
AD-775 139

LOCALLY ORGANIZED PARSER FOR SPOKEN
INPUT

Perry L. Miller

Massachusetts Institute of Technology

Prepared for;

Advanced Research Projects Agency
Electronic Systems Division

2 May 1973

DISTRIBUTED BY:

Kfin

J

National Technical Infcrmation Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

nu^ JL

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

UWCLASSIFiED
Security Classificatior

(Ucuritr clmttiUcmtiOfi ol fll,. bo*/ a

OOCmtAf CONTKOL DATA - R&D fij)''?*?? /3 7
'f mbmtrmci and fndmxing ennvtunnn OIUBI b« mnlmrmd whvn the overall rtport i* clestilred)

t. ORIOIN^TINO ACTIVITY fCaiparX* autfiorl

Lincoln Laboratory. M.l.T.

2a REPORT SECURITY CLASSIFICATION

Unclasbiiied
It. GROUP

J. REPORT TlTte

A Locally Organized Parser for Spoken input

4. DESCRIPTIVE HOTCS (Trp* ol rtporl mid li-lutlvm dmlmm)

Technical Report
S. AUTHORISI (Lmtl nrnnt, llrtlnmtm. Initial)

MiUer, Perry L.

6. REPORT CATE

2 May 1973

7«. TOTAL NO OF PA'

m
7b NO. OF REFS

»: CONTRACT OR GRANT NO. Fly628-73-C - 0002 t-"

ft. PROJECT NO. ARPA Order 2006

9». ORIGINATOR'!. REPORT NUMBERISI

Technical Report 503

9h -.THER REPOHI HOiSl (Any otitmr numbtrm Ihml m*y br
mmtifned ihis t+port)

ESD-TR-73-98

10. AVAILASILITT/UIMITATION NOTICES

Approved for public relea , distribution iialimlted.

It. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,
Department of Defense

u. ABSTRACT

Tht« report describes LPARS, s Uically organized parsing system designed to recognize
continuous speech, accepting as its input a string of phonemes which contains ambiguity and
error. LPARS is locally organized in the sense tnat it can construct local parse structures
from word candidates found in all parts of the input utterance. These local structures are
used as "islands of reliability" and, together with symactic and semantic information, guide
the search for words to complete the utterance,

R#,p.rrf1ured bv

NATIONAL TECHNICAL
INFORMATION SERVICE
y % Dpp^t'^enf of Comrr ,-' :e

Bprlrgfi.ld VA 22IM

14. KEY WORDS

parsing system
mail-machine interaction

machine speech recognition
speech understanding systei i

L'NCLASSIFIF.D
Security Classiftcatuin

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

A LOCALLY ORGANIZED PARSER
FOR SPOKEN INPUT

P. L. MILLER

Group 26

"ECHNIi-AL REPORT 503

2 MAY 1973

Aoproscd for public release; disttibufion unltmited.

LEXINGTON ^ MASSACHUSETTS

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponrored by the Advanced Research Projects Agency of the
Department of Defense under Air Force Contract Fl%28-73-C-01O2 'ARPA
Order 2006).

This report may be reproduced to satisfy needs of U.S. Ciovernment agencies.

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

A LOCALLY ORGANIZED PARSER FOR SPOKEN INPUT*

ABSTRACT

This .-eport describes LPARS, a kically organized parsing system

designed to recognize continuous speech, accepting as its input a

string of phonemes wriich contain? ambiguity and error. LPARS

is locally organized in the sense f tat it can construct local parse

structures from word candidates found in all parts of the input

utterance. These local structures are used as "islands of relia-

bility" and, together with synitctlc and semantic information, guide

the search for words to complete the utterance.

Accepted fo the Air Force
Eugene C. Kaabe, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Ofiice

*T» is report is based on a thesis of the same title submitted to the Department of Electrical
Engineering at the Massachusettfl Institute of Technology on 28 Mar-h 1973 in partial fulfillment
of the requirements for the degree of Doctor of Philcsophy.

m

CONTENTS

Abstract iii

I. INTRODUCTION 1

A. Brief Overview 1

B. Local Atnbiguitj' and Error in Speech 2

C. Practical Implications of Local Ambiguity 2

D. Two Basic Concepts 4

E. Simplified Example of .PARS in Operation 5

F. Related Work 9

G. Overview of Sections 11 through Vill 10

II. A TRANSITION NETWORK GRAMMAR
WTTH SYNTACTIC FEATURES 11

A. Transition Net Formalism 11

B. Syntactic Features 12

C. LPARS' Grammar 19

D. Semantic Features 22

E. Action Routinf s 24

III. LEXICAL RECOCNITION AND PHONETIC SCRAMBLING 27

A. Phonetic Scrambling 2 7

B. Measuring Phonetic Instance '1

C. Word Recognition Algorithm 32

D. Some Comments 3 3

IV. INITIAL STAGES: LOCAL WORD RECOGNITION 34

A. Initial Scan 34

B. Local Higher-Distance Matching 36

C. .'.ome Speculation 38

V. A LOCAL APPROACH TO PARSING 40

A. litroductior <ü

13. Representation of Partial Parue Trees (PPTs) 40

C. TREE: The Partial Parse Tree Constructor 44

D. The CONNECT Algorithm S4

VI. OVERALL DESIGN OF THE LPARS SYSTEM 68

A. tverview of the LPAR3 System 68

B. Two Heuristics Used by LPARS 69

C. Systematic Fallback 69

D. Design Considerations for the LPARS System 70

iv

VII. EXPERIMENTAL EVALUATION OF LPARS.
AND SAMPLE RUNS 75

A. Experimental Evaluation 75

B. LPARS Samite liuns 7 7

VIII. CONCLUSIONS, BASIC ISSUES. AND AREAS
FOR FURTHER VrORK 89

A. Basic Issues Brought to Light 89

E. Area.« for Further Work 92

APPENDIX A - The Fhonemt Similarity Table 94

APPENDIX B - LPARS Vocabulary and Test Sentences 96

APPENDIX C - Vord-Recognhion Algorithm 99

APPENDIX b- TREE an;! CONNECT Algorithms 101

APPENDIX E - LOCALMATCH Logic 109

APPENDIX F - Bibliography 4.12

A c knowl«' dgir.enta 11 -:

References 114

A LOCALLY ORGANIZED PARSER FOR SPOKEN INPUT

I. INTRODUCTION

A. BRIEF OVERVIEW

Recognizing a spoken utterance by machine is a task much different from that of recognizing

a text sentence. The difference rrises both from the difficulty of front-end phoneme recognition

and from the articulatory variability of speech. As a result, phonetic segments often cannot be

identified uniqaely with any real accuracy ^nri. therefoie, an utterance processed by a phoneme

recognizer can contain a great deal of local ambiguity and error. In practical terms, this means

that the words are not rpcognizable immediately, as they are in text.

Humans use a great deal of syntactic and semantic information to help them handle this

ambiguity. They possess much knowleuge of the things they talk about, and of how words can be

put togethe»" to describe these things. Most previous work in machine speech recognition, how-

ever, has dealt primarily with acoustical processing, such as phoneme recognition, pitch and

intensity analysis, etc., with little attempt to Integrate syntactic and semantic knowledge info

this analysis. Any work on the recognition of continuous speech which relies soi^'y nn such a

low-level approach is 3» Ine mercy of the inherent local ambiguity

Tiie present researcn demonstrates how a greater degree of language competence can be

integrated into this recognition process.

This report develops an approach which uses semantic and syntactic Information to assist

machine recognition of speech. The approach is implemented in LPARS, a Locally organized

PAHSer designed to process continuous speech with the help of syntactic and semantic informa-

tion. Its approach differs from traditional parsing methods in that it has no inherent left-to-right,

or nght-to-leit, bias to its operation. Rather, it allows syntactic structures to be recognized

locally in any part of the sentence. In fact, several parse structures may be built «p simulta-

neouTlj in different parts cf the sentence and later connected by searching for words that might

reasonably exist between them.

The approach Is highly data-cürected, letting previously recognized structures help guide

the search for other words in the utterance. Both syntactic and semantic constraints are used

to help guide the analysis. Thus, the system is n "vertically organized" one in the senst

that it allows syntax and semantics to give feedback to, and help guide, the lower-ievel word-

recognition process.

The emphasis in the present work has bern to explore the various issues involved in the de-

sign of a local parsing system, and then to demonstrate that such a system can be created. Thus

empi isis has not been on developing a finely tuned system with high performance characteristics.

The remainder of this introductory section gives an overview of the approach taken. Sec-

tions B ana C describe in more detail the sources and nature of local ambiguity and error in

speech. In Sec. D, two basic concepts are presented: that of plionetic distance, and that of a

vertically organized system. These two basic concepts are central to understpnding the approach

described. Then in Sec. E, a simplified example is worked through to give a concrete picture

of how the approach is implemented. Tim Introduction concludes by discussing related work

(Sec.F) and by outlining how the presentation of the approach is develop d in the rest of this report.

B. LOCAL \MBIÜIIITY AND ERROR IN SPEECH

In the early I960'g, researcners working on speech recognition approached the p lem

from the local standpoint of recognising sound segments in the utterance in much the sane spirit

is ore might try to recognise letters on a printed page. At that time, most work concentrated

on the recognition of isolated words and phrases; thus, no extensive use of syntactic =nd se-

mantic constraints between different parts of the utterance was possible. In fact, it was initially

hoped that phoneme recognition could be ieveloped to sufficient accuracy thatHhe parsing of con-
1 2

tlnuous speech could be accomplished in much the same fashioi. as the parsing of text. '

This approach was not very profitabK . It was difficult to develop algorithms which could

even approach the desired level of accuracy. Furthermcre, it became appa.-ent that the difficulty

was not entirely the fault of the algorithms used, but rather the result of local ambiguity inherent

in speech itself.

There are two fairly distinct but related sources cf local ambiguity and error in speech:

(1) articulatory variation, and (2) machine recognition limitations. It is worthwhile to discuss

both briefly.

1. Articulatorj Variation

A sequence of spoken phonemes differs from a sequence of letters written on a page, because

the articulation of phonemes is a dynamic series of events which takes place as the vocal appa-

ratus changes from enc configuration to another. Each phoneme can be thought of as an idealized

representation of a target configuration *hich the vocal apparatus attempts to attain.

The exact manner and the degree to which the target configurations ar« attained may vary

in different attempts to vocalize a single utterance. Thus, the underlying phenomenon of speech

itself is not constant or consistent; it is a dynamic phenomenon which is not reliably reproduc-

ible. Furthermore, the acoustic cues v/hich might, if present, uniquely identify the phonetic

segments «re often absent or barely noticeable,

2. Machine Recognition ' nitations

Gra iting ihe inherently ambiguous character of speech itself, it is not surprising that the

problem of nlgorithrrically segi.ienting and classifying spoken phonetic segments is a difficult

one. A se-ies of dynamic phenomena must be processed using recognition criteria which sta.tip-

tically are as accurate as possible. Since the cues which uniquely distinguish certain phonemes

can be quite subtle, it is difficult to write an algorithm to pick up these cues only when they are

"really" present. Despite a number of different atU'mpts to develop phoneme recognizers, the

amount of ambiguity and error which characteriz«"; ,,-xisting phoneme recognizers is quite large.

C. PRACTICAL IMPLICATIONS OF LOCAL AMBIGUITY

In pnetice, the local ambiguity described above implies that words are not. easily recogniz-

able. In this respect, it is useful to make a somewhat arbitrary distinction and identify two

separate problems.

(1) Small tressed "funct; m" words.

(2) Longer "content" words which are considerably garbled (by excessive error and

fmbiguity).

i. Small Unstressed Function Words

Small unstressed wordj such as "a", "the", "and", "of", "is", etc. tend not to be

articulated clearly and are sometimes barely articulated at all. For example, the phrase "Uni-

versity of Michigan" can be spoken qu't> intelligibly without, or with just a hint of, the word "of".

This poses no problem to a human listener because semantic and syntactic knowledge primes him

to expeci the word "of" to be present.

The recognition of such words clearly poses difficulties for any speech recognizer which

does not use context to indicate where such words might be present. Indeed, even if the word

is well articulated, i:s small size, in the presence of front-end error, mignt still make it diffi-

cult to find rerably without contextual cues.

2. Loiger Words Whk'i Are Garbled

Longer "content" wordf offer more phonetic information to match against the inpi'*. Also,

such words contain stressed syllables, which tend to be articulated more clearly than unstressed

syllables. If the system is to work at all, such long words should be fairly reliably recognizable.

Frequently, however, some longer words may be quite garbled by the combination of articulatory

variability and frcnt-end error. Any attempt to distingu.sh all such words on the first scan

through th1; senten- -. would be liable to delrge the system with an overwhelming number of word

candidates, most of them wrong.

It is therefor much more re-.ionable to look for such words very selectively, only when

one has built up i groat deal of contextual information indicating the exact section of input where

such a word might •' -iist. and indicating a small list of word possibilities that might meaningfully

be present.

It is clear that huir.ans deal with the ambiguity described above because they possess a great

deal of knowledge of the things (objects, events, actions, etc.) being talked about, and of how

utterances are formulated in English to describe ihese things. For instance, if a speaker pauses

in the middle of a sentence, a listener can often predict that one of a limited number of words

is likely to be spoken next. Certainly the listener can reasonably discard as possibilities most

of the words in his vocabulary.

The present work explores how such knowledge can be incorporated into a machine so that

it can be used in a systematic fashion.

Tradeoffs in a Specsch Recognition System

An interesting issue related to this problem concerns the tradeoffs possible between in-

creased refinement in the local processing of an utterance 'i.e., refinement of phoneme recog-

nition algorithms) on the one hand, and the use of more global information on the other. In other

words, how much real information does increased local refinement yield when seen in terms of

the system as a whole? One would suspect that intelligent heuristics in the higher levels of a

system might make a great deal of lower-level refinement unnecessary. Other parameters in

this tradeoff are vocabulary size, syntactic and semantic complexity, tne iegree to which small

words are allowed to be used, and the degree to which the vocabulary is partitionable so that at

different stages of discourse only part of the total vocabulary is likely to be used. This report

takes an initial step toward exploring some of these tradeoffs.

D, TWO BASIC CONCEPTS

Some aspects of the system presented here may at first seem somewhat counter-intuitive.

This section outlines two concepts central to the approacli: that of a vertical system (one with

vertically organs :d feedback), and that of phonetic distance. It is our hope that an understand-

ing of these two concepts will help to put the approach into sharper perspective.

i. Vertically Organized System

LPARG is a vertically organized system. Vertical system organization is useful where a

great deal of local ambiguity exists. A vertical system is one which allows tne various levels

of analysis to interact with one another. In the case of speech recognition, the various levels

are semantic, syntactic, and lexical analysis (and perhaps phonemic analysis). Figure 1-1 il-

Ivstrates the structure of such a system.

SEMANTICS

\I SYNTAX

TIONV WORD RECOGNITION

 f
input

Fig.I-l. A vertical system.

A vertical system is so named to distinguish it from a "strictly hierarchical" system which

does not have the feedback from higher- to lower-level analysis. An example of a strictly hier-
arcbijal system is a programming language translator, typically having a lexical analyzer which

recagmzes identifiers, numbers, operators, etc. and passes them on to the parser which deduces

their syntactic structure and turns this over to the semantic analyzer which generates machine

instructions. Such a system is not a vertical one because, for instance, the parser cannot tell

the lexical analyver what tokens it might look for next.

Section I-F-4 i^scusses two other examples of vertically organized systems: the M.I.T. AI
3 4 vision system, and T.A. Winograd's natural language parser. Vertical organization in the

vision system allows higher-leve! analysis to be invoked even thcugh some lines of a scene may

not have been recognized. Similarly, in speech analysis, all words need not be recognized r.n-

rnediateiy by the lexical analyzer. Contextual information can be used to help determine bound-

aries in unclear sections of the utterance, and to propose words that might occur there.

Thus, in I.PARS, the lexical analyzer first makes local testa for words which can be recog-

nized ftirly reliably. This processing results in a list of "word candidates," some of which may

be wrong. The word candidates are turned over to the higher-level routines which direct tests

to discover additional words. Fundamental to this analysis is the ability to parse outward from

a number of recognized portions of a sentence in an organized manner.

2. Phonetic Distance

The concept of phonetic distance goes hand in glove with that of a vertically organized system.

Phonetic distance is used when matching the phonetic spelling of vocabulary words in the diction-

ary against strings of phonemes recognized by the ^ront end of the s>3tem. As an example, one

simple msiä.-e of phonetic distance might be to define the distance of a word from a section of

input as equal to the number of phonemes that differ. Thus, FROM would be a distance of 1

from both FROL and TROM.

In practice, of course, some differences are greater than others. The voicing difference

between B and P, for instance, is presumably not as great as tue difference between B and S,

Consequently, it is useful to aiiow such phonetic distances wider range for more accurate dis-

criir.ination. The concept of phonetic distance must aL'o be extended to account for deleted and

inserted phonemes.

It is not immediately obvious how such distances a^-e best measured. To irake such meas-

urements certeinly requirss a statistical evaluation of the particular front end being used. These

issues are discussed more fully in Sec. III. Hopefully, it will become clear that precisely how

such phonetic distance is measured is not central to the ideas presented in this report (although

the effect of these measures is definitely central).

The concept of phonetic distance fits very naturally into a vertical system. In a vertical

speech system, initial scans through the input can be made at low phonetic distance to find words

that are not too garbled. Higher phonetic distance tests for more garbled words can be macie

jelectively, based on semantic and ajnuactlc information.

E. SIMPLIFIED EXAMPLE OF LPARS IN OPERATION

LPARS is designed to process spoken input by building up parse structures in any part of a

sentence, and then by using these structures to help guide the search for further words to com-

pJi-.te the sentence. It differs from most parsers in the local nature of its syntactic processing

and in its highly vertical structure.

This section gives a brief introductory description of LPARS itself and of how it performs

lexical, syntactic, and semantic processing. Then, a simplified example of LPARS in operation

is worked through to help put into focus the various parts of the system.

1. Some Particula^a

LPARS' vocabulary contains approximately 70 words. It recognizes a very restricted, but

linguistically interesting, subset of English. Its semantics are defined in terms of a particular

scene (a small two-room house containing people, furniture, fixtures, etc.) about which one may

make statements, ask questions, tell a very simple-minded story, or command the system to

manipulate the ?cane.

2, Operation of LPARS

fis input, LPARS expects a siring of phoneme candidates from a front-end phoneme recog-

nizer. For the present work, the input was prepared by a phonetic scrambler program which

simUated front-end behavior, rather than by a real phoneme recognizer. The input phoneme

camlidates may be ambiguouj (i.e., several possibilities may be given for one segment). The

inpit is also expected to contain a fair amount cf error.

LPARS operates by lirst making an initial scan through the sentence, seeking longer words

which are not too garbled. The scan returns a list of irord candidates which match within a given

erro- tolerance to specified sections of the input. It is likely that somj of these word candidates

are unco» rect, and, indeed, some may overlap.

INPL,T SENTENCt:

'THE LARGE COFFEETAELE SUPPORTS THE GREEN DICTIONARY'

(1) INITIAL SCAN: rOFFEfcTABLE, GREEN

(2) -JDCAL HIGHER DISTANCE SCANS:

STf.CH CO.:ElT;.BLE
(od.) (prep)
;det'; (verb)

LARGE NIL

(det)

GREEN ENOCH
(odj) (noun)
(def) DICTIONARY

THE
(verb)
(pfepl

THE NIL

v3) PARTIAL PARSE TREE CONSTRUCTION:

S

STPCH SENT

NP

A

the large cofleetable

ENOCH

•He green dicfionory

(4) CONNECTION OF PARTIAL PARSE

<■--.

TREES:

STRCH SENT-'
/

NP

_yHJ

*NP

A

-b

ENOCH

(5) RECOGNIZED SENTENCE:

STRCTT

Mr
A

SENT

VERB

supporh

MP

A

ENOCH

Y\%. I-Z. Simple example of FARS in operation.

These word candidates are turned over to the higher-level part of the system which initiatea

scans for small words and for more highly ^ jled words in the areas adjacent to and between

the words found in the initial scan, and groups the words together into parse structures. This

processing ia done systematically in an attempt to uncov?r the eitire utterance.

3. Simple Example

Figure 1-2 gives a simplified example of LPARS in operation. The '.nput utterance being

processed, "The large coffeetable supports the green dictionary" is spoken, analyzed by a front-

end phoneme revognizer, and a strit.g of phoneme candidates is produced for input to LPARS.

LPARS fir.Jt makes an i.iltial scan through the sentence at a low phonetic distance looking

for longer words whirh are not too garbled. Let us assume that in this instance the two word

candidates "coffer ible" and "green" are found. These word candidates are turned over to the

high-level part of the system, together with a start-of-sentence character (STRCH) and an end-

of-sentenoe character (ENOCH) which the system adds.

The higher-level analysis consists of three fairly distinct stages, as Fig. 1-2 indicates.

First, scans at higher phonetic distance are made br-sed on fairly local cues, in the p.reas sur-

rounding the word candidates. In this example, these initial higher-distance scans are very

simple. A scan in front of the noun uncovers tne adjective "large", and a further scan in front

of that word uncovers the determiner "the". A seal, to the right of the noun for prepositions and

verbs fails to find any word candidates. This means that the verb "supports" is too garbled to

be picked up either by the initial scan or by the higher-phonetic-distance selective scan. Similar

soans around the adjective "green" uncover the words "dictionary" and "the", but again fail to

find the verb.

After hese higher-distance scans have taken place, the system builds up local parse struc-

tures in the spntence. il all th» words in the sentence have been found, then the entire sentence

is constructed. Otherwise, the result is a number of partial parse trees in -hfferent parts of

the sentence.

The system attempts to construct as many such partial parse trees as it can with the words

it has found. In this example, it constructs only two trees. The first tree (STRCH the large

coffeetable) is straightforward; the second tree (the green dictionary ENOCH) is somewhat

unusual since it contains an "ancestor link" (the link labeled *). Such ancestor links are neces-

sary in 'PARS because of a fundamental problem of local parsing: namely, that it is not always

clear fi n a small amount of local context what the global relationship is between two adjacent

syntactic units. In this case, the exact relationship of the noun phrase to the end-of-sentence

character is not clear. Or. the other hand, for the purposes of . uilding local structure, LPARS

need not k.iow the actual relationship. The ancestor link allows LPARS to .ecognize that rrany

syntactic relationships ar« possible, but to defer commitment until later whf.n an attempt is made

to join this structure to other structuies by proposing words between them.

Tne third and final step in the parsing process consists of connecting partial parse tre^s to

one another by using the grammar to propose words that might exist between them. Any words

proposed are tested against the input at even higher phonetic distances than the previous scans.

In the example given here, the algorithm discovers that the two parse trees can be connected

by a verb. It therefore initiates a h'gher-dlstance scan which succeeds in finding the verb "sup-

ports". Thus, the entire sentence is recognised.

One of the advantages of the local approach is that this algorithm can attempt to connect

the moat promising partial parse trees first (for instance, the longer ones). In this way, the

local organization allows the system to take advantage of the maximum amouat of well-matcning

information from all parts of the sentence to direct attention to areas where highly garbled

words might exist, and to indicate what words might reasonably make sense there. A ipft-to-

right parser would be unable to take advantage of such information.

Notice that this example is a simplified one — no erroneous words were found. In a more

realistic example, erroneous words would be found, some local structureä containing these

words would be built up and, additionally, some erroneous local parsings of the correct words

could be constructed, '»-tpefully, attempts to build out upon the erroneous structures would

eventually prove unsuccfessful, while attempts to build out upon the correct structures would

us iall% succe»"!.

Notice also that, in this example, semantics have not beer, mentioned. Semantics enter

i rto LPARS' analysis primarily by reducing the number of words that need be sought by the

higher-distance scans. For instance, tests for adjectives preceding a noun need only look for

adjectives that may legitimately modify that noun.

4. Summary Overview

Figure 1-5 gives a condensed overview of the procedure we have Just worked through.

LPARS receives its input in the form of phoneme candidates. It makes an initial scan at a low

phonetic di 'ance yielding a list of word candidates, some of which may be incorrect. It uses

these to initiate higher-distance scans, to construct partial pars trees, and, if lucky, to un-

cover the entire sentence. Finally, LPARS investigates ways to connect the partial pai-se trees

together to build up the whole sentence. Section VI describes this process in more detail.

INPUT
(phoneme candidates)

*
INITIAL SCAN

(low phonetic distance)

word candidates •

 I
HIGHER LEVEL ANALYSIS

(selective higher-distance scans)

partial parse trees
^\

CONNECTION OF PARTIAL
PARSE TREES

(high-distance scons)

sentence
candidates

Fig. 1-3. Overview of LPARS.

F. RELATED WORK

Two useful surveys of speech literature, with extensive bibliographies, are given in Refs. 1

and 2. Previous work related to the present research can be separated into four fairly distinct

topics.

1. Isolated-Word Recognition

Numerous different approaches hava been taken to the problem of recognizing single words

spoken in isolation, given a fairly small vocoulary. Gold, and Bobrow and Klatt achieved 86-

to 95-percent recognition, each using a vocabulary of 54 words. In both cases, recognition was

done without trying to segment and identify the phonemes that made up the utterance.
7 8

Medress and Vicens developed system's which performed the intermediate step of attempt-

ing phoneme identif;cation before trj ing to identify the word spoken. These systems achieved

recognition accura-y , unilar to that of Gold and Bobrow. The Vicens system used a vocabulary

of 561 words.

In the present research, we assume that input to LPARS is in the form wh?ch is output by

the Medress and Vicens systems: a string of phoneme candidates which may contain large

amounts of ambiguity and error.

2. Continuous-Speech Recognition
g

Vicens also coupled his phoneme recognizer to a very primitive continuous-speech system

which worked by making an initial scan through the utterance searching for a certain highly recog-

nizable word, ajf' then used a very constrained syntax together with a very small vocabulary to

guide its search for the rest of the words in the utterance. LPARS can be thought of as an exten-

sive generalization of this simple system.
9

Reddy recently demonstrated a system which recognizes spoken chess moves, expressed

in a simple nonrecursive syntax.

The system of Tappert and Dixon ' achieved good results by attempting to it'entify "trans-

ernes" (phoneme-phoneme transitions) before matching the utterance as a whole. Rabinowitz,

working with Tappert and Oixoi, experimented with a left-to-right continuous-speech recognizer

for a simple nonrecursive syntax, with success rates ranging from 65 to 90 percent.

3. Natural-Lcnguage Processing

Most work done in recognition of natural-language input has concentrated on left-to-right
13 14 4

algorithms. The work of Woods ' and Winograd' ... '»atural-language parsing is closely re-

lated to the present research.

Woods uses the fo- malism of an augmented transition net grammar to capture the regulari-

ties of syntactic' structure. Our work also uses this augmented transition net formalism, but it

is incorporated into a local rather than i left-to-right framework.

Winograd uses PROGRAMMAR procedures and a set of systemic syntactic features to embody

his parsing logic. Vhe syntactic features used in our work are very similar to Winograd's.

4. Vertical Systems

The M.I.T. AI Laboratory vision system uies the besic idea of a vertical system (see Ref. 3)

which allows global structure to be ujed to help guide the more local processing, thus saving a

great deal of unnecessary work. In recognizing a scone of h'^cks, for instance, not all lines

must be recognized by the line recognizer before higher-level analysis is invoked. In such

situations higher-level analysis can propose possible missing lines and direct finer statistical

tests to look for them.
4

An interesting part of Winograd's system is its ability to call un semantic analysis with

partially recognized structures, in a vertical fashion, allowing semantics to abort nonsensical

local parses eatly in the analysis. Thus, semantics plays a confirmational role, answering

"ycs-no" questions, but does not exercise overt control.

In LPARS, semantics performs a more active function by suggesting possible action in a

"creative' role, such as supplying a small list of word possibilities to test locally against a

specific section of the input.

G. OVERVIEW OF SECTIONS II THROUGH VIII

Section II describes the transition network formalism, the set of syntactic features used to

augment it, and the fairly simple semantic component of LPARS. The transition network for-

mal!' n formn the backbone of LPAKS" parsing activity.

