AD-775 139

LOCALLY ORGANIZED PARSER FOR SPOKEN
INPUT

Perry L. Miller

Massachusette Institute of Technology

Prepared for:

Advanced Research Projects Agency
Electronic Systems Division

2 May 1973

DISTRIBUTED BY:

NS

National Technical Information Service
U. S. DEPARYMENT OF COMMERCE
5285 Fort Royal Road, Springfield Va. 22151




DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



UNCLASSIFIED
Security Classificatior

DOCUMENT CONTROL DATA - R&D ﬂb'? 7r /BZ

(Security claseification of title, body ol abetract and Indexing anncletion must ba enterad whun the overall report is classif

1. ORIGINATING ACTIVITY (Corporate suthor) 2a. REPORT S5ECURITY CLASSIFICATION
Unclassified
Lincoln Laboratory, M.i.T. 28, GROUP

3. REPORT TITLE

A Locally Organized Parser for Spoken input

4. OESCRIPTIVE NOTES (Type of report and ir -lusive dalas)
Technical Report

S. AUTHORIS) (Last! name, firat narma, Initiel)

Miller, Perry L.

b

8. REPORT CATE Ta. TOTAL NO. OF FA~ 1h. NO. OF REFS
2 May 1973 Y| 38
9a. ORIGINATOR'S REFORT NUMBER!(S) 1

Sa. CONTRACT OR GRANT KO. F19628-73-C-0002 & Technical Report 503

5, ProsEcT no. ARPA Order 2006

Oh ,THER REFORY NOISI (Any othar numbera that inuy be
assigned :his raport}

c ESD-TR-73-98

.

10. AVAILASILITY/LIMITATION NOTICES

Approved for public relea” , distribution ualimited. J

11, SUPPLEMENTARY NOT:S 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,

None Department of Defense

13. ABSTRACT

This report describes LPARS, sz locally organized parsing system designed to recognize
continuous speech, accepting as ite input a string of phonemes which containz ambiguity and
error. LPARS is locally organized in the sense tnat it can construct local parse structures
from word candidates found in all parts of the input utterance. These local structures are
used as "islands of reliability” and, together with syntactic and semantic information, guide
the search for words to complete the utterance.

=] dyred by

“NATIONAL TECHNICAL
INFORMATION SERVICE

U & Department of Comm:ze
Sprirgheld VA 22151

14. XEY WORO3

pursing system machine speech recognition
man-machine interaction spesch understanding systei

L]

| UNCLASSIFIED

Security Classificatius



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATCRY

A LOCALLY ORGANIZED PARSER

FOR SPOKEN INPUT

P. L. MILLER
Group 2§

TECHNICAL KEPGRT 503

2 MAY 1973

Aoproved for public release; distributiun unlimited.

LEXINGTON | A MASSACHUSETTS




The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponcored by the Advanced Research Proiects Agency of the
Department of Defense under Air Force Contract F19628-73-C-0302 fARPA
Order 2006).

This repart may be reproducea to satisfy needs of U.S. Government agencies.

ion-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed,
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ABSTRACT

This veport describes LPARS, a locally organized parsing system
degsigned to recognize continuous speech, accepting as its input a
string of phonemes wnich contains ambiguity and error. LPARS
is locally organized in the sense *.at it can construct local parse
structures from word candidates found in all parts of the input
utterance. These local structures are uzed as "islands of relia-
bility" and, together with syntactic and semantic information, guide
the search for words to complete the utterarnce.
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A LLOCALLY ORGANIZED PARSER FOR SPOKEN INPUT

I. INTRODUCTION

A. BRIEF OVERVIEW

Recognizing a spoken utterance by machine is a task much different from that of recognizing
a text sentence. The difference srises both from the difficulty of front-end phoneme recognition
and from the articulatory variability of speech. As a result, phonetic segments often cannot be
identified uniquely with any real accuracy and, therefore, an utterance processed by a phoneme
recognizer can contain a great deal of local ambiguity and error. In practical terms, this means
that the words are not recoguizable immediately, as they are in text.

}Mumans use a great deal of syntactic and semantic information to help them handle this
ambiguity. ‘They possess much knowleuge of the things they talk about, and of how words can be
put together to describe these things. Most previous work in machine speech recognition, how-
ever, has dealt primarily w.th acoustical processing, such as phoneme recognition, pitch and
intensity aralysis, etc., with little aitemipt to integrate syntactic and semantic krowledge into
this analysis. Any work on the recognition of continuous speech which relies go. 'y on such a
low-level approach is a* (ue mercy of the inherent local ambiguity.

Tue present researcn demonstrates how a greater degree of language competence can be
integrated into this recognition ;;rocess.

This report develops an approach which uses semantic and syntactic information to assist
machine recugnition of speech. The approach is implemented in LPARS, a Locally crganized
PARSer designed to process continuous speech with the help of syntactic ané semantic informa-
tion. Itz approach differs from trazditional parsing methods in that it has no inherent left-to-right,
or right-to-lert, bias to its operation. Rather, it allows syntactic structures to be recognized
locally in any part of the sentenze. Ir fact, several parse structures may be built vp simulta-
reously in different parts cf the seatence and later connected by searching for words that might
reasonably exist between them.

The approuch ic highly data-directed, leiting previously recognized structures help guide
the search for other words in the utterance. Both syntactic and semantic constraints are used
to help guide the analysis. Thus, the system is a "vertically organized" one in the senst
that it allows syntax and semantics to give feedback to, and help guide, the lower-ievel word-
recognition process.

The emphasis in the present work has bern to explore the varicus issues involved in the de-
sign of a local parsing system, and thento demonstrate that such a system can be created. Thus
emp: 15is has not been on developing a finely tuned system with high performance characteristics.

The remainder of this introductory section gives an overview of the approach taken, Sec-
tions B ana C describe in more detail the sources and nature of local amtiguity and error in
speech. 1In Scc. D, two basic concepts are presented: that of piionetic distance, and that of a
vertically organized system. These two basic concepts are centrdl to understending the approach
described. Then. in Sec.E, a simplified example is worked through to give a concrete picture
of how the approcch is implemented. This Introduction concludes by discussing related work

{Sec. F) and by outlining how the presentation of the approach is develop.d in thc reet of this report.




B. LOCAL AMBIGUITY AND ERROR IN SPEECH

In the early 1960's, researcners working on speech recognition approached the p~--lem
from the local standpoint of recognizing sound segments in the utterance in much thc same spirit
&8 ore might try to recognize letters on a printed page. At that time, most work concentrated
on the recoegnition of isoluted words and phrases; thus, no extensive use of syutactic 2nd se-
mantic constraints between different parts of the utterance was possible. In fact, it was imtially
hoped that phoneme recognition could be developed to sufficient accuracy that“the parsing of con-
tinuous speech could be accomplished in much the same fashiow as the parsing of text.i' g

This approach was not very profitabl.. 1t was difficult to develop algorithms which could
even approach the desired level of accuracy. Furthermcre, it Yecame apparent that the difficulty
was not entirely the fault of the algorithms used, but rather the result of local ambiguity inherent
in speech itself,

There are two fairly distinct but related sources of local ambiguity and error in speech:
(1) articulatory variation, and (2) machine reco /ition limitations. 1t is worthwhilc to discuss
both briefly.

1. Articulatory Variation

A sequence of spoken phouemss differs from a sequence of letters written on a page, hecauce
the articulation of phonemes is a dynamic series of events which takes place as the vocal appa-
ratus changes from cne configuration to ansther. Each phoneme can be thought of as an idealized
representation of a target configuration which the vocal apparatus attempts to attain.

The exact manner and the degree to which the target configurations arc¢ attained may vary
in different attempts to vocalize a singie utterance. Thug, the underlying phenomenon of speech
itself is not consiant or consistent; it is a dynamic phenomenon which is not reliably reproduc-
ible. Furthermore, the acoustic cues which might, if pr2sent, uniquely identify the phonetic

segments ar'e often absent or barely noticeable.

v -

2. Machine Recognition nitations

Gra iting ihe inherently ambiguous character of speech itself, it is not surprising that the
problem of algorithriically segrienting and classifying spoken phonetic segments is a difficult
cne. A sevies of dynamic phenomena must be processed using recogaition criteria which statis-
tically are as accurate as possible. Since the cues which uniquely distinguish certain phonemes
can be quite subtle, it is difficult to write an algorithm to pick up these cuves only when they are
" really” present. Despite a number of different atiempts to develop phoneme recognizers, the
amount of ambiguity and error which characterize< c¢xigting phoneme recognizers is quite large.

¢, PRACTICAL IMPLICATIONS OF LOCAL AMBIGUITY

In practice, the local ambiguity described above implies that words are not easily recogniz-
able. In this respect, it is useful to make a somewhat arbitrary distinction and identify twe

separate problems:
{1) Small re3sed "funct: n" words.

(2) Longer "content" words which are ccnsiderably garbled (by excessive error and

ambiguity),

™~




1. Small Unstressed Function Nords

Small unstressed word3 such as "a", "the", "and", "of", "is", etc. tend not to be
articulated clearly and are scmetimes bareiy articulated at all. For example, the phrase "Uni-
versity of Michigan” can be spoken quitz intelligibly without, or with just a hint of, the word "of".
This poses no problem to a human listener because semantic and syitactic knowledge primeshim
to expect. the word "of " to be present.

The recognition of such words clearly poses difficulties for any speech recognizer which
does not use context to indicate where such words might be present. Indeed, even if the word
is well articulated, i:s small size, in the presence of front-end error, mignt still make it diffi-
cult to find rei‘ably without contextual cues.

2. Louger Words Whi."r Are Garbled

Longer "content™ words cffer more phonetic information to match against the inpr+. Also,
such words coritain stressed syllables, which tend to be articulated more clearly than unstressed
syllables. If the system is to work at all, such long words should be fairly reliably recognizable.
Frequently, however, some longer words may be quite garbled by the combination of articulatory
variability and frcnt-end error. Any attempt to distinguish all such words on the first scan
through th= senten~: would be liable to del».ge the system with an overwhelming namber of word
candidates, most of them wrong.

1t is therefor much more rexsonable to iook for such words very selectively, only when
cne has built up . groat deal of contextual information indicating the exact section uf input where
such a word might ~ (ist, and indicating a small list of word possibilities that might meaningfully
be present.

It is clear that humans deal with the ambiguity described above because they possess a great
deal of knowledge of the things (objects, events, actions, etc.) being talked about, and of how
utterances are formulated in English to describe these things. For ingtance, if a speaker pauses
in the middle of a sentence, a listener can often predict that one of a limited number of words
is likelv to be spoken next. Certainly the listener can reasonably discard as possibilities most
of the words in his vocabulary,

The present work explores how such knowledge can be incourporated into a machine so that

it can be used in a systematic fashion,

*, Tradeoffs in a Speech Recognition System

An interesting issue related to this problem concerns the tradeoffs possible between in-
creased refinement in the local processing of an utterance fi.e., refinement of phoneme recog-
nition algorithmsg) on the nne hand, and the use of more global information on the¢ other. In other
words, how much real information does increased local refinement yield when seen in terms of
the system as a whole? One would suspect that intelligent heurigtics in the higher levels of a
system might make a great deal of lower-leve! refinement unnecegssary. Other parameters in
this tradeoff are vocabulary size, syntactic and semantic complexity, .ne “egree to which small
words are sllowed to be used, and the degree to which the vocabulary is partitionable so that at
different stages of digcourse only part of the total vocabulary is likely to be used. This report

takes an initial step toward exploring some of these tradeoffs.




D. TWO BASIC CONCEPTS

Some aspects of the system presented here may at first seem somewhat counter-intuitive.
This section outlines two concepts centrai to the approacih: that of a vertical system (one with
vertically orgam: :d feedback), and that of phonetic distance. It is our hope that an understand-

ing of these two concepts will help to put the approach into sharper perspective.

1. Vertically Organized Systeni

"LPARS is a vertically organized system. Vertical system organization is useful where a
great deal of local ambiguity exists. A vesrtical system is one which allows the various levels
of analysis to interact with one another. Inthe case of speech recognition, the various levels
are semantic, syntactic, and lexical analysis (and perhaps phonemic analysis). Figure 1-1 il-
lustrates the structure of such a system.

SEMANTICS

SYNTAX
e
| WORD RECOGNITION

$

§

inp'out

Fig.1-4. A vertical system.

A vertical system is so named to distinguiah it from a "strictly hierarchical" system which
does not have the feedback from higher- to iower-level analysis. An example of a strictly hier-
archical system is a programming language translator, typically having a lexical analyzer which
recognizes identifiers, numbers, operators, etc. and passes them on to the parser which deduces
their syntactic structure and turns this over to the semantic analyzer which generates machine
instructions. Such a system is not a vertical one because, for instance, the parser cannot tell
the lexical analyzer what tokens it might look for next.

Section I-F-4 iscusses two other examples of vertically organized systems: the M.L.T. Al
vision a‘-xystem,3 and T.A. Winograd's natural language pari-xer.4 Vertical ~rganization in the
vision system allows higher-leve! analysis to be invoked even thcugh some lines of a scene may

not have been recognizecd. Similarly, in speech analysis, all words reed not be recognized iin-

mediately by the lexical analyzer. Contextual information can be used to help determine bound-
aries in unclear secticns of the utterance, and to propose words that might occur there.

Thus, in LPARS, the lexical analyzer first makes local tests for worda which can be recog-
nized fzirly reliably. This processing results in a list of "word candidate‘sx," some of which may
be wrong, The word candidates are turned over to the higher-level routines which direct tests
to discover additional words. Fundamental to this analysis is the ability to parse outward from
a number of recognized portions of a sentence in an organized manner.

2. Phonetic Distance

The concept of phonetic distance gues hand in glove with that of a vertically organized system.
Phonetic distance is used when matching the phonetic spelling of vocabulary words in the Jiction-

ary against strings of phonemes recognized by the front end of the system. As an example, one
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simple meas..~e of phonetic distance might be to define the distance of a word from a section of
input as equal to the number of phonemes that differ, Thus, FROM would be a distance of 1
from both FROL and TROM,

In practice, of course, some differences are greater than others. The voicing difference
between B and P, for instance, is presumably not as great as tne difference between B and 5.
Consequently, it is useful to ailow such phonetic distances wider range for more ac.urate dis-
crimination., The concept of phonetic distance must al.o be extended to account for deleted and
inserted phonemes,

1t is not immediately obvious how such distances a.e best measured. To make such meas-
urements certzinly requir2s a statistical evaluation of the particular front end being uscd. These
issues are discussed more fully in Sec. 1II. Hopefully, it wili become clear that precisely how
such phonetic distance is measured is not central to the ideas presented in this report (although
the effect of these measures is definitely central).

The concept of phonetic distance fits very naturally into a vertical system. In a vertical
speech system, initial scans through the input can be made at low phonetic distance to find words
that are not too garbled. Higher phonetic distance tests for more garbled words can be maae

3electively, based on semantic and synt2ctic information.

E. SIMPLIFIED EXAMPLE OF LPARS IN OPERATION

LLPARS is designed to process spoken input by building up parse structures in any part of a
sentence, and then by using these structures to help guide the search for further words to com~
piete the sentence. It differs from most parsers in the local nature of its syrtactic processing
and in its highly vertical structure.

This section gives a brief introductory description of LPARS itself and of how it performs
lexical, syntactic, and semantic processing. Then, a simplified example of LPARS in operation
is worked through to help put into focus the various parts of the system.

4. Some Particulars

L PARS' vocabulary contains aporoximately 70 words. 1t recognizes a very restricted, but
linguistically interesting, subset of English. 1ts semantics are defined in terms of a particular
scene (a small two-room house containing people, furniture, fixtures, etc.) about which one may
make statements, ashk questions, tell a very simple-minded story, or command the system to

manipulate the gcane.

2. Operation of LPARS

Ag input, LLPARS expects a siring of phoneme candidates from a front-end phoneme recog-
nizi.r. For the present work, the input was prepared by a phonetic scrambler program which
simunlated front-end behavior, rather then by a real phoneme recognizer. The input phoneme
canlidates may be ambiguous (i.e., several pogsikilities may be given for one segment). The
inpit is also expected to contain a fair amount cf error.

1L.PARS operates by tirst making an initial scan through the sentence, seeking longer words
which are not too garbled. The scan returns a list of word candidates which match within a given

erro- tolerance to specified sections of the input. 1t is likely that somz of these word candidates

are tnco rect, and, indeed, some may overlap.




INPUT SENTENCE:
'THE‘ LARGF COFFEETABLE SUPPORTS THE GREEN DICTIONARY'

(1) INITIAL SCAN: TOFFEETABLE, GREEN

(2) LOCTAL HIGHER DISTANCE SCANS:

STRZH CO: *ELT/.BLE GREEN ENDCH
(od?) {prep) (odj) (noun)
\det} (verb) (det) DICTIONARY
LARGE NIL THE
(odi) (verb)
(det) (prep)
THE NIL

\3) PARTIAL PARSE TREE CONSTRUCTION:

— S\ /5\

STPCH SENT 7 ENDCH
NP
NP A
A
the large cof{eetable *ne green dictionary

(4) CONNECTION OF PARTIAL PARSE TREES:

e m e e ARG et m. .. —— -

\\\ . verb? “ —
STRCH SEMT- =N ENDCH
NP
NP A
A

(5) RECOGNIZED SENTENCE:

,"/ ———
e i \\
STRCH SENT ENDCH
|
NP VERB pp
A | A
supports

Fig.I-2. Simple example of PARS in operation.




These word candidates are turned over to the higher-level part of the system which initiates
scans for small words and for more highly . o0led words in the areas adjacent to and between
the words found in the initial scan, and groups the words together into parse rtructures. This
processing i3 done systematically in an altempt to uncover the entire utterance.

3, Simple Example

Figure 1-2 gives a simplified example of LPARS in operatior. The ‘nput utterarce being
processed, "The large coffeetable supports the green dictionary" is spoken, analyzed by a front-
end phoneme rewognizer, and a string of phoneme randidates is produced for input to LPARS.

LPARS fir#t makes an iiltial scan through the sentence at a low phonetic distance looking
for longer words which are not too garbied. Let us assume that in this instance the two word
candidates "coffee ible" and "green” are found. These word candidates are turned over to the
high-level part of the system, together with a4 start-of-sentence character (STRCH) and an end-
of~sentence character (ENDCH) which the system adds.

The higher-level analysis consists of tiaree fairly distinct stages, as Fig. I-2 indicates.
First, scans at higher phonetic distance are made besed on fairly local cues, in the areas sur-~
rounding the word candidates. In this example, these initial higher-distance scans are very
sinipie. A scan in front of the noun uncovers tne adjective "large”, and a further scan in front
of that word uncovers the determiner "the", A scai to the right of the noun for prepositions and
verbs fails to find any word candidates. This means that the verb "supporis” is too gerbled to
be picked up either by the initial scan or by the higher-plionetic-distance selective scan. Similar
scans around the adjective "green"” uncover the words "dictionary® and "the", but again fail tc
find the verb.

After hese higher-distance scans have taken place, the system builds up local parse struc-
tures in the sentence, 1f all the words in the sentence have been found, then the entire sentence
is constructed. Otherwise, the result is a number of partial parse trees in -lifferent parts of
the sentence.

The system attempts to construct as many such partial parse trees as it can with the words
it hias found. In this example, it constructs only two trees. The {irst tree (STRCH the lurge
coffeetable) is straightforward; the second tree (the green dictionary ENDCH) is somewhat
unusual since it cont2ins an "ancestor link” (the link labeled #). Such ancestor iinks are neces-
sary in ".PARS because of a furdamental problem of local parsing: namely, that it is not always
clear i n a small amount of local context what the global relationship is between two adjacent
gyntactic units. In this case, the exact relationship of the noun phrase to the end-of-sentence
charncter i3 not clear, Or the other hand, for the nurposes of . uilding local structure, LPARS
need not kaow the actual reiationship. The ancestor link allows LPARS to .ecognize that rrany
syntactic relationships are poesible, but to defer commitmert until later when an attempt is made
to join this structure to other structuies by proposing words between them.

The third and final step in the parsing process consists of connecting partial parse trezs to
one another hy using the grammar to propose word: that might exist between them. Any words
proposed are tested against the input 4t even higher phonetic distances than the previous scans,

In the example given here, the algorithm discovers that the two parse trees can be connected
by a verb. It therefsre initiates a higher-distance scan which succeeds in finding the verb "sup-
ports™ Thus, the entire sentence i3 recognizcd.

WL



One of the advantages of thie local approach is that this algorithm can attempt to connect
the most promising partial parse trees first (for instance, the longer ones)., In this way, the
local organization allows the system to take advantage of the maximum amouat of well-matching
information from all parts of the sentence to direct attenticn to areas where highly garbled
words might exist, and to indicate what words might reasonably make gense there. A left-to-
right parser would be unable to take advantage of such information.

Notice that this example is a simplified one — no erroneous words were found. In a more
realistic example, erroneous words would be found, some local structures containing these
words would be built up and, additionally, some erroneous local parsings of the correct words
could be constructed, ".jpefully, attempts to build out upon the erroneous structures would
eventually prove unsuccessful, while attempts to build out upon the correct structures would
us aally succee.

Notice also that, in this sxample, semantics have not beer. mentioned. Semantics enter
iito LPARS' analysis primarily by reducing the number of words that need be sought by the
hi-“er-distance scans, For instance, tests for adjectives preceding a noun need only look for

adjectives that may legitimately modify that noun.

4, Summary Overview

Figure I-3 gives a condensed overview of the procedurs we have just worked through.
LPARS receives its input in the form of phoneme candidates. 1t makes an initial scan at a low
phonetic di ‘ance yielding a list of word candidates, some of which may be incorrect. It uses
these to initiate higher-distance scans, to construct partial parse trees, and, if lucky, to un-
cover the entire sentence. Finally, LPARS investigates ways to connect the partial pai'se troes
together to build up the whole sentence. Section VI describes this process in more detail.

INPUT
{phoneme ;:andidores)

INITIAL SCAN

{low phonetic distance)
¥

word ca'ndidotes -

HIGHER LEVEL ANALYSIS |
(selective higher-distance scans)

partial parse trees +———

CONNECTION OF PARTIAL
PARSE TREES
(high-distance scans)

sentence
candidates

Fig. 1-3. Overview of LPARS.
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F. RELATED WORK

Two useful surveys of speech literature, with extensive bibliographies, are given in Refs. 1
and 2. Previous work related to the present research can be separated into four fairly distinct
topics.

1. Isolated-Word Recognition

Numerous different approaches have been taken to the problem of recognizing gingle words
spoken in isolation, given a fairly small vocooulary. Gold.s and Bobrow and Klatt™ achieved 86-
to 95-percent recognition, each using a vocabulary of 54 woerds. In beth cases, recognition was
done without trying to segment and identify the phonemes that made up the utterance.

Medress7 and Vicens8 developed systems which performed the intermediate step of attempt-
ing phoneme identification before trying to identify the word spoken. These systems achieved
recognition accuracy similar to that of Gold and Bobrow. The Vicens system used a vocabulary
of 561 words.

In the present research, we assume that input to LPARS is in the form which is output by
the Medress and Vicens systems: a string of phoneme candidates which may contain large
amounts of ambiguity and error.

2. Continuous-Speech Recognition

Vicens8 also coupled his phoneme recognizer to a very primitive continuous-sp<ech system
which worked by making an initial scan through the utterance searching for a certain highly recog-
nizable word, ar< then used a very const.ained syntax together with a very small vocabulary to
guide its search for the rest of the words in the utterance. L. PARS can be thought of as an extea-
sive generalization of this simple system.

Reddy9 recently demonstrated a system which recognizes spoken chess moves, expressed
in a simple nonrecursive syntax.

The system of Tappert and D'onnio'“

achieved good results by attempting to identify "trans-
emes" {phoneme-phoneme trancilions) before matching the utterance as a whole. Rabinov.\ritz,12
working with Tappert and Dixo.}, experimented with a left-to-right continuous-speech recognizer

for & simple nonrecursive syntax, with success rates ranging from 65 to 90 percent.

3. Natural-Lunguage Processing

Most work done in recognition of natural-language input has concentrated on left-to-right
algorithms. The work of Woods”'“
lated to the present research.

4
and Winograd ... natural-language parsing is closely re-

Woods uces the formalism of an augmented transition net grammar to capture the regulari-
ties of syntactic structure. Our work also uses this augmented transition net formalism, but it
is incorporated into a local rather than ¢ left-to-right framework.

Winograd uses PROGRAMMAR procedures and a set of systemic syntactic features to embody

his parsing togic. The syntactic features used in our work are very similar to Winograd's.

4. Vertical Systems

The M.LT. Al Laboratory vision system uses the bzsic idea of a vertical system (see Ref. 3)
which allows global structure to be u.ied to help guide the more local processing, thus saving a

great deal of unnecessary work. In recognizing a scone of hinr2ks, for instance, not all lines




must be recognized by the line recognizer before higher-level analysis is invoked. In such
situations. higher-level analysis can propose possible missing lines and direct finer statistical
tests to look for them.

An interesting part of Winograd's sy:;tem4 is its ability to call on semantic analysis with
partially recognized structures, in a vertical fashion, allowing semantics to abort nonsensical
locsl parses eaily in the analysis. Thus, semantics plays a confirmational role, answering
"ycs-nn" questions, but does not exercise overt control.

In LPARS, semantics performs a more active function by suggesting possible action in a
"creative® role, such as supplyving a small list of word possibilities to test locally against a
specific sectiun of the input.

G. OVERVIEW OF SECTIONS II THROUGH VI

Section Il describes the transition network formalism, the set of syntactic features used to
augment it, and the fairly simple semuntic component of LPARS. The transition network for-
maii- n form: the backbone of LPARS3' parsing activity.

The various sub-parts of the LPARS system are described in Secs. !ll, IV, and V. Sectionlll
describes how "scrambled" input is prepared for LPARS by z front-end simulator, and how word
recognition is performed. Section IV describes the iritial stages of LPARS' processing: the
initial scan, and the fuirly local higher-phonetic-distance matching. It &l30 discusses some
interesting ways in which this part of LPARS could be extended. The two main algorithms used
by LPARS in its local syntactic processing are outlined in Sec. V.

Section VI describes the overall ccordination of the LPARS system, and discusses some
basic problems and considerations i the design of a lccally organized system such as I.PARS.

The experimental evaluation of "PARS is described and scme sample runs are exhibitec
in Sec. VII.

Finally, Sec. VIl summarizes the various issues which have been Jealt with in developing

the local approach towardu parsing, and discusses sorae interesting implications of the approach.
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11. A TRANSITION NxTWORK GRAMMAR WITH SYNTACTIC FEATURES

LPARS uses an augmented transi‘ion network grammar as the basis for its syntactic activity.
The tr ansition network formalism used by LPARS is somewhat different from previous transition
net parsers such as Woods'.“'M A few of these differences are primarily in form: others are
significant changes made to accommodate the local nature of LPARS' cperation.

