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ABSTRACT 

This thesis develops analytic models for estimating the amount of memory 

interference in multiprocessor systems, in which n processors access m memories 

independently. 

The processors are characterized by a typical processing time per memory 

access and the memories by an access timeUa) and rewrite tirre(tw). Processor 

behavior is simplified to an orderod sequence of a memory request followed by a 

certain amount of processing. The predominant technique used involves discrete 

time Markov chain models. Some simple exponential server models as well as 

several approximate models are also presented. Simulation is used to evaluate 

the accuracy of the approximate models. Some empirical measurements of the 

POP-11/20 are used to estimate the parameters of a model, that is used to 

predict the performance of C.mmp, Carnegie-Mello'- University's multiprocessor, 

computer, which will include upto 16 PDP-11 processors. 

The models can be partitioned into three broad classes i tp»tw, tp>tw and 

tp<tw, where tp denotes the average processing time. Systems with tp=tw are 

described first because they represent boundary conditions for the other two 

casei..  Different  modeling  techniques  are examined for  tp=tw  and a reasonable 
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approximation is proposed. An important result observed is the absence of a law 

of diminishing returns. The performance of a multiprocessor system with n 

processors and n memories continues to rise at a constant rate as n increases. A 

simple exponential server model showed this rate to be 0.5; a constant 

processing time model predicted a slope of MM for the average number of busy 

Mp's. The exponential server model gives the average number of busy Mp's as 

Httm/fn+m-U An approximate result for constant processing times gives the 

average number of busy Mp's as t*fHH/WjJ, where i-max{n,m) ard j-min(n,m). 

An intuitively obvious conclusion limits the maximum number of active Pc's by 

min(n,m), 

Markov chain models are also developed for systems with tp>tw. A new model 

for geometrically distributed prc;essing time is developed. A different analytic 

approach is used to model systems with private caches for the processors. In 

general, since the Pc is slow, it takes fewer memory units for the performance 

to exhibit a saturation effect. In the absence of memory contention (which is 

now possible even for m<n) the maximum memory access ra\e{MpAR) is n/(ta*tp). 

With tp<tw, since the processor is fast performance improvement is obtained 

for m>n. If m-n, these systems do not yield significant improvement over systems 

with tp-tw. In general, adding an extra memory improves the performance more 

than adding an extra processor. The maximum average Mp/IH is the minimum of m/tc 

and n/(ta*tp>, the maximum is achieved if the processors do not interfere. Note 

that since the Pc is very fast, it can make a request to the memory that served 

it last before the rewrite cycle is over. In this case, the Pc has to wait even 

though no other Pc is being serviced by the memory module. 
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CHAPTER   1 

INTRODUCTION 

In the design of new computer systems there exists an enormous number of 

alternative decisions. In thii thesis the major de-ign parameters that will be 

allowed to vary are the number of processors^c's)-)- and memories(Mp's) a'(d their 

relative speeds. The quantitative approach to performance evaluation consists of 

three major phases [GrenU72]: 

(i) Collection of data- this phase involves the planning and conducting 

of the experiment for data collection as well a-; techniques for 

measurement. 

(ii)     Analysis  of  data:  this   phase  consists  of  construction  of   models  and 

estimation of parameters in the models as well as validation of the models. 

(iii)   Interpretation  of   data:  this  phase  concerns  the  summarization  of  the 

results  and  new  insights  gained in the study as well  as  making decisions 

based on the results. 

The emphasis of the application of quantitative methods is on the convergence of 

two    aspects.    The    first    aspect    is    the    reliance    on    data    either    from 

experimentation on the real system or from simulation. The second is th» use of 

tWe   use   the   PMS  notation   of   Bell   and  Newell   [B9llC71a]   in   this   thesis   to 
describe hardware organization. 
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Chapter I : Introduction 

mathematical models. It is easy to collect massive amounts of confusing data 

unless one has some model. On the other hand, a model without empirical 

validation is at hest an intellectual exercise. 

Since no performance measurements of the actual system can be made until it 

has been designed, implemented, and then observed over a long period of time, it 

becomes necessary to use analytic and simulation models. Analytic models enable 

the designer to explore a large design space quickly and rather economically. 

However, modeling is not an easy task and it is often necessary to simplify the 

model to make it amenable to mathematical analysis, remembering that any 

mathematical model is only an approximation of real-life events. If the system 

is too complex to allow a complete analytic study, the system behavior can be 

modeled at various levels of abstraction in a hierarchical fashion. 

Simulation offers an different approach: probabilistic emulation of a 

mathematical model that portrays the aggregate bahavior of the real system. We 

gain in realism since we are no longer forced to impose assumptions for 

analytical convenience. However, simulations tend to be expensive if a high 

degree of realism on a detailed level is required. Due to the stochastic nature 

of simulation results, their precision can be measured by the standard deviation 

or confidence intervals of the estimates obtained. The confidence interval gets 

tighter as the size of the experiment is increased. The standard deviation is 

proportional to the squire root of the length of the run. Hence, simulation 

studies  are  most  valuable when focused on a small set of design alternatives 

J.—,—. —...^-*-*-^^^.*.^^.*^—**^**~**J~^. —^^l4l*kam^ä.^^AMU^ ,—^.   ^Jw^M_^^^_^^„..»^^JJM^J^^m^J.._^^aM_^—„—^.^ 
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Connecting Nstwork 

or 

Switch 

Figure 1.1 A simple block diagram of a multiprocessor system. 
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Chapter 1 : Introduction 

selected by analytic studies. Also, if the analytic techniques are 

computationally expensive, simulation might well be more economical. Moreover, 

it is easier to change the mathematical model in a simulation experiment. 

Another important use for analytic models is as a control variable 'or improving 

the efficiency of simulation experiments by reducing the variance of parameter 

estimates from simulation experiments [GaveD71]. 

Mathematical models of compute»- sy^tsms can be developed at various levels 

of abstraction. A large number of models for time-sharing systems consider a job 

as a basic unit[MckiJ69], and in many models of multiprogrammed computer systems 

the block of instructions between I/O operations is taken as a basic 

unit[BuzeJ71; GaveD67]. However, in this study a much more detailed model is 

used to analyze interference as processors access individual words from the 

memory modules. Each processor's performance is measured by the number of memory 

accesses per unit time. In a multiprocessor system the performance of each Pc is 

not independent of the behavior of the other Pc's. f simple block diagram of a 

multiprocessor system is shown in Fig. 1.1. The connecting network or switch 

provides a path form each of the n Fc's to each of the m Mp's, such that a 

connection between Pc[i] and Mp[j] does not hamper a connection betwuen Pc[k] 

and Mp[l], where if'k and jfQ. The processors contend with each other for memory 

service. This contention is referred to as memory interference. This thesis 

presents a set of techniques for determining the extent of memory interference 

as measured by the average number of busy memories or the rate at which the Mp 

is accessed. 

.     IM I     II    ■ -III-   -■ - -   ■  ■      -            —       -           '        - 
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Figure 1,2b:  Simplified processor behavior t unit instruction 
Two units model the instruction shown in Fig. 2.1a. 
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Chapter 1 : Introduction 
M   General Modeling /isiumplionn 

1.1 GENERAL MODELING ASSUMPTIONS 

Due to the complexity of the problem, the exact detailed behavior of memory 

interference in a multiprocessor system is difficult to model. Some of the 

parameters that characterize the behavior of a Pc are: 

(i) Instruction mix : Instructions can be characterized by their relative 

frequency. In general, processor behavior varies for different 

instructions. However, in this thesis differences in instructions are not 

modeled explicitly. Processor behavior is modeled as an ordered sequence, 

consisting of a memory request followed by a certain amount of execution 

time. At this level of abstraction no distinction is made between the 

processing needed to decode an instruction and the processing 

corresponding to its execution. Thus, the processing time characterizing 

a Pc depicts only the aggregate behavior of the real Pc. Figure 1.2 

depicts the actual and abstracted behaviors. A typical un't inttructionf 

is shown in Fig. 1.2b. 

(ii)       Probability   distribution   of   the   processing   time:   Irstructions   are 

characterized by their processing time. Typical programs are measured to 

find the probability distribution of the instruction processing time, 

(iii) Average  processing time: This is obtained from measurements similar 

to those used for determining the probability distribution. 

tThe concept of an unit instruction was first proposed by Strecker[StreW70]. 
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i.J   General Modeling A$iumptions 

(iv) Access pattern of a Pc: This is the trace of the pages or memory 

locations accessed by the Pc. In this study serial correlation between 

successive memory accesses will be ignored; not a very serious assumption 

since data and instruction references are intermingled. Demand patterns 

will be modeled as sequences of Bernoulli trials. Memory accesses will be 

characterized by the memory unit to which they are addressed. Let PJJ 

denote the probability that the i-th processor requests service from the 

j-th memory unit. Thus, the demand pattern of each processor is 

equivalent to a sequence of Bernoulli trials. Unless otherwise specified, 

Pij will be assumed to be equal to 1/m, where m is the number of Mp's. 

The effect of I/O activity will not be modeled explicitly. 

Strecker [StreW70] has shown that if the rate of I/O requests is RIO, then a 

fraction RIO/(m*tc) of the memory access rate can be apportioned to I/O. 

A processor is said to be queued if it is waiting for or in the process of 

receiving memory service. A proc3ssor is said to be active if it is currently 

being serviced by a memory. Likewise, a memory is said to be occupied or buiy if 

there is at least one processor queued for that memory unit. 

Primary memory behavior is a function of the fabrication technology, i.e. 

core or semiconductor. Memory performance can be characterized by the access 

time (ta), rewrite time (tw), and cycle time (tc). Nominally, the cycle time is 

the sum of the other two. In this study, no distinction is made between read and 

—■—^——  ■- .....-.■ 
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Figure 1,3 Structure of the queueing model 
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1.1   General Modeling Mtsumptions 

write operations. The effect of interleaving within a Mp module is to make the 

access and cycle times seen by a Pc variable. Most of the models in this thesis 

will use the average values. 

The processing time shown in Fig. 1.2 is the effective processing time 

measured from the time when the Pc gets the data from its last memory access to 

the time when the next memory request reaches the memory. Thus, the delay 

associated with address mapping and communication protocol needed to make a 

request are attributed to the Pc. The memory access time includes the time 

required to set up the switch for the data transfer. If the memory control unit 

introduces some delay, then that is also added to the access time. A more 

detailed description is presented in Chapter 5. 

1.2 MODELING CONCEPTS 

A queueing model will be used to analyze memory interference. Figure 1.3 

shows the basic struc!ure of the model. All time delays are modeled as service 

centers and there is one job in the queueing system for every Pc. In real 

systems the Pc can start execution while the Mp is in its rewrite cycle. If 

tp>tw the service time of the memory will be assumed to be tc. and the effective 

service time of the Pc will be assumed to be tp-tw. This si^olification allows 

the   Mp  to  start  serving  the  next  job  as  soon as  the last  job  has  left.  The 

■----'—-—-    —- - ~>.~..-^.. --^.. ^.-^k.--  ..^^ii-  -^lail ^Mil il Hl  maiiiüiMaiiii i in     ■ i ■  .--^«ühi»—m*»^..^—...— „  ■_.,.^..^       ...^■.,..^.». .   -■..„■..■—: —-_   
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Chapter i : Introduction 
1.2   Modeling Concept» 

overall system behavior is unaltered by this simplification. Howe 'er, when tp<tw 

the queueing model cannot be used for reasons explained in detail in Chapter 4. 

The number of Pc't will be denoted by n and the number of Afp*« by m. The 

multiprocessor system will be referred to as a nxm systt'/i. The state of the 

system will be denoted by a vector describing the sizes of the various queues. 

The major technique used in this thesis involves Markov chains[ParrE62]. A brief 

review of some of the definitions and concepts is presented here. 

A ttochastic process is a family of random variables X{t), t<T indexed by a 

parameter t vr/.ng in an index set T. The stochastic process is a discrete 

parameter process if ^{0,1,2,...} or {0,±l)+2,..}. The process is a continuous 

parameter process if T«{t>0) Or {-oo<t<oo}. 

A discrete parameter stochastic orocess {X(t), t-0,i,2,...} or a continuous 

parameter stochastic process {X(t), t>0} is said to be a Markov process if, for 

any set of n points t,^...^,, in the index set of the process, the 

conditional distribution of X(tn), for given values of X(t1),...,X(tn.1), 

depends only on X(tn.,)1 the most recent known value; more precisely, for any 

numbers x, x,, 

P[X(tn)Sxn ) XfU-X^XUnJ-X,,.,] - P[X(U<Xn | Xa,,.,)^.,] 

Intuitively, this means that, given the present of the process, the future is 

independent of its past. The set of possible values of a stochastic process is 

called   its   state   space.   The   state   space   is   called   discrete   if   it   contains   a 
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finite or countably infinite number r>( states. A state space which is r.nt 

discrete is called continuous. A Markov process v/hose state space is discrete is 

called a Markov chain. 

A Markov process is described by a transition probability function, denoted 

by P(E,t | x,t0), which represents the conditional probability that the state of 

the system will at time t belong to the set E, given that at time t(>(<t) the 

system is in state x. The Markov process is said to have stationary transition 

prohabi'ities, or to be homogeneous in time, if P(E,t I x,t0) depends on t and 

t0 only through the difference (t-tp). 

A Markov chain is irreducible if every state can be reached from evaiy 

other state not necessarily in one step. The period of a state i is defined as 

the greatest common divisor of all integers k such that the probability of 

returning to state i in k steps is greater than 0. A state of an irreducible 

Markov chain is aperiodic, if it has period 1. A Markov ch?in is aperiodic if 

every state in its state space is aperiodic. 

A discrete parameter irreducible aperiodic Markov chain that has stationary 

transition    probabilities   possesses   a   stationary   state   probability   distribution. 

Let Z(k) denote the steady state probability of state k. Then, 

Z(k) - r TRANS(k,j)*Z(j) 
j 

where TRANS(k,j) is the one step transition 
probability from state j to state k. 

Transition   probabilities   from   a   current   state   to   a   next   state   will   be 

■iiMiit—-—"   - -"■JiMIIIMI»! ■      I       ii     --—-^  . ,- .,    
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1.2   Modeling Concrptt 

evaluated for the irreducible aperiodic discrete Markov chain models in the 

forthcoming chapters. The steady state probabilities will be used to calculate 

the average number of busy Mp's which is equal to the number of unit 

instructions executed in one memory cycle. The unit initmctirn execution rate 

(UER) or memory ucccts rate (MpAR) is obtained by dividing the average number of 

busy Mp's by the cycle time. 

1.3 EXTANT MULTIPROCESSOR SYSTEMS 

A group at Carnegie-Mellon University is currently in the process of 

constructing a multiprocessor computer system (C.mmp) that will have up to 

sixteen central processors (PDP-ll/gO's) sharing the same physical address space 

[BellC71b; WulfW72] and concern has been expressed about the performance of such 

a system with this many active processors. The models developed in this thesis 

will be used to predict the performance of C.mmp in Chapter 5. Figure 1.4 

illustrates the major components of a multiprocessor such as C.mmp. in addition 

to the processors, there is a set of memory modules that are able to operate 

independently; little would be gained if all the processors had to wait for 

service from a single memory module. Thus, between the processors and the memory 

modules (Mp's) is an n by m crosspoint switch, which allows any Pc to access any 

Mp. There are a number of ways of implementing the switch; Fig. 1.5(a) depicts 

 *—~****-~~~ä—~~-   >.   utmwMi ■-     ^-^^M»—m^—      -..      -— - iimi i i     tm 
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Fig. 1.4 Proposed CMU multiminlprocessor computer/C.mmp. 
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an n by m crosspomt switch, and Fig. 1.5(b) illustrates the use of trunk lines; 

combinations of these two basic schemes can y ?\ri many other other schemes. 

Other multiprocessors, although limited to a small number of Pc's, i.e. two to 

four, also basically use a crosspomt switch, e.g. the Burroughs D825[AndeJ62] 

and Univac 1110. For further discussion of trunk lines, and a variety of other 

switching structures, the reader is referred to Bell and Newell [BellC71a]. 

1.4 COMMENTS ON EARLIER WORK 

A review of current literature shows very few models of memory 

interference. Skinner and Asher [SkinC69] proposed a discrete Markov chain model 

for multiprocessor systems with tp=tw. The analysis was presented for a small 

number of Pc,s(<2). However, for larger systems the complexity of the problem 

deterred the authors from further pursuit of an analytic solution. 

Strecker[StreW70] developed a set of simple approximate models. Most of his 

modeling assumptions are similar to those used in this thesis. While the 

analysis of Skinner and Asher is rigorous and exact, Strecker's analysis is 

approximate. In this thesis, an exact analysis of a discrete Markov chain model 

tnr *v%tmm with tp=tw is presented. As expected, the exact analysis is very 

complex. However, the results of the exact analysis suggest more reasonable 

approximations   that   yield  performance  estimates  that  are  more  accurate   than 
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1.4   Cmmmtm» on Earlier Work , 

Striker's. For instance, the exact discrete Markov chain model described in 

Chapter 2 shows that the MP/]H for a jxk and a kxj multiprocessor system with 

tp=tw .s almost equal, a result not apparent from Strecker's work. Also, 

Strecker's formula for tp=tw is more accurate for m>n than for rr^nj n is the 

number of Pc's and m the number of Mp's. 

More detailed descriptions of the works of Sl-.irner and Asher, and Strecker 

can be found m Chapters 2. 3 and 4. Bhatia[BhatS72] has shown how the results 

from memory interference models can be used as data for models of timeshared 

multiprocessor systems at the user program levd. 

A major contribution of (h.s thesis is a systematic approach to the use of 

the Markov chain technique for analyzing memory interference in multiprocessor 

systems. The exact analysis of the Markov chain is complex. However, the 

behav,or observed from the exact analysis is used to examine an approximate 

solution technique that is computationally simpler. Though some of the models 

presented in this thesis may be only marginally more accu, ate(57.) than 

Strecker's results, they may result in much more accurate estimates when used as 

inputs to other models such as Bhat.a's model for time-shared systems. For 

example, the waiting time for a single s3rver queueing system with Poisson input 

rate X and exponential service at rate u is lAu-X). A 57. error in the value of 

U can cause a greater error in the estimated waiting time if \ is close to u. 

 —  ■■    .   ^-    - -.- . 
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l.b SYNOPSIS OF THESIS CONTENTS 

The analytic models are described in detail in Chapters 2, 3 and A. The 

models are mathematical abstractions of the real systems. Thus, they do not 

exactly reflect the true behavior of the physical system. However, the models 

will be referred to as exact or approximate depending on the quality of the 

technique used to analyze the mathematical model. 

The   models  can be grouped into three  broad classes : tp-tw, tp>hv  and 

tp<tw, where tp denotes the average processing time. Systems witn tp-tw are 

described  first  because they represent boundary conditions for the other two 

cases.  Different  modeling techniques are examined for tp-tw and a reasonable 

approximation is proposed. A casual reader may find it useful to glance through 

the empirical  results and validation of the models presented in Chapter 5 and 

the concluding remarks summarized in Chapter 6 before examining the mathematical 

intricacies   of   Chapters   2, 3  and  4.  A  more  detailed  summary  of  the  thesis 

content  is  given below. Table 1.1 summarizes the salient characteristics of the 

various analytic models. 

Chapter 2 is devoted to multiprocessor systems with tp-tw. A simple 

exponential server model provides some insight into the effect of adding a 

processor or a memory to the system. A more elaborate analysis for constant 

processing  time  uses discrete Markov chain techniques; an exact but unwieldy 

— 1 ■   
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TRBLC 1.1 

Stlltnt Characteristics ot Various analytic llodali 

flodel Descriptor Processing 
Tint 

rtimory Cyclo 

TiM 
Rtmarks 

nULTIPROCESSOR SYSTEtlS UITH  tp=tM 

Continuous Time tlarKov Chain exponential exponential 

Lxact  Discrete Flarkov Chain 

Approx,   Discrete darlcov Chain 

tlreclcer's Ppproximat ion 

Skinner and fisher's 
Discrete Harkov Chain 

Rpproxiirale ftodel   for 
Rrbitrary P;; 

constant 

cr.nstant 

constant 

constant 

constant 

constant 

constant 

constant 

constant 

constant 

Jackson's Formulae are used   to 
obtain a simple closed  form solution. 

The solution   is tlgorithmic. 
Unwieldy for   large systems. 

Rpproxlmation: non-active Pc'» ar« 
reassigned to busy tip's at the end 
of  the cycle.  Good for nSm. 

Simple closed  form solution.  Less 
accurate  that, above.  Non-active  Pc's 
are reassigned  '.o all  tip's. 

Exact discrete tlarkov chain analysis 
for upto 2 Pc's and m tip's. 

P,;    is not restricted  to  1/m. 
Solution  is simple but  approximate. 

nULTIPROCESSOR SYSTEHS UITH  tp>tH 

Discrete Markov Chain 
for   tpctu+tc 

Discrete tlarkov Chain  for 
Geometrically Distributed  tp 

tlcCredie's Exponential  Server 

Slrccker's  PnalysiR 

Cpproximate flodel   for 
Systehs ui th cache 

constant constant Rpproximate analysis  Is presented. 
Queued Pc's are reassigned   to  all 
tip's at  the end of  the cycle. 

geometric constant Approximate analysis. 
Prob[tp>tH^i*tcl  ■ (5*oti 

exponential exponential Jackson's  formulae are used.   On« 
tip has different   tc and different 
access probability.  Cache. 

constant constant Little's Formula  is used. 

constant constant Little's Formula  Is used. 
Cache memory speed  Is a parameter. 

MULTIPROCESSOR SYSTEtlS UITH  tp<tM 

An Ppproximale flodel constant 

Strecker's RpproxImatIon constant 

constant flodel   for  tp>tH  Is used   to obtain 
the conditional probability ot Pc's 
second request going to an idle tip, 
depending on  the number of  busy  tip's. 

constant Results of   tp«tu are usedto   find 
the probabilty of request to an 
idle tip. Average number of busy 
tip's  Is used. 

 ... — . — --.— -^ — .  ■■■ ^   _ Ml 
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analysis and a simple approximate analysis is presented. This exact analysis of 

the Markov chain model is compared with Strecker's approximation. A new 

approximate model is introduced to analyze the effect of skewing the access 

patterns M the processors so that each has a greater preference for a different 

memory module. 

Chapter 3 presents discrete Markov chain models for tp>tw. Techniques for 

an exact analysis of the models are introduced and some approximations 

suggested. Models are developed for constant processing time. McCredie's 

exponential server 'nodel[McCr73] and Strecker's approximate mode! for constant 

tp are discussed. Two new models for analyzing the effect of cache memories are 

also described. 

Chapter 4 contains an approximate model for tp<tw and compares the results 

with Strecker's model. 

Chapter 5 contains the results of some empirical measurements of PDP-ll 

programs. The processing time distribution is evaluated from these measurements. 

The process of extracting the abstract model parameters from the real physical 

system behavior is demonstrated. Predictions are made about the performance of 

Carnegie-Mellon University's C.mmp and compared with some actual measurements. 

This preliminary comparison with actual measurements shows the accuracy and 

utility of analytic models. 

Chapter   6   summarizes   the   salient   results   developed   in   the   thesis.   An 
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example  of  the  use of  these models for examining design alternatives is also 

included. Some directions for future work are discussed. 

--    -   -       ——^  J 
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CHAPTER   2 

MULTIPROCESSOR SYSTEMS WITH TP-TW 

In this chapter multiprocessor systems with tp-tw will be analysed. This 

could happen even with a very fast Pc. If the system is bus-bound and the Pc-Mp 

bus recovers at the same time that the memory is ready to service the next 

request, then the effective processing time (as seen by the memory) is equal to 

the memory rewrite time. With tp-tw, the analysis is simpler than with tp<tw and 

tp>tw. Also, it is a boundary condition for the other two cases. Thus, t^-tw is 

an interesting case for a preliminary comparison of various modeling techniques, 

even when tp is not equal to tw in reality. 

A simple exponential server model provides some insight intr the effect of 

adding a prvessor or a memory to the system. A more elaborate analysis for 

constant processing time uses discrete Markov chain techniques; an exact but 

unwieldy analysis and a simple approximate analysis is presented. This exact 

analysis of the Markov chain model is compared with Strecker's approximation. 

The results of the exact analysis are used to improve the accuracy of the 

approximate analysis. A new approximate model is introduced to analyze the 

effect of skewing the access patterns of the processors so that each has a 

greater preference for a different memory module. A diffusion approximatiü;. is 

also considered. 

