
■MMBnaannwxmwwwmi*

AD-773 843

ANALYTIC MODELS FOR MEMORY INTER-
FERENCE IN MULTIPROCESSOR COMPUTER
SYSTEMS

Dileep P. Bhandarkar

Carnegie-Mellon University

^

J

Prepared for:

Air Force Office of Scientific Research
Advanced Research Projects Agency

September 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

, M. ^
■■ 1

 ■^•^•^^

\ UNCLASSIFIED
ilCURITV CLASSIFICATION OF TMIb PAGE Wm Dalm tnttrtd)

REI- ORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEf-ORF. COMPLETING KORM

' RWflSRu-B,l1? -74-0099 2 C0VT ACCESSION N0- 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Submit)

ANALYTIC MODELS FOR MEMORY INTERFERENCE IN
MÜL1IPROCESSOR COMPUTER SYSTEMS

■

S. TYPE OF REPORT ft PERIOD COVERED

Interim
6. PERFORMING ORG. REPORT NUMBER

7. AUTMORftJ

Dileep P. Bhandarkar

8. CONTRACT OR GRANT NUMBERfa.)

F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Melion University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

61101D
AO 2466

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

12. REPORT DATE
September 1973

13. NUMBER OF PAGES
187

14. MONITORING AGENCY NAME ft ADDRESS^/<<"'«ren(Irom Controltint Ollice)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 22209

15. SECURITY CLASS, (ol thl» report)

UNCLASSIFIED
15a, DECLASSIFI CATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol thit R»port)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the tbitrmct entered In Block 30, II dllUrent Irom Riport)

18. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide It neceeemry and Id* tllly by block number;

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

20. ABSTRACT (Continue on raverae side II necessary mnd Idantlty by block number)

This thesis develops analytic models for estimating the amount of memory inter-
ference in multiprocessor systems, in which n processors access m memories
independently. The processors are characterized by a typical processing time
per memory access and the memories by an access time(ta) and rewrite time (tw).
Processor behavior is simplified to an ordered sequence of a memory request
followed by a certain amount of processing. The predominant technique used
involves discrete time Markov chain models. Some simple exponential server
models as well as several approximate models are also presented. Simulation

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE O-, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ftWian Data EntaradJ

 - --- - -■

^■■•"'""-^W " '•^mm^'^-* iinmiBin» iw^pw^ioa^p«

UNCLASSIFIED
»ECUHi'Y CLASSIFICATION OF THIS PAGE W*»n u..'m Emartd)

Block 20. Abstract (Continued)
' in

is used to evaluate the accuracy of the approximate n.odels. Some empirical
measurements of the PDP-11/20 are used to estimate the parameters of a
model, that in used to predict the performance of C.mmp, Carnegie-Mellon
University's multiprocessor computer, which will include upto 16 PDP-li
processors.

;.t
UNCLASSIFIED

 - ■ i i I in i Mm - -

SECURITY CLASSIFICATION OF THIS PAGEfOTian Data Enfrmd)

mmmmmmn

ANALYTIC MODELS
FOR

MEMORY INTERFERENCE
IN

MULTIPROCESSOR COMPUTER SYSTEMS

Dileep P. Bhandarkar

Department of Electrical Engineering
Carnegie-Melion University

Pittsburgh, Pa.

September 1973

DQC

Submitted to Carnegie-Melion University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Project« Agency of the Office
of the Secretary of Defense (F44620-73-C-0074) and is monitored by the Air Force
Office of Scientific Research. This document has been approved for public
release and sale; its distribution is unlimited. ' ^

lt.. - ■ ■-- ■ -- - „-^^.

mmvmmiwmm*''***^*mimmmrmtr* > ■«■ JW maanrnmaipiiwui^ai ■■■■ jn.l«aMHMwnwMwiRm*«B['<r^Bliaam"nm>OTmminiair MHVMMHnnnaaMMMMl^^^H

ABSTRACT

This thesis develops analytic models for estimating the amount of memory

interference in multiprocessor systems, in which n processors access m memories

independently.

The processors are characterized by a typical processing time per memory

access and the memories by an access timeUa) and rewrite tirre(tw). Processor

behavior is simplified to an orderod sequence of a memory request followed by a

certain amount of processing. The predominant technique used involves discrete

time Markov chain models. Some simple exponential server models as well as

several approximate models are also presented. Simulation is used to evaluate

the accuracy of the approximate models. Some empirical measurements of the

POP-11/20 are used to estimate the parameters of a model, that is used to

predict the performance of C.mmp, Carnegie-Mello'- University's multiprocessor,

computer, which will include upto 16 PDP-11 processors.

The models can be partitioned into three broad classes i tp»tw, tp>tw and

tp<tw, where tp denotes the average processing time. Systems with tp=tw are

described first because they represent boundary conditions for the other two

casei.. Different modeling techniques are examined for tp=tw and a reasonable

mummmmu i IMMMMJUI

n.niMKw «wniaMii i iw<«»awMP*OT<* luiiwiiiinu n nil ■ i »nwHv^mpmmmmmnww^nnPMnBmwiMmMni^wiOTrawB»«»

ii

approximation is proposed. An important result observed is the absence of a law

of diminishing returns. The performance of a multiprocessor system with n

processors and n memories continues to rise at a constant rate as n increases. A

simple exponential server model showed this rate to be 0.5; a constant

processing time model predicted a slope of MM for the average number of busy

Mp's. The exponential server model gives the average number of busy Mp's as

Httm/fn+m-U An approximate result for constant processing times gives the

average number of busy Mp's as t*fHH/WjJ, where i-max{n,m) ard j-min(n,m).

An intuitively obvious conclusion limits the maximum number of active Pc's by

min(n,m),

Markov chain models are also developed for systems with tp>tw. A new model

for geometrically distributed prc;essing time is developed. A different analytic

approach is used to model systems with private caches for the processors. In

general, since the Pc is slow, it takes fewer memory units for the performance

to exhibit a saturation effect. In the absence of memory contention (which is

now possible even for m<n) the maximum memory access ra\e{MpAR) is n/(ta*tp).

With tp<tw, since the processor is fast performance improvement is obtained

for m>n. If m-n, these systems do not yield significant improvement over systems

with tp-tw. In general, adding an extra memory improves the performance more

than adding an extra processor. The maximum average Mp/IH is the minimum of m/tc

and n/(ta*tp>, the maximum is achieved if the processors do not interfere. Note

that since the Pc is very fast, it can make a request to the memory that served

it last before the rewrite cycle is over. In this case, the Pc has to wait even

though no other Pc is being serviced by the memory module.

--J '— ■ -- -■ - --■■■■ - ■ •■■ .,..-..--*J».J.-B . >..„„.,_ „-.J- .- .. „^m,,,, .,„,

■i ttimtmmmmmamw i itiwmmmm**^^m

Hi

ACKNOWLEDGEMENTS

I would like to thank Professor Samuel H. Fuller for his thoughtful guidance

throushout the research reported in this thesis. I am also grateful to Professor

J.W. McCredin Jr. for the many discussions witn me during the early stages of

the research. Acknowledgement is also due to Professors Bell, Grason and

Siewiorek, who helped shape the final form of the dissertation. Since this

thesis was printed on the Computer Science Department's Xerox Graphics Printer,

everyone involved in the XCRIBL System effort deserves thanks. Finally, a

special debt is owed to Ms. Lucile O'Donnell for her help and encouragement

during the course of this research.

I— - ■ I 11 ■ ! ■■!■ II . ■-. ,

—^^m^f^m^^tm-mmm

iv

TABLE OF CONTENTS

Abstract
Acknowledgements
Table of Contents

Chapter 1
1.1
1.2
1.3
1.4
15

Chapter 2
2.1
2.2
2.3

2.4
2.5
2.6
2.7

Chapter 3
3.1

3.2

3.3
3.4
3.5
36

Chapter 4
4.1
4.2
4.3

Chapter 5
5.1
5.2
5.3

/ntrocfuction
General Modeling Assumptions
Modeling Concepts
Extant Multiprocessor Systems
Comments on Earlier WorK
Synopsis of Thesis Contents

Multiprocessor Systems wit' tp-fio
Continuous Tine Markov Chain Model
A Simple Discrete Markov Chain Model
Approximate Discrete Markov Chain Models

A New Approximate Discrete Markov Chain Model
Strecker's Approximation

Discrete Markov Chain Model of Skinner and Asher
Diffusion Approximations
An Approximate Model for Arbitrary P^
Concluding Remarks

2.3.1
2.3.2

3.1.1

3.2.1

Multiprocessor Systems with tp>tw
Discrete Markov Chain Model for tp-tw+tc

General Technique for Constant tp-tw+i*tc
Discrete Markov Chain Model for Geometrically Distributed tp

Extensions
McCredie's Exponential Server Model
Strecker's Analysis
The Effect of Cache on Systems with tpitw
Concluding Remarks

Multipi-ocessor Systems with tp<tw
An Approximate Model for tp<tw
Strecker's Model
Concluding Remarks

Empirical Measurements. Parameter Estimation and Model Validation
PDP-11/20 Overview
Validation of Unit Instruction Concept and Estimation of tp
Model Validation via C.mmp Performance Evaluation

Chapter 6 Conclusions

iii
vi

vii

1
6
9

12
14
17

21
22
25
45
45
49
53
54
55
63

68
68
78
81
87
91
93
95
97

100
101
103
106

UO
111
116
125

130

 - --■- üwagi

tmr vmmmmmmmmm mmm~

Applications
8-1.1 An Illustrative Example

Proposals for Futr e Work

6.1

6.2

REFERENCES

Appendix A Program Listings

Appendix R Desr-iption of Simulator

132
134
135

138

140

175

TABLES

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4

4.1
4.2

5.1a
5.1b
5.2
5.3
5.4
5.5
5.6

Salient Characteristics of Various Analytic Models

Some Properties of the Discrete Markov Chain Model
Comparison of Exact and Approximate Markov Chain Models
Expected Number of Busy Memories in One Cycle
Comparison of Simulation Results with Analytic Model of Sec. 2.3
Expected Number of Busy Memories in One Cycle
Expected Number of Busy Memories in One Cycle: Simulation Results
Characteristics of Various Models

Comparison of the Number of States
Transition Matrix for a 4x4 System with tp-tw+tc
Average Number of Busy Mp's: tp=tw+tc
Average Number of Busy Mp's: tp-+Geometric Distribution

Average Number of Busy Mp's
Comparison of Analytic Models and Simulation Results

Direct Addressing Modes of PDP-11
Deferred or Indirect Addressing Modes of PDP-11
Effective Processing Time
Instruction Mix

Relative Frequency Distribution of the Effective Processing Time
Summary of Measurements on C.mmp
Analytic Results

16

27
48
50
62
64
65
67

73
75
80
86

102
107

114
115
120
122
123
128
129

FIGURES

1.1
1.2a

A simple block diagram of a multiprocessor system
An example of the timing of a typical instruction

3
5

■ . ^-M ■'—-■
 - ■- - ' ' -

immacmmmi^mm^mmm**^"" •" '•'4*m**rmmm*m*m*mmii«i'i 'imf-. > minnwww^n«iiin)»i,iii«w^www»pn ^^Hmim*wim**^^miimmmmmrmammm^™ry**mi%

3.1
3.2

vi

1.2b Simplified processor behavior: unit instruction c
1-3 Structure of the queueing model g
l« 4 CMU multiminiprocessor computer/C.mmp
1.5a An n by m crosspoint switch r|
1.5b A k-trunk line switch ,1

2.1
2.2 Next States acCP<;«;ihle from »ha Imltlml »♦»♦«. /OlA/w

2.3

3.10b Effect of cache on 16x8 multiprocessor systems

An algorithm for generating partitions
Next states accessible from the initial state (2,2,0,0) 31
Enumeraticn tree for a 4x4 multiprocessor system ^

2.4 initial contents of the stack for traversing tree shown in fig. 2.3 ic
2-5 Algorithm for traversing the tree shown in fig. 2.3 35
2-6 stePs in the generation of the transition matrix ,7

2.7 Enumeration mesh for a 4 by 4 multiprocessor system ^
28 An algorithm for evaluating the transition matrix 40
2-9 Multiprocessor systems with n-m
2.10 The effect of adding a Pc Jl
2-11 The effect of adding an Mp ^
2.12 Strecker'c formula for fixed m ^

2.13 Comparison of approximate model with Skinner and Asher's results ^8
2.14 The effect of oc on the execution rate of a 8x16 system
2.15 The effect of *. on the execution rate of a 16x16 system

Queueing model for multiprocessors with tp»tw+tc tq

A typical enumeration tree for initial state 2; 2,0,0,0 7i
3.3a Execution rate as a fraction of the number of Re's Li
3.3b Execution rate as a fraction of the number of Mp's 77
3.4a instruction timing diagram for tp-tw+i*tc IQ
3.4b i-stage server model for a Pc

3.5 Structure of the queueing model for geometrically distributed tp 82
3'6 A typical enumeration tree

3.7 Queueing model for multiprocessors with cache memory DO

3.8 Structure of McCredie's memory interference model QO

3.9 Performance predicted by McCredie's model gp

3.10a Effect of cache on 8x8 multiprocessor systems OD
Ffforf M ,.,,k~ «„ ICO -...u: . 7°

99

60
61

^•l The effect of adding Pc's
4-2 The effect of adding Mp's 104

IO5
5-la Single operand instruction format
5.1b Double operand instruction format J:,
5.2 PDP-11/20 instruction timing ±12

5.3 Cumulative probability distribution of the effective tp of PDP-11/20 1?]
5.4 Unit instruction timing diagram/or C.mmp .Jz

126

 r—• - .. - ■ ■- ■

11' """' " ■ I """■■,l- """»"WWWÜMlWWTBI^W^mi^WWBBl

?a.Y

CHAPTER 1

INTRODUCTION

In the design of new computer systems there exists an enormous number of

alternative decisions. In thii thesis the major de-ign parameters that will be

allowed to vary are the number of processors^c's)-)- and memories(Mp's) a'(d their

relative speeds. The quantitative approach to performance evaluation consists of

three major phases [GrenU72]:

(i) Collection of data- this phase involves the planning and conducting

of the experiment for data collection as well a-; techniques for

measurement.

(ii) Analysis of data: this phase consists of construction of models and

estimation of parameters in the models as well as validation of the models.

(iii) Interpretation of data: this phase concerns the summarization of the

results and new insights gained in the study as well as making decisions

based on the results.

The emphasis of the application of quantitative methods is on the convergence of

two aspects. The first aspect is the reliance on data either from

experimentation on the real system or from simulation. The second is th» use of

tWe use the PMS notation of Bell and Newell [B9llC71a] in this thesis to
describe hardware organization.

.... „^ -...■ iillüMir '-- ' ■ ■- iiiilrtlMifcMiii mi '■'- — —■^*~~"—^-''. -"-mi mimiiiwii

"■ ' ' ■ ""■ > ■ •*~~'mm*~~~~^^H^mimmimm^m

Page 2

Chapter I : Introduction

mathematical models. It is easy to collect massive amounts of confusing data

unless one has some model. On the other hand, a model without empirical

validation is at hest an intellectual exercise.

Since no performance measurements of the actual system can be made until it

has been designed, implemented, and then observed over a long period of time, it

becomes necessary to use analytic and simulation models. Analytic models enable

the designer to explore a large design space quickly and rather economically.

However, modeling is not an easy task and it is often necessary to simplify the

model to make it amenable to mathematical analysis, remembering that any

mathematical model is only an approximation of real-life events. If the system

is too complex to allow a complete analytic study, the system behavior can be

modeled at various levels of abstraction in a hierarchical fashion.

Simulation offers an different approach: probabilistic emulation of a

mathematical model that portrays the aggregate bahavior of the real system. We

gain in realism since we are no longer forced to impose assumptions for

analytical convenience. However, simulations tend to be expensive if a high

degree of realism on a detailed level is required. Due to the stochastic nature

of simulation results, their precision can be measured by the standard deviation

or confidence intervals of the estimates obtained. The confidence interval gets

tighter as the size of the experiment is increased. The standard deviation is

proportional to the squire root of the length of the run. Hence, simulation

studies are most valuable when focused on a small set of design alternatives

J.—,—. —...^-*-*-^^^.*.^^.*^—**^**~**J~^. —^^l4l*kam^ä.^^AMU^ ,—^. ^Jw^M_^^^_^^„..»^^JJM^J^^m^J.._^^aM_^—„—^.^

Page 3

Connecting Nstwork

or

Switch

Figure 1.1 A simple block diagram of a multiprocessor system.

—u^^Ü^^H —" ■ '-^^■--■IIMIIIIII ■■i—lif ii i in—*—IIIII i i miMiiMimiMM^MBHW

Page 4

Chapter 1 : Introduction

selected by analytic studies. Also, if the analytic techniques are

computationally expensive, simulation might well be more economical. Moreover,

it is easier to change the mathematical model in a simulation experiment.

Another important use for analytic models is as a control variable 'or improving

the efficiency of simulation experiments by reducing the variance of parameter

estimates from simulation experiments [GaveD71].

Mathematical models of compute»- sy^tsms can be developed at various levels

of abstraction. A large number of models for time-sharing systems consider a job

as a basic unit[MckiJ69], and in many models of multiprogrammed computer systems

the block of instructions between I/O operations is taken as a basic

unit[BuzeJ71; GaveD67]. However, in this study a much more detailed model is

used to analyze interference as processors access individual words from the

memory modules. Each processor's performance is measured by the number of memory

accesses per unit time. In a multiprocessor system the performance of each Pc is

not independent of the behavior of the other Pc's. f simple block diagram of a

multiprocessor system is shown in Fig. 1.1. The connecting network or switch

provides a path form each of the n Fc's to each of the m Mp's, such that a

connection between Pc[i] and Mp[j] does not hamper a connection betwuen Pc[k]

and Mp[l], where if'k and jfQ. The processors contend with each other for memory

service. This contention is referred to as memory interference. This thesis

presents a set of techniques for determining the extent of memory interference

as measured by the average number of busy memories or the rate at which the Mp

is accessed.

