might 

want to look for,   at most,  one or two function words.    The choice made in LPARS is somewhat 

arbitrary,  and is certainly not the only possibility. 

2. An Introductory Example 

As discussed above, the task of the CONNECT algorithm is to find all word-strings that 

might exist between two PPTs, with the constraint that no word-string contain more than one 

content word.    Thi:- section discusses a lew examples to illustrate wha4 is involved in this process. 

Consider the two "PTs shown in Fig. V-32. 

SENT) SENT) 

/    \ */      \ 
rch     SENT NP            endch 

/ \ 
NP the box 

/\ 
the book 

F ig. V -32. 
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Sample word-strings which might connect these PPTs are "supports the", or "is contained 

by the". 

Consider the next two PPTs (Fig. V-33). 

NP NP 

the dictionary     red ashtray 

Fig. V-33. 

Sample word-strings which might connect these PPTs include:   "beside the",  "in the big", 

"which the",  "in which the",  "supports in the" (as in "put the pipe which the dictionary supports 

in the red ashtray").    In fact, there are a great many possible word-strings which could connect 

these two PPTs.    (This fact raises the efficiency question of whether one might want to usv the 

CONNECT algorithn  selectively.    The answer to this question is "yes," and is discussed more 

fully in Sec. VI.) 

Now let us try to get a feeling for the logic involved in generating these possible word-strings. 

3.     Extending Paths Through the Net 

This section makes some preli^ilnary comments to help make the CONNECT algorithm's 

activity easier to visualize. 

Fundamental to this activity is the fact that every PPT Is very closely tied to the transition 

network grammar (as discussed above In Sec.B).    The sequence of sons of each node represents 

a permitted path through the associated network,  and each PPT node has pointers to the states 

In the net on which the path begins and ends.    Therefore,  it is ver> easy to explore ways in which 

the path might be extended (by examining arcs emanating from the end state). 

Let us first take a simple example.    Suppose we are given the partial noun phrase "the big" 

and asked to use the grammar to see If v/e can make this PPT end on a final state by hypothe- 

sizing at most one content word (see Flg. V-34). 

Nf DET        NOUN PP 

the    big "»:   £f~~~*&' ^T    ~"*® 

ADJ 

Fig. V-34. 

To answer this question,  we must look at the end state of the PPT In the net (state NP2) and 

follow the arcs that emanate from It.    We then see that the PPT can be made to end on a final 

state by hypothesizing a noun.    The resulting "hypothesized PPT," Including the proposed word 

Is shown In Flg. V-35.    In this case,  nr other structures are possible. 

NP 

/A the big noun 

? 

Fig. V-35. 
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Now let us look at a more complex example of which the previous example is a sub-pait. 

Suppose that the sentence (SENT) net is as shown in Fig. V-36. 

NP VERB 

SENT &       t|J      ~^3 
Fig. V-36. 

Further suppose that the two PPTs of Fig. V-37 have been found 

SENT1 

str^h SENT SENT 

/ / X 
NP VERB NP 

A /      /\ 
the big pats the d6g 

Fig. V-37. 

The question now is:   Can these two PPTs be joined by proposing at most one content word? 

For an answer,  we first look at the SENT node of each PPT and observe that:   (1) the SENT node 

of PPT 1 ends on state 2,  and (2) the SENT node of PPT 2 begins on state 2.    Thus,  these two 

paths can be directly concatonaved.    But,  for the resulting structure to be a valid PPT, all inner- 

most nonterminal sons must begin and end on permitted states. 

Hence, the two SENT nodes can be connected only if the noun phrase "the big" can be made 

to end on " final state by proposing,  at most,  or" content word.    As we saw above,  this can be 

done by proposing a noun.    Therefore,  the two PPTs can be joined into the "hypothesized PPT" 

showr: i". Fig. V-38. 

SENT! 

str^h 

the big noun 

Fig. V-38. 

This simple example illustrates quite clearly the heart of the CONNECT algorithm,  namely: 

(1) On some level,  paths from both PPTs must he joined. 

(2) All inner nodes below this joining must be made to begin or end (as appropriate) 

on permitted states. 

These two basic principles are trie key to the operation of the CONNECT algorithm.    There 

are,  unfortunately, a number ot complications which make the algorithm slightly more complex 

than the above example might seem to indicate.    Nevertheless, the basic principles remain those 

stated above. 
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The two main complications are: 

(!)    Having to pop to a higher-level context to make a connection:   For instance,  given 

two noun phrases,  one possible word-string connection is a verb.    To find this 

possibility, the algorithm must pop to th« SENT net (see Fig. V-39). 

SENT 

.-</\ 
NP     verb      NP 

A I A 
? 

Fig. V-39. 

(2)    Ancestor link considerations:   The necessity to accommodate ancestor links poses 

further considerations.    For instance,  when connecting the two PPTs shown in 

Fig. V-40. 

SENT1 SENT1 

/       \ V     \ 
strch SENT NP endch 

I A 
NP 

A 

Fig. V-40. 

First,  the SENT1 nodts are joined,  and then the SENT node in PPT 1 is extended to join 

the ancestor link son of PPT 2,  generating the combined PPT (see Fig. V-41). 

SENTl, 

strch""""       ^SENT ^endch 

NP VERB NP 

A I       A 
? 

Fig. V-41. 

Notice that,  in this example (due to the ancestor link),  paths in the two PPTs were joined 

at two levels of structure.    In a more complex example,  paths can be joined at several levels. 

(In fact,   one can think of the CONNECT algorithm as being able to "zip" two partial structures 

together.) 

4.     Two Parts of CONNECT 

The preceding section discussed the basic principles involved in the operation of the CONNECT 

algorithm.    We now look at this algorithm in more detail.    There are two distinct parts of the 

CONNECT algorithm: 

(a)    First is the JOIN routine which joins the higher-lf-vel structure of the PPTs, 

"zipping" them topethor from top to bottom,  thereby constructing a hypothetical 

combined tree     This combin-d tree indicates a possible word-string that might 

exist between the input PPTs.    The JOIN routine by itself determines only tne parts 

of speech of the possible word-strings. 
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(b)   Second is the CONSTRAIN routine which inspects a tree, created by JOIN,  with its 

hypothesized words,  and uses the contextual i^ntactic and semantic information to 

compile additional constraints beyond mere parts of speech,  further narrowing 

down what the hypothesized string of words might be.    (For instance,  if the unclear 

section might contain a verb, inspection of the context might allow one to rule out 

a number of verbs in the vocabulary.) 

The following sections ?ive a simple example of these two routines in operation, and then 

describe each in turn.    The description of the algorithm ignores lambda transitions.    This sim- 

plification allows the description to be somewhat cleaner, and does not lose any of the overall 

flavor of the algorithms themselves. 

a.     Simple Example 

We now give a simple example to help clarify the individual functions of the two parts of 

CONNECT, and s' ow how thsy fit together before describing them in detail. Let us take the 

example given in the introduction: two noun phrases at the beginning and end of the sentence, 

with a gap between them (Fig. V-42j. 

endch 

SENTl 

arch          SENT 

1 
NP 

SENTl 

*/    V 

N? 

A 

Fig V ■42. 

The task of CONNECT is to fina all tiie ways in which the two PPTs can be joined together 

by words which - .tght eXi.-it between them.    The algorithm starts at the top of the two PPTs and 

recognizes that each is headed by a ^ENTl node,   and that these two nodes can be joined.    The 

algorithm therefore constructs the structure presented in Fig. V-43. 

SENT) 

strch ? endch 

Fig. V-43. 

The algorithm places a pointer to this combined structure in a global location.    The son 

labeled "?" represents a cell in a list of sons which Is left temporarily empty.    It will later be 

filled in as processing proceeds.    The routine now calls itself recursively with the two PPTs 

of Fig. V-44 as arguments.    The address of the empty son of the higher-level structure is RIBO 

SEN! NP 

I A 
NP 

A 

Fig.V-44. 
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passed down.    These two PPTs are the inner sons of the original two FPTs.    Along with these 

two structures, the algorithm is passed additional information indicatme: 

(1) That it is no longer processing the highest-level nodes of the trees and thus,  for 

instance,  no popping connections can be attempted. 

(2) That both PPTs are bounded by outside context (the start cod end characters) and, 

therefore, that when processing is finished all inner nonterminals must begin or 

end (as appropriate) on permitted states. 

The algorithm proceeds to test for possible intervening words by extending the path of the 

SENT node of the LPPT starting at the end state.    In so doing, it tries to complete the SENT 

node,  incorporating the RPPT (the NP) into the structure.    It finds that it can successfully do 

this by following a verb arc and an affix arc to the direct object NP arc.    It therefore constructs 

the PPT shown in Fig.V-45. 

,SENT 

NP       verb      affix       NP 
A       I        1       A 

?       ? 

Fig. V-45. 

This PPT is then attached to the previously built structure by placing a punter to this PPT 

in the cell marked "?" in the higher-level structure above. Thus, the PPT of Fig. V-46 is built 

and is accessible through a global pointer. 

SENT! 

Now the first part of the CONNECT process, the joining of higher-level structure, is com- 

pleted. In more complex examples, this process can take longer and involve several levels of 

recursion as several levels of structure are "zipped" together. 

The PPT is now passed on to the second part of the CONNECT algorithm,  CONSTRAIN, 

which examines the entire structure to find additiorml constraints which    >uld oe placed on the 

verb,   such as "transitive," "must be able to take a certain class of noun as subject and as object," 

etc.    It then tests all verbs satisfying these constraints against the input. 

After the processing of this first possibility is complete,  CONNECT resumes trying to find 

different ways of joining the two structures.    Thus,  it would also find the passive sentence form, 

proposing a word-string of the form "BE VERB  AFFIX  BV" as in "is .supported by". 

Also, had the SENi node of the LPPT ended on a permitted state,  the algorithm could have 

dropped down recursively and attempted to connect the two strurtureH given in Fig. V-47. 

NP NP 

A       A 

Fig. V-47. 
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Tnese could be connected by a number ^i word-strings including:   PREP,  PREP WH, or 

WH,   In fact, if the right-hand NP had not originally been connected to the ENDCH, the algorithm 

would indeed have found these possibilities.    The necessity that all innermost nodes begin and end 

on permitted states,  however,  made it impossible for the algorithm to drop down below the SENT 

node in trying to connect ts'* MP. 

T'ie following sections describe the two parts of this algorithm in more detail. 

b.     JOIN Routine 

This section describes the logic of th^ JOIN routine which takes two PPTa and creates all 

possible hypothetical combined PPTs which can be made connecting them. 

The JOIN routine does all its processing of the transition network grammar in a ' ;ft-to-right 

fashion,  starting from the end states of the left-hand PPT (LPPT) and exploring W.   , in which 

paths can be extended from these states to join the RPPT. 

To illustrate how this processing is performed,  we first break the problem down into several 

components and describe each first. 

(1) How an existing path can be extended in a single net. 

(2) How a hypothesized path can be initiated in a net. 

(3) How a path can be continued in a lower net. 

(4) How a path extended from the LPPT can be joined to the RPPT. 

Finally, we discuss how the entire algorithm is organized to explore all possible connections. 

(1)    Extending a Path 

A PPT node has a sequence of sons which represents a path through the associated transition 

network.    This path can be extended by looking at each exit arc emanating from its end state. 

(a)   If the arc is a terminal arc, then an extension to the path can be made readily.   To 

do this,  JOIN constructs a new extended PPT and turns this over recursively for 

further extension (see Fig.V-48). 

iENT SENT 

'I   \ 
be      verb 

SENT 
I I 

A 

SENT 

/   \ 
NP      b« 

A    1 
NP 

A 
affix 

SENT 

NP      be      /erb      affix        by 

A    i 

Fig. V-48. 

(b)    If the arc is a nonterminal,  however,  the algorithm cannot continue to extend the 

path in the current net,  unless the nonterminal itself can be completed with,  at 

most, one content word.    There are two such nonterminals in LPARS' grammar: 

NP,  which can be completed by (DET NOUN);  < nd PP,  which can be completed by 

(PREP DET NOUN) where the preposition is "in" or "on".    JOIN therefore treats 
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these nontermii^lo like terminals when extending a path and inserts the appropriate 

structures »nto the hypothesized extended PPT isee Fig. V-49). 

SENT SENT., 

NP       verb      KP 

A A 
NP verb NP PP 

A A / v / 
prep NP 

def      noun 
i              1 

1 

1 
?            ? 

Fig. V-49. 

The algorithm can continu» recursively to extend a path until a state with no permitted exits 

is reached,  or unti' ii reaches a state from whicli it could only continue by hypothesizing twe 

content words, 

(2) Starting a Proposed Path 'rom Scratch 

The JOIN algorithm can also utart up a hypothesized path from scratch in a given transition 

neu    TK ir a fashion very similar to tha« Jescribed above,    't merely takes each initial state of 

the i   t and looks at the arcs emanating .     m it and proceeds ai. above. 

(3) Continuing an Extended Path in a Lower Wet 

Ar.ci.'.-.er possible way to extend a path involves pushing to a lower net,  and continuing the 

extension of the path ut i..at lower net.    This involves a ct mbination iFig. V-50) of the techniques 

described in the previoi's two sections. 

