AD-773 843

ANALYTIC MODELS FOR MEMORY INTER-
FERENCE IN MULTIPROCESSOR COMPUTER
SYSTEMS

Dileep P. Bhandarkar

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research
Advanced Research Projects Agency

September 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




™
\\ UNCLASSIFIED !
$

YCURITY CLASSIFICATION OF THIg PAGE (#han Deta Entered)

RE+'ORT DOCUMENTATION PAGE . BEL G e T e
1. RﬁOSRUrBTR ~y 74 0 0 99 7. GOVT ACCESSION NG| 3. RECIPIENT'S CATALOG NUMBER

AD 773 P43 |

4. TITLE (end Subtitia) S. TYPE OF REPORT & PERIOD COVERED
ANALYTIC MODELS FOR MEMORY INTERFERENCE IN

MULT1IPROCESSOR COMPUTER SYSTEMS ! Interim

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT 'NUMBER(-)
Dileep P. Bhandarkar

F44620-73-C-0074
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Mellon University i e
Department of Computer Science 61101D
Pittsburgh, Pennsylvania 15213 A0 2466
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency September 1973
1400 Wilson BlVd 13. NUMBER OF PAGES

Arlington, Virginia 22209

14, MONITORING AGENCY NAME & ADDRESS(if difierent irom Controliing Ollice) 15. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research (NM)

1400 Wilson Blvd UNCLASSIFIrD
Arlington, Virginia 22209 15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Bilock 20, I dilfarent [rom Report)

18. SUPPLEMENTARY NOTES

18. KEY WORDS (Continue on reveraa side il neceasary and idetily Ly block number)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
springfield VA 22151

20. ABSTRACT (Continue on reverse side 1i necessary and identily by bilock number)
Thid thesis develops analytic models for estimating the amount of memory inter-

ference in multiprocessor systems, in which n processors access m memories
independently. The processors are characterized by a typical processing time
per memory access and the memories by an access time(ta) and rewrite time ¢tw).
Processor behavior is simplified to an ordered sequence of a memory request
followed by a certain amount of processing. The predominant technique used 1

involves discrete time Markov chain models. Some simple exponential server
models as well as several approximate models are also presented. Simulation

DD ," 55", 1473  E0ITION OF 1 NOV 65 1S OBSOLETE y B UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

YECUHITY CLASSIFICATION OF THIS PAGE Hhen Ca'a Enterad) .

t Sk

Block 20. Abstract (Continued)

Some empirical

is used to evaluate the accuracy of the approximate models.
measurements of the PDP-11/20 are used to estimate the parameters of a
model, that is used to predict the performance of C.mmp, Carnegie-Mellon
University's multiprocessor computer, which will include upto 16 PDP-1i

processors.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)




ANALYTIC MODELS
FOR
MEMORY INTERFERENCE
IN
MULTIPROCESSOR COMPUTER SYSTEMS

Dileep P. Bhandarkar

Depertment of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, Pa.

September 1973

Submitted to Cernegie-Mellon University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Projects Agency of the Office
of the Secretary of Defense (F44620-73-C-0074) and is monitored by the Air Force

Office of Scientific Research. This document has been approved for public

release and sale; its distribution is unlimited. “ c




ABSTRACT

This thesis develops analytic models for estimating the amount of memory
interference in multiprocessor systems, in which n processors access m memories

independently.

The processors are characterized by a typical processing time per memory

access and the memories by an access time(ta) and rewrite time(tw). Processor

behavior is simplified to an ordernd sequence of a meméry request followed by a

certain ainount of processing. The predominant technique used involves discrete
time Markov chain models. Some simple exponential server models as well as
several approximate models are also presented. Simulation is used to evaluate
the accuracy of the approximate models. Some empirical measurements of the
PDP-11/20 are used to estimate the parameters of a model, that is used to
oredict the performance of C.mmp, Carnegie-Mellor University’s multiprocessor.

computer, which wiil include upto 16 PDP-11 processors.

The models can be partitioned into three broad classes : tp=tw, tp>tw and
tp<tw, where tp denotes the average processing time. Systems with tp=tw are
described first because they represent boundary conditions for the other two

cases. Different modeling techniques are examined for tp=tw and a reasonable




ii

approximation is proposed. An important result observed is the absence of a law
of diminishing returns. The performance of a multiprocessor system with n
processors and n memories continues to rise at a constant rate as n increases. A
simple exponential server model showed this rate to be 0.5; a constant
processing time model predicted a slope of 0.58 for the average number of busy 5
Mp’s. The exponential server model gives the average number of busy Mp’s as
mkm/(nsm-1). An approximate result for constant processing times gives the
average number of busy Mp's as i*/1-(1-1/i)1j], where i=max(n,m) ard jumin(n,m).
An intuitively obvious conclusion limits the maximum number of active Pc’s by

min{n,m).

Markov chain models are also developed for systems with tp>tw. A new model
for geometrically distributed prc:essing time is developed. A different analytic
approach is used to model systems with private caches for the processors. In
general, since the Pc is slow, it takes fewer memory units for the performance
to exhibit a saturation effect. In the absence of memory contention (which. is

now possible even for m<n) the maximum memory access rate(MpAR) is n/(ta+ip). -

With tp<tw, since the processor is fast performance improvement is obtained
for m>n. If m=n, these systems do not yield significant improvement over systems
with tp=tw. In general, adding an extra memory improves the performance more
than adding an extra processor. The maximum average MpAR is the minimum of m/tc
and n/(ta+tp)% the maximum is achieved if the processors do not interfere. Note
that since the Pc is very fast, it can make a request to the meirory that served

it last before the rewrite cycle is over. In this case, the Pc has to wait even

though no other Pc is being serviced by the memory module.
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CHAPTER |

INTRODUCTION

In the design of new computer systems there exists an enormous number of
alternative decisions. In this thesis the major design parameters that will be
allowed to vary are the number of processors(Pc’s)t and memories(Mp’s) ard their
relative speeds. The quantitative approach to performance evaluation consists of
three major phases [GrenU72]:

(i) Coliection of data: this phase involves the planning and conducting

of the experiment for data collection as well as techniques for

measurement.

(i) Analysis of data: this phase consists of construction of models and

estimation of parameters in the models as well as validation of the models.

(iii) Interpretation of data: this phase concerns the summarization of the

results and new insights gained in the study as well as making decisions

based on the results.
The emphasis of the application of quantitative methods is on the convergence of
two aspects. The first aspect is the reliance on data either from

experimentation on the real system or from simulation. The second is the use of

tWe use the PMS notation of Bell and Newell [BeliC71a] in this thesis to
describe hardware organization.




Page 2

Chapter 1 : Introduction

mathematical models. It is easy to collect massive amounts of confusing data
unless one has some model. On the other hand, a model without empirical

validation is at best an intellectual exercise.

Since no performance measurements of the actual system can be made until it
has been designed, implemented, and then observed over a long period of time, it
becomes necessary to use analytic and simulation models. Analytic models enable
the designer to explore a large design space quickly and rather economically..
However, modeling is not an easy task and it is often necessary to simplify the
model to make it amenable to mathematical analysis, remembering that any
mathematical model is only an approximation of real-life events. If the system
is too complex to allow a complete analytic study, the system behavior can be

modeled at various levels of abstraction in a hierarchical fashion.

Simulation offers an different approach: probabilistic emulation of a
mathematical model that portrays the aggregate bahavior of the real system. We

gain in realism since we are no longer forced to impose assumptions for

analytical convenience. However, simulations tend to be expensive if a high

degree of realism on a detailed level is required. Due to the stochastic nature
of simulation results, their precision can be measured by the standard deviation
or confidence intervals of the estimates obtained. The confidence interval gets
tighter as the size of the =xperiment is increased. The standard deviation is
proportional to the squire root of the length of the run. Hence, simulation

studies are most valuable when focused on a small set of design alternatives
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Figure 1.1 A simple block diagram of a multiprocessor system.
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selected by analytic studies. Also, if the analytic techniques are
computationally expensive, simulation might well be more economical. Moreover,
it is easier to change the mathematical model in a simulation experiment.
Another important use for analytic models is as a control variable for improving
the efficiency of simulation experiments by reducing the variance of parameter

estimates from simulation experiments [GaveD71].

Mathematical models of computer sy.tems can be developed at various levels
of abstraction. A !arge number of models for time-sharing systems consider a job
as a basic unit[MckiJ69], and in many models of multiprogrammed computer systems
the block of instructions between /O operations is taken as a basic
unit[BuzeJ71; GaveD67]. However, in this study a much more detailed model is
used to analyze interference as processors access individual words from the
memory modules. Each processor’s performance is measured by the number of memory
accesses per unit time. In a multiprocessor system the performance of each Pc is
not independent of the behavior of the other Pc's. £ simple block diagram of a
multiprocessor system is shown in Fig. 1.1. The crnnecting network or switch
provides a path form each of the n Fc's to each of the m Mp’s, such that a
connection between Pc[i] and Mp[j] does not hamper a connection betwnen Pc[k]
and Mp[l], where i#k and j#l. The processors contend with each other for memory
service. This contention is referred to as memory interference. This thesis
presents a set of techniques for deter'mining the extent of memory interference
as measured by the average number of busy memories or the rate at which the Mp

is accessed.
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1 instruction fetch ta memory access time
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3 operand fetch td instruction decode time

4 instruction execution tei processor execution time
5

next instruction fetch

Figure 1.2a: An example of the timing of a typical instruction.

data Mp ready to
available service next
to Pc request

Mp access ' Pc ready
begins’ to make
new request

Figure 1,2b: Simplified processor behavior : unit instruction
Two units model the instruction shown in Fig. 2.1a,
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1.1 GENERAL MODELING ASSUMPTIONS

Due to the complexity of the problem, the exact detailed behavior of memory

interference in a multiprocessor system is difficuit to model. Some of the

parameters that characterize the behavior of a Pc are:

*The

(i) Instruction mix : Instructions can be characterized by their relative
frequency. In general, processor behavior varies for different
instructions. However, in this thesis differences in instructions are not
modeled explicitly. Processor behavior is modeled as an ordered sequence,
consisting of a memory request followed by a certain amount of execution
time. At this level of abstraction no distinction is made between the
processing needed to decode an instruction and the processing
corresponding to its execution. Thus, the processing time characterizing
a Pc depicts only the aggregate behavior of the real Pc. Figure 1.2
depicts the actual and abstracted behaviors. A typical unit instructiont
is shown in Fig. 1.2b.