. IM I II ■ -III- -■ - - ■ ■ - — - ' -

ta
Mp[j]J

Pern.

i -

ta
Mp[j>

Mp[k]

Pc[i]

tw

td

tw

ta

ii I

Legend:

1 Instruction fetch

2 instruction decoding

3 operand fetch

4 Instruction execution

5 next Instruction fetch

ta

time

H*

tw

tw

te<

-a

ta

ta
pa«e 5

ta memory access time

tw memory restore time

td Instruction decode time

tel processor execution time

Figure 1.2a: An example of the timing of a typical instruction.

H^- ta

Mp access
begins

■*t*- tw *-i

I— tp

data
available
to Pc

Mp ready to
service next
request

Pc ready
to make
new request

Figure 1,2b: Simplified processor behavior t unit instruction
Two units model the instruction shown in Fig. 2.1a.

katMaMMuUMaaKuauiMi lim« iMiiiii«Mir niitaiiimi

Page 6

Chapter 1 : Introduction
M General Modeling /isiumplionn

1.1 GENERAL MODELING ASSUMPTIONS

Due to the complexity of the problem, the exact detailed behavior of memory

interference in a multiprocessor system is difficult to model. Some of the

parameters that characterize the behavior of a Pc are:

(i) Instruction mix : Instructions can be characterized by their relative

frequency. In general, processor behavior varies for different

instructions. However, in this thesis differences in instructions are not

modeled explicitly. Processor behavior is modeled as an ordered sequence,

consisting of a memory request followed by a certain amount of execution

time. At this level of abstraction no distinction is made between the

processing needed to decode an instruction and the processing

corresponding to its execution. Thus, the processing time characterizing

a Pc depicts only the aggregate behavior of the real Pc. Figure 1.2

depicts the actual and abstracted behaviors. A typical un't inttructionf

is shown in Fig. 1.2b.

(ii) Probability distribution of the processing time: Irstructions are

characterized by their processing time. Typical programs are measured to

find the probability distribution of the instruction processing time,

(iii) Average processing time: This is obtained from measurements similar

to those used for determining the probability distribution.

tThe concept of an unit instruction was first proposed by Strecker[StreW70].

 -- -■ -■'-■'• —"— —^-M- -. , ... iimf i IIII-'"^^-^ - --—-^—*"

Chapter I : Introduction Page 7
i.J General Modeling A$iumptions

(iv) Access pattern of a Pc: This is the trace of the pages or memory

locations accessed by the Pc. In this study serial correlation between

successive memory accesses will be ignored; not a very serious assumption

since data and instruction references are intermingled. Demand patterns

will be modeled as sequences of Bernoulli trials. Memory accesses will be

characterized by the memory unit to which they are addressed. Let PJJ

denote the probability that the i-th processor requests service from the

j-th memory unit. Thus, the demand pattern of each processor is

equivalent to a sequence of Bernoulli trials. Unless otherwise specified,

Pij will be assumed to be equal to 1/m, where m is the number of Mp's.

The effect of I/O activity will not be modeled explicitly.

Strecker [StreW70] has shown that if the rate of I/O requests is RIO, then a

fraction RIO/(m*tc) of the memory access rate can be apportioned to I/O.

A processor is said to be queued if it is waiting for or in the process of

receiving memory service. A proc3ssor is said to be active if it is currently

being serviced by a memory. Likewise, a memory is said to be occupied or buiy if

there is at least one processor queued for that memory unit.

Primary memory behavior is a function of the fabrication technology, i.e.

core or semiconductor. Memory performance can be characterized by the access

time (ta), rewrite time (tw), and cycle time (tc). Nominally, the cycle time is

the sum of the other two. In this study, no distinction is made between read and

—■—^—— ■--.■

Page 8

ProccGsor Scrvcro

Sex^vice time
tp-tw

•

t

•

m

Central
Crosspoint
Switch

Mp servers

Service time tc

Figure 1,3 Structure of the queueing model

— —.—.■^—^J—i.. - -■-■-' ■■ - ■' HIM ii t.,—* '*---*'-•'> ,^--LjIM'ii[—ii ii i ■

Chapter 1 ; Introduction p

1.1 General Modeling Mtsumptions

write operations. The effect of interleaving within a Mp module is to make the

access and cycle times seen by a Pc variable. Most of the models in this thesis

will use the average values.

The processing time shown in Fig. 1.2 is the effective processing time

measured from the time when the Pc gets the data from its last memory access to

the time when the next memory request reaches the memory. Thus, the delay

associated with address mapping and communication protocol needed to make a

request are attributed to the Pc. The memory access time includes the time

required to set up the switch for the data transfer. If the memory control unit

introduces some delay, then that is also added to the access time. A more

detailed description is presented in Chapter 5.

1.2 MODELING CONCEPTS

A queueing model will be used to analyze memory interference. Figure 1.3

shows the basic struc!ure of the model. All time delays are modeled as service

centers and there is one job in the queueing system for every Pc. In real

systems the Pc can start execution while the Mp is in its rewrite cycle. If

tp>tw the service time of the memory will be assumed to be tc. and the effective

service time of the Pc will be assumed to be tp-tw. This si^olification allows

the Mp to start serving the next job as soon as the last job has left. The

■----'—-—- —- - ~>.~..-^.. --^.. ^.-^k.-- ..^^ii- -^lail ^Mil il Hl maiiiüiMaiiii i in ■ i ■ .--^«ühi»—m*»^..^—...— „ ■_.,.^..^ ...^■.,..^.». . -■..„■..■—: —-_

Page 10

Chapter i : Introduction
1.2 Modeling Concept»

overall system behavior is unaltered by this simplification. Howe 'er, when tp<tw

the queueing model cannot be used for reasons explained in detail in Chapter 4.

The number of Pc't will be denoted by n and the number of Afp*« by m. The

multiprocessor system will be referred to as a nxm systt'/i. The state of the

system will be denoted by a vector describing the sizes of the various queues.

The major technique used in this thesis involves Markov chains[ParrE62]. A brief

review of some of the definitions and concepts is presented here.

A ttochastic process is a family of random variables X{t), t<T indexed by a

parameter t vr/.ng in an index set T. The stochastic process is a discrete

parameter process if ^{0,1,2,...} or {0,±l)+2,..}. The process is a continuous

parameter process if T«{t>0) Or {-oo<t<oo}.

A discrete parameter stochastic orocess {X(t), t-0,i,2,...} or a continuous

parameter stochastic process {X(t), t>0} is said to be a Markov process if, for

any set of n points t,^...^,, in the index set of the process, the

conditional distribution of X(tn), for given values of X(t1),...,X(tn.1),

depends only on X(tn.,)1 the most recent known value; more precisely, for any

numbers x, x,,

P[X(tn)Sxn) XfU-X^XUnJ-X,,.,] - P[X(U<Xn | Xa,,.,)^.,]

Intuitively, this means that, given the present of the process, the future is

independent of its past. The set of possible values of a stochastic process is

called its state space. The state space is called discrete if it contains a

■»■«■aniiiiiiiiiiii mi iaiiiii«<«iniimi[niiMiriii(miiiiii*Miiiii -^■■-^-"-■.—>—■"."—-———^ - ■ - -"—■■ IMI mminmn'iMitiaMiiiiimiitrlMMiHiinMiiiitiiMiiiiii

Chapter I : Introduction Page 11
1.2 Modeling Concept*

finite or countably infinite number r>(states. A state space which is r.nt

discrete is called continuous. A Markov process v/hose state space is discrete is

called a Markov chain.

A Markov process is described by a transition probability function, denoted

by P(E,t | x,t0), which represents the conditional probability that the state of

the system will at time t belong to the set E, given that at time t(>(<t) the

system is in state x. The Markov process is said to have stationary transition

prohabi'ities, or to be homogeneous in time, if P(E,t I x,t0) depends on t and

t0 only through the difference (t-tp).

A Markov chain is irreducible if every state can be reached from evaiy

other state not necessarily in one step. The period of a state i is defined as

the greatest common divisor of all integers k such that the probability of

returning to state i in k steps is greater than 0. A state of an irreducible

Markov chain is aperiodic, if it has period 1. A Markov ch?in is aperiodic if

every state in its state space is aperiodic.

A discrete parameter irreducible aperiodic Markov chain that has stationary

transition probabilities possesses a stationary state probability distribution.

Let Z(k) denote the steady state probability of state k. Then,

Z(k) - r TRANS(k,j)*Z(j)
j

where TRANS(k,j) is the one step transition
probability from state j to state k.

Transition probabilities from a current state to a next state will be

■iiMiit—-—" - -"■JiMIIIMI»! ■ I ii --—-^ . ,- .,

Page 12

Chapter 1 : Introduclioii
1.2 Modeling Concrptt

evaluated for the irreducible aperiodic discrete Markov chain models in the

forthcoming chapters. The steady state probabilities will be used to calculate

the average number of busy Mp's which is equal to the number of unit

instructions executed in one memory cycle. The unit initmctirn execution rate

(UER) or memory ucccts rate (MpAR) is obtained by dividing the average number of

busy Mp's by the cycle time.

1.3 EXTANT MULTIPROCESSOR SYSTEMS

A group at Carnegie-Mellon University is currently in the process of

constructing a multiprocessor computer system (C.mmp) that will have up to

sixteen central processors (PDP-ll/gO's) sharing the same physical address space

[BellC71b; WulfW72] and concern has been expressed about the performance of such

a system with this many active processors. The models developed in this thesis

will be used to predict the performance of C.mmp in Chapter 5. Figure 1.4

illustrates the major components of a multiprocessor such as C.mmp. in addition

to the processors, there is a set of memory modules that are able to operate

independently; little would be gained if all the processors had to wait for

service from a single memory module. Thus, between the processors and the memory

modules (Mp's) is an n by m crosspoint switch, which allows any Pc to access any

Mp. There are a number of ways of implementing the switch; Fig. 1.5(a) depicts

 *—~****-~~~ä—~~- >. utmwMi ■- ^-^^M»—m^— -.. -— - iimi i i tm

tmnjtmi)! m ■■■■p«^

Pa^e 13

Shared f'
I/O)

devices |

Mp
ni=16

SM{>

(n-to-p crosspoint)

I K.configuration

EÜTL^iL

Private I/O
devices

B-
Kf -

Ks

Pc

Kc i(cl-

K.clock

-JK. interrupt

Dtnap

Mp

-0
-0

Kf

Ks Kf

I „ ,. . 1
I K.configuration
I .

Skp

(p-to-k;null{dual du|)lex|crosspoint

where: Pc/ccntral processor; Hp/prinary memory; T/teininal-:

Ks/slov; device coMtrol («.g., for Teletype);

Kf/fast device concrol (e.g., for disk);

Kc/control for deck, timer, interprocessor communication

1

Dmap/relocation registers for mapping Pc address into Mp
address space.

Both switches have static configuration control by manual and
program control

Fig. 1.4 Proposed CMU multiminlprocessor computer/C.mmp.

— - ■

f^^^fmfmmMmmmmmmmmtammw^fmm^mmmmmmfmmm^rwmmmmmmmmmmmmtmmm

Page 14

Chapter I : hilrndnctiou
1.3 Kxlnnt Multiprocessor Syst .n.t

an n by m crosspomt switch, and Fig. 1.5(b) illustrates the use of trunk lines;

combinations of these two basic schemes can y ?\ri many other other schemes.

Other multiprocessors, although limited to a small number of Pc's, i.e. two to

four, also basically use a crosspomt switch, e.g. the Burroughs D825[AndeJ62]

and Univac 1110. For further discussion of trunk lines, and a variety of other

switching structures, the reader is referred to Bell and Newell [BellC71a].

1.4 COMMENTS ON EARLIER WORK

A review of current literature shows very few models of memory

interference. Skinner and Asher [SkinC69] proposed a discrete Markov chain model

for multiprocessor systems with tp=tw. The analysis was presented for a small

number of Pc,s(<2). However, for larger systems the complexity of the problem

deterred the authors from further pursuit of an analytic solution.

Strecker[StreW70] developed a set of simple approximate models. Most of his

modeling assumptions are similar to those used in this thesis. While the

analysis of Skinner and Asher is rigorous and exact, Strecker's analysis is

approximate. In this thesis, an exact analysis of a discrete Markov chain model

tnr *v%tmm with tp=tw is presented. As expected, the exact analysis is very

complex. However, the results of the exact analysis suggest more reasonable

approximations that yield performance estimates that are more accurate than

««•vMnanii iiniiiiwmBBPOTap^^wmKnOTVHWwmnn III JHIIINIILIVIB1 *

Mpr- L -v
\

Mp2 L ^-

\

V

N

^T

\|

Mp L __

\

X
\

L .

I I
Pc1 Pc2

"V

\

T"
N

^r

\
L

I
Pc

Page !5

Figure 1.5a mxn ciossbar switch

'j h
Mp, L ^ U

\ \

Mp2—L^-

s

\

X

Mp L -c-

\

"V
N

\
,s
\

\

^T
\

T"
\

"V X"

\

x-
\

X"
\

TT

\

"V

T"
\

Figure 1.5b k-trunk line switch

L Pc,

L Pc,

L Pc
n

 -■

in i mi" wmrmmmm

—-.TO-.—mmm

Page)6

Chapter } : Introduction
1.4 Cmmmtm» on Earlier Work ,

Striker's. For instance, the exact discrete Markov chain model described in

Chapter 2 shows that the MP/]H for a jxk and a kxj multiprocessor system with

tp=tw .s almost equal, a result not apparent from Strecker's work. Also,

Strecker's formula for tp=tw is more accurate for m>n than for rr^nj n is the

number of Pc's and m the number of Mp's.

More detailed descriptions of the works of Sl-.irner and Asher, and Strecker

can be found m Chapters 2. 3 and 4. Bhatia[BhatS72] has shown how the results

from memory interference models can be used as data for models of timeshared

multiprocessor systems at the user program levd.

A major contribution of (h.s thesis is a systematic approach to the use of

the Markov chain technique for analyzing memory interference in multiprocessor

systems. The exact analysis of the Markov chain is complex. However, the

behav,or observed from the exact analysis is used to examine an approximate

solution technique that is computationally simpler. Though some of the models

presented in this thesis may be only marginally more accu, ate(57.) than

Strecker's results, they may result in much more accurate estimates when used as

inputs to other models such as Bhat.a's model for time-shared systems. For

example, the waiting time for a single s3rver queueing system with Poisson input

rate X and exponential service at rate u is lAu-X). A 57. error in the value of

U can cause a greater error in the estimated waiting time if \ is close to u.

 — ■■ . ^- - -.- .

"I I I III —— mi uiiiiiiii ■■iiiaiinii i .nil inwmm^^^mrm mmmmt-mwrnm

Chapter I : Introduction
l.S SynopMh of Theiii Content»

Page 17

l.b SYNOPSIS OF THESIS CONTENTS

The analytic models are described in detail in Chapters 2, 3 and A. The

models are mathematical abstractions of the real systems. Thus, they do not

exactly reflect the true behavior of the physical system. However, the models

will be referred to as exact or approximate depending on the quality of the

technique used to analyze the mathematical model.

The models can be grouped into three broad classes : tp-tw, tp>hv and

tp<tw, where tp denotes the average processing time. Systems witn tp-tw are

described first because they represent boundary conditions for the other two

cases. Different modeling techniques are examined for tp-tw and a reasonable

approximation is proposed. A casual reader may find it useful to glance through

the empirical results and validation of the models presented in Chapter 5 and

the concluding remarks summarized in Chapter 6 before examining the mathematical

intricacies of Chapters 2, 3 and 4. A more detailed summary of the thesis

content is given below. Table 1.1 summarizes the salient characteristics of the

various analytic models.

Chapter 2 is devoted to multiprocessor systems with tp-tw. A simple

exponential server model provides some insight into the effect of adding a

processor or a memory to the system. A more elaborate analysis for constant

processing time uses discrete Markov chain techniques; an exact but unwieldy

— 1 ■

gpr^ ■•""'" ' .iiiiMiiiiMii .11 m "«"

Page 18

TRBLC 1.1

Stlltnt Characteristics ot Various analytic llodali

flodel Descriptor Processing
Tint

rtimory Cyclo

TiM
Rtmarks

nULTIPROCESSOR SYSTEtlS UITH tp=tM

Continuous Time tlarKov Chain exponential exponential

Lxact Discrete Flarkov Chain

Approx, Discrete darlcov Chain

tlreclcer's Ppproximat ion

Skinner and fisher's
Discrete Harkov Chain

Rpproxiirale ftodel for
Rrbitrary P;;

constant

cr.nstant

constant

constant

constant

constant

constant

constant

constant

constant

Jackson's Formulae are used to
obtain a simple closed form solution.

The solution is tlgorithmic.
Unwieldy for large systems.

Rpproxlmation: non-active Pc'» ar«
reassigned to busy tip's at the end
of the cycle. Good for nSm.

Simple closed form solution. Less
accurate that, above. Non-active Pc's
are reassigned '.o all tip's.

Exact discrete tlarkov chain analysis
for upto 2 Pc's and m tip's.