The various sub-parts of the LPARS system are described in Sees, ill, IV, and V. Section III

describes how "scrambled" input is prepared for LPARS by a front-end simulator, and how word

recognition is performed. Section IV describes the ir.tial stages of LPARS' processing: the

initial scan, and the ft-irly local higher-phonetic-distance matching. It aljo discusses some

interesting ways in which this part of LPARS could be extended. The two main algorithms used

by LPARS in its local syntactic processing are outlined in Sec. V.

Section VI describes the overall coordination of the LPARS system, and discusses some

basic problems and considerations i-.i the design of a locally organized system such as LPARS.

The experimental evaluation of LPARS is described and seme sample runs are exhib^ei

in Sec. VII.

Finally, Sec. VIII summarizes the various issues which have been aeart with in developing

the local approach toward parsing, and discusses some interesting implications of the approach.

10

II. A TRANSITION NCTWORK GRAMMAR WITH SYNTACTIC FEATURES

LPARS uses an augmented transi'ion network grammar as the basis for its syntactic activity.

The transition network formalism used by LPARS is somewhat different from previolis transition
13 14 net parsers such as Woods'. ' A few of these differences are primarily in form; others are

significant changes made to accommodate the local nature of LPARS' operation.

We now describe how LPARS has adapted the transition net grammar to accommodate its

local parsing purposes. Section A introduces *he transition retwork formalism; Sec. B describes

how LPARS augments its transition net grammar by a set of syntactic features, and discusses

some of the advantages gained thereby; in Sec. C, the syntax used by LPARS is presented, and

its restrictions are discussed; Sec. D describes the semantic component of LPARS; and, fin3lly

the action routines which are associated with the arcs of the grammar are discussed in Seo. E.

The action routines keep track of the syntaciic features and examine the semantic features of

structures bein^ parsed, to enforce consistency between different parts of the sentence.

Two basic problems are confronied here:

(1) How to organize a grammar so that recognition can be started easily anywhere

within a sentence

(2) How to organize a grammar so that, when local structure building occ.rs, any po-

tentially exponential inefficiencies are kept within reasonable limits.

A. TRANSITION NET FORMALISM

This section describes the basic structure of a transition net grammar. The description is

kept quite informal; however, as the chapter progref ses and more detailed examples are pre-

sented, the nature of the transition network as used in .'PARS will become more concrete.

A transition net grammar consists of a number of finite-state networks (nets) each defining

a no1"ierminal syntactic clasi» (i.e., noun phrase, senterce, etc.). The idea of representing non-
14

tei ninal syntactic classes by such transition diagrams was previously developed by Woods,

whom • e quote:

"The transition network grammar model is an extension of the notion
of state transition diagram well-known to automata theory. A transi-
tion network grammar consists of a network of nodes with arcs con-
necting them. The nodes represent states of a hypothetical parsing
machine and the arcs connec^ng them represent possible transitions
and are labelled with the types of eventt. in the environment of the ma-
chine which permit transitions. In the ca,=e of a transition network
grammar, the types of events are the occurrences of words and phrases
in the input string upon which the grammai is operating."

Figure II-l giv^g a t-imple example of such a grammar.

Each net is made up of a number of states connected by arcs. Each arc is labeled either

by the name of a terminal syntactic class (noun, verb, determiner, etc.), or by the name of a

nonterminal. Term,nal arcs cc espond to transitions permitted by a single word being proc-

essed in the input stream. Nonterminal arcs require the recursive invocation of a nonterminal

net to recognize a phrase or clause. In LPARS, an arc can also be labeled by LAMBDA; this

arc allows an immediate transition without processing any input. Eacli net contains at least one

initial state (-narked Q) and at least one final state (marked 0),

11

SENT:

NP:

PP:

AOJ

PREP NP

Fig.II-l.

Associated with ea'-h arc. and with each initial and each final state, is tn action routin'

which makes tests to determine when a transition is permitted and when a state can be an initial

or a final s*ate. These tests keep track of a set of syntactic features and other information about

the constructs being parsed Thus, the transition net is raugmented" by the activity of theae

action routines. The operation of these routines is discussed in Sec. U-E.

Thus, for each nonterminal, a transition network defines the structures wl "jh can form

that nonterminal. For instance, m the simple grammar above, a noun phrase (NP) is defined as

t determiner (DET), followed by zero o*- more adjectives (ADJs), followed by a noun, and fol-

lowed optionally by a prepositional phrase (PP). For a string of words to be accepted by a transi-

tion net, that string must permit a sequence of transitions through thp net beginning on an iu.Ual

state and ending on a (inal state. To allow this, the action routines associatfd with the arcs

traversed, and with the initial and final states, must permit the sequence of transi» ions.

In a left-to-right parser, these transition nets can be t.iought of as a flowchart of the parser's

action when analyzing a sentence. In a system such as LPARS, which performs local parsing,

the transition nets are best thorght of rather as defining acceptable left-to-right adjacencies for

syntactic structure.

B. SYNTACTIC FEATURES

Central to the LPARS' syntactic formalism are a set of ^•■-tactic features with which i.^ARS

augments the transition net grammar. Synta'-tic features maW ' easier to organize the gramiiar

so that parsing ca:i be started in the middle of a transition , yet still proceed in rui organized

fashion. Syntactic features also allow a quite compact grammar to be created. This section de-

scribes how '.hese syntactic features arc used and why they are important To this end, we first

work through f simplified example.

i. Example: Relative Clauses

A relative clause can be thought of as a permutation of the structure of an English sentence.

In transformational theory, a relative clause is thought uf as being formed by moving a noun

phrase to the front of a sentence, replacing it with a relative pronoun. For example, if one as-

sumes the following simple underlying structure for a sentence:

NP-V-NP-PP (noun-phrase, verb, noun-phrase, prepositional-phrase)

12

as in "the man places the book on the table", then the relative clauses shown in Fig. 11-2 can be

created. (In this figure, the terminal WH represents a relativs pronoun: who, whom or which.)

ORIGINAL SENTENCE:

0. NP NP PP (declarative)

RtLATIVE CLAUSES:

1. WH V NP

2. Whi NP V -

3. PREP WH NP V NP

PP (subject t.c.)

PP (object r.c)

(peepositiorKj! r.c.)

Fig.II-E.

In structure 1 (WH V NP PP), the first NP (already at the start of the clause) is relativ-

ized: as in ". .. who places the book on the table. . . ".

In structure Z (WH NP V PP), the second NP is brought to the head of the clause and rel-

ativized: as in ". . . which the man places on the table. . . ".

In structure 3 (PREP WH NP V NP), the third NP together with the preceding preposition

is brought to the head of the clause and relativized: as in ". . . on which the man places the

book. . . ". Notice that a fourth structure can also be formed with the preposition r> aining at

the end of the clause: as in ". . . which the man places the book on. . . ".

These three relative clause structures can be labeled "subject relative clause" (SRC),

"object relative clause" (ORC), and "prepositional relative clause" (PRO; these names indicate

the noun phrase in the original declarative (DCL) form which was relativized. Later in this ex-

ample, these names are used as "syntactic features" to help guide the parsing process.

Thus, Fig. H-2 outlines in tabular form a set of "linguisiic facts" describing the structure

of a declarative sentence and of three *.ypes of relative clauses. Figure iI-3 shows a possible

way that these structures might be represented in a tra.isiUc-n net grammar.

Fig. II-3.

In this transition network, each structure is spelled o it by a separate branch of the network.

Notice, however, that there is a great deal of similarity between the different branches. This

13

approach to representing syntax, alt.iough inelegant, would probably not be too costly in a left-

to-right parser, since the parser would P'.i progress too far down a dead-end branch before

backing up.

For LPARS, however, such an approach would Le very inefficient because, due to its local

parsing activity, the syntactic part of LPARS must ,-onstruct as many valid parse structures as

possible from the words passed to it. Since LPAf,;S has no way of knowing the correct left-to-

right context in which a set of words might exist, it must assume that any context is possible.

Thus, for example, if it finds a noun phrase to the left of a verb, LPARS must construct one

parse tree for every instance in the grammar where an NP arc adjoins a verb arc If there are

thirty such instances, then thirty parse structures must be created.

It would be inefficient for LPARS to represent a good-sized subset of the different structural

permutations of an English sentence by "spelling out" each permutation as in Fig. 11-3. Such a.

system would not only be inelegant, but would not allow efficient extension. The inherent ineffi-

ciencies would rise exponentially as more-and-more syntactic structure was incorporated.

LPARS avoids this problem by using syntactic features which ailow us to collapse a number

of different permutations of a sentence, for instance, onto a single transition net skeleton. Let

as see how this is done, continuing the relative clause example.

The linguistic facts portrayed in Fig. II-2 can be described using a transition net with four-

syntactic features; DCL, SRC, ORC. PRC, standing for each of the four possible sentence per-

.nutations. Each syntactic feature represents a particular phenomenon which might or might not

be present. Therefore, each syntactic feature has associated with it a Boolean value of either

"+" or "—" indicating whether that phenomenon might be present or not.

Let us see how s ich features can be incorporated into a transition net. Figure 11-4 shows a

transition net for the declarative sentence The feature (DCL+) is associated with each arc. (In

the LPARS system, these features are actu3lly built into the action routines which are associated

with each arc.)

DCL+ DCL+ DCL* DCL+

Fig. 11-4.

Now let us incorporate the subject relative clause structure into this net. To do this, we

add an arc labeled WH with the features (DCI^, SRC +) and label the other arcs with the appro-

priate SRC feature as shown in Fig. !l-5.

Fig. II-5.

11

The syntactic features associated with eacl ai c represent tests which must be performed

in the actio.i routine associated with the arc. Exac ly how these tests operate is described in

Soc.II-E.
Now let us add the obj.-t relati/e clause structi re. This can he done by adding a second

possible initial state, a WH-labdled arc from that stite to the first initial state, and a iJVMBDA

arc to bypass the second NP, as shown in Fig. II-6.

DCL- DCL+ 'X;L+ DCL+ DCL+

SRC- SRC- SRC+ SRC + SRC+

ORC+ ORC+ ORC+ ORC- OkC*

\ WH NP / v / NP / pp /

S)

Fig. II-6.

A LAMBDA arc is one which can be traversed without parsing any input. Notice that it is

only necessary to add a small amount of structure in the form of states or arcs when each now

structural permutation is incorporated into the existing n-H. Most of the structure is carried in

the syntactic features associated with the arcs.

Finally, the prepositional relative clause structure is added as shown in Fig. II-7. Here,

an additional initial state and an arc labaled PREP are addet!, and a previous state is made a

possible final state.

DCL- DCL- DCL+ DCL+ DCL*- DCl>

SRC- SRC- SRC- SRC+ SRC+ SRC+

ORC- ORC+ ORC + ORC+ ORC- ORC+

PRC+ PRC+ PRC+ PRC+ PRC+ PRC-

\ PREP \ WH

P
\ NP

/ WH

DCL-
SRC+
ORC-
PRC-

\ ' \ Nf \ PP

/ LAMBDA

DCL-
SRC-
ORC+
PRC-

'©

Fig.!l-7.

To make this net complete, a set of initial and final state test? must be created to indicate

which permutation can begin and end on the various initial and final states. Thus, the following

feature sets must be associated with the initial and final states:

15

Initial States

1. (DCL-. SRC-, ORC-, PRCH

-. (DCL-. SRC-, ORC+. PRC-)

3. (DCL+, SRC+. ORC~, PRC-)

Final States

6. (DCL-, SRC -, ORC-, PRC+)

7. (DCL+, SRC+, ORC + . PRC-)

This new net captures the same set of linguistic facts as Figs. II-2 or 11-3.

The list of features associated vuh each arc can be considered an elimination list. In this

simple example, if parsing is proceedirv from left to right along the arcs, one can keep a fea-

ture list and cross off any feature m led ''-" on iüe arc that one is about to take. If all features

are crossed off, then that arc cannot be tatcen; if not, then any features that remain are possible

globai interpretations for the structure parsed so far. In LPARS, the tesls which keep track of

these syntactic features are performed in the action routines (as descr d in Sec. il-E)

Notice that the parsing process can be started at any place in the net (not just at an initial

state), and still proceed in a syntactically meaningful fashion. Notice also that this new transi-

tion net does not have the undesirable features of the net in Fig. 11-2, If a noun phrase is found

to the left of a verb, only one parse structure need be created, as shown in Fig. 11-8.

NP
A

SENT

Fig.ll-b.

VERB

Section V describes the parse structures created by LPARS in more detail. This parse

structure would have associated with it the syntactic features (DCL+, SRC-, ORC+, PRC+) in-

dicating that it could be part of a dec!arative sentence or of an object or prepositional relative

clause. AJ parsing continues, these features restrict the arcs which can be taken.

In this way, syntactic features provide a way of letting structure recognized in one part of

a sentence influence parsing done in another part of the sentence, while keeping a very stream-

lined transition net skeleton.

The crossing off of syntactic features in this simple example was very straightforward. In

a more complex example, the logic in the action routines might involve more complex tests be-

fore crossing off a given feature Thus, more complex functions can bf associated with the arcs

to test the syntactic features.

The basic concept of keeping a list of syntactic features, which indicate different possible

global interpretations for the structure parsed up to a given point, is a very general one and is

extendable to a wide range of syntactic phenomena.

There are two major advantages gained by using syntactic features: (1) They allow the gram-

mar to be expressed compactly, thus cutting down on potwntially exponential inefficiency; and

(2) the syntactic feature logic tends to have little left-to-right bias, and therefore makes it eas-

ier to create a system in which parsing can start at any r.cde within a network, yet still proceed

In a well-defined fashion.

16

2. Tradeoffs in Grammatical Complexity

In uainj» syntactic features to achieve a streamlined syntactic skeleton, we are really trading

off betweevi complexity of the transition net structure (arcs and states) and complexity of the logic

in the action routines that process syntactic features. This tradeoff allows a reduction in the

number of partial parse structures which must be constructed, but increases the amount of in-

formation (in the form of syntactic features) v/hich must be associated with the parse structures.

For the purposes of l.PARS, this tradeoff is a useful one.

3. Generality of This Approach

As described above, LPARS uses a tratisition nut grammar augmented by syntactic features

as the basis for its parsing. The grammar which LPAPS uses is, however, a very re itrictel

one. It is therefore worth discuss ng how general and e/tendible the approach is.

This section broaches this issue by first relating syntactic features to trrmFtormational

gra.nmar ' and then to the systemic grammar used by T. Winograd in his natural language

parser. It turns out that syntactic features, if created by looking at a set of transformations,

can be related quite directly to these transformations. Syntactic leatures are also very similar

to the systemic grammar features used by Winograd. These comparisons are made to help put

the syntactic features discussed in this report into perspective with respect to other syntactic

representations.

a. Syntactic Features vs Transformations

A transformational grammar incluoes a set of rules which take the "deep structure" of a

sentence (its underlying form) and successively transform it to generate a "surface structure"

(the form which would be spoken or written). Most linguistic theory is couched in this generative

transformational framework.

This section argues that a transition network with a set of syntactic features can he related

quite directly to a transformational grammar, if the transition network is built up by systemat-

ically applying different .ransformations to a simple sentence structure. Section II-B-1 gave a

simple examplt of how this can be done for relative clause formation.

It is not a trivial task to change a transformational grammar into an equivalent transition

net grammar augmented by syntactic features. There are, however, a number of principles

which can serve as guidelines. The simplest principle is first to take a transition net representa-

tion of a declarative sentence (a simple example is shown in Fig. II-9).

Fig. 11-9.

The transformations are then taken one-by-one in the order in which they can be applied

and, in a heuristic fashion, appropriate st^-'fture is added to the transition net for each trans-

formation in turn. A very simple example jf how this can be done was given in Sec. II-B-1. In-

corporating the effects of a transformation into a transition net structure involves usually adding

some arcs, sometimes adding additional states, and always adding one or more syntactic features.

17

This ir»c7 nental incorporation of transformations was used to create the transition net

grammar of LPARS. It is not clear how easily one can create an efficient transition net for a

complex grammar by this process. The LPARS grammar does not, for instance, incorporate

any of the complex cyclic t" 'cts that can arise in some transformations. In general, the crea-

tion of an efficient transitior net/syntactic feature grammar from a set of transformations is

probably more an art than, a science, although one might be able to automate the procass.

The basic point, however, is that a transition net grammar with syntac;ic features can be

written so that its creation, and therefore its structure, bears quite a direct correlation to a

set of transformations.

An incider.tal point in this regard is that LAMBDA transitions can model quite naturally the

effect of a transformation which moves a structur» from one part of a sentence to another. For

exampl«?, let us assume that a transformation can move a NP from one place to another. We

can create a feature labeled A to represent th:s change, and then put the structure shown in

Fig. 11-10 into the transition net.

A+, B- A-, B+

NP / NP /

LAMBDA \ LAMBDA \

A-, B+ A+, B-

Fig. 11-10.

If the transformation can move the NP from position 2 to position 1, the feature (A +) impliei

that the transformation has been applied, and (B +) implies that it lu.s not. When parsing, if the

NP is recognized in position 1, then the features {A + , B—) imply that the LAMBDA transition

must be taken later. Similarly, if the LAMBDA transition is taken in posi*'on 1, the features

(A-, B +) imply that the NP arc must be taken in position 2 (An illustration of this very phe-

nomenon was seen in the relative cliuse example. The ORC feature implies that the direct ob-

ject NP has been moved to the front of the sentence and relativized. Thus, a LAMBDA transition,

with the ORC feature Libeled 'M" and other features labeled •—'', is included in the net to bypass

the direct object NP.)

b. Syntactic Features vs Winograd's Grammar
4

In T, Winograd's natural-language parser, a set of 'systemic features" was used which was

based on the notion of a systemic grammar. These features allowed syntactic constructs which

have been recognized to interact with parsing done later in the sentence. The syntactic features

which LPARS uses to augment its transition net are very similar, if not completely identical in

spirit, to these systemic features.

The features used by Winograd incorporated many more different syntactic structures than

does the limited set of syntactic features used by LPARS, but were implemented only in a left-

to-righ; oarser.

It would probably he quite straightforward to extend the LPARS grammar directly to incor-

porate the systemic set of features useo by Winograd.

18

c. EV.endöbility and "Syntactic Economy"

The basic issue in discussing the extendabihty of the LPARS parsing aoproach is not really

whether syntactic featuns can accomrnodate a wider range of syntactic structure. We feel that

Winograd's system demonstrates that this is possible. The real issrue is whether, at the same

time, the system can retain the desired "syntactic economy" in the sense of a streamlined transi-

tion net skeleton.

The use of syntactic features allows LPARS to represent many different permutations of the

structure of a sentence on a single transition net skeleton. Thus, for instance, if a NP is found

to the left of a verb, as discussed above, only one syntactic structure need be created. There-

fore, a potential exponential explosion is avoided.

It is certainly conceivable that with a more comprehensive grammar, such a dramatic col-

lapse onto a single syntactic skeleton might be difficult to achieve. On the other hand, a great

deal of collapsing of syntactic structure onto common syntactic framework ce'. ilnly would be

possible.

Thus, the important point, from the standpoint of this report, is that the use of syntactic

features to augment a transition net is a very powerful tooi which allows many different syntactic

structures to be combined in a single syntactic skeleton, and which dramatically reduces the po-

tentia' exponential inefficiencies inherent in a local approach to parsing, and therefore makes

these potential inefficiencies much more readily managed and easier to tolerate.

The problems of ultimate extendabihty of this approrch to a comprehensive grammar have

not been systematically explored

C. '..PARS' GRAMMAR

The grammar which LPARS uses contains the four syntactic features discussed above, along

with seven others. These syntactic features allow LPARS to accommodate an interesting, al-

though admittedly restricted, subset of English syntax.

LPARS' grammar allows the system to recognize the following sentence structures: declara-

tive, imperative, the three relative clpuses discussed, yes-no questions, and three types of

WH-type questions. The sysiem accommodates both active and passive forms of all these forms

(except the imperative).

1. 1.PARS' Syntactic Features

This section discusses each of th ; eleven syntactic features used by LPARS and demonstrates

their effect in sample sentences. Thes- features can he separated into two groups, or "systems,"

of features. The implication of the separation for LPAHS' operation is diacussed later.

The first system of syntactic features is:

DCL (declarative)

IMP (imperative)

QQ (simp'e question)

SRC (subject relative clause)

ORC (ob|',-ct relative clause)

PRC (prepositional relative clause)

As
or

As

As

As

As

n "The table supports tht> book"
The man puts the book on the table".

n "Place the book on the table".

n "Does the table support the book?"

n "which supports the book".

n "which the table supports".

As in "on which the man places the book".

19

SQ (subject question)

OQ (object question)

PQ (prepositional question)

\s in "What supports the book?"

As in "What dees the table support?"

As in "On what does the man place the
book ?"

The other system of syntactic features includes only two features: ACT (active voice) and

P.iSS (passive voice).

All the examples given above illustrate the active v^ice. San.ple passive sentences are:

"The bcok is supported by the table." and "What is placed on the table by the man?"

Z. LPARS* Transition Network

Fit"'re il-H shows the set of transition networks used by LPAKS; they define four

nonterminals:

SENT 1 a sentence, bracketed by start and end oharactei s

SENT a sentence in any of the different permutations
discussed above

NP a noun phrase

PP a prepositional ohrase

(Notice that this grammar differs slightly in form from some grammars since there is no "verb

phrase" nonterminal. Rather, the SENT nonterminal has incorporated directly the verb ph. ase

structure.)

LAMBDA

PROFN/LAMBDA/

LAMBDA

LAMBDA

DET NOUN

SENT

HP;

STRCH SENT ENOCH

SENT):

Fig. 11-11. I PARS' transition network grammar.

The grammar also allows fourteen terminal syntactic classes -.vhich can be grouped into

four rough categories;

20

(a) Six of the terminals are straightforward: noun, orb, adjective {AD.1), determiner

(DET), preposition (PREP), proper noun (PROPN).

(b) Four are special function words:

WH - WH-type words (such as "who", "whom", "which", ^.nd "what").

DO — the function word "does".

BE — the function word "ia".

BY — the function word us id to nvke a pase'v? form, "bj".

(c) Two are art'ficial terminals included to let the grammar know whether it has rec-

ognized all the input:

STRCH - the beginning cf the input

ENUCH - the end of the input.

(d) The final terminal, AFHX, is really a subword morph (word affix) It represents

the ending of a verb, which in LPARS can be "s" (active present tense), "ed" (pas-

sive), or NIL (imperative cr root). (LPARS expects all verbs to be regular.) The

AFFIX arc is treated very inuch like a LAMBDA arc by most of LPARS1 algorithms.

3. Restrictions of LPARS' Grammar

As is now probably very clear, the syntax which LPARS rec ^nizes is quite restricted.

This section describes some of these restrictions explicitly and discusses why they were made.

(a) Limited sentence structures: The emphasis In LPARS is to develop a localized

approach to parsing. Therefore, we have kept the syntax quite limited to allow us

to focus more fully on the basic problems involved In the local approach.

(b) Sma'.l Morph Problems: Due to the crudity of current phoneme recognizers, we

decided to limit the amount to which small words and small morphs wero allowed.

This decision results in a number of restrictions: only singular noun phrases are

allowed (therefore, no subject-verb number agreement checks are necessary);

only present tense is allowed, although both active and passive and root forms of

the verb can be used (thus, no complex affix hopping considerations need be con-

sidered»; a'so, the use of pronouns is not hanaled.

(c) To make tne grammar simpler and more manageable, a few other restrictions are

made: only one clause can .nodlfy a noun (although an arbitrary number of recur-

sively nested modifying phrases is allowed); also, conjunctions are not allowed.

(d) A further restriction which deserves separate mention, is that left recursion is

not allowed (i.e., allowing a nonterminal to start with itself). The local parsing

algorithms discussed in Sec. V would have to be somewhat mouified to accommodate

left-recursive structures.

These are some of the most glaring restrictions which LPARS makes. Clearly, there are

numerous complex and ..ot-so-complex linguistic constructs which LPARS also does not account

tor. None of these restrictions is made necessary by any inherent incapability of the LPARS

approach. Rather, wf, felt that, due to the crudity of current front-end analyzers, it would be

overly ambitious to tr- to incorporate too much structure at this time, parts-ularl- structure

21

TJWiMiiilii ■SWUM

that depended loo much on small function words and smä... morphs such aa noun and verb endings.

Also, the primary focus of the present work is OT developing the basic structure of the local ap-

proach, in a limited sys.em using techniques that are general and extendable Once such an ap-

proach is understood, extension is a much easier task.

D. SEMANTIC FEATURES

This section describes the semantic component of LPARS. Consisting primarily of semantic

feature checks, LPAilS' semantic processing is quite limited. Semantic featu.-es are a widely
17 4

used means of incorporafng a semantic component into a syntactic formalism. '

Each word in LPARS' vocabulary has a list of semantic features describing attributes of

that word. Each semantic feature consists of a name and either a value or a list of possible

values.

1. Semantic feature Checks

The feature list of the noun "table" includes the features (ANIM MINUS SUPP-SUB PLUS

CONT-SUB MINUS):

ANIM MINUS means that a table is inanimate.

SUPP-SUB PLUS means that a table can support objects

CONT-SUB MINUS means that a table can^t contain objects.

The feat-ire list of the verb "support" includes the features (CONT MINUS SUPP PLUS):

CONT MINUS means that the action is not that of containing.

SUPP PLUS means that the action is that of supporting.

The feature list of the preposition "on" similarly includes the features (CONT MINUS SUPP

PLUS).

Two examples of typic semantic feature checks involving these features follow.

Example ».

If a verb has the feature (SUPP PLUS), check that the subject of that verb has the feat re

(SUPP-SUB PLUS). Thus, "The kitchen supports the book." would not be recopnixed as an allow-

able sentence, while "The table supports the book," would be accepted.

Example 2.

If a preposition has the feature (SUPP PLUS), check that the object of th?t preposition has

the feature (SUPP-SUB PLUS). Thus, the phrase "on the kitchen" would not be recognized as

a prepositional phrase, whereas "on the tabL" would be recognized.

2. Semantic Feature Checks Used by LPARS

There are five different general cases of semantic feature agreement enforced by LPARS.

These are all enforced by testing appropriate features, namely:

Subject-Verb Agreement:— The subject must be capable of performing the action asso-

ciated with the verb. If the sentence is p.issive, of course, it 5 the "deep-strugturc"

subject that must be checked for this agreement

22

The table supports the book.

• The table contains the book.

The book is supported by the table.

• The book is contained by the table.

The man places the book on the table.

• The sofa places the book on the taole.

Verb-Object Agreement:— The object must be capable of having the verb action per-

formed to it.

* The table supports ihe kitchen.

• The man places the fireplace on the table.

Preposition-Object Agreement:— Since a prepos'Uon denotes a relation, the object cf

a preposition must be able to maintain that _ *.iaiionship with other .bjects.

on the table

* on the kitchen

* in the table

Modified Noun-Prepnsitlon Agreement:- Similarly, the noun modified oy a preposi-

tional phrase must be able to mairtain the relationship specified by the preposition with

other objects.

• the fir» jlace on the table

* the livingroom in the bookcase

Adjective-Noun Agreement:- Only certain adjectives can modify a noun.

the friendly person

* the green perpon

* the rectangular man

the small dish

As with most attempts to 'ntroduce order into linguistic phenomena, it is certainly possible

to imagine violations of these simple semantic feature constraints. For instance, it is conceiv-

able that in free speec!'. one might refer to "the rectangular man.'' As a result, a set of feature

checks of the sort used by LPARS is useful only ./hen the scene being talked about is restricted

and well understood.

Section II- E describes how the enforcement of these semantic feature checks fits into the

transition net grammar.

3. Semantic Features vs Syntax

i 8 It has been argued that "semantic" feature constraints of Hie sort used by I.PARS (often

called "selectional restrictions") are really syntactic in character. This argument can be under-

stood by observing that one can transform a semantic feature grammar into an equivalent gram-

mar without any semantic features by using many more nonterminal and terminal syntactic classes.

Instead of allowing nonterminal nodes to be flagged with the semantic features of component words,

the new grammar would have a special nonterminal for each combination of semaritic features

possible in the old grammar. In this new grammar, all the semantic feature information is im-

plicit in the name of any given syntactic class.