(i) Probability distribution of the processing time: Irstructions are
characterized by their processing time. Typical programs are measured to
find the probability distribution of the instruction processing time.

(ii)) Average processing time: This is obtained from measurements similar

to those used for determining the probability distribution.

concept of an unit instruction was first proposed by Strecker[StreW70].
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1.1 General Modeling Assumptions
(iv) Access pattern of a Pc: This is the trace of the pages Oor memory
locations accessed by the Pc. In this study serial correlation between
successive memory accesses will be ignored; not a very serious assumption
since data and instruction references are intermingled. Demand patterns
will be modeled as sequences of Bernoulli trials. Memory accesses will be
characterized by the memory unit to which they are addressed. Let Pii
denote the probability that the i-th processor requests service from the
j-th  memory unit. Thus, the demand pattern of each processor is
equivalent to a seyuence of Bernoulli trials. Unless otherwise specified,

Pis will be assumed to be equal to 1/m, where m is the number of Mp’s.

The effect of 1/0 activity will not be modeled explicitly.
Strecker [StreW70] has shown that if the rate of I/O requests is RIO, then a

fraction RIO/(m#tc) of the memory access rate czn be apportioned to 1/0.

A processor is said to be queued if it is wating for or in the procecs of
receiving memory service. A procassor is said to be active if it is currently
being serviced by a memory. Likewise, a memory is said to be occupied or busy if

there is at least one processor queued for that memory unit.

Primary memory behavior is a function of the fabrication technology, i.e.
core or semiconiductor. Memory performance can be characterized by the access
time (ta), rewrite time (tw), and cycle time (ic). Nominally, the cycle time is

the sum of the other two. In this study, no distinction is made between read and
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write operations. The effect of interleaving within a Mp module is to make the
access and cycle times seen by a Pc variable. Most of the models in this thesis

will use the average values.

The processing time shown in Fig. 1.2 is the effective processing time

measured from the time when the Pc gets the data from its last memory access to

the time when the next memory request reaches the memory. Thus, the delay

associated with address mapping and communication protocol needed to make a :
!

request are attributed to the Pc. The memory access time includes the time

requirec to set up the switch for the data transfer. If the memory control unit

introduces some delay, then that is also added to the access time. A more

detailed description is presented in Chapter 5,

1.2 MODELING CONCEPTS

A queueing model will be used to analyze memory interference. Figure 1.3
shows the basic structure of the model. All time delays are modeled as service
centers and there is one job in the queueing system for every Pc. In real
systems the Pc can start execution while the Mp is in its rewrite cycle. If
tp2tw the service time of the memory will be assumed to be tc, and the effective

( service time of the Pc will be assumed to be tp-tw. This siiolification allows

the Mp to start serving the next job as soon as the last job has left. The
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overall system behavior is unaltered by this simplification. Howe ‘er, when tp<tw

the queueing model cannot be used for reasons explained in detail in Chzpter 4.

The number of Pc’s will be denoted by n and the number of Mp's by m. The
muitiprocessor system will be referred to as a nxm syste'n. The state of the
system will be denoted by a vector describing the sizes of the various queues.
The major technique used in this thesis involves Markov chains[ParzE62] A brigf

review of some of the definitions and concepts is presented here.

A stochastic process is a family of random variables X(t), t¢T indexed by a
parameter t vr-y.0g in an index set T. The stochastic process is a discrete
parameter process if T={0,1,2,.} or {0,+1,42,.}. The process is a continuous

parameter process if T={t20} or {-co<t<m}.

A discrete parameter stochastic process {X(t), t=0,i,2,..} or a continuous
parameter stochastic process {X(t), t20} is said to be a Markov process if, for
any set of n points t<t,<.<t, in the index set of the process, the
conditional  distribution of X(t,), for given values of X(t,),..X(t,_,),
depends only on Xit,.,), the most recent known value; more precisely, for any !
numbers X,,...,Xp
PIX(tn)sxn | X(t)=x Xty )=x,. ] = P[X(tn)sx,, | X(tn-))=xp.,]
Intuitively, this means that, given the present of the process, the future is

independznt of its past. The cet of possible values of a stochastic process is

called its state spacc. The state space is called discrete if it contains a
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finite or countably infinite number rf states. A state space which is nnt

discrete is called continuous. A Markov process vhose state space is discrete is

called a Markov chain.

A Markov process is described by a transition probability function, denated
by P(Et | xt,), which represents the conditional probability that the state of
the system will at time t belong to the set E, given that at time t.(<t) the
system is in state x. The Markov process is said to have stationary transition
probabilicies, or to be homogencous in time, if P(Et ) xt,) depends on t and

to only through the difference (t-t,).

A Markov chain is irreducible if every state can be reached from evary
other state not necessarily in one step. The period of a state i is defined as

the greatest common divisor of all integers k such that the probability of

returning to state i in k steps is greater than 0. A state of an irreducible
Markov chain is aperiodic if it has period 1. A Markov chain is aperiodic if

every state in its state space is aperiodic.

A discrete parameter irreducible aperiodic Markov chain that has stationary
transition probabilities possesses a stationary state probability distribution.
Let Z(k) denote the steady state probability of state k. Then,

(k) = ? TRANS(K,j)*Z(j)

where TRANS(k,j) is the one step transition
probability from state j to state k. i

Transition probabilities from a current state to a next state will be
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evaluated for the irreducible aperiodic discrete Markov chain models in the
forthcoming chapters. The sieady state probabilities will be used to calculate
the average number of busy Mp’s which is equal to the number of unit
instructions executed in one memory cycle. The unit instructicn execution rate '
(UER) or memory uccess rate (MpAR) is obtained by dividing the average number of

busy Mp’s by the cycle time.

1.3 EXTANT MULTIPROCESSOR SYSTEMS

A group at Carnegie-Mellon University is currently in the process of
constructing a multiprocessor comnuter system (C.mmp) that will have up to
sixteen central processors (PDP-11/20’s) sharing the same physical address space
(BellC7 1b; WulfW72] and concern has been expressed about the performance of such
a system with this many active processors. The models developed in this thesis
wili be used to predict the performance of C.mmp in Chapter 5. Figure 1.4
illustrates the major components of a multiprocessor such as C.mmp. In addition
to the processors, there is a set of memory modules that are able to operate N
independently; little would be gained if all the processurs had to wait for
service from a single memory module. Thus, between the processors and the memory

modules (Mp’s) is an n by m crosspoint switch, which allows any Pc to access any

Mp. There are a number of ways of implementing the switch; Fig. 1.5(a) depicts




Page 13

Smp

(m-to-p crosspoint)

- e emme e e ths Swmw o un Swwe s e——

| K.configuration

]
Pc 1 Dmap Pc Dmap
—
Mp |~ , Mp
—Ke KcJ—
Private I/0 RE |- l K f
devi
e e i Y.clock ;
Ks | _{KS
K.interrupt|
KE
[ ')
1 I ; % i) |
Shared 7 1 K.configuration
1/0 B o e bl o =
devices Skp
(p-to-k;null]dual duplex,crOSSpoint
Ks Kf

where: Pc/ccntral processor; Mp/primary remory; T/terminali;

I e

Ks/slow device control (e.g., for Teletype);
Kf/fast'dcvicc concrol (e.g., for disk);

Kc/control for clcck, timer, interprocessor communication

Dmap /relocation registers for mapping Pc address into Mp
address space,

lBoth switches have static configuration control by manual and
program control

Fig. 1.4 Proposed CMU multiminiprocessor computer /C.mmp,
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an n by m crosspoint switch, and Fig. 1.5(b} illustrates the use of trunk lines;
combinations of these two basic schemes can y :ld many other other schemes.
Other multiprocessors, although limited to a small number of Pc’s, i.e. two to
four, also basically use a crosspoint sw.tch, e.g. the Burroughs D825[AndeJ62)]
and Univac 1110. For further discussion of trunk lines, and a variety of other

switching structures, the reader is referred to Bell and Newell [BellC71a].

1.4 COMMENTS ON EARLIER WORK

A review of current iiterature shows very few models of memory
interference. Skinner and Asher [SkinC69] proposed a discrete Markov chain mode!
for multiprocessor systems with tp=tw. The anaiysis was oresented for a small
number of Pc’s(<2). However, for larger systems the complexity of the problem

deterred the authors from further pursuit of an analytic solution.