We now describe how LPARS has adapted the transition net grammar to accommodate its
local parsing purposes. Section A introduces *he transition retwork formalism; Sec.B describes
how LPARS augments its transition net grammar by a set of syntactic features. and discusses
some of the advantages gained thereby; in Sec.C, the syntax used by LPARS is presented, and
its restrictions are discussed; Sec. D describes the semantic compcnent of LFARS; and, finally.
the action routines which are associated with the arcs of the grammar are discussed in Sec. E.
The action routines keep track of the syntaciic features and examine the semantic features of
structures beingz parsed, to enforce consistency between different parts of the sentence.

T-wo basic problems are confronied here:

(1) How to organize a grammar so that recogniticn can be started easily anywhere
within a sentence

(2) How to organize a grammar so that, when local structure building occ'.rs, any po-

tentially exponential inefficiencies are kept within reasonable limits.

A. TRANSITION NET FORMALISM

This section describes the basic structure of a transition net grammar. The description is
kept auite informal; however, as the chapter progres ses and more detailed examples are pre-
sented, the nature nf the transition network as used in ! PARS will become more concrete.

A transition net grammar cousists of a number of finite-state networks (nets) each defining
a no~ierminal syntactic class {i.e., noun phrase, senterce, etc.). The idea of representing non-

ter ninal syntactic classes by such transiticn diagrams was previously developed by Woods.M

whom e quote:

"The transition network grammar model is an extension of the notion

of state transition diagram well-known to automata theory. A transi-
tion network grammar consists oi a network of nodes with arcs con-
necting them. The nodes represent states of a hypothetical parsing
machine and the arcs connecting them represent possible transitions
and are labelled with the types of events in the environment of the ma-
chine which permit transitions. Inthe case of a transition network
grammar, the types of events are the occurrences of words and phrases
in the input string upon which the grammar is operating.”

Figure 11-1 gives a rimple example of such a grammar.

Each net is made up of a number of states connected by arcs. Each arc is labeled either
by the name of a terminal syntactic class (noun, verb, determiner, etc.), or by the namc 2f a
nonterminal. Term.nal arcs cc ‘espond to transitions permitted by a single word being proc-
essed in the input stream. Nonterminal arcs require the recursive invocation of a nonterminal
net to recognize a phrase or clause. In LPARS, anarc can also bc labeled by LAMBDA; this
arc allows an iimmediate transition without processing any input. Eacl net contains at least one
initial state {marked Q) and at least one final state (marked () ).

i1
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Fig. 11-1.

Associated with each arc, and with each initial and each final state. is an action routin-
which makes tests to determine when a transition is permitted and when a state can be an initial
or a fnal state. These tests keep track of a set of syntactic features and other information about
the constructs being parsed Thus, the transition net is "augmented" by the activit; of these
action routines. The operation of these routines is dis~ussed in Sec. I1-E.

Thus, for each nonterminal, a transition network defines the structures wlich can form
that nonterminal. For instance, in the simple grammar above, a noun phrase (NP) is defined as
a2 determiner (DET), followed by zerc u» more adjectives (ADJs), followed by a noun, and fol-
lowed optionally by a prepositional phrase {PP}. For a string of words to be accepted by a transi-
tion net, that string must permit a sequence of transitions through the net beginning on an nu.tial
ctate and ending on a {inal state. To allow this, the action routines associated with the arcs
traversed, and with the initial and final states, must permit the sequence of transitions.

In a left-to-right parser, these transition nets can be taought of as a flowchart of the parzer's
action when analyzing a sentence. In a system such as LPARS, which performs local parsing,
the transition nets are best thought of rather as defining acceptable left-to-right adjacencies for

syntactic structure.

B. SYNTACTIC FEATURES

Central to the LPARS' syntactic formalism are a set of = ~tactic features with which i.PARS
augments the transition net grammar. Syntarctic features mak * easier to organize the grammar
so that parsing cau be startcd in the middle of a transition . yet still proceed in an organized
fashion. Syntactic features also allow a quite compact gramriar to be created. This section de-
scribes how these syntactic features are used and why they are important. To this end, we first
work through ¢ simplified example.

1. Example: Relative Clauses

A relative clause can be thought of as a permutation of the structure of an English sentence.
In transformational theory, a relative clause is thought of as being formed by moving a noun
phrase tn the front of a sentence, replacing it with a relative pronoun. For example, if one as-

sumes the followiny simple underlying structure for a sentence:

NP-V-NP-PP (nuun-phrase, verb, noun-phrase, prepositional-phrase)

12



as in "the man places the book on the table", then the relative clavses shown in Fig.11-2 can be

created. (In this figure, the terminal WH represents a relative pronoun: who, whom or which.)

ORIGINAL SENTENCE:

0. NP \ NP PP (declarative)

RELATIVE CLAUSES:

1. WH, \ NP PP (subject r.c.)

2. WH NP \ - PP (object r.c.)

3 PREP WH NP \" NP - {prepositiznu; r.c.)
Fig. 11-2.

In structure 1 (WH V NP PP), the first NP (already at the start of the clause) is relativ-

ized: as ir "... who places the book on the table...".

In stiucture 2 (WH NP V PP), the second NP is brought to the head of the clause and rel-
ativized: as in "... which the man places on the table...".

In structure 3 (PREP WH NP V NP), the third NP together with the preceding prepesition
is brought to the head of the clause and relativized: as in"... on whick the man places the
book...". Notice that a fourth structure can also be formed with the preposition re :aining at
the end of the clause: as in "... which the man places the book on.. . "

These three relative clause structures can be labeled "gubject relative clause" (SRC),
"obiect relative clause" (ORC), and "prepositional relative clause™ (PRC); these namers indicate
the noun phrase in the original declarative (DCL) form which was relativized. Later in this ex-
ample, these names are used as "syntactic features" io help guide the parsing prucess.

Thus, Fig.11-2 outlines in tabular form a set of "linguisiic facts" describing the structure
of a declarative sentence and of threc ‘ypes of relative clauses. Figuce [1-3 shows 2 possible

way that these structures might be represented in a traasiticn net grammar.

Fig. 1I-3.

In this transition network, each structure is spelled out by a separate branch of the network.

Notice, nowever, that there is a great deal of gimilarity between the different branches, This




approach to representing syntax, altaough inelegant, would probably not be too costly in a left-
to-right parser, since the parser would p.. progress too far down a dcad-end branch bcfore
backing up.

For LPARS, however, such an approach would se very inefficient because, due to its local
parsing activity, the syntactic part of LPARS must jronstruct as mary valid parsec structures as
possible from the words passed to it. Since LPALS has no way of knowing the correct left-to-
right context in which a set of words might exist, it must assume that any context is possible.
Thus, for example, if it finds a noun phrase to the left of a verb, LPARS must construct one
parse tree for every instance in the grammar where an NP arc adjoins a verb arc. If therc are
thirty such instances, then thirty parse structures must be created.

1t would be inefficient for LPARS to represent a good-sized subset of the different structural
permutations of an English sentence by "spelling out" each permutation as in Fig. [1-3. Such a
system would not only be inelegant, but would not allow efficient ex.ension. The inherent ineffi~
ciencies would rise exponentially as more-and-more syntactic structure was incorporated.

LPARS avoids this problem by using syntactic features which allow us to collapse a number
of different permutations of a sentence, for instance, onto a single transition nct skeleton. lL.et
us see how this is done, continuing the relative clause example.

The linguistic facts portrayed in Fig. 11-2 can ke described using a transition net with four
syntactic features: DCL, SRC, ORC, PRT, standing for each of the four possible sentence per-
mutations. Each syntactic feature represents a particular phenomenon which might or might not
be present. Thercfore, each syntactic feature has associated with it a Boolean value of either
4" or "-" indicating whether that phenomenon might be present or not.

Let us see how s ich features can be incorporated into a transition net. Figure 11-4 shows a
transition net for the declarative scntence. The feature (DCL+) is associated with cach arc. {In
the LPARS system, these features are actuslly built into the action routines which are associated
with each arc.)

DCL+ DCL+ DCL+ DCL+
\ Ne v/ NP/ i

—
g U U U W
Fig. 11-4.

Now let us incorporate the subject relative clause structure into this net. 7o do this, we
add an arc labeled WH with the features (DCL~, SRC+) and label the other arcs with the apprc-
priate SRC feature as shown in Fig. i1-5.

DCL+ DCL+ DCL+ DCL+
SRC+ SRC+ SRC+ YRC+

\N vy ey

wH \
DCL-
SRC+

Fig. 11-5.
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The syntactic fcotures associated with eact arc represent tests which must be performed

in the action routine associated with the arc. Exac'ly how these tests operate is described in

Sec. lI-E.
Now let us add the objcct relative clause structL',:'e,
possible initial state, a WH-labeled arc from that stite to the first initial state, and a ,AMBDA

This can be done by adding a second

arc to bypass the second NP, as shown in Fig. 1i-6.

DCL~ DCL+ CL+ DCL+ DCL+
SRC— SRC- SRC+ SRC+ SRC+
CRC+ ORC+ ORC+ ORC— ORs..+
\ wH e [
l} MBDA

DCL~- DCL-

SRC+ SRC—

ORC- ORC+

Fig.11-6.

A LAMBDA arc is one which can be traversed without parsing any input. Notice that it is

only necessary to add a small amount of structure in the form of states or arce when each new

structural permutation is incorporated :nto the existing n2t. Most of the structure is carried in

the syntactic features associated with the arcs.
Finally, the prepositional reiative clause structure is added as shown in Fig. 1I-7.
an additional initial state and an arc labeled PREP are added, and a previous state is made a

Here,

possible final state.

DC - DCL- DCL+ DCL+ DCL+ DCL+
SRC- SRC- SRC- SRC+ SRC+ SRC+
ORC- QRC+ ORC+ ORC+ ORC- ORC+
PRC+ PRC+ pRc ; pgc+ PRC+ PRC-
\ PREP WH \ NF \ PP
o m ®
/ WwH LAMBDA

DCL- DCi-

SRC+ SRC-

ORC- ORC+

PRC— PRC—

Fig. 1I-7.

To make this net complete, a set of initial and final state tests must be created to indicate
which permutation can begin and end on the various initial and final states. Thus, the following

feature sets must be associated with the initial and final states:
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Initial States

1. (DCL~-, SRC~, ORC~-, FBC}H)
{DCL-, SRC-, ORC+, PRC-)
3. (DCL+, SRC+, ORC-, PRC-)

.

Final States

6. (DCL-, SRC -, ORC~-, PRC+)
7. (DCL+, SRC+, ORC+, PRC-)

This new net captures the same set of linguistic facts as Figs. 11-2 cr 11-3.

The list of features associated with each arc can be considered an elimination list. In this
simple example, if parsing iz proceedin; from left to right along the arcs, one can keep a fea-
ture list and cross off any feature m: 'l’ed "-" on iise arc that one is about to take. I1f all features
are crossed off, then that arc canrot be taken; if not, then anv features that remain are possible
globai interpretations for the structure parsed so far. In LPARS, the tesis which keep track of
these syntactic features are performed in the action routines (as descr”™ d in Sec.11-E).

Notice that the parsing process can be started at any place in the net (not just at an initial
state). and still proceed in a 3yntactically meaningful fashion. Notice also that this new transi-
tion net does not have the undesirable features cf the net in Fig.11-2. If a noun phrase is found

to the left of a verb, only one parse structurc reed be created, as shown in Fig. 11-8.

SENT
——
NP VERB

A

Fig. 11-8.

Section V describes the parse structures created by LPARS in more detail. This parse
structure would have associated with it the syntactic features (DCL+, SRC—~, ORC+, PRCH+) in-
dicating that it could be part of a declarative sentence or of an object or prepositional relative
clause. Ag parsing continues, these features restrict the arcs which can be taken.

In this way, syntactic features provide a way cf letting structure recognized in one part of
a sentence influence parsing donz in another part of the sentence, while keeping a very stream-
lined transition net skeleton.

The crossing off of syntactic features in this simple example was very straightforward. In
a more complex example, the logic in the action routines might involve more complex tests be-
fore crossing off a given feature Thus, more complex functions can be associated with the arcs
to test the syntactic features.

The basic concept of keepirg a list of syntactic features, which indicate different possible
global interpretations for the structure parsed up to a given point, is a very general one and is
extendable to a wide range or syntactic phenomena.

There are two major advantages gained by using syntactic features: (1) They allow the gram-
mar to be expressed compactly, thus cutting down on petuntially exponential inefficiency; and
(2) the syntactic feature logic tends to have little left-to-right bias, and therefore makes it eas-
ier to create a system in which parsing can start at any ncde within a network, yet still proceed
in a well-defined fashion,
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2. Tradeoffs in Grammatical Complexity

In using syntactic features to achieve a streamlined syntactic skeleton, we are really trading
off between complexity of the transition net structure (arcs and states) and complexity of the logic
in the action routines that process syntactic features. This tradeoff allows a reduction in the
number of partial parse structvres which must be constructed, but increases the amount of in-
formation (in the form of syntactic features) which imust be associated with the parse structnres.
For the purposes of LLPARS, this tradeoff is a useful one.

3. Generality of This Approach

As described above, I.PARS uses a trausition net grammar augmented by syntactic features
as the basis for its parsing. The grammar which LPARS uses is, however, a very re-iricted
one. 1t is therefore worth discuss'ng how general and ¢ .rtendible the appreach is.

This secticn broaches this issue by first relating syntactic features to transformational
gramma.ris'16 and then to the systemic grammar used by T. Winograd4 in his natural language
parser. It turns out that syntactic features, if created by looking at a set of transformations,
can be related quite directly to these transformations. Syntactic {eatures are also very similar
to the systemic grammar features used by Winograd. These comparisons are made to help put
the syutactic features discussed in this report into perspective with respect to other syntactic
representations.

a. Syntactic Features vs Transformations

A transformational grammar incluaes a set of rules which take the "decp structure” of a
sentence (its underlying form; and successively transform it to generate a "surface structure"
(the form which would be spoken or written). Most linguistic theory is couched in this generative
transformaiional framework.

This section argues that a transition network with a set of syntactic features can be related
quite directly to a transformational grammar, if the transition network is buill up by systemat-
ically applying different .ransformations to a simple sentence structure. Sectionll-B-1 gave a
simple example of how this can be done for relative clause formation.

It is not a trivial task to change a transformational grammar into an equivalent transition
net grammar augmeited by syntactic features. There are, however, a number of principles
which can serve as guidelines. The simplest principle is first to take a transition net representa-
tion of a declarative sentence (a simple example is shown in I"ig. [1-9).

NP Vv NP PP
O U W w W

Fig. 11-9.

The transformations are then taken one-by-one in the order in which they can be applied
and, in a heuristic fashion, appropriate sticture is added to the transition net for each trans-
formation in turn. A very simple example of how this can be done was given in Sec.11-B-1, In-
corporating the effects of a transformatior into a transition net structure involves usually adding

some arcs, sometimes adding additional states, and always adding one or more syntactic features,




This inc? nental incorpora.ion of transformations was used to create the transition net
grammar of LPARS. 1t is not clear how easily one can create an efficient transition net for a
complex geammar by this process. The LLPARS grammar does not, for instance, incorporate
any of the complex cyclic € ~cts that can arise in some transformations, In general, the crea-
tion of an efficient transition net/syntactic feature grammar from a set of transformations is
probably more an art than a science, although one might be able to automate the procass.

The basic point, however, ig that a transition net grammar with syntac:ic features can be
written so that its creation, and therefore its structure, beare quite a direct correlation to a
set of transformations.

An incidertal point in this regard is that LAMBDA transitions can model quite naturally the
effect of a transformation which moves a structurs from one part of a sentence to another. For
examrle, let us assunie that a transformation can mouve a NP from one place to another. Ve
can create a feature labeled A to represent th's change, and then put the structure shown in

Fig.11-10 into the transition net.

Fig.11-10.

1f the transformation can move the NP from position 2 to position 1, the feature (A+) implie:
that the transformation has been applied, and (B+) implies that it hi.s not. When parsing, if the
NP is recognized in position 1, then the features (A+, B~} imply thut the LAMBDA transition
must be taken later. Similarly, if the LAMBDA transition is taken 1n posi‘ion 1, the features
(A—, B+) imply that the NP arc must be taken in position 2. (An illustration of this very phe-
nomenon was seen in the relative cliuse example. The ORC feature implies that the direct ob-
ject NP has been moved to the front of the sentence and relativiced. Thus, a LAMBDA transition,
with the ORC feature labeled "+" and other featurcs labeled "—", is includcd in the net to bypass
the direct object NP.)

b. Syntactic Features vs Winograd's Grammar

In T. Winograd's natural-language parser.4 a set of "systemic features” was used which was
based on the notion of a svstemic grammar. These features allowed syntactic constructs which
kave been recognized to interact with parsing done later in the sentence. The syrtactic featurcs
which LPARS uses to augment its transition net are vcry similar, if not comnpletely identical in
spirit, to these systemic features.

The features used by Winograd incorporated many more different syntactic structures than
does the limited set of syntactic features used by [LPARS, but were implemented only in a left-
to-righ: oarser.

1t would probably be quite siraightforward to extend the LIPARS grammar directly to incor-

porate the systemic set of features usec by Winograd.

18

——




c. Ex'endability and "Syntactic Economy"

The basic issue in discussing the extendability of the LPARS parsing avproach is not really
whether syrtactic features can accommodate a wider range of syntactic structure. We feei that
Wiiograd's svstem demonstrates that this is possible. The real iscue is whether, at the same
time, the system can retain thc d2sired "syntactic economy" in the sense of a strea_miined transi-
tion net skeleton.

The use of syutactic features allows LPARS to represent many different permutations of the
structure of a sentence on a single transition net skeleton. Thus, for instance, if a NP is found
to the left of a verh, as discussed above, only one syntactic structure need be created. There~
fore, a potential exponzntial explosion is avoided.

1t is certainly conceivabie that with a more comprehensive grammar, such a dramatic col-
lapse onto a single syntactic skeleton might be difficult to achieve. On the other hand, a great
deal of collapsing of syntactic structure onto common syntactic framework ce: 1inly would be
possiblc.

Thus, the important point, from the standpoint of this report, is that the use of syntactic
features to augment a transition net is a very powcrful too: which allows many differznt syntactic
structures to be combined in a single syntactic skeleton, and which dran.iatically reduces the po-
tentia! exponcutial incfficiencies inherent in a 1oca) approach to parsing, and therefore makes
thege potential inefficiencies much more readily managed and easier to tolerate,

The problenis of ultimatc extendability of this approcch to a comprehcnsive gramirar have
not heen systematically explored.

C. LPARS' GRAMMAR

The grammar which LPARS uses contains the four syntactic features discussed above, along
with seven vthers. These syntactic features allow LPARS to acconimodate an interesting, al-
though admittedly restricted, subset of English syntax.

LLPARS' grammar allows the system to recognize the following sentence structures: declara-
tive, imperative, the three relativc cleuses discussed, yes-no questions, and three types of
WIil-type questions. Thc sysiem accommodates both active and passive forins of all these forms
{except the imperativc).

1. LPARS' Syntactic Features

This section discusses each of th2 eleven syntactic featurcs used by LPARS and demonstratcs
their effect in sample scntenccs. Thes. features can he scparated into two groups, »ar "systems)
uf features. The implication of thc separation for LPARS' operation is discussed latcr.

The first system of syntactic features is:

DCL. (declarative) As in "Thc table supports the took"
or "The man puts the book on the table”.
IMP {imperative) As in "Place the book on the table”.
QQ (simp'e question) As in "Does the table support the book ?"
SRC (subject relative clause) As in "which supports the book”.
ORC (objrct relative clausc) As in "which the table supports".
PRC (prepositional relative clause) As in "on which the man places the book".
19
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SQ (subject question) As in "What supports the book ?"

OQ (object question) As in "What dces the table support?”
PQ (prepositional question) As in "On what does the .nan place the
book 7

The other systcm of syntactic features includes only two features: ACT {active voice) and
P.1SS (passive voice).

All the examples given above illustrate the active vuice. San.pie passive sentenc:s are:
"The bcok is supported by the table” and "What is placed on the table by the man?

2. LPARS' Transition Network

Fi're 11-11 shows the sct of transition networks used by LPARS,; they define four

nonterm:nals:
SENT 1§ a sentence, bracketed by start and end character s
SENT a sentence in any of the different permutations
discussed above
NP a noun phrase
PP a prepositional phrase

(Notice that this grammar differs slightly in form from some grammars sirce there is no "verb
plirase® nonterminal. Rather, the SENT nonterminal has incorporated directly the verb phi ase

structure.)

o2 VERB  AFFiX NP PP BY NP

\ b0 / PROPN | LAMBD#
N—

LAMBDA

STRCH SENT  ENDCH

ADJ
SENTI: Qm

Fig. 11-11. T, PARS' transition network grammar.

The grammar also allows fourteen terminal syntactic classes wwhich can be grouped into

four rough categories:
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(a)

(b}

(c)

{d;

Six of the (erminals are straightforward: noun, -2rb, adjective (ADJ), determiner
(DET), preposition (PREP), proper noun (PROPN).

Four are special function words:

WH - WH-type words (such as "who", "whom", "which", «nd "what").
DO - the function word "does".
BE - the functior word "i3",

BY - the function word us:d to make a paseive form, "by".

Two are artificial terminals included to let the grammar know whether it has rec-

ognized ali the input:

STRCH ~— the beginning ¢f the input
ENDCH - the end of the input.

The final termiral, AFFIX, is really a subword morph (word affix). It represents
the ending of a verb, which in 1.PARS can be "s" (active present tense), "ed" (pas-
sive), or NIL (imperative cr root). (LLPARS expects all verbs to be regular.) The
AFFIX arc is treated very mmuch like a LAMBDA arc by most of LPARS' algorithms.

3. Restrictions of LPARS' Grammar

As is now probably very clear, the syntax which LPARS rec-Znizes is quite restricted.

This section describes some of these restrictions explicitly and discusses why they were made.

(a)

(b)

{c)

(d)

[.imited sentence structures: The emphasis in LLPARS is to develop a locaiized
approach to parsing. Therefore, we have kept the syntax quite limited to allow us

to focus more fully on the basic problems invoived in the local approach.

Sma'l Morph Problems: Due to the crudity of current phoneme recognizers, we
decided to limit the amount to which small words and small morphs werea allowed.
This decision results in a number of restrictions: oaly singular noun phrases are
allowed (therefore, no subject-verb number agreement checks are necessary);
only present tense is allowed, although both active and passive and root forms of
the verb can be used {thus, no complex affix hopping considerations need be con-

sidered);, also, the use of pr.nouns is not hanaled.

To mak2 the grammar simpler and more manageable, a few other restrictions are
made: only one clause can nodify a noun (although an arbitrary number of recur-

sively nested modifying phrases is allowed); also, conjunctions are not allowed.

A further restriction. which deserves separate mention, is that left recursion is
not allowed (i.e., allowing a nonterminal to start with itseli). The local parsing
algorithms discussed in Sec. V would have to be somewhat mouified to accommodate
left-recursive structures.

These are some of the most glaring restrictlons which LPARS makes. Clearly, there are

numerous complex and ..ot-so-complex linguistic constructs which LPARS also does not account

for. None of these restrictions is made necessary by any inherent incapability of the LPARS

approach. Rather, we felt that, due to the crudity of current front-end analyzers, it would be

overly ambitious to tr— to incorporate too much structure at this tiine, partiularlv structure
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that depended toc much on small function words and sma.. morphs such as noun and verb endings.
Also, the primary focus of the present work is on developing the basic structure of the local ap-
proach, in a limited sys.em using techniques that are general and extendable. Once such an ap-
proach is understood, extension is a much easier task.

D. SEMANTIC FEATURES

This section describes the semantic component of LPARS. Consisting primarily of semantic
feature checks, LPARS' semantic processing is quite limited. Semanti: featu-es are a widely
used means of incorporat . ng a semantic component into a syntactic formalism.”'4

Each word in LPARS' vocabulary has a list of semantic features describing attributes of
that word. Each semantic feature corsists of a name and either a value or a list of possible

values.

1, Semantic Feature Checks

The feature list of the noun "table" includes the features (ANIM MINUS SUPP-SUB PLUS
CONT-SUB MINUS):

ANIM MINUS means that a table is inanimate.
SUPP-SUB PLUS means that a table can support objecte
CONT-SUB MINUS means that a table canrot contain objects.

The feature list of the verb "support” includes the features (CONT MINUS SUPP PLUS):

CONT MINUS means that the action is not that of containing.
SUPP PLUS means that the action is that of supporting.

The feature list of the preposition "on" similarly includes the features (CONT MINUS SUPP
PLUS).

Two examples of typic. semantic feature checks involving these features follow.
kExample .

f a verb has the feature (SUPP PLUS), check that the subject of that verb has the feat:'re
(SUPP-SUB PLUS). Thus, "The kitchen supports the book." would not be recngnized as an allow-
able sentence, while "The table supports the book.” would be accepted.

Example 2.

If a preposition has the feature (SUPP PLUS), check that the object of thet preposition has
the feature (SUPP-SUB FL1LUS). Thus, the phrase "on the kitchen" would not be recognized as
a prepositional phrase, whereas "on the tab):" would be recogniz.d.

2. Semantic Feature Checks Used by L.LPARS

There are five different general cases of semantic feature agreement cnforced by LPARS.

These are all enforced by testing appropriate features, namely:

Subject-Verb Agreement:— The subject must be capable of performing the action asso-

ciated with the verb. 1f the sentence is passive, of course, it 35 the "deep~structure"
subject that must be checked for this agreement
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The table supports the book.

+* The table contains the book.

The book is supported by the table.
*The book is contained by the table.
The man places the book on the table.
* The sofa places the book on the table.

Verb-Object Agreement:— The object must be capable of having the verb action per-

formed to it.

* The table supports the kitchen.
* The man places the fireplace on the table.

Preposition-Object Agreement:— Since a preposi‘ion denotes a relation, the object cf

a preposition must be able to maintain that _ .iationship with other :bects.

on the table
#*on the kitchen
* in the table

Modified Noun-Prepnsition Agreement:— Similarly, the unoun modified oy a preposi-

tional phrase must be able to maintain the relationship specified by the preposition with

other objects.

= the fir. )lace on the table

* the livingroom in the bookcase

Adjective-Noun Agreament:— Only certain adjectives can modify a noun.

thie friendly perscn
# the green person
*the rectangular man

the smali dish

As with most attempts to introduce order into linguistic phenomena, it is certainly possible
to imagine violations of these siinple semantic feature constraints. For instance, it is conceiv-
able that in free speecl: one might refer to "the rectangular man.” As a result, a set of feature
checks of the sort used by LPARS is useful only «shen the scene being talked about is restricted
and well understood.

Section II-E describes how the enforcement of these semantic feature checks fits into the

transition net grammar.

3. Semantic Features vs Syntax

it has been ax‘gued’8 that "semantic” feature constraints of the sort used by LLPARS (often
called "selectional restrictions") are really syntactic in character. This argument can be under-
stood by observing that one can transform a semantic {feature grammar into an equivalent gram-
mar without any semantic features by using many more nonterminal and terminal syntactic classes.
Instead of allowing nonterminal nodes to be flagged with the semantic features of component words,
the new grammar would have a special nonterminal for each combination of semantic features
possible in the nld grammar. In this new grammar, all the semantic feature information is im-

plicit in the name of any given syntactic class.
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This argument is a valid c.*=. It points up tie limitations of the semantic processing pres-
entiy incorporated into [ PARS.

