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Pulsed Antennas jI
Giorgio Franceschetti(+) and Charles H. Papas

California Institute of Technology
IPasadena, California 91109

ISUMMARY

The problem of pulsed antennas has two complementary parts:

(i) analysis of the radiation field when the driving voltage is

given, (ii) synthesis of the driven voltage when the radiation

I field is given.

In this paper a number of heuristic procedures are presented,

relating to the computation of transient radiation from elementary

sources, coaxial apertures, infinitely long cylindrical antennas,

finite cylindrical antennas, and loop antennas. Comparison with

available rigorous solutions and experiments is also provided.
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1. Introduction and Discussion of Principal Results

In early 1969 Prof. T. T. Wu stated: "It is worth emphasizing

that our knowledge about the transient response of antennas is very

meager indeed. Any progress in this rather neglected field is certainly

going to be of tremendous value" [1]. Although a few new papers have

appeared on this subject since then, the above statement is probably

still valid.

Most of the papers concerned with transient currents on and

transient radiation from antennas use solutions of frequency-domain

integral equations which are then transformed into the time-domain by4
Fourier techniques. These papers cover the transient behavior of the

infinite cylindrical antenna [2,3,4,5,6,7], the finite cylindrical

antenna driven by a coaxial line [8] or by a gap type excitation [9,10],
the conical antenna [11], the aperture antenna [12,13,14], the loop

antenna [15,16), and the loaded antenna [17]. In a few papers, an ex-

perimental verification of the theory is provided, with reference to the

~radiated and received fields [18,19] or to the input response of the

T, antennas [20,21]. Also, the effects of thin-wire approximations and of

source-excitation modeling can be found in the literature [31,32). Other

approacnes that have been used are the singularity expansion method [2,.

23): the solution of the transient current integral equation directly in

time-domain [24,25,26,27,28,29], and an almost rigorous application of

Wiener-Hopf technique [30).

A general characteristic of most of the referenced material is the

emphasis on either the extensive use of numerical methods or the

7.
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presentation of the solution in an integral form that must be evalu- j
ated numerically or at least asymptotically [7]. A somewhat different

approach has been suggested [33] which aims at the general properties

(if any) of transient radiation. In this paper, this approach is

formalized and further daveloped.

In Section 2, the transient radiation from elementary electric

or magnetic sources with prescribed current distributions is analyzed

by using a formal Fourier inversion of known steady-state results. The

source environment is assumed not only isotropic and homogeneous, but

also nondispersive, since compls.ely different results are obtained

when dispersion is taken into account [34,35,36,37]. This assumption

will apply throughout this paper. The analysis shows that the transient

radiated power is expressed in terms of the /r components of the

field only, when the antenna excitation is conFined in time. These com-

ponents in th, case of an electric dipole are proportional to the time-

derivative of the current i(t*) and to the second time-derivative of

ithe input voltage V(t*), at the retarded time t* t = r/c . In the

case of a nignetik dipole, the 1/r fields are proportional tc 1it*),

i(t*), where I(t),V(t) are respectively the current along, and the

voita.e across the small current loop.

it In Section 3, a deeper analysis of transient radiation from the

elementary sources is presented. For the electric dipole, a model of

twr, opposite charges which collapse one upon the other is assumed. For

the magnetic dipole* a pulsed current along a circular loop Is considered.

In each case, it is shown that the far-field waveform is not proportional
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to the first, or second time derivatives of V(r) or I(t), when the

time resolution is greater than h/c , h being a characteristic linear

dimension of the antenna, and c the light velocity. In this same

scale, tho radiation due to an assumed pulse of current appears in

the form of two pulses (electric dipole), or a"continuous radiated

waveforra with square-root singularitips (magnetic dipole). Hcwever,

when a time scale larger than hic is considered, it is shown that a

proper limiting process leads to the formal results of Section 2.

From a physical standpoint, the process can be understood as a con-

traction of the physicd] dimensions of the radiatorss or equivalently,

as a limited time-resolution of the field measuring devices.