Strecker[StreW70] developed a set of simple approximate models. Most of his
modeling assumptions are similar to those used in this thesis. While the
analysis of Skinner and Asher is rigorous and exact, Strecker’s analysis is
approximate. In this thesis, an exact analysis of a discrete Markov chain model
far evsteme with tp=tw is presented. As expected, the exact analysis is very
complex. However, the results of the exact analysis suggest more reasonable |

approximations that yield performance estimates that are more accurate than
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Strocker’s. For instance, the exact discrete Markov chain model described in
Chapter 2 shows that the Mp/R for a jxk and a kj multiprocessor system with
tp=tw is almost equal, a result not apparent from Strecker’s work. Also,
Strecker’s formula for to=tw is more accurate for m>n than for m<n; n is the

number of Pc’s and m the number of Mp’s.

More detailed descriptions of the works of Skirmer and Asher, and Strecker

can be found in Chapters 2, 3 and 4. Bhatia[Bhat$72] has shown how the results
from memory interference models can be used as data for models of timeshared

multiprocessor systems at the user program level.

A major contribution of this thesis is a systematic approach to the use of
the Markov chain technique for analyzing memory interference in multiprocessor
systems. The exact analysis cf the Markov chain is complex. However, the
behavior observed from the exact analysis is used to examine an approximate
solut.on technique that is computationally simpler. Though some of the models
presenled in this thesis may be only marginally more accurate(57) than
Strecker’s results, they may result in much more accurate estimates when useq as
inputs to other models such as Bhatia’s model for time-shared systems. For
example, the waiting time for a single server queueing system with Poisson input

rate X and exponential service at rate uis 1/(u-A). A 57 error in the value of

U can cause a greater error in the estimated waiting time if X is close to u.
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1.5 SYNCPSIS OF THESIS CONTENTS

The analytic models are described in detail in Chapters 2, 3 and 4. The
models are mathematical abstractions of the real systems. Thus, they do not
exactly reflect the true behavior of the physical system. However, the models
will be referred to as exact or approximate depending on the quality of the

technique used to analyze the mathematical model.

The models can be grouped into three broad classes : tp=tw, tp>tw and
tp<tw, where tp denotes the average processing time. Systems witn tp=tw are
described first because they represent boundary conditions for the other two
cases. Different modeling techniques are examined for tp=tw and a reasonable
approximation is proposed. A casual reader may find it useful to glance through
the empirical results and validation of the models presented in Chapter 5 and
the concluding remarks summarized in Chapter 6 before examining the mathematical
intricacies of Chapters 2, 3 and 4. A more detailed summary of the thesis
content is given below. Table 1.1 summarizes the salient characteristics of the

various analytic models.

Chapter 2 is devoted to multiprocessor systems with tp=tw. A simple

exponential server model provides some insight into the effect of adding a
processor or a memory to the system. A more elaborate analysis for constant

processing time uses discrete Markov chain techniques; an exact but unwieldy




TRBLE 1.1

Sallent Characteristics of Varlous Fnalytic Models

Hodel Descriptor

MULTIPROCESSOR SYSTENS WITH tpatu

Continuous Time Markov Chaln
Lxact Discrete Markov Chain

Rpprox. Discrete Markov Chain

Strecker’s Approximation

Sk inner and Asher's
Discrete Markov Chaln

Rpproximate Model for

Rrbitrary Py

HULTIPROCESSOR SYSTEHS WITH tp>tu
Discrete Markov Chain

for tp=tus+te

Discrete Markov Chaln for

Ceometrically Distributed tp

HcCredie’s Exponential Server

Strecker’s Analysis

FReproximate Mode!l for
Systems with cache

RFULTIPROCESSOR SYSTENS HITH tpciu

An Apgproximate Model

Strecker’s Rpproximation

Processing
Time

exponentlal

cons tant

censteant

constant

constant

constant

constant

geometric

exponential

constant

constant

constant

cons tant

Memory Cycle
Time

exponential

constant

constant

constant

constant

constant

constant

constant

exponential

constant

constant

constant

constant

Remarks

Jackson’s Formulae are used to
obtaln a simple closed form solution.

The soiution is algorithmic.
Unuleldy for iarge systems.

Approximation: non-active Pc's are
reassigned to busy Mp’s at the end
of the cycle. Good for nsm.

Simple closed form solutlon. Less
accurate than above. Non-active Pc's
are reassigned tv all Hp’s.

Exact discrete Harkov chaln analysis
for upto 2 Pc’s and m Mp's.

Pi; is not restricted to 1/m.
Solution Is simpie but approximate.

Rpproximate anaiysis is presented.
Queued Pc’s are reassigned to all
fp's at the end of the cycie.

Rpproximate analysis,
Probltp=tu+lixte] = Bai

Jackson's formuiae are used. One
Mp has different tc and dilfferent
access probabllity, Cache.

Little’s Formula Is used.

Little's Formula is used.
Cache memory speed is a parameter,

fodei for tp=tu is used to ohtain

the conditional probabillty of Pc's
second request goling to an Idle Fp,
depending on the number of busy Hp's.

Results of tp=tu are usedto find
the probabilty of request to an
Idie Hp. Rverage number of busy
Hp's is used. .
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analysis and a simple approximate analysis is presented. This exact analysis of
the Markov chain model is compared with Strecker’s approximation. A new
approximate model is introduced to analyze the effect of skewing the access
patterns of the proc-.ssors so that each has a greater preference for a different

memory module.

Chapter 3 presents discrete Markov chain models for tp>tw. Techniques for
an exact analysis of the models are introduced and some approximations
suggested. Models are developed for constant processing time. McCredie’s
exponential server model[McCr73] and Strecker’s approximate mode! for constant
tp are discussed. Two new models for analyzing the effect of cache memories are

also described.

Chapter 4 contains an approximate model for tp<tw and compares the results

with Strecker’s model.

Chapter 5 contains the results of some empirical measurements of POP-11
programs. The processing time distribution is evaluated from these measurements.
The process of extracting the abstract mode! parameters from the real physical
system behavior is demonstrated. Predictions are made about the performance of
Carnegie-Mellon University’s C.mmp and compared with some actual measurements.
This preliminary comparisen with actual measurements shows the accuracy and

utility of analytic models.

Chapter 6 summarizes the salient results developed in the thesis. An

-
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example of the use of these models for examining design alternatives is also

included. Some dirr.ctions for future work are discussed.




CHAPTER 2

MULTIPROCESSOR SYSTEMS WITH TP=TW

In this chapter multiprocessor systems with tp=tw will be analysed. This
could happen even with a very fast Pc. If the system is bus-bound and the Pc-Mp
bus recovers at the same time that the memory is ready to service the next
request, then the effective processing time (as seen by the memory) is equal to
the memory rewrite time. With tp=tw, the analysis is simpler than with tp<tw and
tp>tw. Also, it is a boundary condition for the other two cases. Thus, tp=tw is
an interesting case for a preliminary comparison of various modeling tectniques,

even when tp is not equal to tw in reality.

A simple exponential server model provides some insight int> the effect of
adding a pr-cessor or a memory to the system. A more elaborate analysis for
constant processing time uses discrete Markov chain techniques; an exact but
unwieldy analysis and a simple approximate analysis is presented. This exact
analysis of the Markov chain model is compared with Strecker’s approximation.

The results of the exact analysis are used to improve the accuracy of the

approximate analysis. A new approximate mode! is introduced to analyze the

effect of skewing the access patterns of the processors so that each has a
greater preference for a different memory module. A diffusion approximatio:, is

also considered.
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2.1 CONTINUOUS TIME MARKOV CHAIN MODEL

In our first model, we apply the classic simplifying assumption in queueing
models: we model the service time, or cycle time, of the memory modules as
exponentially distributed random variables [cf. WagnH69) Clearly most memory
systems do not have an exponentially distributed cycle time. However, techniques
such as interleaving, cache memories, and the type of memory access(read, write,
read-modify-write) suggest that this exponential assumption may be as good an
approximation as the assumption that the memory cycle time is fixed, and not
variable at all. Without further assumptions or approximations, we can use the
results of Jackson [JackJ63), and Gordon and Newell [GordW67) to find the
performance of the multiprocessor system. This technique is also used by

McCredie [McCrJ73] for multiprocessors with tp>tw. This exponential server mode)

is the simplest model to analyze. It also gives some basic insight into the

extent of memory interference when the system has a large number of Pc’s and

Mp’s.

Let the number of service centers be m. The states of the system are
m-dimensional vectors with non-negative integer components, the j-th component
representing the queue length at center jo i KoK, ko, k) s a state
vector, then et S(K)=£kli. Transition from one center to another s

e
characterized by a routing probability rij, ie. the probability of going to

center j on completion of service at center i, Jackson [JackJ63] has obtained
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2.1 Continuous Time Markov Chain Model
the equilibrium joint probability distribution of queue lengths for a broad
class of queueing-theoretical models representing a networx of service centers.
Customer arrivals are modeled as a generalized Poisson process [cf. WagnH69),
whose mean arrival rate varies almost arbitrarily with the total number of
customers already in the system. Service completions at each center are also
modeled as generalized Poisson processes, the mean service rate (u) at each
center varying arbil arily with the queue length there. Note that in Jackson’s
model all customers are identical. Muntz and Baskett [MuntR72]) have a more
general queueing network model that allows different classes of customers to
have different branching probabilities. Gordor and Newell [GordW67] have
presented a solution technique for closed queueing systems, i.e. networks of

queues in which the number of customers is constant.