NP NP 

de»     noun det      noun      SENT 

/ 
wn 

I 
? 

Fit.V-'O. 

(4)    Joining ;.ii LPPT Path to tt.e RPPT 

There are three fundamental ways (cal'ed Modi s 1,  lt  and  J) in which an l.PPT with an ex- 

tended path can he joined »o an RPPT. 

Mode 1:-   If the end state of the l.PPT equals the start state of the RPPT. 

In this    ase,   the two paths can be directly concatonated,  assuming that all exit action routines 

are compatible (which can bo checked since each node includes a list of arcs taken by its path) 

(see Fig. V-51). 

SENT SENT SENT 

/\       * XI \ 
NP     kw verb        by        NP 

A A 
NP      be      verb       by      NP 

A A 

Fig. V-5), 

hi 
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The algorithm must then ascertain that the inner nodes begin and end on permitted states. 

This is done in LPARS by left-to-right extension of ."»aths.    Thus,  a node is made to end on a 

final state by fohovsing arcs from the erd state of its path.   Conversely,  a node is n.ade to begin 

on an initial state by initiating a path at ea^h possible initial state and atttmp^ng to extend this 

path to join the node. 

Mode i:-  If an exit arc from the endstate of the LPPT invokes the RPPT (Fig. V-S2).    Again, 

the algorithm must still make the inner nodes begin and end on permitted states. 

SENT SENT 
/   \ +NP —^      ^ W 

NP       verb ^ NP       verb      NP 

A A A 

Fig.V-52. 

Mode 3:-  If the RPPT has an ancestor link son,  and the end state of the LPPT equals the start 

state of the RPPT (Fig. V-  i).    This example is somewhat harier to visualize since,  although 

SENT SENT 

/I- ̂ ^ + v\- ̂  
NP     be vert» NP      by NP 

A A A 

Fig.V-53. 

the two nodes have been joined,  additional processing must be done to complete the connection. 

In the example above,  one must initiate a path in the PP net to be joined to the ancestor link son, 

thus generating the following possible structu'-e (fig. V-54) and creating the following entire 

structure (Fig. V-55). 

PP r 
prep NP 

A 

Fig. V-S4. 

(5)    Overall Control of CONNECT 

Fig. V-5 5. 

The preceding sections attempted to give ,1 sound verbal overview of the logic involved in 

the CONNECT routine.    The following program outline describes the overall control program 

whi' h coordinates the CONNECT algorithm so that,  given two PPTs,  it will find all possible 

in   Tvening word-strings. 

The only part of CONNKC1 which it does not include is the popping to higher-level contexts 

with ihe LPPT,  atH the application of this algorithm to the PPT resulting from the pop. 
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BEGIN  CONNECTCLPPT, RPHT) 

(1) If I.PPT is NIL, or RPPT is NIL return. 

(2) If I.PPT can be directly joined (with no extension of the path) to RPPT by 

Mode 1,  and if ANCESTOR!IIPPT) equals true then call CONNECT(RSON(I.PPT), 

i-SON(RPPT)). 

(ComrnejU:   This is the step that handles the zipping together of higher-level 

structure.    As discussed in Sec. D-5-a,  before CONNECT ii called recursively, 

a merged structure is constructed from the current nodes,   containing 3 tem- 

porarily empty sen.  and the address of this son is available to the lower invr 

cation of CONNECT.) 

(3) Call JOIN(LPPT# RPPT). 

(4) If this is the top level of CONNECT or if FINAULPPl) equals true,   then call 

CONNECT(RSON(LPPT). RPPT). 

END 

ANCESTC '(N) returns true if the leftmost son of node  N  is an ancestor link son. 

RSON(N) returns a pointer to the rightmost son of node N,  or NIL if N is terminal. 

LSON(N) returns a pointer to the leftmost son of node N,  or NIL if N is terminal. 

FINAMNI returns true if node  N ends on a permitted final state. 

JOINIL, R):   The JOIN routin*» performs the path extension and joining described in the pre- 

vious sections.    It r.lso U..tes care of making sure innermost nodes bogin and end on permitted 

states.    If there is a higher level of merged structure,   it places a pointer to any current "joined" 

PPT into the "empty" son cell of that higher structure.    Finally,  it calls the CONSTRAIN routine 

whenever any combined PPT is constructed. 

(6)    Attempting All Possible Connections 

As described above,  the CONNECT algorithm automatically attempts to connect the RPPT 

to lower nodes of the LPPT as well as just to the top node (by dropping down recursively). 

Clearly,  the converse situation is also desired:   namely,  to attempt to join the top node of the 

LPPT to Irwer nodes of the RPPT (for instance,   see Fig. V-56). 

NP SENT1 SENT) 
/ \ ♦ * /   \        -* * I  \. 

det     odj NP     endch NP "endch 

\ V 
odj  noun        det  odj  odj "odj  noun 

Fig. V-56. 

To allow this to happen, CONNECT is first called with the top nodep of the two PPTs as 

arguments,  and then drops down to successive inner sons of the RPPT and calls JOIN with each 

of those nodes,   and the LPPT as arguments.    When attempting these connections,   the algorithm 

does not allow the top level of the RPPT to drop down recursively. 

The only other possible connections which must be attempted are those made possible by 

popping with the LPPT (see Fig. V-57).    The only difference between this popping and the popping 

connections discussed in the TREE algorithm is that,   in this case,  the PPT being popped need 
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SENT r.NTl 

»frch     +      NP     verb —► str'ch SENT 

/\ iX 
odj     noun NP     veib 

det     adj     adj      noun 
I I 
?        ? 

Fig. V-57. 

not end on a final state.    It is only necessary that it can be made to end or a final state by pro- 

posing a string of words containing, at .nost. one content word. 

Thus,  the CONNECT algorithm tries all possible pops it can make with the LPPT,  and at- 

tempts to join rach resulting structure to the RPPT. 

5.     CONSTRAIN:   Compiling Additional Constraints 

The part of the CONNECT algorithm describ3d so far connects two PPTs by proposing words 

that might exist in betv .>en, but only determines the parts of speech of the words proposed.    From 

examining the context of these hypothesized wo-ds (i.e., the entire combined PPT), one can de- 

duce additional const'-aints as to what the words might be.    The information needed for deducing 

these additional constraints is contained in the conditions which augment the arcs in the grammar. 

An example is probably useful to highlight exactly what the problem here is.    Suppose the 

two PPTs shown in Fig. V-58 were joined by hypothesizing a verb between them. 

SENT1 SENT1 

\ /   SENT 
NP        endch strch        i  Nr~~^^ endcr. 

,/\. NP     »•*      NP the book s   \ | /   \ 
the table      ?     the book 

Fig. V-58. 

A person looking a1 this structure would know that not all verbs could exist in this particular 

context.    The verb must be transitive;   it must not require an animate subject,   for instance;  and 

it must be something a table can do to a book.    In the normal operation of the transition net gram- 

mar,  the tests that enforce these constraints are contained in the conditions associated with the 

arcs in the grarm.-'ar. 

Thus,  one possible way to determine what verb could fit into this context is to take each verb 

in turn,  and reparse the sentence with that verb and see if the parsing succeeds.    This is a very 

time-consuming and inelegant approach.    Somehow we want a way of "turning the constraints 

around" and have them tell us what they want,   rather than just telling whether a particular string 

of words is acceptable or not. 

In other words, the constraints must actively suggest action rather than merely answer 

yes-no questions. This, in fact is exactly what LPARS allo'vs. The constraint tests in the 

arcs are written so that thev can be run in two modes: 
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(t)    In one mode,  the tests are given two lists of information representüij, features 

associated with two structures which are to be checked for consistency.    The test 

will return NIL. if the arc cannot be traversed,  or else return TRUE. 

(2)    In the other mode, the tests are passed one feature list and the atom "QUESTION" 

in place of the other feature list,  indicating that LPARS wants the test to tell it 

what constraints must be satisfied,  and then to return TRUE just as if those condi- 

tions had indeed been met.    Each such constraint which must be met is appended 

to a global list. 

(To allow constraints to be placed on a string of words, the system actually noes 

a set of distinct QUESTION atoms (Q1.Q2,Q3,Q4 ) depending on the position of 

the word in the proposed word string.) 

When a combined PPT has been lound and passed to the CONSTRAIN algorithm,  a QUESTION 

atom is associated with each word which has been hypothesized.    After processing the combined 

PPT,  CONNECT then has a list of additional constraints which it can use to search its dictionary 

quickly to come up with a list of words which would fit. 

This 'turning around of the constraints" allows the algorithm to process the PPT only once, 

rather than once for each word of the proposed part of speech. 

A simple example is probably useful at this point.    Suppose we have the situation described 

above:   a verb has been hypothesized between the two noun phrases "the table" and "the book". 

Mode 1:    Normally,   when parsing a sentence,  the algorithm would do the following. 

(1) When parsing "the table", it associates the semantic information describing this 

noun phrase with a marker called SSUB in the list of informatian associated with 

the SENT mode. 

(2) When parsing the verb,   it assures subject-verb agreement between the information 

tagged SSUB and the information associated with tic verb.    For instance,   if the verb 

required an inanimate subject,  the test assures that the subject had been animate. 

(3) When pirsing the second NP,  it similarly assures whatever agreement was 

appropriate. 

'4)    When making the final state test,  it makes sure that the verb was transitive. 

Mods Z:   Since we do not know what the verb is,   we construct the PPT given in Fig. V-59. 

JJENT1 

strch'' SENT Tndch 

/ \ 
the toble 

Fig. V-59. 

This PPT is then subjected to the following parsing process: 

(1)    When parsing the first NP,  the parser behaves just aa in Mode 1 since nothing is 

changed. 
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(2) When parsing the verb,  Mode i is activated.    The alguiithm must determine what 

constraints are to be satisfied.    Since the ■ ubject is not animate, the constraint 

(ANIM  MINUS) is added to the global list of constraints associated with the QuESTION 

atom Ql,  indicating that the verb must not be one which requires an animate subject. 

In this case,  the constraint (CONT MINUS) can alsc be added,  indicating that the 

verb could not be a "containing" verb such as "contiin" or "hold" since "table" does 

not make sense as the subject of such a verb.    A new list of information to be as- 

sociated with the SENT node is constructed,   with a QUESTION atom iQi) being 

associated with the tag VERB. 

(3) When parsing the second NP,  additional constraints might be found in much the 

same fashion. 

(4) When performing the final state test,  the test which assures that the verb is transi- 

tive sees the atom QUESTION associated with VERB,  and would therefore add the 

constraint (VERB TRANS) to the list. 

The net effect of this activity is to create the following list of constraints ((ANIM MINUS) 

(CONT  MINUS) (VERB TRANS)).    A list of verbs thrt match these specifications is made,  and 

tested against the input.    Any which succeed are incorporated into new PPTs and added to the 

list of PPTs which LPARS is using. 
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VI.   OVERALL DESIGN OF THE LPARS SYSTEM 

!n this section, we review the whole of the LPARS system and discuss how the different parts 

fit together.    We then describe the fallback (or backup) mechanism built into LPARS.    Finally, 

some inter ■ 'ir^ issues involved in coordinating the vrious subparts of the system are discussed. 

A.    OVERVIEW OF THE  LPARS SYSTEM 

Figure VI-1 outlines the basic flow of control in LPARS; this involves 4 basic steps. 

Input 

sentence 
candidotes 

Fig. Vl-l. 

1.     Initial Scan 

The first step is the initial scan made at low phonetic distance through the entire utterance 

looking for fairly long words that are not too garbled. 

2.     LOCALMATCH Routine 

The second step is the local higher-distance matching,  searching for strings of small words 

and for more highly garbled longer words,   in the areas beside and between the words found in the 

initial scan.    This matching is done based on very local criteria,  with no attempt to enforce any 

global coordination between processing going on in different parts of the utterance. 

i.     TREK Algorithm 

All words found by the initial scan and the LOCALMATCH routine are input to the TREE 

algorithm which constructs as many diffp-ent syntactic structures as it ran,   in all parts of the 

utterance,  usin^ these word?,    i. ai   the words of the sentence have been found,  then TREE will 

construct the entire sentence. 
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4.     CONNECT Algorithm 

These PPTs are then tur led over to the CONNECT algorithm which attempts to join together 

pairs of the pars«; structures by proposing word-strings whicn might exist between them, and 

testing these word-.«trinps out at high phonetic distance against the input.    Lf any word-string 

matches successfully, a new combined parse structure is created. 

B. TWO HEURISTICS  USED  BY   I.PARS 

Two heuristics are used to augment the basic system described above. 

One heuristic aids the initial local word recognition process,    if the set of word candidates 

output by the initial scan and the LOCALMATCH routine leaves substantial gaps in ihe utterance, 

then the system reinitiates locai word recognition in those gaps.    It rescans the gaps at a higher 

phv letic distance,   and processes any words found using the LOCALMATCH routine.    This is a 

simple heuristic,  which uses very local information to direct higher-distance scans in areas 

where further attention is obviously needeu      In practice,   it is not invoked very often. 