Also the more complex radiating structures that will be con-

sidered here are subject to the above time-resolution property. Accord-

ingly, a macroscopic and a microscopic approach are defined for the

transient radiation, with respect to a time-resolution of order h/c

In all cases the transition from one time-scale to the other is developed

in detail.

In Section 4, an analysis of transient radiation from coaxial

apertures is devOloped. In the macroscopic approach, advantage is thken

of the equivalence between the aperture field and a distributed magnetic

loop [38]. The far field is shown to be proportional to V(t*), V(t)

being the voltage across the aperture. In the microscopic approach, the

far field is computed as due to the sudden reflection of the current at

the open end along the edges of the conductors of the coaxial aperture.

The radiated waveform 'is characterized by four square-root singularities=4

-4 1
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where the incident voltage is a pulse and the coaxial aperture is cir-

cular. These results are in agreement with a quasi-rigorous solution

of the problem [30].

In Section 5, the radiation coming from the gap of a linear

antenna is considered. In the macroscopic approach, the far field turns

out to be praportiunal to i(t*). In the microscopic approach, the

radiated waveform has a square-root singularity when the applied voltage

is a step. This last result is consistent with the early-time behavior

of the far field radiated by an infinitely long cylindrical antenna [7].

In Section 6, an approximate method is developed for computing

transient radiation from linear antennas and loops large with respect to

cT , T being the pulse width. The approximation involved is the use 04

transmission line analysis for modeling currents and voltages. This

results in a sinusoidal current distribution. It is therefore expected

that the results of the analysis are valid in the limit of vanishingly

small wire radius [39].

For the linear antenna, the far field turns out to be radiated

from the input terminals and the end-tips, as qualitatively suggested

in previous analyses [11,13] and experimentally confirm.ed [18]. For the •

loop antenna, the far field appears in the form of a continuous waveform,

with square-root singularities (when the applied voltage is a Dirac

pulse). For each observational position there are two flash points on

the loop from which most of the radiation appears to be amanating.

In Section 7 conclusions and recommendations are nade. The sug-

gested recipes and techniques of analysis are simple and rather general

and allow the handling of a large variety of radiators of practical .

KB
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interest. However, the dispersion of the pulsed waveforms propagat-

ing along the radiating structures is not taken into account. On the

other hand, this dispersion will produce a continuous radiation, which

is generally small and gives the late-time response of the radiating

structure [7].

II
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2. Formal Solution for Transient Radiation from Elementary Surces

Suppose we have an infinitesimal oscillating electric dipole of

moment pe = poexp[-iwt]  in a homogeneous isotropic environment. The

dipole is located at the origin of a spherical coordinate system

(r,e,o) and is oriented parallel to the direction e z 0 . The com-

ponents of the dipole's electromagnetic transformed field are given by

the well known expressions

E 2p0 exp iar] 
(la)

2PoeXp[ i -r] 2 ]1a
E (W) = c .... 40 ,W ,W +o C -- )

r

Poexp(i S r
H,(W) = p ir , sine (c)

where = and c = A-'.

From (1) the transient fields can be eesily obtained for the case

of a nondispersive environment, when the dipole moment varies arbitrarily

in time, i.e., Pe = Pe(t) . By taking the Four.er transform of (1)

Er (t) = J Er(w) exp[-iwt] d) (2)

and doing the same for the other field components, it is easily obtained

Er~()
ErM 2 o (t e +t~ cpe(t*) (3a)

r ..

\ i .-

- - - - -- - - - - - - - -- -.- - - -
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E (t*) e (t) cpe(t*)
r - s + r + 2 (3b)r r

H t) =T- sin e c (3c)

where t* = t - r/c is the retarded time and a dot means derivation

with respect to time.