For closed queueing systems, Jackson’s formulae for obtaining the

equilibrium state probabilities are listed below.

P(K) = w(K)/T(S(K))

where,

k
wiK) = B Pteiu] for i€[1,m]
j=1 i=1

where e(j) = Ee(i)l’u je[1,m)
i=]

T(K) = Zw(K) summed over K with S(K)=n

But, with Pc requests distributed uniformly and with the bus-bound

situation or tp=tw, the exponential server model reduces to m servers with
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customers circulating with uniform routing probabilities i.e. rig=pij=1/m Thus,

e(j) denotes the average frequency of visits to service center j- Using the

above formulae we get,

W(K) = (1 /u)"
n+m-1
T(K) =Cmet J (1 pup

n+m-1y)"! m
P(K) = [( m=1 ) for all K such that _Zkli-n
1l=

i.e. all the stales of the system have equal probability. Physically, this

indicates that states with greater congestion in the queues are as likely as

evenly distributed queues. Note that the above analysis holds even when
successive memory requesis are correlated as long as the average access
frequency Piy=1/m. The probability that a particular Mp module is idle,
Prob{Mp[i] is idle}, is the fraction of the total number of states that has
ky=0. '
In other words,

Prob{Mol[i] is idle} = number of ways of assigning n Pc’s to m-1 Mp’s
number of ways of assigning n Pc’s to m Mp’s

Therefore,

Prob{Mp[i] is busy} = n/(n+m-1)

E[number st busy Mp’s] = m«Prob{Mp[i] is busy}

= m#n/(m+n-1) i
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The above expression has a number of interesting properties: the expression
is symmetric in m and n; it has a basic hyperbolic form, asymptotic to n as m
gets large; and, if we let m=n the above expression becomes
n/(2-1/n)
and

E[number of busy Mp's] - n/2 for n>>}

The final observation has important implications. It states that as
multiprocessor systems grow to include more and more Pc’s, we are not faced with
a law of diminishing returns: no matter how many Pc’s are used, if we have the

same number of memory modules, we can expect half the processors to be active.

2.2 A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us assume that all the Pc’s are characterized by a
single constant processing time tp. In this model, the memory access and cycle
time are constant. The exponentisl server model discussed above allows the
memory cycle time to have a large range of values. However, though the cycle
time is not a constant (as seen by a Pc) it certainly does not have an
exponential distribution. The constant service time model is an attempt to
de-emphasize the small variance in the value of the cycle time. Although the

processing time is not a constant in reality, this approach yields fairly good
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2.2 Discrete Markov Chain Model
estimates of the MpAR as substantiated in section 2.7. Also, all the memory
units are assumed to have the same cycle time tc and access time !a. Thus, the
memory rewrite time is given by tw=tc-ta. if tp= tw then all memory units can be
considered to be Operating synchronously. Thus, during any memory cycle the

number of active Pc’s is equal to the number of busy Mp’s.

In this section, a simple Markov Chain Analysis is presented for the case
in which the processors request every memory with equal likelihood. A
multiprocessor system with n Pc’s and m Mp's is likened to an occupancy problem
with n balls and m urne. Balls are randomly assigned to the m urns at the
beginning of a memory cycle. At the end of the cycle one ball is remaved from
each urn. Thus if there are k non-empty urns during cycle s then k balls are

available for assignment during the (s+1)-th cycle.

The state of the <Hove mentioned process is defined by a m-tuple

(kyyKopnkn), Where ?_’K;=n and O<k,sn for all i. The number of distinct states
i=1 +m-1

of the system is given by the combination, (nm-l) i.e. the number of ways in

which n identical balls can be assigned to m bins [FellW66]. However, since all

the processors behave identically, a number of the distinct states are

equivalent i.e. they have the same Occupancy and iave the same cuomponents. e.g.

states (2,1,1), (1L,2,1), (1,1,2) are equally likely. Thus, the reduced states

are given by the different ways in which the number n can be partitioned into m

m
parts. i.e. the unordered integer solutions to the equation XX;=n for 0<X;<n
i=]
represent equivalence classes of equally likely states. The number of such
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TABLE 2.1

SOME PROPERTIES OF THE DISCRETE MARKOV CHAIN MODEL

Number of Pc’s Total Number Redﬁced Execution time
Number of Mp’s of States States for program
3 <1 sec.
35 < 1 sec.
6435 2 sec.
92378 8 sec.

1352878 1 min.

3080548135 1 hour
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partitions (for nsm) is asymptotic to
—1_ exp[n(2n/3)10.5) [cf. BeckE64)
4rys
Also,

F(x) = — 1
(1-x) (1-x3 . . . (1-x%)

= 143 pi)x!
is an ordinary generating function of the sequence (p(0), p(1), .., p(k)),
where p(i) denotes the number of partitions of the integer i that have no part
exceeding k, ksi [LiuC68). Table 2.1 shows the total number of states and the

number of reduced representative states as a function of n.

Let the representativs state Si denote the set of compositizns of the

number n that yield the same partition e.g. the compositions (2,1,1), (1,2,1)
and (1,1,2) correspond to the partition of the number 4 which has two 1’s and
one 2. Further, let Si.j be the individual compositions of the partition
typified by representative state Si and Si.1 be that composition which has its
components arranged in monotone non-decreasing order, i.e. (2,1,1) for the above
example. The algorithm shown in Fig 2.1 generates all (he partitions of n with

the components in monotone non-increasing order.

Let X,; denote the probability of a transition from Sj to Si. Then, due to

the symmetry of the problem,
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Number to be partitioned..N

Maximum number of parts...M

Ke1; A(Q) « N
|

X

A(I) « T for Tw2,i,.,K

¥

N

A1) « N—IZQA(I) =3 ,

Components of a partition are given by
A(1), I=1,...,K. This partition has K
non-zero parts, Store or display this

partition.
[ﬁ T e 2

< T=K+i?

T+« TH

l .

ﬁ(l] - A-(T} + 1 fﬂl’ I'2||llpT'l

Y
K+e=K+1

e - O S

STOP

Figure 2,1 An algorithm for generating partitions
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Xis = ZProb{Transition from Sj.1 to Si.k}
Si.k Si

Let the m-tuple (kikzmwkm) denote the state of the Markov chain. If «x
is the number of non-zero elements in this vector then at the end of the memory
cycle, x new processors have to be reassigned to inemory modules. At the end of
the current memory cycle the queue is characterized by the partial siate m-tuple
G nizssin), where

ji o=kl if k>0

=0 otherwise.

A new state (llayln) is  reachable from (kykgpnkm) if and only if
li2jj tor 1sism. If the above condition is satisfied the probability of the
state transition is given by

X x-d,\ ,x-d,-d, x-?fll e
(d,).( d, }( d, )' "( :f) % (1/m)

where d|'|‘°ji

ie. x!  #(1/m)?x

d!d,! .4,

m m
Note that since £k| =3l =n,3d; =x
1=1 =] i=1

+

Thus, we now have a formula for generating the transition probabilities.

Due to tre symmetry of the problem it suffices to generate only the transition
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Initial State Final Terminal States

ffffffgf”;*z 10 niqé;z 20
1100 2110
Initial
Partial
State 3/,,2]1!‘.'!

110

Add 1 pec Add 1 more Pc

Figure 2¢2 Next states accessible from {nitial state (2,2,0,0)
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probabilities for the representative class of states. All the different ways of

obtaining the same partition are lumped together to form a reduced state.

To illustrate a computational methodss for generating the transition
probabilities consider an example of a 4 by 4 system. The number 4 can be
partitioned in 5 different ways as listed below:

4000
3100
2200
gd 19

¢ 141

These partitions represent 5 equivalence classes that characterize the
state of the Markov Chain. Let us consider the state (2,2,0,0). At the end of a
memory cycle, the resultant partial state is (1,1,0,0) with 2 free processors to
be reassigned. Figure 2.2 shows the different ways in which these 2 Pc’s can be
assigned, one at a time, to reach a new partial representative state. After both
Pc’s are assigned a terminal state is reached. The number on the arrow indicates
the number of ways of reaching the partial or terminal state that the arrow

points to. Now the number of ways in which a final state can be reached from the

*xThe use of a tree to generate the transition probabilities was suggested by F.
Baskett and D.Chewning of Stanford University,




310

220

1100 211

e R

Level O Level 1 Level 2 Level 3 Level 4

Figure 2.3 Enumeration tree for a 4 by 4 multiprocessor system.
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initial state can be computed by traversing the tree, e.g. there are 2x1 ways of

reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching (2,1,1,0) from (2,2,0,0).

It is possible to construct a single tree with different pointers for

different initial states. Figure 2.3 shows a complete tree for a 4x4 system.

Initial states are circled. The entire transition matrix can be filled by
traversing this tree. A convenient way of traversing this tree is by using a
stack which has depth equal to one more than the number of Pc's. At each level
the stack contains a partial state and hias a pointer to the initial
representative state (if any) from which it is derived. The stack Is initialized
to contain the path that leads to the topmost final state. For this example the
stack is initialized as shown in Fig. 2.4, and Fig. 25 shows an a_lgorithm‘?‘ for

using the tree to generate the transition matrix, shown in fig. 2.6.