21

This argument is a valid o."

entiy incorporated into I PARS.

It points up ine limitations of the semantic processing pres-

4. Extensions to the Semantic Pro'-o-ssinp

One interesting extension of LPHRS
1
 semantic component would be to let the parsing tak»

place in the context of a particular "scene" being talked about. Thus, if the words "the dictionary

on the table" are parsed, these would only be formed into a noun phrase with a modifying prep-

ositional phrase if an instance of such an object existed in the sr ?ne being discussed.

Similarly, x-elat/e clause constructs juch as "which th* man placed on the table" would only

be recognized if some event had occurred in the course of previous interaction which could be

related to the event be.r.g described in the clause.

This extension of the systen? could be a major projec'. Yet it would fit quite naturally into

the overall l.PARS framewor Such an approach would involve using semantic processing of a

claarly non-syntactic variety.

E. ACliON ROUT I NFS

We now describe the operation of the action routines associated with the arcs and terminal

states of the grammar. The action routines examine syntactic and semantic features to deter-

mine when us'.1 of the arc or terminal state is to be allowed. Central to these routines are the

information lists which they operate upon.

1. Information Lists

As parsing proceeds, the relevant syntactic and semantic information is kept in information

lists which are attached to each parse structure built up. For terminals, the information list

consists of the list of semantic features associated with that word. For nonterminals, the in-

formation list is constructed by the action routine^ as describee below.

An information list has the form of a L13P property list: an alternating sequence of tags and

values (TAG1 VALUE1 TAG2 VALUE2 . . .). A value may itsel' be a property list in turn.

This property list corresponds quite closely to the set of registers which Woods uses to aug-

ment his transition net grammar. Therefore, in this section, the tag-value pairs arc referred

to as registers.

As parsing tak'>s place, the action routines examine the information in these registers to

see if the use of an arc or terminal state is to be aliowei' If so, they place updated information

into the registers (actually into a new copy of th-: registers) which can be examined in turn by

later action routines.

a. Registers Used by the SENT Net

This section describes the registers used by the action routines in the SENT net. These

registers are:

FEATLIST (syntactic feature list)

SSUB (surface subject)

The value of this register is the list
of syntactic features, together with
their values (PLUS or MINUS).

This register contains the semantic
feature information describing the
surface subject of the sentence. The
rogister '.s set by the action routine
of the NP arc which corresponds to
the surface subject.

Z4

X)BJ (surface object)

BY-NP ("by" r. -n phrase,
or "pccsive subject")

WH (WH word)

PREP (preposition)

PP (prepositional phrase)

VERB (verb)

This register contains the semantic
featur."; information describing the
surface object oi the sentence. The
register is set by the action routine
of the NP arc which corresponds to
the surface object.

This register contains the semantic
information describing the deep struc-
ture subject of a passive sentence (i.e.,
the NP "the table" in "The book is sup-
ported by the table."). The "egister is
set by the action routine corresponding
to this NP in the net.

In WH-type questions ap.l relative
clauses, this roister '.8 set to contain
the semantic inf nrnat.on describing
the WH word (i.e., wlat, who, whom,
which).

In a prepositional relative cause (PRO
or a prepositional question (PQ), this
register contains the information de-
scribinp the preposition.

In a sentence with a verb requiring a
prepositional phrase (such as "place",
or "put"), this register contains the
semantic information describing that
phrase.

This register contains the semantic
information describing the verb.

If, during the parsing of a given sentence (or sentence iragment), any of these structures

has not been recognized, then the associated register contains NIL.

2. Two Examples

We now give two examples of how these registers are used. Let us assume that we are using

the SENT net to parse the phrase "which the table supports". In parsing this structurr, a num-

ber of arcs are traversed in the SENT net. To determine that an arc can be traversed, the action

routine associated with that arc -nust be called. That action routine accepts as input two informa-

tion lists:

(a) The information list of the SENT net parsed so far.

(b) The information list of the terminal or nonterminal currently being parsed (in this

example, the WH, NP, and VERB successively).

The action routine returns NIL if the arc cannot be traversed. Otherwise, it returns a new

information list ropr-senting the entire SENT structure parsed, including the current arc.

Ex ample 1

•which" The action routine associated with the WH arc in the grammar
seta ihe WH register to contain the information of the word
"which". It also pets the FEAT LIST register to indicate that
the structure is either PRC, ORC, or CP.C, either active or
passive.

"the table" The action routine associated with the surface f.ubjtct NP sets
the SSUB register to contain the Semantic infoi-matlon asso-
ciated with the NP "the table". It sets the FLATL'ST register
to indicate that the structure is either PRC ir ORC, and that
It Is active.

2S

"cupports" The action routine associated with the verb arc ia railed, and
since the sentence is active, it checks to see if the NP de-
scribed by the SSUB register can be the subject of the verb.
Had the sentence been passive, it would have checked to see
iftheSSLB NP could be the object of the verb. If the S3UB
NP had njt been r«-cognized (as would have been the ca^e when
parsing a sentence fragment starting with the verb), tnen no
check would have been made. The action routine then sets
the VERB register to contain the semantic informat on describ-
ing the ver*- The information in the FEATLIST register stays
the same.

Ey.jnple 2

If the words being parsed are '* which the kitchen supports', the parsing would not succeed,

nnce the semantic checks are not satisfied. The parsing of the WH and the NP would be the

sau^e as in the previous example, but th«- action routine associated with the verb wnuld return

NIL after it finds that the NP cannot be the subject of the verb.

3. Brief Summary of Action Routines

Each transition arc action routine takes as input two lists of information: one made i'p by

the previous parsing in the net, the other from the terminal or nonterminal currently being parsed.

The routine processes these two lists of information to make sure that the arc can be trav-

ersed. If so, a new updated list of information is returned.

The initial and final state action routines are similar but accept only a single input, the l-st

of information made up by parsing of previous arcs in the net, and determines whether the struc-

ture which has been parsed can begin or end (as appropriate) at that particular state.

4. Parsing I vocally

Since LPARS uses the transition net to parse locally, the action routines must be written so

that the system can start left-to-right parsing from any place in the net. It is not difficult to

structure the action routines to allow this flexibility, but it does require some thought.

One potential probltm is that semantic feature checks cannot assume that a given construct

will always have been parsed just because it is to the left of the current arc being traversed.

For Instance, when parsiug a verb in a declarative sentence, one cannot assume that the surface

subject will always have been recognized. As a result, any semantic test must first ascertain

that the required registers contain semantic information.

Similarly, syntactic feaiu-e checking must be set up so that it can start anywhere in the net.

This is not difficult to achieve. In fact, one of the major advantages of using syntactic features

is tnat the syntactic feature logic consists mainly of crossing off all features which cannot use

an arc or terminal state, and thus has little built-in left-to-right bias.

Zh

ill. LEXICAL RECOGNITION AND PHONETIC SCRAMBLING

This section describes the approach to word recognition taken by LPAHS. Since LPARS is

not connected to a working phoneme recognizer, there are two parts to this description: first,

how LPARS generates "scrambled inpdl" which simulates input obtained from a phoneme recog-

nizer; and second, how the word recognition algorithm processes this input to reconstruct wcrds

which might be present.

In designing the phonetic scrambler and the word recognizer, a balance has been attempted

between simplicity on the one hand, and acceptably realistic simulation of real phonetic input on

the other. The main emphasis of the present work is on the use of higher-level linguistic con-

straints to guide lexical analysis, rather than on developing sophisticated meth 's of performing

lexical analysis with a given front end.

There are some quite complex phenomena which can affect lexical recognition with a real

front end. These phenomena include coarticulation; supra-segment".! effects involving pitch, in-

tensity, and stress; speaker-dependent effects, etc. The preaent research ignores these phe-

nomena for two reasons. First, any attempt to deal meaningfully with tnem in the absence of a

working front end would be difficult. Second, incorporating 3'ich phenomena into ti. lexical nroc-

essing of the LPARS system might cloud the fundamental higner-level issues involved in LPARS

design.

Thus, the lexical scrambling and recognition scheme used by the LPARS is not presented as

the last word in lexical recognition of continuous speech. On the contrary, it is presente-j as a

Fimple scheme which is easy to understand, and which preserves the basic characteristics of

spoken input.

Our work makes only one fundamental assumption - that the matching of a word against a

section of input can be done at a variety of levels of comidence. In »he present work, phonetic

distance is used to express these levels of confidence.

In LPARS, phonetic distances are determined from the confusion statistics used when the

scrambler introduces error into the input it prepares for LPARS. V.'ith a real front end, of

course, phonetic distances would be based on the statistical likelihood of the various errors

possible,

A. PHONETIC SCRAMBLING

We now describe SCRAMBLE, the phonetic scrambler which produces input for LPARS. The

scrambler accepts as input a string of phonemes correctly spelling an utterance. The scrambler

transforms this correct string of phonemes into a scrambled string containing substantial error.

The error is created by substitution and deletion of the input phonemes. SCRAMBLE does not, at

present, insert phonemes into the input.

In making these substitutions and deletions, SCRAMBLE uses the phoneme similarity table
19 found in Appendix 10 of the ARPA Speech Report. This phoneme similarity table (the "PST"),

reproduced as Appendix A of this report, ranks each of 36 phonemes against one another on a

scale from 0 (meaning completely dissimilar) to 100 (meaning identical). These similarity

measures arc a bit artificial since they are based on a somewhat abstract nr.tion of phoneme

similarity, rather than m a rigorous evaluation of a specific phoneme recognizer. The table is,
g

however, loosely correlated to the Vicens-Reddy front e.id. Although this table is used by

LPARS for its lexical processing, the approach taken is quite general and is not dependent on

the particular statistics in this table.

27

START

End of y
sentence?/

No

STOP
Yes

Read next
phoneme

(Delete ?)-

No

Yes

Output
substituted
phoneme

Fig. Ill-1.

Figure UI-1 shows in flowchart form how a correctly spelled serUence is scrambled.

SCRAMBLE examines each phoneme in turn, first deciding whether or not to delete that phoneme.

If not, SCRAMBLE then decides what phoneme to substitute. These decisions are made randomly,

weighted by the numbers in the PST as described in Sees. 1 and Z beiow. The scrambling might

have been more complete had insertion of phonemes been allowed. This would have required only

a simple modification of the system.

1. Substitution

For each phoneme that is not deleted, SCRAMBLE must decide what phoneme is to be substi-

tuted for it. The following example describes tlus procedure.

Let us assume that the " -rrect input phoneme is "T". The PST ranks the simiiarity of

all other phonemes to "T" on a scale of 0 to 100. SCRAMBLE must determine which of these to

substitute for the "T". For each input phoneme which is not deleted, the percentage likelihood

that SCRAMBLE chooses a substitute phoneme in a given similarity range is:

1 percent between 0 and 40

1 percent between 40 and 50

2 percent between 50 and 60

2 percent between 60 and 70

4 percent between 70 and 80

40 percent between 80 and 90

50 percent bet-veen 90 and 100

(if nc phonemes exist in a particular similarity rangt, phoneme from the next higher similarity

range is chosen).
This particular mapping was chosen by examining tables in Appendix 10 of the ARPA Re-

port,19 and trying to correlate roughly the PST to the performance characteristics of the Vicens

phoneme recognizer.
The actual percentages used can be varied to test the system at various levels of input error.

The values given here are those used in the system evaluation described in Sec. VII. Figure III-2

2H

90 to 100: PJ,D,CH,K,F,TH

80 to 90: B,J,G,V,DH

70 to 80: S,H,SW

60 to 70: Z.SH.ZH^.N^G.Y.I

50 to 60: W,R,L,U

40 to 50: A,E

0fo40: OO.O^W.AA^R.AE

Fig. III-2.

indicates which phonemes fall into each of the different similarity ranges with respect to "T"

(A list of the phonemes used, together with pronunciation, is given in Appendix A. The phonemic

representation used here is ihat of ehe AHPA Report. Most phonemes are fairly obvious, except

possibly "SW" which is the neutral vowel "a".)

The result of this scrambling is that, 10 percent of the time, "T" is scrambled quite badly

(into a vucalic phoneme or a fricative). The rest of the time the substitution is made almost at

random from a number of stop-like phonemes. Thus, the likelihood of preserving the "T" is

quite low.

Other phonemes (especially vowels) tend to have fewer phonemes ranked as being very simi-

lar in the PST. For these phonemes, the likelihood of preserving the original phoneme is much

greater. Thus, SCRAMBLE simulates a front end which recognizes vowels much better than

specific consonants. This is consistent with the Vicens-lleddy front end. on which the PST is

loosely based.

As discussed in Sec.IIl-B, the phonetic distances used by LPAKS are set up to reflect these

scrambling statistics. As a result, any two phonemes with similarity gr^it, Lh-in 90 are at a

phonetic distance of zero from one another, since at best substitutions are chosen at random

from the group of phonemes with similarity 90 or above.

Therefore, although SCRAMBLE chooses a single phoneme to replace each input phoneme,

this phoneme really represents a set of phonemes within zero phonetic distance of that phoneme

(above 90 similarity in the PST). Thus, the scrambler simulates a front end which often cannot

uniquely identify a phoneme, but can only roughly classify it. The Vicens-Reddy front end, for

instance, recognizes a stop-like segment as a stop without trying to identify which stop it

might be.

As a result, the string of individual phonemes produced by SCRAMBLE is perhaps best en-

visioned as a string of possible-p loner-e lists, each containing several phone Ties. Thus, LPARS

input contains implicit ambig'- • as well as error.

Z. Deletions

SCRAMBLE decides whether to delete a phoneme randomly, weighted by its similarity to

both of its neighbors. A phoneme bordered by similar phonemes is more likely to be deleted

than one bordered by dissimilar phonemes. This approach, suggested in Appendix 10 of the
19 ARPA Report, is a reasonable approximation of front-end behavior since, for instance, one

would expect a vowel to be more likely deleted when surrounded by vocalic segments, and a con-

sonant to be more likely deleted when part of a consonant cluster.

29

SCRAMBLE deletes aboi'. 15 percent of the phonemes it processes. It deletes, at most,

two phonemes in a row. The probability of deleting a phoneme immediately after a previous de-

letion is half that of the normal probability.

3. Example

We now present an example of phonetic scrambling to help give a more concrete feeling for

LPARS' scrambled input. First, a string of 27 T's is scrambled:

Input

/ '■p T-1 T" T T T* T T T T T FT* T T T T T V T* HP T' T" T" T" T* T* T ^

Scrambled String

(TH DTTTHBKFSWCHBBPFFT)

This gives an idea of the type of substitutions made. The number of deletions made here,

however, is extremely high, because the likelihood of deletion is affected by the diirüarity of

adjacent phonemes.

Next, similar scrambling is performed with a string of S's and A's;

Input

(SSSSSSSSSSSSSSSSSSSSSSGSSSS)

Scrambled String

(EE S S ZH H ZH S ZH H S H S Z Z 11 Z SH H)

Input

(AAAAAAAAAAAAAAAAAAAAAAAAAAA)

Scrambled String

(AE A AR AE O A A A A A AE O A TH A AE A O)

Notice that the string of A's (vowels) is not as badly scrambled as the T's or S's.

In the next example, the string "S A T S A T . .. " is snrambled.

Input

(SATSATSATSATSATSATSATSATSAT)

Scrambled String

(HASWHOTHIIADHHASAEPHAKHARDS^A)

Here there is much less deletion, since adjacent phonemes are quite dissimilar.

Finally, the sentence "The green coffeetable supports the dictionary" is scrambled. Its

correct spelling is:

(TH SW GREENK AW FEETAABLSSW PORTS

TH SW D I K SH SW N AA R EE)

iO

Two examples of this sentence, after scrambling, arer

(I D Y I NG DH AA K E SW AA K Y SH SW B O W F H

K SWG K AASW AA R I)
(SW G L W DH AA EE H AA P U B O K L E Z DH DH 1

P H SW M L EE)

Offhand, it might seem unlikely that the original words are retrievable from this scrambled

hodge-podge. It is difficult for a person to even match up parts of the scrambled sentence to the

original The computer, however, can do a much more thorough, patient, systematic job of lexi-

cal matching than a person can. In fact, the scrambled sentence is somewhat misleading to a

human because it is over specified, since each phoneme really represents a set of phonemes

which are equivalent under the scrambling.

B. MEASURING PHONETIC DISTANCE

In LPARS, phonetic distances of individual phoneme substitutions and deletions are added to-

gether to determine the overall phonetic distance of a word.

Since the phonetic distances are added together, they must be logarithmically related to the

probabilities of substitution and deletion. Thus, if one word matches an input segment but for

two errors of l/3 likelihood each, and another word of equal length matches but for a single error

of 1/9 likelihood (a more severe error), the likelihood of each word being present is equal (since

the likelihood of two errors of l/3 probability occurring is l/3 ♦ 1/3 = l/9). Therefore, their

total phonetic distances must be equal. This will only be true, in general, if phonetic distances

are logarithmically related to the error probabilities.

The actual scale used to measure the distances is not important. LPARS measures phonetic

distance on a scale from 0 to 120. Phonemes with similarity scores of 90 to 100 are of distance

0 from one wiother. Phonemes with sirr.ilarity scores of 0 to 40 are of distance 120 from one

another, representing the probability of 1 percent.

Figure III-3 snows graphically how error probability and phonetic distance are related in

LPARS. With a real front enci, phonetic distances would be based on the statistical probability

of the various possible errors. The phonetic distance associated with both substitutions and de-

letions corresponds to the probability o' that error occurring in the scrambler.

(0 20 30 40

PROBABILITY OF eRROR

Fig. Ill-3.

51

C. WORD RECOGNITION ALGORITHM

This section, describes the use of phonetic distance to measure how accu-ately the phonetic

spelling of a word matches a particular section of input.

Figure 1II-4 shows a simple example of how the matching is done. The dictionary spelling

of the noun "dictionary" is compared with three sample sections of input. (At present, the sys-

tem does not consider multiple pronunciations of a word.) In LPARS, the input quality is much

woi se than these samples might seem to imply. This example is kept simple for clarity; nlso,

the phonetic distances have been chosen arbitrarily.

Tote I Distance
Spelling Distono! per Phoneme

D I K SH SW N AE R EE

Input Samples

F 1 K SH SW N AE R EE 40 4
40

D K SW
50

N AE R EE 50 5

F 1 K SW N AE R EE 90 10

Fig. ai-4.

In matching a word against a section of input, the phonetic distances of individual substitu-

tions or deletions ere added together yielding a total distance for the entire word. The algorithm

searches for that combination of substitutions and deletions that yields the lowest total distance.

LPARS always performs its lexical matching using a threshold maximum distance-pcr-

phoneme. During the various levels of LPARS analysis, the threshold gets progressively higher

and higher as more-and-more context is used to indicate where ü particular word might be pres-

ent. Only words which match within the threshold are recognized. Thus, if this threshold

distance-per-phoneme is 10, no matches of the word "dictionary" arc accepted with total dis-

tance greater than 90 (to ♦ the word-length).

A very simple algorithm is used to compute the lowest-distance match of a word to an input

segment. The algon hm performs a left-to-right comparison of the dictionary spelling of a word

against a sectiiyi. of input, trying all possibilities of substitution and deletion. This process is

essentially a tree search, of a substitution-deletion tree, to find that branch of the tree with the

lowest score. If the score of any partial branch being explored exceeds the threshold distance,

the investigc.tion of that branch is aborted. If all branches are aborted, then the word does not

match the input segment within the threshold distance. Appendix C gives a flowchart of this

algorithm.

Although the algorithm is very simple, it does generate a great deal of computation. In th«

initial scav, of the utterance, for instance, virtually every word in the voca'niary is matched

against the entire input, i.e., starting at every possible phoneme position. This initial scan, of

course, is do-^e at a fairly low phonetic distance, which limits somewhat '.he amount of computa-

tion required.

32

D. SOME COMMENTS

We now make two comments on the approach taken here toward lexical recognition.

1. Local Exponential Explosion vs Vertical Organization

The lexical recognition algorithm clearly has the potential for exponential explosion of com-

putation as the threshold is raised higher and higher, and a deeper-and-deeper search is needed

of the substitution-deletion tree when matching words. On the other hand, the initial scan is

made at a fairly low-distance threshold (looking for words that are not too garbled), and the

amount of work required to match words at a low phonetic distance is less than the amount re-

quired for a high threshold.

One of the advantages of the vertical organization of LPARS is that most of the local lexical

matching is done at a fairly low threshold, and higher-threshold scans need be done only very

selectively, in specific places, looking for specific subsets of the total ■"■ocabulary.

2. Extendability of This Lexical Approach

The lexical recognition algorithm is not presented as the last word in lexical matching; it is

a deliberately simple scheme. With a real front end, there are many refinements that could make

the matching more accurate. The nature of these refinements, however, is not well aadei'stood

and constitutes a research problem in its own right. In this report, the main emphasis is on the

use of higher-level constraints to help guide local processing. Even with mor*» '•efined lexical

matching techniques, the basic concept of initially looking for words tlw match well, and later

selectively searching for words that match lesi well, would be equally valid

»3

IV. INITIAL STAGES: LOCAL WORD RECOGNITION

The first two stages in LPARS' processing of an utterance are now described. First, the

initial low phonetic distance scan through the entire itterance looking for long words (content

words) that are not too garbled; and second, the higher-distance matching in the areas adjacent

to and between the word candidates found by this initial scan, looking for strings of small func-

tion words, and lor long words which are more garbled.

During these two stages, no ■»tt-jrnpt is madi. to buiki any syntactic structure. Oily very lo-

<. lex-' -' ana boundary criteria are used in the higher-distance matching described here. The

final 01 ' of this processing i; a set of word candidates recognized in all parts of the sentence.

Many c'. words may be wrong, maiy may overlap. Also, there may be gaps in the utterance

which are in,', covered by any word candidate. The goal of this initial matching is to uncover most

of the words in the sentence. 7he;ie words are then turned over to higher-level parts of LPARS

which continue the analysis in a more comprehensive, systematic fashion.

input
INITiAl
SCAN 'V- word HIGHER-LEVEL

PART OF LPARS _^. candidates

■r

LOCAL
HIGHER-DISTANCE i

MATCHING

Fig. IV-1.

Figure IV-1 shows how tha^e two stages fit into the overall LPARS framework,

A. INITIAL SCAN

When processing an utterance. LPARS first makes a scan through the enti.-e utt ranee at a

fairly low phonetic distance. This scan searches only Tor content »• . (which in LPARS' vocab-

ulary are all at least 4 phonemes in length).

The scan is maoo by matching the spelling of each word against the input, starting at every

possible phoneme position in the utterance. The scan returns a set of word candidates, each of

which consists of a proposed word. Its starting and endir,g phonemes, and its total phonetic

distance.

The following example shows the result? of scanning a scrambled sentence in this manner.

at a number of different phonetic disUnces.

1. Example

""he sentence bemg scanned in this example is "The green coffeetable supports the ashtray".

Th.s sentence is scrambled, and then scanned at a number of phonetic distances. (The LPARS

vocabulary is given in Appendix R, All content words are at 'oast 4 phonemes in length. The

only unusual (mature of the vocabulary is that some worH strings such as "on tr.p of" and "on the

lei't of" are treated as single-word prepositions.)

H

f'\N 1: r!*>imtic Distance - 15, Minimum Word Length - 4

((CLUTTER 1 4 60)(COFFEhTABLE 7 14 90))

This returns a list of word candidates of the following form:

(WORD START-PHONEME END-PHONEME TOTAL-DISTANCE)

The word "coffeetable", for instance, has been found betwee-, phonemes 7 and 14 at a total

distance of 90. Sii ce the threshold distance-per-phoneme of :he scan is 15, no word is

found at a total cltonetic distance greater than 15 * its wordlength.

SCAN 2: Phonetic Distance - 20, Minimum W rd Ltngxu - 4

((CLUTTER 1 4 60) (COFFEETABLE 7 14 90) (CLUTTER ii 17 85)

(ROBERT 14 18 105) (CLUTTER 16 19 95) (CONTAIN 20 25 115)

(DICTIONARY 21 28 145))

SCAN 3: Phonetic Distance - 30, Minimum Word Length -- 4

((ROBERT 1 ' 160) (CLUTTER 1 4 60) (PERSON 1 5 170)

(FRIENDLY 1 5 155) (GREEN 3 5 100) (COFFEETABLE 7 14 90)

(CONTAIN 9 13 170) (CABINET 9 15 200) (INFRONTOF 10 18 250)

(TABLELAMP 11 1«. 210) (ONTHEI.EFTOF 12 18 2<i0)

(CLUTTER 13 17 85) (ROBERT 14 IS 105) (INFRONTOF 14 22 270)

(ENTRANCE 14 19 175) (CHRISTOPHER 16 22 205)

(CLUTTER 16 19 9S)(PI.ACE 16 19 115) (FOOTST(X)L 16 22 19 3)

(TELEVISION 16 22 195) (INBACKO. 17 22 210)(NEXTTO 17 21 175)

(CABINET 18 23 200) (PERSON 18 22 170) (CONTAIN 20 25 115)

(GREEN 20 22 95) (DICTIONARY 21 ^8 145))

Notice that, as the phonf tic distanr»» vhreshoSd increases, the number of *ords found in-

creases dramatically.

SCAN 4: Phonetic Distance - 25. Minirr.un Word Length - 2

((CLUTTER 1 4 60) (FRIENDLY 1 5 155) (THE 1 ü 0)

(THE 2 2 15),GREEN 3 ' 100) (THE 3 4 5) (BY 3 5 75)

(THE 4 4 20) (COFFEETARLF 7 14 90) (IN 10 11 45)

fON 12 13 40) (CUTTER 13 17 GS) (ROBERT 14 18 105)

(WHICH 14 16 75) (ENTRANCE 14 19 175) (CLUTTER 16 19 9C)

(TELEVISION 16 22 195) (THE 16 IV 45) (CONTAIN 20 25 115)

(GREEN 20 22 95) (THE 20 21 5) (DICTIONARY 21 28 145)

(THE 21 21 20) (THE 23 24 40) (ON 26 2V 40, (WHICH 27 29 10)

(WHAT 27 2 75MWH;CH 28 29 25))

35

This scan is made looking for words of length 2 or greater, and illustrates why it makes

sense to nick up small function words using context, rathc-r than scanning for them in the

initial scan. A large number of such words is found, most of them wrong.

2. Two Possible Extensions

a. Using Inter-utterance Context

One interesting extension of the initial scan described above is to use semantic constraints

of c global nature to restrict the woras initially searched for. This approach is very much in

! eeping with the vertical design of LPARS.

In an imoractive speech system, if the previous context of the dialog can substantially re-

strict the words that are likely to be uttered at particular times, uien only those words need be

included in the initial scan. Only if the results of this scan proved unsuccessful, need one per-

form the initial scan using a larger part of the vocabulary.

This extension would use inter-utterance contexiual information in a vertical fashion to re-

duce the average amount of computation required p"r utterance. LPARS presently does not use

contc.i of this sort. Resigning a system which uses inter-utterance context in an interesting,

meaningful fashion is an extensive project in ita own right.

b. Using Supra-segmental Information

One of the inefficiencies inherent in LPARS' design is the necessity of matching every word

at every phoneme position in the utterance. There is, however, a great deal of supra-segmental

informaUon available (see Refs. 20 and 21) in the waveform which might help indicate where

stressed syllables are, where phrase boundaries are, etc. Such information could be very use-

ful in helping a locally organized system like LPARS restrict the amount of lexical processing

dene in the initial scan.

B. LOCAL HIGHER-DISTANCE MATCHING

The words recognized in the initial scan are turned over to LOCALMATC'H, a routine that

directs higher-distance matching in areas adjacent to and between these words. T*p "spt of local

scans is described in Appendix E.

Although the LOCALMATCH routine ould have been written to operate automatically from

an arhitr"«*" transition net, it was written procedurally instead from an inspection of the particu-

lar gt used by LPARS. Section FV'-C discusses some possible adx-antages of allowing a

speech-system designer tne flexibility of pro -edurally expressing the logic which directs such

local word searching.

Tlie type of logic performed by LOCALMATCH is quite simple, due in part to the relative

siinphcltv of LPARS' syntax and semantics. Typical actions (all performed at a higher phonetic

distance than the initial scan) include:

(1) Matching for sernantically acceptable adjectives to the left of nouns (and vice versa:

matching for sernantically acceptable nouns to the right of adjectives).