The second heuristic helps the CONNECT algorithm to compensate for any partially errone- 

ous structures which may have been built by the TREE algorithm.    CONNECT will only accept 

as input PPTs which do not overlap,  and which are within some maximum number of phonemes 

of one another.    However,  the TREE algorithm may have attached an erroneous word onto an 

otherwise correct structure.    To compensate for this possibility,   the system has two functions 

(RIP-E and RiP-R) which np leftmost and rightmost words off a PPT,  thus obtaining smaller 

subsumed structures. 

By using these functions,  the system can take two partially overlapping PPTs and rip words 

off either or both,  to obtain two smaller nonoverlapping structures which can be turned over to 

CONNECT.    Also,  even if the PPTs do not overlap,  the system can rip words off either or both 

so long as the number of phonemes between them does not exceed the maximum permissible, 

and turn the smaller PPTs over to CONNECT. 

The two hcurirtics descr bed above are useful tricks which help the system work more suc- 

cessfully. They do not, however, make any pretense of providing a systematic means of finding 

the correct sentence,   if processing by the whole of LPARS fails. 

C. SYSTEMATIC  FALLBACK 

We now describe a systematic method for fallback available to I.PARS if the initial attempt 

at sentence recognition fails.    This fallback method is exhaustive,  and will eventually find any 

sentence 'although it might well find erroneous sentences first).    In concept,   the fallback consists 

of reactivating the entire EPARS system at a higher set of phonetic distance thresholds. 

Three significant phonetic distance thresholds used by EPARS are those used by (1) the ini- 

tial scan,  (2) the LOCALMATCH routine,  and (3) the CONNECT algorithm. 

These thresholds arc initially set at levels which yield reasonable success rates without 

exhaustive amounts of i omputation     However,   if the system fails to find a sentence usin^ the 

standard levels for theso thresholds,  the system can raise the thresholds and try again.   Eurther- 

more,   it can do this without having to repeat most of the work already done (as discussed below 

in Sec. 1).    In fact,   EPARS can continue this fallback process for several iterations until a sen- 

tence is fc iiid. 

In theory,   of course,  continuing the iterative fallback process to absurdly high-distance 

thresholds would result in the system generating every possible acceptable sentence that it could 
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construct with its vocabulary,  since eventually,  at a high enough threshold,  every word would 

match everywhere in the utterance.    In practice,  one must decide upon some maximum threshold 

level, after which one acknowledges failure. 

The remainder of this section discusses how one might allow the fallback to higher-distance 

thresholds to take place without requiring that all the previous work be repeated. 

It is easy to achieve this goal in the TREE algorithm.   The additional words found by the 

higher-threshold initial processing are given to TREE together with the old words and the pho- 

neme position table containing the previously constructed PHTs.    TREE car proceed with the pro- 

vision that now each syntactic connection must be made either between any PPT and a new word, 

or between a PPT conta:-.ing a new word and any word.    In other words,  one does not attempt to 

connect any of the old PPTs to any of the old words.    This restriction allows TREE to find all pos- 

sible ayntactic structures,  yet the work done in the previous TREE processing remains intact. 

To allow fallback to higher-distance thresholds without repeating the lexical work done pre- 

viously is simple in concept,  but costly in storage.    It requires that each partial lexical match 

which was aborted,  because it exceeded the previous threshold,  be recorded so that it can be 

restarted.    'T'his involves a great deal of ?toraf;e becauc«1 the initial scan,  for instance,  matches 

most words in the vocabulary against every phoneme position in the sentence.    Each one of these 

matching attempts usually involves several substitution-deletio.i combinations. 

Thus,   if there were 50 words,   SO phonemes in ths utterance,  an average of 10 partial matches 

per recognition attempt,  and if two words were required to recorj each aborted attempt,  then 

50,000 words of storage would be required tall to process one sentence).    On the other hand, 

perhaps this is reasonable if one considers that it represents the state of 25,000 parallel,   in- 

dependent processes that have been temporarily suspended.    LPARS at present does not imple- 

ment this approach,  but rather recomputes all the lexical matching at the higher-distance thresh- 

olds if it is forced to use this fallback. 

D.     DESIGN  CONSIDERATIONS  EOR THE   .-PAKS S.STEM 

Sections 11 through V discussed the various sub-parts of the I.PARS system:   the initial scar., 

the LOCALMATCH routine,  and the TREE and CONNECT algorithms.    These are the tools which 

the LPARS system uses to recognize an utterance.    Hut just building these tools is not enough. 

One must understard what the various tools are useful for,  what they are not useful for,   and then 

design the svstem as a whole around thih understanding. 

Therefore, in this section we examine the tools which have been developed to see how they 

are best used. 

i.     Two Modes of Joining PPTs 

Consider the task of examining two PPTs developed from an input utterance, together with 

an intorveninc; input segment, to construct a combined PPT. There art- two fundamentally dif- 

ferent ways to proceed. The alternatives couid be called the "bottom-up" (or "data-directed") 

approach vs the "top-down" (or "gi ammar-directed") approach, 

a.     Bottom-Up (Mil) Connection 

In HI; (or data-directed) ronnection,   the system scans the segment between the »wo PPTs at 

a high phoneac distance,  and then trie.3 to construct a combined pr'T from the two input PPTs 

together with any words found      In this mode of connection,   the previous PPTs arc used to 
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indicate a section of input to ba examined at high phonetic distance,  but not to indicate explicitly 

what word-strings might be expected to occu- there. 

b.     Top-Down Connection 

Top-down (or grammar-directed) connection is that performed by the CONNECT "routine 

described in Sec. V.    Here,  the grammar is used to indicate what word-strings might possibly 

exist in the gap, and only these specific word-strings are tested against the input. 

A number of issues might be discussed to evaluate the relative merits of these two strate- 

gies.    Here,  we look at only one o^ these issues,  namely,  how the two strategies perform as a 

function of the amount of "context" contained in the two PPTs.    To illustrate this issue,  consider 

the following two examples. 

Example 1 

Suppose I-PARS is attempting to connect the two PPTs shown in Fig. VI-2 

SENT i 

strch SENT SENT eTidch 

1 

\ 

SENT1 

/    "^ 
SENT 

i 
NP 

A 
the big 

SENT 

/    \ 
pots            NP 

A 
the dojj 

Fig VI -2. 

Using the top-down,   grammar-directed approach,   FPARS discovers that only one possible 

word-string can fill this gap.   namely a noun.    (Remember that only word-strings containing,  at 

most,   one content word are considered.)   Therefore,   it compiles a list of appropriate nouns and 

tests them against the input to see if any match 

Example 2 

Suppose,  on the other hand,   I.PARS is attempting to connect the two PPTs shown in Fig. Vi-3 

NP NP 

A A 
the dic*:onary red ashtray 

Fig  VI-3. 

Using the top-down,   grammar-directed approach,   I PARS discovers (even with its very simple 

grammar) that there is a very large number of possible word-string connections;  these include 

(1) is contained by the 

(2) supports the 

(31    in the 

(4) in the big 

(5) by the 

(6) by the big 

(7) on the book m the 
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(8) which the 

(9) on which the 

(10) on the book which the 

(11) which the book on the 

(12) supports by the 

(and many more). 

is a result,  using the top-down algorithm with these two PPTs is not very efficient     Doing 

so will exercise almost the entire grammar,   and generate almost every word-string conceivable, 

each of which must be matched against the input at high phonetic distance.    Clearly,  this approach 

is not very selective in bringing context 10 our aid 

On the other hand,   is this surprising?    After all,  a noun phrase is a very basic  b  ilding 

block of an Knglish sentence,    it can occur in many contexts,  and is structurally the same in each 

context     Therefore,   it is reasonable that two such primitive structures can be connected many 

ways. 

What then does this imply'5 

(1)    Need for "Sui'ficient Context" 

One implication is that we should not use the top-down CONNECT algorithm unless the PI'Ts 

involved provide "sufficient context," in some sense,  to make the word-string possibilities quite 

selective.    This restriction is not surprising when we consider that the CONNECT algorithm is 

a very powerful tool;  given any two parse structures conceivable,   it processes the grammar in 

a ve»-y rigorous and systematic fashion to investigate every possible way that they might be con- 

nected.    The price paid for this power and generality is that we must be selective about the prob- 

lems we ask the routine to solve. 

This,  in fact,   is why we have the I.OCALMATCH routine     As currently implemented in 

LPARS,  the I.OCALMATCH routine works on very local criteria (words and word pairs) to in- 

vestigate the areas around them.    (In an extension to the LPARS system,  this routine might in- 

vestigate somewhat more-complex structures, particularly in searching for particular word- 

strings which are semantically quite likely to be present ) 

Moreover,  the LOCALMATCH routine investigates around and between fairly simple local 

constructs in a way that avoids a very systematic,   costly processing of the grammar.    Also,   it 

can be primed to look primarily for highly likely connections.    Thus,  the LOCALMATCH routine 

cuts corners (by using simple testa and heuristics).    It can do so because its goal is not neces- 

sarily to uncover the entire utterance,  merely substantial portions of it     Once these portions 

are uncovered,  the full power and generality of the CONNECT algorithm is standing by to com- 

plete the job. 

{Z)    Implication for Scan Threshold Levels 

A second,  related implication is that, to use the CONNECT routine efficiently,  we must tune 

the system so that the PPTs constructed after the initial-local processing usually have sufficient 

context to be input to that routine     Only when this does not happen, Joes the BU connect routine 

need be called,  or the more-general fallback be invoked. 
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In other words, to use the CONNECT routine effectively, the phonetic distance thresholds 

of the initial scan and 1,OCA1.MATCH routine must be set so that a high percentage of the cor- 

rect words in the utterPnce 13 usually found. 

2.     Vocabulary Density 

A second important concept that enters into this discussion is the somewhat vague term 

"vocabulary density."   Let us taka two examples to see what vocabulary density might mean. 

la)   In a sparse (non-dense) vocabulary,  on-, might sei: the local scan thresholds to un- 

cover on the a erage 85 percent of the correct words in the sentence, and generally 

only have a few incorrect words found. 

(b)   In a den. er vocabulary, when one Pets the local scan thresholds so that 85 percent 

of the correct words are found,  a large number of incorrect words are usually 

found as well. 

This is certaiuly a highly specific concept of vocabulary density,  but a useful one for our 

purposes. 

a. Factors Influencing Density 

There are clearly a number of factors influencing vocabulary density; these includ' 

(1) vocabulary size 

(2) front-end accuracy 

(3) average size of word 

(4) amoum. of semantic selectivity which can be brought to bear in the initial local 

processing 

(5) utilization of supra-segmental information. 

b. Embedding of Correct Sentence Fragments 

Vocabulary density affects the two connection strategies discussed above because it influences 

the degree to which correct sentence fragments are likely to be embedded in larger structures 

which include some of the erroneous words. 

The more erroneous words discovered,  the more likely it is that some of these words will 

become attached by the TREE algorithm to a string of correct words.    Of course,  if all the cor- 

rect words are found,  or if the erroneous word overlaps with a correct word which has beon 

found, no harm will be done.    In general,  '.lowever, the presence of incorrect words attached to 

correct sentence fragments makes the job of isolating the correct sentence fragments difficult, 

and therefore complicates the job of finding the appropriate input segments to be investigated 

next. 

c. How CONNECT Deals with Embedding 

The top-down CONNECT algorithm ccn deal with this embedding problem by using the R1P-R 

and RIP-L routines described ir SecB above.    In so doing, the system postulates that certain 

fragments are correct embedded fragments, and tries to connect them.    The denser the vocab- 

ulary,  the more such trials the algorithm would have to make with a given set of PPTs.    The 
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degree to which this approach is practical depends on an evaluation of the work involved in postu- 

lating embedded fragments and in processing them with the CONNKCT algorithm. 

The BU algorithm has potentially even more difficulty working in the presence of a great 

deal of embedding.   This difficulty arises because,  in investigating a set of PPTs for the <_ sn- 

nection of embedded fragments,  one might investigate a number of different input segments (per- 

haps,  in total,  consuming a substantial par* of the input).    With Tl) connection, during such in- 

vestigation a great deal of selectivity is brought to bear,  as far as the word-strings looked for in 

different places.    With the BU algorithm,   however,   such selectivity is impossible.    If a large por- 

tion of the input ia involved,  one probably might just as well rescan the whole input at a high pho- 

netic distance. 

Thus,  the denser the vocabulary,  the more difficult it is for both algorithms to work 

efficiently. 

The vocabulary used in LPAR3 during its testing was fairly sparse,  so these problems did 

not occur to too large a degree.    When experimenting with the system with higher scrambling 

levels,  and using smaller words,  the problems were observed and,  since they were interesting 

problems,  this section has tried to isolate and summarize them.    The present sys*.em has only 

attempted to attack these problems in a fairly limited fashion. 