4. Extensions to the Semantic Prorc¢ssing

One interesting extension of LPARS' semantic component would be to let the parsing take
place in the context of a particular "scene" being talk>d about. Thus, if the words "the dictionary
on the table" are parsed, these would only be formed into a noun phrase with a modifying prep-
ositional phrase if an instance of such an object existed in the s 2ne being discussed.

Similarly, relative clause constructs such as "which th= man placed on the table" would only
be recognized if some event hiad occurred in th2 course of previous interaction which could be
related to the event be:irg described in the clause.

This extension of the systerv could be a major project. Yet it would fit quite naturally into
the overall .LPARS framewor Such an approach would involve using semantic processing of a
clzarly non-syntactic variety.

E. ACTiON ROUTINFS

We now describe the operation of the action routines associated with the arcs and termiral
states of the grammar. The action routines examine syntactic and semantic features to deter-
mine when ust: of the arc or terminal state is to be allowed. Central to these routines are the
information lists which they operate upon.

1. Information Lists

As parsing proceeds, the relevant syntactic and semantic information is kept in information
lists which are attached to each parse siructure built up. For terminals, the information list
consists of the list of semantic features associated with that word. For nonterminals, the in-
formation list is constructed by the action routine_ as described helow.

An information list has the form of a 1LLISP property list: an zlternating sequence of tags and
values (TAG1 VALUEt! TAG2 VALUE2 ...). A value may itsel® Le a property list in turn.
This property list corresponds quite closely to the set of registers which Woods” uscs to aug-
ment his transition net grammar. Therefore, in this section, the tag-value pairs are referred
to as registers.

As parsing takrs place, the action routines examine the information in these registers ‘o
see if the use ol 2n arc or terminnl state is to be allowed If su, they place updated information
into the registers (actually into a new copy of th: registers) which can be examined in turn by

later action routines.

a. Registers Used by thc SENT Net

This section describes the registers used by the action routines in the SENT nct. These
registers are:

FEATLIST (syntactic feature list) The value of this register is the list
of syntactic features, together with
their values (PLUS or MINUS).

SSUB (surface subject) This register contains the semantic
feature information describing the
surface subject of the sentencc. The
register ‘c set by the action routine
of the NP arc which corresgponds to
the surface subject.
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JOBJ (surface objectj This register contains the semantic
featurs information describing the
surface object or the sentence. The
register is set by the action routine
of the NP arc which corresponds to
the surface object.

BY-NP ("by" r. :n phrase, This register contains the semantic

or "pzceive subject") information describing the deep struc-
ture subject of a passive sentence (i.e.,
the NP "the table" in "The book is sup-
ported by the table). The register is
set by the action routine corresponding
to this NP in the net.

WH (WH word} In WH-type questions ari relative
clauses, this resister ‘s set to contain
the semantic inf>rmat.on describing
the WH wurd (i.e., wtat, who, whom,
which).

PREP (preposition) In a prepositional relative ciause (PRC)
or a prepositional question (PQ), this
register contains the information de-
scribing the preposition.

PP (prepositional phrase) In a sentence with a verb requiring a
prepositional phrase {such as "place",
or "put"), this register contains the
semantic information describing that
phrase.

VERB (verb) This register contains the semantic
i.~formation describing the verb.
If, during the parsing of a given sentence (or sentence iragment), any of these structures
has not been recognized, then the associated register contain> NiL.

2. Two Examples

We now give two examples of how these registers are used. Let us assume that we are using
the SENT net to parse the phrase "which the table supports". In parsing this structurs, a num-
ber of arcs are traversed in the SENT net. T2 determine that an arc can be traversed, the action
routine associated with that arc nust be cailed. That action routine accepts as input two informa-
tion lists:

(a) The information list of the SENT net parsed so far.

({b) The information list of the terminal or nonterminal currently being parsed (in this
example, the WH, NP, and VERB successively).

The action routine returns NIL if the arc cannot be traversed. Otherwise, it returns a new

information list representing the entire SENT structure parsed, including the current arc.

Example 1
*which" The action routine associated with the WH arc in the grammar
sets the WH register to contain the information of the word
"which"., 1t also sets the FEATLIST register to indicate that
the structure is either PRC, ORC, or JRC, either active or
passive.
*the table” The action routine associated with the surface fubject NP sets

the SSUB register to contain the semantic information asso-
ciated with the NP "the table". It sets the FILATLIST register
to indicate that the structure is either PRC or ORC, and that
it is active.
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"cupports" The action routine associated with the verb arc is called, and
since the sentence is active, it checks to see if the NP de-
scribed by the SSUB register can be the subject of the vert.
Had the sentence been passive, it would huve checked to see
if the SSUB NP could be the object of the verb. 1f the S5UB
NP had nut been rrcognized (as would have been the ca<e when
parsing a senteiice fragment starting with the verb), then no
check would have been made. TLe action routine thea sets
the VERB register to contain the semantic informat'on describ-
ing the vert The information in the FEATLIST re zister stays
the same,

Er.mple 2

If the words being parsed are '# which the kitchen supports!, the parsing would not succe=d,
iince the semantic checks are not satisfied. The parsing of the WHl and the NP would be the
same as in the previous example, but the action routine associated with the verb would return
NIL after it finds that the NP cannot be the subject of the verb.

3. Brief Summary of Acticn Routines

Each transition arc action routine takes as input wo lists of information: one made p by
the previous parsing in the net, the other from the terminal or nonterminal currently being parsed.
The routine processes these two lists of information to make sure that the arc can be trav-
ersed. If so, a new updated list of information is returned.
The initial and final state action routines are similar but accept only a single input, the ]'st
of informution made up by parsing of previous arcs in the net, and determines whether the scruc-

ture which has been parsed can begin or end (as appropriate) at that particular state.

4. Parsing l.ocally

Since LLFARS uses the transition net to parse locally, the action routines must be written so
that the system can start left-to-right parsing from any place in the net. Ii is not difficult to
structure the action routines tn allow this flexibility, but it does require some thought.

One potential problem is that semantic feature checks cannot assume that a given construct
will always have been parsed just because it is to the left of the current arc being traversed.
For instance, when parsing a verb in a declarative sentence, one cannot assume that the surface
subject will always have been recognized. As a result, any semantic test must first ascertain
that the required registers contain semantic informatijon.

Similarly, syntactic feaiure checking must be set up so that it can start anywhere in the net.
This is not difficult to achieve. In fact, one of the major advantages of using syntactic features
is that the syntactic feature logic consists mainly of crossing off all features which cannot use
an arc or terminal state, and thus has little built~-in left-to-right bias.
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i1l. LEXICAL RECOGNITION AND PHONETIC SCRAMBLING

This section describes the approach to word recognition taken by LPARS. Since LPARS is
not coanected to a working phoneme recognizer, there are two parts to this description: first,
how LPARS generates "scrambled input" which simulates input obtained from a phoneme rccog-
nizer;, and second, how the word recognitica algorithm processes this input to reconstruct wcrds
which might be present.

[n designing the phonetic scrambler and the word recognizer, a balance has been attempted
between simplicity on the one hand, and acceptably realistic simulation of real phonatic input on
the other. The main emphasis of the present work is on the use of higher~level linguistic con-
straints to guide lexical analysis, rather than on developing sophisticated meth ?'s of performing
lexical analysis with a given front end.

There are some quite complex phenomena which can affect iexical recognition with a real
front end. These phenomena include coarticulation, subra-segmentzl effects involving pitch, 1n-
tensity, and strecs; speaker-dependent eifects; etc. The present research ignores these phe-
nomena for two reasons. First, any attempt to deal meaningfully with tnem in the absence of a
working front end would be difficult. Second, incorporating s'ich phenomena into thc Iexical rroc-
essing of the LPARS sysiem might cloud the fundamental higher-level issues involved in LPARS
design.

Thus, the lexical scrambling and recognition scheme used by the LLPARS is not presented as
the last word in lexical rccognition of continuous spcech. On the contrary, it is prescnteu as a
simplc scheme which is easy to urderstand, and which preserves the basic characteristics of
spoken input.

Our work makes only onc funcamental assumption — that the matching of a word against a
section of input can be done at a variety of levels of contidence. In .hc present work, phonetic
distance is used to express thcse levels of confidence.

In LPARS, phonetic distances are determincd from the confusion statistics used when the
scrambler introduces errcr into thc input it prepares for LPARS. With a real front end, of
course, phonetic distances would be based on thc statistical likelihood of the various errors

possible.

A. PHONETIC SCRAMBLINCG

We now describc SCRAMBLE, the phonetic scrambler which produces input for LPARS. The
scrambler accepts as input a string of phonemes correctly spelling an utterance. The scrambler
transforms this correct string of phonemes into a scrambled string containing substantial error.
Ttre error is created by substitution and deletion nf the input phonemecs. SCRAMBLE does not, at
present, insert phoncmes into the input.

In making these substitutions and deletions, SCRAMELE uscs the phoneme similarity table

found in Appendix 10 of thc ARPA Speech Report.”

This phoneme similarity table (the "PST"),
rcproduced as Appendix A of this report, ranks cach of 36 phonemes against one anotker on a
scalc from 0 {meaning completely disuimilar) to 100 (meaning identical). These similarity
measures are a bit artificial since they are bascd on a somewhat abstract nction of phoneme
similarity, rather than un a rigorous evaluation of a spccific phoneme reccognizer. The table is,
however, loosely corrclated to the Vicens-Reddy front e..d.a Although this table is used by
LPARS for its lcxical processing, the approach taken is quitc genera! and is not dependent on

the particular statistics in this tablc.
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Fig. 111-1.

Figure IlI-1 shows in flowchart form how a correctly spelled senlence is scrambled.
SCRAMBLE examines each phoneme in turn, first deciding whether or not to delete that phoneme.
If not, SCRAMBLE then decides what phoneme to substitute. These decisions are made randomly,
weighted by the numbers in the PST as described in Secs.{ and 2 beiow. The scrambling might
have been more complete had insertion of phonemes been allowed. This would have required only
a simple modification of the system.

1. Substitution

For each phoneme that is not deleted, SCRAMBLE must decide what phoneme is to be gubsti-
tuted for it. The follewing example describes this procedure.

Let us assume that the ~~rrect input phoneme is "T". The PST rankg the similarity of
all other phonemes to "T" on a scale of 0 to 100. SCRAMBLE must determine which of these to
substitute for the "T". For each input phoneme which is not deleted, the percentage likelithood

that SCRAMBLE chooses a substitute phoneme in a given similarity range is:

{ percent between 0 and 40

1 percent between 40 and 50
2 pcicent between 50 and 60
2 percent between 60 and 70
4 percent between 70 and 80
40 percent between 80 and 90
50 percent bet'veen 90 and 100

{if nc phonemes exist in a particular similarity range, - phoneme from the next higher similarity
range is chosen).

This particular mapping was chosen by examining tables in Appendix 10 of the ARPA Re-
port,‘9 2nd trying to correlate roughly the PST to the performance characteristics of the Vicens
phoneme recognizer.

The actual percentages used can be varied to test the system at various levels of input error.

The values given here are those used in the system evaluation described in Sec. V1l. Figure I11-2
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90 to 100: P,7,D,CH,K,F,TH
80to 90: 8,J,G,V,DH

70t0 80 S, H,SW

60t070: Z,SH,ZH,M,N,NG,Y,i
50t0 60: W,R,L,U

401050: A,E

0to40: OO,0,AW,AA AR, AE

Fig. lt-2.

indicates which phonemes fall into each of the different similaritv ranges with respect to "T"

(A list of the phonemes used, together with proﬁuneiation, is given in Appendix A. The phonelnie
representation used here is ihat of the ARPA Report. Most phonemes are fairly obvious, except
possibly "SW" which is the neutral vowel "3". )

The result of this scrambling is that, 10 pereent of the time, "T" is scrambled quite badly
finto a vuecalic phoneine or a fricative). The rest of the time the substitution is made almost at
random from a number of stop-like phonemes. Thus, the likelihood of preserving the "T" is
quite low.

Other phoremes (espeeially vowels) tend to have fewer phonemes ranked as being very simi-
lar in the PST. For these phonemes, the likelihood of preserving the original phoneme is much
greater. Thus, SCRAMBIE simulates a front end which recognizes vowels much better than
specific consonants. This is consistent with the Vieens- Reddy front end, on which the PST is

loosely based.
As discussed in Sec. II11-B, the phonetic distanees uscd hy LPARS are set up to refleet these

scrambling statisties. As a result, any two phonemes with similarity greaw, (39n 90 are at a
phonetic distance of zero from cne another, sinee at best substitutions are chosen at ~andom
from the group of phonemes with similarity 90 or above.

Therefore, although SCRAMBLE echooses a single phoneme to replace eaeh input phoneme,
this phoneme really represents a set of phonemes within zero phonetic distance of that phoneme
{above 90 similarity in the PST). Thus, the scrambler simulates a front end whieh often cannot
uniquely identify a phoneme, but can orly roughly elassify it. The Vicens-Reddy front end, for
instance, recognizes a stop-like segment as a stop without trying to ident1y which stop it
might be.

As a result, the string of individual phonemes produced by SCRAMBLE is perhaps hest en-

visioned as a string of possible-ponerre lists, each econtaining several phonemes. Thus, LPARS

input ccntaing implicit ambigr: - as well as error.

2. Deletions

SCRAMBLE decides whkether to delete a phoneme randomly, weighted by its similarity to
both of its neighbors. A phoneme bordered by si.nilar phonemes is more likely to be deleted
than one bordered by dissimilar phonemes. This approach, suggested in Appendix 10 of the
ARPA Report,” is a reasonable approximation of front-end behavior since, for instance, one
would expect a vowel to be more likely deleted when surrounded by vocalic segments, and a eon-

sonant to be more likely deleted when part of a «ungonant eluster,
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SCRAMBLE deletes abou: 15 percent of the phonemes it processes. 1t deletes, at most,
two phonemes in a row. The probahility of deleting a phoneme immediately after a previous de-
letion is half that of the normal probability.

3. Example

We now present an example of phonetic scrambling tn help give a more concrete feeling for
LPARS' scrambled input. First, a string of 27 T's is scramb! =d:

Input

(TTTTTTTTTTTTTTTTTTTTTTTTTTT)

Scrambled String

(THDTTTHBKFSWCHBBPF FT)

This gives an idea of the type of substitutions made. The number of deletions made here,
however, is extremely high, because the likelihood of deletion is affected by the similarity of
adjacent phonemes.

Next, similar scrambling is performed with a string of S's and A's:

Input

(SSSSSSS5SSSSSSSSSSSSSSS5S5S8)

Scrambled String

(EESSZHHZHSZHIHSHSZ Z1I ZSHH)

Input

(AAAAAAAAAAAAAAAAAAAAAAAAAAA)

Scrambled String

(AEAARAEOAAAAAAEOATHAAEADO)
Notice that the string of A's (vowels) is not as badly scrambled as the T's or S's.
In the next example, the string "SATSA T ..." is strrambled.
Input
(SATSATSATSATSATSATSATSATSAT)
Scrambled String
(HASWHOTHHADIHHASAEPHAKHARDS®A)

Here there is much less deletion, since adjacent phonemes are quite dissimilar.
Finally, the scntence "The green coffeetable supports the dictionary" is scrambled. Its
correct spelling is:

(THSWGREENKAWFEETAABLSSWPORTS
THSWDI! K SHSWN AA R EE)
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Two examples of this sentence, after scrambling, are:

(IDYINGDHAAKESWAAKYSHSWBOWFH
KSWGKAASWAARYD

(SWGLWDHAAEEHAAPUBOKLEZDHDA1
PHSWM L EE)

Offhand, it might seem unlikely that the original words are retrievable from this scrambled
hodge-podge. 1t is difficult for a person to even match up parts of the scrambled sentence to the
original. The computer, however, can do a much more thorough, patient, systematic job of lexi-
cal matching than a person can. In fact, the scrambled sentence is somewhat misleading to a
human becuuse it is overspecified, since each phoneme really represents a set of phonemes
which are equivalent under the scrambling.

B. MEASURING PHONETIC DISTANCE

In LPARS, phonetic distances of individual phoneme substitutions and deletions are added to-
gether to determine the overall phonctic distance of a word.

Since the phonetic distances are added together, they must be logarithmically related to the
probabilities of substitution and deletion. Thus, if one word matches an input segment but for
two errors of 1/3 likelihood each, and another word of equal length matches but for a single error
of 1/9 likelihuod (a more scvere error), the liketihood of each word being present is equal (since
the likelihood of two errors of 1/3 probability occurring is 1/3 * 1/3 = 1/9). Therefore, their
tntal phonetic distances must be equal. This will only be true, in general, if phonetic distances
are logarithmically related to the error probabilities.

The actual scale used to measure the distances is not important. LPARS measures phonctic
distance on a scale from 0 to 120. Phonemes with similarity scores of 90 to 100 are of distance
0 from one another. Phonemes with simr.ilarity scores of 0 to 40 are of distance 120 from one
another, representing the probability of 1 percent.

Figure 111-3 snows graphically how error probability and phonetic distance are related in
LPARS. With a real front end, phonetic distances would be based on the statistical probability
of the various possible errors. The phonetic distance associated with bcth substitutions znd de-

letions corresponds to the probability o° that error nccurring in the scrambler.

120
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PHONETIC DYSTANCE

\

1 ) 1 1
0 10 20 30 40 50

PROBABILITY OF ERROR

Fig. I1I- 3.
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C. WORD RECOGNITION ALGORITHM

This cection describes the use of pbonetic distance to measure how accur-ately the phunetic
spelling of a word matches a particular section of input.

Figure 1lI-4 shows a simple example of how the matching is done. The dictionary spelling
of the noun "dictionary" is compared with three sample sections of input. (At present, the sys-
tem does not consider multiple pronunciations of a word.) In LPARS, the input quality is much
worse than these samples might seem ‘o imply. This example is kept simple for clarity, :lso,

the phonetic distances have been chosen arbitrarily.

Totel Distance
Spelling Distance per Phoneme
D I K SH SW N AE R EE
Input Samples
F I K SH SW N AE R EE 40 4
40
I K SW N AE R EE 50 5
50
F I K SW N AE R EE 90 10
40 50

Fig. 11I-4.

In matching a word against a section of input, the phonetic distances of individual substitu-
tions or deletions zre adced together yielding a total distance for the entire word. The algorithm
searches for that combination of substitutions and deletions that yields the lowest total distance.

LFPARS always performs its lexical matching using a threshold maximum distance-per-
phoneme. During the various levels of LPARS analysis, the threshold gets progressively higher
and higher as more-and-more context is used to indicate where = particular word might be pres-
ent. Only words which match within the threshold are recougnized. Thus, if this threshold
distance-per-phoneme is 10, no matches of the word "dictionary" are accepted with total dis-
tance greater than 90 (10 » the word-length).

A very simple algorithm is used to compute the lowest-distance match of a word to an input
segment. The algori-hm performs a left-to-right comparison of the dictionary spelling of a word
against a sectiu. of input, trying all possibilities of substitution and deletion. This process is
essentially a tree search, of a substitution-deletion tree, to find that branch of the tree with the
lowest score. If the score of any partial branch being explored exceeds the threshold distance,
the investigetion of that branch is aborted. If all branches are aborted, then the word does not
match the input segment within the threshold distance. Appendix C gives a flowchart of thi:,
algorithm.

Although the algorithm is very simple, it does generate a great deal of computation. In the
initial scu.® of the utterance, for instance, virtually every word in the voca'>ulary is matched
against the entire input, i.e., starting at every possible phoneme position. This initial scan, of
course, is doue at a fairly low phonetic distance, which li:nits somewhat ‘he amount of computa-

tion required.
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D. SOME COMMENTS

We now make two comments on the approach taken nere toward lexical recognition.

1. Local Exponential Explosion vs Vertical Organization

The lexical recognition algorithm clearly has the potential for expcnential explosion of com-
putation as the thresheld is raised higher and higher, and a deeper-and-deeper search is needed
of the substitution-deletion tree when riatching words. On the cther hand, the initial scan is
made at a fairly low-distance threshold (looking for words that are not too garbled), and the
amount of work required to match words at a low phonetic distunce is less than the amount re-
quired for a high threshold.

One of the advantages of the vertical organization of LPARS is that most of the local lexical
matching is done at a fairly low threshold, and higher-threshold scans need be done only very
selectively, in specific places, looking for specific subsets of tha total vorabulary.

2. Fxtendability of This Lexical Approach

The lexical recognition algorithm is not presented as the last word in lexical matching; it is

a deliberately simple scheme. With a real front end, there are many refinements that could make

the matching more accurate. The nature of these refinements, however, is not well audeistood
and constitutes a research problem in its own right. In this report, the main emphasis is on the
use of higher-level constraints tc help guide iocal processirg. Even with more refined lexical
matching techniques, the basic concept of initially looking for words thai match well, and later
selectively searching for words that match les:r well, would ve equally valid




1IV. INITIAL STAGES: LOCAL WORD RECOGNITION

The first two stages in LPARS' processing of an utterance are now described. First, the
initial low phopetic distance scan through the erntire 'itterance looking for long words (content
words) that are not too garbled; and second, the higher-distance matching in the areas adjacent
to and between the word candidates found by this iritial scan, looking for strings of sm..1l func-
tion words, and ior long words which are more garbled.

Ducing these two stages, no tt2mpt i3 made to build any syntactic structure. Only very lo-
¢ lext Y ana boundary criteria are used in the higher-distance matching described here. The
final ot * of this processing is a set of word candidates recognized in all parts of the sentence.
Many c. words may be wrong, ma.ay may overlap, Also, there may be gaps in the utter=.ice
which are ... covered by any word candidate, The goal of this initial matching is to uncover most
of the words in the sentence. These words are then turned over to higher-level parts of LPARS

which continue the analysis in a more comprehensive, systematic fashion.

: I
- INITIAL word HIGHER-LEVEL
TP %1 SCAN [T 772 candidates T~ | PART OF LPARS
| LOCAL ‘
HIGHER-DISTANCE |
MATCHING
Fig. 1vV-1,

Figure 1V-1 shows how thzse two stages fit into the overall LPARS frainework.

A. INITIAL SCAN

When processing an utterance, LLPARS firs: makes a scan tnrough the enti.'e utt rance at a
fairly low phonetic distance. This scan searches only jor content v » (which in LPAKS' vocab-
uiary are all at least 4 phonemes in lerngth).

The scan is maa. by matching the spelling of each word against the input, starting at every
possible phoneme position in the utterance. The scan returns a set of word candidates, cach of
which consiste of a proposed word, ts starting and endiryg phonemes, and its total phonetic
distance,

The follo'wing example shows the results nf scanning a scrambled sentence in this manner,

at a number of different phonetic disiances.

{. Example

The sentence being scanned in this example is "The green coffeetakle supports the ashtray”,
This sentence is scrambled, and then scanned at a number of phonetic distances. (The LLPARS
vocabialary is given in Apnendix 3. All content words are a2t '2ast 4 phonemes in length. The
only unusual {~ature of the vocahulary is that some word 3trings such as "on tep of* and "on the

lert of" are treated as single-word prepositions.)
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"_-\N {: Dhunetic Distance - 45, Minimum Word Length = 4

((CLUTTER 1 4 60)(COFFELTABLE 7 14 90))
This returns a list of word candidates of the following form:
(WORD START-PHONEME END-PHONEME TOTAL-DISTANCE)

The word "coffeetable”, for instance, has been found betwee~ phonemes 7 and 14 at a total
distance of 90. Sii.ce the threshold distance-per-phoneme of *he scan is 15, no word is
found at a tota! riionetic distance greater than 15 * its wordlength.

SCAN 2: Phoneti~ Distance = 20, Minimum W rd Lengu: = 4

({(CLUTTER 1 4 60) (COFFEETABLE 7 %4 90)(CLUTTER 135 17 85)
(ROBERT 14 18 105)(CLUTTER 16 19 95) (CONTAIN 20 25 115)

(DICTIONARY 21 28 145))

SCAN 3: Phonetic Distance - 30, Minimum Word Length - 4

((ROBERT t * 160) (CLUTTER { 4 60) (PERSON 1 5 170)
(FRIENDLY t S5 155)(GREEN 3 5 100) (COFFEETABLE 7 14 90)
(CONTAIN 9 13 170) (CABINET 9 15 200) (INFRONTOF 10 18 250)
(TABLELAMP 11 1% 210) (ONTHELEFTOF 12 {8 290)
(CLUTTER 13 17 85)(ROBERT 14 18 105) (INFRONTOF 14 22 270)
(ENTRANCF 4 19 175) (CHRISTOPHER 16 22 205)
(CLUTTER 16 19 95)(PLACE 16 19 115) (FOOTSTOOL 14 22 195)
(TELEVISION 16 22 195)(INBACKO: 17 22 210) (NEXTTO 17 21 175)
‘CABINET 18 23 200) (PERSON 18 22 170) (CONTAIN 20 25 115)
{GREEN 20 22 95) {(DICTIONARY 21 =8 145))

Notice that, as the phnnctic distance threshold increases, the number of words found in-

creases dramatically.

SCAN 4: Phonetic Distance = 25, Minimum Word Length =

B3]

({CLUTTER { 4 60)(FRIENDLY {1 5 155)(THE 1 2 0)

(THE 2 2 15):GREEN 3 % 100)(THE 3 4 S)(BY 3 5 75)

(THE 4 4 20)(COFFEETABLE 7 14 90} (IN 10 11 45)

(ON 12 i3 40)(CLUTTER 15 17 05) (ROBERT 14 18 105)
(WHICH 14 16 753 (ENTRANCE 14 19 175)(CLUTTER 16 19 9°)
(TELEVISION 16 22 195)(THE 16 {7 45V (CONTAIN 20 25 {15)
(GREEN 20 22 95) (THE 20 21 S5)(DICTIONARY 21 28 145)

(THE 24 24 20)(TIIE 23 24 40)(ON 26 27 40, (WHICH 27 29 19)

(WIIAT 27 2% 75V(WKICH 28 29 25))




This scan is made looking for words of length 2 or greater, and illustrates why it makes
sense to nick up small function \words using context, rather than scanning for them in the
initial scan. A large number of such words is found, most of them wrong,

2. Two Possible Extensions
a. Using Inter-utterance Context

One interesting extension of th¢ initial scan described above is to use semantic constraints
of ¢ glubal nature to restrict the worcs irnitially searched for. This approach is very much in
1 eeping with the vertical design of LPARS.

In an intaractive speech systemn, if the previous context of the dialog can substantially re-
strict the words that are likely to be uttered at particular times, tiien only those words need be
included in the initial scan. Only if the results of this scan proved unsuccessful, need one per-
form the initial scan using a larger part of the vocabulary.