(2) Matching for verbs to the right of nouns (and vice versa).

(3) Matching for preposHions to the right of verbs and nouns, and for determiners fol-

lowed by adjectives or nouns to the right of verbs.

16

(4) Mo.^hing for small function-word strings such as "in the", "on the", "which the",

"in which the", Hwl» the", etc., as appropriate, between two nouns or a noun and

an adjective which are separated by a small number of phonemes.

(5) Matching for function-word strings such fcS "the", "ts the", "what is the", otc,

between the beginning of the sentence and a noun or adjective which starts close to

the beginning of the sentence.

The LOCALMATCH routine takes advantage of the word boundary information obtained from

the initial scan, together with local syntactic constraints of the grammar. This information is

used to direct searches for small function-word strings that might be difficult to find without

context, and to find more garbled longer words next to words already found.

1. Example

The following is an exaj of an initial scan and subsequent high-d:stance matching. The

sentence being processed is i he wastebasket which the green coffeetable supports contains the

dictionary".

Initial Scan Output

((STEPLADDER 8 15 150) (COFFEETABLE 18 25 15) (SUPPORT 2f. 31 5)

(CONTAIN 33 38 < 0) (PICTIONARY 42 49 95))

LOCALMATCH Output

((CONTAIN 1 5 135) (THE 1 2 0) (PLACE 3 5 <)0)

(WASTEBASKET 3 10 185) (THE 6 7 0) (STEPLADDER 8 15 150)

(WHICH 11 12 12) (CLUTTER 11 14 100) (THE 13 14 12)

(THE 15 17 0) (GREEN 15 17 60) (COFFEETABLE 18 25 15)

(SUPPORT I.. 31 5)(CLLTTFT 30 32 110) (ROBERT 30 33 120)

(THE 32 33 0) (THE 33 ^3 0) (CONTAIN 33 38 10)

(BOOKCASE 34 38 HO) (ENJOY ji 38 120) (THE 39 41 0)

(PERSON 42 46 105) (DICTIONARY 42 49 95))

2. Semantics in the Higher-Distance Matching

The LOCALMATCH routine does not use semantics very extensively to help it restrict the

various words that it matches. However, there are a few instances in which semantics are used,

such as when it is looking for adjectives in front of a noun, it need only look for adjectives that

are semantically compatible with that noun.

In general, however, these scans are based on such local information »hat it is impossible

to incorporate too many semantic restrictions. For instance, in scanning »or a verb next to a

noun, one cannot require *.hat the verb be able to take the noun as a subject, for instance, since

the noun might be n-.'Sted in prepositional phrases or clauses, modifying the subject.

As a result, the information being exploited by the LOCALMATCH routine is primarily the

word boundary information together with some very low-level syntactic constraints, rather than

higljer-level syntactic or semantic inforriiation.

17

If, however, the semantic coinponent of LPARS was exter.ded to include a scene with objects
4

being talked about (ad in Winograd's block world), and to include an interacthe dialog with pre-

vious events which could be referred to (in modifying clauses), the semantic pajl of this lexical

matching could be made much more useful and interesting as discussed below.

C. SOME SPECULATION

We now discuss, in a somewhat speculative vein, some reasons why the LOCALMATCH

routine in a system like LPARS might be more conveniently expressed procedurally, rather than

written to work automatically, given any transition net grammar. These argumt 's would be

particularly valid in a system with a much more complex semantic component which made use

of a scene being talked about, as mentioned above.

The crucial point is that the goal of the LOCALMATCH routine is not to systematically ex-

plore the utterance in a globally consistent fashion. Rather, the goal is to use locally available

words, together with a knowledge of objects and events being talked about, to try to identify

fairly local structures in the utterance describing these objects and events.

The semantic 1 ^ic that might be useful in L>uch a routine is considerably different from the

syntactic constraints built into a grammar. If so, it may not be necessary (or convenient) to in-

corporate the semantic lot"''', which postulates and searches for local structures in an utterance,

wholely within tho syntactic parsing framework. We do not say thai it would be impossible to do

so, just that it might introduce a level of formalism (transition net) which is largely unnecessary

for some types of semantic logic ami would therefore be an inconvenient mode for expressing

that logic.

1. Kxample 1: Recogni7ing Phrases and Clauses

Suppose a routine that would help search for noun phrases is wanted. Such a routine might

be called whenever the 'exica! analyzer discovered an adjective or noun. T!ie routine could use

knowledge about which adjectives and nouns could modify one another in 'h- task domain to drive

further lexical matching to try to fill out -n entire noun phrase.

This routine might also query the particular scene being discussed to see what objects are

possibly being described. The routine might search the scone, obtain a list of possible objects,

and if it were reasonable to assume that a determined noun group was being processed, it could

divect scans for additional words that might also describe the object or that might help uniquely

specify which object was being talked about.

I,ogic of this sort could presumably use the transition network grammar to direct these

scans. On the other hand, these scans have such a .ocal, specific character that the transition

net would be basically superfluous.

The reason for this is twofold:

(a) A noun phrase is a very local structure and appears unchanged in many global contexts.

(b) The logic beinn used to lircci the scans is highly specific; it applies only to neun

phrases and does not generalize to cover many different p&rts of speech. On the

other hand, an advantage of a syntactic formalism like the transition net grammar

is that it treats all words in a systematic, homogeneous fashion. This is not true

of the logic just described. One invokes the noun-phrase recognizer only when one

has found a particular class of word. One knows exactly what to do next. There is

no need, for instance, having found a noun, to use the transition net to discover that

an adjecti%-e can modify it.

U

A similar argument would !iold for prepositior.al phrases. Even when one considers more

complex syntactic structures such as modifying clauses, th» arguments art probably still quite

valid. For instance, if the system has stored a number of events (i.e., X did Y, X did Y to Z)

it might be desirable, having found descriptions of X and Y, to direct scans to see if somehow

these structures could be incorporated into a relative clause describing the event stored. Here

again, one is looking for specific things, and it might well be easier io express this type of logic

procedurally, divorced from the formalism of the transition network grammar.

2. Example ?.: Searching for Small-Word Strings

Especially with tne crudity of front-end output, small words pose a very real problem to a

speech r ^cognizer, especially when a number of them can occur together.

As an example, consider the string of words "Is in the". If twi nouns (Nl and N2) have been

discovered, how is one to test the possibility of the string of small words being present between

them' Using the transition net grammar, one would ask: "Can Nl be followed by a small verb,

which can be followed by a small preposition, which can be followed by a small determiner,

which can be followed by N2?" This involves a great deal of threading one way through the

grammar, with very little lexical information to base any parsing choices upon.

It would be more convenient to write a program which scanned for the word-string "is in

the" as a unit, whenever it observed that two nouns, Nl and N2, are x * y phonemes apart and

that Hi can be "in" N2. The answer to this question is, of course, not obvious and is probably

dependent on the particular vocabulary and synlu ' used, on the application, and on the accuracy

of the front end.

3. What l^e Then Is the Syntactic Formalism'

Sections 1 and 2 above offered some arguments as to why fairly lot al matching might best

be done outside the transition network formalism. If these somewhat speculative arguments do

make sense, however, then it is reasonable to ask what such syntactic formalism is good for. if

anything. The answer is that syntactic formalism is needed to assure global consistency of lo-

cal structures found in the manner described above.

Since the logic described is based on fairly local criteria and is basically a set of probabilis-

tic heuristics which looks for reasonable local constructs, Ihere is no assurance that recognitic

going on in one part of the sentence is globally consistent with recognition elsewhere. The tran-

sition network can be used to assure that the entire str1 Hure is globally consistent, and to direct

attention to possible problem areas (bringing information from all parts of the utterance) if a

well-defined sentence is not initially discovered. The primary focus uf the present work is. in

fact, on the problem of how io organize a system which uses syntax (expressed in the form of a

transition network) in this fashion.

J9

\ A l(H\I, APPROACH TO PARSING

A IMIioDi C riON

This sit iion dpscribea the i«i> UK-al parsing algurithmu used by I.PAHS: TREK, which

builds th»1 local partial parso trees; aid CONNECT, which connects pairs of such trees together

bv proposing words that might exist between them. The description of these two algorithms has

been kept at the level of a verbal over-view in this chapter. More-detailed flowchart descriptions

are given in Appendix D.

Both algorithms described here involve only left-to-right processing of the grammar, even

though they are used as part of a locally organized parsing system.

This is the most technical section of the report A reader interested in acquiring a back-

ground of this material without lor before) going into more detail is advised to read Sees H-l,

C'-l, C'-ii, D-i, and l)-l-a which give an overview of the two algorithms described.

We first describe the structure of the partial parse trees which form a central part of

I.PAHS processing

B. REPRESENTATION OI PARTIAL PARSE TREES (PFTs)

This section describes how I.PAHS represents syntactic structures. It is assumed that the

reader has some general exposure to syntactic representation.

A PPT is composed of termir. and nonterminal nodes. Each terminal node corresponds

to a terminal arc in the transition net, r.nd each nonterminal node corresponds to a nonterminal

arc. Each nonterminal node must have one nr more sons. The sequence of these sons corre-

sponds to some permitted path through the ne.work which defines that nontermin.-j' * rmmber

of simple PPTs are shown below (Fig. V-1J.

NP

de! noun >P
t

- i
fh« mon p»ep

beside

Slrch

Fig. v-1.

A PPT is const -ucted out of words that are adjacent in the input. It can span no gaps. It is

"partial' in the sense tha» the outer end of a path of arcs taken throuRh an outer nonterminal node

ntcd not terminate on a permitted state.

40

Two points arp central to the use of Hl'Ts in i.l'AHS:

(1) Kaeh PPT is very closely tied to the grammar.

(2) "Ancestor links" can be used to represent the local ambiguity inherent in i yht

recursion.

These two points are expanded upon in the following two sections.

1. Each PPT is Closely Linked to the Ciramntar

To understand how the local parsing algorithms ope-ate (especially the CONNECT algorithm),

one must appreciate how closely the PPT a are tied to the transition network grammar. The

sequence of sons of each node represents some permissible path of arcs through the transition

network ».hich defines that nonterminal. This path of arcs is contained explicitly in each node.

In fact, each node includes the following information:

(a) a list of eons

(b) a list of arcs taken {i.e., the path through the network»

(c) the start estate (of the path)

!d) the end state (of the path).

Tnus, given a PPT, one can get directly to the beginning and end states the path takes through

the transition network in forming each nonterminal node. Therefore, one can readily investigate

arcs emanating from an end state, for instance, to see how the path might be extended. This is

an important capability, since the CONNECT algorithm, as discussed in Sec. V'-D, consists basi-

cally of exploring ways ill which the paths of two ''PTs can be extended and joined.

Since the PPT is so closelv tied to the grammar, we often talk of the beginning or end state

of a nodi, meaning the beginning or end state in the grammar of the path of arcs taken in forming

the node.

2. LPARS' PPTs vs Woods' Structure Building

The parse structures described here cliffer from those constructed by Woods' transition net

parser. In Woods' system, syntactic structure is built by user-written BI.II..X) functions.

These user-built structures represent a kind of deep structure rather than the path taken through

the grammar. In I.PARS, no attempt is made to construct deep structure as Woods' system

does. The only parse structures built are created directly from the transition net as illustrated

in Fig. V-l.

3. Ancestor Links

The only unusual feature of the PPTs produced by TREE is the use of "ancestor links."

Ancestor links are used to express the local ambiguity caused by the existence of right recursion

in a grammar.

For instance, assume that noun phrase fNP) and prepositional phi?se (PP) are defined as

shown in Fig. V-2.

This is a simple example of right recursion since a NP can end in a F P which can end in a

NP, etc. Thus, if one sees only a noun phrase to the left (f a verb, for instance, one does not

know if that noun phrase is the subject of the verb, or if it is arbitrarily nested in PPs modifying

41

ADJ

Flg.V-2.

the subject. Thus, the string of words "the box supports" could be part of ". . vvh'ch the box

supports. . ", or "the block in the box supports. . ", or "the cube on the block in the box sup-

ports. .", etc.

If ancestor links were not used, there would be an infinite number of ways to connect a NP

to a verb, including thrse shown in Fig. V-3.

SENT

NP

A

\
verb

SENT

/\
NP verb

PP

SENT

NP
I

PP

verb

..etc

NP

A
NP

I
PP

NP

A

Fig. V-3.

Using ancestor links, however, v.henever a NF is found to the left of * verb, the two struc-

tures shown in Fig. V-4 can be produced.

SENT

/ \
NP verb

A
PPT 1

SENT

NP

A
verb

PPT 2

Fig. V-4.

The starred link in PPT 2 is an ancestor link, and embodies an unlimited number of possible

global relationships. The ancestor link implies that the NP is the rightmost descendant of the

NP arc lu the SENT net, without speciiying the exact relationship. Notice that if the noun phrase

wa.« not a semantically valid subject of the verb, only PPT 2 need be produced.

If only a noun had been found to the left of a verb, only one structure need be produced {see

Fig.V~5).

SENT

noun
V

•rb

Fig. V-5.

42

More formaliy, an ancestor link represents an unspecitied chain of nonterminal nodes con-

necting a PPT to a higher-level node. (A chain of NTs is one or more NT directly desf-endant

from one another, each having only one son 1 The presence of ai ancestor link meana that a

chain of nonterminal nodes has been deleted and replaced by the ancestor link. As illuütrated

in Fig. V-5, this allows a single ancestor link to represent an infinite number of possible

structures.

An ancestor link can be thought of as saying "I don't know what is to the left of me. Many

structures are possible." Thus, such links can occur only on the leftmost side of a partial parse

tree. (If left recursion were allowed in I,PARS' grammar, then ancestor link., could also appear

on the rightmost side of a PPT.) TREE automatically inserts an ancestor link whenever a chain

of nonterminal nodes occurs in the leftmost son of a PPT being constructed.

The concept of an ancestor lirk is a very simple one. It is also a very natural one in a sys-

tem such as I,PARS. Such links allow the system to recognize a valid, yet ambiguous, syntactic

relationship without being forced to specify what the relationship is. Later, when an attempt is

made to connect the PPT to other PPTs, the relationship can be resolved.

More-complex PPTs containing several ancestor links ca;. also be made. Kor example,

given the string of words "the sofa supports contains the ashtray endch", one of the possible

PPTs produced is shown in Kig.V-6.

endch

ai in: "The box which the fable beside the sofa

supports contains the ashtray")

Kig.V-6.

Since i.PARSonly allows right recursion, these ancestor links can occur only on the leftmost

side of a PPT. Were left recursion allowed, such links would also be possible on the rightmost

side of a PPT.

4. Partial Parse Tree Terms

We now define a few terms useful in talking concisely about partial parse trees.

A "Final Node": A nonterminal node of a PPT is a final node (a) if the path of arcs

taken ends on a permissible final state and (b) if its rightmost son is either ter-

minal or is itself a final node.

An "Initial Node": A nonterminal node of a PPT is an initial node (a) if the path of

arcs taken begins on a permissible initial state, and (b) if its leftmost son is cither

terminal or is itse.f an initial node.

43

To "Invoke": An arc- in the grammar "invokes" a word if it is labeled by the syn-

tactic class of the word. It invokes a PPT if it is labeled by the syntactic class of

the top node of the PPT.

A "Context Arc": An arc of the grammar is p possible context a- ■ for a PPT if it

invokes th? PPT.

C. TREE: THE PARTIAL PARSE TREE CONSTRUCTOR

This section describes TREE, the algoritK.i which constructs partial parse trees in various

parts of the input sentence. In spirit, the algorithm is quite Si.nilar to more traditional left-to-

right parsing algorithms. A number of additional considerations are made necessary, however,

by the local nature of the LPARS loproach.

The TREE algorithm itself does not attempt to recognize or hypothesize any words in the

input. Rather, it accepts word candidates which have been recognized by previous activity of

LPARS, and constructs as many different local parse structures as possible using these words.

If all the words of the inout sentence have been found, then a parsing of the entire sentence is

among the parse structures produced. If not, TREE will output a collection of partial parse

trees (PPTs) which are then turned over to a second algorithm, CONNECT. CONNECT attempts

to connect pairs of parse trees together by using the grammar to propose words that might exist

between them. It then tests these words out at high phonetic distance against the input (see

Flg.V-7).

partial
words —•-1 TREE] —»- parse J CONNECT] —-.ertence

^ees

Fig.V-7.

We first present an overview of the operation of the TREE algorithm. Then we discuss two

problems which do not arise in left-to-right parsing systems, but which must be dealt with to

implement the local approach of LPARS.

1. Goal of TREE

The goal of the TREE algorithm is to construct as many different local syntactic structures

as possible using the input words. Let us see what this means in p.-actice. Suppose the word

string "the big man" was recognized. Clearly, these words could all be incorporated into the

PPT shown in Fig. V-8.

NP

the big man

Fig. V-8.

This, in fact, is the only PPT which LPARS creates. Notice, however, that there are five

other "subsumed" structures which can be formed (Fig. V-9).

A PPT (PPT 1) is "subsumed" by another PPT (PPT 2) if PPT \ incorporates only a subset

of the words incorporated by PPT 2, and if the syntactic structure connecting those words is

identical in the two PPTs.

i)

det odj noun NP NP

I I ! /\ /\
tli bia man def adi adi noun

I I i I
the big big man

Fig.V-9.

It might seem reasonable for TREK to create all possible subsumed structures, on the

theory, in the example above for instance, that "the" and "big" might be correct words but "man"

might have been in error. The approach of TREE, however, is not to produce any PPT which

is completely subsumed by some other PPT which t cnstructs. If any word is later thought to

be in error, I.PARS can break the structure down into smaller parts.

Thus, the goal of TREE is to construct as many local PPTs as possible, with the provision

that no PPT produced is subsumed by another. For instance, given "the book beside the", TREE

would produce the four structures shown in Fig. V-10.

NP NP

the book PP the book SENT

^ I beside NP beside

I
the (as in: "the book beside which.. . ")

2]

SENT

/ \
NP PP

/\ /^
the book beside NP

•
the

the book

(as in: "put the book (as in: "put the table which supports
beside the ashtray") the book beside the sofa")

Fig. V-10.

These four valid globpl interpretations of the words are all structurally different Notice that

PPT 2 does not include the word "the", since only a relative pronoun (such as "which") can follow

the preposition in the SENT transition net. Notice also, that PPT 4 really represents a potentially

unlimited number of global relationships because of the ancestor link.

As discussed above, the goal of TREE is to construct all possible PPTs. Another way of

phrasing this goal is to say that TREE hypothesizes all possible global relationships that might

exist in the grammar between all sets of adjacent words.

It is reasonable to ask why a system should go through this intermediate step of constructing

all possible PPTs. The reason is that once these PPTs are built, LPARS can examine them in

toto, and decide vhr; ar^as of the input are best candidates for further investigation at high

phonetic distance

AS

2. Implementation Overview

The following is a description of the TREE algorithm in general terms, to give an overview

of the issues involved. We hope that this overview will suffice for most readers.

TREE accepts as inpu a list of words, possibly overlapping, ordered by their position in

the sentence. It processes these one at a time, thus proceeding from left-to-right through the

sentence. Since at each point TREE builds all possible parses, no backup is necessary.

TREE stores the PPTs it constructs in a "phoneme position table" (Fig. V-ll) whicd has one

cell for each phoneme position in the input sentence. Each cell has a list of all PPTs constructed

which end 4 that phoneme position in the sentence.

1 2 3

Fig. V-ll. Phoneme position table.

Let us take the following simple example to see how the table is u. ,. Suppose the following

word candidates were fouiid: (the 11 12) (big 13 15) {-.nan 16 18). The numbers represent

the beginning and ending phoneme positions of each word in the input. TREE takes each word

in turn and attempts to connect it to every PPT ending immediately before that word.

Thus (the 11 12) is taken first. Since no PPTs end at position 10, no connections can be

made, i the PPT "the" is recorded at position 12. Vxt (big 13 15) is taken; it is connected

to "the", and a PPT "the big" is recorded at position l^.. At this point, the PPT "the" is flagged

to indicate that it is a subsumed PPT. Similarly, "man" is connected to "the big", yielding

"the big man" ending at position 1«, and the PPT "the bin" is flagged as subsumed. The result

of this activity is shown in Fig. \ -12.

11 12 i: 14 15 16 17 18

DET

the

\ \
NP NP

A AX
the big the big man

Fig. V -12.

Notice that once a Pr f which ,ias been incorporated into a larger structure is marked as

subsumed, even though it will not be part of the final output of TREE, it is kept in the table.

Therefore, if an overlapping word c&ndidate has been found, such as (manufacturer 16 24), it

can also b^ connected to "the big" yielding the PPT "the big manufacturer" ending at position 24.

This example is a very simple one. In practice, the input being pro-essed may contain

several words in any section of input. Words may overlap one another at random. Alternatively,

gaps mav exist (if they do, of course, no syntactic connections are mado across ese gaps).

Notice also that connecting a word to a single previously made PPT may Weld several PPTs.

As illcstrated in Fig. V-8, for .'nstance, adding "beside" to "the book" yields four different PPTs.

WTienever a word is processed by TREE, it is connected ir. as many different ways as possible

to all PPTs which end directly before that word. In addition, as discussed beiuw in Sec. 3-f,

TREE looks to sec if the word can be connected to a rightmost subpPn of each PPT in some other

syntactic context.

Hefore adding a PPT to the appropriate phoneme position lict, of co irse, TREE first checks

to make sure it is not subsumed by any previously created PPT already on the list. Similarly,

46

if the new PPT itself subsumes any PPT already on the list, the previous PPT is flagged. These

two checks are iiecessary foi reasons described below in Sec. 3-f.

3. Making Syntactic Connections

There are three different ways in which syntactic connections can be made between a pre-

viously created PPT which has been taken from the phoneme position table, and a new word being

processed. These different connection modes are: (a) appending, (b) pushing, and (c) popping.

Modes (a) and (b) are quite straightlorward; (c) is more complex due to ancestor link considerations.

a. Appending

Appending is the simplest mode of connection and is illustrated by an example (Fig. -13) of

the word "man" being added to the PPT "the big". Here, the end state of the PPT "the b.g" in

the grammar has an exit arc labeled "noun"; thus, the PPT "the big man" can be formed directly

NP noun DET NOUN ^"XE)

the big man NP:

PPT WORD ADJ

Fig. V-13.

Mere formally, an appending connection is made to a rightmost nonterminal node of a PPT.

!t requires that the rif,ntmo£)t son of that node be a terminal or a final nonterminal. It also re-

quiresthat the rif.itmost state of that node have ar exit arc which invokes the word being procec ,cd.

b. Pushing

Pushing is illustrated by a similar example: the woi d "beside" being added to the PPT

"the book". Here, the end state of the PPT has an exit labeled PP, and the PP network can start

with a preposition. Thus, the PPT "the book beside" enn be formed (see Fig.V-14). (A similar

successful push connection can be made using the SENT net.)

NP

7"
def noun PP

the book prep

i.
beside

Fig. V-14.

More formally, a pushing connection can be made to a rightmost nonterminal node of a PPT,

It requires that the rightmost son of that node be a terminal or a final nor.terminal. It also re-

quires that the rightmost state of that node iave an exit arc invoking a nonterminal which can

start (possibly recursively^ with an arc invoking the word being processed.

Example: In connecting the noun "man" to the PPT "the big", an appending connection can be

made. In connecting the preposition "beside" to the resulting PPT, a pushing connection must

be made to "he PP transition net. Figure V-15 illustrates these two connections.

47

NP NP
/ \ ' nan -». / VS.

he big the big man

NP

/ j \
the big man »he big man PP

eside

Kig, \-t5.

r. Popp ng and Ancestor Link Formation

Popping is attempted if the PPT is a terminal or If it is a final nonterminal. Popping in-

volves making a syntactic connection through a higher-level net.

NP VERB

SENT:

Fi,j. '. -16.

The first step in making a "popping" connection is finding a higher-level context for the PPT

v/hich ia '.o be connected (i.e., an arc which "invokes" that PPT). For Instance, in connetcing

a NP to a VERB, theie are three NP context arcs in »he SENT net (.<-ee Fig. \ -16). Each ot these

context arcs is taken oie at a time, and an appropriate FPT of the form shown in Fig. V-17 is

constr' c*ed.

SENT
I

NP

Fig. V-17.

Next, an attempt is mide to connect this new PPT to the verb. In only one (the leftmost) of

the three context arcs depi< .-J in Fig. V-16 will this attempt succeed since this is the only NP

arc immediately to the left of a verb arr.

In ittempting to connect th« new PPT U) the verb, the algorithm will trv all three moaes of

connection: apoending, pushing, and popping (if the new PPT ends on a final state". Thus, the

popping process is recursive, as the algorithm tries all possible combinations of multiple popping

that might yield a connection (as described in Sec. ?-d _elo«i.

There is a problem invxlved in this recursive popping, nam'-ly, the algorithm (as stated so

far) could get .ito an infinite lo^p. For instance, since a noun , irase can end a prepositional

phrase which can, in turn, end a noun phrase, the algorithm could merrily pop up endlessly from

one to another. It can be seen that this is the ancestor link problem in a new guise. The easiest

solution to this problem is just to keep a list of the arcs al-eady poi-^c ' *hrough at each point and

abort the recursive popping if an arc already popped through is approached again.

In practice, by visually inspectinp the grammar, one can insert tests that abort a number

of pops so that not all possi^'lities .re attempted. These tests are put in to impro/e efficiency,

but do not alter the basic nature of the algorithm.

i-;

Mere formally, a popping connection can he made in the following cin.j'-.^tanceä: (1) If the

FPT is terminal, or if the FPT is a final nonterminal node; (2) if there exists a context arc

(which invokes the PPT) which has not been popped through in forming the PPT; and (3) if the

new PI'.' formed by popping to this arc can be connected (via appending, pushing, or popping)

to the word being processed.

d. Examples of Popping

The algorithm is able to abort the recursive popping successfully &nd still get all possible

local structures because it is set up to construct ancestor link structures while making these

popping connections. As describ d in Sec. 3 above, an ancestor link represents an unspecified

chain of nonterminal nodes. Such an ancestor link is created wH~n the ilgorithm pops through

successive nonterminal nodes.

A number of examples vsing different PPTs can best serve to explain how popping and an-

cestor link formatier take place.

Example 1

NOUN
I

man

When pooping with a terminal, one first takes each a.c invoking that terminal and attempts

connections. Thus, the PPT shown in Fig. V-18 would be constructed, in this case, a second

NP

I
noun

Fig. V-18.

pop can be made recursively since the new PPT ends on a final state. Before attempting the

recursive pop, however, the algorithm first examines the PPT to see whether it should be trans-

formed into an ancestor link structure. The rule is: if a nonterminal which has only a single

son is to be popped, then the nonte/minal is replaced by an ancestor link structure. It is possible

to use this simnle rule for two reasons:

(1) The CONNECT algoriihm, which processes these PPTs, is set up to expect PPTs

constructed in chis fash n.

(2) In LPARS' grammar, there are no nonterminal nodes which can be made to begin

and end on permitted states yet still have only a single son. The rule would have

to be somewhat modified to accommodate such nonterminals.

In the above example, since the new i]PT to be popped is a nonterminal with a single son,

the alportthm automatically inserts an ancestor link structure, transforming the new PPT as

sef n in Fig. V-19.

7
noun

Fig.V-19.

49

Even though the NP node has been deleted, t.ie algorithm must remember that it is dealing

with a NP and therefore use NP context arcs in making connections. This PPT, for instance,

couid be connected to a verb as shown in Fig.V-20.

SENT

noun v^rb

Fig.V-20.

Since a NP can end a sentence, a third recursive pop can be generated of the PPT (see

Fig. V-21).

SENT

nou.i

Fig. V-21.

Again, the algorithm inspects the PPT before allowing the recursive popping to take placs

and, in this case, propagates the ancestor link deleting the SENT node and obtaining the PPT

shown in Fig. V-22.

V
-■oun

man

Fig. V'-22.

Thus, the same ancestor link structure is passed up through successive levels of popping.