3.     current I PARS Approach 

During evaluation of the LFAUS system,  described in Sec. VII,  only the grammar-directed 

CONNECT algorithm was used,  and only PPTc containing "sufficient context" were passed to this 

algorithm.    A PPT was deemed to have "sufficient context" (a) if ii included a STRCH or an 

ENDCH,   (b) if .t was not a single word, and (c) if it was not a NP or partial NP.    When using a 

more-complex grammar,  of course,  these tests would probably need to be more sophisticated 

The phonetic distance thresholds were set so that most of the correct words were found after 

the initial processing.    Thus,   in general,   PPTs containing sufficient context were built up and 

could be passeu to the CONNFCT algorithm.    If not,  the system would fall back and iterate at 

higher phonetic distance thrc    .olds. 
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VII.    EXPERIMENTAL  EVALUATION OF  LPARS,  AND SAMPLE   RUNS 

This section describes the experimental evaluation of the LPARS system,  and then discusses 

a few samole runs which ill' strate LPARS' activity when investigating a sentence. 

A.     EXPERIMENTAL  EVALUATION 

Duung the e perimental evaluation of LPARS, fifty sentences were input to the system to be 

recognized (the sentences used are .'isted in Appendix B). The following steps were taken during 

the recognition of each sentence. 

1. Scrambling:—   First,  the correct phonetic spelling of the sentence is given to the scram- 

bling program (the front-end simulator) which transforms the sentence into a string of "scram- 

bled" phonemes containing a great deal of error in the form of deletion and substitution.    The 

statistics used in performing this scrambling are exactly those described in Sec. III.    Since the 

scrambling is based on random error probabilities,  some sentences produced contain relatively 

small amounts of error,  while others contain a great deal. 

2. Initial Local Processing:-   The string of phonemes is then input to the LPARS system 

which performs its initial scan and higher-distance local matLhing,  attempting to find most of 

the words in the sentence.    The phonetic distance thresholds of these scans were set so that 

approximately 85 percent of the correct words are usually found by this local processing. 

3. PPT Construction:-   Next,  the words found by the initial local processins; are input to 

the TREE algorithm which buiids as many different parse structures as it can in all parts of the 

utterance (as described in Sec. V-C).    If one or more entire sentence is found,  then LPARS pro- 

ceeds no further. 

4. PPT Connection:-   Next,  pairs of PPTs are input to the CONNECT routine which attempts 

to construct combined PPTs as described in Sec. V-D.    Any such combined PPT which is found 

is Included in the set of PPTs being investiga, ,-d.    If this process discover;   one or more possible 

sentences,  then LPARS proceeds no further. 

5. Iteration at Higher Thresholds:-   If the PPT connection is unsuccessful,  then I.PA HS 

raises the thresholds at which the various scans ar;  made and repeats steps Z,   3,  ar ' 4 again. 

During the evaluation,  Ihe phonetic distance thresholds used for the initial scan,  the local higher- 

distance matching,  and the PPT connection were 17,   24,  and 34,   respectively during the first 

iteration;  and ^2,   26,  and 39 during the second iteration.    If no sentence has been found at the 

end of the second iteration,  then processing stops and failure is acknowledged. 

An attempt to recognize a giver, sentence, as outlined above, can result in any of the follow- 

ing results. 

(1) An entire sentence is constructed by the THEE algorithm from 'he w.^rds found by 

the local processing. 

(2) A sentence is found by the algorithm that ronnects PPTs. 

(3) No sentence is found at all. 

Processing ceases at the end of any stage in which one or more possible sentences is found. 

When sentences are found,   it may be during either the firct or second iteration of the system. 

Of course,  it may be that none of the sentences found is correct. 
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In evaluating LPARS,  if several possible sentences were found, the recognition of the sen- 

tence was considered successful it the correct sentence was includes among them.    When several 

sentenc"    were found,  the correct sentence was almost always the best match. 

1.     Evaluation 

During the actual eva'uation of l.l'AKS,   fifty sentences were input with -he following results: 

~i sentences were correctly recognized from v, -ds found o:ily by the local process- 

ing in the first iteration. 

19 sentences we      correctly recognized by   h^ PPT  CONNECTION algorithm in the 

first iteration. 

' sentences were correctly recognized in the second   teration of the system. 

2 sentences resulted in incorrect recognition.    Ir. both ca-es, the sentence found 

differed from the input sentence in a single content word. 

3 sentences «suited in faiure to find any possible ssntence at all.    In two cases, 

two  ,dja ont content words were badly garbled,  and therefor    the CONNECT algo- 

rithm vcs unable to propcse the correct word-string     In the third ^ase,   LP.iRS 

crashed irretrievably due to a program bug. 

Thus, the overall success rate of LPARS with the fifty input sentences was 90 percent. 

i.     Comments on I.PAKS'  Evaluation 

Ti:e LPARS evaluation descr.bed aoove primarily establishes that, i : en a simulation of a 

fairly crvde front end,  the ideas embodied in LPARS can he made to work acceptably. 

Certa.nly there a^e a number of interesting fu:tner questions which one mighi like to ask, 

such as how the overall system performance is affected by virying such parameters as: 

(a) scrambling probabilities 

(b) scrambling characteristics 

(c) vocabulary size 

(d) word size 

(e) the phonetic distance 1(   els of the various scans. 

It -vould be very difficult to pursue such issues systematically with the cut rent implementa- 

tion if LPARS since it is ve:_ f'^w. Often. 10 to 15 minutes or more of dedicated CPL time is 

required per sentence. (This inefficiency is not inherent in the LPARS design, but rather of *hi 

current implementation.) 

In any case,  the primarv goal of the present res<äai ^h is on    avel .ping an approach to parsing 

which allows syntactic analysis to proceed systematically from anywhere in a sentence, and to 

understand the p-oblems and issue": involved in such an approach. 

Li the present eva'uaüon of i.PARS,  we have described a form of scrambled input,  argued 

that it has the ba?:c characteristics of spo'-.en input for our present purposes,   and then demon- 

strated t  at 1 pARS can operate successfully given such input.    This success demonstrates thtt 

the ideas e.nbcdded in LPARS »re fundamentally sound and coherently formulated,  \nd that,   for 

instance,  there are no unforeseen factor-- whi'-h somehow invalidate the approach tr.ken. 
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B.     I.PAKS SAMPLE  RUNS 

We n JW exhibit a number of sample runs of the I.PARS system,  illustrating various aspects 

of the sysum's operation.    In these examples, comments output by ihe LPARS system appe? " in 

capitalo.    Additional comments in small letters have been added by the author to make the exam- 

ples more intelligible. 

Example 1 

This example shows a sentence which is recognized entirely from words found by the initial 

local processing. 

(UNSCRAMBLED   SENTENCE) 

(THE   ".VASTEBASKET   WHICH   THE   GREEN   COFFEETABLE   SUPPORT   S 

CONTAIN   S   THE   DICTIONARY) 

(TH   SW   W   AA   S   T   B   E   S   K   SW   T   \     I   CH   TH   SW   G   R   EE   N   K 

AW   FEETAABLSSWPORTZKSWNTAANZ   TH   SW 

O   I   K   SH   S.V   N   AA   R   EE) 

(SCrJAM^LED   SENTENCE) 

(T   Y   W   AW   D   P   E   ZH   P   ZH   W   I   CH   Y   L   I   NG   G   AA   B   EE   P   AW 

P   R  H   SW   TH  O   L  P  J   B   SW   U   T   AW   M   H  C   SW  G   TK   Z   Y   M  AW 

I    EE) 

{INITIAL   SCAN) 

( (STRCH   0   0)    (SI     "'LADDER   8   13   150)     (COFFEETABLE   18   25   15) 

(SIPPORT   26    Jl   5)    (CONTAIN   35   38   10)    (DICTIONARY   42   -^   95» 

(ENDCH   50   50) ) 

The initial scan finds three correct ai.d one erroneous words.    The words are ordered as 

they appear .n the sentence.    (Recall that   he three numbers associated with each word candidate 

ire start phoneme, end phoneme, and total phonetic distance of the match.) 

(LOCAL   HIGHER   DISTANCE   MATCHING) 

f (STRCH   0   0)    (CONTAIN   1   5        ',)    (THE   1   2   0)    (PLACE   3   5   90) 

(WASTEBASKET   3   10   185)    (THE   6   7   0)    (STEPLADDER   8   15   150) 

(V.  «ICH   11   12   12)    (CLUTTER   11   1-»   .fJ)    (THE   1 j   14   12) 
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(THE   15   17   0)    (GREEN   15   17   60)    (COFFEETABLE   18   25   15) 

(SUPPORT   26   ii   5)    (CLUTTER   30   32   110)    (ROBERT   30   33   120) 

(THE   32   33   0)    (THE   33   33   0)    (CONTAIN   33   38   10) 

(BOOKCASE   34   38   110)    (ENJOY   34   38   120)    (THE   39   41   0) 

(PERSON   42   46   105)    (DICTIONARY   42   49   95)    (ENUCH   50   50) ) 

A number of additional words are Tound by the higher-distance matching,   including al). the 

correct words in the sentence.    Next, the TREE algorithm constructs all possible local partial 

parse structures from the words found.    These trees are printed ou* below. 

(PARTIAL   PARSE   TREES   SORTED   BY   LENGTH) 

(STRCH    ( (THE  WASTEBASKET    (WHICH    (THE  GREEN   COFFEETABLE) 

SUPPORT   AFX) )    CONTAIN   AFX    (THE   DICTIONARY! )     ENDCH) 

(*   (*   (•   (THE  GREEN  COFFEETABLE)    SUPPORT   AFX) 

CONTAIN   AFX    (THE   DICTIONARY) )     ENiXTH) 

(s    (♦    (*    (THE   GREEN   COFFEETAP.L :,    SUPPORT   AFX) 

ENJOY   AFX    (THE   DICTIONARY) )     ENDCH) 

(STRCH     i iTHE   WASTEBASKET)    CLUTTER   AFX    (THE   COFFEETABLE) ) ) 

(•    (*    (T.IE   GREEN   COFFEETABLE)    SUPPORT   AFX)     ENJOY 

AFX    (THE   PEH^N) ) 

(•    (•   (CLUTTER  A CONTAIN   AFX    (THE   DICTIONARY)) 

ENDCH) 

(4    (ROBERT   ENJOY   AFX    (THE   DICTIONARY; )     ENDCH) 

9    (•    ROBERT   ENJOY   AFX     (THE   DICTIONARY) )     ENDCH) 

(*   (*    (CLUTTER   AFX!    ENJOY   AFX    (THE   DICTIONARY) i    ENDCH) 

(•    (THE   D'CTIONARY!     ENDCH) 

(STRCH    (CONTAIN   AFX    (THE) ) ) 

(ROBERT   ENJOY   AFX    (THE   PERSON) ) 

(♦    ROBERT   ENJOY   AFX    iTHE   PERSON) ) 

(*    (CLUTTER   AF ')     ENJOY   AFX     (THE   PER30N) ) 

(PLACE   AFX    (THE   STEPLADDER) ) 

(CLUTTER   AFX    (THE   BOOKCASE) ) 

The sym'>ol   *   means that the following aon is an ancestor link son.    The symbol AFX repre- 

sents an AFFIX arc which ha.-i been traversed.    (Any LAMBDA arcs traversed are not indicated 
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in the printout.)  Thus,  for instance, the PPT    (*   (THE   DICTIONARY)    ENOCH)    represents 

the strucire shown in Fig. VII-l. 

SENT) 

NP 

A 
the dictionory 

endch 

Fig. VII-l. 

Since an entire s ce (see Fig. VII-2) is among these PPTs,   LPARS proceeds no further. 

(SENTENCES   FOUND) 

(STRCH    ( (THE   WASTEBASKET    (WHICH    (THE   GRELN   COFFEETABLE) 

SUPPORT   AFX) )    CONTAIN   AFX    (THE   DICTIONARY) )     ENDCH) 

SENT! 

endch 

the dictionary 

«hich supports NP 

A 
the green coff->etoble 

Fig. VII-2. 

Example 1 

(UNSCRAMBLED   SENTENCE) 

(THE   COFFEETABLE   NEXTTC   TEE   BOOKCASE   IS   ILLUMINATE   D 

BY   THE   TABLELAMP) 

(TH   SW   K   AW    F   EE   T   AA   B   l     N   SW   K   S   T   OO   Til   SW   B   1    K   AA 

S  I  Z   I   L  OO   M   I   N   AA   1   T   B  A  T   TH   SW   T   AA   B   I.   AE   M   P) 

(SCRAMBLED   SENTENCE) 

(SW    G   AA   V   EE   G   AW   V    R   I   SW   T   /.   I'   OO   SW   DH   \    G   AW    S   .1 

S   I   R  OO   N   I   M   AA   J   P   A   EE   F   SW   P   A*    K   !   i   SW) 
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(INITIAL   SCAN) 

( (STRCH   0   0)    (COFFEETABLE   2   9   IS)     (TAbLELAMP   6   12    115) 

(GREEN   8   11   60)    (NEXTTO   lü   15   40)    (BOOKCASE   17   21   5) 

(ILLUMINATE   24   31   5)    (ENOCH   43   43) ) 

Here,   four correct ard two erroneous words are found.    (Note that the word candidate 

"tablelamp" is erroneous since it is in the wrong place.) 