P,; is not restricted to 1/m.
Solution is simple but approximate.

nULTIPROCESSOR SYSTEHS UITH tp>tH

Discrete Markov Chain
for tpctu+tc

Discrete tlarkov Chain for
Geometrically Distributed tp

tlcCredie's Exponential Server

Slrccker's PnalysiR

Cpproximate flodel for
Systehs ui th cache

constant constant Rpproximate analysis Is presented.
Queued Pc's are reassigned to all
tip's at the end of the cycle.

geometric constant Approximate analysis.
Prob[tp>tH^i*tcl ■ (5*oti

exponential exponential Jackson's formulae are used. On«
tip has different tc and different
access probability. Cache.

constant constant Little's Formula is used.

constant constant Little's Formula Is used.
Cache memory speed Is a parameter.

MULTIPROCESSOR SYSTEtlS UITH tp<tM

An Ppproximale flodel constant

Strecker's RpproxImatIon constant

constant flodel for tp>tH Is used to obtain
the conditional probability ot Pc's
second request going to an idle tip,
depending on the number of busy tip's.

constant Results of tp«tu are usedto find
the probabilty of request to an
idle tip. Average number of busy
tip's Is used.

 ... — . — --.— -^ — . ■■■ ^ _ Ml
■ - -.—>—^. t/amtmnma

mmmmmm

Chapter 1 : introduction
1.5 Synopsis of Thesis Contents

Page 19

analysis and a simple approximate analysis is presented. This exact analysis of

the Markov chain model is compared with Strecker's approximation. A new

approximate model is introduced to analyze the effect of skewing the access

patterns M the processors so that each has a greater preference for a different

memory module.

Chapter 3 presents discrete Markov chain models for tp>tw. Techniques for

an exact analysis of the models are introduced and some approximations

suggested. Models are developed for constant processing time. McCredie's

exponential server 'nodel[McCr73] and Strecker's approximate mode! for constant

tp are discussed. Two new models for analyzing the effect of cache memories are

also described.

Chapter 4 contains an approximate model for tp<tw and compares the results

with Strecker's model.

Chapter 5 contains the results of some empirical measurements of PDP-ll

programs. The processing time distribution is evaluated from these measurements.

The process of extracting the abstract model parameters from the real physical

system behavior is demonstrated. Predictions are made about the performance of

Carnegie-Mellon University's C.mmp and compared with some actual measurements.

This preliminary comparison with actual measurements shows the accuracy and

utility of analytic models.

Chapter 6 summarizes the salient results developed in the thesis. An

^■»■^»■WWI n^^^mmm^^^— i m mmmmmm

Page 20

Chapter I ; Introduction
I.S Synop$i» of Thesis Contents

example of the use of these models for examining design alternatives is also

included. Some directions for future work are discussed.

-- - - ——^ J

pff^^wni L n ■•im ■ ■H.M wmmmmmmmmmmmm mmm

Pag« 21

CHAPTER 2

MULTIPROCESSOR SYSTEMS WITH TP-TW

In this chapter multiprocessor systems with tp-tw will be analysed. This

could happen even with a very fast Pc. If the system is bus-bound and the Pc-Mp

bus recovers at the same time that the memory is ready to service the next

request, then the effective processing time (as seen by the memory) is equal to

the memory rewrite time. With tp-tw, the analysis is simpler than with tp<tw and

tp>tw. Also, it is a boundary condition for the other two cases. Thus, t^-tw is

an interesting case for a preliminary comparison of various modeling techniques,

even when tp is not equal to tw in reality.

A simple exponential server model provides some insight intr the effect of

adding a prvessor or a memory to the system. A more elaborate analysis for

constant processing time uses discrete Markov chain techniques; an exact but

unwieldy analysis and a simple approximate analysis is presented. This exact

analysis of the Markov chain model is compared with Strecker's approximation.

The results of the exact analysis are used to improve the accuracy of the

approximate analysis. A new approximate model is introduced to analyze the

effect of skewing the access patterns of the processors so that each has a

greater preference for a different memory module. A diffusion approximatiü;. is

also considered.

«M tmm

|i« K nnim^mBmamimi-xi'mmwimimim» mw.i ■ninm jiiniiiiinu m 11 i.t imnnimnmimMiwm^m^mr^mmm^mmmmm^^m^mmmmm^mmtmmmim

Page 22

Chapter 2 : Multiprocessors with tp'tw
2.1 Continuous Time Markov Chain Model

2.1 CONTINUOUS TIME MARKOV CHAIN MODEL

In our first model, we apply the classic simplifying assumption in queueing

models: we model the service time, or cycle t.me. of the memory modules as

exponentially distributed random variables [cf. WagnH69]. Clearly most memory

systems do not have an exponentially distributed cycle time. However, techniques

such as interleaving, cache memories, and the type of memory accessCread. write,

read-modify-write) suggest that this exponential assumption may be as good an

approximation as the assumption that the memory cycle time is fi.ed, and not

variable at all. Without further assumptions or approximations, we can use the

results of Jackson [JackJ63]. and Gordon and Newell [GordW67] to find the

performance of the mult.processor system. This technique is also used by

McCredie [McCrJ73] for mumprocessors with tp>tw. This exponential server model

is the simplest model to analyze. It also gives some basic insight into the

extent of memory interference when the system has a large number of Pc's and

Mp's.

Let the number of service centers be m. The states of the system are

m-dimens,onal vectors w,th non-ne6at,ve mteger components, the J-th component

representing the queue length at center , If ^„K- Km) is a state

vector, then let S(A>&,. Transiten from one center to another is

characterized by a routing probability r,,, i.e. the probability of going to

center j on completion of service at center ,. JacKson [JacKJ63] has obtained

 -- - - - -

mßßi iiuiiin. i) im LI ■ 11 inmmmmmmmmimimm^mmmmmmmmmm^**™—-

Chapter 2 : Multiprocessors with tp^tw Page 23
2.1 Continuout Time Markov Chain Model

the equilibrium joint probability distribution of queue lengths for a broad

class of queueing-theoretical models representing a network of service centers.

Customer arrivals are modeled as a generalized Poisson process [cf. WagnH693,

whose mean arrival rate varies almost arbitrarily with the total number of

customers already in the system. Service completions at each center are also

modeled as generalized Poisson processes, the mean service rate (u) at each

center varying arbit.arily with the queue length there. Note that in Jackson's

model all customers are identical. Muntz and Baskett [MuntR72] have a more

general queueing network model that allows different classes of customers to

have different branching probabilities. Gordon and Newell [GordW67] have

presented a solution technique for closed queueing systems, i.e. networks of

queues in which the number of customers is constant.

For closed queueing systems, Jackson's formulae for obtaining the

equilibrium state probabilities are listed below.

where.

P(/0 - w(/0/T(S(fO)

wCO - ft rtW/u] for j([l,m]
j«l i=l

where e(j) » fieiOr^ j<[l,m]
i-1

T(/0 - Ew(K) summed over K with S(J<0-n

But, with Pc requests distributed uniformly and with the bus-bound

situation or tp=tw, the exponential server model reduces to m servers with

— —-^—..— .. .,...- — ^^^^^,—, _ . —^.^„^^.m-i^fa,.

wmmmmrm \mm\m iiiiin immmmmmmmm^t i'« i

Page 24

CAoptrr 2 | Multiprocessors with t,>*tw
2.1 Continuous Time Markov Chain Model

customers circulating with uniform routing probabilities i.e. r^p^l/n, Thus.

e{j) denotes the average frequency of visits to service center j. Using the

above formulae we get,

w(/0-(l/u)n

,n+m-li
T(K) m\ m«i >/(l/u)n

r/n+m-lCI'' m
tor all X such that Eki-n

i = l

i-e. ail the stales of the system have equal probability. Physically, this

indicates that states with greatsr congestion in the queues are as likely as

evenly distributed queues. Note that the above analysis holds even when

successive memory requests are correlated as long as the average access

frequency P^l/.. The probability ^ a ^.^ ^ ^ ^ ^

Prob{Mp[i] is idle}, is the fraction of the total number of states that has

ki=0.

In other words.

Prob{Mo[i] is idle}
number of ways of assii>ninR n Pc's to m-l MpV
number of ways of assigning n Pc's to m Mp's

Therefore,

Prob{Mp[i] is busy} = n/(n+m-l)

E[number or busy Mp's] - m*Prob{Mp[i] is busy}

- m*n/(m+n-l)

 am

m**mimrm*'^**^i^m*mmmmmmmmmmim^m^ma^**- ■■■niiiiiniiiiuiiiiiwi Hn^ü^w«^«iiiiifiiHMa<np>aii^*«BiiMHn«iwnRnMHR^nq|^H

Chapter 2 : Multiproceitort with tp-tto Page 25
2.1 Continuout Time Markov Chain Model

The above expression has a number of interesting properties: the expression

is symmetric in m and n; it has a basic hyperbolic form, asymptotic to n as m

gets large; and, if we let m-n the above expression becomes

n/(2-l/n)

and

E[number of busy Mp's] -♦ n/2 for n»l

The final observation has important implications. It states that as

multiprocessor systems grow to include more and more Pc's, we are not faced with

a law of diminishing returns: no matter how many Pc's are used, if we have the

same number o* memory modules, we can expect half the processors to be active.

2.2 A SIMPLE DISCRETE MARKOV CHAIN MODEL

For this analysis let us assume that all the Pc's are characterized by a

single constant processing time tp. In this model, the memory access and cycle

time are constant. The exponenti.d server model discussed above allows the

memory cycle time to have a large range of values. However, though the cycle

time is not a constant (as seen by a Pc) it certainly does not have an

exponential distribution. The constant service time model is an attempt to

de-emphasize the small variance in the value of the cycle time. Although the

processing time is not a constant in reality, this approach yields fairly good

 - —- - .

 ' mmam^m^mm im umiimm« • "•' — ••'• • "•"■"•H

Page 26

Chapter 2 : Multiprocessors with tp-'tw
2.2 Disrrrtc Markov Chnin Model

estimates of the MpAR as substantiated m section 2.7. Also, all the memory

units are assumed to have the same cycle t.me tc and access time ta. Thus, the

memory rewr.te tiff» is given by tw=tc-ta. If tp= tw then all memory units can be

considered to be operating synchronously. Thus, durmg any memory cycle the

number of active Pc's is equal to the number of busy Mp's.

I" this section, a simple Markov Chain Analysis is presented for the case

in which the processors request every nemory with equal liKelihood. A

multiprocessor system with n Pc's and m Mp's is likened to an occupancy problem

with n balls and m urns. Balls are randomly assigneo to the m urns at the

beginning of a memory cycle. At the end of the cycle one ball is removed from

each urn. Thus if there are k non-empty urns during cycle s then k balls are

available for assignment during the (s + l)-th cycle.

The state of the .bove mentioned process is defined by a m-tuple

(^^....kj. where &,-„ and 0<k,<n for aH ,, The number of distinct states

of the system is given by the combination, C^) i.e. the number of ways in

which n identical balls can be assigned to m bins [FellW66]. However, since all

the processors behave identically, a number of the distinct states are

equivalent i.e. they have the same occupancy and „ave the same components, e.g.

states (2,1,1), (1,2,1), (1,1.2) are equally l.kely. Thus, the reduced states

are given by the different ways in wh,ch the number n can be partitioned into m

parts, i.e. the unordered integer solutions to the equation fx^n for feX,*

represent equivalence classes of equally likely states. The^number of such

—"—■ — - -■ ■ mtmmmmmmmMaäamttäimmämtiaitkiM -- ■ ■- - -~- -■-

Ib. •HIHI». I LIIINiaJ mmwemmmm mmmmm—mm^~*m

TABLE 2.1

Page 27

SOME PROPERTIES OF THE DISCRETE MARKOV CHAIN MODEL

Number of
Number of

Pc's
Mp's

TotJ
of

>l Numbe
States

2 3 2

4 35 5

8 B435 22

IB 92378 42

12 1352878 77

16 388540195 231

■(educed Execution time
States for program

< 1 sec.

< 1 sec.

2 sec.

8 sec.

1 min.

1 hour

-

mmmmmii^mmwmmmmim^mmmmmmmmmmKmmmmm^mfm'^mtmmmmmmmmmmnm

Page 28

Chapter 2 : Multiprocessors with tp^tw
2.2 Discrete Markov Chain Model

partitions (for n<m) is asymptotic to

—J~ exp[n(2n/3)T0.5] [cf. BecKE64]
4»ff

Also,

F(x) i

d-xXl-x1) . . .(l-xk)

i+i:p(i)x'

is an ordinary generating function of the sequence (p(0), p(l), ..., p(k)),

where p(i) denotes the number of partitions of the integer i that have no part

exceeding k. k<i [LiuC68]. Table 2.1 shows the total number of states and the

number of reduced representative iU^ as a function of n.

Let the representatir* state Si denote the set of compositions of the

number n that yield the same partition e.g. the compositions (2,1,1). (1,2,1)

and (1,1,2) correspond tc the partition of the number 4 which has two I's and

one 2. Further, let Si.j be the individual compositions of the partition

typified by representative state Si and Si.l be that composition which has its

components arranged in monotone non-decreasing order, i.e. (2,1,1) for the above

example. The algorithm shown in Fig 2.1 generates all ihe partitions of n with

the components in monotone non-increasing order.

Let X1(j denote the probability of a transition from Sj to Si. Then, due to

the symmetry of the problem.

■ Mi -

^»W»P«PWP "-— mtufrwmmmm

START
Number to be partitioned..N
Maximum number of parts... M

I
K •- 1; A(l) - N

T

Page 29

X
A(I) •- 1 for 1x2 K

I
A(l) *- N- S A(I)

1=2

Components of a partition are given by
A(l), Iä1,...,K. This partition has K
non-zero parts. Store or display this
partition.

Figure 2,1 An algorithm for generating partitions

__ '--••-—--—- I

" ■ " -^^^— i i i -»w»»"w»^»»^w— i -^mmmnt

Page 30

Chapter 2 : Multiproccssort with tp*tw
2.2 Discrete Markov Chain Model

Xu - EProb{Transition from Sj.l to Si.k}
Si.k Si

Let the m-tuple (k,,^..,^) denote the state of the Markov chain. If x

is the number of non-zero elements in this vector then at the end of the memory

cycle, x new processors have to be reassigned to memory modules. At the end of

the current memory cycle the queue is characterized by the partial uau m-tuple

Onj? ji,), where

Ji -k|-l if k^O

■0 otherwise.

A new state (ll(l?1...(|M) |s reachable fr0m ^^g ., ^ on|y .f

l.^ji tur lsi<m. If the above condition is satisfied the probability of the

state transition is given by

x-d,. jX-d.-d,

d«

where df lrjj

'•e. __xL_.*{l/m)Tx
d.! d?! ...dj

Note ths' iat since &(■flj-«,&,-«
»•X i=»l i = l

Thus, we now have a formula for generating the transition probabilities.

Due to the symmetry of the problem it suffices »o generate only the transition

 —*" -- - - ■ ■■ --^ - ---J ' - --1-- ii-iimiiiMn '-- ■-■

Page 31

Initial State

2 2 0 0]

110 0

Initial
Partial
State

Final Terminal States

Add 1 Pc Add 1 more Pc

Figure 2.2 Next states accessible from initial state (2,2,0, 0)

■ iTiiBii iw^aaMB^ a^ ^MMI MMM^^^M^MMMB|rt>1iM<g^iM |a|M ^ ^ , .^^^ti^ ^ in r mniiirrinmi

Page 32

Chapter 2 : Multiprocettori with tp*tw
2.2 Discrete Markov Chain Model

probabilities for the representative class of states. All the different ways of

obtaining the same partition are lumped together to form a reduced state.

To illustrate a computational method« for generating the transition

probabilities consider an example of a 4 by 4 system. The number 4 can be

partitioned in 5 different ways as listed below:

4 0 0 0

3 10 0

2 2 0 0

2 110

1111

These partitions represent 5 equivalence classes that characterize the

state of the Markov Chain. Let us consider the state (2,2,0,0). At the end of a

memory cycle, the resultant partial state is (1,1,0,0) with 2 free processors to

be reassigned. Figure 2.2 shows the different ways in which these 2 Pc's can be

assigned, one at a time, to reach a new partial representative state. After both

Pc's are assigned a terminal state is reached. The number on the arrow indicates

the number of ways of reaching the partial or terminal state that the arrow

points to. Now the number of ways in which a final state can be reached from the

»♦The use of a tree to generate the transition probabilities was suggested by F
Baskett and D.Chewning of Stanford University.

 —-.— J—.^^«^«^«^^ ■^—_.^- - ,. — ■■J_.. —^.

Page 33

0 0 0 0 10 0 0

110 0.

2 2 0 0

.2 10 0-

111 o:

5 10 0

2 2 0 0

2 110

2 110

1111

level 0 level 1 level 2 level 5 level 4

Figure 2.3 Enumeration tree for a 4 by 4 multiprocessor system.

-■ ■-- - ■ -— —■—-.-^-^i»—^^.„.■.^_ . - — ■ ■ ■ - ,^.. -..

■" ■"""■1"

Page 34

Chapter 2 : Multiprocessort with tp~tu>
2.2 Discrete Markov Chain Model

initial state can be computed by traversing the tree, e.g. there are 2x1 ways of

reaching (1,1,1,1) and (2x2 + 2x3) ways of reaching (2,1,1,0 from (2,2,0,0).

It is possible to construct a single tree with different pointers for

different initial states. Figure 2.3 shows a complete tree for a 4x4 system.

Initial states are circled. The entire transition matrix can be filled by

traversing this tree. A convenient way of traversing this tree is by using a

stack which has depth equal to one more than the number of Pc's. At each level

the stack contains a partial state and has a pointer to the initial

representative state (if any) from which it is derived. The stack Is initialized

to contain the path that leads to the topmost final state. For this example the

stack is initialized as shown in Fig. 2.4, and Fig. 2.5 shows an algorithmt for

using the tree to generate the transition matrix, shown in fig. 2.6.