The corresponding expressions for the magnetic dipole are ine-

diately obtained by duality (H E E E- -H, + i/ , Pe + -Pro). Thus

2 (t*) cpm(t*)H r(t) T - Cos 6[ r + r2  (4a)

He(t) = sin m(t*) Pm(t*) cpm(t*) (4b)i n rr. o+ r

=o[Pm(t*) m(t*) (40

The r-component of the PGynting vector is

se(t) = E (t) H b(t) St(t) = -E@(t) H(t) (5)

for the electric and the magnetic dipole respectively. The radiated

energy density at (r,B) is

-2 4.c +CO~
we(r,e) = se t)dt sinc e f dt+ Ipe + e+ e c2

(6a)
1 sin2 0 14.C 2 l+

wm(re) J S)(t)dt = C 4m dt+ { + m+

(6b)
4,:
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When the dipole excitation has a finite duration the bracketed

terms inside the large parentheses are equal to zero, and eqs. (6)

transform as
we(,) : sin28
we4rr)c2 Pe(t) dt (7a)

(47rr) c f5

w(r) = sin 2e-4-r) f 5m(t) dt (b

Equations (7) show that the total radiated energy is dependent

only on the 1/r components of the field accordingly identified as.the

"radiative" terms.

It is interesting to calculate in which region of space the

radiative terms are the dominant field components. Reference is made

to a gaussian pulse of electric moment

PeCt) = P0 exp[-t 2/T2J (8)

T being the effective width of the pulse (distance between inflection

points). Substituting (8) in (3) one obtains

2 Pe(t*) cTt* cT 2
Et =cosB[- 4  + E4) J (9a)

E pe(t*) ,( t cT 2-e 4 ;.(cT)T r T*-(j~ (rb

H~t M -rt sin Oe{8(4- 2- 41 - 4-ST t (904wr(cT)s r

It follows from (9) that the radiative terms are always

dominant provided that
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r >> cT (10) }
save in the neighborhood of t* = T/V7 , where the radiative terms

are zero. Identical results are obtained for the case of a magnetic

dipole. It is concluded that the spherical surface r = cT divides

the space into two regions, which cun be labeled as inductive space

(inner region) and radiative space (outer region). In the following,

only radiative fields will be considered.

Equation: (13) and (14) can be used for computing radiation

from "small" dipoles and loops, where "small" applies to the cT space

scale. The following results are obtained:

(i) Electric short dipole of effective height h

E0(t) = MH(t) (10a)
I~t*)h hV(t*)

H(t) = " F rc sin = -4rc sin e (lOb)

(ii) Small loop of area A

HO(t) = sin e = sin e (lla)
41rrc 47rrc L

Eq(t) = - (t) (llb)

In (10) and (11) C and L are the static capacitance and

inductance of the dipole and the loop respectively, I(t) and V(t)

the current along and the voltage across the radiators, and the quasi-

static relations

(dipole,: I(t) CV(t) ; (loop) V(t) -Li(t) (12)

\ .

'4, '



have been used.

Equations (10) and (11) clearly show that the radiative fields

are not a faithful replica of the transmitted signals (currents or

voltages on thE diators). In particular, if the current is propor-

tional to a Dirac pulse 6(t) (electric dipole), and to a step function

U(t) (magnetic dipole), the radiative field turns out to be proportional

to 6(t) . Therefore, the radiative field flip-flops.

t1

iV

i'I

- I

, i-



12

3. Physics of the Transient Radiation from Elementary Sources

In this section a deeper analysis of transient radiation from

elementary sources will be made.

For the case of an electric dipole, reference is made to Fig. 1.

Two charges, +q and -q, are located at a distance 2L apart. At a time

t = -z/v the charge +q is suddenly accelerated and is thEn made to

travel at constant velocity v , so that it collapses on the charge -q

at time t = 2/v . The plot of the electric moment p(t) of the system

vs. time is given in the graph of Fig. 1. Accordingly, a pulsed current

is flowing in the time interval ItI <  /c , from z = k. to z = - .

Formal expressions of current density in the time and frequency

domains are the following:

J(rt) = -ezqv 6(x) 6(y) 6(z+vt) - .zq 6(x) 6(y) 6(t+ z) *I tj_.