«M tmm   
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Chapter 2 : Multiprocessors with tp'tw 
2.1   Continuous Time Markov Chain Model 

2.1 CONTINUOUS TIME MARKOV CHAIN MODEL 

In our  first  model, we apply the classic simplifying  assumption in queueing 

models:  we  model  the  service  time, or  cycle  t.me. of  the  memory modules  as 

exponentially  distributed random variables [cf. WagnH69]. Clearly  most  memory 

systems do not have an exponentially distributed cycle time. However, techniques 

such as interleaving, cache memories, and the type of memory accessCread. write, 

read-modify-write) suggest that this exponential assumption may be as good an 

approximation  as  the  assumption that  the memory cycle  time is fi.ed, and not 

variable  at  all. Without  further assumptions or approximations, we can use the 

results   of   Jackson   [JackJ63].  and  Gordon  and  Newell   [GordW67]  to  find  the 

performance   of   the   mult.processor   system.   This   technique   is   also   used   by 

McCredie [McCrJ73] for mumprocessors with tp>tw. This exponential server model 

is   the   simplest   model   to   analyze.   It   also  gives   some   basic   insight  into   the 

extent of memory interference when the system has a large number of Pc's and 

Mp's. 

Let   the   number   of   service   centers   be   m.   The   states   of   the   system   are 

m-dimens,onal vectors w,th non-ne6at,ve mteger components, the J-th component 

representing    the    queue    length    at    center    ,    If    ^„K- Km)    is    a    state 

vector, then let S(A>&,. Transiten from one center to another is 

characterized by a routing probability r,,, i.e. the probability of going to 

center   j   on  completion  of   service  at center  ,. JacKson  [JacKJ63] has obtained 

          --   - - - - 
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the equilibrium joint probability distribution of queue lengths for a broad 

class of queueing-theoretical models representing a network of service centers. 

Customer arrivals are modeled as a generalized Poisson process [cf. WagnH693, 

whose mean arrival rate varies almost arbitrarily with the total number of 

customers already in the system. Service completions at each center are also 

modeled as generalized Poisson processes, the mean service rate (u) at each 

center varying arbit.arily with the queue length there. Note that in Jackson's 

model all customers are identical. Muntz and Baskett [MuntR72] have a more 

general queueing network model that allows different classes of customers to 

have different branching probabilities. Gordon and Newell [GordW67] have 

presented a solution technique for closed queueing systems, i.e. networks of 

queues in which the number of customers is constant. 

For    closed    queueing    systems,    Jackson's    formulae    for    obtaining    the 

equilibrium state probabilities are listed below. 

where. 

P(/0 - w(/0/T(S(fO) 

wCO - ft rtW/u]   for  j([l,m] 
j«l i=l 

where e(j) » fieiOr^     j<[l,m] 
i-1 

T(/0 - Ew(K)    summed over K with S(J<0-n 

But,    with    Pc   requests   distributed   uniformly    and   with   the   bus-bound 

situation   or   tp=tw,  the   exponential   server   model   reduces   to   m  servers   with 

— —-^—..— .. .,...- —  ^^^^^,—,  _         . —^.^„^^.m-i^fa,. 
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2.1   Continuous Time Markov Chain Model 

customers circulating with uniform routing probabilities i.e. r^p^l/n, Thus. 

e{j) denotes the average frequency of visits to service center j. Using the 

above formulae we get, 

w(/0-(l/u)n 

,n+m-li 
T(K) m\ m«i >/(l/u)n 

r/n+m-lCI'' m 
tor all X such that Eki-n 

i = l 

i-e. ail the stales of the system have equal probability. Physically, this 

indicates that states with greatsr congestion in the queues are as likely as 

evenly distributed queues. Note that the above analysis holds even when 

successive memory requests are correlated as long as the average access 

frequency    P^l/..    The    probability   ^    a   ^.^    ^    ^    ^   ^ 

Prob{Mp[i]   is   idle},   is   the   fraction  of  the  total   number   of   states   that   has 

ki=0. 

In other words. 

Prob{Mo[i] is idle} 
number of ways of assii>ninR n Pc's to m-l MpV 
number of ways of assigning n Pc's to m Mp's 

Therefore, 

Prob{Mp[i] is busy} = n/(n+m-l) 

E[number or busy Mp's] - m*Prob{Mp[i] is busy} 

- m*n/(m+n-l) 

  am 
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The above expression has a number of interesting properties: the expression 

is symmetric in m and n; it has a basic hyperbolic form, asymptotic to n as m 

gets large; and, if we let m-n the above expression becomes 

n/(2-l/n) 

and 

E[number of busy Mp's] -♦ n/2 for n»l 

The final observation has important implications. It states that as 

multiprocessor systems grow to include more and more Pc's, we are not faced with 

a law of diminishing returns: no matter how many Pc's are used, if we have the 

same number o* memory modules, we can expect half the processors to be active. 

2.2 A SIMPLE DISCRETE MARKOV CHAIN MODEL 

For this analysis let us assume that all the Pc's are characterized by a 

single constant processing time tp. In this model, the memory access and cycle 

time are constant. The exponenti.d server model discussed above allows the 

memory cycle time to have a large range of values. However, though the cycle 

time is not a constant (as seen by a Pc) it certainly does not have an 

exponential distribution. The constant service time model is an attempt to 

de-emphasize the small variance in the value of the cycle time. Although the 

processing  time  is   not   a  constant  in reality, this  approach yields fairly good 

    - —- -   . 
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2.2   Disrrrtc Markov Chnin Model 

estimates of the MpAR as substantiated m section 2.7. Also, all the memory 

units are assumed to have the same cycle t.me tc and access time ta. Thus, the 

memory rewr.te tiff» is given by tw=tc-ta. If tp= tw then all memory units can be 

considered to be operating synchronously. Thus, durmg any memory cycle the 

number of active Pc's is equal to the number of busy Mp's. 

I" this section, a simple Markov Chain Analysis is presented for the case 

in which the processors request every nemory with equal liKelihood. A 

multiprocessor system with n Pc's and m Mp's is likened to an occupancy problem 

with n balls and m urns. Balls are randomly assigneo to the m urns at the 

beginning of a memory cycle. At the end of the cycle one ball is removed from 

each urn. Thus if there are k non-empty urns during cycle s then k balls are 

available for assignment during the (s + l)-th cycle. 

The   state   of   the   .bove   mentioned   process   is   defined   by   a   m-tuple 

(^^....kj.   where  &,-„   and   0<k,<n  for   aH   ,,   The   number   of   distinct   states 

of the system is given by the combination, C^) i.e. the number of ways in 

which n identical  balls can be assigned to m bins [FellW66]. However, since all 

the    processors    behave    identically,   a   number    of    the    distinct    states    are 

equivalent i.e. they have the same occupancy and „ave the same components, e.g. 

states   (2,1,1),   (1,2,1),   (1,1.2)   are   equally   l.kely.   Thus,   the   reduced   states 

are given by the different ways in wh,ch the number n can be partitioned into m 

parts,   i.e.   the   unordered   integer   solutions   to   the   equation  fx^n   for   feX,* 

represent   equivalence   classes   of   equally   likely   states.   The^number   of   such 

—"—■ — - -■ ■ mtmmmmmmmMaäamttäimmämtiaitkiM  -- ■ ■- - -~- -■-  
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SOME PROPERTIES OF THE DISCRETE MARKOV CHAIN MODEL 

Number of 
Number of 

Pc's 
Mp's 

TotJ 
of 

>l Numbe 
States 

2 3 2 

4 35 5 

8 B435 22 

IB 92378 42 

12 1352878 77 

16 388540195 231 

■(educed   Execution time 
States   for program 

< 1 sec. 

< 1 sec. 

2 sec. 

8 sec. 

1 min. 

1 hour 

-     
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partitions (for n<m) is asymptotic to 

—J~ exp[n(2n/3)T0.5] [cf. BecKE64] 
4»ff 

Also, 

F(x) i 

d-xXl-x1) . . .(l-xk) 

i+i:p(i)x' 

is an ordinary generating function of the sequence (p(0), p(l), ..., p(k)), 

where p(i) denotes the number of partitions of the integer i that have no part 

exceeding k. k<i [LiuC68]. Table 2.1 shows the total number of states and the 

number of reduced representative iU^ as a function of n. 

Let the representatir* state Si denote the set of compositions of the 

number n that yield the same partition e.g. the compositions (2,1,1). (1,2,1) 

and (1,1,2) correspond tc the partition of the number 4 which has two I's and 

one 2. Further, let Si.j be the individual compositions of the partition 

typified by representative state Si and Si.l be that composition which has its 

components arranged in monotone non-decreasing order, i.e. (2,1,1) for the above 

example. The algorithm shown in Fig 2.1 generates all ihe partitions of n with 

the components in monotone non-increasing order. 

Let X1(j  denote the probability of a transition from Sj to Si. Then, due to 

the symmetry of the problem. 

■ Mi - 
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Maximum number of parts... M 

I 
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X 
A(I) •-  1   for  1x2 K 

I 
A(l)  *- N- S A(I) 

1=2 

Components of a partition are given by 
A(l), Iä1,...,K. This partition has K 
non-zero parts. Store or display this 
partition. 

Figure 2,1    An algorithm  for generating partitions 
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Xu - EProb{Transition from Sj.l to Si.k} 
Si.k   Si 

Let the m-tuple (k,,^..,^) denote the state of the Markov chain. If x 

is the number of non-zero elements in this vector then at the end of the memory 

cycle, x new processors have to be reassigned to memory modules. At the end of 

the current memory cycle the queue is characterized by the partial uau m-tuple 

Onj? ji,), where 

Ji    -k|-l if k^O 

■0  otherwise. 

A    new    state    (ll(l?1...(|M)   |s    reachable    fr0m   ^^g    .,    ^   on|y    .f 

l.^ji   tur   lsi<m.   If   the   above   condition   is   satisfied   the   probability   of   the 

state transition is given by 

x-d,. jX-d.-d, 

d« 

where df lrjj 

'•e.     __xL_.*{l/m)Tx 
d.! d?! ...dj 

Note ths' iat since &( ■flj-«,&,-« 
»•X     i=»l i = l 

Thus,   we   now   have  a  formula  for  generating  the  transition  probabilities. 

Due to the symmetry of the problem it suffices »o generate only the transition 

   —*"    --   -    - ■ ■■ --^  - ---J '  - --1-- ii-iimiiiMn      '--   ■-■ 
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Initial State 

2 2  0 0] 

110 0 

Initial 
Partial 
State 

Final Terminal States 

Add 1 Pc   Add 1 more Pc 

Figure 2.2 Next states accessible from initial state (2,2,0, 0) 
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probabilities   for  the  representative  class of states. All  the different  ways of 

obtaining the same partition are lumped together to form a reduced state. 

To illustrate a computational method« for generating the transition 

probabilities consider an example of a 4 by 4 system. The number 4 can be 

partitioned in 5 different ways as listed below: 

4  0  0  0 

3   10  0 

2   2  0  0 

2   110 

1111 

These partitions represent 5 equivalence classes that characterize the 

state of the Markov Chain. Let us consider the state (2,2,0,0). At the end of a 

memory cycle, the resultant partial state is (1,1,0,0) with 2 free processors to 

be reassigned. Figure 2.2 shows the different ways in which these 2 Pc's can be 

assigned, one at a time, to reach a new partial representative state. After both 

Pc's are assigned a terminal state is reached. The number on the arrow indicates 

the number of ways of reaching the partial or terminal state that the arrow 

points to. Now the number of ways in which a final state can be reached from the 

»♦The use of a tree to generate the transition probabilities was suggested by F 
Baskett and D.Chewning of Stanford University. 

 —-.— J—.^^«^«^«^^ ■^—_.^- -        ,.    .. .. — ■■J_..  —^. 
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0 0 0 0 10 0 0 

110 0. 

2 2  0 0 

.2 10 0- 

111 o: 

5 10 0 

2 2 0 0 

2 110 

2 110 

1111 

level 0 level 1 level 2 level 5 level 4 

Figure 2.3 Enumeration tree for a 4 by 4 multiprocessor system. 
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initial state can be computed by traversing the tree, e.g. there are 2x1 ways of 

reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching (2,1,1,0 from (2,2,0,0). 

It is possible to construct a single tree with different pointers for 

different initial states. Figure 2.3 shows a complete tree for a 4x4 system. 

Initial states are circled. The entire transition matrix can be filled by 

traversing this tree. A convenient way of traversing this tree is by using a 

stack which has depth equal to one more than the number of Pc's. At each level 

the stack contains a partial state and has a pointer to the initial 

representative state (if any) from which it is derived. The stack Is initialized 

to contain the path that leads to the topmost final state. For this example the 

stack is initialized as shown in Fig. 2.4, and Fig. 2.5 shows an algorithmt for 

using the tree to generate the transition matrix, shown in fig. 2.6. 

The tree in Fig. 2.3 can be converted into a mesh by lumping together all 

occurrences of a partial state in the tree. e.g. state 2100 at iövel 3 appears 

twice, the resulting mesh for the 4 by 4 example is shown in Fig. 2.7. the 

algorithm for generating the transition matrix is shown in Fig. 2.8. Though the 

implementation of this  algorithmtt involves a matrix multiplication and requires 

tA FORTRAN implementation of this algorithm is listed in Appendix A-l. 

ttSee Appendix A-2 for a listing of a FORTRAN implementation. 

■   - - ■   -- --   -   —.  
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4 0 0 0 

3 10 0 

2 110 

1111 

4 0 0 0 

5 0 0 0 

2 0 0 0 

10 0 0 

0 00 0 

level 4 

level 5 

level 2 

level 1 

level 0 

Initial 
etate 
pointer 

STACK NWAYS 
Number of ways of 
getting to level L 
i*rom level 1-1 

Figure 2.4 Initial contents of the stack for traversing the tree 
shown in figure 2.3 
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Transition matrix has been 
completely generated. 

Normalize each column so 
that  sum going down a 
column is   1, 

Figure 2.5    Algorithm for  traversing  the  tree  shown in Figure 2.3 
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4 0 0 0 3 10 0 2 2 0 0 2 110 1111 

4 0 0 0 1 1 0 1 4 

3 10 0 3 3f 3 2 3 + 3+6 124-12+24 

2 2 0 0 0 3 2 3+6 12+24 

2 110 0 o 4+6 6+12+18 24+48+72 

1111 0 0 2 6 24 

STEP 1 t XIj is the number of ways of reaching i from j. 
(obtained from the tree of fig,2.3;by using the 

STEP 2 : Xi.1- Xij     ( Note that |Xi;Jrm
x, where x of the 

2Xi;J 
i 

components of j  are non-zeroJ 

Final equations to be solved simultaneously   : 

■ 
P4000 

P3100 

P2200 — 

P2100 
P 

1111 

0.25 0.0625 0.000 0.015625 0.015265 

0,75 0.3750 0,125 0,187500 0.187500 

0.00 0.1875 0,125 0.140625 0.140625 

0,00 . 0,3750 0,625 0.5625 00 0.562500 

0,00 0,0000 0.125 0,093750 0.093750 

•         — 

P4000 

P3100 

P2200 

P2100 
p 

1111 

SUBJECT TOp ^p ^p 
4000    r3100      2200    ^2100    pllll- :L 

Figure   2.6    Steps   In   the  generation  of   the   transition  matrix 
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more  temporary storage it is faster than the algorithm in section 2 t r    .rgt 

n.   Thu?,   a   space-time  trade-off   affects   the  selection of  the  algorithm  to   be 

used. 

The following theorem and lemma can be used to increase the efficiency of 

the program that generates the transition probabilities. 

Theorem 1: There is a one-to-one correspondence between a representative state 

and a partial state that the representative state reduces to at the end of a 

cycle. 

Proof:   Let   (kLkjr.-.Km)   be   a   representative   state.   The   partial   state   at 

the end of the cycle is given by 

where Ji-K|-1    if ki>0 

«0 otherwise 

m 
Since   no   two   representative  states  are  alike  ^nd  Zk|-n, it  follows  that   the 

i-1 
partial states are distinct. 

Lemma   :  A  partial  state  at  level  L  in  the enumerative tree of  Fig.  2.3  can 

correspond to a terminal state with exactly n-L occupied Mp's. 

  ■     —    - 
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^1000 

mi 

Pig.  2.7   Enumeration rr.esh for a 4 by 4 multiprocessor system. 
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genorato parlillons ol N into M parts, 
lot the vector XSYS denote these partitions, 

that represent the state ol tho system. 

Gcr erale partitions of N-l into M parts. 
Let X2 denoto those partial states. 

I-N-l 

Compute 0. 
Matrix Bis the number of ways 

Of reaching XSYS from X2. 

Update TRANS (i.e. matrix of number 
of ways of reaching XSYS from XSYS.) 

if any state In X2 is a reduction 
of »state in XSYS. 

I-I-l 

Generate partitions of I 
Vector XI 

Compute matrix A. 
A is the number of ways of 

reaching X2 from XI. 

Matrix Multiplication. 
■ •Alt 

Interchange XI and X2. 
B is now the number of ways 
of reaching XSYS from X2. 

If 00...0 is * reduction of a 
stato in XSYS update TRANS. 

Evaluation of 
the required matrix of the number 

of transitions, TRANS is complete. 

Fig.   2.8 An algorithm for evaluating  the  transition matrix, 
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Proof:   Let   i"(jl,J2,...,jm)   be   a   partial   state   in   the   tree   depicted   in   Fig. 

2.3. Furthermore, let the number of non-zero elements elements in the partial 

■ 
state be y s.id let JLJi^n-x. Since one Pc is always removed from a non-empty 

queue  at  the end of a cycle, J is a partial state that can    e reduced from a 

valid representative state K^k,,^,...^,,), if and only if 

(i) The number of non-zero elements in K is x.and 

(ii) x>y 

Note that  x and y are both less than or equal to min(m,n) and flki-n. Then, if 
i=l 

x>y, J has at least x-y zeros. If x<y then there is no representative state K 

that corresponds to the partial state /. if x^y, then the representative state 

is obtained by adding y Ts to the non-zero elements of / and replacing x-y 

zeros of J by 1. At level L, Iji" L Therefore, x, the number of occupied Mp's 

in K, is equal to n-L 

Figure 2.9 shows the average number of busy Mp's when n-m. The curve has an 

almost constant slope of .586 for n>4. Thus, this model also shows the absr.nce 

of a law of diminishing returns. Figures 2.10 and 2.11 show the effect of adding 

a Pc and an Mp respectively on the average number of busy Mp's. Also, the 

average number of busy Mp's is almost symmetrical with respect to m and n. The 

results obtained from the model are compared with a less restrictive simulation 

model in section 2.7. 

  -   -         ■        ■ ■      
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2.3  APPROXIMATE DISCRETE MARKOV CHAIN MODELS 

Even with the representative state approach the number of states 

characterizing the Markov Chain increases rapidly as n incrrases. Table 2.1 

shows the number of representative states as a function of n and the approximate 

execution time needed on a DEC PDP-10 for the FORTRAN program listed in Appendix 

A-2, which determines the stationary state probabilities. Though the analysis is 

exact, the size of the problem (as indicated by the array space used by the 

program) and the time required restricts the use of the model described in 

section 2.2. 

2.3.1 A New Approximate Discrete Markov Chain Model 

Because of the high cost of computation for the previous model, an 

approximate discrete Markov chain model will now be proposed, and the results of 

section 2.2 will be used to improve the applicability of this new approximate 

model. The state is denoted by the number of active Pc's. Thus the number of 

states is min<n,m). Note that only those Pc's that are active during the current 

cycle make new requests during the next cycle. Also, the number of busy memories 

is equal to the number of active processors. The approximation propounded here 

consists of removing the non-active Pc's from the Mp queues and reassigning them 

as  indicated  below.  This  approach was motivated by  a gross intuitive feeling 

 -  _^^J.J_„^_ ,.„-___^.^^„  _.,.,  m    ,  
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that if the Pc's are removed from the queues and asked to make new requests, 

they would end up in the same queues as before. However, this is not exactly 

true, and the heavily congested states fend to be de-emphasized. Let the number 

of busy Mp's during the current cycle be i. Then, during the next cycle the i 

active Pc's make a new request to the m Mp's and some of the n-i non-active Re's 

get serviced if they are at the front of the queue. However, in this approximate 

model, the n-i non-active Pc's are removed from the i Mp queues and reassigned 

to the same i queues. This is equivalent to the n-i Pc's making new requests to 

the i Mp's. Thus the i Pc's may not end up in the same queues that they were 

removed from. This approximation will be used widely in this thesis. The results 

of this section show the accurac  of the approximation. 

Now, the probability that j out of the i active Pc's make a new request at 

the beginning of the next cycle to one of the i Mp's that are busy during the 

current cycle, is given by 

XPROB-   (jMm^O-i/rtJ1^ 

Thus, during the next cycle, with probability XPROB the n-i non-active Pc's and 

j   active  Pc's   are  assigned  to the i busy Mp's of  the current cycle, and the 

remaining i-j active Pc's make a request to the other m-i Mp's. 

Let nn-n-i+j and k.-mi^nn.i). Note that nn denotes the number of Pc's that 

will be queued (during the next cycle) for the i Mp's that are busy during the 

current cycle. Also, let Xd,) denote the conditional probability that I, out of 

i  busy Mp's are also busy during the next cycle, given that n-kj Pc's will be 

  "—L
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queued for the i Mp's. The number of ways that nn different Pc's can be assigned 

to i different Mp queues is i"n [RiorJ58# pp.90]. Also the number ways that the 

nn Pc's can access i Mp's so that exactly I, Mp's are occupied and i-l, are not 

is given by Riordan[RiorJ58] as 

CMOJ.^SCnn,!,) 

where CM(i,l1)-i(i-l)...(i-|,+l) 

and     S(nn,ll) is the Stirlingt number 

of the second Kind 

Thus, 

XO^-CMO.I.hSCnn,!,)/^ 

Now,  let   Y(l?)  be  the  conditional  probability  that  I, out of  the  m-i currently 

non-busy   Mp's   are  busy  during  the next cycle, given that i-j Pc's  make  a 

request. Then, 

Y(l2) - CM(m-i,l,)*S{i-j,g/{m-i)'- 

Thus, the probability that k-1,+1, Mp's will be busy during the next cycle Is 

XPROBtXd.Wg 

Therefore,   TRANS(k,i),  the  probability  of  a  transition  from current  state  i  to 

next state k is 

tStirling Numbers of the second kind are used to convert from powers to binomial 
coefficients. 

Also, 
xn -Z:S(n,k)^k)k! 

S(i,j) - j*S(i-l,j)+S(i-l,j-l) 
with  S(i,0)-S(0,i)-0 
and   S(i,iM 

■ m   
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TABLE 2.2 

Comparison of Exact and Approximate Models 

Approximate Discrete Markov Chain Model for tp-tH 

Average Number of Busy Mp's 

m-2 tn-4 m.8 m-lB 
r*2 1.5888 1.7508 1.8758 1.9735 

n=4 1.8888 2.G558 3.2751 3.B291 

n«8 1.984B 3.4858 5.8999 G.3B88 

n-lG 1,9399 3.9343 B.843B 18.8858 

Exact Discrete Markov Chain Model 

Average Number of Busy Mp's 

m=2 m=4 mw8 R-16 

n=2 1.5888 1.7588 1.8758 1.9735 

n-4 1.7588 2.B218 3.2B52 3.B268 

n-8 1.8758 3.2B57 4.9471 B.3149 

n-lB 1.9375" 3.G278 B.3154 9.6258 
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EXPROB*X(l ,)*¥(>,) 

the summation is over the different ways of choosing 
I, and I, such that k-1,+1,. 

A FORTRAN program that determines the steady state probabilities is listed 

in Appendix A-3. Table 2.2 shows the average number of busy Mp's as predicted by 

this   approximate  model.  Due to the small  number of  states, this approximate 

model needs much less computer time; typically about 1 second of execution time 

on a PDP-10 for a 16x16 multiprocessor system. Table 2.2 shows that the average 

number of busy Mp's is almost symmetric in m and n. The approximate model has a 

larger error for n>m. Therefore, a better estimate of the performance of a nxm 

systnm can be obtained by evaluating tlie performance of a mxn system if   i>m, a 

conclusion   possible  only  due  to the  results  of  the exact  analysis of  section 

2.2. 