The tree in Fig. 2.3 can be converted into a mesh by lumping together all

occurrences of a partial state in the tree. e.g. state 2100 at iövel 3 appears

twice, the resulting mesh for the 4 by 4 example is shown in Fig. 2.7. the

algorithm for generating the transition matrix is shown in Fig. 2.8. Though the

implementation of this algorithmtt involves a matrix multiplication and requires

tA FORTRAN implementation of this algorithm is listed in Appendix A-l.

ttSee Appendix A-2 for a listing of a FORTRAN implementation.

■ - - ■ -- -- - —.

mi ■■wuiiui 1.11111 immmmmr-mmiiiit n mmmam m^m

Pa^e 35

4 0 0 0

3 10 0

2 110

1111

4 0 0 0

5 0 0 0

2 0 0 0

10 0 0

0 00 0

level 4

level 5

level 2

level 1

level 0

Initial
etate
pointer

STACK NWAYS
Number of ways of
getting to level L
i*rom level 1-1

Figure 2.4 Initial contents of the stack for traversing the tree
shown in figure 2.3

I' ■ I I "III I 1 ■ «

Page 36

Transition matrix has been
completely generated.

Normalize each column so
that sum going down a
column is 1,

Figure 2.5 Algorithm for traversing the tree shown in Figure 2.3

 ■ - - ■
 ■ ■ —"—«-. .I in ■ ■iiMMiMiM^tr'- ■' -- -' ■ ■■ mi iliMMM II(

ri ■ iiip*>«m^Hii i i ii ■■ inn i ■ um '^mmwwmtmmmmmn ivinim^mmmmmmmmm***^'mm*^mmmmmmmmmmmmmmmmmim*mm*mw*m*m —-~^m

Page 37

4 0 0 0 3 10 0 2 2 0 0 2 110 1111

4 0 0 0 1 1 0 1 4

3 10 0 3 3f 3 2 3 + 3+6 124-12+24

2 2 0 0 0 3 2 3+6 12+24

2 110 0 o 4+6 6+12+18 24+48+72

1111 0 0 2 6 24

STEP 1 t XIj is the number of ways of reaching i from j.
(obtained from the tree of fig,2.3;by using the

STEP 2 : Xi.1- Xij (Note that |Xi;Jrm
x, where x of the

2Xi;J
i

components of j are non-zeroJ

Final equations to be solved simultaneously :

■
P4000

P3100

P2200 —

P2100
P

1111

0.25 0.0625 0.000 0.015625 0.015265

0,75 0.3750 0,125 0,187500 0.187500

0.00 0.1875 0,125 0.140625 0.140625

0,00 . 0,3750 0,625 0.5625 00 0.562500

0,00 0,0000 0.125 0,093750 0.093750

• —

P4000

P3100

P2200

P2100
p

1111

SUBJECT TOp ^p ^p
4000 r3100 2200 ^2100 pllll- :L

Figure 2.6 Steps In the generation of the transition matrix

 ' "^—■■-,.>..—. M ^~~.. ■_ , aiiiiiiiniiii ii ii

 m i

Page 38

Chapter 2 : Multiprocettort with tpmtw
2.2 Discrete Markov Chain Model

more temporary storage it is faster than the algorithm in section 2 t r .rgt

n. Thu?, a space-time trade-off affects the selection of the algorithm to be

used.

The following theorem and lemma can be used to increase the efficiency of

the program that generates the transition probabilities.

Theorem 1: There is a one-to-one correspondence between a representative state

and a partial state that the representative state reduces to at the end of a

cycle.

Proof: Let (kLkjr.-.Km) be a representative state. The partial state at

the end of the cycle is given by

where Ji-K|-1 if ki>0

«0 otherwise

m
Since no two representative states are alike ^nd Zk|-n, it follows that the

i-1
partial states are distinct.

Lemma : A partial state at level L in the enumerative tree of Fig. 2.3 can

correspond to a terminal state with exactly n-L occupied Mp's.

 ■ — -

■ ■ iiiiiiii npnii •■■in i 11 .■v^a^nvmwpar-'iiiii i muwiK'mm mmi-immimmwmmmmmm

Page 39

^1000

mi

Pig. 2.7 Enumeration rr.esh for a 4 by 4 multiprocessor system.

- - - ■ ■ -- - i

 ■ I i^mmmmmmimm**^*'*'—*—***

Page 40

genorato parlillons ol N into M parts,
lot the vector XSYS denote these partitions,

that represent the state ol tho system.

Gcr erale partitions of N-l into M parts.
Let X2 denoto those partial states.

I-N-l

Compute 0.
Matrix Bis the number of ways

Of reaching XSYS from X2.

Update TRANS (i.e. matrix of number
of ways of reaching XSYS from XSYS.)

if any state In X2 is a reduction
of »state in XSYS.

I-I-l

Generate partitions of I
Vector XI

Compute matrix A.
A is the number of ways of

reaching X2 from XI.

Matrix Multiplication.
■ •Alt

Interchange XI and X2.
B is now the number of ways
of reaching XSYS from X2.

If 00...0 is * reduction of a
stato in XSYS update TRANS.

Evaluation of
the required matrix of the number

of transitions, TRANS is complete.

Fig. 2.8 An algorithm for evaluating the transition matrix,

 nwaüwr - — - —■ UttMUMi -_ ..^—

mmmmmmmmmmm ■ ' ' !

Chapter 2 : Mulliprocctsort with tp'-tw
2.?, Discrete Markov Chain Model

Page 41

Proof: Let i"(jl,J2,...,jm) be a partial state in the tree depicted in Fig.

2.3. Furthermore, let the number of non-zero elements elements in the partial

■
state be y s.id let JLJi^n-x. Since one Pc is always removed from a non-empty

queue at the end of a cycle, J is a partial state that can e reduced from a

valid representative state K^k,,^,...^,,), if and only if

(i) The number of non-zero elements in K is x.and

(ii) x>y

Note that x and y are both less than or equal to min(m,n) and flki-n. Then, if
i=l

x>y, J has at least x-y zeros. If x<y then there is no representative state K

that corresponds to the partial state /. if x^y, then the representative state

is obtained by adding y Ts to the non-zero elements of / and replacing x-y

zeros of J by 1. At level L, Iji" L Therefore, x, the number of occupied Mp's

in K, is equal to n-L

Figure 2.9 shows the average number of busy Mp's when n-m. The curve has an

almost constant slope of .586 for n>4. Thus, this model also shows the absr.nce

of a law of diminishing returns. Figures 2.10 and 2.11 show the effect of adding

a Pc and an Mp respectively on the average number of busy Mp's. Also, the

average number of busy Mp's is almost symmetrical with respect to m and n. The

results obtained from the model are compared with a less restrictive simulation

model in section 2.7.

 - - ■ ■ ■

"I"" II ——*—

Page 42

V

I
£
i
a

'&
u
o
»i
o
J

ii
C

I «)
4J
(0

o
w
u
v
u
o u

i

CM

U

• <o •> ^

«,d;j /snq ;o aaqmnu 33«jaAy

L — —

■aiaiHi iiui

Page 43

t,dH Xsnq jo jsqunu sSgisAy

 «_— —-»■

mmmm

Page 44

S
M>
C

•H
•n
•o
rt

>M
O

4J
O
o

I
CM

4)

• n 4
ttdH /inq JO joqxnu o8rJ3AV

L ■ nrMlniiNiMi.n . . ^ _JM_^^JAafc.*—.»a»*^

mrm —immium» mmmfmimHmi^mmmmmmmm^^^n*^mmi^m*l~mm*****'^~*i^*

Chapter 2 : Mvltiprocettort with tp-tto Pag« 45
2.3 Approximate Ditcrete Markov Chain Modelt

2.3 APPROXIMATE DISCRETE MARKOV CHAIN MODELS

Even with the representative state approach the number of states

characterizing the Markov Chain increases rapidly as n incrrases. Table 2.1

shows the number of representative states as a function of n and the approximate

execution time needed on a DEC PDP-10 for the FORTRAN program listed in Appendix

A-2, which determines the stationary state probabilities. Though the analysis is

exact, the size of the problem (as indicated by the array space used by the

program) and the time required restricts the use of the model described in

section 2.2.

2.3.1 A New Approximate Discrete Markov Chain Model

Because of the high cost of computation for the previous model, an

approximate discrete Markov chain model will now be proposed, and the results of

section 2.2 will be used to improve the applicability of this new approximate

model. The state is denoted by the number of active Pc's. Thus the number of

states is min<n,m). Note that only those Pc's that are active during the current

cycle make new requests during the next cycle. Also, the number of busy memories

is equal to the number of active processors. The approximation propounded here

consists of removing the non-active Pc's from the Mp queues and reassigning them

as indicated below. This approach was motivated by a gross intuitive feeling

 - _^^J.J_„^_ ,.„-___^.^^„ _.,., m ,

'■"'■•""

Pago 46

Chaptrr 2 ; riultiprocassors with tp^tw
2.3 Approximate Discrete Markov Chain Models

that if the Pc's are removed from the queues and asked to make new requests,

they would end up in the same queues as before. However, this is not exactly

true, and the heavily congested states fend to be de-emphasized. Let the number

of busy Mp's during the current cycle be i. Then, during the next cycle the i

active Pc's make a new request to the m Mp's and some of the n-i non-active Re's

get serviced if they are at the front of the queue. However, in this approximate

model, the n-i non-active Pc's are removed from the i Mp queues and reassigned

to the same i queues. This is equivalent to the n-i Pc's making new requests to

the i Mp's. Thus the i Pc's may not end up in the same queues that they were

removed from. This approximation will be used widely in this thesis. The results

of this section show the accurac of the approximation.

Now, the probability that j out of the i active Pc's make a new request at

the beginning of the next cycle to one of the i Mp's that are busy during the

current cycle, is given by

XPROB- (jMm^O-i/rtJ1^

Thus, during the next cycle, with probability XPROB the n-i non-active Pc's and

j active Pc's are assigned to the i busy Mp's of the current cycle, and the

remaining i-j active Pc's make a request to the other m-i Mp's.

Let nn-n-i+j and k.-mi^nn.i). Note that nn denotes the number of Pc's that

will be queued (during the next cycle) for the i Mp's that are busy during the

current cycle. Also, let Xd,) denote the conditional probability that I, out of

i busy Mp's are also busy during the next cycle, given that n-kj Pc's will be

 "—L
—•■'—" -" "■ —■.-.-- — — .-

mmmmm mmmm

Chapter 2 : Multiprocessors with tp*tu
2.3 Approximate Discrete Markov Chain Models

Page 47

queued for the i Mp's. The number of ways that nn different Pc's can be assigned

to i different Mp queues is i"n [RiorJ58# pp.90]. Also the number ways that the

nn Pc's can access i Mp's so that exactly I, Mp's are occupied and i-l, are not

is given by Riordan[RiorJ58] as

CMOJ.^SCnn,!,)

where CM(i,l1)-i(i-l)...(i-|,+l)

and S(nn,ll) is the Stirlingt number

of the second Kind

Thus,

XO^-CMO.I.hSCnn,!,)/^

Now, let Y(l?) be the conditional probability that I, out of the m-i currently

non-busy Mp's are busy during the next cycle, given that i-j Pc's make a

request. Then,

Y(l2) - CM(m-i,l,)*S{i-j,g/{m-i)'-

Thus, the probability that k-1,+1, Mp's will be busy during the next cycle Is

XPROBtXd.Wg

Therefore, TRANS(k,i), the probability of a transition from current state i to

next state k is

tStirling Numbers of the second kind are used to convert from powers to binomial
coefficients.

Also,
xn -Z:S(n,k)^k)k!

S(i,j) - j*S(i-l,j)+S(i-l,j-l)
with S(i,0)-S(0,i)-0
and S(i,iM

■ m

mmmmmmmm um ■11.111«

Page 48

TABLE 2.2

Comparison of Exact and Approximate Models

Approximate Discrete Markov Chain Model for tp-tH

Average Number of Busy Mp's

m-2 tn-4 m.8 m-lB
r*2 1.5888 1.7508 1.8758 1.9735

n=4 1.8888 2.G558 3.2751 3.B291

n«8 1.984B 3.4858 5.8999 G.3B88

n-lG 1,9399 3.9343 B.843B 18.8858

Exact Discrete Markov Chain Model

Average Number of Busy Mp's

m=2 m=4 mw8 R-16

n=2 1.5888 1.7588 1.8758 1.9735

n-4 1.7588 2.B218 3.2B52 3.B268

n-8 1.8758 3.2B57 4.9471 B.3149

n-lB 1.9375" 3.G278 B.3154 9.6258

m~r^mmm

Chapter 2 : Multiproceitor$ with tp-lto Page 49
2.3 Approximate DUcrete Markov Chait, Modelt

EXPROB*X(l ,)*¥(>,)

the summation is over the different ways of choosing
I, and I, such that k-1,+1,.

A FORTRAN program that determines the steady state probabilities is listed

in Appendix A-3. Table 2.2 shows the average number of busy Mp's as predicted by

this approximate model. Due to the small number of states, this approximate

model needs much less computer time; typically about 1 second of execution time

on a PDP-10 for a 16x16 multiprocessor system. Table 2.2 shows that the average

number of busy Mp's is almost symmetric in m and n. The approximate model has a

larger error for n>m. Therefore, a better estimate of the performance of a nxm

systnm can be obtained by evaluating tlie performance of a mxn system if i>m, a

conclusion possible only due to the results of the exact analysis of section

2.2.

2.3.2 Strecker's Approximation

Strecker [StreW70] has an approximate closed form solution to the discrete

Markov Chain model presented here. His approach is equivalent to removing the

queued processors from all the memory modules at the end of a memory cycle fnd

reassigning them among all the memory modules. In the approximate model proposed

earlier in section 2.3.1, the Pc's that were queued at the end of the cycle were

reassigned only among the busy Mp's. Thus, Strecker's analysis is more

11 ■ «tfi

"■■" *~-m mmmmimm

PaKe 50

TABLE 2.3

Expected number of busy memories in one cycle
Number of Pc's - 1,2 8 (rows)

Number of flp's - 1,2 8 (columns)

Discrete Markov Chain Model

i.eeee
1.OÜ08
1.0008
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.5000
1.BBB7
1.7500
1.8000
1.8333
1.8571
1.8750

1.0000
1.6GB7
2.047B
2.2701
2.4102
2.5059
2.5751
2.B274

1.0000
1.7500
2.2B92
2.B210
2.8633
3.0370
3.16G3
3.2G57

1.0000
1.8000
2.A035
2.8B30
3.199S
3.4533
3.648G
3.8024

1.0000
1.8333
2.5054
3.03B5
3.4530
3.7809
4.0418
4.2521

1.0000
1.8571
2.5748
3.1G57
3.6482
4.0415
4.3636
4.6294

1.0000
1.8750
2.6272
3.2652
3.8019
4.2518
4.6292
4.9471

Strecker's Approximation

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.5000
1.7500
1.8750
1.9375
1.9687
1.9844
1.9922

1.0000
1.6667
2.1111
2.4074
2.6049
2.7366
2.8244
2.8829

1.0000
1.7500
2.3125
2.7344
3.0508
3.2881
3.4BG1
3.5995

1.0000
1.8000
2.4400
2.9520
3.3616
3.6893
3.9514
4.1611

1.0000
1.8333
2.5278
3.1065
3.5887
3.9906
4.3255
4.6046

1.0000
1.8571
2.5918
3.2216
3.7613
4.2240
4.6206
4.9605

1.0000
1.8750
2.6406
3.3105
3.8967
4.4096
4.8584
5.2511

Percentage Error

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
4.9979
7.1429
7.6389
7.3856
6.8548
6.2507

0.0000
0.0000
3.1012
6.0482
8.0782
9.2063
9.6812
9.7244

0,0000
0.0000
1.9082
4.32BG
6.5484
8.2G80
9.4685
10.2214

0,0000
0,0000
1.2658
3.108G
5.0631
G.8340
8.2991
9.4335

0.0000
0.0000
0.8941
2.3053
3,9299
5.54B3
7.0191
8.2900

0.0000
0,0000
0.6602
1.7C58
3.1002
4.5157
5.8896
7.1521

0.0000
0.0000
0.5ie0
1.3874
2.4935
3.7114
4.9512
6.1450

 -■

 "■ mmm^mmmmmm immmmm

Chapter 2 : Multiprocrstors with tp'lvo
2.3 Approximate Discrete Markov Chain Modelt

Pag« 51

approximate and will underestimate the interference. However, Strecker obtains

his approximate solution in a closed form, which will be modified here to yield

more accurate estimates of the MpAR. Thus the state of the system is considered

independent of the state during the last cycle. If we use this assumption the

distribution of Pc's queued for an Mp follows the binomial distribution:

Prob{Y.r} - (r) (^(l. fljT*

where Y is a random variable equal to the number of Pc's queued

for Mp[j] and Pij-l/m for all i and j.
■

Thus,

Prob{Mp[]] is busy} - 1- Prcb{nobody is queued for Mp[j]}

- l-(l-l/in)n

In other words, the occupancy of Mpjj] is l-(l-l/m)n, and

E[no. of occupied Mp's] - IKOccupancy of Mp[j]}

-m»[l-(l-l/m)n]

Table 2.3 shows a comparison of Strecker's results and the exact Markov

chain analysis. Note that Strecker's results are optimistic estimates of the

unit execution rate. It is encouraging to note that such a simple expression is

within 6 to 87. of the exact Markov Ch ta model for m/n>0.75. This is because his

analysis assumes that all n Pc's always make a new request at the beginning of

■• — '-■*-*--' ■-■ —' ■ 1 ■ -- -

'■•"»■"' ■■■* ■ ■ ^--» -■ ""'•■'•"""■,- ■

Page 52

"•<»

| x
•rl
IM

k

t <«
10

CIS u
41

u
«I
M

CM

0)

3
00

. . ■"— -->. - , ■ iimntM—MMrmi—aMii 111 i 111 — - - ■ ""'^

 inmmm^m~> ii laiiuin ■■

Chapter 2 : Mulliproco$»ort with tp-tto Part 53
2.3 /Ipproximate Dixcrem Markov Chain Model»

each memory cycle, whereas in the discrete Markov chain only those Pc's that

receive service are allowed to make new requests. Moreover, note that the

expression m*[l-(l-l/m)n] can be written in an exponential form as

m*{l-exp[n* /« (1-1/m)]}

Figure 2.12 shows a plot of the above expression for fixed mi the relaxation

time [In (1-1/m)]' approaches m as m gets large.