,(rt) t0 ,jtj>- v

(13)

J(r,w) = zq 6(x) 6(y) exp[-iw .] , lz( <

AJ(_,)=0 , zI > z,

(14)

e being a unit vector in the z direction. The transformed radiative W
-z
fieldsassociated with (14) are

exp~ 1 r] sin[-WE R(n + cos 0)]
expI- c . sin 0 (15a)E0() -I zir 11 q  + Cos

ka,
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H M (I 5b)

By Fourier transforming (15) into the time-domain, the result -

E sin-e [6(t* + i + i cos ) - - - c 0)
e 4tr = 4 + cos v c c

(16a)

H (t) = , t* = t -r (16b)

is obtained. Equations (16) clearly show that the radiation emanates

from the end points of the configuration at times -4/v (acceleration)

and +Z/v (deceleration), respectively (see the diagram of Fig. 1).

Accordingly, the radiated field is not proportional to the time derivative

of the current (see eq. (10)), when a time scale less than 2X/v is

considered.

The transition from (16)--microscopic approach--to (10)--macro-

scopic approach--is readily accomplished by letting 2L/v approach zero.

One obtains

Eo~t = lra Zr i 6(t*+ x)-6(t*- x)
E~t M lim C j~2&.-Sin 0

29/v * 0

sin o( x 4n + cos ) (17a)
47frc c

a ta

H (t) CE (17b)

thus recovering (10), since I(t)2k =-q6(t)2. -po6(t)

For the case of a magnetic dipole, reference is made to Fig. 2.

A constant current Io is suddenly switched on at time t -T and

Ni

( a. ,6 -.

77 _ t 1
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switched off at tirie t +T M fe current flows in a circular loop

of radius R located in the plane (X~y).

Formal expressions of the current in the time and frequency

domains are tN- following:

1() 2 0  j 19

snwT

The transformed radiative fields associated wi th (19) are

A P1I
H1w -Isin(wr) Jl R sin 0) exp[i A rJ (20a)0 rc C

E,(w) -CH (20b)

J1(x) being the Bessel function of first kind.

By Fourier transforming (20) into the time-domain, the result

H M 1Ht+ He] (21a)27rsine [H e 1

E(t M ~ 1 (21b) V

H:I(t) t* :t ItiTI S!sin e (22a)

=,t* 0 , laTi > Rsin 0 (22b)

is obtained.

L LI'

-~ 77K2J§ -
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Equations (22) clearly show that te antenna radiates at times

t = -r, t = T . For each direction of ob-'tervation there is continuous

- radiation for It-TI < R sin 6/c , characterized by square-root singj-

laries (see the diagram uf Fig. 2). The radiation emanates mainly from

points AA' (flash points) at the intersections of the loop with the

plane containing the direction of observwA.ion and the z axis, N-.

radiation emanates from points BB' (black points), due to a c~ncellation

effect. Accordingly, the radiated field is not proportional to the

second time derivative of the current (see eq. (11)), when a time scale

less than R/c is considered.

The transition from (21)--microscopic approach--to (ll)--macroscopic

approach--is accomplished by letting R/c approach zero.

Reference is made to the radiation which takes place at t =-T

For R o 0, it seems quite reasonable to substitute for the actual

radiated waveform some equivalent pulses (see Fig. 3). Reasonable re-

quirements are (i) the strength of each pulse must be equal to time inte-

gral of the actual waveform; (ii) the time allocation of each pulse must

divide the actual wavefom into parts of equal area. When these require-

__ ments are fulfilled, eqs. (21) and (22) transform into 1--"

Hem . li R - 6(t*+-- -X--

R/c +0 X
o 2

- 2-sin a (t*+T) (23a)

ER -H M X sin e (23b)

c

-MM

-I..-T t--

- --/.- A-
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thus recovering (11), since I (t) = I(t+r)s apart from the factor/

3/r-0.995 = I (depending upon the somewhat arbitrary identificationp between actual radiated waveforms and equivalent pulses).
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4. Transient Radiation from Coaxial Apertures

In this section, the transient radiation from coaxial apertures
4

will be considered. Reference is made to Fig. 4 where the radiation

from an open ended coaxial cable of circu' - cross-section is considered.

However, the results which will be press I can readily be generalized

to apply to radiating apertures of different geometry.

First, the macroscopic approach will be exploited.

Let V(t) be the incident voltage at the open end of the coaxial

cable. Under the assumption of perfect open-circuit conditions, the

electric field in the aperture has only a p-component given by

E (tv(t) (24)
p biE pn

and the magnetic field is zero.