The tree in Fig. 2.3 can be converted into a mesh by lumping together all
occurrences of a partial state in the tree. e.g. state 2100 at iovel 3 appears
iwice. the resulting mesh for the 4 by 4 example is shown in Fig. 2.7. the
algorithm for generating the transition matrix is shown in Fig. 2.8. Though the

implementation of this algorithmtt involves a matrix multiplication and requires

++See Appendix A-2 for a listing of a FORTRAN implementation.
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2110
13111

Initial
state
pointer

[ 1]

4000

3000

2000
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2 level O

NWAYS

Number of ways of
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Figure 2.4 Initial contents of the stack for traversing the tree
shown in figure 2.3




Use Level L-1 to
change Level L

Update NWAYS

Generate transition prob-
abilities from all initial
state pointed to by the
stack,
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-
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Transition matrix has been
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Figure 2.5 Algorithm for traversing the tree shown in Figure 2,3
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4000 310022002110 ]1111
4000 1 1 0 1 4
3100 3 343 2 34346 | 12412424
2200 0 3 2 346 12 424 |
f
2110 0 6 446 6412418 | 24+48+72
|
. O O 0 0 2 6 24 !

STEP 1 ¢ Xij is the number of ways of reaching 1 from j.

(obtained from the tree of fig.2.3)by using the

( Note that 3 Xij=n", where x of the m

STEP 2 ¢+ Xij=_Xij
1 components of j are non-—zero)

< Xij
i

Final equations to be solved simultaneously

SUBJECT TO p

4000" F3100"

4

2200"

P

2100* P1111= 1

Figure 2.6 Steps in the g2neration of the transition matrix

? 4000 r.0.25 0.0625 0.000 0.015625 0.015265 | |F4000
Fs200| | 0.5 0.3750 0.125 0.187500 0.187500 | | 3100
2200 |=| 0.00 0.1875 0.125 0.140625 0.140625 | | P2200
2100 [ 0.00 . 0.3750 0.625 0.562500 0.562500 | | F2100
_Pnnd | 0,00 0,0000 0,125 0.095750  0.093750 | _Pnu_d
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more temporary storage it is faster than the algorithm in section 2 i r .rge
n. Thus, a space-time trade-off affects the selection of the algorithm to be

used.

The following theorem and lemma can be used to increase the efficiency of

the program that generates the transition probabilities.

Theorem 1: There is a one-to-one correspondence between a representative state
and a partial state that the representative state reduces to at the end of a

cycle.

Proof: Let (k,k,.,km) be a representative state. The partial state at
the end of the cycle is given by
Girizrnsim)
where ji=k;-1 if k;>0
=0 otherwise °
Since no two representative states are alike and _'Ek.-n, it follows that the

i=1
partial states are distinct.

Lemma : A partial state at level L in the enumerative tree of Fig. 23 can

correspond to a terminal state with exactly n-L occupied Mp’s.
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FPig. 2.7 - Enumeration mesh for a 4 by 4 multiprocessor system.
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genorato parlitions of N into M parts,
lot the vector XSYS denoto these partitions,
that represent the state of tho system,

Y

Gererate partitions of N-1 into M parts.
Letl X2 denoto those partial stalos,

| =N-1

4

Compute B,
Matrix B is the number of ways
of reaching XSYS from X2.

P
A

|

Update TRANS (i.e. matrix of number
of ways of reaching XSYS from XSYS.)
it any state in X2 is a reduction
-of a state in XSYS.

=07

N

Generato partitions of 1
Vector X1

{

Compute matrix A,
A is the number of ways of
reaching X2 from X1.

\

Matrix Multiplication.
B = A'B
Interchange X1 and X2.
B is now the number of ways
of reaching XSYS from X2.

|
¥

I 00..0 is a reduction of a
state in XSYS update TRANS,

b

Evatuation of
the required matrix of the number
of transitions, TRANS is complete.

Fig. 2.8 An algorithm for evaluating the transition matrix.
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Proof: Let J=(j,j,..jn) be a partial state in the tree depicted in Fig.
; 2.3. Furthermore, let the number of non-zero elements elements in the partial
state be y 2nd let ‘;_n“;jlwn-x. Since one Pc is always removed from a non-empty
F queue at the end of a cycle, J is a partial state that can e reduced from a
! valid representative state K=(k,k,,..ky), if and only if

(i) The number of non-zerc elements in K is x,and

(i) x>y
Note that x and y are both less than or equal to min(m,n) and fk;-n. Then, if

i=1
x>y, J has at least x-y zeros. If x<y then there is no representative state K

T T S S ————

that corresponds to the partial state J. If x2y, then the representative state

is obtained by adding y 1's to the non-zero elements of J and replacing x-y
m

zeros of J by 1. At level L, 'ij- L. Therefore, x, the number of occupied Mp’s
1=

in K, is equal to n-L.

Figure 2.9 shows the average number of busy Mp’s when n=m. The curve has an
almost constant slope of .586 for n>4. Thus, this model also shows the absence
of a law of diminishing returns. Figures 2.10 and 2.11 show the effect of adding
a Pc and an Mp respectively on the average number of busy Mp’s. Also, the
average number of busy Mp’s is almost symmetrical with respect to m and n. The

results obtained from the model are compared with a less restrictive simulation

model! in section 2.7.
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2.3 APPROXIMATE DISCRETE MARKOV CHAIN MODELS

Even with the representative state approach the number of states
characterizing the Markov Chain increases rapidly as n increases. Table 2.1
shows the number of representative states as a function of n and the approximate
execution time needed on a DEC PDP-10 for the FORTRAN program listed In Appendix
A-2, which determines the stationary state probabilities. Though the analysis is
exact, the size of the problem (as indicated by the array space used by the

program) and the time required restricts the use of the model described in

section 2.2.

2.3.1 A New Approximate Discrete Markov Chain Model

Because of the high cost of computation for the previous model, an
approximate discrete Markov chain model will now be proposed, and the results of
section 2.2 will be used to improve the applicability of this new approximate
model. The state is denoted by the number of active Pc’s. Thus the number of
states is min(n,m). Note that only those Pc’s that are active during the current
cycle make new requests during the next cycle. Also, the number of busy memories
is equal to the number of active processors. The approximation propounded here
consists of removing the non-active Pc’s from the Mp queues and reassigning them

as indicated below. This approach was motivated by a gross intuitive feeling
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that if the Pc’s are removed from the queues and asked to make new requests,
they would end up in the same queues as before. However, this is not exactly
true, and the heavily congested states tend to be de-emphasized. Let the number
of busy Mp's during the current cycle be i. Then, during the next cycle the i
active Pc’s make a new request to the m Mp’s and some of the n-i non-active Pc’s
get serviced if they are at the front of the queue, However, in this approximate
model, the n-i non-active Pc’s are removed from the i Mp queues and reassigned
to the same i queues. This is equivalent to the n-i Pc's making new requests to

the i Mp’s. Thus the i Pc's may not end up in the same queues that they were

removed from. This approximation will be used widely in this thesis. The results

of this section show the accuracy of the approximation.

Now, the probability that j out of the i active Pc's make a new request at

the beginning of the next cycle to one of the i Mp’s that are busy during the

current cycle. is given by .
XPROB = (ij)t (ﬁ"ba-( peifmy

Thus, during the next cycle, with probability XPROB the n-i non-active Pc’s and
j active Pc’s are assigned to the i busy Mp's of the current cycle, and the
remaining i-j active Pc’s make a request to the other m-i \Mp's.

Let nn=n-i+j and k,=min(nn,i). Note that nn denotes the number of Pc’s that
will be queued (during the next cycle) for the i Mp's that are busy during the
current cycle. Also, let X(!,) denote the conditional probability that I, out of

i busy Mp’s are also busy during the next cycle, given that n-i+j Pc's will be
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queued for the i Mp’s. The number of ways that nn different Pc’s can be assigned
to i different Mp queues is i™ [RiorJ58, pp.90). Also the number ways that the
nn Pc’s can access i Mp’s so that exactly |, Mp’s are occupied and i-l, are not
is given by Riordan[RiorJ58] as
CM(il,)*S(nn,),)
where CM(i,l )= i(i-1). . .(i-1,+1)
and  S(nn),) is the Stirlingt number
of the second kind
Thus,
X(1,) = CM(i,l )#S(nn,),)/i"n
Now, let Y(I,) be the conditional probability that 1, out of the m-i currently
non-busy Mp’s are busy during the next cycle, given that i-j Pc’s make a
request. Then,
Y(1;) = CM(m=i,),)#S(i-j,l,)/(m-i)'-®
Thus, the prob.ability that k=l,+l, Mp’s will be busy during the next cycle is
XPROB#X(1,)Y(l,)
Therefore, TRANS(K,i), the probability of a transition from current state i to

next state k is

tStirling Numbers of the second kind are used to convert from powers to binomial
coefficients,

X
X" = 55(nk) (k) k!
Also, X

S(Gi)j) = j*S(i-1,j)+S(i-1,j-1)
with 5(i,0)=5(0,i)=0
and  S(iji)=1
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TABLE 2.2

Comparison of Exact and Approximate Models

Approximate Discrete Markov Chain Model for tpe tu

Average Number of. Busy Mp's

m=2 m=4 m=8 m=16
n=2 1.5000 1.75e0 1.8750 1.8738
n=4 1.8020 2.6550 3. 2751 3.6291
n=8 1.9846 3.4858 6. 8989 6.3680
n=16 1,9939 3.9343 6.8436 18.80858

Exact Discrete Markov Chain Model

Average Number of Busy Mp's

m=2 m=4 m=8 m=16
n=2 1.5000 1.7500 1.8750 1.9735
n=4 1.7500 2.6218 3.2652 3.6268
n=8 1.8750 3.2657 4.9471 6.3149

4 n=16  1,9375 3.6270 6.3154 9.6258
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ZXPROB#X(l )*Y(i,)

the summation is over the different ways of choosing
l, and |, such that k=|,+l,.