(LOCAL   HIGHER   DISTANCE   MATCHING) 

( (STRCH   0   0)    (THE   1   1   0)    (COFFEETABLE   2   9   15) 

(TABLELAMP   6   12   115)    (GREEN   8   11   50)    (IS   10   12   40) 

(NEXTTO   10   15   40)     (SUPPORT   13   17   140)     (THE   16   16   0) 

(BCX>f C"ASE   17   21   5)    (IS   22   23   0)    (ILLUMINATE   24    31    5) 

(THE    32    34   0)     (BOOKCASE    35    39   115)     (ENOCH   43   43) ) 
a 

In this case,  not all the words are found by the initial local processing     Therefore,  the 

system constructs only the partial structures shown below. 

(PARTIAL   PARSE   TREES   SORTEO   BY    LENGTH) 

(STRCH     ( (THE   COFFEETABLE    (NEXTTO    (THE   BOOKCASE) ) )     IS 

i 1.1.1 MIN ATE   AFX l I 

(STRCH     ( (THE   COFFEETABLE    (NEXTTO) ) ) ) 

(This PPT is not subsumed by the previous one,  even though it might appear to be. 

It represents the PRC structure "the coffeetable nextto which. . .".) 

(STRCH     ( (THE   COFFEETABLE)    IS) ) 

(*   (NEXTTO    (THE   BOOKCASE) )    IS   ILLUMINATE   AFX) 

(•    (THE   BOOKCASE)    IS   tLLUMINATE   AFX) 

( (THE   BOOKCASE)    IS   tLLUMINATE   AFX) 

(*    TABLELAMP   SUPPORT   AFX) 

ENOCH 

(IS   SIPPORT   AFXi 

(THE   BOOKCASE) 

GREEN 

The system must now rse the CONNECT algorithm to attempt to discover an entire sentence. 

(PPT   CONNECTION) 
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(PPT   PAIR) 

(STRCH    ( (THE   COFFEETABLE    (NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   AFX) ) 

ENOCH 

PPTS   TO   BE   CONNECTED 

(STRCH     ( (THE   COFFEETABLE    (NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   AFX) ) 

ENOCH 

The system now calls the CONNECT algorithm with the two PPTs shown in Fig. VH-3. 

NP is illumirjte 

the coffeetab e       PP 
/ \ 

endch 

/ 
nextto NP 

the bookcase 

Fig. VII-3. 

PROPOSED PPT 

(STRCH     ( (THE   COFFEETABLE    (NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   AFX   BY   NP)    ENDCHi 

A proposed combined PPT is discovered (see Fig. VH-4) 

SENT! 

\ 
strch  S£NT 

NP is'illuminated by 

A 
the coffeetable 

nenf to the bookcase 

Fig. VII-4. 

endch 

NP 

det      noun 

Ail word-strings which match the hypothesized portion of this proposed PPT are tested 

agains; the input.    To help us,   I.PARS types out one such word-string. 

-1 
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POSSIBLE   VVOKD   STRING    (Ü   RY   THE   CHANDELIER) 

This word-string docs,  in fact,   match. 

WORD   STRING   MATCHED    ( (D   BY   THE   CHANDELIER)     32   42   395) 

COMBINED   PPT 

(STRCH    ( (THE   COFFEETABLE     (NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   D   BY     (THE   CHANDELIER» )     ENDtH) 

So do others.    (Notice that only semantically reasonable nouns are matched.) 

WORD   STRING   MATCHED    ( (D   BY   THE   FLASHLIGHT)     32   42   415) 

COMBINED   PPT 

(STRCH    ( (THE   COFFEETABI F      NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   D   BY     (THE   FLASHLIGHT) )     ENOCH) 

WORD   STRING   MATCHED    ( (D   BY   THE   TABLELAMP)     32   42   225) 

COMBINED   PPT 

(STRCH    ( (THE   COFFEETABLF    (NEXTTO    (THE   BOOKCASE) ) ) 

IS   ILLUMINATE   D   BY    (THE   TABLELAMP) I    ENOCH) 

Three possible word-strings match within the high phonetic distance of this match.    Notice, 

however,  that thf word-string containing "ta'olelamp" matches at the lowest phonetic distance. 

This example illustrates an interesting aspect of LPARS.    Even though words In the vocabu- 

lar}     "-e not very close phonetically,  wher LPARS is performing matches at very high phonetic 

distances,  often several word-strings may maich.    This,  of course,  is not too surprising.    The 

mote garbled s section is,  the more difficult it would be to determine which words match there. 

To deal with this problem,  a system would have to be ab'.^ to do one of thre    things:   call 

front-end routines to .ielp choose between the different possibilities,  JSC semantics to rule some 

out,  or ask the speaker which he actually meant. 

The advantage of a vertically organized systei.. like LIARS is that it onl v investigates " h 

segments very selectively: when a grea* deal of contextual information indicates the necessity, 

and when a great deal of context can be used to help constrain the words that might be present. 

Example 3 

(UNSCRAMBLED   SENTENCE) 

(PLACE   THE   GREEN   DICTIONARY   ON   THE   BOOKCASE) 

(P   I    AA   S   TM   S\\    G   R   EE   N   I)   I   K   SII   SW    N   AA    H   EE   AU    N   TH 

SW   BUK   AA   Si 
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(SCRAMBLED   SENTENCE) 

(L   A.A   D   M   SW   B   W   EE   F   EE   K   H   SW   N   AW   R   EE   AW   NG   B   Y   K 

U   P   AW   ZH) 

(INITIAL   SCAN) 

( (STRCH   0   0)     (DICTIONARY   9   1C   IS)     (CL,T r; ER   20   c)   65) 

(BOOKCASE   22   26   5)    (ENOCH   27   2?) ) 

(LOCAL   HIGHER   DISTANCE   MATCHING) 

((STRCH   0   0)    (THE   1   2   0i    (FRIENDLY   3   8   135)    (GREEN   6   8   90) 

(DICTIONARY   9   17   15)    (ONIHELEFTOF   18   24   185) 

(ONTOPOF   18   24   120)    (ON   18   19   5)    (IS   18   n   0)    (THE   20   21   5) 

(CLUTTER   20   23   65)    (BOOKCASE   22   26   5)    (ENOCH   27   27) ! 

(PARTIAL   PARSE   TREES   SORTED   BY   LENGTH) 

(s    C    (GREEN   DICT'ONARY)    (ON    (THE   ...OKCASE) ) I     ENOCH) 

('    (GREEN   DICTIONARY     (ON    (THE   BOOKCASE) ) i     ENOCH) 

r    (ON    (THE   BOOKCASE) )     ENOCH) 

(STRCH    ( (THE   FRIENDLY) ) ) 

(*    (GRir.EN   DICTIONARY)    (ONTHELEFTOF) ) 

(CREEN   DICTIONAHV     (ONTHELEFTOF) 1 

(GREEN   DICTIONARY    (ONTHELEFTOF) r 

(*    (OREEN   DICTIONARY!    (ONTOPOF) ) 

(CREEN   DICTIONARY    (ONTOPOF) ) 

(GREEN   DICTIONARY     (ONTOPOF)) 

(*   (GREEN   DICTIONARY)    IS   CTATTER  AFX) 

(* (THE BOOKCASE) ENOCH) 

(GREEN   DICTIONARY    (ON) ) 

(IS    (THE   BOOKCASE) ) 
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In this exarrple, when it comes time to connect PPTs, two PPTs partially overlap, so the 

system rips words off to try to connect subtrees. First, it rips "the friendly" of the left-hand 

PPT,  and attempts connection with the two resulting structures {*-* Figs. Vll-1) and V1I-6). 

(PPT   CONNECTION) 

(PPT   PAIR) 

(STRCH    ( (THE   FRIENDLY» ) ) 

(♦    (♦    (GREEN   DICTIONARY)    (ON    (THE   ^OOICCVSF) ) )     ENDCH) 

SENT) 

SENT 
i 
i 

NP 

endch strch 

the friendly 

A 
green dictionory 

FiR. VII-5. 

PPTS   TO   BE   CONNECTED 

STRCH 

(*    (*    (GREEN   DICTTONARY)    (ON    (THE   BOOKCASE) ) )     ENOCH) 

SENT! 

V     \ 
SENT endch 

s»ch * ""PP 

A 
NP on the bookca$e 

A 
green dictionory 

rig. vn-6. 

PROPOSED   PPT 

(STRCH    ,'WH   VERB   AFX    (DET   GREEN   D'CTIONARY) 

(ON    (THE   B(X)KCASE) ) )     ENDCH) 

POSSIBLE   WORD   STRING     (WHO   PLACE   S   THE) 
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The first possible combined PPT hypothesized is a question (Fig. VIl-7). 

SENT] 

strch 

\ 
det green dictionary 

Fig. VII-7. 

endch 

A 
on the bookcase 

PROPOSED   PPT 

(STKr-H    (VERB   AFX     (DET   GREEN   DICTIONARY' 

(ON     (THE   BOOKCASE) ) )     ENDCH) 

POSSIBLE   WORD  STRING    {PLACE   0   THE) 

WORD   STRING   MATCHED    ( (PLACE   O   THE)     1   5   155) 

COMBINED   PPT 

(STRCH    (P1ACE   O    (THE   GREEN   DICTIONARY)    (ON    (THE   BOOKCASE) ) 

ENDCH) 

^__SENT1_ -  

strch""' SENT^ __ endch 

verb "ofx"'''      NP "~PP 

A A 
de! green die tiooory on the bookcase 

Fig. VII-8. 

The next possibility is an imperative command.    One o! these word-strings matches and a com- 

b'nec; PPT is constructed (Fig. VII-H).    (The word "O" is the root affix,  the null string.) 

(These examples stop when the correct sentenc? is foi nd.    The algorithm itse'f is set up to 

continue to explore different possible connections.    It is qi ite striking,  however,  watching LPARS 

work,  how quickly the system car. often zero-in en promising connections,  once given a set of 

PPTJJ 

Example 4 

In this example, the CONNECT algorithm is called to match word-strings m the middle of 

an utterance 
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(UNSCRAMBLED   SENTENCE) 

(THE   BROWN   SIUETABLE   BESIDE   THE   FIREPLACE   CONCEAL   S   THE 

ARMCHAIR) 

(TH   SWBRAOONSAIDTAABL3EESAIDTHSW 

F  A   I   R   P   L   AA   S   P   SW   N   S   EE   L   Z   TH   SW   A   R   M   CH   AA   R) 

(SCRAMBLED   SENTENCE) 

(DH   I   R   E   OO   NG   Z   AR   EE   N   AW   V   D   EE   AW   AE   E   TH   Y   P   A   I 

W   P   AW   H   D   SW   W   H   EE   R   H   Y   A   SW   M   AW   R) 

(INITIAL   SCAN) 

( (STRCH   0   0)    (FIREPLACE   20   26   95)     (CONCEAL   27   3^   15) 

(ENDCH   40   40) , 

(LOCAL   HIGHER   DISTANCE   MATCHING) 

( (STRCH   0   0)    (FIREP1_ACE   20   26   95) (IS   27   28   0) 

(CONCEAL   27   32   15      (CLl 1TER   29   ii -201     (THE   32   34   0) 

(THE   33    34   0)     (AhMCHAIR   35   39   125; (ENOCH   40   40) ) 

No words have been found between phonemes 0 to 20,   so ,in immediate nighet-distanco scan 

is made. 

(SPECIAL   SCAN) 

( (THE   1   2   0)     (BROWN   3   6   55)     (SIDETABLE   7   13   140) ) 

PARTIAL   PARSE   TrtKES   SORTED   BY   LENGTH) 

(*   {*    FIREPLACE   CONCEAL   AFX    (THE   ARMCHAIR) 1    ENJCH) 

(STRCH     ( (THE   BROWN   SIDETABLE) ) ) 

(*    (THE   ARMCHAIR)     ENDCH) 

C    FIREPLACE   IS   CLPTTER   AFX) 
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(PPT   CONNECTION) 

(PPT  PAIR) 

(STRCH    ( (THE  BROWN   SIDETABLE) ) ) 

(*    {*    FIREPLACE   CONCEAL   AFX    (THE   /   'MCHAIR) ) 

ENOCH) 

PPTS  TO   BE   CONNECTED 

(STRCH    ( (THE   BROWN   SIDETABLE) ) ) 

(*   (•   FIREPLACE  CONCEAL  AFX    (THE  ARMCHAIR) ) 

ENOCH) 

SENT! 

^     \ 
jtrch SENT 

I 
A 

the brown sidelable 

fireplace        conceal 

Fig. VII-9. 

PROPOSED   PPT 

(STRCH    ( (THE   BROWN   SIDETABLE    (PREP    (OET   FIREPLACE) 

COnCEAL   AFX    (THE   ARMCHAIR) )     ENOCH) 

POSSIBLE  WORD   STRING    (INFRONTOF   THE) 

strcrT 

NI 

SENT! 