By using the equivalence theorem, the radiated field can be com-

puted as due to an equivalent magnetic current density with only a

component, J "(t) Ep(t) . A z-directed electric dipole of moment (38J
as given byb

b 7rrr nrc _. (b'a2)'

2e V 'tF22 2
p M 4v t) 7r r TeY b_

Lna a = n 2)i

A v(t) (25)

is therefore associated to the aperture. In (25) A = i(b 2-a2 ) and is
tb

the aperture area, and Zo  [E; n /2n and is the characteristic imped-

ance of the coaxial cable.

iL
Ii4

. t.<I~- ~
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When A is small compared to (cT)2  the higher order moments

associated with the aperture are negligible, and the radiated field can

be obtained from the results of Section 2. Hence

EM(t) = o A. sin e (26a)
0

E (t)
HE(t) = (26b)

Accordingly, the radiated field is proportional to the second

time-derivative of the incident voltage.

As a preliminary to the study of the radiation from the micro-

scopic point of view a model similar to that of Section 2 for the elec-

tric dipole is considered. A charge q at position z=-4 is suddenly

accelerated at time t = -z/v and is then made to travel at constant

velocity v along the positive direction of the z-axis. At t = 0 and

z = 0 , the charge is suddenly reflected and is again made to travel at

constant velocity v along the negative direction of the z-axis. At

t = z/v and z-1 the charge is suddenly stopped.

The radiated field can be computed by following the same proce-

dure as in Section 3. Only the results are given in the following. The

field is radiated at times t=-2,/v , 0 , L/v , from points z=-1, 0, 1,

respectively. Particularly, the field radiated at t=0, z=O (reflec-

tion of the charge) is given by

=n - sin 6E(t M2r = c s~e t*) (27a)
5Fn-2- Cos-2 0

iE
HK 2 2 eLt u (27b)

* 7V
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Turning to the coaxial structure of Fig. 4, let I(t) = q6(t-z/c)

be the current propagating along the cable. The pulsed linear charge

densities on the inner and outer conductor will be q/2na, -q/2wb

respectively. These pulsed charges will apparently be propagated with

velocity c along the cable. Accordingly, the radiated field can be

computed via (27) (with n=l) and superposition. Hence

[ S(t -6(t - cd, (28)

E (t) = (2w)2r sin 0 .- 2

where ra,b are the distances of the point (r,e) from the inner and outer

rims of the cable respectively:

ra = r- a sin e cos0 , rb = r- b sin e cos (29)

In order to compute the integrals which appear in (29) it is con-

venient to use the fourier transform:
}r

dt exp[iwt] 6(t* + k sin ecos )do

= d¢ cI JlSt* + sin ocos *) exp[i~tJ dt It,
0 -2ir 4,w

o= exp[i r] d sexp[- ic b sin ecos d

0

C o c
27r exp[i !a r]o(A b sin e)(30)

and similarly for the other integral. By Fourier inverting (30) in the

I ! time-domain and substituting in (29), the result

:4 =

V
• .- ,;. . -°.% ,,, m m ,, ,m .- m .. m .m
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EM(t) = 2 qin [Eb(t*)_ Ea(t*) (31a)

H,(t) = Ee(t)/ (31b)

is obtained. In (31) the functions Easb(t*) are given by

EX(t.)=1 t*l i4 sin e (32a)

Tsin e) 2_ t *
2

EX(tk) = I t* < sin e (32b)-c

A plot of the radiated field is given in Fig. 5. The above re-

sults are in complete agreement with those of an exact analysis carried

out by using Wiener-Hopf. techniques [30] when pulses such that

cT << b are considered. This last restriction does not apply in the

proximity of the forward direction.

Equations .31) and (32) clearly show that, for each direction of

observation, there is a continuous radiation for ft*j <_b sin B/c

characterized by square-root singularities. The radiation emanates mainly

from points AA', BB' (flash points). Accordingly, the radiated field is

not proportional to the second time-derivative of the incident voltage

V(t) - Zoq 6(t) = 6(t) (see Eqs. 26), when a time scale less than b/c

is considered.