A FORTRAN program that determines the steady state probabilities is listed
in Appendix A-3. Table 2.2 shows the average number of busy Mp's as predicted by
this approximate model. Due to the small number of states, this approximate
mode! needs much less computer time; typically about 1 second of execution time
on a PDP-10 for a 16x16 multiprocessor system. Table 2.2 shows that the average
number of busy Mp’s is almost symmetric in m and n. The approximate modei has a
larger error for n>m. Therefore, a better estimate of the performance of a nxm

system can be obtained by evaluating thie performance of a mxn system if ">m, a

- e o

conclusion possible only due to the results of the exact analysis of section

2.2. _J

2.3.2 Strecker’s Approximation

Strecker [StreW70] has an approximate closed form solution to the discrete
Markov Chain model presented here. His approach is equivalent to removing the
queued processors from all the memory modules at the end of a memory cycle and
reassigning them among all the memory modules. In the approximate mode! proposed

earlier in section 2.3.1, the Pc’s that were queued at the end of the cycle were

reassigned only among the busy Mp's. Thus, Strecker’s analysis Is more




Page 50

TABLE 2.3

Expected number of busy memories in one cycle
Number of Pc’s = 1,2,...,8 (rous)
Nunber of Mp's = 1,2,...,8 (columns)

Discrete Markov Chain Mode!

1.0000 1.0000
1.0088 1.5000
1.8000 1.6667
1.0808 1.75@0
1.0008 1.8008
1.9008 1.8333
1.0080 1.8571
1.8008 1.875@

-0006 1.8000 1.8206 1.0000 1.8008 1.8888
6667 1.7508 1.8680 1.8333 1.8571 1.8758
-B476  2.2692 2.4895 12,5854 2.5748 2.6272
-2781 2.6218 2.8638 3.8365 3.1657 3.2652
.4182 2.8633 3.1996 3.4538 3.6482 3.8819
-5859  3.8370 3.4533 3.7809 4.8415 4.2518
5751 3.1663 3.6486 4.8418 4.3636 4.6292
6274 3.2657 3.8824 4.2521 4.6294 4.9471

NNNNNN - -

Strecker's Approximation

1.0080 1.0008
1.0000 1.5000
1.0808 1.7500
1.0008 1.8750
1.0088 1.9375
1.8088 1.9687
1.0000 11,9844
1.0088 1.9922

-0080 1.0000 1.8000 1.8008 1.8002 1.0000
6667 1.7508 1.8088 1.8333 1.8571 1.875@
1111 2.3125 2.4488 2.5278 2.5918 2.6486
4874 2.7344 2,9528 3.1865 3.2216 3.3185
-6843 3.8588 3.3616 3.5887 3.7613 3.8967
-7366 3.2881 3.6893 3.9986 4,2248 4.4836
8244 3.4661 3.9514 4.3255 4.6206 4.8584
+8829 3.5995 4.1B611 4.6846 4.9685 5.2511

NNNNNN = —

Percentage Error

0.0000 ©.p000
0.0000 0.0000
0.8888 4.9979
0.0008 7.1429
8.0808 7.6389
8.00800 7.3856
0.0000 6.8548
6.080@ 6.2587

-0000 ©8.2000 ©.8080 0.8000 B.20020 8.8208
.0000 ©.0000 0.800¢ 0.8008 B.20028 ©.8000
1012 1.9882 1.2658 8.8941 0.6682 8.51c@
0482 4.3266 3.1086 2.3053 1.7658 1.3874
8782 6.5484 5.8631 3.9299 3.1882 2.4935
+2063 8.2688 6.8348 5.5463 4.5157 3.7114
-6812 9.4685 8.2991 7.B191 5.88968 4.9512
. 7244 18.2214 9.4335 8.2980 7.1521 6.145@

WWWPVPNW®®
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approximate and will underestimate the interference. However, Strecker obtains
his approximate solution in a closed form, which will be modified here to yield
more accurate estimates of the MpAR. Thus the state of the system is considered
independent of the state during the last cycle. If we use this assumption the

distribution of Pc’s queued for an Mp follows the binomial distribution:

Prob{Y=r} = () (D7, Ym)

where Y is a random variable equal to the number of Pc's queued

tor Mp[j] and p;;=1/m for all i and j.

Thus,
Prob{Mp(j] is busy} = 1- Preb{nobody is queued for Mp[jl}
= - (1-1/in)
In other words, the occupancy of Mp[j] is 1-(1-1/m)", and
E[no. of occupied Mp’s] = :Za{(l)ccupancy of Mp(j]}

= m#[1-(1-1/m)")

Table 2.3 shows a comparison of Strecker’s results and the exact Markov
chain analysis. Note that Strecker’s results are optlimistic estimates of the
unit execution rate. It is encouraging to note that such a simple expression is

within 6 to 87 of the exact Markov Ch-in model for m/n>0.75. This is because his

analysis assumes that all n Pc’s always make a new request at the beginning of
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each memory cycle, whereas in the discrete Markov chain only those Pc’s that
receive service are allowed to make new requests. Moreover, note that the
expression m#[1-(1-1/m)"] can be written in an exponential form as
m¥{1-exp[n* In (1-1/m)]}
Figure 2.12 shows a plot of the above expression for fixed m; the relaxation

time [ In (l-l/m)]-lapproaches m as m gets large.

The exact discrete Markov chain model of section 2.2 shows the performance
to be almost symmetric in n and m. Also the analysis ¢! the error of Strecker’s
approximation, shown in Table 2.4, indicates a greater accuracy for n<m. Thus, a
more accurate estimate of the average number of busy Mp’s is ixf1-(1-1/i¥ ),
where i=max(n,m) and j=min(m,n). Note that the above formula was not derived by
Strecker. It was possible tn sbtain it due to the knowledge gained from the

exact analysis presented in section 2.2.

2.4 DISCRETE MARKOV CHAIN MODEL OF SKINNER AND ASHER

Skinner and Asher [SkinC69] model the multiprocessor system with tp=tw as a
discrete Markov chain. They assume a matrix of probabilities that express the
likelihood that a given processor requests service from a given memory at the

beginning of a memory cycle, provided the Pc is not queued. They also assume a

matrix of probabilities that express the likelihood of the various outcomes that
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can arise when there are simultaneous requests to one memory by several
processors. The state of the system is characterized by the processors queued
for the different memory modules. A state transition matrix is formed from the
access probabilities and the steady state probabilities of various states are
determined by solving the state transition equations. The number of states of
the system increases very steeply with an increase in the nurber of Pc’s and
Mp’s. Closed form solutions are presented only for cases with up to 2 Pc’s and n
Mp’s. The analysis in the previous section is similar to Skinner and Asher, but
with uniformly random access patterns for ali the Pc's, i.e. pij=l/m for all i
The results of Skinner and Asher are ccmpared with a new approximate mode! in

section 2.6.

2.5 DIFFUSION APPROXIMATIONS

An approximation method that has been proposed for the solution of general
c-:|ueueing networks is the diffusion approximation [cf. NeweG71; KobaH73]). A
discrete-state process is approximated by a Wiener-Levy diffusion process with a
continuous path. The key assumption in such an analysis is that incremental
changes in the queue lengths are normally distributed. This leads to a

characterization of the queueing network by a set of diffusion equations. The

accuracy of the approximation depends on three factors: (i) approximation of a
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discrete-state process by a time-continuous Markov process, (ii) choice of
proper reflecting barriers, and (iii) discretization of the continuous density
function for queue lengths. Surprisingly, for the simple discrete Markov Chain
model of section 4, the diffusion approximation yields a result identical to
{ that with exponential servers derived from Jackson’s formulae. However, the main

utility of the diffusion approximation in this context is that it can be used to

analyze the effect of different coefficients of variation ( ratio of standar.
deviation to the mean) for the service time distribution. Unfortunately, for
Pij=1/m, the diffusion approximation predicts that the average number of busy:
memories io be independent of the service time distribution as long as all
servers are identical. Thus, the diffusion approximation has proved to be a

disappointing tool in this study. i

2.6 AN APPROXIMATE MODEL FOR ARBITRARY P,

In this section, we explore tre effect of non-uniform access probabilities
(i.e. Pi; is no longer restricted to be equal to 1/m) on the MpAR. This
situation often arises in physical systems in which each Pc has a greater
preference for a different memory module.Now, we analyze multiprocessor systems
in which F; can take any arbitrary value between 0 and 1 subject to :Z?'P“-l. Let
Qij denote the probability that processor i is queued for memory j. The

probability that memory j is busy or occupied is given by
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1-Prob(no processor s queued for memory j)

n ‘.
1-TK1-Qij)
i=l
assuming that the event of a Pc not being queued for an Mp is independent

of other Pc’s not being queued. The simulation results shown laic* justify this

assumption.

The above denotes the average number of requests serviced in one memory

cycle.