Tkis extension would use inter-utterance contexiual information in a vertical fashion to re-
duce the average amount of computation required per utterance. LPARS presently does not use
conte..t of this sort. Designing a system which uses inter-utterance coniext in an interesting,

meaningful fashion is an extensive project in its own right.

b. Using Supra-segmental Information

One of the inefficiencies inherent in LPARS' design is the necessity of matching every word
at every phoneme position in the utterance. There is, however, a great deal of supra-segmental
information available (see Refs. 20 and 21) in the waveformi which might help indicate where
stressed syllables are, where phrase boundaries are, etc. Such information could be very use-

ful in helping a locally organized system like LPARS restrict the amount of lexical processing
dcne in the initial scan.

B. LOCAL HIGHER-DISTANCE MATCHING

The words recognized in the initial scan are turned over to LOCALMATCH, a routine that
directs higher-distance matching in areas adjacent to and between these words. The =rt of local
scans is described in Appendix E.

Although the LOCALMATCH routine ~ould have been written to operate automatically from
an arbitp~r+ transiticn net, it was written procedurally instead from an inspection of the particu-
lar gr used by LPARS. Section IV-C discusses some possible advantages of allowing a
speech-gystem. designer tne flexibility of prv “edurally expressing the logic which directs such
local word searching.

The type of logic performed by LOCALMATCH is quite simple, due in part to the relative
siinplicity of LPARS' syntax and semantics. Typical acti~ns (all performed at a higher phonctic
distance than the initial scan) include:

{{) Matching for sermnantically acceptable adjectives to the left of nouns (and vice versa:

matching for semantically acceptable nouns to the right of adjectives).
(2) Matching for verbs to the right of nouns (and vice versa).

(3) Matching for prepositions to the right of verbs and nouns, and for determi-ers fol-
lowed hy adjectives or nouns to the right of verbs.
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(4) Ma.~hing for small function-word strings such as "in the”, "on the", "which the",
"in which the”, "who the", ei~,, as appropriate, between two nouns or a noun and

an adjective which are separated by a small number of phonemes,

(5) Matching for function-word strings such &s "the”, "ic the", "what ig the”, etc.
between the beginning of the sentence and a noun or adjective which starts close to
the beginning of the sentence.

The LOCALMATCH routine takes advantage of the word boundary information ubtained from
the initial scan, together with local syntactic constraints of the grammar. This information is
uged to direct searches for small function-word strings that might be difficult to find without

context, and to find more garbled longer words next to words already found.

{. Example

The following is an exa: of an initial scan and subsequent high-distance matching. The
sentence being processed is " i he wastebasket which the green coffeetable supports contains the

dictionary".

Initial Scan Qutput

((STEPLADDER 8 15 150) (COFFEETABLE 18 25 15) (SUPPORT 26 31 5)
(CONTAIN 33 28 10)(DICTIONARY 42 49 95))

LOCALMATCH Output

((CONTAIN 1 5 135)(THE 1 2 0)(PLACE 3 5 90)
(WASTEBASKET 3 10 185)(THE 6 7 0)(STEPLADDER § 15 150)
(WHICH 11 12 12)(CLUTTER i1 14 100)(THE 13 14 12)

(THE 15 17 0) (GREEN 15 17 60)(COFFEETABLE 18 25 15)
(SUPPORT Z.. 31 5)(CLUTTER 30 32 110) (ROBERT 30 33 120)
{THE 32 33 0)(THE 33 >3 ) (CONTAIN 33 38 {0)

(BOOKCASE 34 38 110) (ENJOY >4 38 120) (THE 39 41 0)

(PERSON 42 46 105) (DICTIONARY 42 49 95))

2. Semantics in the Higher-Distance Matching

The LOCALMATCH routine does not use semantics very extensively to help it restrict the
various words that it matches. However, there are a few instances in which semantics are used,
such as when it is looking for adjectives in front of a noun, it need only look for adjectives that
are semantically compatible with that noun.

In general, however, these scans are based on such local information that it is impossible
to incorporate too many Semantic restrictions. For instance, in scanning ior a verbk next to a
noun, one cannect require ‘hat the verb be able to take the noun as a subject, for inctance, since
the noun might be n2sted in prepositional phrases or clauses, modifying the subject.

As a result, the information being exploited by the LOCALMATCH routine i3 primarily the
word boundary information together with some very low-level syntactic constraints, rather than

higher-level syntactic or semantic information.
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1f, however, the semantic component of LPARS was exterded to include a scene with objects
being talked about (as in Winograd's black world4), and to include an interactive dialog with pre-
vious events which could be referred to (in modifying clauscs), the semantic pai: of this lexical
matching could be made much more useful and interesting as discussed below,

C. SOME SPECULATION

We now discuss, in a somewhat speculative vein, some reasons why the LOCALMATCH
routine in a system like LPARS might be more conveniently expresscd proccdurally, rather than
written to work automatically, given any transition net grammar. These argume. s would be
particularly valid in a system with a much more complex semantic component which made use
of a scene being talked about, as mentioned above.

The crucial point is that the goal of the LOCALMATCI routine is not to systematically ex-
plore the utterance in a globally consistent fashion. Rather, thc goal is to use locally available
words, together with a knowledge of objects and events being talked about, to try to identify
fairly local structures in the utterance describing thesc ohjects and events,

The scmantic ! zic that might be uscful in such a routine is considerably different from the
syntactic constraints built iito a grammar. If so, it may not he neccssary (or convenient) to in-
corporatc thc semantic logic, which postulates and searches for local structures in an utterance,
wholely within the syntactic parsing framework. We do not sayv that it would be inipossible to do
so, just that it might introduecc a level of formalism (transition net) which is largely unnecessary
for some types of scmantic logic and wvould therefore be an inconvenient mode for expressing

that logic.

1.  Examplc 1: Recognizing Phrases and Clauses

Suppose a routinc that would help search for noun phrases is wanted., Such a routine might
be callcd whenever the cvical analyzer discovered an aagective or novn,  The routine could use
knowledge about which adjectives and nouns could modifv one another in t task domain to drive
further lexical matching to trv to fill out on entire noun phrase,

This routine might aiso query the particular scene being discnssed to sece what objects are
possihly heing described. The routine might search the scene, obtain a list of possible ohjects,
and if it were reasonable to assume that a determined noun group was heing processed. it could
dicect scans for additional words that might also describe the object or that might help uniquely
apecify which ohjcct was being tatked ahout,

loogic of this sort could presumably use the transition network granimar to direct these
scans, On the other hand, these scans have such a .ocal, specific character that the transition
nct would he hasically superfluous.

The reason for this is twofold:
(a) A noun phraseis a very locai structure and appears unchangedin many global contexts,

{b) The logic being used to lirect the scans is highly specific: it applies only to ncun
phrases and does ot generalize to cover many difforent parts of specech,  On the
other hand, an advantage of a syntactic formalism like the transition net grammar
is that it treats all words ina a svstematic, honmogencons fashion. This is not true
of the logic just described. One invokes the noun-phrase recognizcr only when one
has found a particular clas3 of word. One knows exactly what to do next, There is
no need, for instance, having found a noun, to use the transition net to discover that

an adjective can modifyv it.
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A similar argument would wold for prepositioral phrases. Evern when one considers more |
complex syntactic structures such as modifying clauses, the arguments arc probably still quite
valld. For instance, if the system has stored a number of events (i.e., X did Y, X did Y to Z)
it n.ight be desirable, having found descriptions of X and Y, tc direct scans to see if somehow

these structures could be incorporated into a relative clause describing the event stored, Here

IO e

again, one is looking for specific things, and it might well be easier 1o express this type of logic

procedurally, divorced from the formalisin of the transition network grammar.

2. Example 2: Searching for Smalt-Word Strings

Especially with tne crudity of front-end output, small words pose a very real problemi to a
speech r:cognizer, especially when a number of them can occur together.

As an example, consider the string of words "is in the". If twe nouns (N1 and N2) have been
discovered, huw is one to test the possibility of the string of small words being present between
them? Using the transition net grammar, one would ask: "Can Ni be followed by a small verb,
which can be followed by a small preposition, which can be followed by a small determiner,
which can be followed by N2?" This involves a great deal of threading one way through the
grammar, with very little lexical information to base any parsing choices upon.

It would be more convenient to write a program which scanned for the word-string "is in
the" as a unit, whenever it observed that two nouns, N1 and N2, are x * v phonemes apart and
that N1 can be "in" N2. The answer to this ques*ion is, of course, not obvious and is probably
dependent on the particular vocabulary and syniu - used, on the application, and on the accuracy :
of the front end.

3. What Use Then Is the Syntactic Formalism?

Sections 1 and 2 above offered some arguments as to why fairly local matching might best
be done outside the transition network formazlism,. If these soumewhat speculative arguments do
make sense, however, then it is reasonable to ask what such syntactic formalism is good for, if
anything, The answer is that syntactic formatism is needed to assure global consistency of lo-
cal structures found in the manner described above,

Since the logic described is based on fairly local criteria and is basically a set of probabilis-
tic heuristics which looks for reasonable local constructs, here is no assurance that recogniticn
going on in one part of the sentence is globally consistent with recognition elsewhere. The tran-
gition network can be nsed to assure that the entire str' -ture is gtobally ~onsistent, and to direct
attention to possible problem areas (bringing information from all parts of the utterance) if a
well-defined sentence i3 not initially discovercd, The primary focus of the present work is, in
fact, on the problem of how 10 organize a system which uses svntax {expressed in the form of a

transition network) in this fashion.
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\ A LOCAL APPROACH TO PARSING

A, INTRODICTION

This sccuion desceribes the two lecal parsing algorithims used by LPARS: TREE, which
huilds the local partial parse trees; and CONNECT, which connects pairs of such trees together
by proposing words that nught exist between them.  The description of these two algorithms has
been kept at the level of a verbal ot erview in this chapter. More-detailed flowchart descriptions
are given in Appeadix D.

Both algorithms deseribed here involve only left-to-right processing of the grammur, even
though thev are used as part of a locally orgamzed parsing system.

This is the niost technical section of the report A reades interested in acquiring a back-
ground of this material withont tor before) going into more detail is advised to read Secs. B-1,
C-1, C-2, D-1, and D-1-a which give un overview of the two algorithms described.

We first describe the structure of the partial parse trees which form a central part of

LLPARS processing

B. REPRESENTATION OF PARTIAL PARSE TREES (PPTs)

This section describes how LIPPARS represerts svntactic structures. It is assumed that the
reader has some generial exposure to svatactic representation.

A PPT is composed of termiro and nonterminal noedes.  Each terminal node corresponds
to a terminal arc in the transition net, =nd each nonterminal node corresponds to a nonterminal
arc. Each nonterminal node must have one or more sons. The sequence of these sons corre-
sponds to some permitted path through the ne.work which defines that nonterminat & number
of simple PPTs are shown helow (Fig. V -1},

N?\ NP
//i N ’/I \
det odj noun det noun PP
a ; ! I ! !
| i | i |
the  big man the man prep
beside
SENTI
|

NP Verb
\\\ |
det noun places
| i
i i
the men

Fig. V-1,

A PPT is const "ucted out of words that are adjacont in the input. It can span no gaps. Itis
"partial” in the sense that the outer end of a path of arcs taken through an outer nonterminal node

need not terminate ~n a permitted state.
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I'wo points are central to the use of PI¥I's in LPARN:
t1)  Each PPT is very closely tied to the grammar,

(2) "Ancestor links" can be used to represent the tocat ambiguity irherent in @ ght

recursion,

These two puints are expanded upon in the following two seetions,

1. Each PPT is Closely liinked to the Grammar

To understand how the local parsing algorithms opevate (especially the CONNECT algorithm),
one must appreciate how closely the PPTs are tied to the transition network grammar. The
sequence of sons of each node represerts some permissible path of arcs through the transition
network v.hich defines that nonterminal. This path of arcs is contained explicitly in cach node,

In fact, each node includes the following information:

(a) o list of sons

(b) a list of arcs taken (i.e., the path through the network)
{c) the start state (of the path)

!d) the end state {of the path).

Tnus, given a PPT, onec can get directly to the beginning and end states the path takes through
the transition network in ferming each nonterminal node. Therefore, onv can readily investigate
arcs emanating from an end state, for instance, to sec how the path might be extended. This is
an important capability, since the CONNECT algorithm, as discussed in Sec. V-1, consists basi-
cally of exploring wavs i which the paths of two ?PTs can be extended and joined.

Since the PPT is so closelv tied to the grammar, we often talk of the beginning or end state
of a nodr., meaning the beginning or end state in the grammar of the path of arcs taken in forining
the node.

2. LPARS' PPTs vs Woods' Structure Building

The puarse structures described here differ from those constructed by Woods' transition net
parser.” In Wonds' system, syntactic structure is built by user-written BUIL.)O funetions.
These user-huilt structures represent a kind of deep structure rather than the path taken through
the graomrmar. in LLPARS, no attempt is made to construct deep structure as Woods' system
does. The onty parse structures built are created directly from the transition net as illustrated

in Fig. V-1,

3.  Ancestor lLinks

The only unusual feature of the PPTs produced by TREE is the use of "ancestor links"
Ancestor links are used to express the local ambiguity caused by the existence of right recursion
ina grammar.

For instance, assume that noun phrase (NP) and prepositional phr2se (PP) are defined as
shown in Fig. V-2,

This is a cimple example of right recursion since. a NP can end in a F P which canend ina
NP, etc. Thus, if one sees only a noun phrase to the left «f a verh, for instance, one does not

know if that noun phrase is the suhject of the verb, or ii it is arbitrarily nested in PPs modifying
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DET NOUN PP
NP:
ADJ
PRE? NP
L
Fig. v-2.

the subject. Thus, the string of words "the box supports" could be part of ". . which the box
supports..", or "the block in thc box supports. . ", or "thc cube on the block in the box sup-
ports. . ", ctc.

1f ancestor links were not used, there would be an infinite numbecr of ways to connect a NP
to a verb, including thcse shown in Fig, V-3,

/SENT §ENT SENT
/s
NP \}érb NP verb NP verb
A | I
PP PP ...etc
| |
NP NP
A I
PP
|
NP

g

Fig. V-3,

Using ancestor links, however, “wvhencver a NP is found to the left of a verb, the two struc-

tures shown in Fig. V-4 can be produced.

SENT SENT
/" \ ./
NP verb NP verb
A A
PPT 1 PPY 2
Fig. V-1.

The starred link in PPT 2 is an ancestor link, and embodics an unlimited number of possible
global relatiunships. The ancestor link implies that the NP is the rightmost descendant of the
NP arc i1 the SENT net, without specitying the exact relationship. Notice that if the noun phrase
was not a semantically valid subject of the verb, ‘only PPT 2 need be produced.

If only a noun had been found to the left of a verb, only 2ne structure necd be produced (sec
Fig. V-5).
'/SENT
~ \
noun verb

Fig. V-5.
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More formaliy, an ancestor link represents an unspecified chain of nonterminal nodes con-
necting a PPT to a higher-level node. (A chain of NTs is one or more NT directly descendant
from one another, each having onlv one son.) The presence of a1 ancestor link means that a
chain of nonterminal nodes has been deleted and replaced by the ancestor link. As illustrated
in Fig. V-5, this allows a single ancestor link to represent an infinite number of possible
structures.

An ancestor link can be thought of as saying "1 don't know what is to the left of me. Many
structures are possible." Thus, such links can occur only on the leftmost side of a partial parse
tree. (If left recursion were allowed in LPARS' grammar, then ancestor links could also appear
on the rightmost side of a PPT.) TREE automatically inserts an ancestor link whenever a chain
of nonterminal nodes occurs in the leftmest son of a PPT being constructed.

The concept of an ancestor link is a very simple one. 1t is also a very natural one in a sys-
tem such as LPARS. Such links allow the system to recognize a valid, vet ambiguous, syntactic
relationship without being forced to specify what the relationship is. Later, when an attempt is
made to connect the PPT to other PPTs, the relationship can be resolved.

More-complex PPTs containing several ancestor links can also be made. For example,
given the string of words "the sofa supports contains the ashtray endch", one of the possible

PPTs produced is shown in Fig. V-6,

. SENTI
/
. SENT endch
§\~\
S e
o SENT contains NP
/ N\
NP supports the ashtray

the sofa

‘as in: "The box which the table beside the sofa
supports cantains the ashtray ")

Fig. V=6,

Since 1.PARSonly allows right recursion, these ancestor links can occur only on the leftmost
side of a PPT. Were left recursion allowed, such links would also be possible cn the rightmost

side of a PPT.
4, Partial Parse Tree Terms

We now define a few terms useful in talking concisely about partial parse trees.

A "Final Node": A nonterminal node of a PPT is a final node (a) if the path of arcs
taken ends on a permissible final state and (b) if its rightmost son is either ter-
minal or is itself a final node.

An "lnitlai Node": A nonterminal node of a PPT is an initial node (a) if the path of
arcs taken begins on a permissible initial state, and (b) if its leitinost son is either

terminal or is itse.{ an initiai node.
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To "Invoke": Anarc in the grammar "invokes" a word if it is labeled by the syn-
tactic class of the word, It invokes a PPT if it is labeled by the syntactic class of

the top node of the PPT.

A "Context Arc": An arc of the grammar is ¢ possihle context a: for a PPT if it
invokes th> PPT.

C. TREE: THE PARTIAL PARSE TREE CONSTRUCTOR

This section describes TREF, the algoritk..: which constructs partial parse trees in various
parts of the input sentence. In spirit, the algorithm is quite s..nilar to more traditional left-to-
right parsing algorithms. A numher of additional considerations are made necessary, however,
by the local nature of the 1.I’ARS nnproach.

The TREE algorithm itself does not attempt to recognize or hypothesize any words in the
input, Rather, it accepts word candidates which have been recognized by previous activity of
LPARS, and constructs as many different local parse structures as possihle using these words.
1f all the words of the inout sentence have been found, then a parsing of the entire sentencz is
among the parse structures produced. If not, TREE will output a collection of partial parse
trees (PPTs) which are then turned over to a second algorithm, CONNECT. CONNECT attempts
to connect pairs of parse trees together by using the grammar to propose words that might exist
between them. It then tests these words out at high phonetic distance against the input (see
Fig. V-7).

fartial
words ——>!TREE — parse — [ CONNECT]| —= certence
trees
Fig. V-7.

We first present an overview ot the operation of the TREE algorithm. Then we discuss two
problems which do not arise in left-to-~right parsing systems, but which must be dealt with to

implement the local approach of 1.PARS.

1. Goal of TREE

The goal of the TREE algorithm 1s to construct as many different local svntactic structures
as possihle using the input words. Let us see what this means in p.actice. Suppose the word
string "the big man" was recognized. Clearly, these words could all be incorporated into the
PPT shown in Fig. V-8,

N

the bi;_:; man
Fig. V-8.

This, in fact, is the only PPT which |.PARS creates. Notice, however, that there are five
other "subsumed” structures which can be formed (Fig. V-9).

A PPT (PPT 1) is "subsumed" by another PPT (PPT 2) if PPT 1 incorporates only a subset
of the words incorporated by PPT 2, and if the syntactic structure connecting those words is
identical in the two PPTs.
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det adj noun NP NP
| | /N /' \
th big man det ocl:ii ocl:h nolun
ﬁ!e big big man
Fig, V-9,

1t might seem reasonable for TREE to create all possible subsumed structures, on the
theory, in the example above for instance, that "the" and "big" might be correct words but "man"
might have been in error. The approach of TREE, however, is not to produce any PPT which
is completely subsumed by some other PPT which t cecastructs. If any word is later thought to
be in error, LLPARS can break the structure down into smaller parts.

Thus, the goal of TREE is to construct as many local PPTs as possible, with the provision
that no PPT produced is subsumed by another. For instance, given "the book beside the", TREE
would produce the four structures shown in Fig. V-10.

ol R

NP NP
C IS
the book PP the book  SENT
beside NP beside
the {as in: "the hook beside which... ™)
) 2
SENT .SENT
/N / .
NP PP NP PP
/ \ /\ / \ / N
the book  beside NP the book  beside NP

L]

(as in: "put the book
beside the ashtray®)

the

(as in: "put the toble which supports
the book beside the sofa”)

3 4
Fig. V-10.

These four valid ginbal interpretations of the words are all structurally different. Notice that
PPT 2 does not include the word "the", since only a relative pronoun (such as "which") can follow
the preposition in the SENT transition net. Notice also, that PPT 4 really represents a potentially
unlimited number of global relationships because of the ancestor link.

As discussed above, the goal of TREE is to construct all possible PPTs. Another way of
phrasing this goal is to say that TREE hypothesizes all possible global relationships that might
exist in the grammar between all sets of adjacent words.

1t is reasonable to ask why a system should go through this intermediate step of constructing
all possible PPTs. The reason is that once these PPTs are built, LPARS can examine them in
toto, and decide whr{ are=ss of the input are best candidates for further investigation at high
phonetic distance.
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2. Implementation Overview

The following is a description of the TREE algorithm in general terms, to give an overview
of the issues involved. We hope that this overview will suffice for most readers.

TREE accepts as inpu® a list of words, possibly overlappin,;, ordered by their position in
the scntence. It processes these one at a time, thus proceeding from left-to-right through the
sentence. Since at each point TREE builds all poussibie parses, no backup is necessary,

TREE stores the PPTs it constructs in a "phoneme position table" (Fig, V~11) whick has one
cell for each phoneme position in the input sentence. Each cell has a list of all PPTs construrted

which end .t that phoneme position in the sentence.

e

Fig.V-11., Phoneme position table.

Let us take the following simple example to see how the table is u. .. Suppose the following
word candidates were found: (the 11 12) {big 13 15) tman 16 18). The numbers represent
thie beginning and ending phoneme positions of each word in the input., TREE takes each word
in turn and attempts to connect it to every I’PT ending immediately before that word.

Thus (the 11 12) is taken first. Since no PPTs end at position 10, no connections can be
made, » the PPT "the" is recorded at position 12, Next (big 13 15) is taken; it is connected
to "the", and a PPPT "the big" is recorded at position 15, At this point, the PPPT "the" is tflagged
to indicate that it is a subsumed PPT. Similarly, "man" is connected to "the big", vielding
"the big man" ending at position 18, and the PPT "the big" is flagged as subsumed., The resnlt

of this activity is shown in Fig. \ -12,

[W@E‘t [15[16 17 18]

\
DET NP NP
/ / \
the the big  the big man
Fig. v-12,

Notice that once a P” I which uas been incorporated into a larger structure is murked as
subsumed, even though it will not be part of the final output of TREE, it is kept in the table.
Thereforc, if an overlapping word c:zadidate has been found, such as (manufacturer 16 24), it
can also bl connected to "the big" yielding the PPT "the big manufacturer" ending at position 24,

This example is a very simple one. 1n practice, the input being pronessed may contain
several words in anyv section of input. Words may overlap one another at random. Alternatively,
gaps may exist (if they do, of course, ro syntactic connections are mado across ' ese gaps).

Notice also that connecting a word to a single previously made PPT may vield several PPTs.
As illvstrated in Fag. V-8, for .astance, adding "beside" to "the book" yields four different PPTs.
Whenever a word is processed by TREE, it is connected ir as many different ways as possibie
to al! PPTs which end directly before that word. In addition, as discussed below in Sec. 3-f,
TREE looks to sec if the word can be connected to a rightmost subpa:u of each PPT in some other
syntactic context.

Before adding a PPT to the appropriate phoneme position lict, of coirse, TREE first checks

te make sure it is not subsumed by any previously created PPT already on the list. Similarly,
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if the ncw PPT itself subsumes any PPT already on the list, the previous PPT is flagged. These
two checks are aecessary for rcasons described below in Sec. 3-f.

3. Making Syntactic Connections

There are three different ways in which synta_tic connections can be made between a pre-
viously created PPT which has been taken from the phoneme position table, and a new word being

processed. These different connection modes are: (a) appending, (b) pushing, and (c) popping.

Modes (a) and (b) are quite straightiorward; (c) is morc complexdue to ances!or link considerations.

a. Appending

Appending is the simplest mode of connection and is illustrated by an example (Fig. "-13) of
the word "man" being added to the PPT "the big". Here, the end state of the PPT "the b.g" in

the grammar has an exit arc lakeled "noun"; thus, the PPT "the big man®" can be formed directly

NP noun DET NOUN PP o@
VAN | .
the big man NP:

PPT WORD ADJ

Fig. V~13,

Mcre formally, an appending connection is made to a rightmost nonterminal nodec of a PPT.
It requires that the ri-atmost son of that nocde bc a terminal or a final nonterminal. It also re-

quiresthat the rif.utmost state of that node have ar exit arc which invokes the woerd being procec .ed.

b. Pushing

Pushing is illustrated by a similar example: the woid "beside" being added to the PPT
"the book". Here, the end state of the PPT has an cxit lateled PP, and the PP network can start
with a preposition. Thus, the PPT "the book beside" c~n be formed (see Fig. V-14). (A similar

succegsful push connection can be made using the SENT net.)

NP
P N

det noun PP
th‘e bo!)k prep
beslide
Fig. V-14,

More formally, a pushing connecction can be made to a rightmost nonterminal node of a PPT.
1t requires that the rightmost son of that node be a terminal or a final norterminal. It aiso re-
quires that the rightmost state of that node iave an exit arc involing a noaterminal which can
start (possibly recursively' with an arc invoking the word being processed.

Example: In connecting the noun "man" to the PPT "the big", an appending connection can be
made. In connecting the preposition "beside" to the resulting PPT, a pushing connection must
be made to *he PP transition net, Figure V-15 illustrates these two connections.
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NP NP

l,/ . man ——» \\
he big the big man
NP NP
//i " © beside — /\\
the big man the big man P.P

eside
Fig. V=15,
c.  Popp ng and Ancestor Link Formation

Popping is attempted if the PPT is a terminal or if it is a final nonterminal. Popping in-

velves making a svntactic connection through a higher-level net.

NP VERB NP by NP
vt (L (L QL 00 U O
Fiz V=16,

The first step in making a "popping” connection is finding a higher-level context for the PPT
which is ‘o be connected (i.e., an arc whick "invokes" that PPT). ["or instance, in conneciing
a NP to a VERL, theie are three NP context arcs in the SENT net (see Fig. V-16). Each of these
context arcs is taken or-e at a time, and an appropriate PPT of the form shown in Fig, V=17 is

constr: cted.

SENT
|

NP
Fig. v-17.

Next, an attempt is m:de to connect this new PPT to the verb. In only one (the leftmost) of
the three context arcs depic._J in Fig. V-16 will this attempt succeed since this is the anly NP
arc immediately to the left of a verb arc.