SENT 

conceal 

endch 

the brown sidetable       PP 

A 
prep det fireplace 

NP 

A 
the armchair 

Fig.VII-iO. 
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WORD   STRING   MATCHED    ( (BESIDE   THE)     14 19   200) 

COMBINED   PPT 

(STRCH    ( (THE   BROWN   SIDETABLE    (BESIDE (THE   FIREPLACE) ) 

LAM   CONCEAL   AFX    (THE   ARMCHAIR) ) ENDCH) 
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VIII.    CONCLUSIONS,   BASIC ISSUES,   AND AREAS FOR FURTHER WORK 

This section places the present work into bri    der focu» by discussing some interesting 

issues brought to light.    Most of these issues relate to the local nature of LPARS1 design.    In this 

discussion,  we describe some of the fundamental problems involved in designing a system like 

LPARS,  and how the approach described solves these problems.    Finally,  we conclude by dis- 

cussing a number of interesting areas for further work. 

A.    BASIC  ISSUES BROUGHT TO  LIGHT 

1.     Advantages of a Local Approach 

The most obvious issue concerns the relative merits of LPARS' local approach which has 

the disadvantage of requiring a great deal of initial lexical processing.    The entire vocabulary is 

matched against the entire input.    If words had been recognized with sufficient accuracy in the 

early part of the sentence,   some of this lexical work might not really be necessary. 

The most obvious advantage of the local approach over a more left-to-right approach is that 

the left-to-right approach would have difficulty if a relatively large amount of error occurred 

near the beginning of the sentence.    It world be unable to get at the necessary context to help it 

deal with this ambiguity,  to isolate it,  and then make specific suggestions of words to look for. 

A local approach,   on the other hand,   allows information on both sides of an erroneous area to 

be brought to the assistance of the parser. 

There is another way of stating this argument.    Namely,  the local approach allows the highest 

phonetic distance scans to be made taking advantage of the maximum possible amount of lower 

phonetic distance (well matching) information available.    Thus,  the higher-distance scans are 

"data directed" as completely as possible.    (This is not true of a loft-co-right approach.) 

In particular,  the algorithm that connects PPTs has available to it all possible information 

from previous lower-level parsing and processing.    As a result,   all partial parse structures 

constructed from lower phonetic distance processing can be examined,   and the most promising 

connections can be tried first.    This is a very powerful capability,  and one *hich no left-to-right 

algorithm can achieve. 

In a left-to-right system,   it would be much more difficult for the system to know wnen a high- 

distance match mig'it be desirable,  especially if one wants to do such high-distance matching 

quite selectively.    It is certainlv impossihl • to get Inrormation as to the right-hand boundary for 

sue    a match. 

Syntactic Economy 

A second issue might be called "syntactic economy."   Syntactic conciseness or ecofV.ny is 

a vague term,  especially in reference to natural language parsing where there are many different 

formalisms for defining syntactic relationships: »ransformations with side conditions,   transition 

nets augmented by tests on arcs,   PROGRAMMAR procedures,   etc.    Syntactic conciseness is usu- 

ally a qualitative judgment made subjectively by looking at a grammatical representation of a ret 

of linguistic fac's. 

An interesting aspect of local parsing as described here is that it provides motivation for 

talking e.tplicitly about a particular type of syntactic economy: namely,  the degree to which the 

parsing logic for similar structures is collapsed down to a minimum syntactic skeleton. 
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In the LPARS local parser,  there is very rea! incentive to try to collapse the grammatical 

skeleton as much as possible,  since every time a local syntactic structure is recognized.  It is 

asserted for every instance that occurs in the grammar.    Therefore,  if the grammar contains 

thirty aeparate instances where a nou'--phrase can be followed by a verb, when such a pattern 

is recognized,  all thirty p. isibihties must be constructed,  even though mny of them might never 

even be considered in a left-to-right system analyzing a text version of the sentence. 

Such "ineconomy" would lead to excessive inefficiency 'n the construction of local PPTs and 

would also complicate the job of connecting different segments since there would be so many to 

choose from. 

LPARS achieves conciseness by usiag a transition net grammar augmented by syntactic fea- 

tures.   The transition net itself is a very powerful tool for achieving syntactic conciseness sine« 

it can capture very naturally the regularities of many different permutations of a basic structure. 

BNF, for example, does not have this capability because it provides no mechanism similar to the 

transition net's ability to let pa-sing paths diverge and later reconverge. 

To achieve syntactic compactness in a systematic fashion,  th ^ transition net is married in 

LPARS to a system of syntactic features which allow a number of different permutations of a 

sentence (such as relative clauses, declarative sentences, questions,   etc.) to be consolidated 

into a single transition net structure.   Thus, an efficient syntactic «keleton can be created for 

local parking. 

3. Local Representation of Global Relationships 

An interenting problem inherent in the local approach is that of locally representing different 

possible global relationships between adjacent syntactic elements.   This problem arises because 

the global relationship between adjacent words often cannot be determined from limited context. 

LPARS handle? this problem in three ways: 

(a) One mechanism used is the ancestor link described in S"o. V-B.   Ancestor links 

are used to represent potential ambiguity caused by right r scursion in the grammar. 

(b) LPARS also takes advantage of the .^ynta^tic economy acmeved by collapsing a 

number of different syntactic patterns down to a single S3 itaclic skeleton.    Thus, 

a number of potentiql global relationships can be combined in a single local 

structure. 

(c) The third mechanism is the fallback of constructing several differen   parse trees 

•f different parses of some set of words cannot be conveniently merged by the two 

techniques just described.    This fallback,  although less desirable,   is not too ineffi- 

cient if it is only necessary on a limited basis. 

4. Formalism vs Procedures in Parsers 

A very interesting issue brought to light concerns the relative merits of expressing logic 

in the form of a nonprocedural formalism (such as a transition net grammar),  or in the form of 

user-written procedures (such as LPARS1 LOCALMATCH routine). 

A number of speculations made in the present work indicate that the type of probabilistic, 

serr.antically oriented logic,  which might be used in the LOCALMATCH routine to search for 

local structures that desci ibe objects and events in a scere,  might be written most conveniently 

in the form of procedures,  rather than written to operate from an arbitrary transition net.   Much 
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of this logic couK be quite divorced from the syntac'ic representation of the phrase involved. 

(Remember that i^e goal of the LOCALMATCH routine is not to perform a systematic search for 

a globally consistent sentence, but   ra.hsr the use of heuristics to find plausible structures in 

different parts of the sentence.) 

Once these local structures are found.,  however,  the system needs to have a means of assur- 

ing overall consistency and global compatibility of the entire utterance and to direct attention to 

areas which might be investigated to attain this globil consistency.   The transition net formalism 

is used to achieve this.    It would be much more difficult to write the logic that directs this proc- 

essing (the CONNECf algorithm) m purely procedural form,  without som: structural skeleton 

such as a transition net to work from.   This would be difticult beet, -se the logic that pieces the 

entire sentence together must be able to start processing at any place in the sentence,  and must 

be able to join together any two arbitrary sentence fragments by proposing words between ihem. 

A transition net grammar provides a very natural framework to structure this logic around.    It 

is hard to imagine how one ■    uld write such logic frtthott! some such abstract,  manipulable,  non- 

procedural representation of the grammar. 

Thus, procedurer seem to be the best medium (in tne current state of the art) for express- 

ing the logic that uses semantic and pragmatic information to help took fot local structures, 

whereas the transition net formalism is best suited for systematically trying to enforce global 

structural consistency. 

5. Implications for Hardware Design 

It is interesting to consider what the design of the LPARS system might imply iboi,! the de- 

sign of efficient hardware for continuous speech processing.   One of the most striking aspects 

of the LPARS system is the large degree of initial lexical processing done in the initial scan and 

the LOCALMATCH routine. 

The lexical •   -.chinj, involves a great deal of computation,  even though it is done at a IC.A 

phonetic distance.   On the other hand, virtually all this processing can be ürme in parallel.    Thus, 

there is great potential for performing this computation very quickly,  if one has special-purpose 

hardware which allows parallel computation on a massive ecale.    Such a system might contain 

many special-purpose mini-processors especially designed to perform lexical recognition.   Such 

hardware, although perhaps not entirely feasible at present,  is liable to become perfectly viaole 

in the near future, given the present rate at which costs of computational hardware are dropping. 

6. Parallel Process Independence vs Coordination 

It is worth discussing exactly to what degree LPARS allows parallel independent processing 

to take place and to what extent processing in various parts of the utterance is coordinated. 

The entire processing of LPARS is globally coordinated in the sense that the phonetic dis- 

tance thresholds are set for processing in all parts of the utterance, in a globally coordinated 

fashion. 

Within this overall global coordination of phonetic distance thresholds, however, the proc- 

essing in the initial scan consists of many independent lexical matching processes which are 

conceptually independent.    Similarly, the LOCALMATCH routine consiats conceptually of a num- 

ber of independent processes which use local information to direct their actions. 

Once this initial local processing ends,   more global processing begins   namely,   the consiruc- 

tion of PPTs.  the inspection of these trees from all parts of the utterance, and the attempt to 

connect them together by proposing intervening words,  using the most promising first.    The 
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nature of th. later processing is not independent or potentially parallel since it requires exami- 

nation of all parse structures together (to see which is most promising ind which input segments 

are worth investigating first). 

input 

(local/ 
independent) 

(global/ 
sequential) 

sentence 

condidotej 

Fig. VIII-1. 

Thus, in LPARS, the distinction between local/independent vs global/sequential processing 

is clearly marked. This distinction separates the initial scan/LOCALMATCH processing from 

the analysis done by the TREE and CONNECT algorithms (see Fig. VIII-1). 

P.    AREAS  FOR  FURTHER  WORK 

The primary focus of the present work has been on developing a local approach to parsinr 

which allows structures to be built up in all parts of the sentence,  so that the system can explore 

(using the transition network) how these local structures might be pieced together in a globally 

consistent fashion. 

1.     Elimination of Current Restrictions 

There are, of course, a number of restrictions in the scope of the present work.    A number 

of potential areas for further work are extensions of the system which remove these restri^'ions: 

(a) Only a limited syntax is used.    It would be interesting to explore the degree to which 

the problems of local parsing are compounded when a much larger syntax is used, 

and to explore techniques useful in dealing with these problems. 

(b) Only a relatively small vocabulary is used by LPAPS.    It would be interesting to 

explore the problems that arise as the vocabulary is substantially increased. 
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I.c)   The LPARS system usrs scrambled input rather than input produced by a real front 

end.    An obvious extension is to join LPARS to a working front end,  at which point 

one could begin to deal with such phenomena as coartioulation,   st  erscgmental ef- 

fects,   etc.   into the LPARS lexical matching scheme. 

The most interesting extensions of the present work are those to the semantic component of 

LPARS.    Semantic extensions could be incorporated at almost all levels of the LPARS system. 

In general,   these extensions have bean mentioned as appropriate in several sections of this re- 

port.    Such proposed extensions generally involve using the context of a scene being discussed 

and of an interactiv,- dialog to assist in the processing.   Context of this sort might assist in the 

following ways: 

(a) Allow the system to do its processing using only a portion of its entire vocabulary 

(b) Augment the LOCALMATCH routine to look for local structures which described 

objects or events in the scene. 

(c) Augment the action routines so that noun-phrases and clauses are recognized only 

if they make sense in terms of the scene being described. 

2. Tradeoffs in a Higher-Level Speech System 

As discussed in Sec. I,  high-level systems such as LPARS con make an important contribu- 

tion by providing a medium in which one can begin to evaluate var.ous tradeoffs involved ia build- 

ing an integrated speech system - tradeoffs involving such things as: 

(a) The quality of front-end information, 

(b) The size of the vocabulary, 

!c)    The complexity of the syntax, 

(a)   The sophistication of the semantic routines available to assist the processing, 

(e)   The frequency of occurrence of small function words that must be handled,  and 

;f)    The degree to which the vocabulary can be partitioned. 

Once a concrete feeling for such tradeoffs is obtained,  one can begin to get a feeling for 

where research effort can be most productively allocated.    It would be interesting to systemati- 

cally explore some of these tradeoffs. 

3. Integration of Supra-segmental Information 

Another very interesting area for furtherwork is the integration of theuse of supra-segmental 

information into a local system such as LPARS.    In a speech waveform,  there is a great deal of 

such i.iformation which could help indicate where syllables are, wher^ stressed morphs are. where 

phrase boundaries are,  and possibly even information about the overall structure of the sentence. 

Such information could be very helpful in allowing a system to establish "islands of relia- 

bility" from which to work in various parts of a sentence.    One would suspect, therefore, that 

such information could be utilized particularly effectively in locally organized systems like 

LPARS.    Without local organization,  even if one did use local supra-segmental informatior   one 

would eventually have to fall back on a left-to-right approach. 

Hopefully, the development of locally organized parsing systems will give added impettis to 

research into promising supra-segmental effects, since such parser organization would provide 

a natural vehicle for exploiting such information effectively. 
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APPENDDC A 

THE  PHONEME  SIMIIJVRITY  TABLE 

Appendix A descriaes the phonemes used in the LPARS system,  and the phoneme similarity 

table. 