2.3.2 Strecker's Approximation 

Strecker [StreW70] has an approximate closed form solution to the discrete 

Markov Chain model presented here. His approach is equivalent to removing the 

queued processors from all the memory modules at the end of a memory cycle fnd 

reassigning them among all the memory modules. In the approximate model proposed 

earlier in section 2.3.1, the Pc's that were queued at the end of the cycle were 

reassigned   only   among   the   busy   Mp's.   Thus,   Strecker's   analysis   is   more 

11 ■ «tfi 
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TABLE 2.3 

Expected number of busy memories   in one cycle 
Number of Pc's - 1,2 8 (rows) 

Number of flp's - 1,2 8 (columns) 

Discrete Markov Chain Model 

i.eeee 
1.OÜ08 
1.0008 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.5000 
1.BBB7 
1.7500 
1.8000 
1.8333 
1.8571 
1.8750 

1.0000 
1.6GB7 
2.047B 
2.2701 
2.4102 
2.5059 
2.5751 
2.B274 

1.0000 
1.7500 
2.2B92 
2.B210 
2.8633 
3.0370 
3.16G3 
3.2G57 

1.0000 
1.8000 
2.A035 
2.8B30 
3.199S 
3.4533 
3.648G 
3.8024 

1.0000 
1.8333 
2.5054 
3.03B5 
3.4530 
3.7809 
4.0418 
4.2521 

1.0000 
1.8571 
2.5748 
3.1G57 
3.6482 
4.0415 
4.3636 
4.6294 

1.0000 
1.8750 
2.6272 
3.2652 
3.8019 
4.2518 
4.6292 
4.9471 

Strecker's Approximation 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.5000 
1.7500 
1.8750 
1.9375 
1.9687 
1.9844 
1.9922 

1.0000 
1.6667 
2.1111 
2.4074 
2.6049 
2.7366 
2.8244 
2.8829 

1.0000 
1.7500 
2.3125 
2.7344 
3.0508 
3.2881 
3.4BG1 
3.5995 

1.0000 
1.8000 
2.4400 
2.9520 
3.3616 
3.6893 
3.9514 
4.1611 

1.0000 
1.8333 
2.5278 
3.1065 
3.5887 
3.9906 
4.3255 
4.6046 

1.0000 
1.8571 
2.5918 
3.2216 
3.7613 
4.2240 
4.6206 
4.9605 

1.0000 
1.8750 
2.6406 
3.3105 
3.8967 
4.4096 
4.8584 
5.2511 

Percentage Error 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
4.9979 
7.1429 
7.6389 
7.3856 
6.8548 
6.2507 

0.0000 
0.0000 
3.1012 
6.0482 
8.0782 
9.2063 
9.6812 
9.7244 

0,0000 
0.0000 
1.9082 
4.32BG 
6.5484 
8.2G80 
9.4685 
10.2214 

0,0000 
0,0000 
1.2658 
3.108G 
5.0631 
G.8340 
8.2991 
9.4335 

0.0000 
0.0000 
0.8941 
2.3053 
3,9299 
5.54B3 
7.0191 
8.2900 

0.0000 
0,0000 
0.6602 
1.7C58 
3.1002 
4.5157 
5.8896 
7.1521 

0.0000 
0.0000 
0.5ie0 
1.3874 
2.4935 
3.7114 
4.9512 
6.1450 

  -■  
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approximate and will underestimate the interference. However, Strecker obtains 

his approximate solution in a closed form, which will be modified here to yield 

more accurate estimates of the MpAR. Thus the state of the system is considered 

independent of the state during the last cycle. If we use this assumption the 

distribution of Pc's queued for an Mp follows the binomial distribution: 

Prob{Y.r} -     (r) (^(l. fljT* 

where Y is a random variable equal to the number of Pc's queued 

for Mp[j] and Pij-l/m for all i and j. 
■ 

Thus, 

Prob{Mp[]] is busy} - 1- Prcb{nobody is queued for Mp[j]} 

- l-(l-l/in)n 

In other words, the occupancy of Mpjj] is l-(l-l/m)n, and 

E[no. of occupied Mp's] - IKOccupancy of Mp[j]} 

-m»[l-(l-l/m)n] 

Table 2.3 shows a comparison of Strecker's results and the exact Markov 

chain analysis. Note that Strecker's results are optimistic estimates of the 

unit execution rate. It is encouraging to note that such a simple expression is 

within 6 to 87. of the exact Markov Ch ta model for m/n>0.75. This is because his 

analysis assumes that all n Pc's always make a new request at the beginning of 

■• — '-■*-*--' ■-■ —' ■ 1    ■    --      - 
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each memory cycle, whereas in the discrete Markov chain only those Pc's that 

receive service are allowed to make new requests. Moreover, note that the 

expression m*[l-(l-l/m)n] can be written in an exponential form as 

m*{l-exp[n* /« (1-1/m)]} 

Figure  2.12 shows  a plot of the above expression for fixed mi the relaxation 

time [ In (1-1/m)]' approaches m as m gets large. 

The exact discrete Markov chain model of section 2.2 shows the performance 

to be almost symmetric in n and m. Also the analysis ol the error of Strecker's 

approximation, shown in Table 2.4, indicates a greater accuracy for n<m. Thus, a 

more accurate estimate of the average number of busy Mp's is ixfHl-l/WJ, 

where i-max(n,m) and j-min(m,n). Note that the above formula was not derived by 

Strecker. It was possible t« obtain it due to the knowledge gained from the 

exact analysis presented in section 2.2. 

2.4 DISCRETE MARKOV CHAIN MODEL OF SKINNER AND ASHER 

Skinner and Asher [SkinC69] model the multiprocessor system with tp-tw as a 

discrete Markov chain. They assume a matrix of probabilities that express the 

likelihood that a given processor requests service from a given memory at the 

beginning of a memory cycle, provided the Pc is not queued. They also assume a 

matrix of probabilities that express the likelihood of the various outcomes that 

  -1-    J -■— —-^M—^1^^-   -^.,-^^.^—^^■J-J—— -^      ..     —- .-.—   _   - -      ..^ w 
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2.4   Discrete Markov Chain Model of Skinner and flsher 

can arise when there are simultaneous requests to one memory by several 

processors. The state of the system is characterized by the processors queued 

for the different memory modules. A state transition matrix is formed from the 

access probabilities and the steady state probabilities of various states are 

determined by solving the state transition equations. The number of states of 

the system increases very steeply with an increase in the RURtbtr of Pc's and 

Mp's. Closed form solutions are presented only for cases with up to 2 Pc's and n 

Mp's. The analysis in the previous section is similar to Skinner and Asher, but 

with uniformly random access patterns for all the Pc's, i.e. pu-l/m for all i. 

The results of Skinner and Ashsr are cempared with a new approximate model in 

section 2.6. 

2.5 DIFFUSION APPROXIMATIONS 

An approximation method that has been proposed for the solution of general 

queueing networks is the diffusion approximation [cf. NeweG71; KobaH73]. A 

discrete-state process is approximated by a Wiener-Levy diffusion process with a 

continuous path. The key assumption in such an analysis is that incremental 

changes in the queue lengths are normally distributed. This leads to a 

characterization of the queueing network by a set of diffusion equations. The 

accuracy of the approximation depends on three factors: (i) approximation of a 

■ --■    --■     —  - -■-  — 
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2.5   Diffusion Approximatiom 

discrete-state process by a time-continuous Markov process, (ii) choice of 

proper reflecting barriers, and (iii) discretization of the continuous density 

function for queue lengths. Surprisingly, for the simple discrete Markov Chain 

model of section 4, the diffusion approximation yields a result identical to 

that with exponential servers derived from Jackson's formulae. However, the main 

utility of the diffusion approximation in this context is that it can be used to 

analyze the effect of different coefficients of variation ( ratio of standar.J 

deviation to the mean) for the service time distribution. Unfortunately, for 

Pij-l/m, the diffusion approximation predicts that the average number of busy 

memories lo be independent of the service time distribution as long as all 

servers are identical. Thus, the diffusion approximation has proved to be a 

disappointing tool in this study. 

2.6 AN APPROXIMATE MODEL FOR ARBITRARY Pjj 

In this section, we explore the effect of non-uniform access probabilities 

(i.e. Pjj is no longer restricted to be equal to 1/m) on the MpAR. This 

situation often arises in physical systems in which each Pc has a greater 

preference for a different memory module.Now, we analyze multiprocessor systems 

in which F u can take any arbitrary value between 0 and 1 subject to EP|j-l. Let 

Qij denote the probability that processor i is queued for memory j. The 

probability that memory j is busy or occupied is given by 

. ^ -.^ ... . ..-^^-^ '■-Mnhii^miiii'M «I ii i----'      -■ ....--.-. ■   n    ■r - 
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l-Prob(no processor is queued for memory j) 

i-no-oij) 
i-1 

assuming that the event of a Pc not being queued for an Mp is independent 

of other Re's not being queued. The simulation results shown laic justify this 

assumption. 

The above denotes the average number of requests serviced in one memory 

cycle. 

Thus, if, M is the expected value of the number of occupied memories during 

a memory cycle, 

then  M= £ Prob[Mp[j] is occupied] 

-fl[l-ft(l-Qij)] 
j«!    i-1 

In general, the probabilities Qij and Pij are not equal. The Pij's are a 

characteristic of each processor and therefore independent of the behavior of 

the other processors m the system. However, any Qij is a function of all the 

Pij's of the multiprocessor system. Strecker (StreW70)V has evaluated the unit 

execution rate of a multiprocessor system in which Pij-l/m for all values of i 

and j. He makes no attempt to obtain a relationship between Qij and Pij. 

Strecker assumes that Pij-Qij and states that his results are approximate. The 

approximation  In  his  analysis  is  due  to the  assumed  binomial  distribution  for 

- -'  ■   -- -         —^——^——,-...—^—^,.— _  —  ... 
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the queued processors. If all the Pc's are identical and have equal likelihood 

of accessing every memory unit, then the probability of any processor being 

queued for any memory is uniformly equal. Since the memories operate 

synchronously and all requests occur at the end of a memory cycle a processor is 

always queued. Hence, the probability Qij-l/m. 

Let us focus our attention on Pc[i] and Mp[j]. The time spent by Pc[i] in 

queue for Mp[i] depends on Pjj and Qu, ML Thus, Qu depends on other QIK'S, 

which in turn depend on Q,j. Let us for a moment allow other processors to make 

requests to memory before Pc[i]j and let Yjj denote the probability that none of 

the other n-1 Pc's request service from Mp[j]. 

Thus, 

Yü-ftü-Pu) 
EM 

Now,   if   none   of   the  other   Pc's   make   a  request   to  Mp[j]  the   waiting   time 

(including service) is one cycle time. However, if other Pc's make  a request to 

Mp[j] before Pc[i], then Pc[i] has to wait for those Pc's to bt  served. Now, let 

us  look at  Pc[l], which has to wait for service from Mp[j] if other processors 

make a request before it does. Here, we shall allow other Pc's to make requests 

before  Pc[l]. Thus, Pc[l] waits in queue for Mp[;] with probability  P|j*[l-Y|j]. 

Thus,   the   average   number   of   f c's   that   Pc[i]  finds   waiting   before   itself   is 

IIP|j*[l-Y|j]. However, Pc[i] accesses Mp[j] with probability Pjj. Therefore, the 

weighted waiting time Tjj'for Pc[i] in queue for Mp[j] is 

P|j*{Yi j +[Ui:P|j*(l-Y,J)]*[l-YiJ]} 

Therefore, the average time is equal to ZTJJ; and 
J-l 
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2.6   Approximate Model for Arbitrary Ptj 

Qu - T.j/T 

Figure 2.13 compares the execution rate predicted by the approximate model 

of this section with the exact MarKov chain model of Skinner and Asher for a 2x2 

multiprocessor system. Pjj is equal to u for i-j and equal to /? for ij<j. 

Now, suppose each Pc has a grrater preference for one Mp. Let us use the 

model to examine the effect of assigning access probabilities so that Pu-oC>l/m 

for i-j and Pu-zS-d-c/JAm-l) for i^j. Note that ß<l/m. Thus, each Pc has a 

greater preference for a certain memory module. For example, the access 

probability matrix for a 4x5 multiprocessor system is shown below. 

* ßß/iß 

ßoi ß ß ß 

ßßußß 

ßßßuß 

Figures 2.14 and 2.15 show the effect of changing oc from 0 to 1 for a 8x16 

and a 16x16 multiprocessor system. Also, Table 2.4 compare, the results 

predicted by the model with simulation results, because the analysis is 

approximate. Note that both graphs show that the execution rate is a minimum for 

ct-l/m. With oi=l/m this model predicts the same result as Strecker's 

approximation as both models assume a binomial distribution for the queued 

processors. The approximation error reduces as oc increases, the error being zero 

for ool. An error correction factor can be used as described below. For ei«l/m 

-■■■    ■  ^^^^ —   . .   ■      - ■---  - -   --   ■ - ■-    ■      -           ■imnimii 
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TABLE 2.4 

Comparison of simulation results with analytic model of Section 2.3 

A IBxlB Multiprocessor System 

SHX  confidence interval Analytic 
from simulation Result 

0.25     (9.7482 , 9.8329) 18.4174 
0.58    (18.5824 , 18.5946) 18.9973 
0.75    (12.8875 , 12.3987) 12.5323 
8.98    (13.9111 . 14.2145) 14.3873 

A 8x16 Multiprocessor System 

98% confidence interval 
from simulation 

0.25    (6.2883 . 6.4139) 
8.58    (6.5374 , 6.5614) 
0.75    (6.9693 . 7.8853) 
0.90    (7.4338 , 7.6841) 

Analytic 
Result 

6.4888 
6.6885 
7.1673 
7.6328 

A 8x8 Multiprocessor System 

98% confidence interval Analytic 
from simulation Result 

8.25 (4.8886 , 5.1126) 5.2798 
8.58 (5.2797 , 5.4127) 5.5372 
8.75 (6.892B , 6.1981) 6.2887 
8.98 (6.9245 , 7.1411) 7.1975 

MfclMl^l , ■     -- 
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2.6   Approximate Model for Arbitrary Pxi 

the exact Markov chain model should be used to compute the execution rate X,; 

the approximate model of this section predicts an execution rate, X7, equal to 

m*[l-(l-l/m)n] for o^-l/m. The correction factor for o^-l/m is X^X,. Let 

e-(X7-X,)/X?. Then a linear error correction factor F is l-e*{l-o<:)/(l-l/m) for 

od>l/m. The corrected estimate is F*XI where X is the execution rate for the 

given value of *. The dotted lines in figures 2.14 and 2.15 show the corrected 

execution rates. The vertical lines show 907, confidence intervals obtained by 

simulation! This model shows the increase in the MpAR due to deskewing of the 

processors' access patterns. 

2.7 CONCLUDING REMARKS 

Tables 2.3 and 2.5 compare the numjrical results obtained from the 

different models described. Note that the continuous and discrete Markov chain 

models exhibit similar trends, though the numerical values differ. Strecker's 

approximation gets better as m/n increases, whereas the continuous time and 

discrete Markov models get closer for larger n/m ratios. Table 2.6 shows some 

simulation   results   obtained   with   exponential   distributions   for   the   processing 

tAII confidence intervals in this thesis will be shown by vertical lines. Unless 
specified otherwise, the confidence intervals are calculated from about 10 
independent samples, each averaged over about 3000 cycles. 

.  .      —i ^-^  .,.    Viia.i     ir   i '   ■■-    ■    -      
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TABLE 2.5 

Expected number of busy memories  in one cycle 
Number of Pc's - 1,2,...,8  (rows) 

Number  of tip's - 1,2 8  (columns) 

Discrete Mirkov Chain Model 

1.8808 1.8888 1.8880 1.8888 1.800B 1.0000 1.0000 1.0000 
1.8888 1.5888 1.BBG7 1.7588 1.8080 1.8333 1.8571 1.8750 
1.8888 1.B6G7 2.047G 2.2592 2.4035 2.5054 2.5748 2.B272 
1.3088 1.7588 2.2781 2.B218 2.8B30 3.03B5 3.1B57 3.2B52 
1.8888 1.8888 2.4182 2.8B33 3.199B 3.4530 3.B482 3.8019 
1.0808 1.8333 2.5859 3.0370 3.4533 3.7809 4.0415 4.2518 
1.8888 1.8571 2.5751 3.1BG3 3.B486 4.0418 4.3B36 4.B292 
1.0888 1.8758 2.G274 3.2G57 3.8824 4.2521 4.G294 4.9471 

Continuous Time Harkov Chain Model 

1.8888 1.8888 1.8000 1.0000 1.8000 1.0000 1.8000 1.0000 
1.0888 1.3333 1.5880 1.G000 1.GGG7 1.7143 1.7500 1.7778 
1.0088 1.5888 1.8888 2.8000 2.1429 2.2500 2.3333 2.4000 
1.8883 1.G888 2.8000 2.2857 2.5000 2.GGG7 2.8000 2.9091 
1.0888 1.GGG7 2.1429 2.5888 2.7778 3.8000 3.1818 3.3333 
1.0000 1.7143 2.2500 2.GGG7 3.0000 3.2727 3.5000 3.G923 
1.0000 1.7500 2.3333 2.8000 3.1818 3.5000 3.7G92 4.0000 
1.0000 1.7778 2.4000 2.9091 3.3333 3.G923 4.0000 4.2GG7 

Percentage Differehce 

0.0888     8.8000 0.0008    0.0000 0.8000    0.0800    0.0000    8 0000 
0.8880  11.1133 10.0018    8.5714 7.405G    G.4910    5.7S71    5.1840 
0.8800 10.0018 12.0922 11.8G32 11.0G45 10.1940    9.3794    8.G480 
0.8888    8.5714 11.8982 12.7928 12.G790 12.1785 11.5519 10.9059 
0.0000    7.405G 11.0904 12.G882 13.1829 13.1190 12.7844 12.3254 
0.0000    G.4910 10.2119 12.1930 13.12GG 13.4412 13.3985 13.1591 
0.0888    5.7G71 9.3899 11.5587 12.7939 13.404'? 13.5218 13.5920 
0.8800    5.1840 8.5549 10.919G 12.33G9 13.iG53 13.5957 13.7535 
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TABLE 2.6 

Expected number of busy memories In one cycle : 

Exponential distribution for tp 

Constant tw-ta-ECtp] 

Simulation results 

m-23A5B78 
n-2 1.^088 1.5931 
n-3 l.t;i85 1.9878 2.2875 
n-4 2.2198 2.5B43 2.8884 
n-5 2.7988 3.U72 3.4388 
n=B 3.4888 3.7122 4.8848 
n-7 3.9998 4.319B 4.5884 
n-8 4.5BBB 4.9828 
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Chn/iti i 2 : Multiproccsson with tp=tw 
2.7   Concluding Remark* 

time, with mean equal to tw. 

i.e. Prob{tp-x} - X exp(-\x)     where X-l/tw-l/ta-l/E[tp] 

Note that the values in TaMe 2.6 lie between those predicted by Strecker and 

JacKson, and within 57, of the exact discrete Markov chain model for most cases. 

Thus, modeling the variable processing time by a constant equal to the mean 

processing time is a reasonable simplification. Table 2.7 shows the 

characteristics of the parameters in the various models. 

It is important to note that with tp»tw a Pc is fast enough to make a few 

request to memory when the memory recovers. Thus, for a 1x1 system the memory is 

always bus/ Also, 'ith m>n, if there is no contention for memory the maximum 

number of busy memories is min(m,n). An important result observed was the 

absence of a law of diminishing returns: the performance of a multiprocessor 

system with n processors and n memories continues to rise at a constant rate as 

n increases. A simple exponential server model showed this rate to be 0.5; a 

constant processing time model predicted a slope of 0.586 for the average number 

of busy Mp's. The exponential server model gives the average number of busy Mp's 

as nym/(n*m-l). An approximate result for constant processing times gives the 

average number of busy Mp's as i*[l-(\~l/i}> j, where i»max(n,m) and j'-min(n,m). 

An intuitively obvious conclusion limits the maximum number of active Re's by 

min(n,m). This maximum is reached if each processor accesses only one memory all 

the time. 

  - -- —>—*t—^.—--—-~<—-—-.—^— >..■*—^- _ ^,.-„   — — . 
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TABLE 2.7 

Processing Memory Cycle Analysis Comp>itat lonal 
Time Time £Mt 

Discrete 
Markov Chain 

Constant 
tpttH 

Constant Exact Solution  Is 
algorithmic. 
Unwieldy   for 
large n. 

Strecker's 
flpproximat ion 

Constant Constant Approximate Closid  torn 
solution. 
Simula  formula. 

Cent inous Time 
Markov Chain 

Exponential Exponential Exact Closed form 
solut ion. 
Simple formula. 

01 ffusion 
flpproximation 

Constant Constant    Approximate Closed form 
solution. 
Simple formula. 

Simulat ion 
Model 

Exponent id I 
E[tp]BtH<ta 

Constant     Approximate  Unuleldy due to 

slew stochastic 
convergence. 
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CHAPTER  3 

MULTIPROCLSSOR SYSTEMS WITH TP>TW 

In this chapter multiprocessors with tp>tw will be discussed. First, a 

discrete MarKov chain model for a constant processing time equal to tw+tc will 

be developed and a general methodology for constant tp.tw.ittc will be 

presented. A more genera, model for processing time having a geometric 

distribution with its mean value greater than tw will be described. An 

exponential server model developed by McCredie[McCrJ73] will also be discussed. 

3.1 DISCRETE MARKOV CHAIN MODELS FOR MULTIPROCESSORS WITH TP-TW+TC 

In this section, discrete markov chain models will be developed for 

multiprocessor system in which the processing time tp is a constant and is 

exactly equal to tw+tc. The timing of a typical instruction is shown balow. 

Hp ta tw 

Pc 

^effective MttwrüJloa time 

tp=tw+tc 

Note  that   a  Pc  that  is serviced during this cycle operates on its data during 

ihe next memory cycle. This w.H be modeled by associatmg a server with each Pc 

aniMifc  iiaiiMaatriiinWMMIiaitHatlllMfflTTIlMÜl Mmuiiimi^t^mMmilMtätttilBäB&KimiMMUta^me-mm^ammmäWMmMttitiämfirinimmiuk   --    - — ■—--       -■ ^^J..-—x-^.—.^^.^,-,..    n-m iiiiMmirirtr ■ 
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Figure 3,1 Queueinc nrdel for rmltipr^cessorE -..-ith t?=-tw+tc 
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Chapter 3 : Multiprocessors with tp>tw 
3.1   Discrete Markov Chain Model for tp*tui*tc 

with a constant processing time equal to tc; and this portion of the processing 

time will be called its effective execution time. As before, all processors will 

be assumed to be identical with Pjj-l/m. The processor servers will be lumped 

together as a multi-server station. 

Now, if thi« number of Pc's is n snd the number Mp's is m, the state of the 

queueing system shown in Fig. 3.1 can be described by a (m+l)-tuple 

(ko; k,^,,...,^), where k0 is the number of Pc's in execute state and 

ki,l<i<m, is the number of Pc's queued for Mp[i]. Since all the servers 

contribute fixed delays equal to tc all events(entities leaving and entering 

queues) occur at epochs separated by integer multiples of tc. In other words, 

the system behaves as if it were clocked at intervals of tc. Therefore, time 

between significant events can be considered to advance in diserüte steps. Note 

that an equivalent system in which tw'-0,ta'-tc and tp'-tc can also be 

represented by the model shown in Fig. 3.1. 

Let (ko; k,,^,...,^) be a representative state i.e. it denotes all the 

states that can bo obtained by permuting (k1(K?,...,kJ. Further, let 

ki.^,-,kw be arranged in non-increasing order. Since the number f Pc's is 

fixed 2Ükj=n. The state space can be divided into n+1 sub-soaces corresponding to 

integer values of k0 ranging from 0 to n. The number of states in the 0-th 

sub-space is equal to the number of ways of partitioning the integer n into m 

parts. In general, the i-th sub-space consists of states corres- jnding to the 

partitions of n-i into m parts. 

I   Ullllll    I  -- ■  ... ■               '       ' — -   ■  •        — ■- 
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ij 1,0,0,0' 

'Reduced 
Partial 
State 

i^l;   3,0,0,0 

If   2,0,0,0^^ 3 

2   ^rl;  2,1,0,0 

J^^xi 1,1,o,o: 

i; 1,1,1,0 

Add 1 fc Add 1 more Fc 

Figure 3»2      A typical enumeration tree for initial state 2;   2,0,0,0 
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Chapter 3 : Multiprocexxor* with tp>tw 
3.1   Ditrrete Markov Chain Model for tp-tw*tc 

Consider  a state vector in the i-th sub-space. The value of k0 is i. Let d 

denote  the   number  of   non-zero  parts of  the  memo.-y-state-vector  (k,,^ kj. 

Then at the end of the cu-rent memory cycle i Pc's make a new request and d Pc's 

enter the execute state, i.e. during the rext cycle the state of the system is 

located in the d-th sub-space. State transitions can be described by an 

enumeration tree similar to that used in chapter 2, Fig. 2.3. Figure 3.2 

transitions from the state (2; 2,0,0,0). for a 4x4 multiprocessor system. Such 

trees can now be constructed for each state and the transition matrix evaluated. 

In rig 3.2, there is 1 way of reaching (1; 3,0,0,0), (3+3*2) i.e. 9 ways of 

reaching (1; 2,1,0,0) and 3«2 i.e. 6 ways of reaching (1; 1,1,1,0). Once the 

entire transition matrix is generated the stationary state probabilities can be 

obtained. 

The number of states of this discrete Markov chain model increases faster 

than the exact Markov chain model for tp=tw, described in chapter 2. Table 3.1 

compares the timber of states for the two models. An approximate Markov chain 

model will now be proposed. The system behavior will be modified to simplify the 

analysis. At the end of each cycle the active Pc's (those that are served by 

memory during the current cycle) will enter the execute state. However, all the 

queued Pc's will be removed from the memory queues and will be allowed to make 

new requests to memory along with those Pc's that were in execute state during 

the current cycle. Let the current state be (k^ k,,^,...,!^), with evactly d 

Mp  queues occupied. Then, at the end of the current cycle, d Pc's  er ler the 

 M 11   '   '■«   II  ■    ■    ■            '  ■■-  '      '■- '- — 
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TABLE 3.1 

Comparison of the Number of States for 

Discrete Markov Chain Models for 

tp-t>4 and tp-tw+tc 

Number of States 
tp-tw+tc 

1 

3 

6 

11 

18 

23 

44 

66 

36 

138 

134 

271 

n-m 
1 

tp-tw 
1 

2 2 

3 3 

4 i 

5 7 

6 11 

7 15 

8 22 

3 38 

ie 42 

n H 

12 77 
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Chaptrr 3 : Multiproccs&on with tp>tu) 
3.1   Discrete Markov Chain Model for tp-itc+ic 

execute state iind n-d Pc's make new requests. Thus, for this simplified model, 

the state of the s.ysiem is characterized by the number of Pc's that make new 

requests at the beginning of a cycle. 