Also in this case the transition from (3l)--microscopic approach--

to (26)--macroscopic approach--can be accomplished by substituting for the

actual radiated waveform equivalent pulses (see Fig. 5) as already done in

Section 3. Then b/c and a/c are required to approach zero. One

obtains (see Fig. 5)
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E(t) lim r si 6(t*-x)- 6(t*-y)0 b/c )O o 4_1nr ie (x-y) •"x-y

a/c-0 0
6(t*+y) -6 (t*+x)

x-y

-( y - 6(t*+ t

b/c 0 9 c X+y
a/c 0

C A 4iZrr sin e (33a)

H M = EO(t) b sin e a sin e8H*t =--- , x =  .. ,Y (33b)
c Ic

thus recovering (26), since V(t) = V6(t).

5. Transient Radiation from the Antenna Gap

In order to compute the transient radiation from the gap, an

infinitely long cylindrical antenna of circular cross-section is con-

sidered (see Fig. 6). The antenna is excited at a gap of thickness 2d

by a step voltage V(t) = VoU(t) . Let E(z,t) - Eo(z) U(t) ez be the
electric field across the gap. The radiated field can be computed by

using the equivalence principle [38]. The gap is short-circuited and a

magnetic current density

J(z,t) - Eo(z) S(p-a) U(t) (34)

is assumed to flow around the antenn, where the gap was located. When

_4~
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the gap thickness is vanishingly small, the magnetic current distribution

(34) can be substituted by a ring of magnetic current
Co d

I= dp f Jm(z,t)dz = -Vo U(t) (35)

On the other hand, the radiation from a loop of electric current was

computed in Section 3 (eqs. (21) and (22)). These results can be easily

accommodated for the case at hand by using duality (see Section 2). For

each observation point only one half of the magnetic ring will contribute

to the radiation, the other half part being screened by the metallic

cylinder. Accordingly, only the single flash point A will be present

(see Fig. 6). Furthermore, the radiated field will be doubled, due to

the image of the magnetic ring on the metallic conductor.

The resulting radiated field is given by

Vo 2- sin 0 - t*

E0(t) 0 c s (36a)

Jt*(L sin- nt*)
' E8(t)

CIHet M --- 0 < t* < 2a i. e (36b)

and is zero for t < 0 , t* > (2a sin 8)/c . Note that the distances are

measured from the flash point A

When t* - t - r/c can be neglected with respect to (2a sin o)/c ,

equations (36) coincide with those describing the early-time behavior of

the radiated field of an infinitely long cylindrical antenna given by

Latham and Lee (7]l, When the assumption of infinitesimal gap is relaxed

and the gap is allowed to be of finite dimensions, the results given by

1Note that the voltage applied to te gap is -VoU(t) in the reference [7].

K t.
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Pyne and Tesche [32] for the early-time behavior of the field can be

obtained.

Equations (36) give the field radiated by the gap, and previous

analysis proves that this field coincides with the early-time behavior

of the field. Obviously, the launching of the currents onto the antenna

will produce other fields, which add to the fields (36). These further

terms will be given in Section 6.

The transition from (36)--microscopic approach--to the macroscopic

formulation is readily obtained by using the techniques presented in

Sections 3 and 4. The field waveform (36) is substituted by an equiva-

lent pulse, and then a/c is made to approach zero. The field radiated

by an applied voltage V(t) can be obtained by differentiating (36) and

using convolution. Hence

(t) = ) , trt (37:)
MTrr

S(t) =E (t)t* t (37b)

-1V
4W
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6. Elementary Theory of Radiation from Linear Antennas and Circular

LOOPS

An approximate analysis of transient radiation from linear antennas

and loops of arbitrary dimensions is possible by using transmission line

techniques for modeling currents and voltages.

A cylindrical antenna of height 2h and diameter 2a is considered

(see Fig. 7). If the assumption is made that the antenna is very thin,

i.e., l = 2 kn[2h/a] >> 1 , the current distribution in the frequency

domain reduces to [39]

2n sin[Ac (h- zjI)J
~Vlf (38)= Vin i cos[! h](

cI

A

where Vin is the transformed voltage at the antenna terminals. Equation

(38) is formally equivalent to that of the current distribution along an

open ended transmission line of length h , characteristic impedance

Z 0= CR/2r and fed by an ideal voltage generator of zero internal impedance.