Thus, if, M is the expected value of the number of occupied memories Juring

a memory cycle,

then M= E Prob[Mp[j] is occupied)
J=1

= & 1-fha-qipy
J=1 i=1

In general, the probabilities Qij and Pij are not equal. The Pij's are a
characteristic of each processor and therefore independent of the behavior of
the other processors in the system. However, any Qij is a function of all the
Pij’s of the multiprocessor system. Strecker (StreW?Of has evaluated the unit
execution rate of a multiprocessor system in which Pijs1/m for all values of j
and j. He makes no attempt to obtain a relationship between Qij and Pij.
Strecker assumes that Pij=Qij and states that his results are approximate. The

approximation in his analysis is due to the assumed binomial distribution for




Chapter 2 : Multiprocessors with tp=tw Page 57
2.6 Approximate Model for Mrbitrary P,;
the queued processors. If all the Pc’s are identical and have equal likelihood
of accessing every memory unit, then the probability of any processor being
queued for any memory is uniformly equal. Since the memories operate
synchronously and all requests occur at the end of a memory cycle a processor is

always queued. Hence, the probability Qij=1/m.

Let us focus our attention on Pc[i] and Mp[j]. The time spent by Pc[i] in
queuve for Mp[i] depends on P;; and Q,, I#i. Thus, Q;; depends on other Q;’s,
which in turn depend on Q,;. Let us for a moment allow other processors to make
requests to memory before Pc[i]; and let Y;; denote the probability that none of

the other n-1 Pc’s request service from Mp[j].

Thus,

n

Yig = TI(1-Py)

l#i
Now, if none of the other Pc’s make a request to Mp[j] the waiting time
(including service) is one cycle time. However, if other Pc’s make a request to
Mp(j] before Pcli), then Pc[i] has to wait for those Pc’s to be served. Now, let
us look at Pc[l], which has to wait for service from Mp[j] if other processors
make a request before it does. Here, we shall allow other P¢’s to make requests
before Pc[l}. Thus, Pc[l] waits in queue for Mp[j] with probability P;;*[1-Y,;]
Thus, the average number of Fc’s that Pc[i] finds waiting before itself is
2P y#[1-Y,;] However, Pc[i] accesses Mp[j] with probability P;;. Therefore, the
weighted waiting time T;; for Pc[i] in queue for Mp[j] is

Pyt (Y, +[1+ gs?mu-v.n] # (1Y)}

m
Therefore, the average time is equal to >.T,;; and
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Qis = T4/T

Figure 2.13 compares the execution rate predicted by the approximate model
of this section with the exact Markov chain model of Skinner and Asher for a 2x2

multiprocessor system. P;; is equal to e for i=j and equal to 4 for i¥,j.

Now, suppose each Pc has a greater preference for one Mp. Let us use the
model to examine the effect of assigning access probabilities so that Pij=ct>1/m
for i=j and Pj;=@=(1-c£)/(m-1) for i#j. Note that B<1/m. Thus, each Pc has a
greater preference for a certain memory module. For example, the access
probability matrix for a 4x5 multiprocessor system is shown below.

<BBALM
BoBBRA
BRBxBB
BRABxA

Figures 2.14 and 2.15 show the effect of changing « from O to 1 for a 8x16
and a 16x16 multiprocessor system. Also, Table 2.4 compare.: the results
predicted by the model with simulaticn results, because the analysis is
approximate. Note that both graphs show that the execution rate is a minimum for
oe=1/m. With «=1/m this model predicts the same result as Strecker’s
approximation as both models assume a binomial distribution for the queued

processors. The approximation error reduces as o increases, the error being zero

for o¢=1. An error correction factor can be used as described below. For o=]/m
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Figure 2.14 The Effect of o on the execution rate of a
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TABLE 2.4

Comparison of simulation results with analytic model of Section 2.3

A 16x16 Multiprocessor System

x 38% confidence interval Analytic
from simutation Resul t
8.25 (3.7482 , 3.8329) 18.4174
8.58 (18.5824 , 18.53946) 18.9973
8.75 (12.8875 , 12.3387) 12,5323

6.398 (13.9111 , 14.,2145) 14,3873

A 8x16 Multiprocessor System

« 98% confidence interval Analytic
from simulation Resul t
8.25 (6.2883 , 6.4139) 6.4888
8.58 (6.5374 , 6.5614) 6.6885
8.75 (6.96393 , 7.8853) 7.1673
8.98 (7.4338 , 7.6841) 7.6328

A 8x8 Multiprocessor System

x 98% confidence interval Analytic
from simulation Resul t
8.25 (4.8886 , 5.1126) 5.2738
8.50 (5.2797 , 5.4127) 5.6372
8.75 (6.8326 , 6.1981) 6.2887

8.390 (6.9245 , 7.1411) 7.1975




Chapter 2 : Multiprocessors with tp=tw Page 63

2.6 Approximate Model for Arbitrary P;;
the exact Markov chain model shc.auld be used to compute the execution rate X
the approximate model of this section predicts an execution rate, X,, equal to
ma[1-(1-1/m)"] for «=1/m. The correction factor for o=1/m is X,/X,. Let
e=(X,-X,)/X;. Then a linear error correction factor F is 1-ex(1-)/(1-1/m) for
«>1/m. The corrected estimate is FaX, where X is the execution rate for the
given value of ot The dotted lines in figures 2.14 and 2.15 show the corrected
execution rates. The vertical lines show 907 confidence intervals obtained by
simulationt. This model shows the increase in the MpAR due to deskewing of the

processors’ access patterrs.

2.7 CONCLUDING REMARKS

Tables 23 and 25 compare the num:rical results obtained from the
different models described. Note that the cantinuous and discrete Markov chain
models exhibit similar trends, though tre numerical values differ. Strecker’s
approximation gets better as m/n increases, whereas the continuous time and
discrete Markov models get closer for larger n/m ratios. Table 2.6 shows some

simulation results obtained with exponential distributions for the processing

tAll confidence intervals in this thesis will be shown by vertical lines. Unless
specified otherwise, the confidence intervals are calculated from about 10
independent samples, each averaged over about 3000 cycles.
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TABLE 2.5

Expected number of busy memories in one cycle
Number of Pc's = 1,2,...,8 (rous)
Number of Mp's = 1,2,...,8 (columns)

Discrete Markov Chain Model

1.8000 1.0000 1.0088 1.8008 1.8000 1.08¢8 1.0008 1.0008
1.0006 1.5808 1.6667 1.7580 1.8088 1.8333 1.8571 1.8758
1.9888 1.6667 2.8476 2.2692 2.4895 2.5854 2.5748 2.6272
1.3008 1.7580 2.2701 2.6218 2.8639 3.8365 3.1657 3.2652
1.0008 1.8088 2.4182 2.8633 3.1996 3.4538 3.6482 3.8819
1.8088 1.8333 2.5859 3.8378 3.4533 3.7809 4.8415 4.2518
1.88688 1.8571 2.5751 3.1663 3.6486 4.8418 4.3636 4.6292
1.88080 1.8758 2.6274 3.2657 3.8824 4.2521 4.6294 4.9471

Continuous Time Markov Chain Model

1.8800 1.8008 1.0000 1.8080 1.0008 1.8008 1.8800 1.0000
1.8880 1.3333 1.5888 1.6008 1.6667 1.7143 1.7588 1.7778
1.8868 1.5888 1.8088 2.8888 2.1429 2.2588 2.3333 2.4000
1.8822 1.6880 2.8888 2.2857 2.5888 2.6667 2.8088 2.9891
1.8888 1.6667 2.1429 2,588 2.7778 3.8088 3.1818 3.3333
1.8888 1.7143 2,2588 2.6667 3.8808 3.2727 3.5808 3.6923
1.8888 1.7588 2.3333 2.8808 3.1818 3.5888 3.7692 4.0008
1.8808 1.7778 2.4888 2.9891 3.3333 3.6923 4.8880 4.2667

Percentage Differehce

8.8000 0.0008 ©8.0000 ©.0088 ©0.8808 0.3008 ©.2880 0.0000
0.80008 11.1133 18.80818 8.5714 7.4856 6.4918 S.7671 5.18480
8.0000 18.0018 12.8922 11.8632 11.8645 108.1948 9.3794 8.6480
8.8888 8.5714 11.8982 12,7928 12.679@ 12.1785 11.5519 18.39053
8.0808 7.4856 11.8984 12.6882 13.1829 12.1190 12.7844 12.3254
0.0808 6.4918 18.2119 12.1930 13.1266 13.4412 13.3985 13.1591
8.08888 5.7671 9.3899 11.5687 12.7939 13.404° 13.6218 13.5928

0.0008 §5.1848 8.6549 10.9196 12,3369 13.1653 13.5357 13.7535




n=2
N=3
n=4
n=5
n=6
n=7
Nn=8

M=

TABLE 2.6

Expected number of busy memories in one cycle

Exponential distribution for tp

Constant tu=tas=E[tp]

Simulation results

2 3 4 S 6 7 8
1.4888 1.5931
1.6185 1.9878 2.20875
2.2198 2.5643 2.8004
2.7988 3.1472 3.4300
3.4088 3.7122 4.0040
3.9990 4.3196 4.5884
4,5666 4.90828
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time, with mean equal to tw.

i.e. Prob{tp=x} = \ exp(-Ax) where A=1/tw=1/ta=1/E[tp]

Note that the values in Ta-le 2.6 lie between those predicted by Strecker and
Jackson, and within 57 of the exact discrete Markov chain model for most cases.
Thus, modeling the variable processing time by a constant equal to the mean
processing time is a reasonable simplification. Table 2.7 shows the

characteristics of the parameters in the various models.