Now, if i Pc's make a new request to m Mp's, the probability that Mp[i] 

gets at least one request is l-(l-l/m)'. With i Pc's accessing m Mp's 

simultaneously, the number of busy Mp's can take any integer value from 1 upto 

min{i,m). The probability of exactly j Mp's being occupied is givrn by the ratio 

of the number of ways that j Mp's can be occupied and i-j Mp's not be occupied 

to the total number of ways o' assigning i Pc's among m Mp's i.e. m'. In section 

2.3, it was stated that the numoer of ways that exactly j out of m Mp's can be 

occupied by i Pc's is CM(m,i)*S(i,j). Now, if j Mp's are occupied during the 

current cycle then n-j Pc's make a request to Mp during the next cycle. 

Therefore, given that i Pc's made a request to Mp at the beginning of the 

current cycle, the conditional probability that n-j Pc's will make a new request 

at the beginning of the next cycle (which is also the end of the current cycle) 

is 

CM(m,i)*S(i,j)/ml 

Note  that  the  above expression denotes the probability of a transition from a 

current   state   i   to   a   next   state  n-j.  The  value   of   j   can   range   from   1   to 

min{i,m). 

For   a  multiprocessor  system  with n Pc's  and  m  Mp's, let  k-min(m,n). The 

number of occupied memories in a cycle ranges from 0 to k. Therefore, the number 

.  —-.  .. .-,. 
 -—■**--**-*-'"—.— ^—— ■ 
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TABLE 3.2 

Transition matrix  for a 4xA system with  tp-tw+tc 

0.0800 0.0000 0.0000 0.0000 0.03375 

0.0000 0.0000 0.0000 0.3750 0.56250 

0.0000 0.0000 0.7500 0.5625 0.32813 

0.0000 1.0000 0.2500 0.0625 0.01563 

1.0000 0.0000 0.0000 0.0000 0.00000 

«0 

Xl 

X x2 

X3 

-X4. 

x0 +xl +x2+x3 +x4 - 1 
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Chapter 3 : tiultiprocrssors with tp>tw 
3.1   Discrete Markov Chain Model for tp-ttoHc 

of Pc's that can be assigned at the beginning of a cycle ranges from n-K to n. 

The  approximate  mode!  h.s k+l  slates. Let X^, Xn.k+ .Xn denote the steady 

state probabilities. Then, the execution rate is 

n 
EXi^l-U-l/m^m 

i=n-k 
Table 3.2 shows the transition matrix for a 4x4 multiprocessor sytem. Appendix 

A-5 contains a l.sting of a FORTRAN program that computes the steady state 

probabilities and henre the execution rate for a nxm system. Figure 3.3 depicts 

plots of the execution rate as a function of m and n, obtained from the 

approximate Markov chain model. Table 3.3 compares the analytic results with a 

905? confidence interval obtained by a Monte Carlo simulation of the exact system 

behavior. The simulation consisted of 10 independent experiments of length equal 

to 4000 cycles. 

3.1.1 General Technique for Constant tp-tw+i«tc 

In general, if the processing time is a constant and equal to tw+i«tc, the 

instruction timing diagram is as shown in Fig. 3.4a. In this case, the execution 

phase is i cycles long. This can be modeled by an i-stage server shown in Fig. 

3.4b. At any given time in the execute phase a Pc is in one of the i stages; 

advancing one stage every cycle. Now, the system state can be represented by 

(jiihi-.jj. ^„k,,...,^), where j| is the number of Pc's in the 

execute-stage I, and the k^s denote the memory queue sizes. As betjre, let d 

denote the number of non-zero kfs. Then, at the beginning of the next cycle, d 

—     - - -  
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tw 

tp 

tw  »-)■«■ i*tc 

Figure 3.4a  Instruction timing diagram for tp=tw+i*tc 
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time 
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TABLE 3.3 

Average Number of Busy flp's 

tp-tw+tc 

n x tn 

2x2 

2x4 

2x8 

2 x IB 

4x2 

4x4 

4x8 

4 x IB 

8x2 

8x4 

8x8 

16 

IB 

IB 

IB 

x 2 

x 4 

x 8 

x IB 

98% confidence  interval 
from simulation 
d.eeee . i.Beee) 

(i.eeea , i.eeee) 

d.eeee , i.eeee) 

(i.eeee , i.eeee) 

(1.5B47 , 1.5843) 

(1.8194 . 1.8276) 

(1.912B , 1.9244) 

(1.9418 . 1.9817) 

(1.8251 , 1.8547) 

(2.846B , 2.92B6) 

(3.4858 , 3.534B) 

(1.9886 , 1.94B4) 

(3.4936 , 3.5677) 

(5.4431 , 5.6254) 

(6.814e , 6.9788) 

Analytic 
Result 
1.8888 

i.eeee 

i.eeee 

i.eeee 

i.Beee 

1.8276 

1.9197 

1.9612 

1.9692 

3.8259 

3.5538 

1.9998 

3.8772 

5.9853 

7.8136 

■ -■■ i Ml "*■»--    — — 



mmmm~^mmm 

Chapter 3 : Multiprocessors with tp>tto 
3.1   Discrete Markov Chtin Model for tp-twHc 

Page    81 

Pc's enter execute-stage 1; j, Pc's make new requests to Mp and rt's in the 

other execute stages advance to the next higher execute stage. Thus, for 

example, if the current state is(2,l,0,4i 2,1,1,0) then the next partial state 

is (3,2,1,0; 1,0,0,0) and 4 Pc's make new requests. The different ways that 

these Pc» can be assigned determine the kfs in the next state, which can be 

obtained by using an enumeration tree similar to the one described earlier. 

3.2 DISCRETE MARKOV CHAIN MODELS FOR GEOMETRICALLY DISTRIBUTED TP 

For our next  model, let  the p.ocessing time have a gec-netric distribution 

given by, 

Prob[tp-tw+i»tc] - Z?*^1 

where /3-1-od 

Then, the mean processing time is given by, 

«o 
E /3*od'*(tw+i*tc) 
1.6 

i.e. tw*^*^1 + ^»tc^Ei*«^' 
i: O is« 

«O 
i.e. tw + \ct/i*Z.\*u* 

i-o 

i.e. tw ♦ {c*fi*oc/{l-oc)* 

i.e. tw + oCt\c/{\-oc) 

Thus any mean value of tp greater than tw can be modeled by appropriately 

choosing u. This model is more general than the models of the previous section. 

- .,_-_ 
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Chapter 3 : Multiprocessor» wit'i tp>tw Pare    83 
3.2   Discrete Markov Chain Model for Geometrically Distributed tp 

Also, a single model with e^ as a parameter handles all cses where the mean 

value of tp is greater than tw. The geometric distribution is a discrtle analog 

of the exponential distribution. The measurements reported in chjpter 5 show 

that the processing time distribution is indeed close to a shifted exponential. 

Once   again,   the   representative  state  of  an  exact  discrete   Markov  chain 

model  is given  by the vector MnW^ Also, &,-n and k,  Is the number 

of Pc's queued for Mp[i], l<i<m, and kc Is the number of Pc's in execute state. 

The reduced partial state at the end of the current cycle is given by the vector 

(0)Ji.J«-iJin),   where   jj  max(0>kl-l)   for   l<i<m.  Note   that   Eji   -   n-k0-d,  where 
i=l 

d :s the number of non-zero k/s. Now, upto k0+d Pc's are potentially available 

to   be   reassigned   to  the   various  queues.  Let   the  next   state  be  denoted  by 

(U ..Ij.-.W-   Figure   3.5   shows   the   structure  of   the   queueing   model.   Each   Pc 

has a probability u of going back into the execute phase. Since l0 denotes the 

number of Pc's that are in the execut« phase during the next cycle, the range of 

U is from 0 to k0+d. The value of l0 is governed by the following probability 

function, 
/ko+cK 

ProbM-V   i  Ac^Vd-i o<i<k0+d 

The rest of the next state vector can be determined by using an enumeration 

tree.   Figure   3.6   shows   a   t-oical   enumeration  tree   for   an   initial   state  of   (2= 

2,0,0,0). 

Once   again,   to   reduce   the   number   of   states   let   us   make   the   following 

approximation. At the end of an Mp cycle, those Pc's that were in the Mp queues 

- -—      ■   ■ --— - - — nM.^j..^-  -—      --*, , mämätmam 
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Chapter 3    Multiprocessor» with tp>iu) Page    85 
3.2   Discrete Markov Chain Model for Geometrically Distributed tp 

during the current cycle but not serviced are removed from the queues. They are 

then reassigned to the Mp queues. Now, the state is characterized by the number 

of Pc's that make a request i.e. the number of Pc's that are queued during the 

cycle. Thus, the number of states is n+1, viz. 0,l,2,..,n. Let the number of 

Pc's queued during the current cycle be i. This means the» the other n-i Pc's 

are execi *ing. If the i requests at the beginning of the current cycle result in 

d(<min(i,m)) busy Mp's during the current cycle, then i-d Pc's are left 

unserviced. Therefore, during the next cycle at least i-d Pc's are queued for Mp 

service. Besides, each of the other n-i+d Pc's has a probability ß of making a 

request to memory. 

The  probability that i-d Pc's  are  left in the Mp queues at the end of th« 

current cycle is given by 

CM{m,d)*S(i,d)/mi 

The above expression ensues from the fact that i Pr* make random requests to m 

Mp's   resulting  in exactly d  Mp's  being  occupied. Also, the  probability  that  j 

oi'* of the other n-i+d Pc's make a request at the beginning of the next cycle is 

I      ■     )      ^.J n-i+d-i 

Therefore, the probability that i-d+j Pc's make a request to Mp during the next 

cycle, i.e. probability that the next state is i-d+j is 

CM(m,d)*S(i,d>/m'    *(     j    )*    fi* *  c^-^-J 

Table 3.4 summarizes somfe of the numerical results obtained from the approximate 

model. A listing of the FORTRAN program for this model is included in Appendix 
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TABLE 3.4 

Average number of bucy hp's 
tp — Geometric Distribution 

n x m 

4x2 

4x4 

4x8 

8x4 

8x8 

16 x 8 

IG x )G 

o 93% confidence  interva 
from simulation 

8.1 
8.25 
8.5 
8.75 (8.9138 ,  8.9587) 

8.1 
8.25 (2.2875 ,  2.3258) 
8.5 
8.75 

(1.7382 ,  1.8822) 

8.1 
8.25 
»1 5 

(2.GG87 ,  2.G831) 

8.75 

8.1 
8.25 
8.5 
8.75 

(2.7G75 , 2.8254) 

8.1 
8.25 (4.3588 ,  4.4713) 
8.5 
8.75 

(3.4158 ,  3.5118) 

8.1 
8.25 
8.5 
8.75 

(5.3855 ,  5.5885) 

8.1 
8.25 
8.5 
8.75 

(G.7G43 ,  B.924B) 

Analytic 
Result 

1.8478 
1.7849 
1.5423 
8.9488 

2.G879 
2.3G79 
1.7928 
8.9739 

3.8773 
2.G824 
1.9812 
8.9877 

3.5442 
3.4213 
2.9889 
1.8528 

5.8243 
4.5984 
3.5224 
1.9398 

G.94G1 
G.7858 
5.8G58 
3.7858 

9.8718 
9.8441 
G.9848 
3.8G93 
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A-6. This model will be used in chapter 5 to predict the performance of C.mmp. 

For tp>tw this model is fairly realistic: the processkj time is modeled as I 

geometrically distributed random variable and the memory cycle time is a 

constant. 

3.2.1   Extensions 

The basic geometric model can be used to model systems in which each Pc has 

a private cache memory (Mc). Let the access time of the cache be tf {<tc); ana 

let x denote the probability of making an access to the cache. Therefore, ? 

fraction (1-x) of all memory requests is to Mp. In the queueing model shown Ir 

Fig. 3.7, oc denotes the probability that the execution phase goes throuß* 

another cycle. Thus, ß = l-u \s the probability of a Pc finishing execution and 

making a request to memory. Thus, /(*,=/?*( 1-x) and /S?=/?*x. 

As before, 

Prob{tp=tw+i*tc} = fl^u1 for i=0,l,2,... 

and, 

Prob{tp=tc-tf+i*tc) = fl?*oc< for i-0,1,2,... 

The expected value of tp, given that all accesses are to Mp, is given by 

E[tp | Mp] = tw + tc*/?,*c*/(l-^)? 

Similarly, 

E[ tp | Mc] = tc-tf + \c*ß?*u/([-uy 

Hence, the unconditional expected value of tp is 
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Ott fit 

Service time 
tc 

Picurc  3.7    Queueing model  for multiprocessors with cache memory 
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E[tp] - (l-x)«E[tp : Mp] + x»E[tp : Me] 

- (l-vKtw ♦ tc*{l-x)*oi/(l-o6)] + x»[tc-tf + feM*«/U-*)] 

If  E[tp] is known, u can be computed from the above equation. This model is 

fairly general in that the parameters x and E[tp], tc, tw and tf can be chosen 

arbitrarily,   subject   to   E[tp]   >   tw+x«(tc-tf-tw)   and   tf<tc.   The   distribution   of 

tp is now the sum of two geometries. 

Note that this model, as viewed by the Mp, behaves exactly like the rrodel 

for geometrically distributed tp shown in Fig. 3.5. The ß in Fig. 3.5 is 

equivalent to the fii in fig 3.7, and the * in Fig. 3.5 is equivalent to the ed+/8? 

in fig 3.7. Let R denote the average number of busy Mp's for the model of Fig. 

3.5, but with ß-ßn and ocl-ß^. The values of tw and tc is kept unchanged. Now, 

in the system with the cache, the average number of busy Mp's is also R. Note 

that the expected value of tp is different for the two cases. Now, by 

definition, for every 1-x accesses to Mp there are x accesses to Mc. Consider an 

interval equal to T Mp cycles. During this interval there are R*T busy Mp 

cycles. Hence, there arc R*T*x/(l-x) accesses to Mc. Therefore, the number of 

instructions executed in one Mp cycle is 

R + R»x/(l-x) 

i.e. R/(l-x) 

Thus, the average number of equivalent Mp cycles is R/(l-x). 

For example, let us compute the average number of effective busy Mp cycles 

for ta-tw-5, tc-10, tf-1, x-0.75, E[tp]-15, and n-m-8. The equation for E[tp] in 

^^ - — -   - ■ - 
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terms of u gives ^=28/53. Hence /3l=(l-x)*(l-^)-0.25»25/53. Using /3-0.25*25/53 

for the model of section 3.2, we get R=0.9371. Hence, the average number of 

effective busy Mp cycles is 0.9371/0.25 - 3.7484 

3.3 McCREDIE's EXPONENTIAL SERVER MODEL 

As mentioned in Chapter 2, if the memory cycle time and the processing time 

are assumed to be exponential, the queueing results of Jackson[JackJ63] can be 

used. The structure of McCredie's memory interference model[McCr73] is depicted 

in   Fig.   3.8.   In   terms   of   the   notation   used   in   this   chapter,   X-l/(tp-tw)   (if 

c«i=0),u=l/tc and <^ is the probabiüly of accessing a cache memory whose access 

time is assumed to be negligible. The time from the completion of one reference 

to   main   memory   until  the  next   access  is  exponentially  distributed  with  mean 

l/{\*ß).  The  model  allows  the first  Mp module to have a  different  cycle time 

1/v. The probability that a request to main memory is to the first Mp module is 

f;  the  requests to the other Mp modules being uniformly distributed. Let k be 

the number of Pc's queued. Using Jackson's formulae and some clever grouping of 

termst the execution rate is obtained as 

t (n-k)*\*P(k) 
k=0 

tThe reader is referred to McCr73 for the details of the derivation. 
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.k-i 

(n-k)l    Zv(k).f(k) 
Hto 

and W{K) . (/).».)■ , n!/(n-k)! 

Figure 3.9 shows some of the results predicted by the model. The advantage of 

this model is that it allows a cache memory and an Mp module with a different 

speed and a different access probability. Note that with the presence of the 

cache X^l/Op-tw); but X-l/üp-^tw). 

3A STRECKER'S ANALYSIS 

This section will briefly review Strecket analysis of multiprocessors 

with tp>tw[StreW70], The processing time is assumed to be a constant. The number 

of processors queued is, in general, less than n. The probability a Pc is queued 

is denoted by p.. Then, assuming a binomial distribution fen the queued 

processors, the execution rate is 

"»♦[Hl-p./m)"] 

Now, because the number of Pc's queued is binomially distributed, the average 

number of Pc's queued is n*p„. Hence, 

i urn— ■   n i ■ ii    
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Pa - average numbflr of Pc's queued/n 

Strecker's flow diagram of the instruction execution is shown below. 

output rate (m/to)* [l-( l-J^mf] 

i 
Processor 

delay 

tp-tw 

Memory 
System 

/ i 

Strecker states that the average number of Pc's not queued is the product of the 

average unit execution rate and the effective Pc delay tp-twt. Thus, 

pm = 1 - (m/n/tc) * (l-a-pB/m)") * (tp - tw) 

which is a n-th order polynomial equation in p., which has only one solution for 

P. in  the  interval (0,1). This value of p. is used in the earlier expression for 

the  execution  rate. This model is fairly simple and good for larger values of 

tp. 

tThis follows directly from Little's formula, L-\*W [cf. LittJSl]. 
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3.5 THE EFFECT OF CACHE ON SYSTEMS WITH tp>tw 
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One of the techniques used to increase 'he execution rate of uniprocessor 

sy?*ems involves the use of a fast cache memory, Mc. In multiprocessor systems, 

the cac'-s not only provides a memory with a smaller access time but also reduces 

the traffic through the crosspoint switch. This reduces the memory interference 

and reduces the amount of time the processor spends waiting for Mp service. In 

fact, the use of private caches for the Pc's is being considered for CMLTs 

C.mmp. 

In this section, we shall characterize the processing time by a single 

constant value tp; with Pu = [/rr\. Let the cache have an access time tf (<ta) and 

a rewrite time tr (<tw). Since tp>tw an; tr<tw, the cache always recovers before 

the Pc can make its next request. Let <*. be the probability of accessing Mc i.e. 

the probability that the cache contains the information needed by the Pc. The 

probability of accessing Mp is /M-c*. 

I 

Now, the time needed to execute one unit instruction out of cache is 

Wc=tp+tf. Let Wm be the average time needed to execute one unit instruction out 

o' Mp. Hence, the average time needed to execute one unit instruction is 

Wavg = oC*VJc + /?*Wm 

Thprpforp, the execution rate is n/Wavg 

The problem now reduces to evaluating Wm. Let us focus our attention on a 

a^^M^^teiM MMBMMMM _ 



 ■■■■   w • . iiiau^i.n^rwwBiamnnmwnnmvmmMm i wm-ni^m ■ ion i| ,■!■ •■IIHI 

Page 96 

Chapter 3 : Multiprocessori with tp>tw 
3.5   T/ifl Effect of Cache on Systems with tp>tw 

single Mp unit. Further, let us assume that the number of queued Pc's for that 

Mp unit follows the binomial distribution; and let p,, be probability that a Pc 

is queued for one of the Mp's. Hence, the probability of being queued for the Mp 

unit under consideration is pjm, s.nce all Mp's have the same speed and 

Pu-l/m. From the binomial distribution for the queued Pc's, ii follows that, L, 

the av"ra«5e number of Pc's queued for the Mp is n*pm/m. The rate X at which Pc's 

are ssrved by this Mp is m»[l-(l-pM/m)n]/tc. Using Little's formula, L-\*W, we 

obtain the average waiting time for an Mp as 

r\*pjm*\c /[Hi-Pm/m)"] 

Therefore Wm, the average time for one instruction out of Mp, is 

tp-tw + n*pm/m * tc / [l-d-Pm/m)"] 

Hence, 

Wavg - «-«(tp-tw) + ß*{n*pjm « tc / [l-d-pjm)"]} 

Now, the only undetermined quantity is pm. In T Mp cycles the total number 

of busy Mp cycles is 

T.-m^Hl-pJmr^T 

Hence, the total number of busy cache cycles is 

T?'U/fi*{m*[l-{l-pJm)n]*J] 

and   the   total   number   of   unit   instructions   is   the   sum   of   the   above   two 

expressions, i.e. T.+T,. Therefore, the unit execution rate is 

m/{ß*\c) * [l-{l-pjnn 

Recall that we had earlier found the execution rate to be n/Wavg. Equating the 

two and rearranging the terms we get 
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Pa - 1 - m/(n»^*tc) * [c/*(tp+tf) + /?*(tp-tw)] * [l-(l-p„/m)n] 

The above equation can be solved iteratively for p. A FORTRAN program that 

computes the execution rate for this model is listed in Appendix A-7. Figure 

3.10 shows the execution rate of an 8x8 and a 16x16 multiprocessor system for 

varios values of the other parameters. Some simulation confidence intervals are 

also depicted. Note that with u-O, this model yields the same results as 

Strecker's model described in Section 3.4. The major advantage of this model is 

that it allows the cache speed to be a control parameter of the analysis. 

3.6 CONCLUDING REMARKS 

In general, if the processing time is greater than the memory rewrite time, 

then in the absence of memo-y contention one instruction is executed by each Pc 

every ta+tp time units. Thus, the theoretical maximum value of the average 

number of busy Mp's is n*tc/(ta+tp). He-ice, if m>n, even in the absence of 

memory interference, the Mp's will have idle periods. Comparing Fig. 2.11 and 

Fig. 3.3a, the curves for tp>tw reach their asymptotic maximum for smaller 

values of m. Systems with tp>tw are generally processor speed limited and 

relatively small performance improvement will be obtained if the memory speed is 

increased. 

 m .•.«A^i^i^ 
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Figure 3.10a    The Effect of Cache on a 8x8 system 
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CHAPTER  4 

MULTIPROCESSOR SYSTEMS WITH TP<TW 

In   this   chapter,   an   approximate   model   is   proposed   for   multiprocessor 

systems with tp<tw and Pu-l/m. Thr processing time will be assumed to be a 

constant.   In  this  case, a classical queueing model  is made difficult due to the 

following reason.  In conventional queueing models, the service center can start 

serving a new customer as soon as the last customer leaves. For core memories, 

due   to  the   rewrite  time,  the  memory  has  to  wait.  However,  for  tpitw, this 

problem can be surmounted by delaying the Pc in thd Mp queue for an additional 

time equal to tw and reducing the effective execution time by the same amount. 

Hence, with this modification, the Mp can start serving the next Pc In its queue 

when the current Pc leaves the queue. But, with tp<tw, the Pc can make a new 

request   before  the  memory  that served it  last  recovers. Strictly  speaking, a 

discrete Markov chain model can be formulated by makirg the basic time interval 

equal  to the  highest common factor of tp.tw, and ta. However, the number of 

possible  epochs  in a memory cycle and the size of the state vector and the 

number of states is very large. 
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4.1 AN APPROXIMATE MODEL FOR TP<TW 

The results o'. the discrete Markov chain model of section 2.2 will be used 

to obtain an approximate of the execution rate. Consider an Mp cycle in which i 

Mp's are initially busy. If tp=tw, the i active Pc's make a request at the end 

of the cycle. However, if tp<tw, an active Pc makes a new request before the Mp 

that served it recovers. If this request is made to an Mp that is not busy, the 

new request can be served immediately. Consider an Mp cycle in which i Mp's are 

initially busy. During this cycle i Pc's are initially active. Now, these i Pc's 

can receive more service if they make their next request to the m-i idle Mp's. 

Now, if this request is made to an idle Mp, the effective service time (not 

including waiting time) for the active Pc is ta+tp. However, if this request is 

made to a busy Mp there is no increase in the execution rate due to the fact 

that tp<tw. Hence, the effective service time is tc. 