Again, although now both the NP and SENT nodes have been deleted, the- algorithm must remember

♦hat it is dealing with a "ENT. This "propagation" of the ancestor link is done because any inter-

vening nodes are superfluous until the structure is finally connected to the word being processed.

.'or instance, the PPT could be connected to an ""endch" as shown in Fig. V-23.

SENT1

■/■ \. noun enden

Fig. V-2 3.

Example 2 - a Partial NP

T .-"PT is handled in a fashion very similar to Example 1. Here, however, the ancestor

link structure which 13 passed up is shown in Fig. V-24.

50

•/
NP

/\ adj noun

Fig. V-24.

Example 3

SENT

NP verb (as in "which the table supports")

det noun

This partial SENT PPT is handled in exactly the same fashion as Example 2. The ancestor

link structure used in the popping is shown in Fig. V-25.

7
SENT

NP verb

Fig. V-25.

e. Tests to Abort Popping in Certain Circumstances

The grammar used by LPARS is restricted; therefore, the efficiency problems involved in

multiple popping are not prohibitive. With more complex grammars, this problem could become

more significant.

One potentially useful technique for improving efficiency is to inspect the grammar and insert

logic to abort various possible pops bc'ore they are attempted. This could be useful in two gen-

eral situations.

(1) When tht word being connected does not follow a particular PPT.

(2) When one is popping with an ancestor link stiucture, and there are several ways

that the PPT can pop to a higher-level context. For example, there is more than

one arc which allows a NP to end a SENT. Thus, the algorithm as stated can con-

nect a NP to an ENOCH once for each of these contexts, yet the resulting structures

would be identical since the intervening nodes popped through would be deleted. One

obviously inefficient solution to this problem is to let several identical parse trees

be formed, but let LPARS ignore the duplicates. Another aroroach is to inspect

the grammar and insert logic to abort popping so that only one structure is ever

built in such situation«.

In any case, this issue (although important for practical reasons of efficiency) is not central

to the basic algorithm. It is perfectly possible to let TREE explore all possible popping paths

every time, using only the general mechanism that aborts if the popping starts to repeat itself.

In effect, this amounts to letting TREE use the grammar "interpretively." By inspecting the

grammar, one can manually "«-ompile" a set of tests that let TREE operate more efficiently.

In fact, it is probably possible to construct a set of rules that allows LPARS to inspect the gram-

mar and construct the tests automatically. This possibility is not pursued in the present work.

=■1

f. Two Problems

There are two unique problems to be faced by a local parsing strategy, problems which

do not arise in a totally left-to-right parsing approach. These problems arise in attempting to

pursue the goal of finding all possible "maximal" local structures (maximal in the sense that

none are subsumed by others).

Problem 1

The first problem might be called that of "finding all contexts for possible syntactic connec-

tions to rightmost subparts" and can be illustrated by considering the following hypothetical input:

"the man places the book supports". Among the PPTS which can be created from this string are

the two shown in Fig. V-26.

StIMT SENT
* X" \, s^ / "\

S NT supports NP supports
/N ̂ ■■—-^. /\

NP places NP the book

/\ A
fhe man the book

(as in: "the fable on which
the man places the b^ok
supports the ashtray")

Fig. V-26.

The problem is illustrated as follows. Since TREE creates PPTs by examining the words

left-to-right, at some point it has created the PPT shown in Fig. V-27, and is attempting to add

to this structure the verb "supports" if possible. As shown in Fig. V-26, not only can "supports"

be connected to the entire structure but it also can be connected to the noun phrase "the book"

in a different yntactic context.

SENT

NP pieces NP

the man the book

Fig. V-27.

Thus when examining a new word, THEE must do more than just continue any parsing that

it has already developed. It must also see if any rightmost subparts of structures that it has

built up can be connected to the new word. There are twt» general cases of this problem:

(1) In the axample above (Fig. V-26) where a rightmost son of the PPT can be connected

to the word in a different syntactic context.

(2) The other example in where one can connect the word to the PPT but only if some

of the leftmost sons of the PPT are deleted. For instance, consider the word string

"which the table supports the ashtray". The string "which the table supports" can

be formed into a sentence fragmeit. Yet "the ashtray1' cannot be joined to this

^2

entire fragment. The word "which" must be removed first, after which the structure

"the table supports the ashtray" can be formed.

This problem is not a difficult one to solve once it has been understood, but it does require

a somewhat different parsing strategy than does a purely top-down left-to-right system.

Problem Z

The second problem arises directly from the solution of the first. Namely, in solving Prob-

lem 1, TREE may at times construct a parse structure using a right nost subpart of one parse

structure, but this parse structure may be subsumed by some other parse structure which TREE

has created. This second problem, the eliminaticT of redundant pr'n«i, can be illustrated by the

string of words "the book beside the". The string "the book beside" generates, among others,

the two PPTs shown in Fig. V-28.

NP NP

the book PP the book SENT

beside beside

(as in: 'the book
beside which... ")

PPT 1 PPT 2

Flj;. V-28.

When "the" is added to PPT 1, it yields PPT 3 (see Fig. V-2QK However, any attempt to

PPT 3

Fig. V-29.

add "the" to PPT 2 will clearly fail. On the ether hand, "the" can be connected to a rightm-.,:

subpart of PPT 2 ("beside") in another syntactic context, yielding PPT 4 (see Fig. V- »u). But,

PP

beside NP

the

PPT<

Fig.V- 30.

PPT 4 is subsumed by PPT 3 and 'herefore is not wanted. In practice, LPARS creates each PPT

tentatively and throws it away if it is subsumed by a previously constructed PPT, or by a PPT

construi .ed later.

Si

The two problems discussed above arise from the local nature of LPARS1 parsing. Prob-

lem 1 arises from the need to form all possible syntactic connections. In the process of finding

these, however, the algorithm may also find some redundant structures. This gives rise to

Problem 2, the need to throw such redundant structures away. Possibly, a more elegant solution

allows the construction of all valid parse trees without the redundancy inherent in the present

algorithm

4. Some Remarks on TREE

This section makes two remarks about the nature of the TREE algorithm and its relationship

to other parsing methods.

a. Efficiency Considerations for the Local Approach

The TREE algorithm may seem to be inefficient. It certainly can construct a iair number

of different parse structures out of the same woros. It must be remembered, however, that all

parsers do this to some degree using backup, the only difference being that, when backup is used,

only one partial structure exists at a time.

Some left-to-right parsers, such as Barley's, do construct multiple parse trees. In

theory, srch an algorithm is just as efficient as one using backup. Of course, TREE would

probably construct more partial parse aiructures than Earley's parser, given the same grammar

and the same input, be ause Earley's algorithm expects to be given all the tokens in the sentence

and thus need only construct PPTs which make sense in the possible left-to-right contexts present.

However, the basic point is that, although the number of PPTs constructed by TREE m^y at

first appear large, this is partly because TREE does not use backup to effectively erase part of

its work, but rather sets it all up for everyone to see. in fact, by doing nil the work once and

for all before calling the CONNECT routine, it helps make I,PARS a more efficient system than

if it had to redo this parsing many times as CONNECT tried out different possible ways of hypoth-

esizing unfound words between structures in different parts of the sentence.

b. Inique Features of the TREE Algorithm

The local nature of the TREE algorithm results in a number of unique problems which do not

occur in other parsers. It is useful to outline those specifically:

(1) The ancestor link problem is unique to an approach which attempts to create local

structures.

(2) The necessity of finding all possible syntactic connections between structures being

built up is a unique part of the local approach. In the particular left-to-right ap-

proach to building local structures used ny TKEK, this necessity gave rite to the

two interesting problems discussed in Sec.C-3-f above.

(3) The need to have a syntactic formalism which lets oarsing originate anywhere in

the grammar and proceed in an organized fashion is unique to the local approach.

D. THE CONNECT ALGORITHM

The task of the CONNECT algorithm is to take two PPTs constructed by the TREE algorithm

and use the grammar to propose possible A'ord-strings which might exist between the two f PTs

(see Fig. V-31).

54

[ZU LZZl
LPPT RPPT

Fig. V-31.

We often refer to the two PPTs as the left-hand I-PT (I.PPT) and the right-hand PPT

(RPPT). These PPTs bound an input segment which is to be investigated. CONNECT proposes

word-strings, consisting of at most one content word plus a small number of function words

which might fill the input segment. Then, CONNECT tests these hypotheses against the input

segment at a high phonetic distance. If any match succeeds, the combined PPT is added to the

collection of PPTs being investigated. When processing two input PPTs in this fashion, CONNECT

tests out all possible hvpotheses which are syntactically and semantically permissible.

1. Why Only One Content Word?

It is reasonable to ask why CONNECT searches only for word-strings containing, at most,

one content word plus a small number of function words. Clearly, one might have allowed

CONNECT to propose a longer string of words. Some limit must be set, however, and the design

philosophy of I.PARS is to keep this limit fairly low. At the opposite extreme to this philosophy,

one approach to sentence recognition might be to generate all possible sentences and match each

against the entire input. This approach is clearly inefficient. The while structure of LPARS

is designed to avoid such an approach. Thus, the idea of proposing a large number of long word-

strings without looking at the actual phonemic input is avoided as much as possible by LPARS.

If there is a large section of input between two PPTs, LPARS can make a higher distance scan

t.hrouph that section and use the words found as input to the TREE algorithm, or use other fa) -

back mechanisms as is discussed in Sec. VI.

It would be simple to expand the "single content word" constraint described above to make

it more flexible. One might also allow word-strings consii-ting of two content words and, at

most, one function word. Alternately, if the input section between is fairly small, one might

want to look for, at most, one or two function words. The choice made in LPARS is somewhat

arbitrary, and is certainly not the only possibility.

2. An Introductory Example

As discussed above, the task of the CONNECT algorithm is to find all word-strings that

might exist between two PPTs, with the constraint that no word-string contain more than one

content word. Thi:- section discusses a lew examples to illustrate wha4 is involved in this process.

Consider the two "PTs shown in Fig. V-32.

SENT) SENT)

/ \ */ \
rch SENT NP endch

/ \
NP the box

/\
the book

F ig. V -32.

!,---

^

Sample word-strings which might connect these PPTs are "supports the", or "is contained

by the".

Consider the next two PPTs (Fig. V-33).

NP NP

the dictionary red ashtray

Fig. V-33.

Sample word-strings which might connect these PPTs include: "beside the", "in the big",

"which the", "in which the", "supports in the" (as in "put the pipe which the dictionary supports

in the red ashtray"). In fact, there are a great many possible word-strings which could connect

these two PPTs. (This fact raises the efficiency question of whether one might want to usv the

CONNECT algorithn selectively. The answer to this question is "yes," and is discussed more

fully in Sec. VI.)

Now let us try to get a feeling for the logic involved in generating these possible word-strings.

3. Extending Paths Through the Net

This section makes some preli^ilnary comments to help make the CONNECT algorithm's

activity easier to visualize.

Fundamental to this activity is the fact that every PPT Is very closely tied to the transition

network grammar (as discussed above In Sec.B). The sequence of sons of each node represents

a permitted path through the associated network, and each PPT node has pointers to the states

In the net on which the path begins and ends. Therefore, it is ver> easy to explore ways in which

the path might be extended (by examining arcs emanating from the end state).

Let us first take a simple example. Suppose we are given the partial noun phrase "the big"

and asked to use the grammar to see If v/e can make this PPT end on a final state by hypothe-

sizing at most one content word (see Flg. V-34).

Nf DET NOUN PP

the big "»: £f~~~*&' ^T ~"*®

ADJ

Fig. V-34.

To answer this question, we must look at the end state of the PPT In the net (state NP2) and

follow the arcs that emanate from It. We then see that the PPT can be made to end on a final

state by hypothesizing a noun. The resulting "hypothesized PPT," Including the proposed word

Is shown In Flg. V-35. In this case, nr other structures are possible.

NP

/A the big noun

?

Fig. V-35.

56

-1

I
Now let us look at a more complex example of which the previous example is a sub-pait.

Suppose that the sentence (SENT) net is as shown in Fig. V-36.

NP VERB

SENT & t|J ~^3
Fig. V-36.

Further suppose that the two PPTs of Fig. V-37 have been found

SENT1

str^h SENT SENT

/ / X
NP VERB NP

A / /\
the big pats the d6g

Fig. V-37.

The question now is: Can these two PPTs be joined by proposing at most one content word?

For an answer, we first look at the SENT node of each PPT and observe that: (1) the SENT node

of PPT 1 ends on state 2, and (2) the SENT node of PPT 2 begins on state 2. Thus, these two

paths can be directly concatonaved. But, for the resulting structure to be a valid PPT, all inner-

most nonterminal sons must begin and end on permitted states.

Hence, the two SENT nodes can be connected only if the noun phrase "the big" can be made

to end on " final state by proposing, at most, or" content word. As we saw above, this can be

done by proposing a noun. Therefore, the two PPTs can be joined into the "hypothesized PPT"

showr: i". Fig. V-38.

SENT!

str^h

the big noun

Fig. V-38.

This simple example illustrates quite clearly the heart of the CONNECT algorithm, namely:

(1) On some level, paths from both PPTs must he joined.

(2) All inner nodes below this joining must be made to begin or end (as appropriate)

on permitted states.

These two basic principles are trie key to the operation of the CONNECT algorithm. There

are, unfortunately, a number ot complications which make the algorithm slightly more complex

than the above example might seem to indicate. Nevertheless, the basic principles remain those

stated above.

S7

The two main complications are:

(!) Having to pop to a higher-level context to make a connection: For instance, given

two noun phrases, one possible word-string connection is a verb. To find this

possibility, the algorithm must pop to th« SENT net (see Fig. V-39).

SENT

.-</\
NP verb NP

A I A
?

Fig. V-39.

(2) Ancestor link considerations: The necessity to accommodate ancestor links poses

further considerations. For instance, when connecting the two PPTs shown in

Fig. V-40.

SENT1 SENT1

/ \ V \
strch SENT NP endch

I A
NP

A

Fig. V-40.

First, the SENT1 nodts are joined, and then the SENT node in PPT 1 is extended to join

the ancestor link son of PPT 2, generating the combined PPT (see Fig. V-41).

SENTl,

strch"""" ^SENT ^endch

NP VERB NP

A I A
?

Fig. V-41.

Notice that, in this example (due to the ancestor link), paths in the two PPTs were joined

at two levels of structure. In a more complex example, paths can be joined at several levels.

(In fact, one can think of the CONNECT algorithm as being able to "zip" two partial structures

together.)

4. Two Parts of CONNECT

The preceding section discussed the basic principles involved in the operation of the CONNECT

algorithm. We now look at this algorithm in more detail. There are two distinct parts of the

CONNECT algorithm:

(a) First is the JOIN routine which joins the higher-lf-vel structure of the PPTs,

"zipping" them topethor from top to bottom, thereby constructing a hypothetical

combined tree This combin-d tree indicates a possible word-string that might

exist between the input PPTs. The JOIN routine by itself determines only tne parts

of speech of the possible word-strings.

S.H

(b) Second is the CONSTRAIN routine which inspects a tree, created by JOIN, with its

hypothesized words, and uses the contextual i^ntactic and semantic information to

compile additional constraints beyond mere parts of speech, further narrowing

down what the hypothesized string of words might be. (For instance, if the unclear

section might contain a verb, inspection of the context might allow one to rule out

a number of verbs in the vocabulary.)

The following sections ?ive a simple example of these two routines in operation, and then

describe each in turn. The description of the algorithm ignores lambda transitions. This sim-

plification allows the description to be somewhat cleaner, and does not lose any of the overall

flavor of the algorithms themselves.

a. Simple Example

We now give a simple example to help clarify the individual functions of the two parts of

CONNECT, and s' ow how thsy fit together before describing them in detail. Let us take the

example given in the introduction: two noun phrases at the beginning and end of the sentence,

with a gap between them (Fig. V-42j.

endch

SENTl

arch SENT

1
NP

SENTl

*/ V

N?

A

Fig V ■42.

The task of CONNECT is to fina all tiie ways in which the two PPTs can be joined together

by words which - .tght eXi.-it between them. The algorithm starts at the top of the two PPTs and

recognizes that each is headed by a ^ENTl node, and that these two nodes can be joined. The

algorithm therefore constructs the structure presented in Fig. V-43.

SENT)

strch ? endch

Fig. V-43.

The algorithm places a pointer to this combined structure in a global location. The son

labeled "?" represents a cell in a list of sons which Is left temporarily empty. It will later be

filled in as processing proceeds. The routine now calls itself recursively with the two PPTs

of Fig. V-44 as arguments. The address of the empty son of the higher-level structure is RIBO

SEN! NP

I A
NP

A

Fig.V-44.

S''

passed down. These two PPTs are the inner sons of the original two FPTs. Along with these

two structures, the algorithm is passed additional information indicatme:

(1) That it is no longer processing the highest-level nodes of the trees and thus, for

instance, no popping connections can be attempted.

(2) That both PPTs are bounded by outside context (the start cod end characters) and,

therefore, that when processing is finished all inner nonterminals must begin or

end (as appropriate) on permitted states.

The algorithm proceeds to test for possible intervening words by extending the path of the

SENT node of the LPPT starting at the end state. In so doing, it tries to complete the SENT

node, incorporating the RPPT (the NP) into the structure. It finds that it can successfully do

this by following a verb arc and an affix arc to the direct object NP arc. It therefore constructs

the PPT shown in Fig.V-45.

,SENT

NP verb affix NP
A I 1 A

? ?

Fig. V-45.

This PPT is then attached to the previously built structure by placing a punter to this PPT

in the cell marked "?" in the higher-level structure above. Thus, the PPT of Fig. V-46 is built

and is accessible through a global pointer.

SENT!

Now the first part of the CONNECT process, the joining of higher-level structure, is com-

pleted. In more complex examples, this process can take longer and involve several levels of

recursion as several levels of structure are "zipped" together.

The PPT is now passed on to the second part of the CONNECT algorithm, CONSTRAIN,

which examines the entire structure to find additiorml constraints which >uld oe placed on the

verb, such as "transitive," "must be able to take a certain class of noun as subject and as object,"

etc. It then tests all verbs satisfying these constraints against the input.

After the processing of this first possibility is complete, CONNECT resumes trying to find

different ways of joining the two structures. Thus, it would also find the passive sentence form,

proposing a word-string of the form "BE VERB AFFIX BV" as in "is .supported by".

Also, had the SENi node of the LPPT ended on a permitted state, the algorithm could have

dropped down recursively and attempted to connect the two strurtureH given in Fig. V-47.

NP NP

A A

Fig. V-47.

60

Tnese could be connected by a number ^i word-strings including: PREP, PREP WH, or

WH, In fact, if the right-hand NP had not originally been connected to the ENDCH, the algorithm

would indeed have found these possibilities. The necessity that all innermost nodes begin and end

on permitted states, however, made it impossible for the algorithm to drop down below the SENT

node in trying to connect ts'* MP.

T'ie following sections describe the two parts of this algorithm in more detail.

b. JOIN Routine

This section describes the logic of th^ JOIN routine which takes two PPTa and creates all

possible hypothetical combined PPTs which can be made connecting them.

The JOIN routine does all its processing of the transition network grammar in a ' ;ft-to-right

fashion, starting from the end states of the left-hand PPT (LPPT) and exploring W. , in which

paths can be extended from these states to join the RPPT.

To illustrate how this processing is performed, we first break the problem down into several

components and describe each first.

(1) How an existing path can be extended in a single net.

(2) How a hypothesized path can be initiated in a net.

(3) How a path can be continued in a lower net.

(4) How a path extended from the LPPT can be joined to the RPPT.

Finally, we discuss how the entire algorithm is organized to explore all possible connections.

(1) Extending a Path

A PPT node has a sequence of sons which represents a path through the associated transition

network. This path can be extended by looking at each exit arc emanating from its end state.

(a) If the arc is a terminal arc, then an extension to the path can be made readily. To

do this, JOIN constructs a new extended PPT and turns this over recursively for

further extension (see Fig.V-48).

iENT SENT

'I \
be verb

SENT
I I

A

SENT

/ \
NP b«

A 1
NP

A
affix

SENT

NP be /erb affix by

A i

Fig. V-48.

(b) If the arc is a nonterminal, however, the algorithm cannot continue to extend the

path in the current net, unless the nonterminal itself can be completed with, at

most, one content word. There are two such nonterminals in LPARS' grammar:

NP, which can be completed by (DET NOUN); < nd PP, which can be completed by

(PREP DET NOUN) where the preposition is "in" or "on". JOIN therefore treats

61

these nontermii^lo like terminals when extending a path and inserts the appropriate

structures »nto the hypothesized extended PPT isee Fig. V-49).

SENT SENT.,

NP verb KP

A A
NP verb NP PP

A A / v /
prep NP

def noun
i 1

1

1
? ?

Fig. V-49.

The algorithm can continu» recursively to extend a path until a state with no permitted exits

is reached, or unti' ii reaches a state from whicli it could only continue by hypothesizing twe

content words,

(2) Starting a Proposed Path 'rom Scratch

The JOIN algorithm can also utart up a hypothesized path from scratch in a given transition

neu TK ir a fashion very similar to tha« Jescribed above, 't merely takes each initial state of

the i t and looks at the arcs emanating . m it and proceeds ai. above.

(3) Continuing an Extended Path in a Lower Wet

Ar.ci.'.-.er possible way to extend a path involves pushing to a lower net, and continuing the

extension of the path ut i..at lower net. This involves a ct mbination iFig. V-50) of the techniques

described in the previoi's two sections.

NP NP

de» noun det noun SENT

/
wn

I
?

Fit.V-'O.

(4) Joining ;.ii LPPT Path to tt.e RPPT

There are three fundamental ways (cal'ed Modi s 1, lt and J) in which an l.PPT with an ex-

tended path can he joined »o an RPPT.

Mode 1:- If the end state of the l.PPT equals the start state of the RPPT.

In this ase, the two paths can be directly concatonated, assuming that all exit action routines

are compatible (which can bo checked since each node includes a list of arcs taken by its path)

(see Fig. V-51).

SENT SENT SENT

/\ * XI \
NP kw verb by NP

A A
NP be verb by NP

A A

Fig. V-5),

hi

■---— ■

The algorithm must then ascertain that the inner nodes begin and end on permitted states.

This is done in LPARS by left-to-right extension of ."»aths. Thus, a node is made to end on a

final state by fohovsing arcs from the erd state of its path. Conversely, a node is n.ade to begin

on an initial state by initiating a path at ea^h possible initial state and atttmp^ng to extend this

path to join the node.

Mode i:- If an exit arc from the endstate of the LPPT invokes the RPPT (Fig. V-S2). Again,

the algorithm must still make the inner nodes begin and end on permitted states.

SENT SENT
/ \ +NP —^ ^ W

NP verb ^ NP verb NP

A A A

Fig.V-52.

Mode 3:- If the RPPT has an ancestor link son, and the end state of the LPPT equals the start

state of the RPPT (Fig. V- i). This example is somewhat harier to visualize since, although

SENT SENT

/I- ̂ ^ + v\- ̂
NP be vert» NP by NP

A A A

Fig.V-53.

the two nodes have been joined, additional processing must be done to complete the connection.

In the example above, one must initiate a path in the PP net to be joined to the ancestor link son,

thus generating the following possible structu'-e (fig. V-54) and creating the following entire

structure (Fig. V-55).

PP r
prep NP

A

Fig. V-S4.

(5) Overall Control of CONNECT

Fig. V-5 5.

The preceding sections attempted to give ,1 sound verbal overview of the logic involved in

the CONNECT routine. The following program outline describes the overall control program

whi' h coordinates the CONNECT algorithm so that, given two PPTs, it will find all possible

in Tvening word-strings.

The only part of CONNKC1 which it does not include is the popping to higher-level contexts

with ihe LPPT, atH the application of this algorithm to the PPT resulting from the pop.

>■•■

BEGIN CONNECTCLPPT, RPHT)

(1) If I.PPT is NIL, or RPPT is NIL return.

(2) If I.PPT can be directly joined (with no extension of the path) to RPPT by

Mode 1, and if ANCESTOR!IIPPT) equals true then call CONNECT(RSON(I.PPT),

i-SON(RPPT)).

(ComrnejU: This is the step that handles the zipping together of higher-level

structure. As discussed in Sec. D-5-a, before CONNECT ii called recursively,

a merged structure is constructed from the current nodes, containing 3 tem-

porarily empty sen. and the address of this son is available to the lower invr

cation of CONNECT.)

(3) Call JOIN(LPPT# RPPT).

(4) If this is the top level of CONNECT or if FINAULPPl) equals true, then call

CONNECT(RSON(LPPT). RPPT).

END

ANCESTC '(N) returns true if the leftmost son of node N is an ancestor link son.

RSON(N) returns a pointer to the rightmost son of node N, or NIL if N is terminal.

LSON(N) returns a pointer to the leftmost son of node N, or NIL if N is terminal.

FINAMNI returns true if node N ends on a permitted final state.

JOINIL, R): The JOIN routin*» performs the path extension and joining described in the pre-

vious sections. It r.lso U..tes care of making sure innermost nodes bogin and end on permitted

states. If there is a higher level of merged structure, it places a pointer to any current "joined"

PPT into the "empty" son cell of that higher structure. Finally, it calls the CONSTRAIN routine

whenever any combined PPT is constructed.

(6) Attempting All Possible Connections

As described above, the CONNECT algorithm automatically attempts to connect the RPPT

to lower nodes of the LPPT as well as just to the top node (by dropping down recursively).

Clearly, the converse situation is also desired: namely, to attempt to join the top node of the

LPPT to Irwer nodes of the RPPT (for instance, see Fig. V-56).

NP SENT1 SENT)
/ \ ♦ * / \ -* * I \.

det odj NP endch NP "endch

\ V
odj noun det odj odj "odj noun

Fig. V-56.

To allow this to happen, CONNECT is first called with the top nodep of the two PPTs as

arguments, and then drops down to successive inner sons of the RPPT and calls JOIN with each

of those nodes, and the LPPT as arguments. When attempting these connections, the algorithm

does not allow the top level of the RPPT to drop down recursively.

The only other possible connections which must be attempted are those made possible by

popping with the LPPT (see Fig. V-57). The only difference between this popping and the popping

connections discussed in the TREE algorithm is that, in this case, the PPT being popped need

64

SENT r.NTl

»frch + NP verb —► str'ch SENT

/\ iX
odj noun NP veib

det adj adj noun
I I
? ?

Fig. V-57.

not end on a final state. It is only necessary that it can be made to end or a final state by pro-

posing a string of words containing, at .nost. one content word.

Thus, the CONNECT algorithm tries all possible pops it can make with the LPPT, and at-

tempts to join rach resulting structure to the RPPT.

5. CONSTRAIN: Compiling Additional Constraints

The part of the CONNECT algorithm describ3d so far connects two PPTs by proposing words

that might exist in betv .>en, but only determines the parts of speech of the words proposed. From

examining the context of these hypothesized wo-ds (i.e., the entire combined PPT), one can de-

duce additional const'-aints as to what the words might be. The information needed for deducing

these additional constraints is contained in the conditions which augment the arcs in the grammar.

An example is probably useful to highlight exactly what the problem here is. Suppose the

two PPTs shown in Fig. V-58 were joined by hypothesizing a verb between them.

SENT1 SENT1

\ / SENT
NP endch strch i Nr~~^^ endcr.

,/\. NP »•* NP the book s \ | / \
the table ? the book

Fig. V-58.

A person looking a1 this structure would know that not all verbs could exist in this particular

context. The verb must be transitive; it must not require an animate subject, for instance; and

it must be something a table can do to a book. In the normal operation of the transition net gram-

mar, the tests that enforce these constraints are contained in the conditions associated with the

arcs in the grarm.-'ar.

Thus, one possible way to determine what verb could fit into this context is to take each verb

in turn, and reparse the sentence with that verb and see if the parsing succeeds. This is a very

time-consuming and inelegant approach. Somehow we want a way of "turning the constraints

around" and have them tell us what they want, rather than just telling whether a particular string

of words is acceptable or not.

In other words, the constraints must actively suggest action rather than merely answer

yes-no questions. This, in fact is exactly what LPARS allo'vs. The constraint tests in the

arcs are written so that thev can be run in two modes:

65

asEk

(t) In one mode, the tests are given two lists of information representüij, features

associated with two structures which are to be checked for consistency. The test

will return NIL. if the arc cannot be traversed, or else return TRUE.