I.      LPARS'  PHONEMES 

Table A-l lists the phoneme set used in our work.   With each symbol is the IPA symbol and, 

if not obvious, a sample pronunciation. 

TABLJ A-1 

LPARS' PHOKEMES 

p P N n 

B b NC n »ing 

T f w w 

D d R r 

CH 
V 

C L 1 

J i Y y yet 

K k OO u boot 

G 9 U M Put 

F f o 0 open 

V V AW 

TH 0 with AA e table 

DH 6 thij A o father 

S s AR 

Z z AE OB bod 

SH 
V 

1 E C bet 

ZH Z 1 i bit 

H h EE ; beet 

M m SW a about 

11.     PHONEME  SIMILARITY TABLE 

Table A-2 is a reproduction of the table in Appendix 10 of the ARPA Speech Report.      This 

phoneme similarity table is used by the lexical scrambler and word-recognition algorithm as 

described in Sec. HI. 
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APPKNDI.: n 
LPAHS VOCABULARY AND TEST SENTENCES 

Appendix n lists ihe words in LPARS' vocabulary with their parts of speech and phonetic 

spellings,  and the sentences used in LPARS' evaluation. 

1.      LPARS  VOCABULARY 

(DISLIKE VERR D I S L A I K) 
(ENJOY VERB SW N J O I) 
(HANDLE VERB H AE N P L) 
(DISCARD VERB DISK JW. b) 
(CLUTTER VE.tB K 1. SW T R) 
(COMPLEMENT VERB k \ M P L SW M SW N T) 
(ILLUMINATE VERB I L CO M I N AA T) 
(BRIGHTEN     ERB B R A 1 T N) 
(CONCEAL VERB C SW N S EE L) 
(CONTAIN VERB K SW N T AA N) 
(SUPPORT VERB S SW P O R T) 
(OBSCURE VERB A B S K I OO R) 
(PLACE VERB P L AA S) 
{APPROACH VERB A P R O CH) 

'CHRISTOPHER iJfiOJ-N K R I S T SW F R) 
(MARIANNE PRCPN M E R I AE S) 
(ROBERT PROFN R SW B SW H T) 
(PERIWINKLE PROPN P SW R EE W I N K L! 
iAN'ASTASIA PRt^PN' E N E S T AA S EE SW ; 

(CHANDELIER NOUN SH AE H D SW 1. EE R) 
(FLASHLIGHT NOUN Y L AE SH L A i T) 
(TABLELAMP itOUH T AA B L AE ?.l P; 
(FIREPLACE NOUN F A I R P L AA S» 
(SIDETABLE NOUN S A I D T AA B L) 
(COFFEETABLE NOUN K AW F EE T AH B L) 
(ARMCHAIR NOUN A R M CH AA R) 
(BOOKCASE NOUN B U K AA S) 
(RADIATOR NOUN R AA D EE AA T O R) 
(NEWSPAPER NOUN N OO S P AA P R) 
(MAGAZINE NOUN M AE G SW Z EE N) 
(ASHTRAY NOUN A SH T R AA) 
{DICTIONARY NOUN D 1 K SH SW N AA R EE) 
(REFRIGERATOR NOUN R E^ F R I D J SW R AA T O R) 
(CABINET NOUN K E B 1 N SW T) 
(PERSON NOUN P SW R S SW N) 
(TELEVISION NOUN T SW L SW V I J SW N) 
(BREAKFASTTA,JLE NOT N B R SW K F E S T AA B L) 
(WASTEBASKET NOUN W AA S T B E S K SW T) 
(STEPLADDER NOUN S T SW P L E DD SW R) 
(FOOTSTOOL NOUN F U T S T OO L) 
(VACUUMCLEANER NOUN V E K I OO M •' L EE N SW R) 
(ENTRANCE NOUN SW N T R E N S) 

(INFRONTOF PREP I N F R SW N T SW V) 
(ONTOPOF PREP AW N T A P SW V) 
(BESIDE PREP B EE S A I D) 
(INBACKOF PREP I N B E K SW V) 
(NEXTTO PREP N SW K S T OO) 
(ONTHERIGHTOF PREP AW N TH S'.V R A I T SW V) 
(ONTHELEFTOF PREP AW N TH SW L SW F T SW Vi 
(BEHIND PREP B EE K A I N D) 

(RECTANGULAR ADJ R SW K T E N G I OO L A R) 
(CIRCULAR ADJ S I R K I OO L A R) 
(BROWN ADJ H R A OO N) 

06 



(OKANGE AD.J O R A N J) 
(GREEN ADJ G R EE N) 
(FRIENDLY ADJ F R SW N D L EE) 

(DOES DO D U Z) 
(WHO WH H OO) 
(WHICH WH W I CH) 
(WHOM WH H OO M) 
(WHAT WH W A T) 
(IS BE 1 Z) 
(THE DET TH SW) 
(BY BBY BAI) 
(S AFXS Z) 
(D AFXS T) 
(O AFXS ) 
(IN PUEPA I N) 
(ON PREPA AW N) 

[I,    SENTENCES USED  IN  LPARS'   EVALUATION 

(the dictionary Infrontof the sidetable is place d in the 
wastebasket by periwinkle) 
(the waatebasket which the green coffeetable support s 
contain a the dictionary) 
(the coffeetable which support 3 the green ashtray obscure s 
the entrance) 
(the green coffeetable support s the dictionary) 
(the sidetable which support 3 the ashtray obscure 3 the 
fireplace) 

(the sidetable which support s the ashtray in the bookcase 
obscure s the fireplace) 
(does the sidetable support the ashtray) 
!what does the sidetable support) 
(the dictionary on the siJetable is brighten d by the 
chandelier) 
(does the chandelier infrontof the fireplace brighten the 
rectangular coffeetable) 

(the chandelier infrontof the fireplace brighten s the 
coffeetable) 
(what does the chandelier infrontof the fireplace 
brighten) 
(the coffeetable nextto the bookcase is illuminate d by 
the tablelamp) 
(is the dictionary support d by the sidetable) 
(does periwinkle place the dictionary on the coffeetable) 

(what does periwinkle place beside the refrigerator) 
(what support s the dictionary ontherightof the fireplace) 
(place the circular ashtray in the vastebasket) 
(the dictionary which is support d by the coffeetable 
support s the tablelamp which illuminate s the fireplace) 
(who dislike s periwinkle) 

(the friendly person place s the ashtray inbackof the 
cabinet) 
(periwinkle place 3 ths dictionary on the sidetable beside 
the bookcase) 
(place the green dictionary on the bookcase) 
(the coffeetable beside   the armchair infromof the 
fireplace support s the ashtray) 
(the tablelamp beside which robert place s the dictionary 
illumin?!.« s the armchair) 

^7 
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(the refrigerator in which the ashtray is place d by 
robert conceal s the entrance) 
(whom does niarianne dislike) 
(on what does rnristopher place the dictionary) 
(beside what does christopher place the ashtray) 
(beside what is the green rectangular ashtray place d by 
robert) 

(is robert dislike d by the friendly person beside the 
coffeetable) 
(what is support d by the  -ircular sidetable) 
(what is place d beside the newspaper on the coffeetable 
by christopher) 
(on what docs periwinkle place the tablelamp) 
(beside what does the friendly person place the 
magazine) 

(infrontof what is the magazine pla-:e d by marianne) 
(in what is the newspaper place d by robert) 
(the boolcase contain s the flashlight) 
(the flashlight illuminate s the circular wastebasket 
beside the television) 
(the magazine is support d by the dictionary ontopof the 
coffeetable) 

(the newspaper on the sidetable conceal s the ashtray) 
(the brown side';ablc beside the fireplace corceal s the 
armchair) 
(place the green dictionary besJde the refrigerator) 
(place the dictionary which support s the ashtray beside 
the cabinet) 
(does the newspaper conceal the circular ashtray) 

(does Christopher enjoy marianne) 
(what does the tablelamp infrontof the fireplace 
illumir.ate) 
(place the ashtray infrorlof the sidetable) 
(what brighten s the breakfasttable) 
(the bookcase behind the coffeetable support s the 
magazine) 
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APPENDIX C 

WORD-RECOGNITION  ALGORITHM 

Appendix C describes the routine used for lexical recognition.    This routine receives the 

following arguments: 

WORD the correct phonetic spelling of the word to be 
matched (an array of characters), 

SENT the ( :.onetic spelling of the scrambled input 
utterance   an array of characters). 

1 the phoneme position in the sentence at which 
the match is to be started. 

WL' TH the length of the word. 

SLNTK the length of the sentence. 

WDIST the maximum distance permissible for the match. 

The algc. thm calls the following routines: 

SUBDISTfPHONl, PHON2) returns the phonetic distance of substitution between two 

phonemes. 

)ELDIST(PHON, LASTPHON) returns the phonetic distance of deletion of PHON 

when preceded by LASTPHON. 

^TACKfJ, K, DIST) puts three values onto a stack. 

UNSTACKd, K, DISTi pops the three values from the stack. 

Thr algorithm explores all posaibiluies of substitution and deletion in matching the v/ord to 

the section of input which starts at position 1. 
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LEX(WORD,SENT,l,WLNTH,SLNTH,WDISTj 

START 

_i_ 
DIST=0 
TDIST=WDIST 
OLDP=SENT(l-l) 
FLG=0 
K=0 
TK=0 

/ J LE WLNTri 
ADISTLETDIST 
A(l+K) LE SLNTHy M J   > WLMTH~1 

A DIST LE 7DIST 

N 

FLG=1 
TK=K-1 
TDIST=DIST 

f< \i 
STACK 

\ EMPTY?/ 

N 
i r 

NSTACK(J,K,DIST^ 

(FLG^O?)- 

| OLDP=WORD(J-l) 

RETURN NLJ 

N 

_L 
RETURN WORD RECOGNIZED 
BETWEEN POSITIONS I TO (l+TK) 
AT DISTANCE TDIST 

Tl=5UBDIST(WORDU),SENT0 + K)) 
T2=DELDIST(WORD(J),OLDP) 
STACK(J+1,K+1,DIST+T1) 
DIST=DIST+T2 
J=JH 
OLDP=WORD(J-1) 
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APPENDIX D 

TREE AND CONNECT ALGORITHMS 

Appendix D contains  flowcharts of the logic of the  TREE  and CONNECT algorithms.    In 

creating these flowcharts,  we have tried to leave in enough ilotail to convey the basic operations 

being performed, but not so much a« to obscure them.    The algorithms described in this Appendix 

are written to operate on I.ISP data structures   flints); therefore,  they use  the following  LISP 

functions: 

CAR.  which obtains the first member of a list, 

CDR. which obtains the remainder of the list, 

LIST, which returns a list of the elements passed to it. and 

APPEND, which appends two lists. 

The algorithms also invoke the following functions (listed alphabetically): 

AL)DSON(PPT, SON, ARC) returns a new PPT created by adding a  rightmost son 

to the input PPT (provi Mng that the action routine associated with the AHC permits, 

else NIL). 

ANCESTOK(PPT) returns true if the leftmost son of the top node of the PPT is an 

ancestor link son. 

CATPATHILPT, RPT) returns a new PPT consisting of c concaionation of the two 

input PPTs (providing that the action routines are compatible,  else NIL).    If the 

leftmost son of the RPT is an ancestor link son,  it is not included in the resulting 

structure. 

CONTENTVV(ARC) returns true if the ARC is labeled bv a content word terminal. 

CONTEXTLIST{PPT) returns a list of all arcs which invoke the PPT. 

ENDSTATE(PPT) returns the end state of the top node of the PPT. 

ENDTESTIENDFLAG, PPT) returns true if ENDFLAG is NIL or if the PPT is a 

final PPT. 

EXITARCS(PPT) rtturns a list of all arcs emanating from the end state of the top 

node of the PPT. 

FINAL(PPT) returns true if PPT ends on a permitted final state or is a terminp.l 

node. 

IIRSTARC(PPT) returns the first arc in the top node of the PPT. 

INITIAL(PPT) returns true if the PPT begins on a permitted initial state. 

INITSTAT13S(ARC) accepts as input an arc invoking a nonterminal,  and returns a 

list of initial states of that nonterminal's net. 

LAMBüA(ARC) returns true if the ARC is a LAMBDA arc. 

LASTARC(PPT) returns the rightmost arc, in the top node of the PPT. 

LSONtPPT) returns the leftmost son of the PPT, or :"L u the PPT is a terminal 

node. 
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NT(ARC) returns true If the ARC invokes a nonterminal. 

POPPPT(PPT, ARC) returns a new PPT, constructed by popping with the PPT to 

an ARC invoking the PPT in a higher-level net. 

PPT(ARC) accepts a terminal arc and constructs a "hypothetical" urminal PPF of 

the saii.e part of speech as the arc. 

PTortT;!, if N is an ire or a PPT, this function returns the part of speech asso- 

ciated with  hat i re of PPT. 

air^IRPTSOjsKPPT» returns NIL if the top node of PPT hao only one son.   or re- 

turns a neu  PPT identical to the input PPT but minus the leftmost son of the top 

node. 