In 1ttempting to connect tie new PPT (o the verb, the algorithm will try all three moues of
connection; apoending, pushirg, and popping (if the new PPT ends on a final state’. Thus, the
popoing process i» recursive, as the algorithm tries all possible combinations of muitiple popping
that might yield a connection {as described in Sec. 2-d _elow),

There is a problem invclved in this recursive popping, nam«ly, the algorithm {2s stated so
far) could get _.ito an infinite lorp. For instance, since a noun, .rase can end a prepositional
phrase which can, in turn, end a noun phrase, the algorithm could merrily pop up endlessly from
one to another, It can be seen that this is the ancestor link problem in a new guise. The easiest
solution to this problem is just to keep a list of the arcs already poj .< * *hrough at each point and
abort the recursive popping if an arc already popped through is approached again,

In practice, by visually inspecting the grammar, one can insert tests that abort a number
of pops so that not all possitilities sre attempted. 7These tests are put in to improve efficiency,
but do not alter the basic nalure of the algorithm.
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Mcre formally, a popping connection can he made in the following circu™zstances: (1) If the
PPT is terminal, or if the PPT is 2 final nonterminal node; {2} if there exists a context arc
{which invokes the PPT) which has not been popped through in forming the PPT; and (3) if the
new PP, formed by popping to this arc can be connected (via appending, pushing, or popping)
to the word being processed.

d. Examples of Popping

The algorithm is able to abort the recursive popping successfully and still get all possibie
local structures because it is set up to construct ancestor link structures while making these
popping connections, As describ d in Sec. 3 above, an ancestor link represents an unspecified
chain of nonterminal nodes. Such an ancestor link is creat~d when the ilgorithm pops through
successive nonterminal nodes.

A number of examples using different PPTs can best serve to explain how popping and an-
cestor link formatior take place.

Example 1
NOUN

man

When popping with a terminal, cne first takes each a.c invoking that terminal and attempts

connections. Thus, the PPT shown in Fig. V-18 would be constructed. 1n this case, a second

NP

noun

mor
Fig. V-18.

pop can be made recursivel, since the new PPT ends on a final state. Before attempting the
recursive pop, however, the aigorithm first examines the PPT to see whether it should be trans-
formed into an ancestor link structure. The rule is: if a nonterminal which has only a single

son is to be popped, then the nonte..minal is replaced by an ancestor link structure, 1t is possible
to use this simple rule for two reasons:

{1; The CONNECT algorithm, which processes these PPTs, is set up to expect PPTs

constructed in chis fashi n,

{2) 1n LPARS' grammar, there are no nonterminal nodes which can be made to begin
and end on permitted states yet still have only a single son. The rule would have

to be somewhat modified to accommodate such nonterminals,

In the above example, since the new :’PT to be popped is a nonterminal with a single son,
the algorithm automatically inserts an ancestor link structure, transforming the new PPT as

seen in Fig. V-19,

./

Fig.Vv-19.

49




Even though the NP node has been deleted, t..e algorithm must remember that it is dealing
with a NP and therefore use NP context arcs in making connections. This PPT, for instance,

couid be connected to a verb as shown in Fig, V=-290.

. SENT

n /n xrb
%

'ﬂén

Fig. V-20.

Since a NP can end a sentence, a third recursive pop can be generated of the PPT (see
Fig. v-21).
SENT

*
noua

man
Fig.vV-21.

Again, the algorithm inspects the PPT before allowing the recursive popping to take place,
and, in this case, propagates the ancestor link deleting the SENT node and obtaining the PPT
shown in Fig. V-22.

q/./
soun
man

Fig. V-22,

Thus, the same ancestor link structure is passed up through successive levels of popping.
Again, although now both the NP and SENT nodes have been deleted, the algorithm must remember
that it is dealing with a "TENT. This "propagation" of the ancestor link is done because any inter-
vening nodes are superfluous until the structure is finally connected to the word being processed.
."or instance, the PPT could be connected to an "endch" as shown in Fig. V=23,

SENTI
naun endch
man

Fig. v-23.

Example 2 — a Partial NP

NP
i

adj noun

T ZPT is handled in a fashion very similar to Example 1. Here, however, the ances‘or

link structure which i3 passed up is shown in Fig. V-24,
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NP
/ O\
adj noun
Fig.v-24.
Example 3
SENT
/
/NP\ verb (as in "which the table supports")
det noun

This partial SENT PPT is handled in exactly the same fashion as Example 2. The ancestor
link structure used in the popping is shown in Fig. V-25.

/

SENT
NP verb
Fig. V-25.

e. Tests to Abort Popping in Certain Circumstances

The grammar used by LPARS is rostricted; therefore, the efficiency problems involved in
multiple popping are not prohibitive. With more complex grammars, this problem could become
raore significant.

One potentially useful technique for improving efficiency is to inspect the grammar and insert
logic to abort various possible pops before they are attempted. This could be useful in two gen-

eral situations.
{1) When the word being connected does not follow a particular PPT.

(2) When one is popping with an ancestor link stiructure, and there are several ways
that the PPT can pop to a highec-level context. For example, there is moere than
one arc which allows a NP to end a SENT. Thus, the algorithm as stated can con-
nect a NP to an ENDCH once for each of these contexts, yet the resulting structures
would be identical siace the intervening nodes popped through would be deleted. One
obviously inefficient solution to this problem is to let several identical parse trees
he formed, but let LPARS ignore the duplicates. Another a »roachis to inspect
the grammar and insert logic to abort popping so that only one structure is ever

built in such situations.

In any case, this issue (although important for practical reasons of efficiency) is not central
to the basic algorithm. It is perfectly possible to let TREE explore all possible popping paths
every time, using only the generai mechanism that aborts if the popping starts to repeat itself.
In effect, this amounts to letting TREE use the grammar "interpretively By inspecting the
grammar, one can manually ".ompile” a set of tests that let TREE operate more efficiently.

In fact, it is probably possible to construct a set of rules that allows LPARS to insp2ct the gram-

mar and construct the tests automatically. This possibility is not pursued in the present work.
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f. 'Two Prcblems

There are two unique problems to be faced by a local parsing strategy, problems which
do not arise in a totally left-to-right parsing approach. These problems arise in attempting to
pursue the goal of finding all possible "maximal® local structures (maximal in the sense that
none are subsumed by others),

Problem 1

The first problem might be called that of "finding all contexts for possible syntactic connec-
tions to rightmost subparts™ and can be 1llustrzted by considering the following hypothetical input;
"the man places the book supports". Among the PPTS which can be created from this string are
the two shown in Fig. V-26.

SENT SENT

STNT supports NP supports

AN

/NP ploces ;IP the book
the bon the b\ook
(as in: "the table an which
the man ploces the baok
supports the ashtray ®)
} 2

Fig. v-26.

The problem is illustrated as follows. Since TREE creates PPTs by examining the words
left-to-right, at some point it has created the PPT shown in Fig. V-27, and is attempting to add
to this structure the verb "supports" if possible. As shown in Fig. V-26, not only can "supports”
be connected to the entire structure but it also can be connected to the noun phrase "the book"
in a different ~yntactic contexti.

SENT

il

NP plcces

/\ rh{\

NP
the man book
Fig. V-27.

Thus when examining a new word, TREE must do more than just continue any parsing that
it has already deveioped. It must also see if any rightn.ost subparts of structures that it has

built up can be connected to the new word. There are two general cases of this problem:

(1) 1n the a2xample above (Fig. V-26) where a rightmost son of the PPT can be connected
to the word in a different syntactic ccntext.

(2) The other example s where one can connect the word to the PPT but only if some
of the leftmost gons of the PPT are deleted, For instance, consider the word string
"which the table supports the ashtray". The string "which the .able supports® can
be formed into a sentence fragmett. Yet "the ashtray” cannot be joined to this
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entire fragment. The word "which" must be removed first, after which the structure

"the table supports the ashiray" can be formed.

This problem is not a difficult one to solve once it has been understood, but it does require
a somewhat different parsing strategy than does a purely top-down left-to-right system.

Problem 2

The second problem arises directly from the solution of the first. Namely, in solving Prob-
lem 1, TREE may at times construct a parse structure using a right nost subpart of one parse
structure, but this parse structure may be subsumed by some other parse structure which TREE
has created. This second problem, the eliminaticn of redundant Ff ™, can be illustrated by the
string of words "the book beside the®. The string "the book beside™ generates, among others,
the two PPTs shown in Fig. V-28.

/NP\ /NP\
the bc\zok PP the bo/ok SENT

beside beside

(os in: “the book
beside which... ")

PPT FPT 2
Fig, v-28,

When "the" is added to PPT 1, it yields PP 3 (see Fig. V-29). However, any attempt to

/NP
the boo/k PP
S
beside NP
the
PPT 3
Fig. v-29,

add "the" to PPT 2 will clearly fail. On the other hand, "the" can be connected to a rightm~ !
subpart of PPT 2 ("beside") in another syntactic context, yielding PPT 4 (see Fig. V-su). But,

PP
beside NP
“
PPT 4
Fig. V-30.

PPT 4 is subsumed by PPT 3 and ‘herefore is not wanted. In practice, LPARS creates each PPT
tentatively and throws it away if it is subsumed by a previously constructed PPT, or by a PPT

construs .ed later.

53

R

T MR

P




The two problems discussed above arise from the local nature of LPARS' parsing. Prob-
lem 1 arises from the need to form all possible syntactic connections. In the process of finding
these, however, the algorithm may also find some redundant structures, This gives rise to
Problem 2, the need to throw such redundant structures away. Possibly, a more elegant solution
allows the construction of al! valid parse treces without the redundancy inherent in the present ]
algorithm.

4. Some Remarks on TREE

This section makes two remarks about the nature of the TREE algorithm and its relationship
to other parsing methods.

a. Efficiency Considerations for the Local Approach

The TREE algorithm may seem to be inefficient., 1t certainly can construct & iair number
of different parse struvctures out of the same woras. It must be remembered, however, that all
parsersdo this to some degree using backup, the only difference being that, when backug is used,
only one partial structure exists at a time.

Some left-to-right parsers, such as Earley's,ZZ do construct multiple parse trees. In
theory, stch an algorithm is just as efficient as one using backup. Of course, TREE would
probably construct more partial parse »iructures than Earley's parser, given the same grammar
and the same input, be ause Earley's algorithm expects to be given all the tokens in the sentence
and thus reed only construct PPTs which make senze 1n the possible left-to-right contexts present.

However, the basic point is that, although the number of PPTs constructed by TREE may at
first appear large, this is partly because TREE does not use backup to effectively erase part of
its work, but rather sets it all up for everyone to see. In fact, by doing all the work once and
for all before calling the CONNECT routine, it helps make 1.PARS a niore efficient system than
if it had to redo this parsing many times as CONNECT tried out different possible ways of hypoth-

esizing unfound words between structures in different parts of the sentence.

b. Unique Features of the TREE Algorithm

The local nature of the TREE algorithm results in a number of unique problems which do not

occur in other parsers. 1t is useful to outline these specifically:

(1) The ancestor link problem is unique to an approach which attenipts to create local

structures.

{2) The necessity of finding all possible syntactic connections between structures being
built up is a unique part of the local approach. In the particular left-to-right ap-
proach 1o building local structurcs used ny THEE, this necessity gave rice to the

two interesting problems discussed in Sec. C-3-f above,
(3) The need to have a syntactic formalism which lets parsing originate anywhere in
the grammar and proceed in an organized fashion is unique to the local approach.
D. THE CONNECT ALGORITHM

The task of the CONNECT algorithm is to take two PPTs constructed by the TREE algorithm
and use the grammar to propose possible word-strings which might exist between the two PPTs

(see Fig. V-31).
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LPPT RPPT
Fig. V=31,

We often refer to the two PPTs as the left-hand F>T (L.PPT) and the right-hané PPT
(RPPT). These PPTs bcound an input segment which is to be investigated. CONNECT proposes
word-strings, consisting of at most one content word plus a small number of function words.
which might fill the input segment. Then, CONNECT tests these hypotheses against the input
segment at a high phonetic distance. 1f any match succeeds, the combined PPT is added to the
collection of PPTs being investigated. When processing two input PPTs in this fashion, CONNECT

tests out all possible hypotheses which are syntactically and semantically permisgsible.
)
1. Why Only One Content Word?

It is reasonable to ask why CONNECT searches only for word-strings containing, at most,
one content word plus a small number of function words. Clearly, one nught have allowed
CONNECT to propose a longer string of words. Some limit must be set, however, and the design
philosophy of I.PARS is to keep this limit fairly low. At the opposite extreme to this philosophy,
one approach to sentence recognition might be to generate ali possible sentences and match each
against the entire input. This approach is clearly inefficient, The wh»le structure of LPARS
is designed to avoid such an approach. Thus, the idea of proposing a large number of Yong word-
strings without Iooking at the actual phoneric input is avoided as much as possible by LPARS.

If there is a large section of input between two PPTs, LPARS can make a higher distance scan
through that section ar}d use the words found as input to the TREE algorithm, or use other fa) -
back mechanisms as is discussed in Sec. VI,

it would be simple to expand the "single content word" constraint described above to make
it more flexible. One might also allow werd-strings consicting of two content words and, at
most, one function word. Alternately, if the input section between is fairly small, one might
want to look for, at most, one or two function words. 'The choice made in LPARS is somewhat

arbitrary, and is certainly not the only possibility.

2. An Introductory Example

As discussed above, the task of the CONNECT algorithm is to find all word-strings that
might exist between two PPTs, with the constraint that no word-string contain more than one
content word. This section discusses a 1ew examples to illustrate wha* is involved in this process.

Consider the two ”PTs shown in Fig, V-32,
S/ENTI SENTI
/
strch  SENT NP endch

the box

Fig. V-32.
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Sample word-strings which might connect these PPTs are "supports the", or ".s contained
by the".
Consider the next two PPTs (Fig. V-33).

NP /NP
the dictionary red asbray
Fig. V-33.

Sample word-strings which might connect these PPTs include: "beside the", "in the big",
"which the", "in which the", "supports in the" (as in "put the pipe which the dictionary supports
inthe red ashtray"). In fact, there are a great many possible word-strings which could connect
these two PPT3. (This fact raises the efficiency question of whether one might want tc us:: the
CONNECT algorithrr selectively. The answer to this question is "yes," and is discussed more
fully in Sec. VIL.)

Now let us try to get a feeling for the logic involved in generating these possible word-strings.

3. Extending Paths Through the Net

This section makes some preliminary comments to help make the CONNECT algoritnm's
activity easier to visualize.

Fundamental to this activity is the fact that every PPT is very closely tied to the transition
network grammar (as discussed above in Sec. B). The sequence of sons of each node represents
a permitted path through the associated network, and each PPT node has pointers to the states
in the net on which the path begins and ends. Therefore, it is very easy to explore ways in which
the path might be extended (by examining arcs emanating from the end state).

Let us first take a simple example. Suppose we are given the partial noun phrase "the big"
and asked to use the grammar to see if we can make this PPT end on a final state by hypothe-
sizing at most one content word (see Fig. V=-34).

/NP DET  NOUN PP
LI SN OB O SR ORI O
ADJ
Fig. v-34,

To answer this question, we must look at the end state of the PPT in the net (state NP2) and
follow the arcs that emanate from it. We then see that the PPT can be made to end on a final
state by hypothesizing a noun. The resulting "hypothesized PPT," including the proposed word

is shown in Fig. V=35, 1n this case, n¢ other structures are possible.

NP

théi/g\}oun
?

Fig. V-35.




Now let us look at a more complex example of which the previous example is a sub-par*.

Suppose that the sentence (SENT) net is as shown in Fig, V-36.

NP VERS NP PP

SENT: m © @ 6

Fig. V-36,

Further suppose that the two PPTs of Fig. V-37 have been found

SENTI
N
strch SENT SENT
fl\”’ VERS NP
th/e big pots the dég
Fig. V-37.

The question now is: Can these two PPTs be juined by proposing at most one content word?
For an answer, we first look at the SENT node of each PPT and observe that: (1) the SENT node
of PPT 1 ends on state 2, and (2) the SENT node of PPT 2 hegins on state 2. Thus, these two
paths can be directly concatonaied. But, for the resulting structure to be a valid PPT, all inner-
most nonterminal sons must begin and end on permitted states,

Hence, the two SENT nodes can be connected only if the noun phrase "the big" can be made
to end on » final state by proposing, at most, or~ content word. As we saw above, this can be

done by proposing a noun. Therefore, the two PPTs can be joined into the "hypothesized PPT"

show= in Fig, V-38,

SENTY

N\
stich SENT
NP pats \Nf
| / \
the big Gl the dog

?
Fig. V=38,

This simple example illustrates quite clearly the heart of the CONNECT algorithm, namely:

(1) On some level, paths from both PPTs must be joined.
{2) All inner ncdes below this joining must be made to begin or end (as appropriate)
on permitted states.

These two basic principles are the key to the operation of the CONNECT algorithm. There

are, unfortunate.y, a number ot complications which make the algorithm slightly more complex
than the above example might seem to indicate. [Nevertheless, the basic principles remain those

stated above.
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The two main complications aie:

(1) Having to pop to a higher-level context to make a connection: For instance, given
two noun phrases, one possible word-string connection is a verb. To find this
possibility, the algorithm must pop to the SENT net (see Fig. V-39).

SENT
//
NP verb NP
A | A
? .
Fig. V-39,

(2) Ancestor link considerations: The necessity to accommodate ancestor links poses
further considerations. For instance, when connecting the two PPTs shown in
Fig. V-40,

SENT} SENTI
N, *

N\
strch SENT NP endch

| A

NP

A

Fig.V-40.

First, the SENT1 nodes are joined, and then the SENT node in PPT 1 is extended to join
the ancestor link son of PPT 2, generating the combined PPT (sce Fig. V-41).
’SETITL
/ T~
strch™ SENT “endch
/ T
NP VERB NP

A A

?
Fig. v-4i,

Notice that, inthis example (due to the ancestor link), paths in the two PPTs were joined
at two levels of structure. 1ln a more complex example, paths can be joined at several levels.
(In fact, one can thirk of the CONNECT aigorithm as being able to "zip" two partial structures
together.)

4. Two Parts of CONNECT

The preceding section discussed the basic principles involved in the operation of the CONNECT
algoritnm. We now look at this algorithm in more detail. There are two distinct parts of the
CONNECT algorithm:

(a} First is the JOIN routine whicn joins the higher-level structure of the PPTs,
"zipping” them topether from top to bottom, thereby constructing a hypothetical
comyined tree. This combin~d tree indicates a possible word-string that might
exist between the input PPTs. The JOIN routine by itself determines only tne parts

of speech of the possible word-strings.
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(b) Second is the CONSTRAIN routine which inspects a tree, created by JOIN, with its
hypothesized words, and uses the contextual syntactic and semaantic information to
compile additional constraints beyond mere parts of speech, further narrowing
down what the hypothesized string of words might be. (For instance, if the unclear
section might contain a verb, inspection of the context might allow one to rule out
a number of verbs in the vocabulary.) ‘

The following sections give a simple example of these two routines in operation, and then
describe each in turn. The description of the algorithm ignores lambda transitions. This sim-
plification allows the description to be somewhat cleaner, and does not lose any of the overall
flavor of the algorithms themselves.

a, Simple Example

We now give a simple example to help clarify the individual functions of the two parts of
CONNECT, and st ow how they fit together before describing them in detail. Let us take the
example given in the introduction: two noun phrases at the beginning and end of the sentence,
with a gap between them (Fig. V-42).

SENTI SENTI
N v/
strch SENT NP endch

l A

NP

A

Fig. V-42.

The task of CONNECT is to fina all the ways in which th= two PPTs can be joined together
by words which - .1ght exist between them. The algorithm starts at the top of the two PPTs and
recognizes that each is headed hy a EENT1 node, and that these two nodes can be joined. The

algorithm therefore constructs the structure presented in Fig. V-43.

SENTI
A

strch ? endch
Fig. V-43.

The algorithm places a pointer to this combined structure in a global lecation. The son
labeled "?" represents a cell in a list of sons which is left temporarily empty. 1t will later b«
filled in as processing proceeds. The routine now calls itself recursively with the two PPTs

of Fig. V-44 as argumcnts. The address of the empty son of the higher-level structure is also

SENT NP
A
NP
A
Fig.V-44.
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passed down, These two PPTs are the inner sons of the original two FPTs. Along with these

two structures, the algorithm is passed additional information indicatine:

(1) That it is no lenger processing the highest-level nodes of the trees and thus, for

instance, no popping connections can be attempted.

(2) That beth PPTs are bounded by outside context (the start «ud end characters) and,
therefore, that when processing is finished all inner nonterminals must begin or
end (as appropriate) on permitted states.

The algorithm proceeds to test for possible intervening words by extending the path of the
SENT node of the LPPT starting at the end state. 1n so doing, it tries to complete the SENT
node, incorporating the RPPT (the NP) into the structure. It finds that it can successfully do
this by following a verb arc and an affix arc to the direct object NP arc. It therefore constructs
the PPT shown in Fig. V-45,

SENT

/// \\\\
NP  verb affix NP

A | A

? ?
Fig. V-45.

This PPT is then attached to the previously built structure by placing a p~inter to this PPT
in the cell marked "?" in the higher-level structure above. Thus, the PPT of Fig. V-46 is built
and is accessible through a global pointer.

SENTI

| e

sfrch/ S§ NT endch

// A \\\\\
NP verb effix NP

AL LA

? ?
Fig.V-46.

Now the first part of the CONNECT process, the joining of higher-level structure, is com-
pleted. In more complex examples, this process can take longer and involve several levels of
recursion as several levels of structure are "zipped" together.

The PPT is now passed on to the second part of the CONNECT algorithm, CONSTRAIN,
which examines the entire structure to find additional constraints which < ould be placed on the
verb, such as "transitive," "must be able to take a certain class of noun as subject and as object,”
etc. It then tests all verbs satisfying these constraints against the input.

After the processing of this first possibility is complete, CONNECT resumes trying to find
different ways of joinirg the two structures. Thus, it would also find the passive sentence form,
proposing a word-string of the form "BE VERB AFFIX BY" as in "is iupported by".

Also, had the SEN1 node of the LPPT ended on a permitted state, the a.jorithm could have

dropped down recursively and attempted to connect the twe structures given in Fig., V-47,

NP NP

A A

Fig. V-47.
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These zould be connected by a number <1 word-strings including: PREP, PREP WH, or
WH. In fact, if the right-hand NP had not originally been connected to the ENDCH, the algorithm
would indeed have found these possibilities, The necessity that all innermoust nodes begir and end
on permitted states, however, made it impossible for the algorithm to drop down below the SENT
node in trying to connect t.'» NP,

The following sections describe the two parts of this algorithm in more detail.

b. JOIN Routine

This section describes the logic of th~ JOIN routine which takes two PPTs and creates all
possible hypothetical combined PPTs which can be made connecting them.

The JOIN routine does all its processing of the transition network grammar in a ' 2ft-to-right
fashion, starting from the end states of the left-hand PPT (LPPT) and exploring w= , in which
paths can be extended from: these states to join the RPPT. .

To illustrate how this processing is performed, we first break the problem down into several

components and describe each first.

(1) How an existing path can be extended in a single net.

{2) How a hypothesized path can be initiated in a net.

{3) How a rath can be continued in a Iower net.

(4) How a path extended from the LPPT can be joined to the RPPT.

Finally, we discuss how the entire algorithm is organized to explore all possible connections.

(1) Extending a Path
A PPT node has a sequence of sons which represents a path through the associated transition

network. This path can be extended by looking at each exit arc emanating from its end state.

(a) If the arc is a terminal arc, then an extension to the path can be made readily. To
do this, JOIN constructs a new extended PPT and turns this over recursively for

further extensicn (see Fig. V-48).

SENT SENT SENT SENT
Np NP NP be verb NP verb afflx
A A l A l A [ | l
? ? ? ? ? ?
SENT

NP be vert offix by

A L |

? ? ? ?
Fig. V-48,
(b) If the arc is a nonterminal, however, the algorithm cannot continue to extend the
path in the current net, unless the nonterminal itself can be completed with, at
most, one content word. There are two such nonterminals in LPARS' grammar:

NP, which canbe completed by (DET NOUN); nd PP, which can be completed by
(PREP DET NOUN) where the preposition is "in" or "on". JOIN therefore treats
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these nonterminzl, like terminals when extending a path and inserts the appropriate
structures into the hypothesized extenced PPT (see Fig. V-49),

SFNT SENT
NP verb NP verb NP PP
A A A AN
prep
I
? de‘t\noun
5L
Fig. V-49.

The algorithm can continu~ recursively to extend a path until a state with no permitted exiis
is reached, or vnti' il reaches a state {rom which it could only continue by hypothesizing twc
content words.

(2) Starting a Proposed Path “rom Scratch

The JOIN algorithm can also start up a hypothesized path from scratch in a given transition
netv rk ir a fashion very siniilar to that Jescribed above. !t merelv takes each initial state of

the 1 't and looks at the arcs emanating . . m it and proceeds as above.

(3) Continuing an Extended Path in a Lower et

Arcler possible way to extend a path involves pushing to a lower net, and continuing the
extension of the path w1 L.at lower net. This involves a ccmbination (Fig. V-50) of the techniques

described in the previovs two sections.

NP ,NP
N
det noun det noun SENT
wh
,'
?
Fig. V-0,

{4) Joining «u LPPT Path to the RPPT

There are three fundamental ways (calied Modi s 1, 2, and 3} in which an 1.PPT with an ex-
tended path can be ‘oined to an RPPT.

Mode 1:- If the end state of the LPPT equals the start state of the RPPT.

In this ase, the two paths can be directly concatonated, assuming that all exit action routines

are compatible (which can be checked since each node includes a list of ares taken by its path)
isee Fig, V-51),

SEI‘;IT SENT SENT\
/ \ + 7 I \ === //\ \
NP be verb by NP NP verb by NP

A




The algorithm must then ascertain that the inner nodes begin and end on permitted states.
This is done in LPARS by left-to-right extension ol haths. Thus, a node is inade to end on a
final state by foliuwing arcs from the erd state of its path. Conversely, a node is r.ade to begin
on an initial state by initiating a path at ea.h possible initial state and attempting to extend this
path to join the node.

Mode 2:~ If an exit arc from the endstate of the LPPT invokes the RPPT (Fig. V-52). Again,
the algorithm must still make the inner nodes bcgin and end on permitted states.

SENT SENT
\ +NP —
NP  verb A NP verb NP

A A A

Fig.V-52.

Mode 3:~ If the RPPT has an ancestor link son, and the end state of the LPPT equals the start

state of the RPPT (Fig. V-_.3,. This example is somewhat harder to visualize since, although

SgNT SENT SENT\
AN N\ — S o)
NP be verb NP by NP NP be varb PP by NP
A A A A \
(NP)
A
Fig. V-53.

the two nodes have been joined, additional processing must be done to complete the connection.
In the example above, one must initiate a path in the PP net to be joined to the ance:;ter link son,
thus generating the following possible structure (£ig. V-54) and creating the following entire
structure (Fig. V-55).

PP SENT
[~ — <
/ \‘ e /‘{/_,.»‘ i ,,-/ \\\\ e
prep NP NP be verb PP by NP
A A /N
] prep NP
A
?
Fig. \ -54, Fig. V-55.

{5) Overall Conirol of CONNECT

The preceding sections attempted to give a sound verbal overview of the logic invuived in
the CONNECT routine. The following program outline describes the overall control program
whi‘ h cobrdinates the CONNECT algorithm so that, given two PPTs, it will find all possible
in ‘rvening word-strings.

The only part of CONNZC1 which it does not include is the popping to higher-level contexts
with the LPPT, an- the application of this algori}hm to the PPT resulting from the pop.
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BEGIN CONNECT(LYPT, RPPT)
(1) 1f LPPT is NlL., or RPPT i35 NIL. return.