(2) In the other mode, the tests are passed one feature list and the atom "QUESTION"

in place of the other feature list, indicating that LPARS wants the test to tell it

what constraints must be satisfied, and then to return TRUE just as if those condi-

tions had indeed been met. Each such constraint which must be met is appended

to a global list.

(To allow constraints to be placed on a string of words, the system actually noes

a set of distinct QUESTION atoms (Q1.Q2,Q3,Q4) depending on the position of

the word in the proposed word string.)

When a combined PPT has been lound and passed to the CONSTRAIN algorithm, a QUESTION

atom is associated with each word which has been hypothesized. After processing the combined

PPT, CONNECT then has a list of additional constraints which it can use to search its dictionary

quickly to come up with a list of words which would fit.

This 'turning around of the constraints" allows the algorithm to process the PPT only once,

rather than once for each word of the proposed part of speech.

A simple example is probably useful at this point. Suppose we have the situation described

above: a verb has been hypothesized between the two noun phrases "the table" and "the book".

Mode 1: Normally, when parsing a sentence, the algorithm would do the following.

(1) When parsing "the table", it associates the semantic information describing this

noun phrase with a marker called SSUB in the list of informatian associated with

the SENT mode.

(2) When parsing the verb, it assures subject-verb agreement between the information

tagged SSUB and the information associated with tic verb. For instance, if the verb

required an inanimate subject, the test assures that the subject had been animate.

(3) When pirsing the second NP, it similarly assures whatever agreement was

appropriate.

'4) When making the final state test, it makes sure that the verb was transitive.

Mods Z: Since we do not know what the verb is, we construct the PPT given in Fig. V-59.

JJENT1

strch'' SENT Tndch

/ \
the toble

Fig. V-59.

This PPT is then subjected to the following parsing process:

(1) When parsing the first NP, the parser behaves just aa in Mode 1 since nothing is

changed.

66

(2) When parsing the verb, Mode i is activated. The alguiithm must determine what

constraints are to be satisfied. Since the ■ ubject is not animate, the constraint

(ANIM MINUS) is added to the global list of constraints associated with the QuESTION

atom Ql, indicating that the verb must not be one which requires an animate subject.

In this case, the constraint (CONT MINUS) can alsc be added, indicating that the

verb could not be a "containing" verb such as "contiin" or "hold" since "table" does

not make sense as the subject of such a verb. A new list of information to be as-

sociated with the SENT node is constructed, with a QUESTION atom iQi) being

associated with the tag VERB.

(3) When parsing the second NP, additional constraints might be found in much the

same fashion.

(4) When performing the final state test, the test which assures that the verb is transi-

tive sees the atom QUESTION associated with VERB, and would therefore add the

constraint (VERB TRANS) to the list.

The net effect of this activity is to create the following list of constraints ((ANIM MINUS)

(CONT MINUS) (VERB TRANS)). A list of verbs thrt match these specifications is made, and

tested against the input. Any which succeed are incorporated into new PPTs and added to the

list of PPTs which LPARS is using.

fi7

mm

VI. OVERALL DESIGN OF THE LPARS SYSTEM

!n this section, we review the whole of the LPARS system and discuss how the different parts

fit together. We then describe the fallback (or backup) mechanism built into LPARS. Finally,

some inter ■ 'ir^ issues involved in coordinating the vrious subparts of the system are discussed.

A. OVERVIEW OF THE LPARS SYSTEM

Figure VI-1 outlines the basic flow of control in LPARS; this involves 4 basic steps.

Input

sentence
candidotes

Fig. Vl-l.

1. Initial Scan

The first step is the initial scan made at low phonetic distance through the entire utterance

looking for fairly long words that are not too garbled.

2. LOCALMATCH Routine

The second step is the local higher-distance matching, searching for strings of small words

and for more highly garbled longer words, in the areas beside and between the words found in the

initial scan. This matching is done based on very local criteria, with no attempt to enforce any

global coordination between processing going on in different parts of the utterance.

i. TREK Algorithm

All words found by the initial scan and the LOCALMATCH routine are input to the TREE

algorithm which constructs as many diffp-ent syntactic structures as it ran, in all parts of the

utterance, usin^ these word?, i. ai the words of the sentence have been found, then TREE will

construct the entire sentence.

68

--- —

4. CONNECT Algorithm

These PPTs are then tur led over to the CONNECT algorithm which attempts to join together

pairs of the pars«; structures by proposing word-strings whicn might exist between them, and

testing these word-.«trinps out at high phonetic distance against the input. Lf any word-string

matches successfully, a new combined parse structure is created.

B. TWO HEURISTICS USED BY I.PARS

Two heuristics are used to augment the basic system described above.

One heuristic aids the initial local word recognition process, if the set of word candidates

output by the initial scan and the LOCALMATCH routine leaves substantial gaps in ihe utterance,

then the system reinitiates locai word recognition in those gaps. It rescans the gaps at a higher

phv letic distance, and processes any words found using the LOCALMATCH routine. This is a

simple heuristic, which uses very local information to direct higher-distance scans in areas

where further attention is obviously needeu In practice, it is not invoked very often.

The second heuristic helps the CONNECT algorithm to compensate for any partially errone-

ous structures which may have been built by the TREE algorithm. CONNECT will only accept

as input PPTs which do not overlap, and which are within some maximum number of phonemes

of one another. However, the TREE algorithm may have attached an erroneous word onto an

otherwise correct structure. To compensate for this possibility, the system has two functions

(RIP-E and RiP-R) which np leftmost and rightmost words off a PPT, thus obtaining smaller

subsumed structures.

By using these functions, the system can take two partially overlapping PPTs and rip words

off either or both, to obtain two smaller nonoverlapping structures which can be turned over to

CONNECT. Also, even if the PPTs do not overlap, the system can rip words off either or both

so long as the number of phonemes between them does not exceed the maximum permissible,

and turn the smaller PPTs over to CONNECT.

The two hcurirtics descr bed above are useful tricks which help the system work more suc-

cessfully. They do not, however, make any pretense of providing a systematic means of finding

the correct sentence, if processing by the whole of LPARS fails.

C. SYSTEMATIC FALLBACK

We now describe a systematic method for fallback available to I.PARS if the initial attempt

at sentence recognition fails. This fallback method is exhaustive, and will eventually find any

sentence 'although it might well find erroneous sentences first). In concept, the fallback consists

of reactivating the entire EPARS system at a higher set of phonetic distance thresholds.

Three significant phonetic distance thresholds used by EPARS are those used by (1) the ini-

tial scan, (2) the LOCALMATCH routine, and (3) the CONNECT algorithm.

These thresholds arc initially set at levels which yield reasonable success rates without

exhaustive amounts of i omputation However, if the system fails to find a sentence usin^ the

standard levels for theso thresholds, the system can raise the thresholds and try again. Eurther-

more, it can do this without having to repeat most of the work already done (as discussed below

in Sec. 1). In fact, EPARS can continue this fallback process for several iterations until a sen-

tence is fc iiid.

In theory, of course, continuing the iterative fallback process to absurdly high-distance

thresholds would result in the system generating every possible acceptable sentence that it could

69

construct with its vocabulary, since eventually, at a high enough threshold, every word would

match everywhere in the utterance. In practice, one must decide upon some maximum threshold

level, after which one acknowledges failure.

The remainder of this section discusses how one might allow the fallback to higher-distance

thresholds to take place without requiring that all the previous work be repeated.

It is easy to achieve this goal in the TREE algorithm. The additional words found by the

higher-threshold initial processing are given to TREE together with the old words and the pho-

neme position table containing the previously constructed PHTs. TREE car proceed with the pro-

vision that now each syntactic connection must be made either between any PPT and a new word,

or between a PPT conta:-.ing a new word and any word. In other words, one does not attempt to

connect any of the old PPTs to any of the old words. This restriction allows TREE to find all pos-

sible ayntactic structures, yet the work done in the previous TREE processing remains intact.

To allow fallback to higher-distance thresholds without repeating the lexical work done pre-

viously is simple in concept, but costly in storage. It requires that each partial lexical match

which was aborted, because it exceeded the previous threshold, be recorded so that it can be

restarted. 'T'his involves a great deal of ?toraf;e becauc«1 the initial scan, for instance, matches

most words in the vocabulary against every phoneme position in the sentence. Each one of these

matching attempts usually involves several substitution-deletio.i combinations.

Thus, if there were 50 words, SO phonemes in ths utterance, an average of 10 partial matches

per recognition attempt, and if two words were required to recorj each aborted attempt, then

50,000 words of storage would be required tall to process one sentence). On the other hand,

perhaps this is reasonable if one considers that it represents the state of 25,000 parallel, in-

dependent processes that have been temporarily suspended. LPARS at present does not imple-

ment this approach, but rather recomputes all the lexical matching at the higher-distance thresh-

olds if it is forced to use this fallback.

D. DESIGN CONSIDERATIONS EOR THE .-PAKS S.STEM

Sections 11 through V discussed the various sub-parts of the I.PARS system: the initial scar.,

the LOCALMATCH routine, and the TREE and CONNECT algorithms. These are the tools which

the LPARS system uses to recognize an utterance. Hut just building these tools is not enough.

One must understard what the various tools are useful for, what they are not useful for, and then

design the svstem as a whole around thih understanding.

Therefore, in this section we examine the tools which have been developed to see how they

are best used.

i. Two Modes of Joining PPTs

Consider the task of examining two PPTs developed from an input utterance, together with

an intorveninc; input segment, to construct a combined PPT. There art- two fundamentally dif-

ferent ways to proceed. The alternatives couid be called the "bottom-up" (or "data-directed")

approach vs the "top-down" (or "gi ammar-directed") approach,

a. Bottom-Up (Mil) Connection

In HI; (or data-directed) ronnection, the system scans the segment between the »wo PPTs at

a high phoneac distance, and then trie.3 to construct a combined pr'T from the two input PPTs

together with any words found In this mode of connection, the previous PPTs arc used to

7 0

indicate a section of input to ba examined at high phonetic distance, but not to indicate explicitly

what word-strings might be expected to occu- there.

b. Top-Down Connection

Top-down (or grammar-directed) connection is that performed by the CONNECT "routine

described in Sec. V. Here, the grammar is used to indicate what word-strings might possibly

exist in the gap, and only these specific word-strings are tested against the input.

A number of issues might be discussed to evaluate the relative merits of these two strate-

gies. Here, we look at only one o^ these issues, namely, how the two strategies perform as a

function of the amount of "context" contained in the two PPTs. To illustrate this issue, consider

the following two examples.

Example 1

Suppose I-PARS is attempting to connect the two PPTs shown in Fig. VI-2

SENT i

strch SENT SENT eTidch

1

\

SENT1

/ "^
SENT

i
NP

A
the big

SENT

/ \
pots NP

A
the dojj

Fig VI -2.

Using the top-down, grammar-directed approach, FPARS discovers that only one possible

word-string can fill this gap. namely a noun. (Remember that only word-strings containing, at

most, one content word are considered.) Therefore, it compiles a list of appropriate nouns and

tests them against the input to see if any match

Example 2

Suppose, on the other hand, I.PARS is attempting to connect the two PPTs shown in Fig. Vi-3

NP NP

A A
the dic*:onary red ashtray

Fig VI-3.

Using the top-down, grammar-directed approach, I PARS discovers (even with its very simple

grammar) that there is a very large number of possible word-string connections; these include

(1) is contained by the

(2) supports the

(31 in the

(4) in the big

(5) by the

(6) by the big

(7) on the book m the

I

(8) which the

(9) on which the

(10) on the book which the

(11) which the book on the

(12) supports by the

(and many more).

is a result, using the top-down algorithm with these two PPTs is not very efficient Doing

so will exercise almost the entire grammar, and generate almost every word-string conceivable,

each of which must be matched against the input at high phonetic distance. Clearly, this approach

is not very selective in bringing context 10 our aid

On the other hand, is this surprising? After all, a noun phrase is a very basic b ilding

block of an Knglish sentence, it can occur in many contexts, and is structurally the same in each

context Therefore, it is reasonable that two such primitive structures can be connected many

ways.

What then does this imply'5

(1) Need for "Sui'ficient Context"

One implication is that we should not use the top-down CONNECT algorithm unless the PI'Ts

involved provide "sufficient context," in some sense, to make the word-string possibilities quite

selective. This restriction is not surprising when we consider that the CONNECT algorithm is

a very powerful tool; given any two parse structures conceivable, it processes the grammar in

a ve»-y rigorous and systematic fashion to investigate every possible way that they might be con-

nected. The price paid for this power and generality is that we must be selective about the prob-

lems we ask the routine to solve.

This, in fact, is why we have the I.OCALMATCH routine As currently implemented in

LPARS, the I.OCALMATCH routine works on very local criteria (words and word pairs) to in-

vestigate the areas around them. (In an extension to the LPARS system, this routine might in-

vestigate somewhat more-complex structures, particularly in searching for particular word-

strings which are semantically quite likely to be present)

Moreover, the LOCALMATCH routine investigates around and between fairly simple local

constructs in a way that avoids a very systematic, costly processing of the grammar. Also, it

can be primed to look primarily for highly likely connections. Thus, the LOCALMATCH routine

cuts corners (by using simple testa and heuristics). It can do so because its goal is not neces-

sarily to uncover the entire utterance, merely substantial portions of it Once these portions

are uncovered, the full power and generality of the CONNECT algorithm is standing by to com-

plete the job.

{Z) Implication for Scan Threshold Levels

A second, related implication is that, to use the CONNECT routine efficiently, we must tune

the system so that the PPTs constructed after the initial-local processing usually have sufficient

context to be input to that routine Only when this does not happen, Joes the BU connect routine

need be called, or the more-general fallback be invoked.

72

In other words, to use the CONNECT routine effectively, the phonetic distance thresholds

of the initial scan and 1,OCA1.MATCH routine must be set so that a high percentage of the cor-

rect words in the utterPnce 13 usually found.

2. Vocabulary Density

A second important concept that enters into this discussion is the somewhat vague term

"vocabulary density." Let us taka two examples to see what vocabulary density might mean.

la) In a sparse (non-dense) vocabulary, on-, might sei: the local scan thresholds to un-

cover on the a erage 85 percent of the correct words in the sentence, and generally

only have a few incorrect words found.

(b) In a den. er vocabulary, when one Pets the local scan thresholds so that 85 percent

of the correct words are found, a large number of incorrect words are usually

found as well.

This is certaiuly a highly specific concept of vocabulary density, but a useful one for our

purposes.

a. Factors Influencing Density

There are clearly a number of factors influencing vocabulary density; these includ'

(1) vocabulary size

(2) front-end accuracy

(3) average size of word

(4) amoum. of semantic selectivity which can be brought to bear in the initial local

processing

(5) utilization of supra-segmental information.

b. Embedding of Correct Sentence Fragments

Vocabulary density affects the two connection strategies discussed above because it influences

the degree to which correct sentence fragments are likely to be embedded in larger structures

which include some of the erroneous words.

The more erroneous words discovered, the more likely it is that some of these words will

become attached by the TREE algorithm to a string of correct words. Of course, if all the cor-

rect words are found, or if the erroneous word overlaps with a correct word which has beon

found, no harm will be done. In general, '.lowever, the presence of incorrect words attached to

correct sentence fragments makes the job of isolating the correct sentence fragments difficult,

and therefore complicates the job of finding the appropriate input segments to be investigated

next.

c. How CONNECT Deals with Embedding

The top-down CONNECT algorithm ccn deal with this embedding problem by using the R1P-R

and RIP-L routines described ir SecB above. In so doing, the system postulates that certain

fragments are correct embedded fragments, and tries to connect them. The denser the vocab-

ulary, the more such trials the algorithm would have to make with a given set of PPTs. The

73

"wr aiäg^B^iÄaiaiött^äa ^K_UMk.

degree to which this approach is practical depends on an evaluation of the work involved in postu-

lating embedded fragments and in processing them with the CONNKCT algorithm.

The BU algorithm has potentially even more difficulty working in the presence of a great

deal of embedding. This difficulty arises because, in investigating a set of PPTs for the <_ sn-

nection of embedded fragments, one might investigate a number of different input segments (per-

haps, in total, consuming a substantial par* of the input). With Tl) connection, during such in-

vestigation a great deal of selectivity is brought to bear, as far as the word-strings looked for in

different places. With the BU algorithm, however, such selectivity is impossible. If a large por-

tion of the input ia involved, one probably might just as well rescan the whole input at a high pho-

netic distance.

Thus, the denser the vocabulary, the more difficult it is for both algorithms to work

efficiently.

The vocabulary used in LPAR3 during its testing was fairly sparse, so these problems did

not occur to too large a degree. When experimenting with the system with higher scrambling

levels, and using smaller words, the problems were observed and, since they were interesting

problems, this section has tried to isolate and summarize them. The present sys*.em has only

attempted to attack these problems in a fairly limited fashion.

3. current I PARS Approach

During evaluation of the LFAUS system, described in Sec. VII, only the grammar-directed

CONNECT algorithm was used, and only PPTc containing "sufficient context" were passed to this

algorithm. A PPT was deemed to have "sufficient context" (a) if ii included a STRCH or an

ENDCH, (b) if .t was not a single word, and (c) if it was not a NP or partial NP. When using a

more-complex grammar, of course, these tests would probably need to be more sophisticated

The phonetic distance thresholds were set so that most of the correct words were found after

the initial processing. Thus, in general, PPTs containing sufficient context were built up and

could be passeu to the CONNFCT algorithm. If not, the system would fall back and iterate at

higher phonetic distance thrc .olds.

74

VII. EXPERIMENTAL EVALUATION OF LPARS, AND SAMPLE RUNS

This section describes the experimental evaluation of the LPARS system, and then discusses

a few samole runs which ill' strate LPARS' activity when investigating a sentence.

A. EXPERIMENTAL EVALUATION

Duung the e perimental evaluation of LPARS, fifty sentences were input to the system to be

recognized (the sentences used are .'isted in Appendix B). The following steps were taken during

the recognition of each sentence.

1. Scrambling:— First, the correct phonetic spelling of the sentence is given to the scram-

bling program (the front-end simulator) which transforms the sentence into a string of "scram-

bled" phonemes containing a great deal of error in the form of deletion and substitution. The

statistics used in performing this scrambling are exactly those described in Sec. III. Since the

scrambling is based on random error probabilities, some sentences produced contain relatively

small amounts of error, while others contain a great deal.

2. Initial Local Processing:- The string of phonemes is then input to the LPARS system

which performs its initial scan and higher-distance local matLhing, attempting to find most of

the words in the sentence. The phonetic distance thresholds of these scans were set so that

approximately 85 percent of the correct words are usually found by this local processing.

3. PPT Construction:- Next, the words found by the initial local processins; are input to

the TREE algorithm which buiids as many different parse structures as it can in all parts of the

utterance (as described in Sec. V-C). If one or more entire sentence is found, then LPARS pro-

ceeds no further.

4. PPT Connection:- Next, pairs of PPTs are input to the CONNECT routine which attempts

to construct combined PPTs as described in Sec. V-D. Any such combined PPT which is found

is Included in the set of PPTs being investiga, ,-d. If this process discover; one or more possible

sentences, then LPARS proceeds no further.

5. Iteration at Higher Thresholds:- If the PPT connection is unsuccessful, then I.PA HS

raises the thresholds at which the various scans ar; made and repeats steps Z, 3, ar ' 4 again.

During the evaluation, Ihe phonetic distance thresholds used for the initial scan, the local higher-

distance matching, and the PPT connection were 17, 24, and 34, respectively during the first

iteration; and ^2, 26, and 39 during the second iteration. If no sentence has been found at the

end of the second iteration, then processing stops and failure is acknowledged.

An attempt to recognize a giver, sentence, as outlined above, can result in any of the follow-

ing results.

(1) An entire sentence is constructed by the THEE algorithm from 'he w.^rds found by

the local processing.

(2) A sentence is found by the algorithm that ronnects PPTs.

(3) No sentence is found at all.

Processing ceases at the end of any stage in which one or more possible sentences is found.

When sentences are found, it may be during either the firct or second iteration of the system.

Of course, it may be that none of the sentences found is correct.

TS

In evaluating LPARS, if several possible sentences were found, the recognition of the sen-

tence was considered successful it the correct sentence was includes among them. When several

sentenc" were found, the correct sentence was almost always the best match.

1. Evaluation

During the actual eva'uation of l.l'AKS, fifty sentences were input with -he following results:

~i sentences were correctly recognized from v, -ds found o:ily by the local process-

ing in the first iteration.

19 sentences we correctly recognized by h^ PPT CONNECTION algorithm in the

first iteration.

' sentences were correctly recognized in the second teration of the system.

2 sentences resulted in incorrect recognition. Ir. both ca-es, the sentence found

differed from the input sentence in a single content word.

3 sentences «suited in faiure to find any possible ssntence at all. In two cases,

two ,dja ont content words were badly garbled, and therefor the CONNECT algo-

rithm vcs unable to propcse the correct word-string In the third ^ase, LP.iRS

crashed irretrievably due to a program bug.

Thus, the overall success rate of LPARS with the fifty input sentences was 90 percent.

i. Comments on I.PAKS' Evaluation

Ti:e LPARS evaluation descr.bed aoove primarily establishes that, i : en a simulation of a

fairly crvde front end, the ideas embodied in LPARS can he made to work acceptably.

Certa.nly there a^e a number of interesting fu:tner questions which one mighi like to ask,

such as how the overall system performance is affected by virying such parameters as:

(a) scrambling probabilities

(b) scrambling characteristics

(c) vocabulary size

(d) word size

(e) the phonetic distance 1(els of the various scans.

It -vould be very difficult to pursue such issues systematically with the cut rent implementa-

tion if LPARS since it is ve:_ f'^w. Often. 10 to 15 minutes or more of dedicated CPL time is

required per sentence. (This inefficiency is not inherent in the LPARS design, but rather of *hi

current implementation.)

In any case, the primarv goal of the present res<äai ^h is on avel .ping an approach to parsing

which allows syntactic analysis to proceed systematically from anywhere in a sentence, and to

understand the p-oblems and issue": involved in such an approach.

Li the present eva'uaüon of i.PARS, we have described a form of scrambled input, argued

that it has the ba?:c characteristics of spo'-.en input for our present purposes, and then demon-

strated t at 1 pARS can operate successfully given such input. This success demonstrates thtt

the ideas e.nbcdded in LPARS »re fundamentally sound and coherently formulated, \nd that, for

instance, there are no unforeseen factor-- whi'-h somehow invalidate the approach tr.ken.

7 A

B. I.PAKS SAMPLE RUNS

We n JW exhibit a number of sample runs of the I.PARS system, illustrating various aspects

of the sysum's operation. In these examples, comments output by ihe LPARS system appe? " in

capitalo. Additional comments in small letters have been added by the author to make the exam-

ples more intelligible.

Example 1

This example shows a sentence which is recognized entirely from words found by the initial

local processing.

(UNSCRAMBLED SENTENCE)

(THE ".VASTEBASKET WHICH THE GREEN COFFEETABLE SUPPORT S

CONTAIN S THE DICTIONARY)

(TH SW W AA S T B E S K SW T \ I CH TH SW G R EE N K

AW FEETAABLSSWPORTZKSWNTAANZ TH SW

O I K SH S.V N AA R EE)

(SCrJAM^LED SENTENCE)

(T Y W AW D P E ZH P ZH W I CH Y L I NG G AA B EE P AW

P R H SW TH O L P J B SW U T AW M H C SW G TK Z Y M AW

I EE)

{INITIAL SCAN)

((STRCH 0 0) (SI "'LADDER 8 13 150) (COFFEETABLE 18 25 15)

(SIPPORT 26 Jl 5) (CONTAIN 35 38 10) (DICTIONARY 42 -^ 95»

(ENDCH 50 50))

The initial scan finds three correct ai.d one erroneous words. The words are ordered as

they appear .n the sentence. (Recall that he three numbers associated with each word candidate

ire start phoneme, end phoneme, and total phonetic distance of the match.)

(LOCAL HIGHER DISTANCE MATCHING)

f (STRCH 0 0) (CONTAIN 1 5 ',) (THE 1 2 0) (PLACE 3 5 90)

(WASTEBASKET 3 10 185) (THE 6 7 0) (STEPLADDER 8 15 150)

(V. «ICH 11 12 12) (CLUTTER 11 1-» .fJ) (THE 1 j 14 12)

77

 >^_

(THE 15 17 0) (GREEN 15 17 60) (COFFEETABLE 18 25 15)

(SUPPORT 26 ii 5) (CLUTTER 30 32 110) (ROBERT 30 33 120)

(THE 32 33 0) (THE 33 33 0) (CONTAIN 33 38 10)

(BOOKCASE 34 38 110) (ENJOY 34 38 120) (THE 39 41 0)

(PERSON 42 46 105) (DICTIONARY 42 49 95) (ENUCH 50 50))

A number of additional words are Tound by the higher-distance matching, including al). the

correct words in the sentence. Next, the TREE algorithm constructs all possible local partial

parse structures from the words found. These trees are printed ou* below.

(PARTIAL PARSE TREES SORTED BY LENGTH)

(STRCH ((THE WASTEBASKET (WHICH (THE GREEN COFFEETABLE)

SUPPORT AFX)) CONTAIN AFX (THE DICTIONARY!) ENDCH)

(* (* (• (THE GREEN COFFEETABLE) SUPPORT AFX)

CONTAIN AFX (THE DICTIONARY)) ENiXTH)

(s (♦ (* (THE GREEN COFFEETAP.L :, SUPPORT AFX)

ENJOY AFX (THE DICTIONARY)) ENDCH)

(STRCH i iTHE WASTEBASKET) CLUTTER AFX (THE COFFEETABLE)))

(• (* (T.IE GREEN COFFEETABLE) SUPPORT AFX) ENJOY

AFX (THE PEH^N))

(• (• (CLUTTER A CONTAIN AFX (THE DICTIONARY))

ENDCH)

(4 (ROBERT ENJOY AFX (THE DICTIONARY;) ENDCH)

9 (• ROBERT ENJOY AFX (THE DICTIONARY)) ENDCH)

(* (* (CLUTTER AFX! ENJOY AFX (THE DICTIONARY) i ENDCH)

(• (THE D'CTIONARY! ENDCH)

(STRCH (CONTAIN AFX (THE)))

(ROBERT ENJOY AFX (THE PERSON))

(♦ ROBERT ENJOY AFX iTHE PERSON))

(* (CLUTTER AF ') ENJOY AFX (THE PER30N))

(PLACE AFX (THE STEPLADDER))

(CLUTTER AFX (THE BOOKCASE))

The sym'>ol * means that the following aon is an ancestor link son. The symbol AFX repre-

sents an AFFIX arc which ha.-i been traversed. (Any LAMBDA arcs traversed are not indicated

•-■

in the printout.) Thus, for instance, the PPT (* (THE DICTIONARY) ENOCH) represents

the strucire shown in Fig. VII-l.

SENT)

NP

A
the dictionory

endch

Fig. VII-l.

Since an entire s ce (see Fig. VII-2) is among these PPTs, LPARS proceeds no further.

(SENTENCES FOUND)

(STRCH ((THE WASTEBASKET (WHICH (THE GRELN COFFEETABLE)

SUPPORT AFX)) CONTAIN AFX (THE DICTIONARY)) ENDCH)

SENT!

endch

the dictionary

«hich supports NP

A
the green coff->etoble

Fig. VII-2.

Example 1

(UNSCRAMBLED SENTENCE)

(THE COFFEETABLE NEXTTC TEE BOOKCASE IS ILLUMINATE D

BY THE TABLELAMP)

(TH SW K AW F EE T AA B l N SW K S T OO Til SW B 1 K AA

S I Z I L OO M I N AA 1 T B A T TH SW T AA B I. AE M P)

(SCRAMBLED SENTENCE)

(SW G AA V EE G AW V R I SW T /. I' OO SW DH \ G AW S .1

S I R OO N I M AA J P A EE F SW P A* K ! i SW)

79

J**~ '&£*=*^*'1~^---' ------ =—imrijiia

(INITIAL SCAN)

((STRCH 0 0) (COFFEETABLE 2 9 IS) (TAbLELAMP 6 12 115)

(GREEN 8 11 60) (NEXTTO lü 15 40) (BOOKCASE 17 21 5)

(ILLUMINATE 24 31 5) (ENOCH 43 43))

Here, four correct ard two erroneous words are found. (Note that the word candidate

"tablelamp" is erroneous since it is in the wrong place.)