When the Internal impedance of the generator is different from zero

and equal to aZo(real), Eq. (38) can be immediately generalized by using0!the above transmission line analogy. Hence:

AiA sin[- (h - Izl)]

0 otsin[a h] + I cos[0 h] (39)

where V is the transformed voltage of the generator.

The transformed fields associated with (39) are readily seen to be

A exp[l " r ] cos[ ! h] - cos[a h cos ]
0  . . . ..r r.s n

o 1 + r exp[2iah]

(c

'z
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exp[i ! r]0
- -inT exp[Al h] - csahco0] (-r)mexp[2ni ! h]7rr sin oE J C5 O In cns i o (40a)

H E!e (40b)

where r (l-a)/l+a) is the reflection coefficient.

By Fourier transformirng. (40) the radiated fields in the time-domain

are obtained. For a Dirac pulse excitation V(t) = V06(t) , V = Vo  and

the radiated fields are given by

e (t) = .Tr siw n {6(t*) (i-r) Cn(-r)n 6(t* - 2(n+l)h)
0

I .(r)n[6(t* Lntl h - h cos e)+ 6(t*- 2n+l h + h cos )J0 C C
(41a)

E, )
H - (41b)

Equations (41) show that the transient radiation of the antenna con-

sists of a chain of Dirac pulses, each being a replica of the applied

signal (save for the amplitude and eventually the sign). The first pulse i ,.

(first term inside the large parenthesis of Eq. 41a) represents the radia-

tion due to the launching of the current along the antenna at time t u 0

The second series in Eq. (41) represents the radiation from the upper and

lower tips of the antenna due to the charges associated to the current and

going back and forth along the antenna.

-A

77" -:" -;'j __ -4
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The first series in Eq. (41) represents the radation due to the currents

relaunched toward the generator. These currents are absorbed in the

internal resistance of the generator itself. When the antenna is short-

circuited at its terminals r = 1 and these last terms disappear.

For an arbitrary applied voltage V(t), the radiated field is

easily obtained from (41) by using convolution. A sketch of the transi-

ent field radiated by the antenna when the applied voltage is a rectangu-

lar pulse is given in Fig. 7.

Previous results can be easily applied to the case of a monopole

antenna on an infinite perfectly conducting ground plane. The radiation

from the lower tip of the antenna disappears, but the transient pulses

reflected from the ground plane must be taken into account. In this way,

a very satisfactory agreement with the experimental results given in [18]

i is obtained (2)

The transient radiation from a circular loop can be obtained fol-

lowing similar lines. The loop, of radius R , is fed by a voltage

generator of internal impedance aZo  (see Fig. 8). The transformed

radiative field due to a traveling-wave current I exp[i sx] along theUi

loop is given by [40]
SJ 1( ( R sin e) (-in)nJ,(. R sin ")

, E= .. .. + n Z [scos no+ in sin no]

l (42a)
On ( ,-) c(Rsinw'

A ~ ~ in c in
2ECos 0nIn[s sin n -in cos n6] (42b)

B - )aR sin e

(2 )No checking relative to the amplitucki of the fields is unfortunately

possible, due to the lack of quantitative data in [18]. -I

A'A

"-c'

t -,.

.... . V ~ ~ V -... .V z --- 
-

- '. - .. . . . : . ,
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H (42c)

• -, where -c

I RwE= iC i° (exp[i27s] - 1) exp[i r] (43)

Expressions (42) are the generalization of the field radiated by

a loop with a traveling-wave current I eXpExix] , m integer. Letting
0

s = m + t and then t approach zero, the conventional results [41] are

recovered.
I

Now, the transformed current along the loop is assumed to be co-

incident with that of a transmission line of length !TR , characteristic

impedance Z (real) and short-circuited at its end. Hence:
0

cos[ R(-Ixi)) V cosEcR(i'lxi)) (44)

0= I° cosIw R3 0 a cos[aRJ-] i sIn c R]

where V is the transformed voltage of the generator.