The exact discrete Markov chain model of section 2.2 shows the performance

to be almost symmetric in n and m. Also the analysis ol the error of Strecker's

approximation, shown in Table 2.4, indicates a greater accuracy for n<m. Thus, a

more accurate estimate of the average number of busy Mp's is ixfHl-l/WJ,

where i-max(n,m) and j-min(m,n). Note that the above formula was not derived by

Strecker. It was possible t« obtain it due to the knowledge gained from the

exact analysis presented in section 2.2.

2.4 DISCRETE MARKOV CHAIN MODEL OF SKINNER AND ASHER

Skinner and Asher [SkinC69] model the multiprocessor system with tp-tw as a

discrete Markov chain. They assume a matrix of probabilities that express the

likelihood that a given processor requests service from a given memory at the

beginning of a memory cycle, provided the Pc is not queued. They also assume a

matrix of probabilities that express the likelihood of the various outcomes that

 -1- J -■— —-^M—^1^^- -^.,-^^.^—^^■J-J—— -^ .. —- .-.— _ - - ..^ w

^^m^^mmm^~ ■ H V. mmmmmmmmmmmmmmmmmmmmwmmmm

Page 54

Chapter 2 : Multiprocessor» with tp'tw
2.4 Discrete Markov Chain Model of Skinner and flsher

can arise when there are simultaneous requests to one memory by several

processors. The state of the system is characterized by the processors queued

for the different memory modules. A state transition matrix is formed from the

access probabilities and the steady state probabilities of various states are

determined by solving the state transition equations. The number of states of

the system increases very steeply with an increase in the RURtbtr of Pc's and

Mp's. Closed form solutions are presented only for cases with up to 2 Pc's and n

Mp's. The analysis in the previous section is similar to Skinner and Asher, but

with uniformly random access patterns for all the Pc's, i.e. pu-l/m for all i.

The results of Skinner and Ashsr are cempared with a new approximate model in

section 2.6.

2.5 DIFFUSION APPROXIMATIONS

An approximation method that has been proposed for the solution of general

queueing networks is the diffusion approximation [cf. NeweG71; KobaH73]. A

discrete-state process is approximated by a Wiener-Levy diffusion process with a

continuous path. The key assumption in such an analysis is that incremental

changes in the queue lengths are normally distributed. This leads to a

characterization of the queueing network by a set of diffusion equations. The

accuracy of the approximation depends on three factors: (i) approximation of a

■ --■ --■ — - -■- —

i ■• ■iiiiiBiiiB ii. i IIMW>WIIMIU ii^^mmm^mmmm^mv^m^^^mm^m'^mmmammmm

Chapter 2 : Muhiproccsnon with tp-tw Page 55
2.5 Diffusion Approximatiom

discrete-state process by a time-continuous Markov process, (ii) choice of

proper reflecting barriers, and (iii) discretization of the continuous density

function for queue lengths. Surprisingly, for the simple discrete Markov Chain

model of section 4, the diffusion approximation yields a result identical to

that with exponential servers derived from Jackson's formulae. However, the main

utility of the diffusion approximation in this context is that it can be used to

analyze the effect of different coefficients of variation (ratio of standar.J

deviation to the mean) for the service time distribution. Unfortunately, for

Pij-l/m, the diffusion approximation predicts that the average number of busy

memories lo be independent of the service time distribution as long as all

servers are identical. Thus, the diffusion approximation has proved to be a

disappointing tool in this study.

2.6 AN APPROXIMATE MODEL FOR ARBITRARY Pjj

In this section, we explore the effect of non-uniform access probabilities

(i.e. Pjj is no longer restricted to be equal to 1/m) on the MpAR. This

situation often arises in physical systems in which each Pc has a greater

preference for a different memory module.Now, we analyze multiprocessor systems

in which F u can take any arbitrary value between 0 and 1 subject to EP|j-l. Let

Qij denote the probability that processor i is queued for memory j. The

probability that memory j is busy or occupied is given by

. ^ -.^-^^-^ '■-Mnhii^miiii'M «I ii i----' -■--.-. ■ n ■r -

m^m^mmu ii inn ■.■■in 11.11 i J imr^^r^mmg^mmmmmimm^m^m^m^tmK'^^^^-^mw^mmmmimtmmm'r^f'Pmnt t 11..mmmumm^mmmmnm^^mifmiummmmm

Page 56

Chapter 2 : Mulliproccsitors with tp''tw
2.6 Approximate Model for Arbitrary Pu

l-Prob(no processor is queued for memory j)

i-no-oij)
i-1

assuming that the event of a Pc not being queued for an Mp is independent

of other Re's not being queued. The simulation results shown laic justify this

assumption.

The above denotes the average number of requests serviced in one memory

cycle.

Thus, if, M is the expected value of the number of occupied memories during

a memory cycle,

then M= £ Prob[Mp[j] is occupied]

-fl[l-ft(l-Qij)]
j«! i-1

In general, the probabilities Qij and Pij are not equal. The Pij's are a

characteristic of each processor and therefore independent of the behavior of

the other processors m the system. However, any Qij is a function of all the

Pij's of the multiprocessor system. Strecker (StreW70)V has evaluated the unit

execution rate of a multiprocessor system in which Pij-l/m for all values of i

and j. He makes no attempt to obtain a relationship between Qij and Pij.

Strecker assumes that Pij-Qij and states that his results are approximate. The

approximation In his analysis is due to the assumed binomial distribution for

- -' ■ -- - —^——^——,-...—^—^,.— _ — ...

•^Kmwymmt I in —

Chapter 2 : Multiprorrssont with tp=tw
2.6 /ipproximnto Model for Arbitrary P^

Pag« 57

the queued processors. If all the Pc's are identical and have equal likelihood

of accessing every memory unit, then the probability of any processor being

queued for any memory is uniformly equal. Since the memories operate

synchronously and all requests occur at the end of a memory cycle a processor is

always queued. Hence, the probability Qij-l/m.

Let us focus our attention on Pc[i] and Mp[j]. The time spent by Pc[i] in

queue for Mp[i] depends on Pjj and Qu, ML Thus, Qu depends on other QIK'S,

which in turn depend on Q,j. Let us for a moment allow other processors to make

requests to memory before Pc[i]j and let Yjj denote the probability that none of

the other n-1 Pc's request service from Mp[j].

Thus,

Yü-ftü-Pu)
EM

Now, if none of the other Pc's make a request to Mp[j] the waiting time

(including service) is one cycle time. However, if other Pc's make a request to

Mp[j] before Pc[i], then Pc[i] has to wait for those Pc's to bt served. Now, let

us look at Pc[l], which has to wait for service from Mp[j] if other processors

make a request before it does. Here, we shall allow other Pc's to make requests

before Pc[l]. Thus, Pc[l] waits in queue for Mp[;] with probability P|j*[l-Y|j].

Thus, the average number of f c's that Pc[i] finds waiting before itself is

IIP|j*[l-Y|j]. However, Pc[i] accesses Mp[j] with probability Pjj. Therefore, the

weighted waiting time Tjj'for Pc[i] in queue for Mp[j] is

P|j*{Yi j +[Ui:P|j*(l-Y,J)]*[l-YiJ]}

Therefore, the average time is equal to ZTJJ; and
J-l

 -■-■

-.. „ - -

wt*mmmmm*i ^mmmrwmm

Page 58

. •

O

IN

U

!
2

u
a
0)

I
i

CO

«
r-l
V

1
s
I

o

I

I

CM

2
ft

OJ

Sjdw Xs.icj jo .toquinu OSD.TOAV

 ■ ■w.^. ■ - - -

Chapter 2 : MuUiprocettort with tp=tu Page 59
2.6 Approximate Model for Arbitrary Ptj

Qu - T.j/T

Figure 2.13 compares the execution rate predicted by the approximate model

of this section with the exact MarKov chain model of Skinner and Asher for a 2x2

multiprocessor system. Pjj is equal to u for i-j and equal to /? for ij<j.

Now, suppose each Pc has a grrater preference for one Mp. Let us use the

model to examine the effect of assigning access probabilities so that Pu-oC>l/m

for i-j and Pu-zS-d-c/JAm-l) for i^j. Note that ß<l/m. Thus, each Pc has a

greater preference for a certain memory module. For example, the access

probability matrix for a 4x5 multiprocessor system is shown below.

* ßß/iß

ßoi ß ß ß

ßßußß

ßßßuß

Figures 2.14 and 2.15 show the effect of changing oc from 0 to 1 for a 8x16

and a 16x16 multiprocessor system. Also, Table 2.4 compare, the results

predicted by the model with simulation results, because the analysis is

approximate. Note that both graphs show that the execution rate is a minimum for

ct-l/m. With oi=l/m this model predicts the same result as Strecker's

approximation as both models assume a binomial distribution for the queued

processors. The approximation error reduces as oc increases, the error being zero

for ool. An error correction factor can be used as described below. For ei«l/m

-■■■ ■ ^^^^ — . . ■ - ■--- - - -- ■ - ■- ■ - ■imnimii

Page 60

a
X

o
u

I
S
I

4.0

2.0

(12 0.4 •^T o.i 1.0

Pigure 2.14 The Effect of o(on the execution rate of a
üxl6 Kultiprocewsor System.

laadMHiiMiMHiHMi iimiUnri ii ■■>■—i ■HI liMin ■ - "" '--- --^ —-^--—~-—~— J

16.01

14.0

Page 61

12.0J

i
^ 10.0
o

*-'l

-~~~ •

y e.oi

i

6,0

4.0

2.0 '

0.2 0.4 0.6
t

0.8 1.0

Figure 2.1^ The Kffect of on the execution rate of a
16x16 multiproceccor system.

■ - ■- ■ —••• ■• ■ --irili l.nliiilMMlM—Hii i i

Page 62

TABLE 2.4

Comparison of simulation results with analytic model of Section 2.3

A IBxlB Multiprocessor System

SHX confidence interval Analytic
from simulation Result

0.25 (9.7482 , 9.8329) 18.4174
0.58 (18.5824 , 18.5946) 18.9973
0.75 (12.8875 , 12.3987) 12.5323
8.98 (13.9111 . 14.2145) 14.3873

A 8x16 Multiprocessor System

98% confidence interval
from simulation

0.25 (6.2883 . 6.4139)
8.58 (6.5374 , 6.5614)
0.75 (6.9693 . 7.8853)
0.90 (7.4338 , 7.6841)

Analytic
Result

6.4888
6.6885
7.1673
7.6328

A 8x8 Multiprocessor System

98% confidence interval Analytic
from simulation Result

8.25 (4.8886 , 5.1126) 5.2798
8.58 (5.2797 , 5.4127) 5.5372
8.75 (6.892B , 6.1981) 6.2887
8.98 (6.9245 , 7.1411) 7.1975

MfclMl^l , ■ --
___ -- - ■--- --— ■■-- ■ *■-"■■- ■■ ■ - ■--'—I--'— - - —■

 -.,. —

Chapter 2 : Multiprocessors with tp^tw Pare 63
2.6 Approximate Model for Arbitrary Pxi

the exact Markov chain model should be used to compute the execution rate X,;

the approximate model of this section predicts an execution rate, X7, equal to

m*[l-(l-l/m)n] for o^-l/m. The correction factor for o^-l/m is X^X,. Let

e-(X7-X,)/X?. Then a linear error correction factor F is l-e*{l-o<:)/(l-l/m) for

od>l/m. The corrected estimate is F*XI where X is the execution rate for the

given value of *. The dotted lines in figures 2.14 and 2.15 show the corrected

execution rates. The vertical lines show 907, confidence intervals obtained by

simulation! This model shows the increase in the MpAR due to deskewing of the

processors' access patterns.

2.7 CONCLUDING REMARKS

Tables 2.3 and 2.5 compare the numjrical results obtained from the

different models described. Note that the continuous and discrete Markov chain

models exhibit similar trends, though the numerical values differ. Strecker's

approximation gets better as m/n increases, whereas the continuous time and

discrete Markov models get closer for larger n/m ratios. Table 2.6 shows some

simulation results obtained with exponential distributions for the processing

tAII confidence intervals in this thesis will be shown by vertical lines. Unless
specified otherwise, the confidence intervals are calculated from about 10
independent samples, each averaged over about 3000 cycles.

. . —i ^-^ .,. Viia.i ir i ' ■■- ■ -

Page 64

TABLE 2.5

Expected number of busy memories in one cycle
Number of Pc's - 1,2,...,8 (rows)

Number of tip's - 1,2 8 (columns)

Discrete Mirkov Chain Model

1.8808 1.8888 1.8880 1.8888 1.800B 1.0000 1.0000 1.0000
1.8888 1.5888 1.BBG7 1.7588 1.8080 1.8333 1.8571 1.8750
1.8888 1.B6G7 2.047G 2.2592 2.4035 2.5054 2.5748 2.B272
1.3088 1.7588 2.2781 2.B218 2.8B30 3.03B5 3.1B57 3.2B52
1.8888 1.8888 2.4182 2.8B33 3.199B 3.4530 3.B482 3.8019
1.0808 1.8333 2.5859 3.0370 3.4533 3.7809 4.0415 4.2518
1.8888 1.8571 2.5751 3.1BG3 3.B486 4.0418 4.3B36 4.B292
1.0888 1.8758 2.G274 3.2G57 3.8824 4.2521 4.G294 4.9471

Continuous Time Harkov Chain Model

1.8888 1.8888 1.8000 1.0000 1.8000 1.0000 1.8000 1.0000
1.0888 1.3333 1.5880 1.G000 1.GGG7 1.7143 1.7500 1.7778
1.0088 1.5888 1.8888 2.8000 2.1429 2.2500 2.3333 2.4000
1.8883 1.G888 2.8000 2.2857 2.5000 2.GGG7 2.8000 2.9091
1.0888 1.GGG7 2.1429 2.5888 2.7778 3.8000 3.1818 3.3333
1.0000 1.7143 2.2500 2.GGG7 3.0000 3.2727 3.5000 3.G923
1.0000 1.7500 2.3333 2.8000 3.1818 3.5000 3.7G92 4.0000
1.0000 1.7778 2.4000 2.9091 3.3333 3.G923 4.0000 4.2GG7

Percentage Differehce

0.0888 8.8000 0.0008 0.0000 0.8000 0.0800 0.0000 8 0000
0.8880 11.1133 10.0018 8.5714 7.405G G.4910 5.7S71 5.1840
0.8800 10.0018 12.0922 11.8G32 11.0G45 10.1940 9.3794 8.G480
0.8888 8.5714 11.8982 12.7928 12.G790 12.1785 11.5519 10.9059
0.0000 7.405G 11.0904 12.G882 13.1829 13.1190 12.7844 12.3254
0.0000 G.4910 10.2119 12.1930 13.12GG 13.4412 13.3985 13.1591
0.0888 5.7G71 9.3899 11.5587 12.7939 13.404'? 13.5218 13.5920
0.8800 5.1840 8.5549 10.919G 12.33G9 13.iG53 13.5957 13.7535

_JÄ.^^__.

Page 65

TABLE 2.6

Expected number of busy memories In one cycle :

Exponential distribution for tp

Constant tw-ta-ECtp]

Simulation results

m-23A5B78
n-2 1.^088 1.5931
n-3 l.t;i85 1.9878 2.2875
n-4 2.2198 2.5B43 2.8884
n-5 2.7988 3.U72 3.4388
n=B 3.4888 3.7122 4.8848
n-7 3.9998 4.319B 4.5884
n-8 4.5BBB 4.9828

in iu ma^matatiitmitutmmr-arimiMttitmtmiUK^mt nit« r- ■ ——.-..-.■ —^--.w^...^—-^»^ ..„,... _

Page 66

Chn/iti i 2 : Multiproccsson with tp=tw
2.7 Concluding Remark*

time, with mean equal to tw.

i.e. Prob{tp-x} - X exp(-\x) where X-l/tw-l/ta-l/E[tp]

Note that the values in TaMe 2.6 lie between those predicted by Strecker and

JacKson, and within 57, of the exact discrete Markov chain model for most cases.

Thus, modeling the variable processing time by a constant equal to the mean

processing time is a reasonable simplification. Table 2.7 shows the

characteristics of the parameters in the various models.

It is important to note that with tp»tw a Pc is fast enough to make a few

request to memory when the memory recovers. Thus, for a 1x1 system the memory is

always bus/ Also, 'ith m>n, if there is no contention for memory the maximum

number of busy memories is min(m,n). An important result observed was the

absence of a law of diminishing returns: the performance of a multiprocessor

system with n processors and n memories continues to rise at a constant rate as

n increases. A simple exponential server model showed this rate to be 0.5; a

constant processing time model predicted a slope of 0.586 for the average number

of busy Mp's. The exponential server model gives the average number of busy Mp's

as nym/(n*m-l). An approximate result for constant processing times gives the

average number of busy Mp's as i*[l-(\~l/i}> j, where i»max(n,m) and j'-min(n,m).