{2) 1f LPPT can be directly joined {with no extension of the path) to RPPT by
Mode 1, and if ANCESTOR(RPPT) cquals true then call CONNECT(RSON(1.PPT),
LSON(RPPT)).
(Comment: This is the step that handles the zipping together of higher-level
structure. As discussed in Sec. D-3-a, before CONNECT is calleo recursively,
a merged structure is constructed {rom the current nodes, containing 2 tem-
porarily empty scn, and the address of this son is available to the lower inve
cation of CONNECT.)

(3) Call JOIN(LPPT, RPPT).

(4) 1f this is the top level of CONNECT or if FINAL(LIPPT) equals tru~. tlen call
CONNECT(RSON(LPPT), RPPT).

END

ANCESTC *(N) returns true if the leftmost son of node N is an ancestor link son.

RSON(N) returns a pointer to the rightmost son of node N, or NIl. if N is terminal.

LSON(N) returns a pointer to the leftmost son of node N, or NII. if N is terminal.

FINAL(N) returns true if node N ends on a permitted final state.

JOIN(L, R): The JOIN routine performs the path extension and joining described in the pre-
vious sections. It also tukes care of making sure innermost nodes begin and end on permitted
states, 1f there is a higher level of merged structure, it places a pointer to any current "joined"
PPT into the "empty"” son cell of that higher structure. Finally, it calis the CONSTRAILN routine
whenever any combined PPT is constructed.

{6) Attempting All Possible Connections

As described above, the CONNECT algorithm automatically attempts to connect the RPPT
to lower nodes of the LPPT as well as just to the top node (by d-opping down recursively).
Clearly, the converse situation is also desired: namely, to attempt o join the top node of the
LPPT to Ic wer nodes of the RPPT (for instance, see Fig. V-56).

Np SEMTI SENTI
/ N\ * /N — T
det  odj /NP endch N‘P\_\ ‘endch
/ N N -
adj naun det adi adi adj Tnoun
?
Fig. V-56.

To allow this to happen, CONNECT is first called with the top nodes of the two PPTs as
arguments, and then drops down to successive inner sons of the RPPT and calls JOIN with each
of those nodes, and the LLPI’T as arguinents. When attempting these connections, the algorithm
does not allow the top level of the RPPT to drop down recursively.

The only other possible connections which must be attempted are those made possible by
popping with the I.PPT (see Fig. V~57). The only difference between this popping and the popping
connections discussed in the TREE algorithm is that, in this case, the PPT being popped need
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SENT cLNTd

/ \\
strch  + NP verb — - strch SE'NT
|\
adi naun NP verb

Fig. V-57.

not end on a final state. It is only necessary that it can be made to end or a final state by pro-
posing a string of words containing, at .nost. one content word.
Thus, the CONNECT algorithm tries all possible pops it can make with the LPPT, and at-

tempts to join each resulting structure to the RPPT.

5. CONSTRAIN: Compiling Additional Constraints

The part of the CONNECT algorithm describad so far connects two PPTs by proposing words
that might exist in betv ren, but only determines the parts of speech of the words proposed. From
examining the context of these hypothesized words (i.e., the entire combined PPT), one can de-
duce additional constraints as to what the words might be. The information needed for deducing
these additional constraints is contained in the conditions which augment the arcs in the grammar,

An example is probably useful to highlight exactly what ihe problem here is. Suppose the
two PPTs shown in Fig, V-58 were joined by hvpothesizing a verb between them.

/SENTI SENTY /SEY;JTI_
h/SENT NP/ >d h /h SE‘NT\\ dch
strc + endc strc , endc
VAN T
/\ thé table ?  the book

/
the table

Fig. V-58,

A person looking a* this structure would know that not all verbs could exist in this particular
context. The verb must be transitive; it must not require an animate subject, for instance; and
it must be something a table can do to a book. In the normal operation of the transition net gram-
mar, the tests that enforce these constraints are contained in the conditions associated with the
arcs in the gramu~ar.

Thus, one possible way to determine what verb could fit into this context is to take each verb
in turn, and reparse the sentence with that verb and see if the parsing succeeds. This is a very
time-consuming arnd inelegant approach. Somehow we want a way of "turning the constraints
around" and have them tell us what they want, rather than just telling whether a particular string
of words is acceptable or not.

In other words, the constraints must actively suggest action rather than merely answer
yves=no questions. This, in fact is exactly what LPARS allovs, The constraint tests in the

arcs are ‘aritten so that they can be run in two modes:

— e

I
;
]
|
I

|




(1) In one mode, the tests are given two lists of information representiny features
associated with two structures which are to be checked for consistency. The test
will return NIL if the arc cannot be traversed, or else return TRUE.

(2) In the other mode, the tests are passed one feature list and the atom "QUESTION"
in place of the other feature list, indicating that LPARS wants the test to tell it
what constraints must be satisfied, and then to return TRUE just as if those condi-
tions had indeed been met. Each such constraint which must be met is appended
to a global list,

{To allow constraints to be placed on a string of words, the system actually nses
a set of distinct QUESTION atoms (Q1,Q2,Q3,Q4,...) depending on the position of

the word in the proposed word string.)

When a combined PPT has been tound and passed to the CONSTRAIN algorithm, a QUESTION
atom is associated with each word which has been hypothesized. After processing the combined
PPT, CONNECT then has a list of additional constraints which it can use to search its dictionary
quickly to come up with a list of words which would fit.

This *turning around of the constraints" aliows the algorithm to process the PPT only once,
rather than once for each word of the proposed part of speeci.

A simple example is probably useful at this point. Suppose we have the situation described

above: a verb has been hypothesized between the two noun phrases "the table™ and "the book".
Mode {: Normally, when parsing a sentence, the algorithm would do the following.

(1) When parsing "the table", it associates the semantic information describing this
noun phrase with a marker called SSUB in the list of informatiun associated with
the SENT mode.

(2) When parsing the verb, it assures subject-verb agreement between the information
tagged SSUB and the information associated with t1v verb. For instance, if the verb

required an inanimate subject, the test assures that the subject had been animate.

(3) When parsing the second NP, it similarly essures whatever agreement was

apgropriate.
‘4) When making the final state test, it makes sure that the verb was transitive,

Mode 2: Since we do not know what the verb is, we construct the PPT given in Fig. V~59.

/SENTI
-~ |
strd'./ VSENNndch
gl
NP verb NP
7 \ \

the table Q1  the book
Fig. V-59.
‘This PPT is then subjected to the [ollowing parsing process:

(1) When parsing the first NP, the parser behaves just as in Mode { since nothing is

changed.
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(2) When parsing the verb, Mode 2 is activated. The algorithm must determine what
constraints are to be satisfied. Since the - ubject is not animate, the constraint
(ANIM MINUS) is added to the global list of constraints associated with the QUESTION
atom Q1, indicating that the verb must not be one which requires an animate subject,
In this case, the constraint (CONT MINUS) can alsc be added, indicating that the
verb could not be a "containing” verb such as "contiin" or "hold" since "table"” does
not rmake sense as the subject of such a verb. A new list of information to be as-
sociated with the SENT node is constructed, with a QUESTION atom {(Q1) being
associated with the tag VERB.

(3) When parsing the second NP, additional constraints might be found in much the

same fashion,

(4) When performing the final state test, the test which assures that the verb is transi-
tive sees the atom QUESTIO Y associated with VERB, and would therefore add the
constraint (VERB TRANS) to the list.

The net effect of thisz activity is to create the following list of constraints ((ANIM MINUS)
(CONT MINUS) (VERB TRANS)). A list of verbs thct match these specifications is made, and
tested against the input. Any which succeed are incorporated into new PPTs and added to the
list of PPTs which LPARS is ucing.
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Vi. OVERALIL DESIGN OF THE LPARS SYSTEM

in this section, we review the whole of the LPARS system and discuss how the different parts
fit together. We then describe the fallback (or backup) mechanism built into LPARS. Finally.

some inter. ~*ir 4 issues involved in coordinating the various subparts of the system are discussed.

A. OVERVIEW OF THE 1.PARS SYSTEM

Figure VIi-1 outlines the basic flow of control in LPARS; this involves 4 basic steps.

input

| INITIAL |
| SCAN |

A

candidates ‘ H |

——» LOCALMATCH |

[ TRee]
partial

parse
trees

.

f_ !
| CONNECT

sentence
candidatas

Fig. Vi-1.

1. Initial Scan

The first step is the initial scan made at low phonetic distance through the entire utterance
looking for fairlv long words that are not too garbled.

2. LOCALMATCH Routine

The second step is the iocal higher-distance matching, searching for strings of small words

and for more highly garbled longer words, in the areas beside and between the words found in the

initial scan. This matching is done based on very local criteria, with no attemnpt to enforce any

global coordination between processing going on in different parts of the utterance.

3. TREE Algorithm

All words found by the initial scan and the .OCALMATCH routine are input to the TREE
algorithm which constructs as many different syntactic structures as it ean, in all parts of the

utterance, using these words. ©i ai the words of the sentence have been found, then TREF will

construct the entire sentence.
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4. CONNECT Algorithm

These PPTs are then turued over to the CONNECT algorithm which attempts to join together
pairs of the parse structures by proposing word -strings which might exist between them, and
testing these word-strings out at high phonetic distance against the input. [f any word-string

matches successfully. a new combined parse structure is created.

B. TWO HEURISTICS USED BY LPARS

Two heuristics are used to avgment the basic system described above.

One heuristic aids the iritial local word recognition process. if the set of word candidates
output by the ini*ial scan and the LOCALMATCIH routine leaves sunstantial gaps in the utterance,
then the system reinitiates 13cal word recognition in those gaps. It rescans the gaps at a higher
phu aetic distance, and processes any words found using the 1.OCA1.MATCH routine. This is a
sirnple heuristic, which uses very local irformation to direct higher-distaace scans in areas
where further attention is obviously needeu In practice, it is not invoked veryv often.

The second heuristic helps the CONNECT algorithm to compensate for any partially errone-
ous structures which may have been built bv the TREE algorithm. CONNECT will only accept
as input PPTs which do not overlap, and which are within some maximum number of phonemes
of one arnother. Illowever, the TREE algorithm may have attached an erroneous word onto an
otherwise correct structure. To compensate for this possibility, the system has two functions
(RIP-L and RiP-R) which rip leftmost and rightmost words off a PPT, thus obtaining smaller
subsumed structures.

By using these functions, the system can take two partially overlapping I’PTs and rip words
off either or both, to obtain two smaller nonoverlapping structures which can be turned over to
CONNECT. Also, even if the PPTs do not overlap, the system can rip words off either or both
so long as the number of phonemes between them does not exceed the maximum permissible,
and turn the smaller PPTs over to CONNECT.

The two heurictics descr bed above are useful tricks which help the system work more suc-
cessfullv. They do not, however, make anyv pretense of providing a systematic means of finding

the correct sentence, if processing by the whole of LPARS fails.

C. SYSTEMATIC FALLBACK

We now describe a systematic method for fallback available to I.PARS if the initia! attempt
at sentence recognition fails. This fallback method is exhaustive, and will eventually find any
sentence ‘although it might well find erroneous sentences first). In concept, tne fallback coensists
of reactivating the entire LIPARS svstem at a higher set of phonetic distance thresholds.

Three significant phonetic distance thresholds used by LPARS are those used by (1) the ini-
tial scan, (2) the LOCALMATCII routine, and (3) the CONNECT algorithm.

These thresnolds are initially set at levels which yvield reasonable success rates without
exhaustive amounts of computation. However, if the svstem fails to find a sentence using the
standard levels for these thresholds, the system can raise the thresholds and try again. Further-
more, it can do this without having to repeat most of the work already done (as discussed helow
in Sec. 1). In fact, 1.PARS can continve this f.llback process for several iterations unti] a sen-
tence is fcand.

In thecry, of course, continuing the iterative fallback process to absurdly high-distance

thresholds would result in the svstem generating every possible acceptable sentence that it could




construct with its voeabulary, since eventually, at a high enough threshold, every word would
mateh everywhere in the utteranee. In praetice, one must deeide upon some max.mum threshold
levet, after whieh one aeknowlerdges failure.

The remainder of this seetion diseusses how orie might allow the fallbaek to higher-distanee
thresholds to take plaee without requiring that all the previous work be repeated.

It is easy to achieve this goal in the TREE algorithm. The additional words found by the
higher-threshold initial processing are given to TREE together with the old words and the pho-
neme position table containing the previously construeted PPTs. TREE ear proeceed with the pro-
vigion that now eaeh syntaetie eonnection must be made either between any PPT and a new word,
or betwcen a PPT conta.ing a new word and any word. In other words, one does not attempt to
conneet any of the old PP’Ts to any of the old words. This restrietion allows TREL to find all pos-
sible syntactie strueiures. yet the work done in the previous TREE processing remain+ intact.

To allow fallbaek to higher-distance thresholds without repeating the lexical work done pre-
viously is simple in eoncept, but eostly in storage. It requires that eaeh partial lexieal match
whieh was aoorted, tecause it cxeeeded the previous threshold, be reeorded so that it ean be
restarted. This involves a great deal of atorage becauze the initial scan, for instaner, matches
most words in the vocabulary against every phoneme position in the sentenee. Eaeh one of these
matehing attempts usually involves several substitution-deletion eombinations.

Thus, if there were 50 words, 50 phcnemes in the utteranee, an avera7e of 10 partialmatehes
per reeognition attempt, and if two words were required to reeord each aborted attempt, then
50,000 words of storage would be requized (all to proeess one sentenee). On the other hand,
perhaps this is reasonable if one eonsiders that it represents the state of 25,000 paraliel, in-
dependent proeesses that have been temporarily suspended. 1.PARS at present does not imple-
ment this approaeh, but rather reeomputes all tne lexieal matching at the higher-distanee thresh-
olds if it is forced to usc this fallback.

D. DESIGN CONSIDERATIONS FOR TIIE LPARKS S15TEM

Seetions Il through V diseussed the various sub-parts of the 1.PARS system: the imjival sear.,
the LOCALMATCII routine, and the TREXE and CONNECT algorithms. These are the tocls which
the 1.PARS system uses to recognize an utteranee. But just building these tools is not enough.
One must understard what the various tools are useful for, what they are not useful for, and then
design the svstem as a whole around this understanding.

Thercfore, in this seetion we examine the tools whieh have beer developed to see how they
are best uscd.

1. 7Two Modes of Joining PPTs

Consider the task of examining two PPTs developed froin an input utterance, together with
an intervening input segment, to eonstruct a combined PPT. There are two fundamentally dif-
ferent ways to proceed. The alternatives couid be called the "bottom-up” (or "data-directed")

approach vs the "top-dowrn" (or "grammar-directed") upproach.

a. Bottom-Up (BU) Connection

In BU (or data-directed) connection, the system scans the scgment hetween the two PPTs at
a high phone.ic distauce. and then tries to eonsiruct a combined PPT from the two input PPTs

together with any words fourd. In this mode of connection. the previous PPTs are used to
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indicate a section of input to b2 examined at high phonetic distance, but not to indicate explicitly

what word-strings might be expected to occu~ there.

b. Top-Down Connection

Top-down (or grammar-directed) connection is that performed by the CONNECT Toutine
described in Sec. V. Here, the grammar is used to indicate what word-strings might possibly
exist in the gap, and only these specific word-strings are tested against the input.

A number of issues might be discussed to evaluate the relative merits of these two strate-
gies. Here, we look at only one of these issues, namely, how the two stra‘egies perform as a
function of the amount of "context" contained in the two PPTs. To illustrate this issue, consider

the following two examples.

Example 1

Suppose I.PARS is cttempting to connect the two PPTs shown in Fig. VI-2.

SENT1 SENT)
*,
rd
strch SENT SENT\ endch
I /N
NP pats NP
A A
the big the dey
Fig. VI-2.

Using the top-down, grammar-directed approach, 1.PARS discovers that only one possible
word-string can fill this gap, namely a noun. {(Remember that only word-strings containing. at
most, one content word are considered.) Therefore, it compiles a list of appropriate nouns and

tests them against the input to see if any match.

Example 2

Suppose, on the other hand, 1.PARS is attempting to connect the two PPTs shown in Fig. VI-3

NP NP
A A
the dict’onary red ashtray
Fig. Vi-3.

Using the top-down, grammar-directed approach, LI’PARS discovers (even with its very simple

grammniar) that there is a very large number of possible word-string connections; these include:

(1) is contained by the

(2) supports the

(3) in the
{4) in the big
(5) by the

(6) by the big
(7} on the book in the




(8) which the

(9) on which the
(10) on the book which the
(11) which the book on the
(12) supports by the

(and many moure).

1s a result, using the top-down algorithm with these two PI’Ts is not very efficient. Doing
so will exercise almost the entire grammar, and generate almost every word-string conceivable,
each of which must be matched against the input at high phonetic distance. Clearly, this approach
is not very selective in bringing context 1o our aid.

On the other hand, is this surprising? After ali, a noun phrase is a very basic b ilding
block of an English sentence. It can occur in inany contexts, and is structurally the same in each
context. Therefore, it is reasonable that two such primitive structures can be connected many
ways.

What then does this imply?

(1} Need for "Surficient Context"

One implication is that we stould not use the top-down CONNECT algorithm unless the PPTs
involved provide "sufficient context,” in some sense, to make the word-string possibilities quite
selective. This restriction is not surprising when we consider that the CONNECT algorithm is
a very powerful tool; given any two parse structures conceivable, it processes the grammar in
a very rigorous and systemati: fashion to investigate every possible way that they might be con-
nected. The price paid for this power and generality is that we must be selective about the prob-
lems we ask the routine to solve.

This, in fact, is why we have the LOCALMATC! routine. As currently implemented in
LPARS5, the LOCALMATCH routine works on very local criteria (words and word pairs) to in-
vestigate the areas around them. (In an cxtension to the LPARS system, this routinc might in-
vestigate somewhat more-compiex structures, particularly in searching for particular word-
strings which are semantically quitc likely to be present.)

Moreover, the LOCALMATCH routine investigates around and between fairly simple local
constructs in a way that avoids a very systematic, costly processing of the grammazr. Also, it
can be primed to look primarily for highly likely connections. Thus, the LOCALMATCH routine
cuts corners (by using simple tests and heuristics). It can do sn because its goal is not neces-
sarily to uncover the entire utterance, merely substantial portions of it. Onrce these portions
are uncovered, the full power and generality of the CONNEC'T algorithm is standing by to com-
plete the job.

(2) Implication for Scan Threshold Levels

A second, related implication is that, to usc the CONNECT routine efficiently, we must tune
the system so that the PPTs constructed after the initial-local processing usually have sufficient
contex? to be input to that routine. Only when this does not Lhappen, does the BU connect routine

need he called, or the inore-general fallback be invoked.
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1n other words, to use the CONNECT routine effectively, the phonetic distance thresholds
of the initial scan and .OCALMATCH routine must be set so that a high percentage of the cor-
rect words in the utterance is usually found.

2. Vocabulary Density

A second important concept that enters into this discussion is the somewhat vague term

"vocabulary density." Let us taku two examples to see what vocabulary density might mean.

(a) In a sparse (non-dense) vocabulary, on. might set the local scan thresholds to un-
cover on the a ‘erage 85 percent of the correct words in the sentence, and generally
only have a few incorrect words found.

{b) In a den. er vocabuiary, when one cets the local 3can thresholds so that 85 percent
of the correct words are found, a large number of incorrect words are usually
found as well.

This is certainly a highly specific concept of vocabulary density, but a useful one for our
purposes.

a. Factors Influencing Density
There are clearly a number of factors influencing vocabulary density; these includ« -
{1) vocabularv size
(2) front-end accuracy
(3) average size of word

(4) amoum of semantic selectivity which can be brought to bear in the initial local

processing

(5) utilization of supra-segmental information.

b. Embedding of Correct Sentence Fragments

Vocabulary density affects the two connection strategies discussed above because it influences
the degree to which correct sentence fragments are likely to be embedded in larger structures
which include some of the erroneous words.

The more erroneous words discovered, the more likely it is that some of these words will
become attached by the TREE algorithm to a string of corrcct words. Of course, if all the cor-
rect words are found, or if the erroneous word overlaps with a correct word which has bezn
found, no harm will be dore. In general, however, the presence of incorrect words attached to
correct sentence fragments makes the job of isolating the correct sentence fragments difficuit,
and therefore complicates the job of finding the appropriate input segments to be investigated
next.

¢. How CONNECT Deals with Embedding

The top-down CONNECT algorithm can deal with this embedding problem by using the RIP-R
and RIP-L routines described ir: Sec. B above. In so doing, the system postulates that certain
fragments are correct embedded fragments, and tries to connect them. The denser the vocab-
ulary, the more such trials the algorithm would have to make with a given set of PPTs. The
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degree to which this approach is practical depends on an evaluation of the work involved inpostu-
lating embedded fragments and in processing them with the CONNECT algorithm.

The BU algorithm has potentially even more difficulty working in the presence of a great
deal of embedding. This difficulty arises because, in investigating a set of PPTs for the ¢on-
nection of embedded fragments, one might investigate a number of different input segments (per-
haps, in total, consuming a substantial part of the input). With TD connection, during such in-
vestigation a great deal of selectivity is brought to bear, as far as the word-strings locked for in
different places. With the BU algorithm, however, such selectivity is impossible. If a large por-
tion of the input is involved, one probably might just as well rescan the whole inpnut at a high pho-
netic distance.

Thus, the denser the vocabulary, the more difficult it is for both algorithms to work
efficiently.

The vocabulary used in LPARS during its testing was fairly sparse, so these problems did
not occur to too large a degree. When experimenting with the system with higher scrambling
levels, and using smaller words, the problems were observed and, since they were interesting
problems, this section has tried to isolate and summarise them. The present sys‘em has only
attempted to attack these problems in a fairly limited fashion.

3. current I PARS Approach

During evalu-tion of the 1. PARS system, described inSec. VII, only the grammar-directed
CONNECT algorithm was used, and only PPTs containing "sufficient context" were passed to this
algorithm. A PPT was deemed to have "sufficient context"” (a} if it included a STRCH or an
ENDCH, (b) if {t was not a single word, and (c) if it was not a NI’ or partial NP>. When using a
more-complex grammar, of course, these tests would probably need to be more sophisticated

The phonetic distance thresholds were set so that most of the correct words were found after
the initial proc..gsing. Thus, in general, PPTs containing sufficient context were built up and
could be passeu to the CONNFT algorithm. If not, the system would fi1l back and iterate at
higher phenetic distance thre .olds.
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VlIl. EXPERIMENTAL EVALUATION OF LPARS, AND SAMPLE RUNS

This section deseribes the experimental evaluation of thie .LPARS system, and then discusses

a few samole runs which illstrate LPARS' aetivity when investigating a seutence.

A. EXPERIMENTAL EVALUATION

During the e perimental evaluation of LPARS, fifty sentences were input to the system tc be
reeognized (the sentences used are listed in Appendix B}. The following steps were taken during

the recognition of eaeh sentence.

1.  Serambling:— First, the correct phonetic spelling of the sentence is given to the scram-
bling program (the front-end simulator) which transforms the sentence into a string of "scram-
bled" phonemes containing a great deal of error in the form of deletior and substitution. The
statistics used in performing this scrambling are exactly those described in Sec. IIl. 3inee the
scrambling is based on random error probabilities, some sentenees produced contain relatively
small amounts of error, while others contain a great deal.

2. Initial Local Processing:— The string of phonemes is then input to the LPARS system

whieh performs its initial scan and higher-distance local mati hing, attempting to find most of
the words in the sentznce. The phonetic distance thresholds of these scans were set so that

approximately 85 percent of the correct words are usually found by this loeal processing.

3. PPT Constructicua:— Next, the words found by the initial local processing are input to

the TREE algorithm which buiids as many different parse structures as it can in all parts of the
utterance (as described in See. V-C). If one or more entire sentence is found, then I.IPARS pro-

eeeds no further.

4, PPT Connection:— Next, pairs of PPTs are input to the CONNECT routine which attempts
to construct combined PPTs as described in Sec. V-D. Any such combinea PPT which is found
is included in the set of PPTs heing investiga. :d. If this process discover: »sne or more possible

sentences, then LPARS proceeds no further.

5. Iteration at lligher Thresholds:~ If the PPT connection is unsuccessful, then I.PARS

raises the thresholds at which the various scans ar: made and repeats steps 2, 3, ar+ 4 again.
During the evaluation, the phonetic distance thresholds used for the initial scan, the local higher-
distance matching, and the PPT connection were 17, 24, and 34, respectively during the first
iterction; and 22, 26, and 39 during the second iteration. 1f no sentence has been found at the

end of the second iteration, then processing stops and failure is acknowledged.

An attempt to recognize a given sentence, as cutlined above, can result in any of the follow-

ing results,

(1) An entire sentence is constructed by the TREE algorithm from ‘he words found by

the local processing.
(2) A sentence is found by the algorithm that connects PI’Ts.
(3) No sentence is found at all.

Processing ceases at the end of any stage in which one or more possible sentences is found.
When sentences are found, it may be during either the firct or second iteration of the svstem.

Of course, it may be that none of the sentences found is correct.




In evaluating LLPARS, if several possibie sentences were fouad, the recognition of the sen-
teace was considered successful if the correct sentence was included among them. When several

sentenc- were found, the correct sentence was almost always the best match,

i. Evaluation
During the actual eva'uation of LI'ARS, fifty sentences were input with *he following results:

<3 sentences were correctly recognized from v ~ds found ouly by the local process-

ing in the first iteration.

19 sentences we correctly recognized by the PPT CONMECTION algorithm in the

first iteration.
2 sentences were correctly recognized in the second .teration of the system.

2 sentences resulted in incorrect recognition. In both ca_es, the sentence found

differed from the input sentence in a single content word.

3 sentences rasulted in faiware to find any possible sentence at all. In two cases,
two .dja- ont content words were badly garbled, and therefor: the CONNECT algo-
rithm wis uncble to propcse the correct word-string  In the third case, LPaRS

crashed irretrievably due to a program bug.

Thus, the overcll sucress rate of LI’ARS with the fifty input sentences was 90 percent.

2. Comments on LPARS' Evaluation

Tre LPARS evaluati~n described aoove primarily establishes that, given a simulation of a
fairly crvde front end, the ideas embodied in LPARS can he made to work acceptably.
Certa.nly there a: e a number of interesiing fu:tner questions which one might like to ask,

such as how the overall system performance is affected by varying such parameters as:

(a) scrambling probabilities
(b) scrarabling characteristics
(¢) vocabulary size

(d) word size

(e} the phonetic distance le els of the various scans.