Let bj denote the probability that i Mp's are busy, obtained from the exact 

discrete Markov chain model for tp=tw. Now, the average number of idle Mp's that 

receive the next request is given by 

(m-i)*([l-(l-l/m)') 

Thus, the probability that an active Pc gets serviced by an idle Mp is 

(m-i)*[l -d-l/mn/i 

Note  that  the  above is a conditional probability based on the fact that  i  Pc's 

are   active.   Therefore,  the  unconditional   probability  that  the  effective  service 
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n x m 

TABLE 4.1 

Average Number of Busy tip's 

tc-18      ta-tw-5 

tp-5 tp-4 tp-3 tp=2 tp-1 tp-B 

2x2 1.5880 1.5385 1.5798 1.6216 1.6667 1.7143 
2x4 1.758r> 1.8451 1.9512 2.8782 2.2847 2.3579 
2x8 1.8758 2.3215 2.1928 2.3958 2.6483 2.9483 
2 x lb 1.9375 2.1182 2.3362 2.6841 2.9414 3.3792 

4x2 1.7588 1.7722 1.7949 1.8182 1.8421 1.8667 
4x4 2.6218 2.6947 2.7832 2.8721 2.9669 3.8681 
4x8 3.2652 3.4429 3.6413 3.8633 4.1145 4.4481 
4 x 16 3.6268 3.9851 4.2297 4.6131 5.8729 5.6345 

8x2 1.8758 1.8868 1.8987 1.9188 1.9231 1.9355 
8x4 3.2657 3.3148 3.3654 3.4176 3.4714 3.5269 
8x8 4.9471 5.1823 5.2676 5.4439 5.6324 5.8345 
8 x IB 6.3149 6.6579 7.3483 7.4692 7.9539 8.5857 

16 x 2 1.9375 1.9436 1.9497 1.9558 1.9628 1.9683 
16 x 4 3.6278 3.6538 3.6811 3.7888 3.7369 3.7654 
16 x 8 6.3154 6.4163 6.5284 6.6288 6.7392 6.8543 
16 x 16 9.6258 9.9299 18.254 13.688 18.969 11.366 
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time of an active Pc is ta+tp is given by 

Z b, *(m-i)*[l -(l-l/m)n]/i 

Let   f   be   the   value   of   the   above   expression.   The   number   of   active   Pc's   is 

obtained  from  the  discrete  Markov chain model  for tp-tw; denoted b' X.  The 

expected value of the service time for an active Pc is 

f * (ta+tp) + (l-f)* tc 

Hence,  the  execution  rate, expressed as unit  instructions per second, is given 

by 

X /[f*(ta+tp)-t-(l-f)*tc] 

The average number of busy Mp cycles can be obtained by multiplying the above 

expression by tc. 

Table 4.1 presents the results obtained for various values of m, n, ta, tp, 

and tc. Since this model is approximate it is meaningful to compare its results 

with a confidence interval obtained from simulation. Table 4.2 compares the 

results of this model and Strecker's model[StreW70] with simulation results. The 

results of this model are within 57. of ttn simulation. Figures 4.1 and 4.2 

illustrate the effects of n and m on the MpAR. 

4.2 STRECKER'S MODEL 

Strecker[StreW70] uses hir, approximate model for tp-tw to analyze tp<tw. He 
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defines the probability of an active Pc making a request to an occupied Mp as 

p(occ) ■ average number of occupied Mp's / m 

The probability of a request to an u. occupied Mp is 

p(unocc) = 1 - p(occ) 

Using his model for tp=tw, 

p(occ) = 1 - (l-l/m)n 

Thus,   he average amount of time required to execute an instruction is 

E[t] * p(occ)*tc + p(unocc)*(ta+tp) 

- tc + (l-l/m)n*(tp-tw) 

Therefor.-, the average number of busy Mp cycles is 

tc *m*[l-(l-l/m)n]/E[t] 

Note that Strecker assumes a constant probability for an Mp being occupied. 

In the model of Sec. 4.1 the probabilty of an Mp being occupied depends on the 

number of ousy Mp's during the cycle. Simulation results summarized in Table 4.2 

show that the model proposed in section 4.1 is better than Strecker's model. 

4.3 CONCLUDING REMARKS 

With one Pc and one Mp there is no advantage gained by the fact that tp<tw. 

However,   if   an   active   Pc   can   make   its   next   request   to   an   unoccupied   Mp 

ll lilmil   ~~*-~—~~—^^—-'^~--~.—  ■■  -  ■ ^^»^ML^J^JkJ^^1i<m>ijlt<.J«aa-^^^. ——  ^ . . ■ -   -  ^-^..-^^.^ -._..—^^ 
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TABLE Ä.2a 

Average number of  busy Hp's 

Comparison of Analytic llodels and Simulation Results 

ta - tw - 5 tp - 1 to - 18 

n x m Analytic Model 38% conf dence interval Strecker's 
(Section 4.1) from simulation Model 

2 x 2 1.BS67 (1.5531 . 1.6853) 1.BB67 
2 x A 2.2847 (2.1342 , 2.2233) 2.2581 
2x4 2.B48J (2.6833 . 2.6421) 2.7827 
2x8 2.6483 (2.6833 , 2.6421) 2,7Ö27 
2 x IB 2.9414 (2.3248 , 2.9858) '..9888 

4x2 1.8421 (1.7746 , 1.7882) 1.9231 
4x4 2.3663 (2.8182 , 2.3872) 3.1386 
4x8 4.1145 (3.3382 , 4.1832) 4.3245 
4 x IB E..B729 (5.8587 , 5.1874) 5.2682 

8x2 1.3231 (1.8514 . 1.3131) 1.9953 
8x4 3.4714 (3.2^58 , 3.3368) 3.7497 
8x8 5.6324 (5,3417 , 5.5758) 6.6879 
8 x IB 7.3533 (7.7336 , 7.38/3) 8.4755 

IB x 2 1.3628 (1.3225 . 1.9551) 2.8888 
IB x 4 3.7363 (3.6847 , 3.7187) 3.9758 
IB x 8 6.7332 (6.4681 . 6.5891) 7.4852 
IB x IB 18.363 (18.5273 ,18.7559) 12.814 
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TABLE 4.2b 

Average number of busy flp's 

Comparison of Analytic Models and Simulation Results 

ta - tw - 5   tp - 3   tc - IB 

n x m Analytic Model 38% conf dence interval Strecker*8 
(Section 4.1) from simulation Model 

2 x 2 1.5798 (1.5368 . 1.5457) 1.5783 
2x4 1.3512 (1.3058 . 2.8012) 1.9718 
2x8 2.1328 (2.2013 , 2.2053) 2.2140 
2 x IB 2.3362 (2.3441 , 2.3436) 2.3507 

4x2 1.7343 (1.7623 , 1.7767) 1.8987 
4x4 2.783? (2.6358 . 2.8028) 2.9191 
4x8 3.6418 (3.6021 , 3.6737) 3.7502 
4 x 16 4.2237 (4.2313 , 4.2863) 4.3056 

8x2 1.8387 (1.8538 , 1.3054) 1.9937 
8x4 3.3654 (3.2646 , 3.3402) 3.6731 
8x8 5.2676 (5.1470 , 5.2406) 5.6386 
8 x 16 7.8483 (6.3457 . 7.1531) 7.3289 

16 x 2 1.3437 (1.3212 , 1.3551) 2.8888 
16 x 4 3.6811 (3,5241 . 3.7183) 3.9679 
16 x 8 6.5284 (6.3328 , 6.4753) 7.2261 
16 x 16 18.254 (3.9522 .10.350) 11.893 

«HMU 
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significant increases in the execution rate can be obtained. The theoretical 

maximum execution rate for each Pc is l/Ua+tp); the average number of busy Mp 

cycles is limited by n*tc/(ta+tp), if m is large enough; else it is bound by m. 

 ~ - —   -    - 
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CHAPTER  5 

EMPIRICAL MEASUREMENTS, PARAMETER ESTIMATION AND MODEL VALIDATION 

An important aspect in the development of mathematical models is the 

modeling process: the abstraction of the complex physical process to a model 

that is mathematically tractable. This chapter is devoted to validating the 

mathematical model. 

One of the main parameters of the models developed in this thesis is the 

processing time. In order to evaluate the probability distribution and the mean 

of the processing time, measurements were made of the dynamic usage of the 

POP-11/20 instruction set. B. Aygun's Dynamic analysis and Measurement 

Environment [AyguB73] was used to simulate the execution of over 34,500 PDP-11 

instructions in carefully selected main-loop portions of four programs. The 

PDP-11 Processor Handbook, Interface Manual and Engineering Drawings were used 

to obtain the instruction timing for the various instructions and addressing 

modes. This information can be used to predict the performance of a 

multiprocessor system like C.mmp, which uses the PDP-11/20 as the processor. 

Note that the analytic models in this thesis are general; C.mmp is used in this 

chapter as a typical case for validation and illustration of the use of these 

models. 

Mi^UMMM 
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5.1 PDP-11/20 OVERVIEW 

A brief discussion of the instruction timing and formats is presented here. 

The PDP-11/20 processor has five major states : fetch, source, destination, 

execute and service. The first four states are used during normai operation; 

service is used during special operations, such as traps and interrupts. 

Fetch: locates and decodes an instruction. When fetch is completed, the 

processor enters another major state, depending on the type of instruction 

decoded. It is possible to go from fetch to any other state, including back 

to fetch. Every instruction starts by first entering the fetch state. 

Source: decodes the source field of a double-operand instruction and 

transfers the source operand to the appropriate location. The source major 

state is entered only if the instruction is a double-operand type. 

Destination:   decodes   the destination   field   of   the   appropriate   instruction. 

Destination    tieids    are present    in    both    single    ana    double-operand 

instructions. Destination operand is accessed and transferred to the 

appropriate location. 

Execute: uses the data obtained during previous major states to perform the 
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15 

OP  CODE 
■J 1 1-—i »      * 

Destination Address 

#♦  #   .►« 

T  

ODE I & 
i L 

6 5 /! 3 

Rn 
-i «_ 

* - Specifies Direct or Indirect Address 

** = Specifies Hov; Register will be used 
**» 

Specifies One of 8 General Purpose Registers 

Figure 5.1a  Single Operand Instruction Format 

♦*  ♦   «»»    «#  # #♦» 

OP CODE 
-i i- 

15 

MODE i 0 
i—J I 

Rn 
-r 

MODE ! 0 

12 11 10 9 8    r~S     Tl2 
Rn 
I  i 

0 

Source Address 

Destination Address 

* - Direct/Deferred Bit for Source and Destination Address 

♦* » Specifies How Selected Registers are to te used 

•*« - Specifies a General Register 

Figure 5.1b  Double Operand Instruction Format 
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specified operation. During this state arithmetic operations, logic 

functions, and tests are performed, and the destination location is updated 

if required. 

Service: used to execute special operations, such as interrupts, trap, etc. 

Although the major states follow the sequence of fetch, source, destination, 

execute, and service, not all major states are required for every instruction. 

The processor enters only those major states necessary to execute thp current 

instruction. The minimum sequence is from a fetch of one instruction directly to 

the fetch of the next instruction. The maximum sequence is fetch, sou'ee, 

destination, execute, service and back to fetch. The Interface Manual contains 

more detailed information about the states needed for various instructions. 

The instruction format for all single operand instructions (such as clear, 

increment, test) is shown in Fig. 5.1a. Operations that imply two operands (such 

as add, subtract, move and compare) are handled by instructions that specify two 

addresses. The first operand is called the source operand, the second the 

destination operand. Bit assignments in the source and destination address 

fields may specify different modes and different general registers. The 

instruction format for the double operand instruction is depicted in fig 5.1b. 

Table 5.1a summarizes the four basic modes used with direct addressing; the four 

basic modes used with deferred addressing are described in Table 5.1b. The 

PDP-11 Processor Handbook contains numerous illustrative examples. 

_______.,,, mmt^ 
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TABLE 5.1a 

Direct Addressing Modes of PDP-11 

Binary 
Code 

6 6 B 

e i B 

1 8 8 

1 1 8 

Name Assembler 
Syntax 

Register      Rn 

Auto increment  (Rn) + 

Autodecrement  -(Rn) 

lnde> X(Rn) 

Function 

Register contains operand. 

Register is used as a 
pointer to sequential 
data then incremented. 

Register is decremented 
then used as a pointer. 

Value X is added to (Rn) 
to produce address of the 
operand. Neither X nor 
(Rn) is modi fied. 

  - -   -   - - - 
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TABLE 5.1b 

Deferred or Indirect Addressing Modes of PDP-11 

Binary Name Assembler Function 
Code Syntax 

e e i Register •Rn or (Rn) Register contains the 
Deferred address of the operand. 

e i i Autoincrement «(Rn) + Register is first used 
Deferred as a pointer to a word, 

then incremented by 2. 

i e i Autodecrement a-(Rn) Register is decremented 
Deferred by two and then used as 

a pointer to a word 
containing the address 
of the operand. 

i e i Index 
Deferred 

eX{Rn) Value X(stored in a 
word following the 
instruction) and (Rn) 
are added and the sum i s 
used as a pointer to the 
uord containing the 
address of the operand. 

 — 
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5.2 VALIDATION OF UNIT INSTRUCTION CONCEPT AND ESTIMATION OF TP 

In this thesis, processor behavior has been modeled as an ordered sequence 

consisting of a memory request followed by some processing. A study of the 

PDP-11/20 instruction timing shown here exhibits a similar behavior.The access 

time starts when the Mp receives a request and ends when the data is received by 

the Pc. 

Each PDP-11/20 instruction can be broken down into sequences of unit 

instructions. Figure Z.2. shows the instruction timing for the various addressing 

modes and instruction types. The PDP-11 Processor Handbook lists the total time 

for executing the various instructions. The access time is assumed to be 450 ns. 

Figure 5.2 is consistent with the handbook. Table 5.2 summarizes the 

contribution of the different cases to the effective processing time. Note that 

these figures take into account the delay due to the PDP-11 Unibus. Table 5.3 

contains the instruction mix obtained by using Aygun's D/lMEf. Table 5.4 gives 

the effective processing times and their relative frequencies; the cumulative 

probability distribution funct i is plotted in Fig. 5.3. The access time of the 

memory was assumed to be 450ns and the basic clock period of the PDP-11/20 

processo- was taken to be its nominal value of 140ns. The average processing 

tThe author acknowledges B. Aygun's assistance in obtaining the instruction mix. 
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Single Operand Instruction. & Double Operand Instructions with srcmode-O 

D3tmode=0 

  fetch 

560 

Dstmodc/O 

1- execute 
700 

i 
l 

ta     I 

560 

next   instruction 
fetch 

^60  

*  fetch Mr • dest. next instr. 

560 

T 
700     210 

 ^^— exec. —*■ 

280    560+490 

-* fetch 

560 

I ta ; 
• 
i 

i   Y 

( 
1 
i 

«♦ 280 
t**    ,    tw 

— 

Y   !• 
ta dstmode   =   1 + 2+/, 

700 

I       ta ta dstmode   =   3+5+6 

700 700 
i      ta 1       +o        • » ' 1       Xa        ' l ta        •    dstmode =7 

Figure 5.2      PDP-ll/20 Instruction Timing 
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Doublo Operand Inotructionp with srcmode/O 

D8tmode=0  Srcmode^O 

i  fetch  »4-^ 

560 700  , 490 

source H^  exec' -► 
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I l 
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^ ffitch 
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ta i 
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i i ta     srcmode=7 
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560 
T  r 

i ta i 
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700 . 490 
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490  210 
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Pig. 5.2 (contd.) 
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branch Instructions 
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560 

ta 

490+1050 560 

Return   Subroutine 

560 

ta 
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I  ta 

490 

Jump to Subroutine 

560 

ta 

1190 

ta 
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Pig 5.2 (contd.) 
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TABLE 5.2 

Effective Processing Time 

tp  in ns. No.   of occurrences 

SINGLE OPERAND  INSTRUCTIONS 
DOUBLE OPERAND WITH SRCnODE«8 

dstmode ■ 8 

dstmode ■ 1+2+4 

dstmode - 3+5+B 

dstmode ■ 7 

1828 

918 
558 
848 

918 
558 
848 
788 

918 

848 
788 

DOUBLE OPERAND INSTRUCTIONS - SRCflODE^B 

srcniode*8 A dstmode-B 

common to all cases 

srrmode - 3+5+G 

srcmode - 7 

1198 
1B18 

788 

788 

1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
2 

1 
1 

1 

2 
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8rcinode»<B A datmodeuß 

common to alI cases 

srcmode » 3+5+B 

srcmode « 7 

dstmode - 3+5+G 

dstmode ■ 7 

BRANCH INSTRUCTIONS 

successful 

unsuccessful 

RETURN SUBROUTINE 

JUMP SUBROUTINE 

1190 
788 
558 
8A8 

788 

788 

788 

788 

2188 

12G8 

1478 
1858 

1198 
978 

1 
1 
1 
1 

1 

2 
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TABLE 5.3 

Instruction Mix 

Single Operand Instructions 

SstmodesO 

Dstmode=l+2+4 

DBtmode=3+5+6 

Dstmode=7 

Double Operand Instructions with srcmode^O 

Dstmode=0 

Dstmode=l+2+4 

Dstmode=3+5+6 

D8tmode=7 

Double Operand t srcmode^O . dstmodeoO 

Srcmode=l+2+4 

Srcmode=3+5+6 

Srcmode=7 

Double Operand : srcmode^O . dstmode^O 

Srcmode=3+5+6 

Dstmode=3+5+6 

Branch Instructions 

Successful 

Unsuccessful 

Return A. Jump to Subroutine 

Jump 

Return 

19 ^ 

10 5S 

4.2 5S 

5.755f 

3.5# 
0.0 fl, 

0.156 

2 % 

2% 

16 Jt 

11 JJ 

35S 

3^ 
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TABLE 5.4 

Relative Frequency Distribution of the Effective Pr ocessing Time 

Value in ns. 

558 

788 

848 

918 

978 

1858 

1198 

1268 

1478 

1B18 

1828 

2188 

Frequency 

14.49 X 

18.28 X 

14.49 X 

11.43 X 

1.53 X 

1.53 X 

11.93 X 

5.81 X 

1.53 X 

/.35 X 

11.84 X 

8.16 % 

Average Value - 1158 ns. 
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5.2   Validation of Unit Instruction Concept, Estimation of tp 

time  obtained  from this analysis is  1150 ns. The dotted curve in Fig. 5.3 is  a 

shifted exponential distribution given by 

Prob{tp<x} = 1 - exp[-(x-450)/700] for x>450 
-0 for  x<450 

5.3 MODEL VALIDATION VIA C.mmp PERFORMANCE EVALUATION 

In this section the models are used to predict the performance of C.mmp and 

compared with actual measurements. Figure 5.4 shews the effect of D.map and the 

crosspoint switch on the parameters tp, ta and tw. The access time of the C.mmp 

core memory is 250 ns. However, a 200 ns nominal switch and memory control delay 

yields an effective ta of 450 ns. Each Mp is 8-way interleaved. Thus the rewrite 

time of 400ns is overlapped with the next access if the next access is to one of 

the other 7 submoduki of the Mp-module. Assuming random accessing within a 

module the average rewrite time experienced is only 50 ns. The effective average 

processing time is 1200 ns; the 50ns delay associated with the relocation 

registers D.map is added to the basic value of 1150 ns. 

The   following   experimenttt   was   conducted   on   the   partial   realization   of 

C.mmp available to date. A program was loaded into one Mp-module and the three 

ttC.Pierson and W.Broadley were instrumental in the experimental set-up. 
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h- tp ^4^- ta ■H 

Pc 

HP 
tw 

©     ©®©©®     0®     ® 

Legend: 

1 

2 

3 

5 
6 

7 
8 

9 

Pc receives data from Mp 

Pc finishes operating on the data 

Pc has address of new data 

Dmap computes physical address of data and 
puts it on the Pc-Mp "bus. 

Memory has received request at the crosspoint switch 

Memory controller (part of crosspoint switch) selects 
the request to be served and sets up switch. 

Data read from storage location 

Data sent through switch 

Memory recovers and starts serving next request (if any) 

Figure 5.4 Unit instruction timing diagram for C, mmp 
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5.3   Model Validation via C.mmp Performance Evaluation 

available processors executed the code individually, in pairs of two, and 

co'lectively. The number of memory cycles was measured. Table 5.5 presents the 

results of the experiment. The analytic results predicted by the geometric model 

of section 5.2 are depicted in Table 5.6; simulation results with processing 

time having the shifted exponential distribution of Fig. 5.3 are also listed. 

The analytic results are very close to the measured performance. However, for 

the 3x1 multiprocessor case the analytic model is about 107. higher than the 

measured value. This is due to the read-modify-write cycles which make the Mp 

service time greater than tc. The effect of these read-modify-write cycles is 

not crucial when the interference is not excessive. The simulation ind analytic 

results show that the performance can be predicted by simple mathematical models 

with reasonable accuracy. 

MJHi—ll—  ■   ..    ... ... , ^_  .-  -.—         _      ..          
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TABLE 5.5 

Summary of Measurements on C.mmp 

Number of Up accesses per second 

(Mill ions/sec) 

PctA] Pc[B] PclC] Up Access Rat 

8 8 1 8.G2815 

8 8 8.B1885 

8 8.613657 

1 1.14899 

1 1.14672 

8 1.14657 

1 1.42466 

8 - Pc is OFF 

--^-~ ■      --  - ■ ■ - - — ..,.   
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TABLE 6.6 

3 1 1.5B373 

4 * 2.397B7 

8 8 4.76889 

16 IB 9,48638 

Page 129 

Analytic Results 

E[tp]   - 1288 ns. 

ta -458 ns.       tc-588 ns. 

Number  of Pc's        Number of flp's      flp Access Rate        Simulation 
(HiMions/sec) Results 

1 1 8.68686 

2 1 1.14157 

2,411 

4.751 

9.47B 
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CHAPTER 6 

CONCLUSIONS 

In the previous chapters several analytic models have been presented. 

Chapter 2 was devoted to systems in which the effective processing time is equal 

to the memory rewrite time. An important result observed was the absence of a 

law of diminishing returns. The performance of a multiprocessor system with n 

processors and n memories continues to rise at a constant rate as n increases. A 

simple exponential server model showed this rate to be 0.5; a constant 

processing time model predicted a slope of 0.586 for the average number of busy 

Mp's. The exponential server model gives the average number of busy Mp's as 

n-\:m/(n+m-l). An approximate result for constant processing times gives the 

average number of busy Mp's as ix/Hl-I/WJ, where i-max(n.m) and j-min(n,m). 

An intuitively obvious conclusion limits the maximum number of active Pc's by 

min(n,m). This maximum is reached if each processor accesses only ^ne memory all 

the time. The model of section 2.6 analyzed the effect of skewing the 

processors' access patterns. Thus, the maximum MpflR is min(m,n)/te. 

Chapter 3 contained several models for multiprocessor systems with tp>tw. A 

new model for geometrical y distributed processing time was developed. A 

different analytic approach was used to model systems with private caches for 

the   processors.   In  general, since the Pc is slow, it  takes  fewer  memory  units 

-» , iiMiiiiiriünnmi—Mifiiii iiiiiiimiiiii iimii Wiiliiii m 
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for the performance to exh(bit a saturation effect. This can be discerned by 

comparing Figs. 2.11 and 3.3a. In the absence of memory contention (which can 

now be possible even for m<n) the maximum Mp/IR is n/(ta*tp). 

Chapter 4 discusses multiprocessor systems in which tp<tw. Since the 

processor is fast, performance improvement is obtained for m>n. If m-n, these 

systems do not yield significant improvement over systems with tp-tw. In 

general, adding an extra memory improves the performance more than adding an 

extra processor. The maximum average Mp/]R is the minimum of m/tc and n/(taHp>, 

the maximum is achieved if the processors do not interfere. Note that since the 

Pc is very fast, it can make a request to the memory that served it "ast before 

the rewrite cycle is over. In this case, he Pc has to wait even though no other 

Pc is being serviced by the memory module. 

Chapter 5 presented some empirical measurements of PDP-11 programs; C.mmp 

uses PDP-ll's as the Pc's. It also illustrated how unit instructions can be 

extracted from the machine instructions. The measurement' and the 

characterization of the processor's instructirn timing was used to obtain the 

distribution of the effecti-e instruction processing time, which was then used 

to evaluate analytically estimates of the unit execution rate of C.mmp. Contrary 

to common intuition, the unit instruction concept yields a larger effective 

processing time for register-register operations, since the processing time is a 

measure of the interval between two memory accesses. The average processing time 

was found to be 1150 ns. for the PDP-11/20. The average processing times for the 

MaMaMBanaB^M^HaalHaH^Maaa^.-_a_alMMaiaMaaaBlaM 
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Chapter 6 : Conclutiom 

PDP-11/40 and 11/45 ire approximately 625 and 400 nanoseconds. A PDP-11/20 

instruction   can   require   from   1   to   7   accesses  to   merrjry,  but   the   average 

PDP-11/20 instruction makes approximately 2 accesses to memory; it comprises two 

unit instructions. 

6.1 APPLICATIONS 

The models developed in this thesis should give computer system designers 

considerable insight into some of the design issues. If tp<tw, the performance 

(as indicated by the Mp/]R) saturates for some value of m that is greater than n. 

if tp>tw, however, it may saturate in some cases for m<n. Most system designers 

tend to use optimality of cost/performanco as an over-riding factor. Another 

important issue is the extendability or the effect of changing the system 

parameters[BhatS72]. Performance requirements often change and the initial 

design should be modifiable to meet the new performance desired. A good 

extendable design should therefore have a certain amount of unutilized capacity- 

The system should be designed to have a performance slightly greater than that 

which maximizes performance/cost. 