(LOCAL HIGHER DISTANCE MATCHING)

((STRCH 0 0) (THE 1 1 0) (COFFEETABLE 2 9 15)

(TABLELAMP 6 12 115) (GREEN 8 11 50) (IS 10 12 40)

(NEXTTO 10 15 40) (SUPPORT 13 17 140) (THE 16 16 0)

(BCX>f C"ASE 17 21 5) (IS 22 23 0) (ILLUMINATE 24 31 5)

(THE 32 34 0) (BOOKCASE 35 39 115) (ENOCH 43 43))
a

In this case, not all the words are found by the initial local processing Therefore, the

system constructs only the partial structures shown below.

(PARTIAL PARSE TREES SORTEO BY LENGTH)

(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE))) IS

i 1.1.1 MIN ATE AFX l I

(STRCH ((THE COFFEETABLE (NEXTTO))))

(This PPT is not subsumed by the previous one, even though it might appear to be.

It represents the PRC structure "the coffeetable nextto which. . .".)

(STRCH ((THE COFFEETABLE) IS))

(* (NEXTTO (THE BOOKCASE)) IS ILLUMINATE AFX)

(• (THE BOOKCASE) IS tLLUMINATE AFX)

((THE BOOKCASE) IS tLLUMINATE AFX)

(* TABLELAMP SUPPORT AFX)

ENOCH

(IS SIPPORT AFXi

(THE BOOKCASE)

GREEN

The system must now rse the CONNECT algorithm to attempt to discover an entire sentence.

(PPT CONNECTION)

«0

(PPT PAIR)

(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE AFX))

ENOCH

PPTS TO BE CONNECTED

(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE AFX))

ENOCH

The system now calls the CONNECT algorithm with the two PPTs shown in Fig. VH-3.

NP is illumirjte

the coffeetab e PP
/ \

endch

/
nextto NP

the bookcase

Fig. VII-3.

PROPOSED PPT

(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE AFX BY NP) ENDCHi

A proposed combined PPT is discovered (see Fig. VH-4)

SENT!

\
strch S£NT

NP is'illuminated by

A
the coffeetable

nenf to the bookcase

Fig. VII-4.

endch

NP

det noun

Ail word-strings which match the hypothesized portion of this proposed PPT are tested

agains; the input. To help us, I.PARS types out one such word-string.

-1

llMinririfTTilrTTBiniii

POSSIBLE VVOKD STRING (Ü RY THE CHANDELIER)

This word-string docs, in fact, match.

WORD STRING MATCHED ((D BY THE CHANDELIER) 32 42 395)

COMBINED PPT

(STRCH ((THE COFFEETABLE (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE D BY (THE CHANDELIER») ENDtH)

So do others. (Notice that only semantically reasonable nouns are matched.)

WORD STRING MATCHED ((D BY THE FLASHLIGHT) 32 42 415)

COMBINED PPT

(STRCH ((THE COFFEETABI F NEXTTO (THE BOOKCASE)))

IS ILLUMINATE D BY (THE FLASHLIGHT)) ENOCH)

WORD STRING MATCHED ((D BY THE TABLELAMP) 32 42 225)

COMBINED PPT

(STRCH ((THE COFFEETABLF (NEXTTO (THE BOOKCASE)))

IS ILLUMINATE D BY (THE TABLELAMP) I ENOCH)

Three possible word-strings match within the high phonetic distance of this match. Notice,

however, that thf word-string containing "ta'olelamp" matches at the lowest phonetic distance.

This example illustrates an interesting aspect of LPARS. Even though words In the vocabu-

lar} "-e not very close phonetically, wher LPARS is performing matches at very high phonetic

distances, often several word-strings may maich. This, of course, is not too surprising. The

mote garbled s section is, the more difficult it would be to determine which words match there.

To deal with this problem, a system would have to be ab'.^ to do one of thre things: call

front-end routines to .ielp choose between the different possibilities, JSC semantics to rule some

out, or ask the speaker which he actually meant.

The advantage of a vertically organized systei.. like LIARS is that it onl v investigates " h

segments very selectively: when a grea* deal of contextual information indicates the necessity,

and when a great deal of context can be used to help constrain the words that might be present.

Example 3

(UNSCRAMBLED SENTENCE)

(PLACE THE GREEN DICTIONARY ON THE BOOKCASE)

(P I AA S TM S\\ G R EE N I) I K SII SW N AA H EE AU N TH

SW BUK AA Si

m

(SCRAMBLED SENTENCE)

(L A.A D M SW B W EE F EE K H SW N AW R EE AW NG B Y K

U P AW ZH)

(INITIAL SCAN)

((STRCH 0 0) (DICTIONARY 9 1C IS) (CL,T r; ER 20 c) 65)

(BOOKCASE 22 26 5) (ENOCH 27 2?))

(LOCAL HIGHER DISTANCE MATCHING)

((STRCH 0 0) (THE 1 2 0i (FRIENDLY 3 8 135) (GREEN 6 8 90)

(DICTIONARY 9 17 15) (ONIHELEFTOF 18 24 185)

(ONTOPOF 18 24 120) (ON 18 19 5) (IS 18 n 0) (THE 20 21 5)

(CLUTTER 20 23 65) (BOOKCASE 22 26 5) (ENOCH 27 27) !

(PARTIAL PARSE TREES SORTED BY LENGTH)

(s C (GREEN DICT'ONARY) (ON (THE ...OKCASE)) I ENOCH)

(' (GREEN DICTIONARY (ON (THE BOOKCASE)) i ENOCH)

r (ON (THE BOOKCASE)) ENOCH)

(STRCH ((THE FRIENDLY)))

(* (GRir.EN DICTIONARY) (ONTHELEFTOF))

(CREEN DICTIONAHV (ONTHELEFTOF) 1

(GREEN DICTIONARY (ONTHELEFTOF) r

(* (OREEN DICTIONARY! (ONTOPOF))

(CREEN DICTIONARY (ONTOPOF))

(GREEN DICTIONARY (ONTOPOF))

(* (GREEN DICTIONARY) IS CTATTER AFX)

(* (THE BOOKCASE) ENOCH)

(GREEN DICTIONARY (ON))

(IS (THE BOOKCASE))

83

In this exarrple, when it comes time to connect PPTs, two PPTs partially overlap, so the

system rips words off to try to connect subtrees. First, it rips "the friendly" of the left-hand

PPT, and attempts connection with the two resulting structures {*-* Figs. Vll-1) and V1I-6).

(PPT CONNECTION)

(PPT PAIR)

(STRCH ((THE FRIENDLY»))

(♦ (♦ (GREEN DICTIONARY) (ON (THE ^OOICCVSF))) ENDCH)

SENT)

SENT
i
i

NP

endch strch

the friendly

A
green dictionory

FiR. VII-5.

PPTS TO BE CONNECTED

STRCH

(* (* (GREEN DICTTONARY) (ON (THE BOOKCASE))) ENOCH)

SENT!

V \
SENT endch

s»ch * ""PP

A
NP on the bookca$e

A
green dictionory

rig. vn-6.

PROPOSED PPT

(STRCH ,'WH VERB AFX (DET GREEN D'CTIONARY)

(ON (THE B(X)KCASE))) ENDCH)

POSSIBLE WORD STRING (WHO PLACE S THE)

84

The first possible combined PPT hypothesized is a question (Fig. VIl-7).

SENT]

strch

\
det green dictionary

Fig. VII-7.

endch

A
on the bookcase

PROPOSED PPT

(STKr-H (VERB AFX (DET GREEN DICTIONARY'

(ON (THE BOOKCASE))) ENDCH)

POSSIBLE WORD STRING {PLACE 0 THE)

WORD STRING MATCHED ((PLACE O THE) 1 5 155)

COMBINED PPT

(STRCH (P1ACE O (THE GREEN DICTIONARY) (ON (THE BOOKCASE))

ENDCH)

^__SENT1_ -

strch""' SENT^ __ endch

verb "ofx"''' NP "~PP

A A
de! green die tiooory on the bookcase

Fig. VII-8.

The next possibility is an imperative command. One o! these word-strings matches and a com-

b'nec; PPT is constructed (Fig. VII-H). (The word "O" is the root affix, the null string.)

(These examples stop when the correct sentenc? is foi nd. The algorithm itse'f is set up to

continue to explore different possible connections. It is qi ite striking, however, watching LPARS

work, how quickly the system car. often zero-in en promising connections, once given a set of

PPTJJ

Example 4

In this example, the CONNECT algorithm is called to match word-strings m the middle of

an utterance

R5

(UNSCRAMBLED SENTENCE)

(THE BROWN SIUETABLE BESIDE THE FIREPLACE CONCEAL S THE

ARMCHAIR)

(TH SWBRAOONSAIDTAABL3EESAIDTHSW

F A I R P L AA S P SW N S EE L Z TH SW A R M CH AA R)

(SCRAMBLED SENTENCE)

(DH I R E OO NG Z AR EE N AW V D EE AW AE E TH Y P A I

W P AW H D SW W H EE R H Y A SW M AW R)

(INITIAL SCAN)

((STRCH 0 0) (FIREPLACE 20 26 95) (CONCEAL 27 3^ 15)

(ENDCH 40 40) ,

(LOCAL HIGHER DISTANCE MATCHING)

((STRCH 0 0) (FIREP1_ACE 20 26 95) (IS 27 28 0)

(CONCEAL 27 32 15 (CLl 1TER 29 ii -201 (THE 32 34 0)

(THE 33 34 0) (AhMCHAIR 35 39 125; (ENOCH 40 40))

No words have been found between phonemes 0 to 20, so ,in immediate nighet-distanco scan

is made.

(SPECIAL SCAN)

((THE 1 2 0) (BROWN 3 6 55) (SIDETABLE 7 13 140))

PARTIAL PARSE TrtKES SORTED BY LENGTH)

(* {* FIREPLACE CONCEAL AFX (THE ARMCHAIR) 1 ENJCH)

(STRCH ((THE BROWN SIDETABLE)))

(* (THE ARMCHAIR) ENDCH)

C FIREPLACE IS CLPTTER AFX)

«6

(PPT CONNECTION)

(PPT PAIR)

(STRCH ((THE BROWN SIDETABLE)))

(* {* FIREPLACE CONCEAL AFX (THE / 'MCHAIR))

ENOCH)

PPTS TO BE CONNECTED

(STRCH ((THE BROWN SIDETABLE)))

(* (• FIREPLACE CONCEAL AFX (THE ARMCHAIR))

ENOCH)

SENT!

^ \
jtrch SENT

I
A

the brown sidelable

fireplace conceal

Fig. VII-9.

PROPOSED PPT

(STRCH ((THE BROWN SIDETABLE (PREP (OET FIREPLACE)

COnCEAL AFX (THE ARMCHAIR)) ENOCH)

POSSIBLE WORD STRING (INFRONTOF THE)

strcrT

NI

SENT!

SENT

conceal

endch

the brown sidetable PP

A
prep det fireplace

NP

A
the armchair

Fig.VII-iO.

47

WORD STRING MATCHED ((BESIDE THE) 14 19 200)

COMBINED PPT

(STRCH ((THE BROWN SIDETABLE (BESIDE (THE FIREPLACE))

LAM CONCEAL AFX (THE ARMCHAIR)) ENDCH)

86

IITtMf

VIII. CONCLUSIONS, BASIC ISSUES, AND AREAS FOR FURTHER WORK

This section places the present work into bri der focu» by discussing some interesting

issues brought to light. Most of these issues relate to the local nature of LPARS1 design. In this

discussion, we describe some of the fundamental problems involved in designing a system like

LPARS, and how the approach described solves these problems. Finally, we conclude by dis-

cussing a number of interesting areas for further work.

A. BASIC ISSUES BROUGHT TO LIGHT

1. Advantages of a Local Approach

The most obvious issue concerns the relative merits of LPARS' local approach which has

the disadvantage of requiring a great deal of initial lexical processing. The entire vocabulary is

matched against the entire input. If words had been recognized with sufficient accuracy in the

early part of the sentence, some of this lexical work might not really be necessary.

The most obvious advantage of the local approach over a more left-to-right approach is that

the left-to-right approach would have difficulty if a relatively large amount of error occurred

near the beginning of the sentence. It world be unable to get at the necessary context to help it

deal with this ambiguity, to isolate it, and then make specific suggestions of words to look for.

A local approach, on the other hand, allows information on both sides of an erroneous area to

be brought to the assistance of the parser.

There is another way of stating this argument. Namely, the local approach allows the highest

phonetic distance scans to be made taking advantage of the maximum possible amount of lower

phonetic distance (well matching) information available. Thus, the higher-distance scans are

"data directed" as completely as possible. (This is not true of a loft-co-right approach.)

In particular, the algorithm that connects PPTs has available to it all possible information

from previous lower-level parsing and processing. As a result, all partial parse structures

constructed from lower phonetic distance processing can be examined, and the most promising

connections can be tried first. This is a very powerful capability, and one *hich no left-to-right

algorithm can achieve.

In a left-to-right system, it would be much more difficult for the system to know wnen a high-

distance match mig'it be desirable, especially if one wants to do such high-distance matching

quite selectively. It is certainlv impossihl • to get Inrormation as to the right-hand boundary for

sue a match.

Syntactic Economy

A second issue might be called "syntactic economy." Syntactic conciseness or ecofV.ny is

a vague term, especially in reference to natural language parsing where there are many different

formalisms for defining syntactic relationships: »ransformations with side conditions, transition

nets augmented by tests on arcs, PROGRAMMAR procedures, etc. Syntactic conciseness is usu-

ally a qualitative judgment made subjectively by looking at a grammatical representation of a ret

of linguistic fac's.

An interesting aspect of local parsing as described here is that it provides motivation for

talking e.tplicitly about a particular type of syntactic economy: namely, the degree to which the

parsing logic for similar structures is collapsed down to a minimum syntactic skeleton.

■H9

-T i r

In the LPARS local parser, there is very rea! incentive to try to collapse the grammatical

skeleton as much as possible, since every time a local syntactic structure is recognized. It is

asserted for every instance that occurs in the grammar. Therefore, if the grammar contains

thirty aeparate instances where a nou'--phrase can be followed by a verb, when such a pattern

is recognized, all thirty p. isibihties must be constructed, even though mny of them might never

even be considered in a left-to-right system analyzing a text version of the sentence.

Such "ineconomy" would lead to excessive inefficiency 'n the construction of local PPTs and

would also complicate the job of connecting different segments since there would be so many to

choose from.

LPARS achieves conciseness by usiag a transition net grammar augmented by syntactic fea-

tures. The transition net itself is a very powerful tool for achieving syntactic conciseness sine«

it can capture very naturally the regularities of many different permutations of a basic structure.

BNF, for example, does not have this capability because it provides no mechanism similar to the

transition net's ability to let pa-sing paths diverge and later reconverge.

To achieve syntactic compactness in a systematic fashion, th ^ transition net is married in

LPARS to a system of syntactic features which allow a number of different permutations of a

sentence (such as relative clauses, declarative sentences, questions, etc.) to be consolidated

into a single transition net structure. Thus, an efficient syntactic «keleton can be created for

local parking.

3. Local Representation of Global Relationships

An interenting problem inherent in the local approach is that of locally representing different

possible global relationships between adjacent syntactic elements. This problem arises because

the global relationship between adjacent words often cannot be determined from limited context.

LPARS handle? this problem in three ways:

(a) One mechanism used is the ancestor link described in S"o. V-B. Ancestor links

are used to represent potential ambiguity caused by right r scursion in the grammar.

(b) LPARS also takes advantage of the .^ynta^tic economy acmeved by collapsing a

number of different syntactic patterns down to a single S3 itaclic skeleton. Thus,

a number of potentiql global relationships can be combined in a single local

structure.

(c) The third mechanism is the fallback of constructing several differen parse trees

•f different parses of some set of words cannot be conveniently merged by the two

techniques just described. This fallback, although less desirable, is not too ineffi-

cient if it is only necessary on a limited basis.

4. Formalism vs Procedures in Parsers

A very interesting issue brought to light concerns the relative merits of expressing logic

in the form of a nonprocedural formalism (such as a transition net grammar), or in the form of

user-written procedures (such as LPARS1 LOCALMATCH routine).

A number of speculations made in the present work indicate that the type of probabilistic,

serr.antically oriented logic, which might be used in the LOCALMATCH routine to search for

local structures that desci ibe objects and events in a scere, might be written most conveniently

in the form of procedures, rather than written to operate from an arbitrary transition net. Much

90

of this logic couK be quite divorced from the syntac'ic representation of the phrase involved.

(Remember that i^e goal of the LOCALMATCH routine is not to perform a systematic search for

a globally consistent sentence, but ra.hsr the use of heuristics to find plausible structures in

different parts of the sentence.)

Once these local structures are found., however, the system needs to have a means of assur-

ing overall consistency and global compatibility of the entire utterance and to direct attention to

areas which might be investigated to attain this globil consistency. The transition net formalism

is used to achieve this. It would be much more difficult to write the logic that directs this proc-

essing (the CONNECf algorithm) m purely procedural form, without som: structural skeleton

such as a transition net to work from. This would be difticult beet, -se the logic that pieces the

entire sentence together must be able to start processing at any place in the sentence, and must

be able to join together any two arbitrary sentence fragments by proposing words between ihem.

A transition net grammar provides a very natural framework to structure this logic around. It

is hard to imagine how one ■ uld write such logic frtthott! some such abstract, manipulable, non-

procedural representation of the grammar.

Thus, procedurer seem to be the best medium (in tne current state of the art) for express-

ing the logic that uses semantic and pragmatic information to help took fot local structures,

whereas the transition net formalism is best suited for systematically trying to enforce global

structural consistency.

5. Implications for Hardware Design

It is interesting to consider what the design of the LPARS system might imply iboi,! the de-

sign of efficient hardware for continuous speech processing. One of the most striking aspects

of the LPARS system is the large degree of initial lexical processing done in the initial scan and

the LOCALMATCH routine.

The lexical • -.chinj, involves a great deal of computation, even though it is done at a IC.A

phonetic distance. On the other hand, virtually all this processing can be ürme in parallel. Thus,

there is great potential for performing this computation very quickly, if one has special-purpose

hardware which allows parallel computation on a massive ecale. Such a system might contain

many special-purpose mini-processors especially designed to perform lexical recognition. Such

hardware, although perhaps not entirely feasible at present, is liable to become perfectly viaole

in the near future, given the present rate at which costs of computational hardware are dropping.

6. Parallel Process Independence vs Coordination

It is worth discussing exactly to what degree LPARS allows parallel independent processing

to take place and to what extent processing in various parts of the utterance is coordinated.

The entire processing of LPARS is globally coordinated in the sense that the phonetic dis-

tance thresholds are set for processing in all parts of the utterance, in a globally coordinated

fashion.

Within this overall global coordination of phonetic distance thresholds, however, the proc-

essing in the initial scan consists of many independent lexical matching processes which are

conceptually independent. Similarly, the LOCALMATCH routine consiats conceptually of a num-

ber of independent processes which use local information to direct their actions.

Once this initial local processing ends, more global processing begins namely, the consiruc-

tion of PPTs. the inspection of these trees from all parts of the utterance, and the attempt to

connect them together by proposing intervening words, using the most promising first. The

91

nature of th. later processing is not independent or potentially parallel since it requires exami-

nation of all parse structures together (to see which is most promising ind which input segments

are worth investigating first).

input

(local/
independent)

(global/
sequential)

sentence

condidotej

Fig. VIII-1.

Thus, in LPARS, the distinction between local/independent vs global/sequential processing

is clearly marked. This distinction separates the initial scan/LOCALMATCH processing from

the analysis done by the TREE and CONNECT algorithms (see Fig. VIII-1).

P. AREAS FOR FURTHER WORK

The primary focus of the present work has been on developing a local approach to parsinr

which allows structures to be built up in all parts of the sentence, so that the system can explore

(using the transition network) how these local structures might be pieced together in a globally

consistent fashion.

1. Elimination of Current Restrictions

There are, of course, a number of restrictions in the scope of the present work. A number

of potential areas for further work are extensions of the system which remove these restri^'ions:

(a) Only a limited syntax is used. It would be interesting to explore the degree to which

the problems of local parsing are compounded when a much larger syntax is used,

and to explore techniques useful in dealing with these problems.

(b) Only a relatively small vocabulary is used by LPAPS. It would be interesting to

explore the problems that arise as the vocabulary is substantially increased.

12

I.c) The LPARS system usrs scrambled input rather than input produced by a real front

end. An obvious extension is to join LPARS to a working front end, at which point

one could begin to deal with such phenomena as coartioulation, st erscgmental ef-

fects, etc. into the LPARS lexical matching scheme.

The most interesting extensions of the present work are those to the semantic component of

LPARS. Semantic extensions could be incorporated at almost all levels of the LPARS system.

In general, these extensions have bean mentioned as appropriate in several sections of this re-

port. Such proposed extensions generally involve using the context of a scene being discussed

and of an interactiv,- dialog to assist in the processing. Context of this sort might assist in the

following ways:

(a) Allow the system to do its processing using only a portion of its entire vocabulary

(b) Augment the LOCALMATCH routine to look for local structures which described

objects or events in the scene.

(c) Augment the action routines so that noun-phrases and clauses are recognized only

if they make sense in terms of the scene being described.

2. Tradeoffs in a Higher-Level Speech System

As discussed in Sec. I, high-level systems such as LPARS con make an important contribu-

tion by providing a medium in which one can begin to evaluate var.ous tradeoffs involved ia build-

ing an integrated speech system - tradeoffs involving such things as:

(a) The quality of front-end information,

(b) The size of the vocabulary,

!c) The complexity of the syntax,

(a) The sophistication of the semantic routines available to assist the processing,

(e) The frequency of occurrence of small function words that must be handled, and

;f) The degree to which the vocabulary can be partitioned.

Once a concrete feeling for such tradeoffs is obtained, one can begin to get a feeling for

where research effort can be most productively allocated. It would be interesting to systemati-

cally explore some of these tradeoffs.

3. Integration of Supra-segmental Information

Another very interesting area for furtherwork is the integration of theuse of supra-segmental

information into a local system such as LPARS. In a speech waveform, there is a great deal of

such i.iformation which could help indicate where syllables are, wher^ stressed morphs are. where

phrase boundaries are, and possibly even information about the overall structure of the sentence.

Such information could be very helpful in allowing a system to establish "islands of relia-

bility" from which to work in various parts of a sentence. One would suspect, therefore, that

such information could be utilized particularly effectively in locally organized systems like

LPARS. Without local organization, even if one did use local supra-segmental informatior one

would eventually have to fall back on a left-to-right approach.

Hopefully, the development of locally organized parsing systems will give added impettis to

research into promising supra-segmental effects, since such parser organization would provide

a natural vehicle for exploiting such information effectively.

91

APPENDDC A

THE PHONEME SIMIIJVRITY TABLE

Appendix A descriaes the phonemes used in the LPARS system, and the phoneme similarity

table.

I. LPARS' PHONEMES

Table A-l lists the phoneme set used in our work. With each symbol is the IPA symbol and,

if not obvious, a sample pronunciation.

TABLJ A-1

LPARS' PHOKEMES

p P N n

B b NC n »ing

T f w w

D d R r

CH
V

C L 1

J i Y y yet

K k OO u boot

G 9 U M Put

F f o 0 open

V V AW

TH 0 with AA e table

DH 6 thij A o father

S s AR

Z z AE OB bod

SH
V

1 E C bet

ZH Z 1 i bit

H h EE ; beet

M m SW a about

11. PHONEME SIMILARITY TABLE

Table A-2 is a reproduction of the table in Appendix 10 of the ARPA Speech Report. This

phoneme similarity table is used by the lexical scrambler and word-recognition algorithm as

described in Sec. HI.

04

00

< 3
2 ?

*n — o

u, O
^- —O fft

o
H Öl!» «

o
Ui —C f* «O ^i

•-• »^ p- ^\
hi O
■* —o <r JT ^. e

a o
< — O ^ «o f« -» ^

^4 «D r> r» to ^
O

M M M1^ (0 Wk m < o
< — o tr- «3 ■-c »^ *! p-

m&m&vm ****** o

o

O o

o

o

O

e

O O

O

o

O

T O

w«aDtf\(OiOW^k/*«A«OkAtC ^ ^ f^ s -» * t*'- w *c! r-,
z o

o

O

x o
c — o u- o -» cr '-- J Jro^<rw-*«o^«^^-*>^owu3>-<(>4(r

x o
H —Of^«<r*^«ototou^r4«isf^^ct«e(M(ni^r49toiAO*-<«e

o
f-*«ooiU}<0<0tftA^>^>-r-'«lomir «u -* ^3 f^ ■-'"*-» »^ »^ ^ W3 ^ f--

o
u. — o c <?■ ra K- «o «si r- w%y}droet^>iAfM«B^<»*r<«r>4^4«B0i«>^Mt^

o
o~OP«rv«ers.t0«-iot^tA^MiAor4(Mtn»^<>4«ororsoi^«r>-r4«^«

o

o

X o
u—or4«MtnjANa^.Mf^9^«r4^fn^to'^wt<-<o«inm«?>«>^tO,H-o

o

o
» O O O ^i >£ -P «-• —' r^i ^ CJ u- fT J f^J ^ J-- - * <f> ^ »^ tr •> '« f^ ^ r-i G- «t ^ ^ r- oc

o
Q. — C O * it tf: «3 f-J ^ *^- --• fJ »-' «C .-« IA O W ^ -* -^ »D J ^ G- ^ - T «i fT t- «C -J-- w ^ « ^ j.

e
— oster>Ot(pOr«et9vwMn«nu>^<i0r>«^- 'j- UJ tc us cr «r «w »c ^ »^ ■> c-. o J o o L» o ^J O

<-i9i^Oi«e9«3CF>«fftao0«wr^tf»s^K.«Ctfltetri*>niAiAjr(OV\r>«^4« 4'^ww^ «e

t X XX XX U O 3< C w h. 3 ia.ici-co~)vmi.>h-coKivtNXXzzza-'>'Cz>c<'4<<<u~wvi

OS

APPKNDI.: n
LPAHS VOCABULARY AND TEST SENTENCES

Appendix n lists ihe words in LPARS' vocabulary with their parts of speech and phonetic

spellings, and the sentences used in LPARS' evaluation.