1t 'vould be very difficult to p.rsue such issues systermratically with the cui rent 1mplementa-
tion f 1 PARS since it is ve: ~ ¢'aw. Often, 10 to 15 minutes or more of dedicated CPU time is
required per sentence. (This inefficiency is not inherent in the LPARS design, but rather of *%.
current implementation.)

in any case, the primary goal of the present reseai h is on ~avel ,ping an approach to parsing
which allows syntactic analysis to proceed systematically from anywhere in a sentence, and to
understand the problems and issuc< involved in such 2n approach.

la thc present evaluaiion of . PARS, we have described a form of scrambled input, argued
that it has the basic characte sistics of spo’en input for our present purposes, and then demon-
strated t at 1 PARS can operatc successfully given such input. This success demonstrates that
the ideas einbcdded in LPARS are fundamentally sound and coherently for‘mulated, and that, for

instance, there are nou unforeseen factores whi~h somehow invalidate the appreach taken.
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B. LPARS SAMPLE RUNS

We n)w exhibit a numbter of samiple runs of the LPARS system, illustrating various aspects
of the sys\am's operation. In these examples, comnients output by the LPARS system appe2 - in
capitals. Additional comments in small letters have been added by the author to make the exam-
ples more intelligible.

Example 1

This example shows a sentence which is recognized entirely from vords found by the initial

local processing.

(UNSCRAMBILEL SENTENCE)

(THE NVASTEBASKET WHICH THE GRELN COFFEETABLE SUPPORT S
CONTAIN S THE DICTIONARY)

(TH SW W AA ST BESKSWT1Y I CHTHSWG REENK

AW F EFE T AA BLSSW PORTZUKSWNT AA N Z TH SW

D TK SH SV N AA R EE)

(SCRAMRI.ED SENTENCE)
(TYWAW DP EZH P ZH W I CH Y L I NG G AA B EE P AW
PRHSWTHOLPJBSWUTAWDMIHLD SW G TH Z2 Y M AW

I EE)

(ENITLIAL SCAN)
((STRCH 0 0) (S1 “lLADDER 8 15 150) (COFFEETARLE 18 25 15)
(SUPPORT 26 31 S) (CONTAIN 33 38 10) (DICTIONARY 42 49 95)

(ENDCH S0 50))

The initial scan finds three correct ar.d one erroneous words. The words are ordered as
they appear .n rthe sentence. (Recall that he three numbers associated with each word candidate

are start phoneme, end phoneme, and total phonetir distance of the match.)

(LOCAL HIGHER DISTANCE MATCHING)
((STRCH 0 0) (CONTAIN 1 5 3) (THE 1 2 0} (PLACE 3 S 90)
iWASTEBASKET 3 10 185) (THE 6 7 0) (STEFILADDER 8 15 150;

v

HCH 11 12 12) (CLUTTER 11 14 .09) (THE 1. 14 12)
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(THE 15 17 0) (GREEN 15 17 60) (COFFEETABLE 18 25 15)
(SUPPORT 26 31 5) (CLUTTER 30 32 110) (ROBERT 30 33 120)
(THE 32 33 0) (THE 33 33 0) (CONTAIN 33 38 10)

(BOOKCASE 34 38 110) (ENJOY 34 38 120} (THE 39 41 0)

(PERSON 42 46 105) (DICTIONARY 42 49 95) (ENDCH 50 50))

A number of additional words are [ound by the higher-distance matching, including all the
correct words in the sentence. Next, the TREE algorithm constructs all possible local partial

parse structures {rom the words found. These trees are printed ou* below.

(PARTIAL PARSE TREES SORTED BY LENGTID
(STRCII ( (THE WASTEBASKET (WHICH (THE GREEN COFFEETABILE)
SUPPORT AFX)}) CONTAIN AFX (THE DICTIONARY)) ENDCH)
(* (* (* (THE GREEN COFFEETABI.E) SUFPORT AFX)
CONTAIN AFX (THE DICTIONARY)) ENOCI)
(* {* (* (THE GREEN COFFEETARBL I, SUPPORT AFX)
ENJOY AFX (THE DICTIONAPY) ) ENDCID
(STRCH ({THE WASTEBASKET) CLUTTER AFX (THE COFFEETABRBLFE) )
(* (* (T.IE GREEN COFFEETABLE) SUPPORT AFX) ENJOY
AFX (TIIE PERSON))
(* (* (CLUTTER A CONTAIN AFX (THE DICTIONARY) )
ENDCH)
(* {ROBERT ENJOY AFX (THE DICTIONARY! ) ENDCI)
* (* ROBERT ENJOY AFX (TIIE DICTIONARY) )} ENDCH)
(* (* (CLUTTER AFA} ENJOY AFX (THE DICTIONARY)) ENDCID
(* (THE DICTIONARY) ENDCH)
(STRCIT (CONTAIN AFX (THE) 1)
(ROBERT EN.OY AFX (THE PERSON))
(* ROBERT ENJOY AFX (THE PERSON))
(* (CLUTTER AF ") ENJOY AFX (TIHE DPERSON))
(PI.ACE AFX (THE STEPLADDER))

(CLUTTER AFX (THE BOOHKCASE))

The symbiol * means that the {ollowing son is an ancestor link son. The symbol AFX repre-

sents an AFFIX arc which has been «raversed. (Any I AMRBDRA arcs traversed are nnt indicated




in the printout.} Thus, for instance, the PPT (* (THE DICTIONARY) ENDCH) represents
the struc'ure shown in Fig. VII-1.

SENT)
N
NP endch
A

the dictionary

Fig. VII-1.

Since an entire s - ce (see Fig. VII-2) is among these PPTs, LPARS proceeds no further.

(SENTLNCES FOUND)
(STRCH ((THE WASTEBASKET (WHICH (THE GRELN COFFEETABLE)
SUPPURT AFX)) CONTAIN AFX (THE DICTIONARY)) ENDCH)

SENT)
D e
strch” SENT endch
\\‘\
NP contains NP
the wastebasket SENT the dictionary
\ \\
which NP supports
A

the green cofl~etable
Fig. VIi-2.

Example 2

(UNSCRAMBILED SENTENCE)
(THE COFFEETABLL NEXTTC TIE BOOKCASE IS ILLUMINATE D
BY THE TABLEULAMP)
(TH SW K AW F EE T AA B 1 N SW K S T OO0 Til SW B U K AA

ST Z11L.OO MINAATT BAITTIH SWT AA B I AE M P

(SCRAMBYLED SENTENCE)
(SW G AA V EEG AW V R I SW T Z P OO0 5W DI U G AW S I

ST ROONITMAA T P A EE F SW P AAM K § 1 SW)
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(INITIAL SCAN)

((STRCIH{ 0 0) (COFTEETABLE 2 9 15) (TALLLLAMP 6 12 115)
{GREEN 8 11 50) (NEXTTO 1uv 5 40) {(BOOKCASE 17 21 5)
(ILLLUMINATE 24 31 5) (ENDCE 43 43))

Here, four correct ard two erroneous words are found. (Note that the word candidate

"tablelamp" is erroneons since it is in the vrong place.)

(LOCATL IHNGHER DISTANCE MATCHING)

CISTRCII 0 0y (TIHE 1 14 0) (COFFEETABIL 2 9 15)
(TABLELAMP 6 12 115) (GKEEN 8 11 50} (IS 10 12 40)
(NEXTTO 10 15 40) (SUPPORT 13 17 140) ((IIE 16 16 0)
(BOO* TASE 17 21 5) ({IS 22 23 0) (ILLUMINATE 24 31 5)

(TIIE 32 34 0) (BOOKCASE 35 39 115} {(ENDCII 43 43))

In this case, not all the words are found by the initial local processing. Therefore, the
system constructs oniy the partiaf structures shown below.

{(PARTIAL. PARSE TREES SORTED BY [LENGTH)

(STRCII ( (THE COFFEETABLE (NEXTTO (TIIE BOOKCASE) )1 IS
ILLUMINATE AFX))

(STRCH ((TIIE CCFFEETABLE (NEXTTO)}}))

(This PPT is not subsumed by the previous one, even though it might appear to be.

It represents the PRC structure "the coffeetable nextto which...",)

(STRCHH ( (THE COFFEETABLE) 1IS))

(* (NEXTTC (THE BOOKCASE)) IS ILLUMINATE AFX)

(# (THE BOOKCASE) IS ILLUMINATE AFX)

{ {THE BOCKCASR) IS ILLUMINATE AFX)

{* TABLELAMP SUPPORT AFX)

ENDCIi

(IS SUPPORT AFX)

(TIIE BOOKCASE)

GRE£N

The system must now vse the CONNECT algorithm to attempt t¢ discover an entire sentence.

(PPT CONNECTION)
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(PPT PAIR)
(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE)) )
IS ILLUMINATE AFX))

ENDCH

PPTS TO BE CONNECTED
(STRCH ((TFE COFFEETABLE (NEXTTO (THE BLOOKCASE})) )
IS ILLUMINATE AFX))

ENDCH
The system now calls the CONNECT atgorithm with the two PPTs shown in Fig. VII-3.

SENTI

e

crch SENT

NP/
/ A
o\
the coffeetcb e PP

is illumir ate endch

nextto NP
\\
the bookcaose

Fig. VII-3.

PROPOUSED PPT
(STRCH ({THE COFFEETABLE (NEXTTO (THE BOOKCASE})))

IS ILLUMINATE AFX BY NP) ENDCH)

A groposed combined PPT is discovered {see Fig. VII-4)

SEV”
- \\\
streh™ SENT endch
il
NP is"illuminated by NP

A / \
the coffeetoble det ndun

next to the bookcose
Fig. ViI-4.

Ail word-strings which match the hypothesized portion of this proposed PPT are tested
againsi the input. To help us, [.PARS types out one such word-string.
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POSSIBLE WORD STRING (D BY THE CHANDELIER)

This word-string dous, in fact, match.

WORD STRING MATCHED ((D £Y THE CHANDELIER) 32 42 395)

LY
COMBINED PPT

(STRCH ((THE COFFeEFTABLE (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE D BY (THE CHANDELIER)) ENDCID

So do others. (Notice that only semantically reasonable nouns are matched.)

WORD STRING MATCHED ( (P BY THE FLASHLIGHT) 32 42 415)

COMBINED PPT
(STRCH ((THE COFFEETABIE 'NEXTTO (THE BOOKCASE)))
IS ILLUMINATE D BY (THE FLASIILIGHT)) ENDCH)
. WORD STRING MATCHED ( (D BY THE TABLELAMP) 32 42 225)
COMBINED PPT
(STRCH ((THE COFFEETABLF (NEXTTO !THE BOOKCASE] )}

IS ILLUMINATE D BY (THE TABLELAMP) 1 ENDCID

Three possible word-strings match within the high phonetic distance of this match. Notice,
however, that the word-string containing "tablelamp" matches at the lowest phonetic distance.

This example illustrates an interesting aspect of 1.PARS. Even though words in the vocabu-
Iarr  re not very close phoaetically, wher LPARS is performing matches at very high phonetic
distances, often several word-strings may maiwch. This, of course, is not too surprising. The
mor:e garbled a section is, the more difficult it would be teo determine which words match there.

To deal with this problem, a svstem would have to be abl: to do ore of thre- thiugs: call
front-end routines to iielp choose between the different possibilities, vse semuntics to rule some
out, or ask the speaker which he actunally meant.

The advantuge of a vertically organized systewn. like LIFANRS is that it onlv investigates ~ ~h
segments very selectivelv: when a grea* deal of contextual information indicates the necessity,

and when a great deal of context can be used tc help constrain the words that might e present.

Fxaraple 3

{UNSCRAMBLED SENTENCE)
(PLACE THE GREEN DICTIONARY ON TilE BOOKCASE)
(P 1 AA S TIH SW G R EE N B 1 K SHESW N AA R EE AW N TH

SWoB U K AA %)

A2
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(SCRAMBLED SENTENCE)

(L AA DM SW BWEEVFEEIKHSWNAW R EE AW NG B Y K

U P AW ZH)

(INITIAL. SCAN)
( (STRCII 0 0) (DICTIONARY 9 4/ 45) (CLY'ITER 20 &} 65)

(BOOKCASE 22 26 5) (ENDCH 27 27))

(LOCAL HIGHER DISTANCE MATCHING)

((STRCH 0 0) (THE { 2 0, (FRIENDLY 3 8 135) (GREEN 6 8 90)
(DICTIONARY 9 17 15) (ONTHELEFTOF 18 24 185)

(ONTOPOF 18 ¢4 120) (ON 18 19 S5) (IS 18 9 0) (THE 20 21 5)

WCLUTTER 20 23 A5) (BOOKCASE 22 26 S5) (ENDCH 27 27))

(PARTIAL PARSE TREES SORTED BY LENGTH)

(* (¢ (GREEN DICT'ONARY) (CN (THE ...DKCASE))) NDCID
(* (GREEN DICTIONADPY (ON (THE BOOKCASE)) ) ENDCIHD
7 (ON (THE BOOXCASE) !} ENDCID

(STRCII ( (THE "RIENDLY)))

{(* (GRIEN DICTIONARY) (ONTHELEFTOF))

({CREEN DICTIONARY {(ONTHELEFTOF} )

(GLEEN DICTIONARY (ONTHELEFTOF)

(* ¢JREEN DICTIONARY) {(ONTOPOF))

(CREEN DICTIONARY (ONTOPOF)

{GREEN DICTIONARY (ONTOPOF) )

(* (GREEN D'TIGNARY) I CLUTTER AFX)

{(* (THE BOOKCASE) ENDCI}

(GREEN DICTIONARY (ON,)

{tIS (TIIE BOOKCASE) )
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In this example, when it comes time ‘o connect PPTs, two PPTs partially overlap, soc the
system rips words off to try to connect subtrees. First, it rips "the friendly" of the left-hand
PPT, and attempts connection with the two resulting structures (s~e Figs. VII-5 and ViI-6).

{PPT CONNECTION)
(PPT PAIR)
(STRCH ((THE FRIENDLY!))

(* (* (GREEN DICTIONARY) (CN (THE BGGKKCASE))) ENDCH)

SENTI S;NTI\
stech SENT SENT_endch
|
NP 2 PP
A
the friendly NP on the bookcase
A
green dictionary
Fig. VII-5.
PPTS TO BE CONWECTED
STRCH
(* (* (GREEN DICT")NARY) (ON |(TIHE BOOKCASE))) ENDCH)
SENTI
SENT endch
st ch * Tpp
A
NP on the bookcase
A

green dictionary

Fig. VII-6.

PROPOSED PPT
(STRCH (WH VERB AFX (DET GREEN DICTIONARY)
(ON (THE BOOKCASE)) )} ENDCH)

PCSSIBLE WORD STRING (WHO PLACE S THE)
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The first possible combined PPT hypotbesized is a question {Fig. ViI-7).

SENTL_
\‘\
strch SENT

/\

verb ofx
A

de?/green dictionary on the hookcase

endch

Fig. VII-7.

PROPOSED PPT
(STRCH (VERB AFX (DET GREEN DICTIONARY)
(ON (THE BCOKCASE))) ENDCID

POSSIBLE WORD STRING (PLACE O THE)

WORD STRING MATCHED ((PLACE O THE) 1 5 155)
COMBINED PPT

(STRCH (PLACE O (THE GREEN DICTIONARY) (ON (THE BOOKCASE)})

ENDCH)
SENTI
| TTT—
strch SENT Tendch

,/// \

verb™ of NP PP

A A

det green dictionary on the bookcase
Fig. VII-8

The next possibility is an imnerative command. One o! these word-strings matches and a com-
binec PPT is constructed {(Fig. VII-8). (The word "O" is the root affix, the null string.)

tThese examples stop when the correct sentence is found. The alporithm itself is set up te
continue to explore different possible connectionz. It i3 q ite striking, however, watching LPARS

work, how quickly the system carn often zero-in cn promising connections, once given a set of
PPTs.)

Example 4

In this example, the CONNECT algorithm is called to match word-strings in the middle of
an uiterance.
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{UNSCRAMBLED SENTENCE)

(THE BROWN SIDETABLE BESIDE THE FIREPILLACE CONCEAL S THE
ARMCHAIR)

(TH SW B RAOONSAIDTAAABILBEESATIDTH SW

FAIRPLAASUPSWNSEELUZTHSW A RM CHH AA R)

(SCRAMBLED SENTENCE)
(DHT R E OO NG Z AR EE N AW V D EE AW AE E TH Y P A I

W P AW H D SW W HEE RHY ASWM AW R)

(INITIAL SCAN)
((STRCH 0 0) (FIREPLACE 20 26 95) (CONCEAIL 27 32 15)

(ENDCH 46 40)

(LOCAL HIGHER DISTANCE MATCHING)
((STKRCH 0 0) (FIREPI.ACE 20 26 95) (IS 27 28 0)
(CONCEAL 27 32 15 (CLUTTER 29 51 .20} (THE 32 34 OV

(THE 33 34 0; (ARMCHAIR 35 39 125) (ENDCH 40 40))

No words have been found between phonemes 0 to 20, so an immediate nigher-distancec scan

is made.

(SPECIAL. SCAN)

((THE 1 2 0) (BROWN 3 6 55) (SIDETABLE 7 3 140} )

"PARTIAL PARSE TREES SORTED BY LENGTID

(* (* FIREPLACE CONCEAI. AFX (THFE ARMCHAIR)} ENOCID
(STRTH ((THE BROWN SIDETABLE) ))

(* (THiZ ARMCHAIR) ENDCI)

(* FIREFLACE IS CLUTTER AI'N)
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(PPT CONNECTION)

(PPT PAIR)
(STRCH ( (THE BROWN SIDETABLE)) )
(* (* FIREPLACE CONCEAL AFX (THE / 'MCHAIR))
ENDCH)

PPTS TO BE CONNECTED
(STRCH ((THE BROWN SIDETABLE) ))
(* (* FIREPLACE CONCEAL AFX (THE ARMCHAIR))

ENDCH)
SENTI SENTI
strch ser‘qr /§E NT endch
NP fireplace conceal NP
A A
the brown sidetoble t"« armchair
Fig. VII-9.

PROPOSED PPT
(STRCH ((THE BROWN SIDETABLE (PREP (DET FIREPLACE)))
COIICEAL AFX (THE ARMCHAIR) )} ENDCH)

POSSIBLE WORL STRING (INFRONTOF THE)

SENTI
strch SE NT\\ endch
| T~
_ NF conceal NP
N A
the brown sideteble PP the armchair
A

prep det fireplace

Fig. VII-10,




WORD STRING MATCHED ( (BESIDE THE) 14 19 200)
COMBINED PPT
(STRCH ((THE BROWN SIDETABLE (BESIDE (THE FIREPILACE)))

LAM CONCEAL AFX (THE ARMCHAIR)) ENDCH)
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V1ll. CONCLUSIONS, BASIC ISSUES, AND ARLAS FOR FURTHER WORK

This section places thc present work into bro der focus by discussing some intercsting
issues brought to light. Most of these issues relatc to the local nature of LLPARS' dcsign. In this
discussion, we describe some of the fundameuntal problems involved in designing a system like
LPARS, and how the approach described solves these problems. Finally, wc conclude by dis-

cussing a numbcr of interasting areas for further work.

A. BASIC ISSUES BROUGHT TO LIGHT
1. Advantages of a Local Approach

The most obvious issue concerns thc relative mcrits of LPARS' local approach which has
the disadvantagc of requiring a great deal of initial lexical processing. The ontire vocabulary is
matched against the entire irput. If words had been recognized with sufficient accuracy in the
early part of the sentence, some of this lexical work might not really be nccessary.

The most c:bvious advantage of the local approach over a more left-to-right approach is that
the left-to-right approach would have difficulty if a relatively large amount of error occurred
near the beginnirg of the sentence. It world bc unable to get at the necessary context to help it
dcal with this ambiguity. to isolate it, and then make specific suggestions of words to look for.

A local approach, on the other hand, allows information on both sides of an erroneous area to
be brought to the assistance of the parser.

There is another way of stating this argument. Namely, the local approach allows the highest
phonctic distance scans to be made taking advantage of the maximum possible amount of lower
phonetic distance (well matching} information available. Thus, the higher-distance scans are
"data directed" as completely as possible. (This is not true of a left-to-right approach.)

In particular, thec algorithm that connects PPTs has available to it all possible information
from previous lower-level parsing and processing. As a rcsult, all partial parse structures
constructed from lower phonetic distance processing can be examined, and tiie most promising
connections can be tried first. This is a very powerful capahility, and one which no left-to-right
algorithm can achicve.

In a left-to-right system, it would be much more difficult for the system to know wncn a high-
distance match mig't be desirable, espccially if one wants to do such high-distance matching
quite sclectively. It is certainly impossihl> to get information as to the right-hand boundary for

suc¢' a match.

‘. Syntactic Economy

A second issue might be called "syntactic economy." Svntactic conciseness or ccons iny is
a vague term, especially in referencc to natural language parsing where there are many different
formalisms for defining syntactic relationships: transformations with side conditions, transition
nets augmented by tests on arcs, PROGRAMMAR procedures, etc. Syntactic conciseness i1s usu-
ally a qualitative judgment made subjectively by looking at a grammatical rcprescntation of a set
of linguistic fac's.

An interesting aspcct of local parsing as dcscribed herc is that it provides motivation for
talking cxplicitly about a particular type of syntactic economy: namcly, the degirce to which the

parsing logic for similar structures is collapsed down to a minimum syntactic skeleton.
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In the LPARS local parser, there is very real incentive to try to collapse the grammatical
skeleton as muzh as possible, since every timc a local syntactic structure is recognized, i‘ is
asserted for every instance that occurs in the grammar. Therefore, if the grammar contains
thirty separate instances where a nour-phrase can be followed by a verb, when such a psttern
is recognized, all thirty p. isibilities must be constructed, even though mary of them might never
even be considered in a left-to-right system analyzing a text version of the sentence.

Such "ineconomy" would lead v excessive inefficiency in the construction of local PPTs and
would also complicate the job of connecting different segments since there would be so many to
choose from.

LPARS achieves conciseness by usiag a transition ne. grammar augmented by syntactic fea-
tures. The transition net itself is a very powerful tool for achieving syntactic conciseness since
it can capture veryv naturally the regularities of many different permutations of a basic structure.
BNF, for example, does not have this capability because it provides no mechanism similar to the
transition nei's ability to let pa: sing paths diverge and later reconverge.

Tc achieve syntactic compactness in a systematic fashion, tt~ transition net is married in
LPARS to a system of syntactic features which allow a number of different permutations of a
gentence {such as relative clauses, declarative sentences, questions, etc.) to be consolidated
into a single transition net siructure. Thus, an efficient syntactic skeleton can be created for
local parasing.

3. Local Representation of Global Relationships

An interesting problem inherent in the local approacl: is that of lo-ally representing different
possible global relationships between adjacent syntactic elements. This problem arises because
the global relationship between adjacent words often cannot be determined from limited context.

LPARS handles this problem in three ways:

{a) Onc mechanism used is the ancestor link described in S~~. V-B. Ancestor links

are used to represent potential ambiguity caused by right r >cursion in the grammar.

{b) LPARS also takes advantage of the synta=tic economy acnieved by collapsing a
number of different syntactic patterns down to a single sj .atactic skeleton. Thus,
a numbcr of potential global relationships can be combined in a single local

structure.

{c) The third mcchanism is the fallback of constructing several differen parse trees
if different parses of some set of words cannot be convenicn‘ly merged by the two
techniques just described. This fallback, although less desirable, is not too ineffi-

cient if it is ouly necessary on a limited basis.

4. Formalism vs Procedures in Parsers

A very interesting issue brought to light concerns the reiative merits of expressing logic
in the form of a nonprocedural formalism (such as a transition net grammar)}, or in the form of
user-written prnccdures {such as LPARS' LOCALMATCH routine).

A number of speculations made in the present work indicate that the type of probabilistic,
semantically oriented logic, which might be used in the LOCALMATCi routine to search for
local structures that describe objects and cvents in a scere, might be written most convenicntly
in the form of procedures, rather than written to operate from an arbitrary transition net. Much
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of thie logic coulZ be quite divorced from the syntectic representation of the phrase involved.
(Remember that \he goal of the LOCALMATCH routine is not to perform a systematic search for
a globally consistent sentence, but ra.her the use of heuristics to find plausible structures in
dirferent parts of the sentence.)

Once these local structures are found, however, the system needs to have a means of assur-
ing overall consistency and global compatibility of the entire utterance and to direct attention to
areas which might be investigated to attain this global consistercy. The transition net formalism
is used to achieve this. It would be much more difficult to write the logic that cirects this proc-
essging (the CONNECT algorithm) in purely procedural form, without som: structural skeleton
such as a transition net to work from. This would be difticult becz se the logic that pieces the
entire sentence together must be able to start processing at any place in the sentence, and must
be able to join together any two arbitrary sentence fragments by proposing words between them.
A transition net grammar provides a very natural framework to structure this logic around. It
is hard to imagine how one * .uld write such logic without some such abstract, manipulable, non-
procedural representation of the grammar.

Thus, procedurec seem :o0 be the best medium (in tne current state of the art) for express-
ing the logic that uses semantic and pragmatic information to help 100k fo1 local structures,
whereas the transidon net formalism is best suited for systematically trying to enforce glotal

structural consiatency.

5. Ilmplications for Hardware Design

it is interesting to consider what the design of the 1.PARS system might imply ahou the de-
sign of efficient hardware for continuous speech processing. One of the most striking axpects
of the LPARS system is the large degree of initial lexical processing done in the initial scan and
the LOCALLMATCH routine.

The lexical - ..ching involves a grcat deal of computation, even though it is done at a lc
phonetic distance. On the other hand, virtually all this processing can be Gane in parallel. Thus,
there is great potential for performing this computation vecy quickly, if one has special-purpoce
hardware which allows parallel computation vn a massive scale. Such a system migit contain
many special-purpose mini-processors cspecially designed to parforn lexical recognition. Such
hardware, although perhaps not entirely frasible at present, is liahle to become perfectly viaole

in the near future, given the present rate at which costs of computational hardware are dropping.

6. Parallel Pro~ess Independence vs Coordination

It is worth discussing exactly to what degree LPARS allows parallel independent processing
te take piace and to what extent processing in various parts of the utterance is coordinated.

The entire processing of I.LPARS is globally coordinated in the sense that the phonetic dis-
tance thresholds are set for processing in all parts of the utterance, in a globally coordinated
fashion.

Within this overall global coordination of phonetic distance thresholds, however, the proc-
essing in the initial scan consists of rnany independent lexical raatching processes which are
conceptually independent. Similarly, the LOCALMATCH routine consiats conceptually of a num-
ber of independent processes which use local information to direct their actions.

Once this initial local processing ends, more global processing begins: namelv, the construc-
tion of PPTs, the inspection of these trees from all parts of the utterance, and the attempt to

connect them together by proposing intervening words, using the most promising first. The
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nature of ti.. later processing is not independent or potentially parallel since it requires exami-
nation of all parse structures together (to see which is most promising 'ind which input segments

are worth investigating first).

inpst
|
Y {local/
INITIAL independent)
SCAN
word //\
candidates ——»{ LOCALMATCH
ROUTINE
—
[eee
partial
parse
trees (global/
‘ sequential)
CONNECT
|
v
sentence
condidotes
Fig. VIII-1.

Thus, in LPARS, the distinction between local/independent vs global/sequential processing
is clearly marked. This distinction separates the initial scan/LOCALMATCH processing from
the analysis dore by the TREE and CONNECT algorithms (see Fig. VIII-1).