In a multiprocessor system, the alternatives for change include increasing 

the number of Pc's or Mp's, as well as replacing the Mp's or Pc's with faster 

versions.  The   adding  of  Pc's and Mp's It  a less viable  alternative due to the 

—. . - . - -   --■       miiiiiiir  
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extent of the engineering effort involved. In some cases, the entire central 

crosspomt switch may have to be either redesigned or rebuilt. However, 

replacement with faster upward compatible processors or faster memories is 

easie'. It is an undisputed fact that increasing the speed of the processor or 

memory by a factor of k will not enhance the performance by the same factor. The 

analytic models suggest that increasing the processor speed causes the 

saturation point to shift to a larger m. If tp< tw a well-designed system is 

likely to have m>n. Since the memory is the limiting factor, the best choice for 

enhancing the performance is the use of faster memories. However, if the 

original design used more memory modules than needed to saturate the 

performance, faster processors will also yield some improvement. If tp>tw 

substitution of faster processors effects an increase in the access rate. To 

allow for future substitution of faster processors it is desirable to choose 

m>n. Thus, a rule of thumb indicates that a good design choice is m>n, with a 

not too large a mismatch in Pc end Mp speeds. As described in chapter 5, C.mmp 

is a 16x16 multiprocessor system with tp=1200 ns, ta=450 ns and tw=50 ns. The 

MpAH expected is 9.476 million/sec. If the PDP-11/20 processor is replaced by a 

faster Pc (11/45) with a typical processing time of 450 ns the MpflR increases to 

15.6 million/ser. However, since the system is very much processor speed 

limited, a 150 ns cache for each Pc increases the MpAR only by 147. and 207. for 

hit ratios of 0.5 and 0.7 respectively. 
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Chapter 6 : Conclusions 
6.1   Application» 

6.1.1 An Illustrative Example 

In ord. r to illustrate the use of the models developed in this thesis, 

consider a 8x8 multiprocessor system with tp-tw. This configuration is still 

memory limited, as seen from Fig. 2.10. Let the memory cycle time be 950 ns; 

access time-400 ns. Assume a switch delay of 200 ns and a 50 ns delay in the 

relocation hardware. The processor has a typical processing time of 450 ns. 

Hence, the effective processing time is 500 ns; effective access time is 600 nsj 

and the effective cycle time is 1100 ns (assuming that 50 ns of the switch delay 

is overlapped with the rewrite cycle). 

The discrete Markov chain model of Chapter 2 gives the average number of 

busy Mp's to be 4.9471; the Mp/IR is 4.4974 million/sec. Let us evaluate the 

effect of replacing the original Pc with either a 300 ns or a 150 ns processor. 

Note that the effective processing time is 350 ns and 200 ns. The corresponding 

percentage increase in the Mp/IR, as computed by the models of chapter 4, is 

4.337. and 9.057.. This is not surprising since the original system was memory 

speed limited. 

instead of changing the Pc's, the Mp's could be -.hanged. If the new Mp has 

ta-250 ns and tw-300 ns, the effective ta and tw are 450 ns and 250 ns 

respectively. The new cycle time is 700 ns. Since tp>tw the models of chapter 3 

can be used. The new Mp access rate is 44.397 higher. 

A third alternative  is the  use of a  150ns access time cache. The value of 

.■...„...-,—  ^.-~ 
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e^, the probability of finding Ue data in the cache, depends on the size of the 

cache. Consider three sizes that result in u-O.b, wOJ and <*-0.8. The cache 

model of chapter 3 predicts performance enhancement of 672, 1077. and 1307,. 

The above performance data coupled with cost information can be used to 

select a profitable parameter change. When the number of design alternatives is 

large, simple analytic models help to determine a judicious choice. 

6.2 PROPOSALS FOR FUTURE WORK 

This thesis is not a panacea for multiprocessor system designers. An 

attempt has been made to develop some simple basic tools. Anyone working with 

systems is aware of their high degree of complexity and is likely to be shocked 

when he ^ees the simplicity of the models suggested. He may react negatively 

when he notices how much of the real system has been left out and how 

restrictive the assumptions are that have been made in the analysis. This 

skepticism is not entirely justified; simple analytic models often exhibit 

overall behavior similar to the complex system modeled. 

One of the main assumptions made in this thesis is the independence of 

successive memory requests. In most real systems, due to program locality, there 

is some serial correlation between requests made by a Pc. Thus, if a Pc acresses 

inn IIIMIII 
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Chapter 6 : Conclusiom 
6.2   Propo»al» for Future Rexearch 

Mp[j] it continue«- to do so for some amount of time. A modeling technique 

suggested is dividing the system activities into various phases. The number of 

Mp's accessed in each phase is different. Jackson's general exponential server 

model[JackJ63] indicates that the stationary state probabilities depend only on 

the average frequency of visits to the various servers. Therefore the effect of 

the serial correlation of requests is not seen. However, for real systems which 

are not exponential, some degradation may be observed. We also assume Pij-l/m. 

As indicated in section 2.6, this is not the most desirable access pattern. The 

effect of skewing the access patterns is to mt- >e the MpAR. Given the above 

two opposing effects, Pu-l/m serves as a good parameter value for comparison at 

a high level. 

Since no a priori empirical evidence is available, a large portion of 

future research activity should involve the measurement of real systems. This 

will bring to light the seriousness of the assumptions and establish a proper 

framework and area of applicability of analytic models. Measurement of dynamic 

program behavior should be stressed. It should be remembered that the output of 

the models can only be as good as the input. System analysts should not neglect 

the parameter estimation phase of performance preoction. 

Future analytic studies should attempt to differentiate between instruction 

and data references. At a higher level, memory interference models can be used 

as a part of an overall hierarchical model of the computer system at the program 

level.  Empirical  studies  should  be conducted  in order  to obtain  good concise 
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characterization of component and subsytem behavior. Such information can be 

used to drive more efficient simulations of complex systems. 
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C 
C 
c 
c 
c 
c 

1973 

1974 

1975 

28 

21 
30 

22 
31 
C 
C 
2888 

17 
C 

60 

APPENDIX A-l 

LISTING OF PROGRAfl FOR THE ALG0RITHI1 SHOWN IN FIG. 2.5 

DISCRETE MARKOV CHAIN TP-TU - STATE(NO. OF STATES. NO. OF PC) 
INTEGER STACK(IG.IB).STATE(25.IB).A{16),FIRST(IB) 
1,IDONE(25).PTR(16).DONE(1B).NUIAYS(1B),BOUND(17) 
DltlENSION TRANS(25.25).B(25).Z(25) 
COmON TRANS.B.Z.NPARTS 
INTEGER SUn.T.X.O 
TYPE 1973 

FORMAT(IX.'NUMBER OF PROCESSORS'./) 
ACCEPT 1974,NPC 

FORMAT (I) 
TYPE 1975 

FORMAT(IX.'NUMBER OF MEMORIES'./) 
ACCEPT 1974.NMP 
MINPM=MIN0(NPC,NMP) 

M-l 
PTR(NPC-1M 
GO TO 31 
CONTINUE 
IF (NPC. GT. M) PTR (NPC-M) -NPARTS+1 
DO 21 I.2,M 
A(I).l 
SUM-0 
DO 22 U2.M 
SUM-SUM+A(I) 
A(1)-NPC-SUM 

URITE(15.2088).(A(I).I-1.M) 
F0RMAT(1X,1B(I3.1X)) 

NPARTS.NPARTS+1 
DO 17 K=1.M 
STATE(NPARTS.K)-A(K) 

T-2 
CONTINUE 
IF(T.GT.M)GO TO 128 
X-A(1)-A(T) 
IF(X.GT.l)GO TO 188 
T-T+l 

  ~-. ■   — ■MM mm 
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Appendix A-1 
Lilting of Program for the Algorithm thoun in Fig. 2J> 

GO TO B8 
188 CONTINUE 

ITnP-A(T) 
DO 181  I-2,T 

181 A(I)-ITnP+l 
GO TO 38 

128 fl-M+l 
B0UN0(n)-NPARTS 

C WRITE(15,2881),NPARTS 
2881 FORMAT (/.IX.'VoWoWrVn'r*   MS.'^rt^AVr****',/) 

IF(M.LE.f11NPri)G0 TO 28 
URITE(15,111),NPARTS 

HI FORMAT (/.IX/NUMBER OF PARTITIONS-M) 
URITE(15,3113) 

3113 FORMAT(///) 
C 
C 
C 
C INITIALIZE THE STACK,  NUAYS,  FIRST 
C 

00 2188 I-1,NPC-1 
STACK(I,1)-I 
NUIAYSm-l 

2188 FIRST(I)-2 
FIRST (NPC-D-l 

C 
C BEGIN UALK THROUGH TREE 
C 

L-NPC 
1 CONTINUE 

IF(D0NE(L).EQ.1)G0 TO 25 
C 
288 K-L-l 

J-FIRST(K) 
C 

DO 18 I-J,NMP 
IF(STACK(K,I).NE.STACK(K,J))GO TO 15 

18 CONTINUE 
C 

D0NE(L)-1 
FIRST(K)-l 
I-Ul 

C 
15 NUAYS(L)-I-J 
C 

DO 388 KK-1,NMP 

MMlillMMIIiaiHtMH&M    —   --^ ^ ~ ^ «^ 
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360 

C 

C 

c 
c 
c 
c 

c 

c 

32 
C 

34 
C 
35 
C 
38 
C 
C 
c 

c 
c 
25 

c 
c 
c 
c 
leee 
c 

STACK(L.KK)-STACK(K,KK) 
STACK(L.J)-STACK(K.J)+1 

IF(D0NE(L).NE.1)FIRST(K)-I 

IFd.EQ.NPOGO TO 1888 

SET PTR TO ORIGINAL STATE AT LEVEL L 

IF(DTR(L).NE.8)ID0NE(PTR(L))-1 
K-NFC-L 
K1.B0UND(K)+1 
K2-B0UND(K+1) 

DO 35 JJ-K,1,-1 

DO 32 KK-K1,K2 
IF(STATE(KK,JJ).EQ.STACK(L,JJ)+1)G0 TO 34 
CONTINUE 

KK-8 
GO TO 36 
Kl-KK 

CONTINUE 

PTR(L)-KK 

L-L+l 
GO TO 288 

DONE(L)-8 
L-L-l 
IF(L.EQ.l)GO TO 7777 

GO TO 1 

FIND TERMINAL STATE 

CONTINUE 
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Appendix  A-1 
Listing of Program for the Algorithm thoum in Fig. 2.5 

nee 

c 
use 

c 

c 

132 
C 

987G 
C 
134 
C 
135 
C 
C 
c 

ise 
c 

c 
c 
c 
c 
7777 
C 
CS544 
C4455 
C 

DO nee K-i,Nnp 
IF(STACK(NPC,K).EQ.e)GO TO 1158 

CONTINUE 
K-NnP+1 

K-K-l 
Kl-BOUND(K)+l 
K2-B0UND(K+1) 

DO 135 JJ-K,1,-1 

DO 132 KK-K1,K2 
IF(STATE(KK,JJ).EQ.STACK(NPC,JJ))G0 TO 134 

CONTINUE 

TYPE 987B 
FORMAT(IX,'CANNOT FIND TERMINAL STATE !!!!!!') 

Kl-KK 

CONTINUE 

UPDATE TRANSITION MATRIX 

TEMP.l 
DO 161 NNPC-1,1,-1 
II-PTR(I) 
TEMP-TEMPvfNUAYS(I+l) 
iF(ii.EQ.e)Go TO ise 
IFdOONEd I) .NE.l) TRANS(KK. 11 )-TRANS(KK, I D+TEMP 

CONTINUE 

IF (NPC.LE.NMP) TRANS (KK.NPARTS)-TRANS (KK,NPARTS)+TEMP>vNMP 

GO TO 1 

TRANSITION MATRIX HAS BEEN GENERATED 

CONTINUE 
DO 5544  I-1,NPARTS 

URITE(15.4455),{TRANS{I,J),J-1,NPARTS) 
F0RMAT(1X,25(F8.4,1X)) 

DO 7258 I-1,MINPM 
Y-NMPv«vI 

i   -■ --  .     .   . . ^x   -^ 
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71B0 
7250 
C 
C5544 
4455 
C 

8008 
C 

C 

c 

c 

8250 
C 
8500 
C 

8750 

C 
c 

c 
c 
c 

c 

5 

10 

DO 7250 J-B0UND(I)+1,B0UND(I+1) 
DO 7100 K-1,NPARTS 

TRANS(K.J)-TRANS(K,J)/Y 
CONTINUE 

DO 5544  Ul.NPARTS 

URITE(15,4455),(TRANS(I,J),J-1,NPARTS) 
FORMAT(IX,25(F8.G. IX)) 

DO 8000 I-l.NPARTS 
TRANS(I,I)-TRANS(1,I)-1.0 

TRANS(NPARTS,I).1.0 

B(NPARTS)-1 

CALL GAUSS 

DO 8500 I-i,niNPn 

TMP-0 
DO 8250 J-B0UND(1)+1,B0ÜN0(I+1) 

TnP=TnP+Z(J) 

occ-occ+Tnp»vi 

URITE(15,8750),OCC 
FORMAT (//ax/EXPECTED VALUE OF NO. OF BUSY MP- ' 

1,F10.B) 

STOP 
END 

SUBROUTINE GAUSS 
THIS SUBROUTINE SOLVES SIflULTANEOUS LINEAR EQUATIONS 

A«X«8 

DinENSION A(25,25),B(25),X(25) 
connoN A,B,X,N 
INTEGER S 

S-N 
CONTINUE 
IF(S-l) 50,50,10 
CONTINUE 
IF(S.GT.2)G0 TO 105 
O-A (1,1) ,vA (2,2) -A (1,2) »vA (2,1) 

— ---•"-■■ ■■I r in iiliiiiiiMaiirai'MUIMliaMiiif rtiirtaüM—■ «HütaAlMtaB.. - .^   
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Listing of Program for the Algorithm shown in Fig. 2.5 

IF(ABS(D).GT.B.B8B5)G0 TO 185 
TYPE 25 
GO TO 188 

185 DO 28 1-1,8 
n-s-i+i 
IF(ABS(A(t1,S)).GT.8.8885)60 TO 38 

26 CONTINUE 
TYPE 25 

25 FORMAT(IX,'THE COEFFICIENT MATRIX IS SINGULAR' 
GO TO 188 

,/) 

38 CONTINUE 
IF(M.EQ.S)G0 TO 48 
T-B(S) 
B(S)-B(M) 
B(M)-T 
DO 35 J-1,S 
T-A(S,J) 
A(S,J)-A(M,J) 
A(M,J).T 

35 CONTINUE 
48 CONTINUE 

DO 45 1.1,5-1 
K-8-1 
IF(ABS(A(S,S)).GT.B.B885)G0 TO 42 
GO TO IBB 

42 B(K).B(K)-B(ShvA(K,S)/A(S,S) 
DO 45 J-1,S-1 
A(K,J)-A(K,J)-A(K,S),vA(S,J)/A(S,S) 

45 CONTINUE 
S-S-1 
GO TO 5 

58 CONTINUE 
DO 78 I-1,N 
SUM-B(I) 
DO 68 J-1,I-1 
SUM.SUM-A(I,J),vX(J) 

68 CONTINUE 
IF(ABS(A(I,I)).GT.8.BBB5)G0 TO 61 
GO TO IBB 

61 X(I)-SUM/A(I,I) 
78 CONTINUE 
188 CONTINUE 

RETURN 
END 

-      -   
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C APPENDIX A-2 
C 
C     LISTING OF PROGRAM FOR THE ALGORITHM SHOWN IN FIG. 2.8 
C 
C 
c 
C THIS PROGRAM SOLVES THE OISCRETE MARKOV CHAIN FOR TP-TU 
C USING SINGLE LEVEL TRANSITIONS 
C LONG VERSION 
C 

INTEGER STATE(186,16).BOUND(17),B1(17) ,B2(17) 
INTEGER SI(116.16).52(146,16) 
DIMENSION TRANS(186.186),B(186),Z(186),X12(146,116),X23{186,146) 
DIMENSION C(186) 
COMMON NPARTS,TRANS,B,Z 
INTEGER T,Q 
INTEGER A(16),BD(17) 
TYPE 1973 

1973 FORMAT(IX,'NUMBER OF PROCESSORS'./) 
ACCEPT 1974,NPC 

1974 FORMAT(I) 
TYPE 1975 

1975 FORMAT(IX,'NUMBER OF MEMORIES'./) 
ACCEPT 1974,NMP 
URITE(15,1949),NPC,NMP 

1949 FORMAT(IX,'NUMBER OF PROCESSORS -',12,/, 
1IX,'NUMBER OF MEMORIES -',12,/) 
MINPM=MINB(NPC,NMP) 
LEVEL-NPC 

C 
IPRT-1 
GO TO 4800 

C 
C     PARTITION NPC INTO NMP PARTS 
C     FINAL STATE VECTOR — STATE 
C 
421 NPARTS-NNPART 

DO 4421 I-1,M 
4421 BOUND(I)=BD(I) 
C 

IPRT-2 
LEVEL-NPC-1 
GO TO 4000 

C 
C     PARTITION NPC-1 

mi ^IIMMM-*-1
- - -^^-^^■*-^^^*-^-^"- .-—*-—, *~~-^.. ,_.^^,...„.._ ^ -..■.-■....■   ..  ..  .... ..^ .-■^J--... ^ -.^.. .....■.■ .. .  . 
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Listing nf Program for the /ilgorithm shown in Fig. 2.8 

C 
c 
A22 

4422 
C 
c 
c 

PARTIAL ST, TE VECTOR — S2 

20 

25 

27 
32 
48 
C 
C 
C 

c 

c 

N2.NNPART 
DO 4422 I-l.M 

B2(I)-BD(I) 

GENERATE NUMBER OF HAYS OF GOING FROM S2 TO STATE 

LSRC-niNB(NPC-l,NnP) 
DO 1 I-l.NPARTS 
DO 1 J.1,N2 
X23(I,J)=B 
DO 40 K-l.LSRC 
I1-B2{K)+1 
I2-B2(K+1) 
DO 40 L.I1.I2 
Kl-BOUND(K)+l 
K2-BDUND(K+2) 
IF(n'NPn.LT.<+l)K2.B0UND(K+l) 
n 32 KK-K1,K2 
n=0 
jj.niN0(niNPn.K+i) 
DO 20 Nl.JJ 
IF(S2(L.I).EQ.STATE(KK.I))G0 TO 20 
IF(S2(L,I).NE.STATE(KICI)-1)G0 TO 32 
n-n+i 
II-I 
CONTINUE 
IF(n.NE.l)GO TO 32 
DO 25 MI.NnP 
IF(S2(L,I).NE.S2(L,II))G0 TO 27 
CONTINUE 
I-I+l 
X23(KK,L)=I-II 
CONTINUE 
CONTINUE 

UPDATE TRANSITION MATRIX — TRANS 

K-l 
Kl-BOUNO(K)+l 
K2-B0UND(K+1) 

DO 100 L-1,N2 

DO 35 JJ-K,1,-1 

**--  ■■ ■■ - ■■ ■ ■ ■-  -^'-—• -■  -   - - 
■■'-■ — -'  ^.i. 
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5G32 
C 

34 
C 
3B 
C 
3B 

58 
iee 
c 
c 
c 

280 

c 
c 
c 
c 

423 

4423 
C 
C 
c 

c 

341 

DO 5B32 KK-K1,K2 

IF(STATE(KK,JJ).EQ.S2(L.JJ)+1)G0 TO 34 
CONTINUE 

KK-a 
GO TO 3B 
Kl-KK 

CONTINUE 

CONTINUE 
IF(KK.EQ.0)GO TO 108 
DO 50 M.NPARTS 
TRANS(I,KK)=TRANS(I,KK)+X23(I,L) 

CONTINUE 

DECRErENT LEVEL 

LEVEL-NPC-2 
CONTINUE 

IF{LEVEL.EQ.0)GO TO 300 

PARTITION LEVEL 
PARTIAL STATE VECTOR — SI 

IPRT=3 
GO TO 400a 

N1=NNPART 
DO 4423 I-l,n 

B1(I)-B0(I) 

COHPUTE NUAYS FOR GOING FROM 81 TO S2 

LSRC-niN0(LEVEL.NMP) 

DO 341 I-1.N2 
DO 341 J-1.N1 

X12{I,J)-0 
DO 5740 K-l.LSRC 
I1=B1(K)+1 
I2.B1(K+1) 
DO 5740 L.I1,I2 
K1=B2(K)+1 
K2-B2(K+2) 
IF(niNPn.LT.K+l)K2=B2(K+l) 
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Lining of Program for the Algorithm shown in Fig. 2.8 

DO 5732 KK-Kl.KZ 
n-e 
jj-niN8(niNPn.K+i) 
DO 577  I-l.JJ 
IF(S1(L.I).EQ.S2(KK,I))G0 TO 577 
IF(S1{L,I).NE.S2(KK,I)-1)G0 TO 5732 
n-n+i 
II-I 

CONTINUE 
IFCfl.NE.DGO TO 5732 
DO 5725  I-II.NMP 
IF(S1(L.I).NE.S1(L,1I))G0 TO 979 

CONTINUE 
I-I+l 

X12(KK,LM-II 
CONTINUE 
CONTINUE 

577 

5725 

979 
5732 
5748 
C 
C 
C 

1255 
C 
C 
C 

MATRIX MULTIPLICATION TO GET NUAYS FROM 51 TO STATE 

IC-1 
GO TO 125 

CONTINUE 

UPDATE TRANS 

K-NPC-LEVEL 
IF(K.GT.MINPM)GO TO 588B 
Kl-BOUND (O+l 
K2-B0UN0(K+1) 

c 
DO 5888 L-1,N1 

C 
DO 5835 JJ-K.l.-l 

C 
DO 5832 KK-K1,K2 
IF(STATE(KK.JJ).EQ.S1(L.JJ)+1)G0 TO 5834 

5832 CONTINUE 
c . 

KK-e 
GO TO 583B 

5834 Kl-KK 
C 
5835 CONTINUE 
C 
5836 CONTINUE 

  ■ - - ■'"' -- . . . ■IM     —'—tfiiiiiiifrüMi 
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5858 
5808 
C 
C 
c 

c 
c 
c 
c 

424 

4424 
C 
C 
c 

591 

5928 

5925 

IF(KK.EQ.B)GO TO 5880 
DO 5858 I-1,NPARTS 

TRANS(I,IOO.TRANS(I.KK)+X23{I,L) 
CONTINUE 

DECREMENT LEVEL 

LEVEL=LEVEL-1 
IF(LEVEL.EQ.8)GO TO 388 

PARTITION LEVEL 
PARTIAL STATE VECTOR — S2 

IPRT.4 
GO  TO 4888 

N2-NNPART 
DO 4424  1-1,n 

B2(I)-B0(I) 

COriPUTE NUAYS FROfl S2 TO SI 

LSRC.niN8(LEVEL,NHP) 

DO 591 I-1,N1 
DO 591 J-1,N2 

X12(I,J)-8 
DO 5948 K-1,LSRC 
I1-B2(K)+1 
I2-B2(K+1) 
DO 5948 L-I1,I2 
K1-B1(K)+1 
K2=B1(K+2) 
IF(niNPH.LT.K+l)K2-Bl«+l) 
DO 5932 KK-K1,K2 
11-8 
JJ-niN8miNPM,K+l) 
DO 5928  I-1,JJ 
IF(S2(LtI).EQ.Sl(KK,I))G0 TO 5928 
IF(S2(L,I).NE.S1(KK,I)-1)G0 TO 5932 
n-M+l 
il-l 

CONTINUE 
IF(n.NE.l)GO TO 5932 
DO 5925 I.II,NnP 
IF(S2(L,I).NE.S2(L,II))G0 TO 5927 

CONTINUE 

~**m ■- -  ■   
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I-I+l 
5927 
5932 
5948 
C 
C 
c 

12B8 
C 
C 
c 

c 

c 

c 

6332 
C 

G334 
C 
B335 
C 
G33G 

G358 
G388 
C 
c 
c 

3c _ 

358 

XIKKK.LM-II 
CONTINUE 
CONTINUE 

MATRIX MULTIPLICATION GIVES NUAYS FROM S2 TO STATE 

IC-2 
GO TO 125 

CONTINUE 

UPDATE TRANS 

K-NPC-LEVEL 
IF(K.GT.MINPM)GO TO G388 
K1-B0UND(K)+1 
K2-B0UND(K+1) 

DO G388 L-1,N2 

DO G335 JJ-K,1,-1 

DO G332 KK-K1,K2 
IF(STATE(KK,JJ).EQ.S2{L,JJ)+1)G0 TO G334 

CONTINUE 

KK=8 
GO TO G33G 

Kl^KK 

CONTINUE 

CONTINUE 
IF(KK.Ea.8)G0 TO G388 
DO G35B I-l.NPARTS 

TRANS(I,KK)-TRANS{I,KK)+X23(I,L) 
CONTINUE 

DECREMENT LEVEL 

LEVEL-LEVEL-l 
GO TO 288 

CONTINUE 
IF(NPC GT.NMP)G0 TO 488 
DO 358  I-l.NPARTS 

TRANS (I. NPARTS) -TRANS (I. NPARTS) +1.8,vNMP,vX23 (1,1) 

■--  ■  ■■ 
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48e 
c 
c 
c 
c 
7777 
C 
C5544 
C4455 
C 

7182 
7258 
C 
C5544 
C4455 
C 

8888 
C 

C 

c 

c 

8258 

9321 
C 
8588 
C 

8758 

C 
C 
C 

CONTINUE 

TRANSITION MATRIX HAS BEEN GENERATED 

CONTINUE 
DO 5544 Nl.NPARTS 

URITE(15.4455).(TRANS(I,J),J-1,NPARTS) 
F0RnAT(lX.25(F8.4.1X)) 

DO 7258  Ul.niNPn 
Y-(1.8*NnP)**I 
DO 7258 J=BOUND(n+l,BOUND(I+l) 
DO 7188 K-1,NPARTS 

TRANS (K.JNTRANS«.J)/Y 
CONTINUE 

DO 5544  I-l.NPARTS 
UIRITE(15,4455).(TRANS(I,J),J-1,NPARTS) 
r-0RnAT{lX,25(F8.B.lX)) 

DO 8888 I-l.NPARTS 
TRANS{I,I)-TRANS(I.I)-1.8 

TRANS(NPARTS,I)-1.B 

B(NPARTS)=1 

CALL GAUSS 

DO 8588  Ul.fllNPfl 

Triple 
DO 8258 J-BOUND(I)+l,BnUND(I+l) 

Tnp=Tnp+z(j) 
URITE(15.9321),I,TnP 

FORnATdX.'PROBCNO.  OF BUSY nEI1S-M2,' )-MX,F18.8) 

OCC-OCC+TflP*! 