RIPLASTSON(PPT) is similar to RIPF1RSTSON but removes the rightmost son. 

RSON(PPT) returns the rightmost son of the PPT, or ML if the PPT is a terminal 

node. 

START PATH(P, ARC) returns a new PPT created by starting a path in a net (where 

ARC .■>•-;.anates from an initial state of t'-^t net).    P becomea the only son in this 

new PPT, 

STARTSTATE(PPT) returns the starting state of the top node of the PPT. 

STORE(PPT) störet a PPT in ihe pho .erne position cnble. 

STORELIS^'PPTC) store- a. list of PPTa in the phoneme position table. 

TERMT(PPT) retur.is true if the PPT is a terminal. 

i.       li'.EE ALGORITHM 

The basic top-level routine of the TREE algorithm is th<* TRKE-WORD routine which takes 

aa input a PPT and a word and constructs as many possible resulting PPTs as possible by '»ppend- 

i.ig,  pushing,  and popping. 

The HOOK routine crjortMnates all appending and pushing connections beiween the t%jp node 

of a PPT and the word. If a given connection is not possible, the routine must try to effect the 

connection to a rightmost sub-part of that node. 

The PISH routine h   . :'es pushing connections. 

The KOOKALL routine attempts to "hook" the word, not only to th« top r. «ie of the PPT, 

but also to lower rightmost nodes.    Also, it checks to see if lower rightmost lescendents of the 

PPT can be joined to the word in other syntactic contexi.« 

The POP routine handles popping connections.    In the process, it calls the ABORT routine 

which prevents infinue looping, and the POPPPT routine which must al-fo handlt creating ances- 

tor link structures. 
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VORCHPPT.WORD) 

N 

START 

<^MNAL(PPT)?)> 

C--CONTEXTLIST(PPT) 
WMILE C 3^ NIL DO 

1 POP(PPT,WORD,CAR(C),NIL) 
C<DR(C) 1 

STORtLIST(HOOKALL(PPT,WORD)) 

1 
DONE 

HOOK{PPT,WORD) 

START 

 1  
RES=NIL 
AL=EXITARCS(PPT) 

<("Al=NIL?> >fR^JRN RES 

1 
ARC<AR(AL) 

PTSP{ARC)=      \   V 
PTSP(WORD)?/ 

N 

fAL<DR(Al)~|*- 

RES= 
APPEND(RES,TRY(PPT, WORD, ARO) 

<(NT(ARC)? 

N 

NL=PUSH( ARC,WORD) 
WHILE NL y NIL DO 
| RES=APPEND(RES,TRY(PPT,CAR(NL),AaCp 
, •'.=CDR(NL) 1 

<TÄMaDA(ARC)?> 
RES= 
APPEND(RES,TRY(PPT,LAMB':A,ARC)) 

N 
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TRY(PPT,SON/ARC) 

-<T2=NIL?> 

<CS0NHÄMBDÄ?> 

STORE{T2) 
RETU?.N NIL 

STORELIST(HOOK(T1,SON); 
RETURN NIL 

RETURN 
LIST(T2) 

RETURN 
HOOK(T2,SON: 

PUSH( ARC, WORD) 

START 

RES=i4IL 
IL=INITLIST(ARC) 

IL<OR(IL) 

^IL-NiL?))- 

N 

rAL=EyiTA"RCS'CAR(IL):" 

 [AR<AR(ALy] 

v /PTSP(AR)=     ~\ 
\   PTSP(WORD)?/ 

[RETURN RES I 

["AL<DR(AL)|>— 

"TRE' 
[AP 

RES= 
APPENi3(RES,STARTPATH(WOR0,AR)l 

T1=PUSH(AR,WORD) 
WHILE Tl ^ NIL DO 
| T2=STARTPATH(CAR(TI),AR) 
RES=APPENO(RES/LIST{T2)) 
TI=CDR(T1) 1 

mi 

--- 



HOOKALL(PPT,WORD) 

START 

RES=N:L 

<FINAL(RSON(PPT))?)>- 

N 

|Tl=«SON(PP"T) 

^FINAL(TÜ?)>- 

NT  

C=CONTEXTLIST(Tl) 

<CENIL2> 
NH  

[C=CDR(C) |-X^C=LASTARC(PPT)?)> 

N 
POP(Tl, WORD, ARC, NIL) 

HRES=HOOK(PPT,WORD) 

T2-HOOKALL(Tl,WORD) 
T3=RIPLASTSON(PPT) 

<IE NiL?>- 

N 

WHILE T2?t NIL DO 
| RES=APPFND(RES/ 

ADDSON(T3,CAR(T?),LASTARC(.PPT))) 
T2=CDR(T2) 1 

WHILE T2 ^ NIL DO 
| RES=APPEND{RES/TRY(T3(CAR(T2),LASTARC(PPT))] 
T2<DR(T2) 1 

RETURN RES 

POP(PPT, WORD, ARC, ARCLIST) 

START 

<^ABORT(PPT,ARC,ARCLISTJ?> S 

N 

Tl=POPPPT(PPT,ARC) 
T2=HOOK{Tl,WORD) 
STORELIST(T2) 

<;FINAL(T1)?>^{RETURN| 

Yl 

^CONTEXTLISTITI) 
WHILE C/ NIL DO 
I  POP(Tl,WORD,CAR(C),APPEND(ARCLIST,LIST(ARC))) 
C=CDR(C) 1 

T 
[RETURN I 
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U.    CONNECT ALGORITHM 

The following flowcharts outline the two main routines of the JOIN sub-part of the CONNECT 

algorlthrr. 

The EXTEND routine coordinates the extending of a path from an LPPT and the joining of 

that path to an RPPT. 

The PUSHEX routine is called with INTFLAG=NIL when the extended path is to continue on a 

lower level, and is called with INTFLAG^TRUE to make an RPPT start on a permitted initial state. 

The DOREST routine is called by the  EXTEND routine  after the  paths have been joined. 

It assures that the  rightmost sons of the  LPPT end on permitted final states, and rail the 

CONSTRAIN routine, 

Three arguments are used for communication between these routines: 

CONTFLAG is true when an extended path has already traversed a content word, 

ENDFLAG is true if the extended path must end -m a final state, and 

INTFL\G is used in the PUSHEX routine P.J described above. 
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EXTtNDC^i.RPT.ENDFLAG.CONTFLAGJNTFLAG) 

START 

A1=EXITARCS(LPT) 
RES=NIL 

<ÄL^NIL?> 
N 

-»j RETURN RES" 

ARC=CAR(AL) 

<LÄMBDA(ARC))- 

N 

T1=A0DSON(LPT,PP7(ARC),ARC) 
IF Tl/ NIL DO RE5= 

EXTEND{Tl,RPT,ENDFUG,CONTFLAG,INTFLAG) 

' TERMT(ARC) 
A(CONTFLAG=NIL 

,v~CONTENTW{ARC))/ 

N 

Tl=ADDSON(LPT/PPT(ARC),ARC) 
IF Tl + NIL DO RES=APPEND{RES, 

EXTEND(T1,RPT/ENDFLAG,CONTENTW(ARC)A 

CONTFUG.INTFLAG)) 

NTlARC) 
AINTFLAG=NIL 

N 

Tl=PUSHEX(RPT,ARC..EMDFLAG,CONTFLAG,NIL) 
WHILE Tl ^ NIL DO 
[ T2=ADDSON{LPTrCR(T1),ARC) 
IF T2/ NIL AENDTEST(ENDFLAG,T2) 

DO DOREST(T2) 
T1=CDR(T1) I 

NT(ARC)      ~\ 
AANCESTOR(RPT) \ 
AENDSTATE(LPT>= ) 

STARTSTATE(RPT)/ 

N 

Tl=PUSMEX(LSON(RPT), ARC, TRUE, CONTFLAG, NIL) 
WHILE T; / NIL DO 
! T2=ADDSON(LPT,CAR(Tl),ARC) 
IF T2^ NIL DO T2=CATPATH(T2,RPT) 
IF T2/ NIL DODOREST(T2) 
TKDR(Tl) 1 

PTSP(ARC)= \ 
PTSP(WORD) 

A INTFLAG=NILy 

N p 

IF INITIAL(RPT) DO 
1 T2=ADDSON(LPT,RPT,ARC) 
IF T2 ^ NIL A iNDTEST(ENDFLAG,RPT) 

DO DOREST(T2) 1 

ENDSTATE(LPT)=      > 
STARTSTATE (RPT) 

A~ANCESTOR(RPT) , 
JU 

N 

T1=CATPATH(LPT,RPT) 
T2=PUS1-IEX{LSON(RPT),FIRSTARC(RPT), 

TRUE, CONTFLAG, TRUE) 
WHILE T2 / NIL DO 

[  DOREST(CAR(T2))   ;  T2=CDR(T2) 1 

AL=CDR(AL) » 

in? 



PUSHEX(RPT,AR,ENDFLAG,CONTFLAG,INTFLAG) 

START 

1 
RES=NIL 
IL=INITSTATES(AR) 

-i_ 
<IL=NIL?>- RETURNRES 

N 

AL^EXITARCS(CAR(IL))| 

iKDRTiiT^— ^AL^NILT) 

K 
ARC=CAR(AL) 

NT(ARC) 
A ANCESTOR(RPT) 
AENDSTATE(ARC>= 

STARTSTATE(RPT) 

N 

f   TEkMT(ARC) \ 
A (CONTFLAG=NIL 

.v-CONTEXTWIARC)). 

N • 

/   NT(ARC) \ 
\AINTFLAG=NIL/ 

N 

AL=CDR(AL) 

Tl=PUSHEXiLSON(RPT),ARC,TRUE, 
CONTFLAG.NIL) 

WHILE Tl ?t MIL DO 
[ T2=STARTPATH(CAR(TI),ARC) 
IFT2/NIL DO 
RES=APPENCKRES,LIST(CATPATH(T2,RPT))) 
T(=CDR(Tr 1 

Tl =STARTPATH(PPT(ARC), ARC) 
IF Tl t NIL DO RES=APPEND(RES, 

EXTENDiTI.RPT.ENDFLAGJRUE.IN^s-AG)) 

J 
, T1=*)USHEX(RPT,ARC/ENDFLAG,CONTFLAG.NIL) 

WHILE Tl ytNIL DO 
1 T2=STARTPATH(CAR(T1),ARC) 
RES=APPEND(RES,LIST(T2)) 
TI<DR(T1)1 
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APPENDIX E 

LOCALMATCH  LOGIC 

Appendix E describes the higher phonetic distance lexical matching done by the LOCALMATCH 

routine.   This matching is done in areas adjacent to and between words found either by the initial 

scan or by previous local matching. 

Three types of matching are done: 

(1) Matching for words immediately adjacent to a word already found. 

(2) Matching for nearby words separated by only a few phonemes from a word already 

found. 

(3) Matching for functiop. word-strings in the area between two words al: eady found. 

I. ADJACENT MATCHING 

Below, we indicate for each *ord class which words ar? searched for immediately adjacent 

on each side: 

NOUN left    - adj 

right - verb, prep 

VERB left    - noun, propn 

ADJ left    - adj 

right - adj, noun 

PROPN right - verb 

PREP left    - noun 

ENOCH left    - neun,  propn,  verb 

II. NEARBY  MATCHING 

Below, we indicate for each word class the words which arc searched for in areas separated 

by only a few phonemes on each side: 

NOUN left    - verb, prep 

VERB left    - verb 

right - noun, adj 

ADJ left    - verb, prep 

PREP right - noun 

HI.    FUNCTION  WORD-STRINGS BETWEEN  WORDS 

Below, we show the set of function word-strings, and the word-pair contexts between which 

each is matched for.    (These tests are made only if the two words are separated by a roughly ap- 

propriate number of phonemes.) 
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the in the 

strch adj/noun 

(i.e., between a strch and 

an adj or a noun) 

prep adj/noun 

verb adj/noun 

strch propn 

which 

by 

prep propn 

noun propn 

noun verb 

noun propn 

verb propn 

does 

strch propn 

strch-prep propn 

(i.e., between a prep, at 

the stfrt of tin. sentence, 

and a propr.) 

which is 

noun verb 

what does 

strch propn 

strch-prep propn 

whom does 

strch propn 

on what does 

strch propn 

in what does 

strch propn 

by the 

verb adj/noun 

noun adj/noun 

on the 

verb adj/noun 

noun adj/noun 

verb adj/noun 

noun adj/noun 

which the 

noun adj/noun 

prep adj/noun 

whom the 

noun adj/noun 

is the 

st.rch adj/noun 

does the 

strch adj/noun 

in which the 

noun adj/noun 

on which the 

noun adj/noun 

what does the 

strch adj/noun 

strch-prep adj/noun 

what is the 

strch-prcp adj/noun 

whom does the 

strch adj/noun 

on what does the 

strch adj/noun 

;n what does the 

strch adj/noun 

on what is the 

strrh idj/noun 

in what is the 

strch adj/noun 

in which 

noun propn 

on which 

noun propn 
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who what 

strch verb strch verb 

noU11 verb what is 

wh0 i3 Strch verb 

strch verb 

noun verb 
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