R. AREAS FOR FURTHER WORK

The primary focus of the present work has been on developing a local approach to parsing
which allows structures to be built up in all parts of the sentence, so that the system can explore
(using the transition network) how these local structures might be pieced together in a globally
consistent fashion.

{. Elimination of Current Restrictions

There are, of course, a number of restrictions in the scope of the present work. A number

of potential areas for further work are extensions of the system which remove these restric‘ions:

{a) Only a limited syntax is used. It would be interesting to explore the degree to which
the problems of local parsing are compounded when a much larger syntax is used,

and to explore techniques useful in dealing with these problems.

{b} Only a relatively small vocabulary is used by LPAPS. It would be interesting to

explore the problems that arise as the vocabulary is substantially increased.
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fc) Thne LPARS system usrs scrambled input rather than input produced by a real front
end. An obvious extension is to join LPARS to a working front cd, at which point
one could begin to deal with such phenomena as coarticulation, su ‘erscgmental ef-
fects, etc. into the LPARS lexical matching scheme,

The most intercsting extensions of the present work are those to the semantic component of
1.PARS. Semantic extensions could be incorporated at almost all levels of the LPARS system.
In general, these extensions have bezn mentioned as appropriate in several sections of this re-
port. Such proposed extensions generally involve using the context of a scene being discussed
and of au interactiv - dialog to assist in the processing. Context of this sort might assist in the
following ways:

{a) Allow the system to do its processing using only a portion of its entire vocabulary

(b) Augment the LOCALMATCH routine to look for local structures which described
objects or events in the scene.

{c) Augment the action routines so that noun-phrases and clauses are recognized only
if they make sense in terms of the scene being described.

2. Tradeoffs in a Higher-Level Speech System

Ag discussed in Sec.l, high-level systems such as LPARS can make an important contr:bu-
tion by providing a medium in which one can begin to evaluate var.ous tradeoffs involved i.1 build-

ing an integrated speech svstem - tradeoffs involving such things as:
{a) The quality of front-end information,
{b) The size of the vocabulary,
{c) The complexity of the syntax,
{u) The sophistication of the semantic routines available to assist the processing,
{e}) The frequency of occurrence of small function words that must be handled, and
{f) The degree to which the vocabulary can be partitioned.

Once a concrete feeling for such tradeoffs is obtained, one can begin to get a feeling for
where research effort can be most productively allocated. It would be interesting to systemati-
cally explore some of these tradeoffs.

3. Integration of Supra-segmental Information

Another very interestingarea for further work is the integration of the use of supra-segmuntal
information into a local system such as LPARS. In a speech waveform, there is a great deal of
such iaformation which could help indicate where syllables are, wher= stressed morphs are. where
phrase boundaries are, and possitly even information about the overall structure of the sentence,

Such information could be very helpful in allowing a system to establish "islands of relia-
bility" from which to work in various parts of a sentence. One would suspect, therefore, that
such information could be utitized particularly effectively in locally organized systems like
LPARS. Without local organization, even if one did use local supra-segmental informatior one
would eventually have to fall back on a left-to-right approach,

Hopefully, the development of locally organized parsing systems will give added impetus to
research into promising supra-s=gmental effects, since such parser organizatio: would provide
a natural vehicle for exploiting such information effectively.
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APPENDIX A
THE PHONEME SI!MILARITY TABLE

i
Appendix A describes the phonemes used in the LPARS system, and the phoneme similarity é
table. %
I. LPARS' PHONEMES §
Table A-1 lists the phoneme set vsed in our work. With each symbol is the IPA symbol and, §
if not obvious, a sample pronunciation, %
f
TABLE A-] |
LPARS' PHONEMES
P P N n -
B b NG n sing -
T t w w
D d R r :
CH & L !
J i Y y yet
K k (o]e) v boot
G 9 U v put :
F f O o open 1
v v AW
TH 0 with AA e table
DH 5 this A a father
S s AR
z z AE -3 bad
SH s E c bet
ZH z ! I bit
H h EE i beet
M m Sw 2 about
II. PHONEME SIMILARITY TABLE
Table A-2 is a reproduction of the table in Appendix 10 of the ARPA Speech Repox‘t19 This
phoneme similarity table is used by the Iexical scrambler and word-recognition algorithm as
described in Sec. Il
=3
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APPENDIL. R
LPARS VOCABULARY AND TEST SENTENCES

Appendix B lists the words in LPARS' vocabulary with their parts of speech and phonetic
spellings, and the sentences used in LPARS' evaluation.

I. LPARS VOCABULARY

(DISLIKE VERBE DISL A IK)

(ENJOY VERBSWNJOI)

(IIANDLE VERB I AE N D i)

(DISCARD VERBD IS K AR L)
(CLUTTER VERB K L. SW T R)
(COMPLLEMENT VERB K AMPLSWMSWNT)
(ILLUMINATE VERBILCGDOMINAAT)
(BRIGIITEN ERBBRAI'TN)
(CONCEAL VERB C SWN S EE 1)
(CONTAIN VERB K SW N T AA N)
(SUPPORT VERBSSWPORT)
{OBSCURE VERBA BS K 100 R)
(PLLACE VERB P 1. AA S)

{APPROACH VERB A P R O CH)

(CHRISTOPHER PROMN K RTST SWF R)
{(MARIANNE PRCPN M E R T AE N)
(ROBERT PROFN R SW B SW R T
(PERIWINKLE PROPN P SWR EEWIN K I}
(ANASTASIA PROPN EN E ST AA S EFE S¥W:

(CHANDFLIER NOUN SH AL D SW i VE R)
(FCLASHIAICHT NOUN ¥ LAESHLALTY)
(TABLEIL.LAMP i.OUli T AA BI1. AE M P}
(FIREPLACENOUNFAIRP L AAS,
(SIDETABLENOUNSAID T AA B L)
(COFFEETABLE NOUN K AW F EE T Aa B L)
(ARMCHAIR NOUN A R M CH AA R)
(ROOKCASE NOUN BU K AA S)
(PADIATOR NOUN R AA D ZE AAT OR)
(NEWSPAPEPR. NOUN N OO S P AA P R)
(MAGAZINE NOUN M AE G SW Z EE N)
(ASIITRAY NOUN A SII T R AA)
(DICTIONARY NOUN D I K SH SW N AA R EE)
(REFRIGERATOR NOUN R EZ FRIDJSW RAATOR)
(CABINET NCUNK EBINSWT)

S

(PERSON NOUN P SW R S SW N)

(TELEVISION NOUN T SW L SW V I J SW N)
(BREAKFASTTAULENOINBRSWKF ESTAABL)
(WASTEBASKET NOUN WAASTBESKSWT)
(STEPLADDER NOUJ ST SW P L E DD SW R)

(FOOTSTOOL NOUN F U TS T OO L)
(VACUUMCLEANER NOUN VEKIOOM * LL EEN SW R)
(ENTRANCE NOUNSWNTR ENS)

(INFRONTOF PREPINF RSWN T SW V)

(ONTOPOF PREP AWNT A P SW V)

(BESIDE PREP B EES A1 D)

(INBACKOF PREPIN B E K SW V)

INEXTTO PREP N SW K S T Q0)

(ONTHERIGHTOF PREP AWN THSWRAITSW V)

(ONTHELEFTOF PREP
(BEHIND PREP B EE Ii

HSWLSWF T SWV)

NGIOOLAR)
(CIRCULAR ADJS I RK

A T
A D
(RECTANGULAR 2ADIRSWK T
I L
(BROWN ADJBRAOON
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(ORANGE ADJOR AN J)
{(GREEN ADJ G R EE N)
(FRIENDLY ADJ F R SW N D L EE)

(DOESDO DU Z)
(WHO WH H 00)
(WHICH WH W 1 CH)
(WHOM WH H OO M)
(WHAT WHWAT)
(ISBE1 Z)

(TEE DET TH SW)
(BY BBY BAl)

(S AFXS Z)

(D AFXS T)

(O AFXS )

(IN PREPA 1 N)

(ON PREPA AW N}

II. SENTENCES USED IN LPARS' EVALUATION

{the dictionary infrontof the sidetable is place d in the
wastebasket by periwinkle)

{the wastebasket which the green coffeetable support s
contain 3 the dictionary)

(the coffeetable which support s the green ashtray obscure s
the entrance)

(the green coffeetable support s the dicticnary)

ithe sidetable which support 3 the aghtray obscure s the
fireplace)

(the sidetable which support s the ashtray in the buokcase
obseure s ‘he fireplace)

(does the sidetable support the ashtray)

{what does the gidetable support)

ithe dietionary on the sidetable is brightcn d by the
echandelier)

(does the chandelier infrontof the fireplace brighten the
rectangular coffeetable)

{the chandelier infrontof the fireplace brighten s the
coffeetable)

{what does the ehandelier infrontof the fireplace
brighten;

(the coffeetable nextto the bonkcase is illuminate d by
the tablelamp)

(is the dictionary support d by the sidetabie)

(does periwinkle place the dictionary on the coffectable)

{what does periwinkle place begide the refrigerator)
{what support s the dictionary ontherightof the fireplace}
{place the cireular ashtray in the v astebasket)

(tne dictionary which is support d by the coffeetable
support 8 the tablelamp whieh illuminate s the fireplace)
(who dislike s periwinkle)

{the friendly person place s tne aghtray inbackof the
cabinet)

{periwinkle place s th2 dictionzry on the sidetable beside
the hookcase}

(place the green dietionary on the bookease)

(the eoffeetable beside the armchair infrontof the
fire:place support s the ashtray)

(the tablelamp beside whieh robert place s the dictionary
ililumingie s the armchair)
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(the refrigerator in which the ashtray is place d by
robert conceal s the entrance)

(whom does marianne dislike)

{on what does cnristopher place the dictivnary)

(beside what does christopher place the ashtray)
(beside what is the green rectangular ashtrayv place d by
robert)

(is robert dislike d b the friendly person beside the
coffeetable)

(what is support d by the circular sidetable)

(what i8 place d beside the newspaper on the coffeetable
by christopher)

{on what docs periwinkle place the tablelamp)

(beside what does the friendly person place the
magazine)

{infrontof what is the magazine pla:e d by marianne)
(in what is the newspaper place d by robert)

(the boolcase contain s the flastiight)

(the flashlight illuminate s the :ircular wastebasket
beside the television)

(the magazine is support d by the dictionary ontopof the
coffeetable)

(the newspaper on the sidetable conceal s the ashtray)
{the brown sidetable beside the fireplace corceal s tiie
armchair)

(place the green dictionary beside the refrigerator)
{place the dictionary which support s the ashtray beside
the cabinet)

(does the newspaper conceal the circular ashtray!

{does christopher enjoy marianne)

(what does the tablelamp infrontof the fireplace
illuminate)

(place the ashtray infrontof the sidetable)

(what brighten s the breakfasttable)

(the bookcase behind the cofieetable support s the
magazine)
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APPENDIX C
WORD~-RECOGNITION ALGORITHM

Appendix C describes the routine used for lexical recognition. This routine receives the

following arguments:

WORD the correct phonetic spelling of the word to be
rnatched (an array of characters),

SENT the | !.onetic spelling of the scrambled input
utterance an array of characters).

1 the phoneme position in the sentence at which
the match is to be started.

WL TH the length of the word.

SLNTh the length of the santence.

WDIST the maximum distance permissible for the match.

The algc. "thm calls the following routines:

SUBDIST(PHON{, PHON2) returns the phonetic distance of substitution between two

phonemes.

JDELDIST({PHON, LASTPION) returns the phonetic distance of deietion of PHON
when preceded by LASTPHON.

*TACK(J, K, DIST) puts three values onto a stack.
TINSTACKI(T, K, DIST1 pops the three values from the stack.

The algorithre explores all posaibilities of substitution and deletion in matching the word to

the section of input which starts at position L
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LEX(WORD,SENT, I, WLNTH, SLNTH, WDIST)

START

DIST=0
TDIST=WDIST
OLDP=SENT(l-1)
FLG=0

K=0

TK=0

/T LE WLNTH

ADIST LE TDIST
A(I+K) LE SLNTH

Y

N J > WLMTH-1 > Y ﬁ(f;i‘
< A DIST LE 7DIST .

N |
¥
( suléx\ N UNSTACK(J, K, DIST)
\EMPTY? OLDP=WORD(J-1)
Y
(FLG=07)——"———[RETURN NIL
N

RETURN WORD RECOGNIZED
BETWEEN POSITIONS | TO (1+7K)
AT DISTANCE TDISY

DIST=DIST+T2
J=)r
OLDP=WORD(J-1)

T1=SUBDIST(WORE(J), SEMT(1+K))
T2=DELDIST(WORD(J), OLDP)
| STACK{J*1,K+1, DIST+TY)
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APPENDIX D
TREL AND CONNECT ALGORITIIMS

Appendix D contains flowcharts of the logic of the TREE and CONNECT algorithms, In
creating these flowcharts, we have tried to leave in enough (etail to convey the basic operations
being performed, but not £o much as to obscure them. The algorithms described in this Appendix
are written to operate on LISP data structures (lists); therefore, they use the following LISP
functions:

CAR, which obtainy the first member of a list,

CDR, which obtains the remainder of the list,
LIST, which returns a list of the elements passed to it, and
APPLEND, which appends two lists.

The algorithms also invoke the following functions (listed alphabetically):

ADDSON(PPT, SON, ARC) returns a new PPT created by adding a rightmost son
to the input PPT (provi'ing that the action routine associated with the ARC perimts,
elge NIL).

ANCESTOR(PPT) returns true if the leftmost son of the top node of the PPT is an

ancestor link son,

CATPATH(LPT, RPT) returns = new PPT consisting of & concaionation of the two
input PPTs (providing that the action routines are compatible, else NIL.). If the
leftmost son of the RPT is an ancestor link son, it is not included in the resulting
structure,

CONTENTW(ARC) returus true if the ARC is labeled by a content word terminal.
CONTEXTLIST(PPT) returns a list of all arcs which invoke the PPT.
ENDSTATE(PPT) returns the end state of the top node of the PPT.

ENDTEST(ENDFLAG, PPT) returns true if ENDI'LAG is NlL or if the PPT is a
final PPT.

EXITARCS(PPT) returns a list of all arcs emanating from the end =iate of the top
node of the PPT,

FINAL(PPT) returns true if PPT ends on a permitted final state or is a terminal
node,

I'IRSTARC(PPT) returns the first arc in the top node of the PPT,
INITIAL(PPT) returns true if the PP'[ begins on a permitted initial state.

INITSTATES(ARC) accepts as input an arc invoking a nonterminal, and returns a
Iist of iaitial states of that nonterminal's net.

LAMBDA(ARC) returns true if the ARC is a LAMBDA arec,
LASTARC(PPT) returns the rightmost arc in the top node of the PPT.

LLSON(PPT) returns the leftmost son of the PPT, or il 1 the PPT is a terminal
node.,
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NT{ARC) returns true if the ARC invokes a ronterminazl,

POPPPT(PPT, ARC) returns a new PPT, constructed by popping with the PPT to
an ARC invoking the PPT in a higher-level net,

PPT(ARC) accepts a terminal arc and constructs a "hypothetical®™ \arminal PPT of
the san.e part of speech as the arc.

PTS5(M) if N is an arc or a PPT, this function returns the part of speech assc-
ciated with *hat : ~c of PPT.

RIFFIRSTICN(PPT, returns NIL if the top node of PPT has only one son, or re-
turns a new PPT identical to the input PPT but minus the leftmost son of the top

node.
R1IPLASTSON(PPT) is similar to RIPFIRSTSON but removes the rightmost son.

RSON(PYT) returns the rightmost son of the PPT, or NIL if the PPT is a te:minal
ncde,

STARTPATH(P, ARC) returns a new PPT created by starting a path in a net {(where
ARC ani.anates from an initial state of t-~t net)., P becomes the only son in tlis
new PPT,

STARTSTATE(PPT) returns the starting state of the top rode of the PPT,
STORE(PPT) storec a PPT in the pho .eme position iable,
STORELIST(PPTL) store” a list of PPTs in the phoneme position table.

TERMT(PPT) returas true if the PPT is a terminal.

i, IiiEE ALGORITHM

The basic top-level routine of the TREE algorithm is the TREKE-WORD routinc which takes
ag input a PPT and a word and constructs as many poseible resulting PPTs as possible by ~pnend-
i.ag, pushing, and popping.

The HOOK routine coordinates all apperding and pushing connections beiween the top node
of a PPT and the word, I a given connection is not possible, the routine must try to effect the
connection to a rizhtmast sub=-part of that node.

‘The PUSH routine h “.!'es pushing connections.

The HOOKALIL routine attempts to "hook" the word, not only to the top r. de of the PPT,
but also to lower rightmost nodes. Also, it checks to see if lower rightmost Jescendents of the
PPT can be joined to the word in other syntactic contexis

The POP routine handles popping contections., In the process, it calls the ABORT routine
which prevents infinite looping, and the POPPPT routine which must also handle creating ances-

tor link structures,
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~ORD(PPT, WORD)

START

N

Y

C=CONTEXTLIST(PFT)
WHILE C # NIL DO

[ POP(PPT, WORD, CAR(C), NIL)
C=CDR(C) |

STORELIST(HOOKALL(PPT, WORD))

DONE
HOOK(PPT, WORD)
START
RES=NIL

AL=EXITARCS(PPT)

G
N

—{mccan] T —

PTSP(ARC)= Y |RES= :
PTSP(WORD)? APPEND(RES, TRY(PPT, WORD, ARC))

N

NL=PUSH(ARC,WORD)
L~ Y [WHILE NL #NIL DO

NT(ARC)? > —

Wl | RES=APPEND(RES, TRY(PPT, CAR(NL), ARC))
N . ".=COR(NL) |
1 v [RES= ) -
<t AM3DA(ARC)? APPEND(RES, TRY(PPT, LAMBTA, ARC) )
N
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TRY(PPT, SON, ARC)

START

TI=PPT

IL=INITLIST(ARC)

[it=coray] ™

[AL=EXITARCSICAROL) |

IL-NIL? > +[RETURN RES |

r— S

[RE=CARAL)

[AL-CORAT

N

|

NTARZ >—Y T1=PUSH(AR, WORD)
- WHILE Tl # NIL DO
{ T2=STARTPATH(CAR(T1),AR)

N l RES=APPEND(RES, LIST(T2))
TI=CORTD |
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PISP(AR)=  \ Y
< PTSP(WORD)? / RES=
APPEND(RES, STARTPATH(WORD, AR) )

(SON=LAMBDA >—. iy N
N {RETURN NIL
o Y
TI#PE—— TI=PPT?
el
N N
STORE(T2) STORELIST(HOOK(T1, SON) )] RETURN
RETUPNNIL| RETURN NIL HOOK(T2,SON’
RETURN
LIST(T2)
PUSH(ARC, WORD)
START
RES= dIL




HOOKALL(PPT, WORD)

START
RES=NIL
{ Y
CFINAL(RSON(PPT) )? >———————= RES=HOOK(PPT,WORD) |
q .
[T1=RSON(PPT) |——

N —
N — Y
—{ C=CONTEXTLIST(T1) |

C=NIL?>
N

[C=COR(C) |--(C-LASTARC(PPT)?>
N
L {POP(T1,WORD, ARC, NIL) |
T2=HOOKALL(T1, WORD)
T3=RIPLASTSON(PPT)

Y
{T3=NIL?2>———{WHILE T2 # NIL DO

| RES=APPEND(RES,

N ADDSON(T3, CAR(T?2), LASTARC(PPT)))
T2=COR({T2) ] |
WHILE T2 # NIL DO [RETURN RES ]
[ RES=APPEND(RES, TRY(T3, CAR(T2),LASTARC(PPT)))
T2=CDR(T2) |

POP(PPT, WORD, ARC, ARCLIST)

START

.
( ABORT(PPT, ARC, ARCLIST) 2> o{RETURN]
N

T1=POPPPT(PPT, ARC)
T2=HOOK(T1,WORD)
STORELIST(T2)

1
CANALT 7> [RETURN)
Y4
C=CONTEXTLIST(T1)
WHILE C # NIL DO
[ POP(T1,WORD, CAR(C), APPEND(ARCLIST, LIST(ARC)))
=CDR(C) |

[RETURN ]
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11, CONNECT ALGORITHM

The following flowcharts outline the two main routines of the JOIN sub-part of the CONNECT
algorithm,

The EXTEND routine coordinates the extending nf a path from an LPPT and the joining of
that path to an RPPT,

The PUSHEX routine is called with INTFLAG=NIL when the extended pathis to continue on a
lower level, and is called with INTFLAG=TRUE to make an RPPT start on a permitied initial state.
The DOREST routine is called by the EXTEND routine after the paths have been joined.
1t asaures that the rightmost sons of the LPPT end on permitted final states, and call the

CONSTRAIN routine.
Three arguments are used for communication between these routines:

CONTFLAG is true when an extended path has already traversed a content word,
ENDFLAG is true if the extended path must end 2n a final state, and
INTFLAG is used in the PUSHEX routine as described above,
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=
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N o

o

EXTEND(.LP7,RPT,ENDFLAG, CONTFLAG, INTFLAG)

START

RES=NIL

AL=EXI TARCS(LPT)J

ARC=CAR(AL)

Y [RETURN RES ]

TSR

N

T1=ADDSON(LPT, PPi(ARC), ARC}

IF T1 # NIL DO RES=
EXTEND(T1,RPT,ENDFLAG, CONTFLAG, INTFLAG)

TERMT(ARC) v T1=ADDSON(LPT, PPT(ARC), ARC)
A (CONTFLAG=NIL IF T1 # NIL DO RES=APPEND(RES,
)

EXTEND(T1,RPT, ENDFLAG, CONTENTW(ARC) ~

v ~CONTENTW(ARC)
CONTFLAG, INTFLAG))
N
NT(ARC) Y | Ti=PUSHEX{RPT, ARC,ENDFLAG, CONTFLAG, NIL)
AINTFLAG=NIL WHILE T1 # NIL DO
N [ T2=ADDSON{LPT, CR(T1), ARC)
) IF T2 # NIL AENDTEST(ENDFLAG, 12)
DO DOREST(T2)
T1=CDR(TY) |
NT(ARC) TI=PUSHEX(LSON(RPT), ARC, TRUE, CONTFLAG, NIL)
~ ANCESTOR(RPT) WHILE T: # NIL DO
AENDSTATE(LPTE ! T2=ADDSON(LPT, CAR(T1), ARC)
STARTSTATE(RPT) IF T2 # NIL DO T2=CATPATH(T2,RPT)
N IF T2 # NIL DO DOREST(T2)
T1=CDR(TY) |
PTSP(ARC)= IF INITIAL(RPT) DO
PTSP(WORD) | T2=ADDSON(LPT,RPT, ARC)
A INTFLAG=NIL IF T2 # NIL ~ ctNDTEST(ENDFLAG, RPT)

DO DOREST(T2) ]

N

ENDSTATE(LPT) T1=CATPATH(LPT, RPT)
STARTSTATE(RPT) T2=PUS HEX(LSON(RPT), FIRSTARC(RPT),
~~ANCESTOR(RPT) TRUE, CONTFLAG, TRUE)

N

WHILE T2 # NIL DO
| DOREST(CAR(T2)) ; T2=CDR(72) |}

l

——{aL-coranl
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PUSHEX(RPT, AR, ENDFLAG, CONTFLAG,INTFLAG)

STAERT

RES=NIL
IL=INITSTATES(AR)

IL=NIL? > J, RETURN RES|
N

[AL=EXITARCS(CAR(IL)) ]

[IL=CORUL) o AL=NIL?

N

TI=PUSHEX{LSON(RPT), ARC, TRUE,
CONTFLAG, NIL)
~ ANCESTORRPT) Y U I e gl 0y
[ T2=STARTPATH(CAR(T1), ARC)
~ENDSTATE(ARC)= VF 12 NIL DO
SEASET TR (RED) RES=APPEND(RES, LIST(CATPATH(T2,RPT)))
N Ti=COR(TI" |

TEXMT(ARC) v [ TY=STARTPATH(PPT(ARC), ARC) |
~ (CONTFLAG=NIL IF TI # NIL DO RES=APPEND(RES,
v~CONTEXTW(ARC)) EXTEND(TI, RPT,ENDFLAG, TRUE, IN"FLAGv)lJ

N

]

/NT(ARC)  \ Y

T1=PUSHEX(RPT, ARC,ENDFLAG, CONTFLAG, NIL)

\AINTFLAG=NIL / WHILE T1 % NIL DO

| T2=STARTPATH(CAR(TI), ARC)

N RES=APPEND(RES, LIST(T2))
TI=COR(TI) |
[AL=CDR(AL) } — _
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APPENDIX E
LOCALMATCIl LOGIC

Appendix E describes the higher phonetic distance lexical matching done by the LOCALMATCHU
routine. This matching i3 done in areas adjacent to and between words found either by the initial
scan or by previous local matching.

Three types of matching are done:

(1) Matching for words immediately adjacent to a word already found.

(2) Matching for nearby words separated by only a few phonemes from a word already
found.

(3) Matching for function word-strings in the area between two words al: eady found.

1. ADJACENT MATCHING

Below, we indicate for each word class which words ar~ searched for immediately adjacent
on each gide:

NOUN left - adj
right - verb, prep
VERB left - noun, propn
ADJ left - ad:
right - ad), noun
PROPN right - verb
PREP left - noun
ENDCH left - ncuu, propn, verb

1. NEARBY MATCHING

Below, we indicate for each word class the words which are searched for in areas separated
by only a few phonemes on each side:

NOUN left - verb, prep
VERB left - verb

right - noun, adj
ADJ left - verb, prep
PREP right - noun

1lI. FUNCTION WORD-STRINGS BETWEEN WORDS

Below, we show the set of function word-strings, and the word-pair contexts between which
each is matched for. (These tests are made only if the two words are separated by a roughly ap-
propriate number of phonemes.)
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the

strch adj/noun
(i.e., between a strch and
an adj or a noun)

prep adj/noun

verb adj/noun

is
strch propn

which

prep propn
noun propn

noun verb

by
ncun propn
verb propn

does

strch propn

strch-prep propn
(i.e., between a prep, at
the start of thi. sentence,

and a propn)
which is
noun verb
what does

strch propn
strch-prep propn

whom does
strch propn
on what does
strch propn
in what does
strch propn
by the

verb adj/noun

noun adj/noun
on the

verb adj/noun

noun adj/noun

iio

in the

verb adj/noun

noun adj/noun
which the

noun adj/noun
prep adj/noun

whowm the

noun adj/noun
is the

strch adj/noun
does the

strch adj/noun
in which the

noun adj/roun
on which the

noun adj/noun
what does the

streh adj/noun
strch-prep adj/noun

what is the
strch-prep adj/noun
whom does the
strch adj/noun
on what does the
strch adj/noun
in what does the
strch adj/noun
on what is the
streh adj/noun
in what is the
strch adj/noun
in which
noun propn
on which

noun propn




who

what
strch verb strch verb
noun verb what is
AN 19 strch verb
strch verb
noun verb

M
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