URITE(15,8758),0CC 
FORMAT(//.IX/EXPECTED VALUE OF NO. OF BUSY MP- ' 

1,F18.6) 

STOP 

MATRIX MULTIPLICATION IN-LINE SUBROUTINE 

■- -——■-'• .. .-.::~^-^U~^.~~^~ 
-   ■- - -■ 
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Appendix A-2 
Lifting of Program for the Algorithm shown in Fig. 2.8 

125 CONTINUE 
N-NPARTS 
NH-NZ 
n-Nl 
IFdC.EQ.DGO TO 126 
NM-Nl 
ri-N2 

126 CONTINUE 
C 

DO 511  M.N 
DO 5111  J-l,n 
C(J)-8 
DO 5111 K-l.Nfl 

5111 C{J)-C(J)+X23(I,K)v,X12(K.J) 
DO 511  J-l.n 

511 X23(I,J)-C(J) 
IFdC.EQ.DGO TO 1255 
GO TO 12B8 
STOP 

C 
C 

C IN-LINE SUBROUTINE FOR GENERATING PARTITIONS 
C STATE VECTORS 
C 
c 

^000 "    MlNL-niN8(LEVEL,NnP) 
C 

NNPART=B 
sun-0 
n-i 
GO TO 31 

22B CONTINUE 
DO 21 1-2.M 

21    A(I)-1 
38   sun-B 

DO 22 I-2,n 
22        sun-sun+Ad) 
31 A(l)-LEVEL-SUn 
C 
C URITE(15,2000), (Am.I-l.ri) 
2000 F0WAT(1X,1G(I3,1X)) 

NNPART-NNPART+1 
GO TO   (171,172.173,172), IPRT 

171 CONTINUE 
DO 1711  K-l,n 

1711 STATE (NNPART, KNACK) 

     ^~~~~~~~*~~*~~~-~~~~a.,. 
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181 

172 

1722 

182 

173 

1733 

183 
1788 
B8 

1888 

181 

1228 

C 
2281 

C 
c 

IFCNMP.LE.fDGO TO 1788 
DO 181 K-n+l.NflP 

STATE(NNPARTlK)-8 
GO TO 1788 

CONTINUE 
DO 1722 K-l.n 

S2(NNPART,K)-A(K) 
IF(Nf1P.LE.mG0 TO 1788 
DO 182 K-fl+l.NnP 

S2{NNPART,K)-B 
GO TO 1788 

CONTINUE 
DO 1733 K=l,n 

S1(NNPART,K)-A(K) 
IF(NnP.LE.n)GO TO 1708 
DO 183 K-f1+l,NnP 

Sl(NN?ART,K)-8 
T-2 

CONTINUE 
IF(T.GT.n)GO TO 1228 
IIX-A(1)-A{T) 
IFCIIX.GT.DGO TO 1888 
T-T+l 
GO TO 68 

CONTINUE 
ITflP-AlT) 
DO 181   I-2,T 

A(I)-ITnP+l 
GO TO 38 

n-n+i 
BDmUNNPART 
WRITE(15,2281),NNPART 

FORMAT (/, 1X,'i>i>M»i ' ,12,' »MUMMi1, /) 
IF(n.LE.niNL)GO TO 228 
GO TO   (421.422.423,424),IPRT 

END 

C 
C 
C 

SUBROUTINE GAUSS 
THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS 

A,vX-6 

DIMENSION A(18G,18B),8(186),X(186) 
COMMON N,A,B,X 
INTEGER S 

-      -      —  -----  —■„ , ****** m- --   --   -  ■"—■"-— - ---^^—iiniifgiiii iiini^i^^r iiinii 
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Appendix A-2 

"»ting of Program for the Algonihrn shown in Fig. 2.8 

C 

5 

18 

18E 

28 

25 

35 
4" 

42 

45 

58 

68 

S-N 
CONTINUE 
IF(S-l)  58.58.18 
CONTINUE 
IF{S.GT.2)G0 TO 185 

?r^(i;1),vA(2'2,-A(1'2,^2.i) 
1F(ABS(D).GT.8.8885)G0 TO 185 
TYPE 25 
GO TO 188 

DO 28 I-1,S 
M-S-I+l 

CONTINUE(n,S,,,GT,0,0005,GOT030 

TYPE 25 

GFSR^T1{88,,THE C0EFFIC,ENT "W* IS SINGULAR'./, 
CONTINUE 
IF(f1.EQ.S)G0 TO 48 
T-B(S) 
B(S)=B(n) 
B(f1)-T 
DO 35 J-l.S 
T-A(S.J) 
A(S,J)-A(n.J) 
A(n,J).T 
CONTINUE 
CONTINUE 
DO 45  I-1,5-1 
K-S-I 

(IF(ABS(A{S.S)).GT.8.8885)G0 TO 42 

B«)-B(K)-B(S)vfA(K,S)/A(S,S) 
DO 45 J-1,S-1 

cA0N^NUEA(K,J,~A(K'S,>vA(S•J,/A(S's, 

S-S-l 
GO  TO 5 
CONTINUE 
DO 78 M.N 
SUfl-B(I) 
DO G8 J-1,I-1 
sun-sun-Au.jhvxu) 
CONTINUE 

IF(ABS(A(I.I)).GT.8.8BB5)G0 TO Gl 
GO TO 188 

^^■BMMMH  IIHI ■  
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6i        xm-sun/AU.n 
78 CONTINUE 
188 CONTJNUE 

RETURN 
END 

 - —'—--" 
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C 
C 
c 
c 
c 
c 
c 
c 

c • 
c 

1973 

1974 

1975 

C 
c 

see 

c 

488 
C 

588 
C 

18 

APPENDIX A-3 

APPROXinATE MARKOV CHAIN MODEL FOR TP-TU 

DIMENSION S(17,17).CM(1B,16),TRANS(17,17) 
INTEGER COMB(IB,IB) 
DIMENSION Z(17),B{17) 
INTEGER D 
COMMON TRANS.B.Z.MINPM 

TYPE 1973 

FORMAT(IX,'NUMBER OF PROCESSORS',/) 
ACCEPT 1974.N 

FORMAT(I) 
TYPE 1975 

FORMAT(IX,'NUMBER OF MEMORIES',/) 
ACCEPT 1974.M 
XM-1. 8>vM 
MINPM-MIN8(N,M) 

DO 388 1-1,17 
S(I,1).8 

S(l,l)-1 
S(l,I).e 

DO 488 I-1,1B 
DO 488 J-1,I 

S(I+l.J+l)-1.8,vJ,vS(I,J+l)+S(ItJ) 

DO 588 U1.1B 
CMd.D-I 
DO 588 J.2,I 

CM(I.J)-CM(I.J-l)va.8>v(I-J+l) 

CDMBd.D-l 
DO 28 K-2,16 
COMB«,l)-K 
L-MIN8(K,1B) 
DO IB U2,L 
COMB(KtI).COMB(K,I-l),v(K-I+l)/I 

—   --- i -  - - - m~mm. 



Appendix A-3 
Approximate Markov Chain Model for tp'tu * 

29 CONTINUE 
C 
C 

DO 1998 M.niNPM 
C 

XM.9*I/Xn 
C 

DO 799 J-9,I 

r     uJL™*  NUMBER 0F ACTIVE PC,S THAT "AKE A REQUEST TO THE I HP'S 
C     XPROB IS THE PROB THAT N-UJ PC MAKE A REQUEST TO THE I HP'S 

IF(J.EQ.B)XPR0B-(1.8-XI),v,vI 
XriULT-(1.9-XI)v«v(I-J) 
IFd.EQ.JIXMULT-l.B 
IF (J. NE. 9) XPROB-1. NCQNB (I, J) ,v (XI ,v,vJ) ^XMULT 
NN-N-I+J 
Kl-niN9(NN,I) 
11-1 
IF(K1.EQ.9)11-0 
DO 799 L1-I1,K1 
TEHPl-l 
IF{L1.EQ.9)G0 TO 595 
Xl.(1.9,vI)vnvNN 
TEHPl-CM (I, LI) t8 (NN+1,Ll+1) /Xl 

C NBUSY-NO.  OF BUSY MP'S DURING NEXT CYCLE 
595 K2-niNB(I-J,r-I) 

12-1 
IF(K2.EQ.9)12-9 
DO 799 L2-I2,K2 
TEriP2-l 
NBUSY-L1+L2 
IF(L2.Ea.9)G0 TO 635 
X2-(l.g,v{ri-I))v„v(I-J) 
TEMP2-Cn(t1-I.L2)vfS(I-J+l,L2+l)/X2 

S TRANS(NBUSY'I) ■TRANS (NBUSY. I > +XPR0BvJEnPl,vTEnP2 /ö0 CONTINUE 
C 
ißöe CONTINUE 
C 

DO 8999  I-l.niNPfl 
TRANS(I,I)-TRANS(I,I)-1.0 

8000 TRANS(MINPn,I)-1.9 
C 

BmiNPm-i 

CALL GAUSS 

-■'-    ■ - - ■ --j-^'"—"- -"•- -.-—--.-.  >.-^-^..-..       ^.^I. ....■.■„■. .^      -■.—    .......-■..^-J. | n rtiinin lim gtmääMtmma^ttämäimttumM 
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Appendix A-3 
Approximate Markov Chain Model for ip-iio 

2088 
C 

1 
C 

c 
c 

c 
c 
c 

c 

5 

IB 

185 

28 

25 

38 

35 

DO 2888 I-l.niNPH 
UER-UER+1.8»vZ(n,vI 

CONTINUE 

TYPE l.UER 
F0RnAT(lX,F18.B) 

STOP 
END 

SUBROUTINE GAUSS 
THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS 

A>vX-B 

DIMENSION A(17.17),B(17).X(17) 
COMMON A.B.X.N 
INTEGER S 

S-N 
CONTINUE 
IF(S-l) 58.58,18 
CONTINUE 
IF(S.GT.2)G0 TO 185 
D-A(l,l),vA{2,2)-A(1.2)vfA(2,l) 
IF(ABS{D).GT.8.BB85)G0 TO 185 
TYPE 25 
GO TO 188 

DO 28 I-1,S 
M-S-I+l 
IF(AB?(A(M,S)).GT.B.BB85)G0 TO 38 
CONTINUE 
TYPE 25 
FORMAT(IX.'THE COEFFICIENT MATRIX IS SINGULAR',/) 
GO TO 188 
CONTINUE 
IF(M.EQ.S)GO TO 48 
T-B(S) 
B(S)-B(M) 
B(M)-T 
DO 35 J-1,S 
T-A(S,J) 
A(S,J)-A(M,J) 
A(M,J)-T 
CONTINUE 
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4e 

42 

45 

56 

G0 

61 
78 
lea 

CONTINUE 
DO 45  1-1.8-1 
K-S-I 
IF(ABS(A(S,S)).GT.9.8805)00 TO 42 
GO TO IBB 
B(K)-B(IO-B(ShvA(K,S)/A(S.S) 
DO 45 J-l.S-l 
A(K,J)-A(K,J)-A(K.S)»vA(S,J)/AfSlS) 
CONTINUE 
S-S-l 
GO TO 5 
CONTINUE 
DO 78 I-1,N 
SUn-B(I) 
DO GB J-l.I-1 
SUf1-SUn-A(I,JhvX(J) 
CONTINUE 
IF(ABS(A(I, I)).GT.8.8885)00 TO 61 
GO TO IBB 
X(I)-SUn/A(I,I) 
CONTINUE 

CONTINUE 
RETURN 
END 

■-!-■- - ..-.■■.   -1 
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C 
C 
c 
c 
c 
c 
c 
c 
c 
c 

1973 

1974 

1975 

C 
c 
c 

18 
11 
C 
C 
c 

bo 
78 

APPENDIX A-4 

APPROXIMATE MODEL FOR ARBITRARY P(I.J). TP-TU, n>-N. 

P(I.J)-ALPHA   FOR I-J 
-B      OTHERUISE 

DIMENSION QPRdB.lG) 
DIMENSION RATE(16).¥(18,161 

DATA ALPHA/8 8. B5..1..15..2..25..3..35..4..45..5..55..B. 
1.65,.7,.75,.8..85..9,.95.1.8/ 
TYPE 1973 

FORMAT(IX,'NUMBER OF PROCESSORS'./) 
ACCEPT 1974,NPC 

FORMAT(I) 
TYPE 1975 

FORMAT (IX,'NUMBER OF MEMORIES',/) 
ACCEPT 1974,NMP 
,.INPM-MIN8(NMP,NPC) 
XM-1. NMP 
XN=1.3>vNPC 

COMPUTE UER FOR VARIOUS VALUES OF ALPHA 

DO 9999 IJK-1,21 
A.ALPHA(IJK) 
B-(1.B-A)/(XM-1) 
DO 11 Ul.NPC 
DO 18 J=1,NMP 
PROB(I,J)-B 
PROB(I,I)-A 

COMPUTE QUEUE ING FREQUENCIES BASED ON ACCESS FREQS. 

DO 78 N1,NPC 
DO 78 J-1,NMP 
Y(I,J)-1.8 
DO 58 L=1,NPC 
IF(L.EQ.nGO TO 58 
Y(I,J).Y(I,J),v(1.8-PR0B(L,J)) 
CONTINUE 
CONTINUE 

.. — ._  UiMu    ii    ■!    II ii    III ^ 
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DO 60  I-1,NPC 
DO BB J-l.NMP 
QPR(I,J)-8.8 
DO B5 L-1,NPC 
IFd.EQ.DGO TO 65 
aPR(I,J).PROB(L,J),v{l-Y(L,J))+QPR(I,J) 

B5 CONTINUE 

QPR(I,J).(1.8-Y(I,J)),v(QPR(I.J)+l.B) 
BB QPRn.J)-PRDB(I.Jhv(Y(I,J)+QPR(l,j)) 

DO 8B I-1,NPC 
TEMP-B.B 
DO 85 J-l.NnP 

85 TEMP-TEnP+DPRd.J) 
DO 8B J.l.NflP 
QPR(I,J)-QPR(I,J)/TEnP 

88 CONTINUE 
43 F0RnAT(lX.'Q(M2,V.I2.')-',F9.5) 
C 
C COflPUTE UER BASED ON QUEUE ING FREQUENCIES 
C 

DO 355 J-l.NHP 
RATE(J)-1.8 
DO 35 I-1,NPC 

35 RATE(J)-(1.8-QPR(I,J)hvRATE(J) 
355 RATE(J)-l.a-RATE(J) 

DO 3B J-l.NriP 
3B UER(IJK)-UER(IJK)+RATE(J) 
C 
999S CONTINUE 

XflAX-l.BftniNPn 
C 
C PLOT RESULTS 
C 

CALL PL0T{21,XnAX,UER) 
WRITE(19,332),NPC.NMP 

332 FORMAT (///, IX,'NUMBER OF PROCESSORS -' .2X. 12 / 
11X,'NUMBER OF MEMORIES .'.2X.I2,//) »«.«*.'. 
DO 288 1-1,21 

l22 WRITE(19,331),ALPHA{I),UER{I) 
331 FDRMATdX,'ALPHA-',FS^.SX.'UER-'.FS.B) 

STOP 
END 

C 
C PLOTTING SUBROUTINE 
C 

SUBROUTINE PLDT(LIMIT,XMAX/ALUE) 

-^  r—„.„^..^-^.^-^-^^ __—  ^__J„^^__—J—._ _   
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Appendix A-i 
Approximate Model for /IrbUrary Pij, tp-tu,. min 

C 
2 

11 

59 
IB 

DiriENSIOl^  VALUE (188) 
DIMENSION JCltlJ 
JdeB)-'.' 
WRITE (19,2) 
^Rf1ATülX.'  

zi  
DO IB Nl.LIMIT 
IX-lBB.B,vVALUE(I)/XMAX+8.5 
ILAST-IX 
DO 5 K-l.IX 
J«)-'   ' 
JUX+D-V 
Jd)-'.* 
WRITE(19.11),(j(L)fL.1JX+1) 

FORMAT (UX.lBKAl)) 
URITE(19,59) 
FORMAT(/) 
CONTINUE 
RETURN 
END 

• • « • 
• • • • 
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C 
C 
c 
c 
c 
c 
c 
c 

c 
c 

1973 

1974 

1975 

100 
c 

308 

C 

408 
C 

588 
C 

C 
C 

APPENDIX A-5 

APPROXinATE MARKOV CHAIN flOOEL FOR TP-TU+TC 

<r»<>i<i»<i»<i»»|iiit»»»i<mtlHi<tt>ii>t>iiiitt><ii<iii<)iiiitiii<ttt 

DIMENSION S(17.17),CM(1B,16),TRANS(17.17) 
DIMENSION Z(17),B(17) 
COMMON TRANS.B.Z.NSTATE 

TYPE 1973 

ACCEPT 1974,N 
FORMAT(IX,'NUMBER OF PROCESSORS',/) 

TYPE 1975 

ACCEPT 1974.M 
XM-1.8vfM 
K-MIN8(N.M) 
NSTATE-K+l 

IF(K.NE.N)GO TO 100 
TRANS(NSTATE.l)-1.0 
11-1 

CONTINUE 

DO 300 1-1,17 
S(I.l)-0 

FORMAT(I) 

FORMAT (IX.'NUMBER OF MEMORIES'./) 

S(l.l)-1 
S(l.I)-0 

DO 400 1-1,18 
DO 400 J-1,I 

S(I+1,J+1)-1.0«J,-.S{I.J+1J+S(I.J) 

DO 500 1-1.16 
CMd.D-I 
DO 500 J-2.I 

CMn,J)-CM(I.J-lhvl.0*(I-J+l) 

DO 1000 II-I1+1,NSTATE 

11....INDEX TO THE STATE DURING CURRENT CYCLE 

  ■ li ^1« !!■.■■ II ■   I  -   -  - 
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Appendix AS 
Approximate Markov Chain Model for tp-tu*tc 

I-II+N-K-1 
C 
c I NUMBER OF PROCESSORS MAKING NEU REQUEST IN CURRENT CYCLE 
C 

X-XMvnvI 
KK-MINB(I,M) 
DO 988 JJ-l.KK 

C 
c JJ NUMBER OF BUSY MRS IN CURRENT CYCLE 
c J NUMBER OF PCS MAKING NEU REQUEST DURING NEXT CYCLE 
C Jl INDEX TO STATE M  NEXT CYCLE 
C 

J-N-JJ 
Jl-J-N+NSTATE 
TRANS(Jl.II)-1.8vfCM(M,JJ),vS(I+l.JJ+l)/X 

900 CONTINUE 
C 
1000 CONTINUE 
C 

DO 8888 M.NSTATE 
TRANS(I,I)-TRANS(I,I)-1.8 

8000 TRANS(NSTATE,IM.8 
C 

C 

c 

B(NSTATEM 

CALL GAUSS 

DO 2888 IM1+1,NSTATE 
I-II+N-K-1 
UER.UER+XM.V (1.8- (1.8-1.8/XM) Vnvl) ,vZ (11) 

2008 CONTINUE 
C 

TYPE l.UER 
1     F0RMAT(1X,F18.G) 
C 

STOP 
END 

C 
c 

SUBROUTINE GAUSS 
C     THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS 
C A,vX=B 
C 

DIMENSION A(17,17)tB(17),X(17) 
COMMON A.B.X.N 

■ — —-J" 
--L.-^-^-..--.^. ^-...^..-^^    ^ ._...■  .,, , ,^^—^ *.     „^^«^^t^j-M^,^^.^^^^ -.  ....  ^   ^—■■■■.  ^ 



Appendix A-5 n 1g7 

Approximate Markov Chain Model for tp-ttoHc *** 

INTEGER S 
C 

S=N 
5 CONTINUE 

IF(S-l)  Ba,58,18 
IB CONTINUE 

IF(S.GT.2)G0 TO 185 
O.A(l,l)>vA(2,2)-A(l,2),vA(2,l) 
IF(ABS(0).GT.8.8885)00 TO 185 
TYPE 25 
GO TO 188 

105 00 28 Ul.S 
M-S-I+l 
IF(ABS(Mn,S)).GT.8.8885)00 TO 38 

28 CONTIN! £ 
TYPE 25 

25    FORMAT(IX,'THE COEFFICIE-.,T MATRIX IS SINGULAR«./) 
GO TO 188 

38    CONTINUE 
IF(n.EQ.S)G0 TO 48 
T-B(S) 
B(SUB(n) 

00 35 J=1,S 
T=A(S,J) 
A(S,J)-A(nfJ) 
A(n,J)-T 

35 CONTINUE 
48    CONTINUE 

DO 45 1-1,5-1 
IC-8-1 
1F(ABS{A(S.S)).GT.8.8885)00 TO 42 
GO TO 188 

42    B(iCUB(K)-B{ShvA(K,S)/A(S,S) 
DO 45 J»1,S-1 
A(K,J)-A{K,J)-A(l<:,S)vfA{S,J)/A(S,S) 

45    CONTINUE 
S-S-l 
GO TO 5 

58    CONTINUE 
DO 78 M,N 
sun-Ben 
DO 68 J-l.I-1 
sun-sun-A(i,j),vx(j) 

58 CONTINUE 
IF(ABS(A(I,I)).GT.8.8885)G0 TO 61 
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Appendix  A-5 

Approximate  Markov Chain  Model for tp-twHc 

GO TO 188 
SI x (i)-sun/A n, i) 
78 CONTINUE 
iee CONTINUE 

RETURN 
END 

■aiMMMHMMMiaillMMil -    -■   I - -     - mmd 



' iw^w-^" ii ■in      ii uimmmmm^*^^^ 

Page    IBS 

C APPENDIX A-G 
C 
C AAAMiAAilAAAAAAAAAAAAAAAAAAAiiAIIAiAAiHHHHHMMHHHMftAAAItAMHHHHMMI 
C 
C APPROXiriATE MARKOV CHAIN MODEL FOR TP>TU 
C PROB (TP-TU+UTC) -BETAvrALPHAvnvI 
C E(TP)=TU+TC»vALPHA/BETA 
C ALPHA+BETA-l 
C 
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHHHHHHHHHHHHHHHMHHHHMM 
C 

DIMENSION S(17,17),CM (IB,IG),TRANS(17,17) 
INTEGER C0MB(1G,1G) 
DIMENSION Z(17),B(17) 
INTEGER 0 
COMMON TRANS,B,Z NSTATE 

C 
C 

TYPE 1973 
1973 FORMAT (1X,'NUMBER OF PROCESSORS',/) 

ACCEPT 1974,N 
1974 FORMAT(I) 

TYPE 1975 
1975 FORMAT(IX.'NUMBER OF MEMORIES',/) 

ACCEPT 1974,M 
XM.1.B*M 
TYPE 197G 

197G FORMAT (IX,1 ALPHA :  PROB OF ONE MORE CYCLE OF 
EXECUTION',/) 

ACCEPT 1977,ALPHA 
1977 FORMAT(F) 

BETA-l.B-ALPHA 
NSTATE-N+1 

c 
c 

DO 388 1-1,17 
S(I,l)-8 

388 S{l,I)-8 
S(l,l)-1 

C 
DO 488 N1,1G 
DO 488 J-1,I 

488 S(I+l,J+l)-1.8,vJvfS(I(J+l)+S(I,J) 
C 

DO    588 I-1,1G 
CM(I,1)-I 

-  --          ^..^»a^——M—^^           IIII---^ 1--   ■   ■■   -mltMl—IliM—JMY—I»  II   IIWllrtlMiaiMI       I 
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Appendix A-6 
Approximate Markov Chain  Mod* I for Geometrie tp 