An intuitively obvious conclusion limits the maximum number of active Re's by

min(n,m). This maximum is reached if each processor accesses only one memory all

the time.

 - -- —>—*t—^.—--—-~<—-—-.—^— >..■*—^- _ ^,.-„ — — .

Page 67

TABLE 2.7

Processing Memory Cycle Analysis Comp>itat lonal
Time Time £Mt

Discrete
Markov Chain

Constant
tpttH

Constant Exact Solution Is
algorithmic.
Unwieldy for
large n.

Strecker's
flpproximat ion

Constant Constant Approximate Closid torn
solution.
Simula formula.

Cent inous Time
Markov Chain

Exponential Exponential Exact Closed form
solut ion.
Simple formula.

01 ffusion
flpproximation

Constant Constant Approximate Closed form
solution.
Simple formula.

Simulat ion
Model

Exponent id I
E[tp]BtH<ta

Constant Approximate Unuleldy due to

slew stochastic
convergence.

i i^^r- - — ■ — - -■ ■- • • ■
, , .■■aii

■^ , ^—.—; -

Page 68

CHAPTER 3

MULTIPROCLSSOR SYSTEMS WITH TP>TW

In this chapter multiprocessors with tp>tw will be discussed. First, a

discrete MarKov chain model for a constant processing time equal to tw+tc will

be developed and a general methodology for constant tp.tw.ittc will be

presented. A more genera, model for processing time having a geometric

distribution with its mean value greater than tw will be described. An

exponential server model developed by McCredie[McCrJ73] will also be discussed.

3.1 DISCRETE MARKOV CHAIN MODELS FOR MULTIPROCESSORS WITH TP-TW+TC

In this section, discrete markov chain models will be developed for

multiprocessor system in which the processing time tp is a constant and is

exactly equal to tw+tc. The timing of a typical instruction is shown balow.

Hp ta tw

Pc

^effective MttwrüJloa time

tp=tw+tc

Note that a Pc that is serviced during this cycle operates on its data during

ihe next memory cycle. This w.H be modeled by associatmg a server with each Pc

aniMifc iiaiiMaatriiinWMMIiaitHatlllMfflTTIlMÜl Mmuiiimi^t^mMmilMtätttilBäB&KimiMMUta^me-mm^ammmäWMmMttitiämfirinimmiuk -- - — ■—-- -■ ^^J..-—x-^.—.^^.^,-,.. n-m iiiiMmirirtr ■

Page 69

1
1
■ \

2

•

«

n _

Hulti-server
Station

Kp servers

Service time to

Pc's Central Croscpoint Switch

Service time tc

Figure 3,1 Queueinc nrdel for rmltipr^cessorE -..-ith t?=-tw+tc

 ■ ■ —-*'—*— -- — .. — - . -- _.-^— ■-...- . -

Page 70

Chapter 3 : Multiprocessors with tp>tw
3.1 Discrete Markov Chain Model for tp*tui*tc

with a constant processing time equal to tc; and this portion of the processing

time will be called its effective execution time. As before, all processors will

be assumed to be identical with Pjj-l/m. The processor servers will be lumped

together as a multi-server station.

Now, if thi« number of Pc's is n snd the number Mp's is m, the state of the

queueing system shown in Fig. 3.1 can be described by a (m+l)-tuple

(ko; k,^,,...,^), where k0 is the number of Pc's in execute state and

ki,l<i<m, is the number of Pc's queued for Mp[i]. Since all the servers

contribute fixed delays equal to tc all events(entities leaving and entering

queues) occur at epochs separated by integer multiples of tc. In other words,

the system behaves as if it were clocked at intervals of tc. Therefore, time

between significant events can be considered to advance in diserüte steps. Note

that an equivalent system in which tw'-0,ta'-tc and tp'-tc can also be

represented by the model shown in Fig. 3.1.

Let (ko; k,,^,...,^) be a representative state i.e. it denotes all the

states that can bo obtained by permuting (k1(K?,...,kJ. Further, let

ki.^,-,kw be arranged in non-increasing order. Since the number f Pc's is

fixed 2Ükj=n. The state space can be divided into n+1 sub-soaces corresponding to

integer values of k0 ranging from 0 to n. The number of states in the 0-th

sub-space is equal to the number of ways of partitioning the integer n into m

parts. In general, the i-th sub-space consists of states corres- jnding to the

partitions of n-i into m parts.

I Ullllll I -- ■ ... ■ ' ' — - ■ • — ■-

WF"WI«»»Hi»iP^WW^WlS^»«Wl-Wl mm m

Initial State

Page 71

ij 1,0,0,0'

'Reduced
Partial
State

i^l; 3,0,0,0

If 2,0,0,0^^ 3

2 ^rl; 2,1,0,0

J^^xi 1,1,o,o:

i; 1,1,1,0

Add 1 fc Add 1 more Fc

Figure 3»2 A typical enumeration tree for initial state 2; 2,0,0,0

 ■'- ■ ..■-J_J..„——M^a^l—^^■^J—.^— . :. ..^^—ä.. -.,.-- — ■—..-

I"" ■ ' '■ .mmm^mm* i ■■« mi ^^mmvmmmm^mi^m*m^^ ^>piii n ■ i imiummmmmmmmmmw^mm^mmmmmmmmmm

Page 72

Chapter 3 : Multiprocexxor* with tp>tw
3.1 Ditrrete Markov Chain Model for tp-tw*tc

Consider a state vector in the i-th sub-space. The value of k0 is i. Let d

denote the number of non-zero parts of the memo.-y-state-vector (k,,^ kj.

Then at the end of the cu-rent memory cycle i Pc's make a new request and d Pc's

enter the execute state, i.e. during the rext cycle the state of the system is

located in the d-th sub-space. State transitions can be described by an

enumeration tree similar to that used in chapter 2, Fig. 2.3. Figure 3.2

transitions from the state (2; 2,0,0,0). for a 4x4 multiprocessor system. Such

trees can now be constructed for each state and the transition matrix evaluated.

In rig 3.2, there is 1 way of reaching (1; 3,0,0,0), (3+3*2) i.e. 9 ways of

reaching (1; 2,1,0,0) and 3«2 i.e. 6 ways of reaching (1; 1,1,1,0). Once the

entire transition matrix is generated the stationary state probabilities can be

obtained.

The number of states of this discrete Markov chain model increases faster

than the exact Markov chain model for tp=tw, described in chapter 2. Table 3.1

compares the timber of states for the two models. An approximate Markov chain

model will now be proposed. The system behavior will be modified to simplify the

analysis. At the end of each cycle the active Pc's (those that are served by

memory during the current cycle) will enter the execute state. However, all the

queued Pc's will be removed from the memory queues and will be allowed to make

new requests to memory along with those Pc's that were in execute state during

the current cycle. Let the current state be (k^ k,,^,...,!^), with evactly d

Mp queues occupied. Then, at the end of the current cycle, d Pc's er ler the

 M 11 ' '■« II ■ ■ ■ ' ■■- ' '■- '- —

Page 73

TABLE 3.1

Comparison of the Number of States for

Discrete Markov Chain Models for

tp-t>4 and tp-tw+tc

Number of States
tp-tw+tc

1

3

6

11

18

23

44

66

36

138

134

271

n-m
1

tp-tw
1

2 2

3 3

4 i

5 7

6 11

7 15

8 22

3 38

ie 42

n H

12 77

i m ■ -- ■

Page TU

Chaptrr 3 : Multiproccs&on with tp>tu)
3.1 Discrete Markov Chain Model for tp-itc+ic

execute state iind n-d Pc's make new requests. Thus, for this simplified model,

the state of the s.ysiem is characterized by the number of Pc's that make new

requests at the beginning of a cycle.

Now, if i Pc's make a new request to m Mp's, the probability that Mp[i]

gets at least one request is l-(l-l/m)'. With i Pc's accessing m Mp's

simultaneously, the number of busy Mp's can take any integer value from 1 upto

min{i,m). The probability of exactly j Mp's being occupied is givrn by the ratio

of the number of ways that j Mp's can be occupied and i-j Mp's not be occupied

to the total number of ways o' assigning i Pc's among m Mp's i.e. m'. In section

2.3, it was stated that the numoer of ways that exactly j out of m Mp's can be

occupied by i Pc's is CM(m,i)*S(i,j). Now, if j Mp's are occupied during the

current cycle then n-j Pc's make a request to Mp during the next cycle.

Therefore, given that i Pc's made a request to Mp at the beginning of the

current cycle, the conditional probability that n-j Pc's will make a new request

at the beginning of the next cycle (which is also the end of the current cycle)

is

CM(m,i)*S(i,j)/ml

Note that the above expression denotes the probability of a transition from a

current state i to a next state n-j. The value of j can range from 1 to

min{i,m).

For a multiprocessor system with n Pc's and m Mp's, let k-min(m,n). The

number of occupied memories in a cycle ranges from 0 to k. Therefore, the number

. —-. .. .-,.
 -—■**--**-*-'"—.— ^—— ■

Page 75

TABLE 3.2

Transition matrix for a 4xA system with tp-tw+tc

0.0800 0.0000 0.0000 0.0000 0.03375

0.0000 0.0000 0.0000 0.3750 0.56250

0.0000 0.0000 0.7500 0.5625 0.32813

0.0000 1.0000 0.2500 0.0625 0.01563

1.0000 0.0000 0.0000 0.0000 0.00000

«0

Xl

X x2

X3

-X4.

x0 +xl +x2+x3 +x4 - 1

 - ■ — ■ i aa 11111 - ■ ■ . _.._..,_ , . ^L. —^

Page 76

0.5

0.4

0.3 '
0)
>

o
«0

o
c
o

o
u

0.2

0.1

6 8 :.o 12 14

Mumbcr of Mp's m

Figure 3,3a Execution Rate as a fraction of the number of Pc'i

(1-16

—t

16

.... ^.._^,JM^^^_.... — ^..^-^^^^_,

Page 77

1.0

0,8"

J3

(4-1
O

a
o

•r4
iJ
u
ta u

0.6 ■

0,4 .

0.2..

8
i ■

10 12 14 16

Number of Pc's n

Figure 3.3b Kxecution rate as a fraction of the nvunber of Mp'i

•"-- ■ ■ -

 .■■ ■.. ^.,^^^ ^ -"-

Page 78

Chapter 3 : tiultiprocrssors with tp>tw
3.1 Discrete Markov Chain Model for tp-ttoHc

of Pc's that can be assigned at the beginning of a cycle ranges from n-K to n.

The approximate mode! h.s k+l slates. Let X^, Xn.k+ .Xn denote the steady

state probabilities. Then, the execution rate is

n
EXi^l-U-l/m^m

i=n-k
Table 3.2 shows the transition matrix for a 4x4 multiprocessor sytem. Appendix

A-5 contains a l.sting of a FORTRAN program that computes the steady state

probabilities and henre the execution rate for a nxm system. Figure 3.3 depicts

plots of the execution rate as a function of m and n, obtained from the

approximate Markov chain model. Table 3.3 compares the analytic results with a

905? confidence interval obtained by a Monte Carlo simulation of the exact system

behavior. The simulation consisted of 10 independent experiments of length equal

to 4000 cycles.

3.1.1 General Technique for Constant tp-tw+i«tc

In general, if the processing time is a constant and equal to tw+i«tc, the

instruction timing diagram is as shown in Fig. 3.4a. In this case, the execution

phase is i cycles long. This can be modeled by an i-stage server shown in Fig.

3.4b. At any given time in the execute phase a Pc is in one of the i stages;

advancing one stage every cycle. Now, the system state can be represented by

(jiihi-.jj. ^„k,,...,^), where j| is the number of Pc's in the

execute-stage I, and the k^s denote the memory queue sizes. As betjre, let d

denote the number of non-zero kfs. Then, at the beginning of the next cycle, d

— - - -

 ~mm—**^*~~^^^mKmm^m**mimmmmmm*mw*m*—**m*m*** "> ■■■■•™^™—™ ■ *m

Tag« 79

Pc

ta

i
i

i

tw

tp

tw »-)■«■ i*tc

Figure 3.4a Instruction timing diagram for tp=tw+i*tc

Stage 1 Stage 2

Bervico
time

to to to

Figure 3.4^ i-ctage corver model for a Pc

- -- ■ --—^-^^^ . «»ifclMMM^il—« ■ m i i im

Page 80

^HHHM(Ma"",~* ^

l
TABLE 3.3

Average Number of Busy flp's

tp-tw+tc

n x tn

2x2

2x4

2x8

2 x IB

4x2

4x4

4x8

4 x IB

8x2

8x4

8x8

16

IB

IB

IB

x 2

x 4

x 8

x IB

98% confidence interval
from simulation
d.eeee . i.Beee)

(i.eeea , i.eeee)

d.eeee , i.eeee)

(i.eeee , i.eeee)

(1.5B47 , 1.5843)

(1.8194 . 1.8276)

(1.912B , 1.9244)

(1.9418 . 1.9817)

(1.8251 , 1.8547)

(2.846B , 2.92B6)

(3.4858 , 3.534B)

(1.9886 , 1.94B4)

(3.4936 , 3.5677)

(5.4431 , 5.6254)

(6.814e , 6.9788)

Analytic
Result
1.8888

i.eeee

i.eeee

i.eeee

i.Beee

1.8276

1.9197

1.9612

1.9692

3.8259

3.5538

1.9998

3.8772

5.9853

7.8136

■ -■■ i Ml "*■»-- — —

mmmm~^mmm

Chapter 3 : Multiprocessors with tp>tto
3.1 Discrete Markov Chtin Model for tp-twHc

Page 81

Pc's enter execute-stage 1; j, Pc's make new requests to Mp and rt's in the

other execute stages advance to the next higher execute stage. Thus, for

example, if the current state is(2,l,0,4i 2,1,1,0) then the next partial state

is (3,2,1,0; 1,0,0,0) and 4 Pc's make new requests. The different ways that

these Pc» can be assigned determine the kfs in the next state, which can be

obtained by using an enumeration tree similar to the one described earlier.

3.2 DISCRETE MARKOV CHAIN MODELS FOR GEOMETRICALLY DISTRIBUTED TP

For our next model, let the p.ocessing time have a gec-netric distribution

given by,

Prob[tp-tw+i»tc] - Z?*^1

where /3-1-od

Then, the mean processing time is given by,

«o
E /3*od'*(tw+i*tc)
1.6

i.e. tw*^*^1 + ^»tc^Ei*«^'
i: O is«

«O
i.e. tw + \ct/i*Z.*u*

i-o

i.e. tw ♦ {c*fi*oc/{l-oc)*

i.e. tw + oCt\c/{\-oc)

Thus any mean value of tp greater than tw can be modeled by appropriately

choosing u. This model is more general than the models of the previous section.

- .,_-_

r^mm^mt i i. ii ■ ~~mmmmmmmmrwmmmm^^'' m » • ■■"'"" m t ttm nmm^m^mmmmmmmmwFfmamtmmmr' tmmKmmmmmmwmmf^mwmm

Page 82

CA ^

■fi 1

1 A ' i
1
1 r- 1

\ / ! A i

2

//""

2
'

|
•

•

• (

•

•

•

! 4 /

\

r
ii

\- m

J M. «^..1 *.m

Processors

Multiple Server

Service time tc

Service time tc

Figure 3.5 Structure of the queuein^ model for geometrically

distributed processing tirn«..

**-—•'—- ■ ■ ■- -- - — '- ■ -•' ^—kam - - -- ..—... _^

'n'^mmmiwmmi^' i nit mmmvmmmimmm^mm*^rrmmm^ mi «i \ i mmmmnmommtmmmmmmfmmm

Chapter 3 : Multiprocessor» wit'i tp>tw Pare 83
3.2 Discrete Markov Chain Model for Geometrically Distributed tp

Also, a single model with e^ as a parameter handles all cses where the mean

value of tp is greater than tw. The geometric distribution is a discrtle analog

of the exponential distribution. The measurements reported in chjpter 5 show

that the processing time distribution is indeed close to a shifted exponential.

Once again, the representative state of an exact discrete Markov chain

model is given by the vector MnW^ Also, &,-n and k, Is the number

of Pc's queued for Mp[i], l<i<m, and kc Is the number of Pc's in execute state.

The reduced partial state at the end of the current cycle is given by the vector

(0)Ji.J«-iJin), where jj max(0>kl-l) for l<i<m. Note that Eji - n-k0-d, where
i=l

d :s the number of non-zero k/s. Now, upto k0+d Pc's are potentially available

to be reassigned to the various queues. Let the next state be denoted by

(U ..Ij.-.W- Figure 3.5 shows the structure of the queueing model. Each Pc

has a probability u of going back into the execute phase. Since l0 denotes the

number of Pc's that are in the execut« phase during the next cycle, the range of

U is from 0 to k0+d. The value of l0 is governed by the following probability

function,
/ko+cK

ProbM-V i Ac^Vd-i o<i<k0+d

The rest of the next state vector can be determined by using an enumeration

tree. Figure 3.6 shows a t-oical enumeration tree for an initial state of (2=

2,0,0,0).