1. LPARS VOCABULARY

(DISLIKE VERR D I S L A I K)
(ENJOY VERB SW N J O I)
(HANDLE VERB H AE N P L)
(DISCARD VERB DISK JW. b)
(CLUTTER VE.tB K 1. SW T R)
(COMPLEMENT VERB k \ M P L SW M SW N T)
(ILLUMINATE VERB I L CO M I N AA T)
(BRIGHTEN ERB B R A 1 T N)
(CONCEAL VERB C SW N S EE L)
(CONTAIN VERB K SW N T AA N)
(SUPPORT VERB S SW P O R T)
(OBSCURE VERB A B S K I OO R)
(PLACE VERB P L AA S)
{APPROACH VERB A P R O CH)

'CHRISTOPHER iJfiOJ-N K R I S T SW F R)
(MARIANNE PRCPN M E R I AE S)
(ROBERT PROFN R SW B SW H T)
(PERIWINKLE PROPN P SW R EE W I N K L!
iAN'ASTASIA PRt^PN' E N E S T AA S EE SW ;

(CHANDELIER NOUN SH AE H D SW 1. EE R)
(FLASHLIGHT NOUN Y L AE SH L A i T)
(TABLELAMP itOUH T AA B L AE ?.l P;
(FIREPLACE NOUN F A I R P L AA S»
(SIDETABLE NOUN S A I D T AA B L)
(COFFEETABLE NOUN K AW F EE T AH B L)
(ARMCHAIR NOUN A R M CH AA R)
(BOOKCASE NOUN B U K AA S)
(RADIATOR NOUN R AA D EE AA T O R)
(NEWSPAPER NOUN N OO S P AA P R)
(MAGAZINE NOUN M AE G SW Z EE N)
(ASHTRAY NOUN A SH T R AA)
{DICTIONARY NOUN D 1 K SH SW N AA R EE)
(REFRIGERATOR NOUN R E^ F R I D J SW R AA T O R)
(CABINET NOUN K E B 1 N SW T)
(PERSON NOUN P SW R S SW N)
(TELEVISION NOUN T SW L SW V I J SW N)
(BREAKFASTTA,JLE NOT N B R SW K F E S T AA B L)
(WASTEBASKET NOUN W AA S T B E S K SW T)
(STEPLADDER NOUN S T SW P L E DD SW R)
(FOOTSTOOL NOUN F U T S T OO L)
(VACUUMCLEANER NOUN V E K I OO M •' L EE N SW R)
(ENTRANCE NOUN SW N T R E N S)

(INFRONTOF PREP I N F R SW N T SW V)
(ONTOPOF PREP AW N T A P SW V)
(BESIDE PREP B EE S A I D)
(INBACKOF PREP I N B E K SW V)
(NEXTTO PREP N SW K S T OO)
(ONTHERIGHTOF PREP AW N TH S'.V R A I T SW V)
(ONTHELEFTOF PREP AW N TH SW L SW F T SW Vi
(BEHIND PREP B EE K A I N D)

(RECTANGULAR ADJ R SW K T E N G I OO L A R)
(CIRCULAR ADJ S I R K I OO L A R)
(BROWN ADJ H R A OO N)

06

(OKANGE AD.J O R A N J)
(GREEN ADJ G R EE N)
(FRIENDLY ADJ F R SW N D L EE)

(DOES DO D U Z)
(WHO WH H OO)
(WHICH WH W I CH)
(WHOM WH H OO M)
(WHAT WH W A T)
(IS BE 1 Z)
(THE DET TH SW)
(BY BBY BAI)
(S AFXS Z)
(D AFXS T)
(O AFXS)
(IN PUEPA I N)
(ON PREPA AW N)

[I, SENTENCES USED IN LPARS' EVALUATION

(the dictionary Infrontof the sidetable is place d in the
wastebasket by periwinkle)
(the waatebasket which the green coffeetable support s
contain a the dictionary)
(the coffeetable which support 3 the green ashtray obscure s
the entrance)
(the green coffeetable support s the dictionary)
(the sidetable which support 3 the ashtray obscure 3 the
fireplace)

(the sidetable which support s the ashtray in the bookcase
obscure s the fireplace)
(does the sidetable support the ashtray)
!what does the sidetable support)
(the dictionary on the siJetable is brighten d by the
chandelier)
(does the chandelier infrontof the fireplace brighten the
rectangular coffeetable)

(the chandelier infrontof the fireplace brighten s the
coffeetable)
(what does the chandelier infrontof the fireplace
brighten)
(the coffeetable nextto the bookcase is illuminate d by
the tablelamp)
(is the dictionary support d by the sidetable)
(does periwinkle place the dictionary on the coffeetable)

(what does periwinkle place beside the refrigerator)
(what support s the dictionary ontherightof the fireplace)
(place the circular ashtray in the vastebasket)
(the dictionary which is support d by the coffeetable
support s the tablelamp which illuminate s the fireplace)
(who dislike s periwinkle)

(the friendly person place s the ashtray inbackof the
cabinet)
(periwinkle place 3 ths dictionary on the sidetable beside
the bookcase)
(place the green dictionary on the bookcase)
(the coffeetable beside the armchair infromof the
fireplace support s the ashtray)
(the tablelamp beside which robert place s the dictionary
illumin?!.« s the armchair)

^7

IFiUauUua,

(the refrigerator in which the ashtray is place d by
robert conceal s the entrance)
(whom does niarianne dislike)
(on what does rnristopher place the dictionary)
(beside what does christopher place the ashtray)
(beside what is the green rectangular ashtray place d by
robert)

(is robert dislike d by the friendly person beside the
coffeetable)
(what is support d by the -ircular sidetable)
(what is place d beside the newspaper on the coffeetable
by christopher)
(on what docs periwinkle place the tablelamp)
(beside what does the friendly person place the
magazine)

(infrontof what is the magazine pla-:e d by marianne)
(in what is the newspaper place d by robert)
(the boolcase contain s the flashlight)
(the flashlight illuminate s the circular wastebasket
beside the television)
(the magazine is support d by the dictionary ontopof the
coffeetable)

(the newspaper on the sidetable conceal s the ashtray)
(the brown side';ablc beside the fireplace corceal s the
armchair)
(place the green dictionary besJde the refrigerator)
(place the dictionary which support s the ashtray beside
the cabinet)
(does the newspaper conceal the circular ashtray)

(does Christopher enjoy marianne)
(what does the tablelamp infrontof the fireplace
illumir.ate)
(place the ashtray infrorlof the sidetable)
(what brighten s the breakfasttable)
(the bookcase behind the coffeetable support s the
magazine)

18

APPENDIX C

WORD-RECOGNITION ALGORITHM

Appendix C describes the routine used for lexical recognition. This routine receives the

following arguments:

WORD the correct phonetic spelling of the word to be
matched (an array of characters),

SENT the (:.onetic spelling of the scrambled input
utterance an array of characters).

1 the phoneme position in the sentence at which
the match is to be started.

WL' TH the length of the word.

SLNTK the length of the sentence.

WDIST the maximum distance permissible for the match.

The algc. thm calls the following routines:

SUBDISTfPHONl, PHON2) returns the phonetic distance of substitution between two

phonemes.

)ELDIST(PHON, LASTPHON) returns the phonetic distance of deletion of PHON

when preceded by LASTPHON.

^TACKfJ, K, DIST) puts three values onto a stack.

UNSTACKd, K, DISTi pops the three values from the stack.

Thr algorithm explores all posaibiluies of substitution and deletion in matching the v/ord to

the section of input which starts at position 1.

99

LEX(WORD,SENT,l,WLNTH,SLNTH,WDISTj

START

i
DIST=0
TDIST=WDIST
OLDP=SENT(l-l)
FLG=0
K=0
TK=0

/ J LE WLNTri
ADISTLETDIST
A(l+K) LE SLNTHy M J > WLMTH~1

A DIST LE 7DIST

N

FLG=1
TK=K-1
TDIST=DIST

f< \i
STACK

\ EMPTY?/

N
i r

NSTACK(J,K,DIST^

(FLG^O?)-

| OLDP=WORD(J-l)

RETURN NLJ

N

_L
RETURN WORD RECOGNIZED
BETWEEN POSITIONS I TO (l+TK)
AT DISTANCE TDIST

Tl=5UBDIST(WORDU),SENT0 + K))
T2=DELDIST(WORD(J),OLDP)
STACK(J+1,K+1,DIST+T1)
DIST=DIST+T2
J=JH
OLDP=WORD(J-1)

100

APPENDIX D

TREE AND CONNECT ALGORITHMS

Appendix D contains flowcharts of the logic of the TREE and CONNECT algorithms. In

creating these flowcharts, we have tried to leave in enough ilotail to convey the basic operations

being performed, but not so much a« to obscure them. The algorithms described in this Appendix

are written to operate on I.ISP data structures flints); therefore, they use the following LISP

functions:

CAR. which obtains the first member of a list,

CDR. which obtains the remainder of the list,

LIST, which returns a list of the elements passed to it. and

APPEND, which appends two lists.

The algorithms also invoke the following functions (listed alphabetically):

AL)DSON(PPT, SON, ARC) returns a new PPT created by adding a rightmost son

to the input PPT (provi Mng that the action routine associated with the AHC permits,

else NIL).

ANCESTOK(PPT) returns true if the leftmost son of the top node of the PPT is an

ancestor link son.

CATPATHILPT, RPT) returns a new PPT consisting of c concaionation of the two

input PPTs (providing that the action routines are compatible, else NIL). If the

leftmost son of the RPT is an ancestor link son, it is not included in the resulting

structure.

CONTENTVV(ARC) returns true if the ARC is labeled bv a content word terminal.

CONTEXTLIST{PPT) returns a list of all arcs which invoke the PPT.

ENDSTATE(PPT) returns the end state of the top node of the PPT.

ENDTESTIENDFLAG, PPT) returns true if ENDFLAG is NIL or if the PPT is a

final PPT.

EXITARCS(PPT) rtturns a list of all arcs emanating from the end state of the top

node of the PPT.

FINAL(PPT) returns true if PPT ends on a permitted final state or is a terminp.l

node.

IIRSTARC(PPT) returns the first arc in the top node of the PPT.

INITIAL(PPT) returns true if the PPT begins on a permitted initial state.

INITSTAT13S(ARC) accepts as input an arc invoking a nonterminal, and returns a

list of initial states of that nonterminal's net.

LAMBüA(ARC) returns true if the ARC is a LAMBDA arc.

LASTARC(PPT) returns the rightmost arc, in the top node of the PPT.

LSONtPPT) returns the leftmost son of the PPT, or :"L u the PPT is a terminal

node.

101

NT(ARC) returns true If the ARC invokes a nonterminal.

POPPPT(PPT, ARC) returns a new PPT, constructed by popping with the PPT to

an ARC invoking the PPT in a higher-level net.

PPT(ARC) accepts a terminal arc and constructs a "hypothetical" urminal PPF of

the saii.e part of speech as the arc.

PTortT;!, if N is an ire or a PPT, this function returns the part of speech asso-

ciated with hat i re of PPT.

air^IRPTSOjsKPPT» returns NIL if the top node of PPT hao only one son. or re-

turns a neu PPT identical to the input PPT but minus the leftmost son of the top

node.

RIPLASTSON(PPT) is similar to RIPF1RSTSON but removes the rightmost son.

RSON(PPT) returns the rightmost son of the PPT, or ML if the PPT is a terminal

node.

START PATH(P, ARC) returns a new PPT created by starting a path in a net (where

ARC .■>•-;.anates from an initial state of t'-^t net). P becomea the only son in this

new PPT,

STARTSTATE(PPT) returns the starting state of the top node of the PPT.

STORE(PPT) störet a PPT in ihe pho .erne position cnble.

STORELIS^'PPTC) store- a. list of PPTa in the phoneme position table.

TERMT(PPT) retur.is true if the PPT is a terminal.

i. li'.EE ALGORITHM

The basic top-level routine of the TREE algorithm is th<* TRKE-WORD routine which takes

aa input a PPT and a word and constructs as many possible resulting PPTs as possible by '»ppend-

i.ig, pushing, and popping.

The HOOK routine crjortMnates all appending and pushing connections beiween the t%jp node

of a PPT and the word. If a given connection is not possible, the routine must try to effect the

connection to a rightmost sub-part of that node.

The PISH routine h . :'es pushing connections.

The KOOKALL routine attempts to "hook" the word, not only to th« top r. «ie of the PPT,

but also to lower rightmost nodes. Also, it checks to see if lower rightmost lescendents of the

PPT can be joined to the word in other syntactic contexi.«

The POP routine handles popping connections. In the process, it calls the ABORT routine

which prevents infinue looping, and the POPPPT routine which must al-fo handlt creating ances-

tor link structures.

102

VORCHPPT.WORD)

N

START

<^MNAL(PPT)?)>

C--CONTEXTLIST(PPT)
WMILE C 3^ NIL DO

1 POP(PPT,WORD,CAR(C),NIL)
C<DR(C) 1

STORtLIST(HOOKALL(PPT,WORD))

1
DONE

HOOK{PPT,WORD)

START

 1
RES=NIL
AL=EXITARCS(PPT)

<("Al=NIL?> >fR^JRN RES

1
ARC<AR(AL)

PTSP{ARC)= \ V
PTSP(WORD)?/

N

fAL<DR(Al)~|*-

RES=
APPEND(RES,TRY(PPT, WORD, ARO)

<(NT(ARC)?

N

NL=PUSH(ARC,WORD)
WHILE NL y NIL DO
| RES=APPEND(RES,TRY(PPT,CAR(NL),AaCp
, •'.=CDR(NL) 1

<TÄMaDA(ARC)?>
RES=
APPEND(RES,TRY(PPT,LAMB':A,ARC))

N

103

TRY(PPT,SON/ARC)

-<T2=NIL?>

<CS0NHÄMBDÄ?>

STORE{T2)
RETU?.N NIL

STORELIST(HOOK(T1,SON);
RETURN NIL

RETURN
LIST(T2)

RETURN
HOOK(T2,SON:

PUSH(ARC, WORD)

START

RES=i4IL
IL=INITLIST(ARC)

IL<OR(IL)

^IL-NiL?))-

N

rAL=EyiTA"RCS'CAR(IL):"

 [AR<AR(ALy]

v /PTSP(AR)= ~\
\ PTSP(WORD)?/

[RETURN RES I

["AL<DR(AL)|>—

"TRE'
[AP

RES=
APPENi3(RES,STARTPATH(WOR0,AR)l

T1=PUSH(AR,WORD)
WHILE Tl ^ NIL DO
| T2=STARTPATH(CAR(TI),AR)
RES=APPENO(RES/LIST{T2))
TI=CDR(T1) 1

mi

HOOKALL(PPT,WORD)

START

RES=N:L

<FINAL(RSON(PPT))?)>-

N

|Tl=«SON(PP"T)

^FINAL(TÜ?)>-

NT

C=CONTEXTLIST(Tl)

<CENIL2>
NH

[C=CDR(C) |-X^C=LASTARC(PPT)?)>

N
POP(Tl, WORD, ARC, NIL)

HRES=HOOK(PPT,WORD)

T2-HOOKALL(Tl,WORD)
T3=RIPLASTSON(PPT)

<IE NiL?>-

N

WHILE T2?t NIL DO
| RES=APPFND(RES/

ADDSON(T3,CAR(T?),LASTARC(.PPT)))
T2=CDR(T2) 1

WHILE T2 ^ NIL DO
| RES=APPEND{RES/TRY(T3(CAR(T2),LASTARC(PPT))]
T2<DR(T2) 1

RETURN RES

POP(PPT, WORD, ARC, ARCLIST)

START

<^ABORT(PPT,ARC,ARCLISTJ?> S

N

Tl=POPPPT(PPT,ARC)
T2=HOOK{Tl,WORD)
STORELIST(T2)

<;FINAL(T1)?>^{RETURN|

Yl

^CONTEXTLISTITI)
WHILE C/ NIL DO
I POP(Tl,WORD,CAR(C),APPEND(ARCLIST,LIST(ARC)))
C=CDR(C) 1

T
[RETURN I

10S

U. CONNECT ALGORITHM

The following flowcharts outline the two main routines of the JOIN sub-part of the CONNECT

algorlthrr.

The EXTEND routine coordinates the extending of a path from an LPPT and the joining of

that path to an RPPT.

The PUSHEX routine is called with INTFLAG=NIL when the extended path is to continue on a

lower level, and is called with INTFLAG^TRUE to make an RPPT start on a permitted initial state.

The DOREST routine is called by the EXTEND routine after the paths have been joined.

It assures that the rightmost sons of the LPPT end on permitted final states, and rail the

CONSTRAIN routine,

Three arguments are used for communication between these routines:

CONTFLAG is true when an extended path has already traversed a content word,

ENDFLAG is true if the extended path must end -m a final state, and

INTFL\G is used in the PUSHEX routine P.J described above.

106

EXTtNDC^i.RPT.ENDFLAG.CONTFLAGJNTFLAG)

START

A1=EXITARCS(LPT)
RES=NIL

<ÄL^NIL?>
N

-»j RETURN RES"

ARC=CAR(AL)

<LÄMBDA(ARC))-

N

T1=A0DSON(LPT,PP7(ARC),ARC)
IF Tl/ NIL DO RE5=

EXTEND{Tl,RPT,ENDFUG,CONTFLAG,INTFLAG)

' TERMT(ARC)
A(CONTFLAG=NIL

,v~CONTENTW{ARC))/

N

Tl=ADDSON(LPT/PPT(ARC),ARC)
IF Tl + NIL DO RES=APPEND{RES,

EXTEND(T1,RPT/ENDFLAG,CONTENTW(ARC)A

CONTFUG.INTFLAG))

NTlARC)
AINTFLAG=NIL

N

Tl=PUSHEX(RPT,ARC..EMDFLAG,CONTFLAG,NIL)
WHILE Tl ^ NIL DO
[T2=ADDSON{LPTrCR(T1),ARC)
IF T2/ NIL AENDTEST(ENDFLAG,T2)

DO DOREST(T2)
T1=CDR(T1) I

NT(ARC) ~\
AANCESTOR(RPT) \
AENDSTATE(LPT>=)

STARTSTATE(RPT)/

N

Tl=PUSMEX(LSON(RPT), ARC, TRUE, CONTFLAG, NIL)
WHILE T; / NIL DO
! T2=ADDSON(LPT,CAR(Tl),ARC)
IF T2^ NIL DO T2=CATPATH(T2,RPT)
IF T2/ NIL DODOREST(T2)
TKDR(Tl) 1

PTSP(ARC)= \
PTSP(WORD)

A INTFLAG=NILy

N p

IF INITIAL(RPT) DO
1 T2=ADDSON(LPT,RPT,ARC)
IF T2 ^ NIL A iNDTEST(ENDFLAG,RPT)

DO DOREST(T2) 1

ENDSTATE(LPT)= >
STARTSTATE (RPT)

A~ANCESTOR(RPT) ,
JU

N

T1=CATPATH(LPT,RPT)
T2=PUS1-IEX{LSON(RPT),FIRSTARC(RPT),

TRUE, CONTFLAG, TRUE)
WHILE T2 / NIL DO

[DOREST(CAR(T2)) ; T2=CDR(T2) 1

AL=CDR(AL) »

in?

PUSHEX(RPT,AR,ENDFLAG,CONTFLAG,INTFLAG)

START

1
RES=NIL
IL=INITSTATES(AR)

-i_
<IL=NIL?>- RETURNRES

N

AL^EXITARCS(CAR(IL))|

iKDRTiiT^— ^AL^NILT)

K
ARC=CAR(AL)

NT(ARC)
A ANCESTOR(RPT)
AENDSTATE(ARC>=

STARTSTATE(RPT)

N

f TEkMT(ARC) \
A (CONTFLAG=NIL

.v-CONTEXTWIARC)).

N •

/ NT(ARC) \
\AINTFLAG=NIL/

N

AL=CDR(AL)

Tl=PUSHEXiLSON(RPT),ARC,TRUE,
CONTFLAG.NIL)

WHILE Tl ?t MIL DO
[T2=STARTPATH(CAR(TI),ARC)
IFT2/NIL DO
RES=APPENCKRES,LIST(CATPATH(T2,RPT)))
T(=CDR(Tr 1

Tl =STARTPATH(PPT(ARC), ARC)
IF Tl t NIL DO RES=APPEND(RES,

EXTENDiTI.RPT.ENDFLAGJRUE.IN^s-AG))

J
, T1=*)USHEX(RPT,ARC/ENDFLAG,CONTFLAG.NIL)

WHILE Tl ytNIL DO
1 T2=STARTPATH(CAR(T1),ARC)
RES=APPEND(RES,LIST(T2))
TI<DR(T1)1

lOB

APPENDIX E

LOCALMATCH LOGIC

Appendix E describes the higher phonetic distance lexical matching done by the LOCALMATCH

routine. This matching is done in areas adjacent to and between words found either by the initial

scan or by previous local matching.

Three types of matching are done:

(1) Matching for words immediately adjacent to a word already found.

(2) Matching for nearby words separated by only a few phonemes from a word already

found.

(3) Matching for functiop. word-strings in the area between two words al: eady found.

I. ADJACENT MATCHING

Below, we indicate for each *ord class which words ar? searched for immediately adjacent

on each side:

NOUN left - adj

right - verb, prep

VERB left - noun, propn

ADJ left - adj

right - adj, noun

PROPN right - verb

PREP left - noun

ENOCH left - neun, propn, verb

II. NEARBY MATCHING

Below, we indicate for each word class the words which arc searched for in areas separated

by only a few phonemes on each side:

NOUN left - verb, prep

VERB left - verb

right - noun, adj

ADJ left - verb, prep

PREP right - noun

HI. FUNCTION WORD-STRINGS BETWEEN WORDS

Below, we show the set of function word-strings, and the word-pair contexts between which

each is matched for. (These tests are made only if the two words are separated by a roughly ap-

propriate number of phonemes.)

109

äi.

the in the

strch adj/noun

(i.e., between a strch and

an adj or a noun)

prep adj/noun

verb adj/noun

strch propn

which

by

prep propn

noun propn

noun verb

noun propn

verb propn

does

strch propn

strch-prep propn

(i.e., between a prep, at

the stfrt of tin. sentence,

and a propr.)

which is

noun verb

what does

strch propn

strch-prep propn

whom does

strch propn

on what does

strch propn

in what does

strch propn

by the

verb adj/noun

noun adj/noun

on the

verb adj/noun

noun adj/noun

verb adj/noun

noun adj/noun

which the

noun adj/noun

prep adj/noun

whom the

noun adj/noun

is the

st.rch adj/noun

does the

strch adj/noun

in which the

noun adj/noun

on which the

noun adj/noun

what does the

strch adj/noun

strch-prep adj/noun

what is the

strch-prcp adj/noun

whom does the

strch adj/noun

on what does the

strch adj/noun

;n what does the

strch adj/noun

on what is the

strrh idj/noun

in what is the

strch adj/noun

in which

noun propn

on which

noun propn

110

who what

strch verb strch verb

noU11 verb what is

wh0 i3 Strch verb

strch verb

noun verb

111

APPENDIX F

BIBLIOGRAPHY

Alter, R., "Utilization of Contextual Constraints in Automatic Speech Recognition, "
IEEE Trans. 'Xudio Electroacousf. AU-16, No. 1, 6-11 (March 1968).

Barnett, J., "A Vocal Data Management System," IEEE Conference on Speech Com-
munication and Processing, Boston, Massachusetts, 1972, pp. 340-343.

Bobrow, D. G., and J. B. Eraser, "An Augmented State Transition Network Analysis
Procedure," Proc. International Joint Conference on Artificial Intelligence,
Washington, D.C., 1969, pp. 557-567.

Chomsky, N., "Forma1 Properties of Grammars." In Handbook of Mathematical
Psychology, Vol.2. K. D. Luce, R. R. Bush and E. Galanter, Editors (Wiley,
New York, J963).

Feigenbaum, E. A., and J. Feldman, Computers and Thought (McGraw-Hill.
New York, 1963).

Jacobs, R.A., and D. S. Rosenbaum, English Transformational Grammar (Blaisdell
Publishing Co., Waltham, Massachusetts, 1968).

Klatt, D.H., and K.N. Stevens, "Strategies for Recognition of Spoken Sentences from
Visual Examination of Spectrograms," Mpssachusetts Institute of Technology (1971),
unpublished document.

Kuno, S., "The Predictive Analvzer and a Path Elimination Technique," Conimun.
ACM 5, No. 7, 453-462 (July 1965).

McCarthy, J., et aL, LISP 1.5 Programmer's Manual (M.I.T. Press, Cambridge,
Massachusetts, 1965).

Minsky, M., Semantic Information Processing (M.I.T. Press, Cambridge, Massa-
chusetts, 1969").

Patrick, S. R., "A Recognition Procedure for Transformational Grammars," Ph.D.
Thesis, Massachusetts Institute of Technology (1965).

Pierce, J. R., "Whither Speech Kecognition," J. Acoust. Soc. Am. 46, No. 4
(Part 2), 1049-1051 (October 1969).

Quillian, M. R., "Semantic Memory," Ph.D. Thesis, Carnegie Institute of Tech-
nology (1966).

Reddy, D. R., "Computer Recognition of Connected Speech," J. Acoust. Soc. Am. 42,
No.2, 329-347 (August 1967).

 , "On the Use of Environmental Syntactic, and Probabilistic Constraints
in Vision and Speech." AI-78, Stanford University (1969).

Sussman,-G., T.A. Winograd and E. Charniak. "Micro-Planner Reference Manual."
Al Memo 203. Project MAC, M.I.T. (July 1970).

112

ACKNOWLEDGMENTS

I wish to express my great appreciation to Professor Jonathan Allen

for many hours of discussion, advice, and encouragement during the

course of this work. I am also indebted to Professors Terry A.

V/inograd and J. C. R. Licklider for having initially suggested this

area of research and for their continuing advice and support, and to

Mr. James Forgie for numerous patient hours spent listening while

I tried to formulate various ideas intelligibly.

I also wish to thank various people who helped me during the course

of this work, including Professor Dennis H. Klatt, Mr. Louis N.

Gross, Dr. Amedio Armenti, Mr-Donald E. Hall, Mr. James Sloa.ie,

Mr. Jack Klovstad, and Mr. Robert Goldberg.

113

REFERENCES

I. N. Lindgren, "Machine Recognition of Human Language - Parts 1 and 2,"
tEE Spectrum 2. No. 3. H4, and No. 4, 44(1965).

Z. S. R. Hyde, "Automatic Speech Recognition: Literature, Survey and Dis-
cussion," Research Department Report No. 35, P. O. Research Department,
Dollis Hill, London NW2, 1968.

3. A.Guzman-Arenas, "Computei Recognition of Three-Dimensional Objects
in a Visual Scene," Report MAC-TR-59, Project MAC, M.I.T. (December
1968).

4. T. A. Winograd, " Procedures as B Representation of Knowledge in a Com-
puter Program for Understanding Natural Language," Report MAC-TR-84,
Project MAC, M.I.T. (Feb-uary 1971),

5. B. Gold, "Word Recognition Computer Program," Technical Report 452,
Research Laboratory of Electronics, M.I.T. (June 1966).

6. D. G. Bobrow and D. H. Klatt, "A Limited Speech Recognition System,"
Proc. AFIPS Fall Joint Computer Conference, Washington, D.C., 19t8i
p. 33.

7. M. Medress, "Computer Recognition of Single-Syllable English Words,"
Ph.D. Thesis, M.I.T. (1969)

8. P. Vicens, "Aspects of Speech Recognition by Computer," Report CS-127,
Computer Science Department, Stanford University (1969).

9. D. R. Reddy, et al., ""»Vorking Papers in Speech Recognition I," Carnegie-
Mellon University (April IvTi).

10. C. C. Tappert, et a)., "The Use of Dynamic Seg.nents in the Automatic
Recognition of Co 'tinuous Speech," IBM Corporation, RADC-TR-70-7Z
(1970).

11. , "Automatic Recognition of Continuous Speech Uti-
lizing Dynamic Segmentation, Dual Classification, Sequential Decoding,
and Error Recovery," IBM Corporation, RADC-TR-71-146 (1971).

12. A. S. Rabinowitz, "On the Value of the Fano Algorithm in Establishing the
Graphemic Form of Machine Derived Phonetic Strings," Ph. D. Thesis,
North Carolina State University (1972).

13. W. A. Woods, "Transition Network Grammar.s for Natur.il Language Anal-
ysis," Commun. ACM 13, 591-606 (1970).

14. W. A. Woods and R. M. Kaplan, "The Lunar Sciences Natural Language
Information System," Report No. 2265, Bolt Beranek, and Newman Inc.
(September 1971).

15. N.Chomsky, "A Transformational Approach to Syntax," in The Structure
of Language, J.A. P'odor and J. J. Katz, Editors (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1964).

16. , Aspects of the Theory of Syntax (M.I.T. Press, Cambridge,
Massachusetts, 1965).

17. J. J. Katz and J.A. Fodor, "The Structure of a Semantic Theory," in The
Structure of Language, JA. Fodor and J.J. Katz, Editors (Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1964), pp. 479-518.

18. J. C. Nyiri, "No Place for Semantics,'1 Foundations of Language ^7 (1971).

19. A. Newell (Chairman), et al., "Speech-Understanding Systems, Final Re-
port of a Study Group," Computer Science Department, Carnegie-Mellon
University (May 1971).

20. W. D. Lea, "Intonational Cues to the Constituent Structure and Phonemics
of Spoken English," Ph. D. Thesis, Purdue University (June 1972).

21. Y. D. Willems, "The Use of Prosodies in the Automatic Recognition of
Spoken English Numbers," Ph. D. Thesis, M.I.T, (June 1972).

22. J. Earley, "An Efficient Context-Free Parsing Algorithm," Commun.
ACM 13, 94-102 (1970).

114