DO 530 J-?,I 
500 CM(I.J)-cri(I,J-l),vl.8,v(I-J+l) 
C 

COMBd.D-l 
DO 20 K-2,1G 
COMB (K. INK 
L.niN0«,i6) 
DO 10 1-2,L 

10 COnB{K,l)-COMB(K,I-lhv(K-I+l)/I 
20 CONTINUE 
C 
C 

DO 1000 I-1,N 

c 
C     K IS THE riAX. NO. OF OCCUPIED HP'S 
C     0 IS THE NUMBER Cr OCC. MP'S 
C 

K-niN0(i,m 
DO 1000 0=1,K 

C 
C     I-D PC ARE LEFT IN HP QUEUES 
C     NN PC ARE TO BE REASSIGNED TO PC OR IIP QUEUES 
C     XPROB IS THE PROB OF D MP'S BEING BUSY 

XPROB-CM(M,D),vS(I+l,D+l)/X 
900 NN-N-I+D 

TRANS (I -0+1,1 +1) -TRANS (I -D+l, I +1) +XPROB,vALPHAvnvNN 
IF(NN.EQ.0)GO TO 1000 

C 
DO 1000 NEUPC-l.NN 

C 

C     NEUPC- NO. OF NEW PC'S TO BE ASSIGNED TO MP QUEUES 
C     NEUMP- TOTAL NO. OF PC'S THAT MAKE MP RED. NEXT CYCLE 
C 

NEUMP.I-D+NEUPC 

TEMP=1. 0>vCOMB (NN,NEUPChv(BETAvovNEUPChv(ALPHAvoV(NN-NEUPC)) 
TRANS (NEUMP+l, I +1) -TRANS (NEUMP+1,1 +1) +XPROB>vTEMP 

C 

1000 CONTINUE 
c 

DO 1500 I-1,NSTATE 
1500 TRANS (1,1)-TRANS(1,2) 

DO 8000 I-1,NSTATE 
TRANS(I,I)-TRANS(I,I)-1.0 

8000 TRANS(NSTATE,I)-1.0 

■  -- KHf—^ _^..^M^—^^^»^-^-^—^^-^^--^          .   .. - -..■  -—^—^ 
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C 

C 

c 

2088 
C 

1 
c 

c 
c 

c 
c 
c 

c 

5 

18 

185 

23 

25 

38 

B(NSTATE)-1 

CALL GAUSS 

DO 2888 I-1,N 
UER.UER+Xnvf(1.8-(l.B-1.8/xm.-«vI)>vZ(I+l) 

CONTINUE 

TYPE l.UER 
F0RnAT(lX.F18.B) 

STOP 
ENO 

SUBROUTINE GAUSS 
THIS SUBROUTINE SOLVES SlflULTANEOUS LINEAR EQUATIONS 

A,vX-B 

DIMENSION A{17.17).B{17).X(17) 
COmON A.B.X.N 
INTEGER S 

S-N 
CONTINUE 
IF(S-l)  58,58.18 
CONTINUE 
IF(S.GT.2)G0 TO 185 
D=A(l,l)vfA(2,2)-A(1.2hvA(2,l) 
IF(ABS(D).GT.8.8885)00 TO 185 
TYPE 25 
GO TO 188 

00 28 I-l.S 
n-s-i+i 
IF(ABS(A(n,S)).GT.B.B885)G0 TO 38 
CONTINUE 
TYPE 25 
FORHATdX/THE COEFFICIENT MATRIX  IS SINGULAR'./) 
GO TD 188 
CONTINUE 
IF(n.EQ.S)GO TO A0 
T-B(S) 
B(S)=B(n) 
B(m-T 
DO 35 J-1,S 

■ niiiiiim   ^i«^—^ 
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/Ipprndix /I-6 
Approximate Markov Chain   Model for Geometric tp 

T-A(S.J) 
A(S.J)-A(n,J) 
Am.jM 

35 CONTINUE 
48 CONTINUE 

DO 45  1=1,5-1 
K-S-l 
1F(ABS(A(S,S)).GT.B.0805)GO TO 42 
GO TO 108 

42 B(K)=B(K)-B(ShvA(K,S)/A(S,S) 
DO 45 J-l.S-1 
A(K.J)-A(K,J)-AfK,S)vfA(5,J)/A(S.S) 

45 CONTINUE 
S-S-l 
GO TO 5 

58 CONTINUE 
DO 78  1=1.N 
SUn=B(i) 
DO 68 J=1.I-1 
SUM=SU!1-A(I.J),vX(J) 

B8 CONTINUE 
IF(ABS(A(l,Ii).GT.8.0005)00 TO 61 
GO TO 100 

Bl xu)-sun/A (i.n 
78 CONTINUE 
188 CONTINUE 

RETURN 
END 
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c **ft*»»»»>«»**ft***M>*»MM>MiM»H»iMM>*»»>*iiM*WMI 
c 
c CACHE HODEL FOR 1 rP>-TU, CONSTANT. 
c APPENDIX A-7 
c 
c 
c AAAAftftAftAftAAAAAAAAAAAAftAAAiNAAIIAiAAilAAilAMHHHHHHHHHHHHHMM 

TYPE 1 
ACCEPT A.TP 

1 FORMAT UX,* ENTER VALUE OF TP,FORMAT F',/) 
TYPE 2 • 

ACCEPT 4,TF 
0 FORMAT(IX,'ENTER 

TYPE 5 
VALUE OF TF',/) 

ACCEPT 4.TC 
5 FORMAT(IX,'ENTER VALUE OF TC'./) 

TYPE 6 
ACCEPT 4.TU 

E FORMAT(IX.'ENTER VALUE OF TU',/) 
4 FORMAT(F) 

TYPE 1973 
1973 FORMAT(1X,'NUMBER OF PROCESSORS. INTEGER FORMAT',/) 

ACCEPT 1974,N 
1974 FORMAT(I) 

TYPE 1975 
1975 FORMAT(IX,'NUMBER OF MEMORIES',/) 

ACCEPT 1974.M 
XN-l.&vN 
XM-l.evfM 
TA-TC-TU 
00 2088 1-0,9 
ALPHAS. 1*1 
BETA-l.B-ALPHA 
CONSxALPHA*(TP+TF)+BETA*(TP-TU) 

c • 

PMAX-1.8 
PM!N>8.B 
P.8.5 

18 PNEU=1.8-CONS* (1.8- (1.8-P/XM) MN) >vXM/XN/TC/BETA 
DEL=P-PNEU 
DEL=ABS(DEL) 
IF(0EL.LE.8.8881)G0 TO 1088 
IF(PNEU.GT.PJPMIN=P 
IF(PNEU.LT.P)PMAX-P 
P-8.5*(PM1N+PMAX) 
GO TO 18 

— - - ■ ■-■       ■- —■—-—"""^      
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Cachti Model for tpiiw 

c 
leaa 

2000 
2B 

P-8.5>v(PNEU+P) 
UER-1.8-{l.fa-P/Xn)vnvN 
UER-UER>v„7l/BETA 

TYPE 28,UER 
FORMAT(IX/EXECUTION RATE-',F8.4) 
STOP 
END 
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APPENDIX B 

MULTIPROCESSOR SYSTEM SIMULATOR 

This simulator can be used for multiprocessor systems with NPC processors 

and NMP memory units connected by a single crosspoint switch. Pc[i] has a 

probability PROB(l,J) of requesting service from memory j. The matrix PROB can 

be carefully chosen to model partially assigned crosspoints and private caches 

e.g. if memory unit 1 is a private cache dedicated to PcU], then PROPd,!)- 

Prob{Pc[i] hits cache] and PR0B(K,l)-0 for Kf<l. 

The simulation program consists of four main parts: 

(i)  Main Program 

(ii) Subroutine PC(ID) 

(iii)Subroutine MP(ID) 

(iv) BLOCK DATA 

The main program contains the scheduler, which calls the two subroutines 

when a processor or memory is activated. This is a discrete event simulator 

where the two subroutines are analogous to activities in SIMULA, The scheduling 

is done by maintaining a doubly linked list called the sequencing set or SQS. 

Figure B-l shows the structure of the SQS array. 

  -- : -^ ^ . ■  -      - 
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Successor Predecessor 
Scheduled 
Activation 

Time 
Event Type 

Event 
rdentificatinn 

Niunber 

Figure B-l Structure of the SQS array 
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The first element or the head of the SQS is a dummy element, whose 

successor is the first real event notice. Thus, when the SQS Is empty (i.e. no 

event notices) the first element of the SQS points to itself. The SQS is 

maintained in proper time order with the iwri most imminent event as the 

successor of the head. 

Figure B-2 depicts a simple flow chart for the main program. The program 

executes in a loop until a preset simulation time Is reached. At this stage it 

jumps out of the loop and operates on the statistics collected a...1 outputs 

parameters like the number of instructions executed, the execution rate, and the 

queue lengths and waiting times for the various memories. A typical output is 

shown in fig. B-3. 

The processor activity is characterized by a subroutine PC(ID); the flow 

chart is depicted in fig B-4. A uniform random number with range (0,1) is 

compared with the access probabilities in the array PROS to select a memory. A 

request is entered into the queue corresponding to that memory unit. An event 

notice for activating the memory is entered into the SQS if necessary. 

Figure B-5 illustrates the working of the subroutine MP(ID). In its current 

version, a processor is selected as per FII-0 discipline. The processor is then 

scheduled to be activated after a time interval equal to the sum of the memory 

access time(ta) and the processor's execution time(tp). The processing time 

distribution    can    be    arbitrarily   chosen.    The   progran.   listed   here    has    an 

- 
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Initialize List Pointers 
and other variables 

Enter event notices for 
all the procescors at 
T1HE=0 into tho SQS. 

Examine the SQS and remove 
the first event scheduled. 

Update TIME, 

Activate the current ;vcnt 
"by transforing control vto 
the subroutine character- 
ing that event. 

Figure B-2 Plow chart of the main program. 
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NO. OF UNIT INSTR EXEC IN 
UNIT EXEC RATE- 0.886938 

588888 TIMEUNITS IS 
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34G5 

UNIT INSTRUCTIONS EXECUTED BY INDIVIDUAL PROCESSORS 
868 
863 
8B4 
864 

ACCESS FREQUENCIES 

8.297235 8.38133G 8.321A29 
8.383797 8.331415 8.3B4787 
8.383241 8.3B5741 8.331819 
8.312588 8.343758 8.343758 

****** MEMORY UNIT 1 ****** 
NO. OF REFS-      1854 
MAX Q LENGTH- 2 
AVG. Q LENGTH- 8.814G7 
AVG. WAITING TIME-   B.9573 

****** MEMORY UNIT 2 ****** 
NO. OF REFS-      1232 
MAX Q LENGTH- 2 
AVG. Q LENGTH» 8.82154 
AVG. WAITING TIME-   8.7419 

****** MEMORY UNIT 3 ****** 
NO. OF REFS-      1179 
MAX Q LENGTH- 2 
AVG. 0 LENGTH- 8.82187 
AVG. WAITING TIME-   8.9372 

AVERAGE VALUE-  8.82188 

AVERAGE VALUE-  8.B24B4 

AVERAGE VALUE-  8.82358 

Figure B-3  Typical Simulator Output 
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Appendix B 

exponentially distributed processing time. The memory reschedvles itself at the 

end of the cycle if any request are pending in its queue. 

The BLOCK DATA contains input parameters for the simulation. 

This simulator could have been written in SIMULA. However, the scheduling 

involved does not necessitate all the capabilities of SIMULA. Moreover, the easy 

access to FORTRAN on the PDP-lO's time-sharing system was an important 

consideration in its selection. 

■ - 
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Select the memory 
to be acr.ecRed. 

Enter request into the 
queue of the selected 
memory. 

Enter an event notice for 
the memory at the end of 
itß current cycle. 

RETURN 

Enter an event notice for 
the memory at the current 
value of TIME, 

RETURII 

RETURN 

Pirjurc B-4 Piw.; chart of the proceocor'n activity. 
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Identify the firot 
proccsticr rcqwoct in 
"the queue. 

Enter an event notice for 
■;he processor at 
TIME* memory access time 

+ procor.sing time. 

Enter an ?v ;nt notice for 
itself at he end of this 
memory cycle. 

RETURN 

Figure B-5 Flow chart of the memory's activity. 
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c 
c 
c 

21 

22 

23 
C 

24 
C 
c 
188B 

781 

PROCESSING TIME — EXPONENTIAL Paße    l83 

THIS PROGRAH SIMULATES A MULTIPROCESSOR UITH A 
CROSS-POINT BETUEEN PROCESSORS & MEMORIES 
INTEGER SQS(1B8.5),EMPTY{99) 
INTEGER SUC.PRED.SCHED.EVTYPE.EVID.EVNUM.TOPMT 
f2^^S?!!Iil

SS'EriPTY'SÜC'P^3.SCHEO.EVTYPE.EVID,TOPm 
INTEGER TA(58),TC(58).TP(58) 
INTEGER TIME.SIMTIM 
COMMON/GLOBAL/ TA.TC.TP.TIME.NPC.NMP.SIMTIM.NINSTR 
DIMENSION C0UNT{58.58).INSTR(58)   ';5im in'N1Nb,R 

COMMQN/MEM/COUNT.INSTR 
DIMENSION PROB(58,58) 
COMMON/PROC/ PROB.ISEEU 

rnmn^cIIS !5?i' TLAST (50)'LENGTH (50) • "^ ™ 
COMMON/STAT/TTQ,TLAST.LENGTH,MAXQL 
rnl^un^l^ 'FIRST (50)'NEXT (50) • NEXTAC (58) COMMON/Q/ QMP,FIRST,NEXT,NEXTAC 
COMMON/EXP/ISD 
INITIALIZE SOS AND EMPTY LIST 
DIMENSION RATE(58),JMP(58),JPG(58) 
DIMENSION OPR(58.58).TEMP(58) 
DATA SUC.PRE0.SCHED.EVTYPE,EVID/1,2,3,4.5/ 
DATA TOPMT/1/ 
DO 21 1-1,39 
EMPTY(I)ol+i 
DO 22  M.NMP 
NEXT (IM 
FIRSTdM 
SQS(1.SUC)-1 
SQS(1,PRED)-1 
ACTIVATE ALL PROCESSORS AT TIME-B 
DO 23 I-l.NPC 
CALL    INSERT(1,1,8) 
CONVERT ACCESS PROBS.   TO CUMULATIVE ACCESS PROBS. 
DO 24 I-l.NPC 
DO 24 J-2.NMP 
PROB(I.J)=PROB(I.J)+PROB(I,J-l) 
THIS IS THE SCHEDULER 
REMOVE 'FIRST' ELEMENT IN SOS AND RESTORE PTRS. 
I-SQS(l.SUC) 
IFd.EQ.DTYPE 781 
FORMAT(IX.'EVENT LIST EMPTY') 
J=SQS(I.SUC) 
SQS(1,SUC)=J 
SOS (J.FRED)=1 
UPDATE  TIME 
TIflE-SQSd.SCHED) 
IF(TIME.GE.S1MTIM)G0 TO 2881 
EVNUM-SQS(i.EVTYPE) 
1D-SQS(I,EVID) 
UPDATE EMPTY LIST 
TOPMT-TOPMT-1 
EMPTY(TOPMT)-l 
ACTIVATE CURRENT EVENT 
GO TO  (1,2)  EVNUM 

"f ■ ^-^—*. ■- .■■■-.- ■-- --  *d 
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TYPE 782 
782    FORMAT(IX/SCHEDULER HAS UNKNOWN EVENT TYPE') 

STOP 
1 CALL PC(ID) 

GO TO 1808 
2 CALL HPUOJ 

GO TO 1888 
C     OUTPUT STATISTICS 
2881 CONTINUE 

DO 2882 I-l.NflP 
2882 N1NSTR=NINSTR+1NSTR{I) 

TinE-simin 
WRITEil9,41),TIME,NINSTR 
FORMAT(IX.'NO.  OF UNIT  INSTR EXEC  IN* ,2X,I12,2X,'TIME 
1UNITS  IS',2K,112) 
UER=NINSTR/TinCvrl.8 
URITE{19.40),UER 
TYPE  48,UER 

48 FORMAT (IX,'UNIT EXEC RATE-',H8.6) 
C. FIND NO.   OF  INSTR EXEC BY E^H PROCESSOR 

DO 31 I-1,NPC 
DO 31 J-l.NHP 

31 JPC(I).JPC(I)+COUNTn,J) 
C     F'ND NO. OF ACCESSES TO EACh. nEMORY 

DO 32 I-l,NnP 
DO 32 J-l.NPC 

32 JMP(I)-JMP(I)+COUNT(J.I) 
URITE(19,42),(JPC(I),I.1,NPC) 

42 FORMAT (/.IX/UNIT INSTRUCTIONS EXECUTED BY INDIVIDUAL 
1 PROCESSORS'./,58(1X,118./)) 

C FIND ACCESS FREQUENCIES FOR THIS SIMULATION RUN 
DO 33  I-l.NPC 
DO 33 J-l.NnP 

33 PROB(I.J)=COUNT(I,J)/JPC(I) 
URITE(19.443) 

443    FORMAT(IX.'ACCESS FREQUENCIES',/) 
DO 333 Nl.NPC 

333    URITE(19.43),(PR0B(I,J).J-1,NMP) 
43 F0RMAT(1X.8(F8.G.2X)) 
C COMPUTE AVG UAIT TIME.AVG Q LENGTH 

DO 34  Nl.NMP 
AVQL-l.B*TTQ(I)/TinE 
AVUT«.l.e*TTQ(I)/jnP(IJ 

34 URITE(19.44),I.JMP(I).MAXQL(I).AVQL,AVUT 
44 FORMAT (.MX,'****** MEMORY UNIT ',12.' *******,/, 

IIX.'NO. OF REFS^'.I^./.IX.'MAX Q LENGTH-M2,/, 
IIX.'AVG.  Q LENGTH-'.F8.5./.IX,'AVG. 
2UAITING TIME-',FIB.4) 
N-TIME/18 
DO 881   IO-1.NMP 
AV-INSTR(ID)/TIMEv:18.8 

881 URITE(19.282).AV 
282 FORMAT(/.IX.'AVER^GE VALUE-',F18.5) 

STOP 
END 

mt   
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L it  Vf  vr  »V  ft  )V  Vf ft  >v ft  ft >V  >V  ft »V »V >V >V it it it it it it it it It It 

SUBROUTINE PC(ID) 
DIMENSION PR0B(5e,58) 
COmON/PROC/ PROB.ISEED 
INTEGER QnP(58.58),FIRST(58).NEXT (58).NEXTAC(58) 
COfinON/Q/ OMP.FIRST,NEXT.NEXTAC 
INTEGER TA(58),TC{58),TP(58) 
INTEGER TinE.sinTin 
COmON/GLOBAL/ TA. TC. TP. TinE.NPC.NIIP.SinTin.NINSTR 
1 NTEGER TTQ(58).TLAST(58).LENGTH(SB),MAXQL (58) 
COmON/STAT/TTQ.TLAST. LENGTH, MAXQL 

C PROBd.JN PROBABILITY(PC(I)  ACCESSES PC (J)) 
C GENERATE A UNIFORI1 RV & DETERMINE MEMORY TO BE ACCESSED 
1 RV=UNIRAN(!SEED) 

RV=RV+1.8/NPC*ID 
IF(RV.GT.1.8)RV-RV-1 
DO 18  Ul.NMP 
IF(RV.LE.PROB(IO.I))GO TO 188 

IB CONTINUE 
GO TO 1 

188 IMP-I 
C INCREMENT Q MEASURE COUNTERS 

TTQ(lMP)=TTQ{lMP) + (TIME-TLAST(IMP)hvLENGTH(IMP) 
LENGTH(IMP)=LENGTH(1MP)+1 

IF(LENGTH(inP).GT.MAXQL(IMP))MAXQL(IMP).LENGTH(IMP) 
TLAST(IMP)=TIME 

C      PUT IN REQUEST IN QUEUE FOR CHOSEN MEMORY 
QMP(IMP.NEXT(IMP))-ID 
NEXT(JMP)=NEXT(IMP)+1 
IF(NEXT(IMP).GT.NPC)NEXT(IMP)-1 

C CHECK  IF MEMORY UNIT HAS OTHER REQUESTS QUEUED 
IF(LENGTH(IMP).GT.1)RETURN 

C CHECK  IF MEMORY IS READY TO GRANT THIS ACCESS NOU 
IF(TIME.GT.NEXTAC(IMP))GO  TO 288 
CALL  INSERT(2,IMP,NEXTAC(IMP)) 
RETURN 

288 CALL  INSERT(2,IMP.TIME) 
RETURN 
END 

C ft   it   ft   ft  ft  ft  ft  ft  ,v  it  it  it  it  it  it  if  if  ft  »v  >V  >V  ft  it  it  it  it 

SUBROUTINE MP(ID) 
I NTEGER QMP(58,58).FIRST(58),NEXT (58).NEXTAC(58) 
COMMON/O/ QMP.FIRST.NEXT.NEXTAC 
INTEGER TA(58),TC(58).TP(58) 
INTEGER TIME.SIMTIM 
COMMON/GLOBAL/  TA. TC. TP,TIME,NPC.NMP,SIMTIM,NINSTR 
DIMENSION C0UNT(58.58).INSTR(58) 
COMMON/MEM/COUNT.iNSTR 
I NTEGER TTQ(58).TLAST(58).LENGTH(58).MAXQL (58) 
COMMON/STAT/TTQ.TLAST.LENGTH,MAXQL 
COMMON/EXP/ISEEO 
IF(LENGTH(I0).EQ.8)TYPE 783 

783    FORMAT (IX/MEMORY ACTIVATED UITHOUT SCHEDULED REQUEST') 
C      INCREMENT Q MEASURE COUNTERS 

-  -—. k. ,       imm - -   -        -           -   - 
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INSTR(1D)-1NSTR(1D)+1 
TTQ(IO)-TTQ(im*(TIME-TLAST<IOn«LEHCTH{lO) 
LENGTH(1D)=LENGTH(ID)-1 
TLAST(ID)-TinE 

C     IDENTIFY PC TO BE SERVICED Ab PER FIFO STRATEGY 
IPC-OnPdO.FIRSTdO}) 
FIRST(1D)=FIRST(1D)+1 
C0UNT(IPC.ID)-C0UNT(IPC,ID)+1 
IF (FIRST (101.CT.NPOFIRSTUOM 

9374        RV-UNIRAN(1 SEED) 
TPROC-A50-TP (IPO .vALOG (RV) 
IF(TPRÜC.GT.18>vTP(IPC))G0 TO 9374 
JTinE-TinE+TA{lü)+TPROC 

C      SCHEDULE PC 
CALL INSERT (l(iPC,JTir.E) 
NEXTAC(ID)-TI!1E+TC{ID) 
lF(LtNGTH(IDi.EQ.8)RETURN 
CALL INSERT(2.ID.NEXTAC(ID)) 
RETURN 
END 

C        i<   it  it   it   u   it  it  it  it  it  it  it   it  it  it  it  it  it  it  it  it it  it  it  it  it  it  It 

SUBROUTINE  INSERT(JTYPt.ID.TSCHED) 
C THIS ROUTINE INSERTS ELEMENT  I  AFTER K URT TIME 

INTEGER TSCHED 
INTEGER SQS(188.5),EnPTY(S9) 
INTEGER SUC.PRED.SCHEO.EVTYPE.EVID.EVNUM.TOPflT 
COnnON/SQSET/ SOS,EMPTY.SUC,PREO.SCHED.EVTYPE.EVID.TOPni 

380 IF(T0PnT.EQ.8)   TYPE 784 
784 FORMAT(IX/SCHEDULER OVERFLOU') 

IF(SQS(l,SUC).EQ.l)  GO TO 328 
J-SQSd.SUC) 

318    CONTINUE 
IF (SOS(J.SCHED).GT.TSCHED) GO TO 338 
1F(SQS(J.SUC).EQ.1)G0 TO 348 
J-SQS(Jt3UC) 
GO TO 318 

328    K=l 
GO TO 188 

338    K=SQS(J,PRED) 
GO TO 188 

348    K=J 
188    1=EMPTY(T0PMT) 

SDS(I,SUC)=SaS(K,SUC) 
J=SQS(K,SUC) 
SaS(l,PRED)=K 
SDS(K,SUC)-I 
SQS(J,PRED)=I 
SDS(I,SCHED)-TSCHED 
SQS(I.EVTYPE)-JTYPE 
SQSd.EVIOMO 
T0PMT=T0PMT+1 
RETURN 
END 
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1 
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REAL FUNCTION UNIRANUSEED) 
JSEED-JSEED)v3141B92G21 
JSEED=.JSEED+726ieG7113 
IF(JSEED)1,2,2 
JSEED=JSEED+343597383B7+1 
TEMP-JSEED 
UN I RAN=TEnP,vB. 291838a3HBE-l 8 
RETURN 
END 

Page    18? 

!■■■   ^lmmmmmmmmmiam 