Once again, to reduce the number of states let us make the following

approximation. At the end of an Mp cycle, those Pc's that were in the Mp queues

- -— ■ ■ --— - - — nM.^j..^- -— --*, , mämätmam

iiiiilil.ai i . ■■ wmmmm wtmmmsr wmnmamm

P.'^e 84

*_. * * * *
O O O O r—

* m m * m
o O O ^ r-
O ,- «s; _ _

•* Ä •» * Ä

^ CO C^ CM ?—

o
o
o

o
O

CM r-

«)
.C
4J

OJ
o •

V o
4J 4-1 i

rt o
u h *
w o

U
CM

4-> UJ • M
X rj
a -3
c O 0)

ja 4J
4 ü a

o 4J
m o «,
u p
u rH
(9 Ü C3
u XI •W

•w AJ
•o c •r4
e o a
fi o ■3

o o "o 'o
A ■ A M

o o o o
M «k A «»

o f— o r-

A ■ A A
r4 P" (M

Ml • A • A • A
P" r- tM CM

A
o

A
o

I
c
o
4J

1-

o

(9
U

cu

o
u
3
60

____ ■MM« ■--

1 ■'■^■«■•^^^W^^äW^^^^WP» i mmmtmmmi*mmmmm*mmimmmmmmmmmm

Chapter 3 Multiprocessor» with tp>iu) Page 85
3.2 Discrete Markov Chain Model for Geometrically Distributed tp

during the current cycle but not serviced are removed from the queues. They are

then reassigned to the Mp queues. Now, the state is characterized by the number

of Pc's that make a request i.e. the number of Pc's that are queued during the

cycle. Thus, the number of states is n+1, viz. 0,l,2,..,n. Let the number of

Pc's queued during the current cycle be i. This means the» the other n-i Pc's

are execi *ing. If the i requests at the beginning of the current cycle result in

d(<min(i,m)) busy Mp's during the current cycle, then i-d Pc's are left

unserviced. Therefore, during the next cycle at least i-d Pc's are queued for Mp

service. Besides, each of the other n-i+d Pc's has a probability ß of making a

request to memory.

The probability that i-d Pc's are left in the Mp queues at the end of th«

current cycle is given by

CM{m,d)*S(i,d)/mi

The above expression ensues from the fact that i Pr* make random requests to m

Mp's resulting in exactly d Mp's being occupied. Also, the probability that j

oi'* of the other n-i+d Pc's make a request at the beginning of the next cycle is

I ■) ^.J n-i+d-i

Therefore, the probability that i-d+j Pc's make a request to Mp during the next

cycle, i.e. probability that the next state is i-d+j is

CM(m,d)*S(i,d>/m' *(j)* fi* * c^-^-J

Table 3.4 summarizes somfe of the numerical results obtained from the approximate

model. A listing of the FORTRAN program for this model is included in Appendix

Page 86

TABLE 3.4

Average number of bucy hp's
tp — Geometric Distribution

n x m

4x2

4x4

4x8

8x4

8x8

16 x 8

IG x)G

o 93% confidence interva
from simulation

8.1
8.25
8.5
8.75 (8.9138 , 8.9587)

8.1
8.25 (2.2875 , 2.3258)
8.5
8.75

(1.7382 , 1.8822)

8.1
8.25
»1 5

(2.GG87 , 2.G831)

8.75

8.1
8.25
8.5
8.75

(2.7G75 , 2.8254)

8.1
8.25 (4.3588 , 4.4713)
8.5
8.75

(3.4158 , 3.5118)

8.1
8.25
8.5
8.75

(5.3855 , 5.5885)

8.1
8.25
8.5
8.75

(G.7G43 , B.924B)

Analytic
Result

1.8478
1.7849
1.5423
8.9488

2.G879
2.3G79
1.7928
8.9739

3.8773
2.G824
1.9812
8.9877

3.5442
3.4213
2.9889
1.8528

5.8243
4.5984
3.5224
1.9398

G.94G1
G.7858
5.8G58
3.7858

9.8718
9.8441
G.9848
3.8G93

u-"— ■ — ■ - -- I I II lllll II IIIM — ~"

m*mmmm*mm*

Chapter 3 : Multiprocessors Uiitlt tf)>tui
3.2 Discrete Markov Chain Model for Geometrically Distributed tp

Page 87

A-6. This model will be used in chapter 5 to predict the performance of C.mmp.

For tp>tw this model is fairly realistic: the processkj time is modeled as I

geometrically distributed random variable and the memory cycle time is a

constant.

3.2.1 Extensions

The basic geometric model can be used to model systems in which each Pc has

a private cache memory (Mc). Let the access time of the cache be tf {<tc); ana

let x denote the probability of making an access to the cache. Therefore, ?

fraction (1-x) of all memory requests is to Mp. In the queueing model shown Ir

Fig. 3.7, oc denotes the probability that the execution phase goes throuß*

another cycle. Thus, ß = l-u \s the probability of a Pc finishing execution and

making a request to memory. Thus, /(*,=/?*(1-x) and /S?=/?*x.

As before,

Prob{tp=tw+i*tc} = fl^u1 for i=0,l,2,...

and,

Prob{tp=tc-tf+i*tc) = fl?*oc< for i-0,1,2,...

The expected value of tp, given that all accesses are to Mp, is given by

E[tp | Mp] = tw + tc*/?,*c*/(l-^)?

Similarly,

E[tp | Mc] = tc-tf + \c*ß?*u/([-uy

Hence, the unconditional expected value of tp is

mmmmmmmmmmmm^ -m^^m^mmr ■"'■ -"

Page 88

Ott fit

Service time
tc

Picurc 3.7 Queueing model for multiprocessors with cache memory

 "II I IHIMinillHHIII I Mllllll—•■lllir II I I - *.^**ml*i*a***v^^.*^^*^^. , . ,_. L^... , . ■■■ -

»"■■»■ — umfmtmm«immmmmmi**mmm*m

Chapter 3 : Mullipror.omor» with tp>tu)
3.2 Ditcrate Markov Chain Model for Geometrically Dittributed tp

Page 89

E[tp] - (l-x)«E[tp : Mp] + x»E[tp : Me]

- (l-vKtw ♦ tc*{l-x)*oi/(l-o6)] + x»[tc-tf + feM*«/U-*)]

If E[tp] is known, u can be computed from the above equation. This model is

fairly general in that the parameters x and E[tp], tc, tw and tf can be chosen

arbitrarily, subject to E[tp] > tw+x«(tc-tf-tw) and tf<tc. The distribution of

tp is now the sum of two geometries.

Note that this model, as viewed by the Mp, behaves exactly like the rrodel

for geometrically distributed tp shown in Fig. 3.5. The ß in Fig. 3.5 is

equivalent to the fii in fig 3.7, and the * in Fig. 3.5 is equivalent to the ed+/8?

in fig 3.7. Let R denote the average number of busy Mp's for the model of Fig.

3.5, but with ß-ßn and ocl-ß^. The values of tw and tc is kept unchanged. Now,

in the system with the cache, the average number of busy Mp's is also R. Note

that the expected value of tp is different for the two cases. Now, by

definition, for every 1-x accesses to Mp there are x accesses to Mc. Consider an

interval equal to T Mp cycles. During this interval there are R*T busy Mp

cycles. Hence, there arc R*T*x/(l-x) accesses to Mc. Therefore, the number of

instructions executed in one Mp cycle is

R + R»x/(l-x)

i.e. R/(l-x)

Thus, the average number of equivalent Mp cycles is R/(l-x).

For example, let us compute the average number of effective busy Mp cycles

for ta-tw-5, tc-10, tf-1, x-0.75, E[tp]-15, and n-m-8. The equation for E[tp] in

^^ - — - - ■ -

iiiiiamnm»«! i ■ — pivuuiiiim i ii ,i ■■ ■■■win I | m ... III.I,JIW.<

Page 90

o I

H

I

v.
o

o
u
o
u

0-,

^__,„____,

i ■■■ mivww

Chapter 3 : Multiprocessors with tp>tw
3.2 Discrete Markov Chain Model for Ccomotrically Distributed tp

Page 91

terms of u gives ^=28/53. Hence /3l=(l-x)*(l-^)-0.25»25/53. Using /3-0.25*25/53

for the model of section 3.2, we get R=0.9371. Hence, the average number of

effective busy Mp cycles is 0.9371/0.25 - 3.7484

3.3 McCREDIE's EXPONENTIAL SERVER MODEL

As mentioned in Chapter 2, if the memory cycle time and the processing time

are assumed to be exponential, the queueing results of Jackson[JackJ63] can be

used. The structure of McCredie's memory interference model[McCr73] is depicted

in Fig. 3.8. In terms of the notation used in this chapter, X-l/(tp-tw) (if

c«i=0),u=l/tc and <^ is the probabiüly of accessing a cache memory whose access

time is assumed to be negligible. The time from the completion of one reference

to main memory until the next access is exponentially distributed with mean

l/{*ß). The model allows the first Mp module to have a different cycle time

1/v. The probability that a request to main memory is to the first Mp module is

f; the requests to the other Mp modules being uniformly distributed. Let k be

the number of Pc's queued. Using Jackson's formulae and some clever grouping of

termst the execution rate is obtained as

t (n-k)**P(k)
k=0

tThe reader is referred to McCr73 for the details of the derivation.

wmmm^*m^mmm*mm 1 ■■

Page 92

8.0

a f
■

^>
I«
O

U
<D
4

0)

OJ
u
Ü I

7.0

6,0

5.0

4.0

3.0

2.0

1.0

to . 10

-H—

1?

p-10

p-15

4 8

Number of Mp's m

Pigure 3.9 Performance predicted by McCredie's model

—»

16

MMM

. I... mmmmmimmmm

Chapter 3 : Multiprocetsort with tp>tw
3.3 McCredios't Exponential Server Model Page 93

.k-i

(n-k)l Zv(k).f(k)
Hto

and W{K) . (/).».)■ , n!/(n-k)!

Figure 3.9 shows some of the results predicted by the model. The advantage of

this model is that it allows a cache memory and an Mp module with a different

speed and a different access probability. Note that with the presence of the

cache X^l/Op-tw); but X-l/üp-^tw).

3A STRECKER'S ANALYSIS

This section will briefly review Strecket analysis of multiprocessors

with tp>tw[StreW70], The processing time is assumed to be a constant. The number

of processors queued is, in general, less than n. The probability a Pc is queued

is denoted by p.. Then, assuming a binomial distribution fen the queued

processors, the execution rate is

"»♦[Hl-p./m)"]

Now, because the number of Pc's queued is binomially distributed, the average

number of Pc's queued is n*p„. Hence,

i urn— ■ n i ■ ii

MPManOTWWM^WMOTwn 1 ■ '■ ■«IfP ■»■■ -^^^t^m

94

Chapter 3 ; Multiprocctsort with tp>tvo
3.4 Strecker's Analysis

Pa - average numbflr of Pc's queued/n

Strecker's flow diagram of the instruction execution is shown below.

output rate (m/to)* [l-(l-J^mf]

i
Processor

delay

tp-tw

Memory
System

/ i

Strecker states that the average number of Pc's not queued is the product of the

average unit execution rate and the effective Pc delay tp-twt. Thus,

pm = 1 - (m/n/tc) * (l-a-pB/m)") * (tp - tw)

which is a n-th order polynomial equation in p., which has only one solution for

P. in the interval (0,1). This value of p. is used in the earlier expression for

the execution rate. This model is fairly simple and good for larger values of

tp.

tThis follows directly from Little's formula, L-*W [cf. LittJSl].

■ ■ - -—- mm __., ^mtwt inr ii Mn^^^MmtmäHmd —— - --- - ■ ■ - ■-i—-—^

Uliiiiiniwi mi nua» i^-* ■ «■Hi m iwmmmmt^mm mMmmmmmmmmm^mmnmmmm

Chapter 3 : Mulliprocessors with tp>tw
3.5 The Effect of Cnche on Systems with tp>tw

3.5 THE EFFECT OF CACHE ON SYSTEMS WITH tp>tw

Page 95

One of the techniques used to increase 'he execution rate of uniprocessor

sy?*ems involves the use of a fast cache memory, Mc. In multiprocessor systems,

the cac'-s not only provides a memory with a smaller access time but also reduces

the traffic through the crosspoint switch. This reduces the memory interference

and reduces the amount of time the processor spends waiting for Mp service. In

fact, the use of private caches for the Pc's is being considered for CMLTs

C.mmp.

In this section, we shall characterize the processing time by a single

constant value tp; with Pu = [/rr\. Let the cache have an access time tf (<ta) and

a rewrite time tr (<tw). Since tp>tw an; tr<tw, the cache always recovers before

the Pc can make its next request. Let <*. be the probability of accessing Mc i.e.

the probability that the cache contains the information needed by the Pc. The

probability of accessing Mp is /M-c*.

I

Now, the time needed to execute one unit instruction out of cache is

Wc=tp+tf. Let Wm be the average time needed to execute one unit instruction out

o' Mp. Hence, the average time needed to execute one unit instruction is

Wavg = oC*VJc + /?*Wm

Thprpforp, the execution rate is n/Wavg

The problem now reduces to evaluating Wm. Let us focus our attention on a

a^^M^^teiM MMBMMMM _

 ■■■■ w • . iiiau^i.n^rwwBiamnnmwnnmvmmMm i wm-ni^m ■ ion i| ,■!■ •■IIHI

Page 96

Chapter 3 : Multiprocessori with tp>tw
3.5 T/ifl Effect of Cache on Systems with tp>tw

single Mp unit. Further, let us assume that the number of queued Pc's for that

Mp unit follows the binomial distribution; and let p,, be probability that a Pc

is queued for one of the Mp's. Hence, the probability of being queued for the Mp

unit under consideration is pjm, s.nce all Mp's have the same speed and

Pu-l/m. From the binomial distribution for the queued Pc's, ii follows that, L,

the av"ra«5e number of Pc's queued for the Mp is n*pm/m. The rate X at which Pc's

are ssrved by this Mp is m»[l-(l-pM/m)n]/tc. Using Little's formula, L-*W, we

obtain the average waiting time for an Mp as

r*pjm*\c /[Hi-Pm/m)"]

Therefore Wm, the average time for one instruction out of Mp, is

tp-tw + n*pm/m * tc / [l-d-Pm/m)"]

Hence,

Wavg - «-«(tp-tw) + ß*{n*pjm « tc / [l-d-pjm)"]}

Now, the only undetermined quantity is pm. In T Mp cycles the total number

of busy Mp cycles is

T.-m^Hl-pJmr^T

Hence, the total number of busy cache cycles is

T?'U/fi*{m*[l-{l-pJm)n]*J]

and the total number of unit instructions is the sum of the above two

expressions, i.e. T.+T,. Therefore, the unit execution rate is

m/{ß*\c) * [l-{l-pjnn

Recall that we had earlier found the execution rate to be n/Wavg. Equating the

two and rearranging the terms we get

——""•-—"--"-- ■ ■ ^. ■ i mmitmit0lmmmm

" ■ ■"'« >

Chapter 3 : Multiprocessors with lp>tu)
3.5 The Effect of Cache on Systems with tp>tw

Page 97

Pa - 1 - m/(n»^*tc) * [c/*(tp+tf) + /?*(tp-tw)] * [l-(l-p„/m)n]

The above equation can be solved iteratively for p. A FORTRAN program that

computes the execution rate for this model is listed in Appendix A-7. Figure

3.10 shows the execution rate of an 8x8 and a 16x16 multiprocessor system for

varios values of the other parameters. Some simulation confidence intervals are

also depicted. Note that with u-O, this model yields the same results as

Strecker's model described in Section 3.4. The major advantage of this model is

that it allows the cache speed to be a control parameter of the analysis.

3.6 CONCLUDING REMARKS

In general, if the processing time is greater than the memory rewrite time,

then in the absence of memo-y contention one instruction is executed by each Pc

every ta+tp time units. Thus, the theoretical maximum value of the average

number of busy Mp's is n*tc/(ta+tp). He-ice, if m>n, even in the absence of

memory interference, the Mp's will have idle periods. Comparing Fig. 2.11 and

Fig. 3.3a, the curves for tp>tw reach their asymptotic maximum for smaller

values of m. Systems with tp>tw are generally processor speed limited and

relatively small performance improvement will be obtained if the memory speed is

increased.

 m .•.«A^i^i^

 .-.^-*~—«^^»^-.-i—mi*.i*~~ ■ - ■ ^^M^Jmm ■-. — —-.... - ' - - ' — ._ ^^u^^^-^^u^^.
- ■ - -

I I ■ ■« r^mmmmmmm

Prtgc l)8

2,

0.4 0.2 0.4 0.6 0.8

Probability of accessing cache

Figure 3.10a The Effect of Cache on a 8x8 system

1.0

 ■- ■ - _,.

Probability of accessing cache
Figure 3.101 The Effect of Cache on 16x8 syetems

lllll ll^IMM IMMtfTHf11 UteMyMMIMbl -- • -' ■ -■"- ■— ■" -

Page 100

CHAPTER 4

MULTIPROCESSOR SYSTEMS WITH TP<TW

In this chapter, an approximate model is proposed for multiprocessor

systems with tp<tw and Pu-l/m. Thr processing time will be assumed to be a

constant. In this case, a classical queueing model is made difficult due to the

following reason. In conventional queueing models, the service center can start

serving a new customer as soon as the last customer leaves. For core memories,

due to the rewrite time, the memory has to wait. However, for tpitw, this

problem can be surmounted by delaying the Pc in thd Mp queue for an additional

time equal to tw and reducing the effective execution time by the same amount.

Hence, with this modification, the Mp can start serving the next Pc In its queue

when the current Pc leaves the queue. But, with tp<tw, the Pc can make a new

request before the memory that served it last recovers. Strictly speaking, a

discrete Markov chain model can be formulated by makirg the basic time interval

equal to the highest common factor of tp.tw, and ta. However, the number of

possible epochs in a memory cycle and the size of the state vector and the

number of states is very large.

■-"-— -- - —'-■ i ii inn 1 ■im—Tü ■ni'i 'i ir milMMiiHiiii

Chapter 4 : Multiprocessor* with tp<tw
4.1 approximate Model for lp<tw

Pag« 101

4.1 AN APPROXIMATE MODEL FOR TP<TW

The results o'. the discrete Markov chain model of section 2.2 will be used

to obtain an approximate of the execution rate. Consider an Mp cycle in which i

Mp's are initially busy. If tp=tw, the i active Pc's make a request at the end

of the cycle. However, if tp<tw, an active Pc makes a new request before the Mp

that served it recovers. If this request is made to an Mp that is not busy, the

new request can be served immediately. Consider an Mp cycle in which i Mp's are

initially busy. During this cycle i Pc's are initially active. Now, these i Pc's

can receive more service if they make their next request to the m-i idle Mp's.