It is important to note that with tp=tw a Pc is fast enough to make a irew
request to memory when the memory recovers. Thus, for a 1x] system the memory is
always busy Also, “ith m2n, if there is no contention for memory the maximum
number of busy memories is min(m,n). An important result observed was the
absence of a law of diminishing returns: the performance of a multiprocessor
system with n processors and n memories continues to rise at a constant rate as
n increases. A simple exponential server model showed this rate to be 0.5; a
constant processing time model predicted a slope of 0.586 for the average number
of busy Mp’s. The exponential server model gives the average number of busy Mp’s
as mrm/(n+m-1). An approximate result for constant processing times gives the
average number of busy Mp’s as i/ 1-(1-1/i) j, where i=max(n,m) and j=min(n,m).
An intuitively obvious conclusion limits the maximum number of active Pc’s by
min{n,m). This maximum is reached if each processor accesses only one memory all

the time.
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CHAPTER 3

MULTIPROCESSOR SYSTEMS WITH TP>TW

In this chapter multiprocessors with tp>tw  will be discussed. First, a
discrete Markov chain model for a constant Processing time equal to tw+tc will

be developed and a general methodology for constant tp=twsittc will be

presented. A more general model for processing time having a geometric

distribution with its mean value greater than tw will be deccribed. An

exponential server model developed by McCredie[McCrJ73] will also be discussed.

3.1 DISCRETE MARKOV CHAIN MODELS FOR MULTIPROCESSORS WITH TP=TW+TC

In this section, discrete markov chain models will be developed for
multiprocessor system in which the processing time tp is a constant and is

exactly equal to tw+tc. The timing of a typical instruction is shown balow.

ta tw v : i
Mp = ‘ . : ]
' Leffect:we execusion time
0 | L
]
Pc IL |
je———— tp=tw+tc “—"’,

Note that a Pc that is serviced during this cycle nperates on its data during

the next memory cycle. This will be modeled by associating a server with each Pc




¥p servers
fulti-server
Station

J Service time tc

Pc's Central Crosspoint Switch

Service time tc

Firure 3.1 Queueing mrdel for rultipricessors uith to=tw+ic
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Chapter 3 : Multiprocessors with tp>tw
3.1 Discrete Markov Chain Model for tp=tw+tc

with a ccnstant processing time equal to tc; and this portion of the processing
time will be called its effective execution time. As before, all processors will

be assumed to be identical with P;;=1/m. The processor servers will be lumped

together as a multi-server station.

Now, if the number of Pc’s is n and the number Mp’s is m, the state of the
queueing system shown in Fig. 3.1 can be described by a (m+l)-tuple
(ke KpKapeokn), where ko is the number of Pc’s in execute state and
ki,1sism, is the number of Pc’s queued for Mp[i)} Since all the servers
contribute fixed delays equal to tc all events(entities leaving and entering
queues) occur at epochs separated by integer multiples of tc. In other words,
the system behaves as if it were clocked at intervals of tc. Therefore, time
between significant events can be considered to advance in discrote steps. Note
that an equivalent system in which tw'=Ota’stc and tp’=tc can also be

represented by the model shown in Fig. 3.1.

Let (kg kyks..km) be a representative state ie. it denotes all the
states that can bo obtained by permuting  (k,k,,..,kp). Further, let
Kikzskm be arranged in non-increasing order. Since the number r Pc’s is
fixedégi""- The state space can be divided into n+1 sub-spaces corresponding to
integer values of k, ranging from 0 to n. The number of states in the 0-th
sub-space is eqyal to the number of ways of partitioning the integer n into m

parts. In general, the i-th sub-space consists of states corresr nding to the

partitions of n-i into m parts.

| -
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Chepter 3 : Multiprocessors with tp>tw
3.1 Discrete Markov Chain Model for tp=tw+tc
Consider a state vector in the i-th sub-space. The value of k, is i. Let d
denote the number of non-zero parts of the memory-state-vector (k,ky..ky).
Then at the end of the cu'rent memory cycle i Pc’s make a new request and d Pc’s
enter the execute state. i.e. during the rext cycle the staiv of the system is
located in the d-th sub-space. State transitions can be described by an
enumeration tree similar to that used in chapter 2, Fig. 2.3. Figure 3.2
transitions from the state (2; 2,0,0,0). for a 4x4 multiprocessor system. Such
trees can now be constructed for each state and the transition matrix evaluated.
In tig 3.2, there is 1 way of reaching (1; 3,0,0,0), (3+3¢2) ie. 9 ways of
reaching (1; 2,1,0,0) and 3+2 ie. 6 ways of reaching (1; 1,1,1,0). Once the
entire transition matrix is generated the stationary state probabilities can be

obtained.

The number of states of this discrete Markov chain model increases faster
than the exact Markov chain model for tp=tw, described in chapter 2. Table 3.1
compares the number of states for the two models. An approximate Markov chain
model will now be proposed. The system behavior will be modified to simplify the
analysis. At the end of each cycle the active Pc’s (those that are served by
memory during the current cycle) will enter the execute state. However, all the

queued Pc’s will be removed from the memory queues and will be allowed to make

new requests to memory  aiong with those Pc’s that were in execute state during
the current cycle. Let the current state be (kg kykopeskp), with evactly d

Mp queues occupied. Then, at the end of the current cycle, d Pc’s enter the
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4 TABLE 3.1

Comparison of the Number of States for
Discrete Markov Chain Models for

tp=tu and tp=tu+tc

Number of States

N=m tp=tu tp=tu+tc
1 1 1
2 2 3
3 3 6
4 . : 5 11
5 7 . 18
6 11 29
7 15 44
8 22 66
9 38 9
10 42 138
11 56 19
12 77 271
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Chapter 3 : Multiprocessors with tp>tw
3.1 Discrete Markov Chain Model for tp=tw+c

execute state und n-d Pc’s make new requests. Thus, for this simplified model,
the state of the sysiem is characterized by the number of Pc’s that make new

requests at the beginning of a cycle.

Now, if i Pc’s make a new request to m Mp’s, the probability that Mpli)
gets at least one request is 1-(1-1/m)'. With i Pc’s accessing m Mp’s
simultaneously, the number of busy Mp’s can take any integer value from | upto
min(i,m). The probability of exactly |j Mp’s being occupied is given by the ratio
of the number of ways that j Mp’s can be occupied and i-j Mp’s not be occupied
to the total number of ways o’ assigning i Pc’s among m Mp’s i.e. m!. In section
23, it was stated that the numver of ways that exactly j out of m Mp’s can be
occupied by i Pc’s is CM(m,i)+S(i,j)). Now, if j Mp’s are occupied during the
current cycle then n-j Pc’s make a request to Mp during the rext cycle.
Therefore, given that i Pc’s made a request tc Mp at the beginning of the
current cycle, the conditional probability that n-j Pc’s will make a new request
at the beginning of the next cycle (which is also the end of the current cycle)
is

CM(m,)S(i,j)/m'
Note that the above expression denotes the probability of a transition from a

current state i to a next state n-j. The value of j can range from 1 to

min(i,m).

For a multiprocessor system with n Pc’s and m Mp’s, let k=min(m,n). The

number of occupied memories in a cycle ranges from O to k. Therefore, the number
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TABLE 3.2

Transition matrix for a 4x4 system with tp=tu+tc

Xo] [e.@eee e.ecee o.eece o.oeee 8.89375) [ x ]
X,| |@.eeee o.soee 80880 8.3758 B.56258 X1
X, |= |8.0@e8 ©.8008 B.7508 B.5625 8.32813 | x | X,
Xy| |e.eeee 1.eeee e.2see 8.8625 8.81563 X3
|X4| |1-@0ee ©.0800 0.8000 0.808 8.00080 | X4

Xo +)(.1 +X 2+X

g

3
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3.1 Discrete Markov Chain Model for tp=tweic
of Pc’s that can be assigned at the beginning of a cycle ranges from n-k to n.
The approximate modc! has k+i states. Let X,., XnkennXn denote the steady
state probabilities. Then, the execution rate is
n
2 Xi#[1-(1-1/m) jtm
i=n-k
Table 3.2 shows the transition matrix for a 4x4 multiprocessor sytem. Appendix
A-5 contains a listing of a FORTRAN program that computes the steady state

probabilities and hence the execution rate for a nxm system. Figure 3.3 depicts

plots of the execution rate as a function of m and n, obtained from the

approximate Markov chain model. Table 3.3 compares the analytic results with a

807 confidence interval obtained by a Monte Carlo simulation of the evact system
behavior. The simulation consisted of 10 independent experiments of length equal

to 4000 cycles.

3.1.1 General Technique for Constant tp=tw+istc

In general, if the processing time is a constant and equal to tw+iste, the
instruction timing diagram is as shown in Fig. 3.4a. In this case, the execution
phase is i cycles long. This can be modeled by an i-stage server shown in Fig.
3.4b. At any given time in the execute phase a Pc is in one of the i stages;
advancing one stage every cycle. Now, the system state can be represented by
Guizrsfis KyKamokn)y  where jr is the number of Pc’s in the
execute-stage |, and the 'k,’s denote the memory queue sizes. As befire, let d

denote the number of non-zero ki's. Then, at the beginning of the next cycle, d
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