Expression (44) can be recast in terms of two traveling-wave

currents moving in the positive and negative X angular coordinate direc-

tions. By algebraic manipulation 1,

expel A RX] + expel a R(2n- X)(V c C . . (45)

70,o)o 1-l' rlexp[2 ri 4 RJ

. From (45) and (42) with s - R/c , and using superposition, the

transformed field radiated by the loop can be computed. Hence:

E E0  ( R sin 0) - _i..)nj(1~ R sin e)(4)E.. .E 2 R nz Cos nol (46a)

-R tn IR)Z nZ

1 ~ -ik77, -7. T

) T (+1
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A 2 COS ~ (-i)"n J (!R sin e
Ee ~E 2Csin nc sin n (46b)

A e xE
N (46c)

where

E0 ... LIV., R -epi 7R 1) exp[i a r]
Z0( I~) T-1 (exri g

r n" exp[2ni ~. R] (47)
0

The solution for the transient radiated field is obtained by Fourier

transforming (46). In the case of a Dirac pulse excitation V(t) =V 06(t) and

the formal solution is the following:

E1 Mt = F (t*) - (l-r) in r F (t*- 2 !L ir R) (48a)

E (t) = F (t*) -lr)~ rn F (t*-. 2 !!+- 'R) (48b)
0 eE t

The functions F (*)gF (t*) which appear in (48) can be corn- 7
puted in terms of the following auxiliary functions different from zero

only in the indicated time intervals:

Gn~t*) cos~n cos' ( ( ct* ) < si e(4 a

sin 0) 2_ t*2
c

Sn(t*) -sin~n sin 6( ct* + l),t* > -Esin e (49b)n K in Fc



Cn(t*)= cos[n sin e(R ct* + 1)] t* > R sin 0 (49c)

n R sin c

Hence:

F(t*) r. vo 1 c
F 0t*) = T T-o-T rr 7rR sin {t'*o(t*)

In (_.)n n[t*Gn(t,)) . [Sn(t,)]J (50a)

F0(t*) ~ ~ n~*) = - 0S n C~nt*J (I*)

00
F (t*) -- 0-- c- 2 (n(-l,)n n[Gn(t*)] , Cn(t*)]

(50b)

It is understood that in Eqs. (50) the asterisk between functions means

the convolution operation.

7. Conclusions and Recommendations

In the preceding sections the transient radiation from a number

of radiating structures has been considered: elementary electric and mag-

netic dipoles, coaxial apertures, infinitely long cylindrical antennas.
cylindrical antennas and loops of finite dimensions. It has been shown

i that two approaches--the microscopic and the macroscopic--are possible,

depending on the time-scale which is being considered. The procedure for

recovering one result from the other has also been exploited.

The cases considered cover most practical applications, and the

theory developed seems to be simple, sound, and apt to an engineering

development. The only limitation is the neglecting of the dispersion of

the pulsed currents along the radiating structures.

(C 7!
.
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In the case of coaxial apertures, this corresponds to neglect-

ing higher order modes of excitation. It is reasonable to surmise that

this is acceptable provided that the transverse dimensions of the aper-

ture are small compared to cT, T being the eqjivalent duration of

the applied pulse. This has been rigorously proved by using a frequency

domain analysis for the circular coaxial aperture [30].

In the case of cylindrical antennas and loops, the approximation

corresponds to neglecting the dispersion of the current pulse injected

in the radiating structure. The deformation of the pulses increases as

time elapses, so that the deformation becomes more pronounced on "long"

radiating structures. Therefore, the analysis presented is acceptable

provided that the radiator dimensions are not Iqrge compared to cT , or,

in any case, if reference is made to the early-time behavior of the fields.

A better understanding of the pulse deformation, along the radia-

tors is therefore a necessary conditio i for extending the validity of

the results presented in this paper. "A wise man once said that zcience

is no good because it generates ten new problems for every problem it

solves. A wiser man answered him by saying that science is good because

it uncovers ten new problems for every problem i.t solves" (421. 1 -.
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