Now, if this request is made to an idle Mp, the effective service time (not

including waiting time) for the active Pc is ta+tp. However, if this request is

made to a busy Mp there is no increase in the execution rate due to the fact

that tp<tw. Hence, the effective service time is tc.

Let bj denote the probability that i Mp's are busy, obtained from the exact

discrete Markov chain model for tp=tw. Now, the average number of idle Mp's that

receive the next request is given by

(m-i)*([l-(l-l/m)')

Thus, the probability that an active Pc gets serviced by an idle Mp is

(m-i)*[l -d-l/mn/i

Note that the above is a conditional probability based on the fact that i Pc's

are active. Therefore, the unconditional probability that the effective service

----- - H — I I I I ! H mtimt^mi*m^Ht^mmM "^J"^ "-' — ' ^.^ —-..-—-^.-^..-.^ ^--i..—^.. ^■..■fcJ^-^,

Page 102

n x m

TABLE 4.1

Average Number of Busy tip's

tc-18 ta-tw-5

tp-5 tp-4 tp-3 tp=2 tp-1 tp-B

2x2 1.5880 1.5385 1.5798 1.6216 1.6667 1.7143
2x4 1.758r> 1.8451 1.9512 2.8782 2.2847 2.3579
2x8 1.8758 2.3215 2.1928 2.3958 2.6483 2.9483
2 x lb 1.9375 2.1182 2.3362 2.6841 2.9414 3.3792

4x2 1.7588 1.7722 1.7949 1.8182 1.8421 1.8667
4x4 2.6218 2.6947 2.7832 2.8721 2.9669 3.8681
4x8 3.2652 3.4429 3.6413 3.8633 4.1145 4.4481
4 x 16 3.6268 3.9851 4.2297 4.6131 5.8729 5.6345

8x2 1.8758 1.8868 1.8987 1.9188 1.9231 1.9355
8x4 3.2657 3.3148 3.3654 3.4176 3.4714 3.5269
8x8 4.9471 5.1823 5.2676 5.4439 5.6324 5.8345
8 x IB 6.3149 6.6579 7.3483 7.4692 7.9539 8.5857

16 x 2 1.9375 1.9436 1.9497 1.9558 1.9628 1.9683
16 x 4 3.6278 3.6538 3.6811 3.7888 3.7369 3.7654
16 x 8 6.3154 6.4163 6.5284 6.6288 6.7392 6.8543
16 x 16 9.6258 9.9299 18.254 13.688 18.969 11.366

I ■■■! —It—!■■

Chapter i : Multiprocessors with tp<tu)
i.l Approxim te Model for tp<tui

Page 103

time of an active Pc is ta+tp is given by

Z b, *(m-i)*[l -(l-l/m)n]/i

Let f be the value of the above expression. The number of active Pc's is

obtained from the discrete Markov chain model for tp-tw; denoted b' X. The

expected value of the service time for an active Pc is

f * (ta+tp) + (l-f)* tc

Hence, the execution rate, expressed as unit instructions per second, is given

by

X /[f*(ta+tp)-t-(l-f)*tc]

The average number of busy Mp cycles can be obtained by multiplying the above

expression by tc.

Table 4.1 presents the results obtained for various values of m, n, ta, tp,

and tc. Since this model is approximate it is meaningful to compare its results

with a confidence interval obtained from simulation. Table 4.2 compares the

results of this model and Strecker's model[StreW70] with simulation results. The

results of this model are within 57. of ttn simulation. Figures 4.1 and 4.2

illustrate the effects of n and m on the MpAR.

4.2 STRECKER'S MODEL

Strecker[StreW70] uses hir, approximate model for tp-tw to analyze tp<tw. He

iM——i t ■ i^li IMJWWil>—li ■■lllliMWiiin ■ im iMUfclÜBi tmmi ii ^-^..-.-^^-

Page m
7.0

6.O..

5.0

'♦.0

I
I 3.0

4J

2.0

1.0

-4—
12 If

Number of Pc's n

Figure 4.1 The effect of adding Pc's

—^——■ ■ --' -- ■■- - ■ -■■—--■■ --' ■ ■ .-..-^tj-.^-^.......^^—^. - III IIIIMIIUgMllll --- -— rm.'.mnm., >««■«■

8.0

Page 105

tc = 10

7.0

6.0

5.0 -

4J
o

uS 4.0
IN
H

3.0 .

2.0

1.0

4 8

Ntunber of Mp's m

Figure 4.2 The effect of adding Mp's

12
—4

16

mm ■■1

't—'- —- — in ■ iii—imiiliMiliiii m ■ ^tgu^^^mmttimm^iitmimaa^mmimttmäiU

Page 106

Chapter i : Multiprorrsxor* with tp<tw
i.2 Strrrkcr'i Model

defines the probability of an active Pc making a request to an occupied Mp as

p(occ) ■ average number of occupied Mp's / m

The probability of a request to an u. occupied Mp is

p(unocc) = 1 - p(occ)

Using his model for tp=tw,

p(occ) = 1 - (l-l/m)n

Thus, he average amount of time required to execute an instruction is

E[t] * p(occ)*tc + p(unocc)*(ta+tp)

- tc + (l-l/m)n*(tp-tw)

Therefor.-, the average number of busy Mp cycles is

tc *m*[l-(l-l/m)n]/E[t]

Note that Strecker assumes a constant probability for an Mp being occupied.

In the model of Sec. 4.1 the probabilty of an Mp being occupied depends on the

number of ousy Mp's during the cycle. Simulation results summarized in Table 4.2

show that the model proposed in section 4.1 is better than Strecker's model.

4.3 CONCLUDING REMARKS

With one Pc and one Mp there is no advantage gained by the fact that tp<tw.

However, if an active Pc can make its next request to an unoccupied Mp

ll lilmil ~~*-~—~~—^^—-'^~--~.— ■■ - ■ ^^»^ML^J^JkJ^^1i<m>ijlt<.J«aa-^^^. —— ^ . . ■ - - ^-^..-^^.^ -._..—^^

Page 10?

TABLE Ä.2a

Average number of busy Hp's

Comparison of Analytic llodels and Simulation Results

ta - tw - 5 tp - 1 to - 18

n x m Analytic Model 38% conf dence interval Strecker's
(Section 4.1) from simulation Model

2 x 2 1.BS67 (1.5531 . 1.6853) 1.BB67
2 x A 2.2847 (2.1342 , 2.2233) 2.2581
2x4 2.B48J (2.6833 . 2.6421) 2.7827
2x8 2.6483 (2.6833 , 2.6421) 2,7Ö27
2 x IB 2.9414 (2.3248 , 2.9858) '..9888

4x2 1.8421 (1.7746 , 1.7882) 1.9231
4x4 2.3663 (2.8182 , 2.3872) 3.1386
4x8 4.1145 (3.3382 , 4.1832) 4.3245
4 x IB E..B729 (5.8587 , 5.1874) 5.2682

8x2 1.3231 (1.8514 . 1.3131) 1.9953
8x4 3.4714 (3.2^58 , 3.3368) 3.7497
8x8 5.6324 (5,3417 , 5.5758) 6.6879
8 x IB 7.3533 (7.7336 , 7.38/3) 8.4755

IB x 2 1.3628 (1.3225 . 1.9551) 2.8888
IB x 4 3.7363 (3.6847 , 3.7187) 3.9758
IB x 8 6.7332 (6.4681 . 6.5891) 7.4852
IB x IB 18.363 (18.5273 ,18.7559) 12.814

 - -- ■ ■ i -nitituttumm/nii -- ■ ■--

Page 108

TABLE 4.2b

Average number of busy flp's

Comparison of Analytic Models and Simulation Results

ta - tw - 5 tp - 3 tc - IB

n x m Analytic Model 38% conf dence interval Strecker*8
(Section 4.1) from simulation Model

2 x 2 1.5798 (1.5368 . 1.5457) 1.5783
2x4 1.3512 (1.3058 . 2.8012) 1.9718
2x8 2.1328 (2.2013 , 2.2053) 2.2140
2 x IB 2.3362 (2.3441 , 2.3436) 2.3507

4x2 1.7343 (1.7623 , 1.7767) 1.8987
4x4 2.783? (2.6358 . 2.8028) 2.9191
4x8 3.6418 (3.6021 , 3.6737) 3.7502
4 x 16 4.2237 (4.2313 , 4.2863) 4.3056

8x2 1.8387 (1.8538 , 1.3054) 1.9937
8x4 3.3654 (3.2646 , 3.3402) 3.6731
8x8 5.2676 (5.1470 , 5.2406) 5.6386
8 x 16 7.8483 (6.3457 . 7.1531) 7.3289

16 x 2 1.3437 (1.3212 , 1.3551) 2.8888
16 x 4 3.6811 (3,5241 . 3.7183) 3.9679
16 x 8 6.5284 (6.3328 , 6.4753) 7.2261
16 x 16 18.254 (3.9522 .10.350) 11.893

«HMU

w *mn\t\<nw^*mm^mmmmm^^*tf •^

Chapter i i Multiprocessort with tp<tw
4.3 Concluding Remarks

Pag« 109

significant increases in the execution rate can be obtained. The theoretical

maximum execution rate for each Pc is l/Ua+tp); the average number of busy Mp

cycles is limited by n*tc/(ta+tp), if m is large enough; else it is bound by m.

 ~ - — - -

-—— mmm wmmzKmKmmmmmmmmmmmfmzm

Page 110

CHAPTER 5

EMPIRICAL MEASUREMENTS, PARAMETER ESTIMATION AND MODEL VALIDATION

An important aspect in the development of mathematical models is the

modeling process: the abstraction of the complex physical process to a model

that is mathematically tractable. This chapter is devoted to validating the

mathematical model.

One of the main parameters of the models developed in this thesis is the

processing time. In order to evaluate the probability distribution and the mean

of the processing time, measurements were made of the dynamic usage of the

POP-11/20 instruction set. B. Aygun's Dynamic analysis and Measurement

Environment [AyguB73] was used to simulate the execution of over 34,500 PDP-11

instructions in carefully selected main-loop portions of four programs. The

PDP-11 Processor Handbook, Interface Manual and Engineering Drawings were used

to obtain the instruction timing for the various instructions and addressing

modes. This information can be used to predict the performance of a

multiprocessor system like C.mmp, which uses the PDP-11/20 as the processor.

Note that the analytic models in this thesis are general; C.mmp is used in this

chapter as a typical case for validation and illustration of the use of these

models.

Mi^UMMM

Chapter 5 : Empirical Measurement*. Parameter Ettimation, Model Validaticn Page 111
SJ PDP-11/20 Overview

5.1 PDP-11/20 OVERVIEW

A brief discussion of the instruction timing and formats is presented here.

The PDP-11/20 processor has five major states : fetch, source, destination,

execute and service. The first four states are used during normai operation;

service is used during special operations, such as traps and interrupts.

Fetch: locates and decodes an instruction. When fetch is completed, the

processor enters another major state, depending on the type of instruction

decoded. It is possible to go from fetch to any other state, including back

to fetch. Every instruction starts by first entering the fetch state.

Source: decodes the source field of a double-operand instruction and

transfers the source operand to the appropriate location. The source major

state is entered only if the instruction is a double-operand type.

Destination: decodes the destination field of the appropriate instruction.

Destination tieids are present in both single ana double-operand

instructions. Destination operand is accessed and transferred to the

appropriate location.

Execute: uses the data obtained during previous major states to perform the

m^im^mtm^mmmmmmrrmui^m tmmtmm imm 11 w^mmw*

Page 112

15

OP CODE
■J 1 1-—i » *

Destination Address

#♦ # .►«

T

ODE I &
i L

6 5 /! 3

Rn
-i «_

* - Specifies Direct or Indirect Address

** = Specifies Hov; Register will be used
**»

Specifies One of 8 General Purpose Registers

Figure 5.1a Single Operand Instruction Format

♦* ♦ «»» «# # #♦»

OP CODE
-i i-

15

MODE i 0
i—J I

Rn
-r

MODE ! 0

12 11 10 9 8 r~S Tl2
Rn
I i

0

Source Address

Destination Address

* - Direct/Deferred Bit for Source and Destination Address

♦* » Specifies How Selected Registers are to te used

•*« - Specifies a General Register

Figure 5.1b Double Operand Instruction Format

MMHBMtlMIHMI

■PH**IV«HW« m**^*^^*^mimmmmmmmmm ■ i ■ H "I1 "

Chapter 5 : Empirical Mcasurcmrms, Parameter Estimation, Model Validation Page 113
S.i PDP-11/20 Overview

specified operation. During this state arithmetic operations, logic

functions, and tests are performed, and the destination location is updated

if required.

Service: used to execute special operations, such as interrupts, trap, etc.

Although the major states follow the sequence of fetch, source, destination,

execute, and service, not all major states are required for every instruction.

The processor enters only those major states necessary to execute thp current

instruction. The minimum sequence is from a fetch of one instruction directly to

the fetch of the next instruction. The maximum sequence is fetch, sou'ee,

destination, execute, service and back to fetch. The Interface Manual contains

more detailed information about the states needed for various instructions.

The instruction format for all single operand instructions (such as clear,

increment, test) is shown in Fig. 5.1a. Operations that imply two operands (such

as add, subtract, move and compare) are handled by instructions that specify two

addresses. The first operand is called the source operand, the second the

destination operand. Bit assignments in the source and destination address

fields may specify different modes and different general registers. The

instruction format for the double operand instruction is depicted in fig 5.1b.

Table 5.1a summarizes the four basic modes used with direct addressing; the four

basic modes used with deferred addressing are described in Table 5.1b. The

PDP-11 Processor Handbook contains numerous illustrative examples.

_______.,,, mmt^

" '■ '"'-■»"•»«■■"^»—•—-l"^^ IKBIIIM 110 BilM i»wwpiw«rwiwip«Pii^«^"—^

Page 114

TABLE 5.1a

Direct Addressing Modes of PDP-11

Binary
Code

6 6 B

e i B

1 8 8

1 1 8

Name Assembler
Syntax

Register Rn

Auto increment (Rn) +

Autodecrement -(Rn)

lnde> X(Rn)

Function

Register contains operand.

Register is used as a
pointer to sequential
data then incremented.

Register is decremented
then used as a pointer.

Value X is added to (Rn)
to produce address of the
operand. Neither X nor
(Rn) is modi fied.

 - - - - - -

mimmm*^ma*^*~*mmi i in"' iv«"mmmmianwmmrwmmm PPWMOTN wwmmmwmmmm

Page 115

TABLE 5.1b

Deferred or Indirect Addressing Modes of PDP-11

Binary Name Assembler Function
Code Syntax

e e i Register •Rn or (Rn) Register contains the
Deferred address of the operand.

e i i Autoincrement «(Rn) + Register is first used
Deferred as a pointer to a word,

then incremented by 2.

i e i Autodecrement a-(Rn) Register is decremented
Deferred by two and then used as

a pointer to a word
containing the address
of the operand.

i e i Index
Deferred

eX{Rn) Value X(stored in a
word following the
instruction) and (Rn)
are added and the sum i s
used as a pointer to the
uord containing the
address of the operand.

 —

lUMMinniiii ■ " 'm ■' H"1 ■H«VVin^«W^^«iH

Page 116

Chapter 5 ; Empirical Measurements, Parameter Estimation, Model Validation
5.2 Validation of Unit Instruction Concept, Estimation of tp

5.2 VALIDATION OF UNIT INSTRUCTION CONCEPT AND ESTIMATION OF TP

In this thesis, processor behavior has been modeled as an ordered sequence

consisting of a memory request followed by some processing. A study of the

PDP-11/20 instruction timing shown here exhibits a similar behavior.The access

time starts when the Mp receives a request and ends when the data is received by

the Pc.

Each PDP-11/20 instruction can be broken down into sequences of unit

instructions. Figure Z.2. shows the instruction timing for the various addressing

modes and instruction types. The PDP-11 Processor Handbook lists the total time

for executing the various instructions. The access time is assumed to be 450 ns.

Figure 5.2 is consistent with the handbook. Table 5.2 summarizes the

contribution of the different cases to the effective processing time. Note that

these figures take into account the delay due to the PDP-11 Unibus. Table 5.3

contains the instruction mix obtained by using Aygun's D/lMEf. Table 5.4 gives

the effective processing times and their relative frequencies; the cumulative

probability distribution funct i is plotted in Fig. 5.3. The access time of the

memory was assumed to be 450ns and the basic clock period of the PDP-11/20

processo- was taken to be its nominal value of 140ns. The average processing

tThe author acknowledges B. Aygun's assistance in obtaining the instruction mix.

MMUftUlwMM^. __ -- ■ imm - - -—-^"-^-^^-^^—^■'^-^^— -- —^ - -■•-■-—-^.—.^-..^..i -. - *-.,

mm^m^mrmmr mmK^mm^^mmtmmmm» mmmmmmmmm

Page 117
Single Operand Instruction. & Double Operand Instructions with srcmode-O

D3tmode=0

 fetch

560

Dstmodc/O

1- execute
700

i
l

ta I

560

next instruction
fetch

^60

* fetch Mr • dest. next instr.

560

T
700 210

 ^^— exec. —*■

280 560+490

-* fetch

560

I ta ;
•
i

i Y

(
1
i

«♦ 280
t** , tw

—

Y !•
ta dstmode = 1 + 2+/,

700

I ta ta dstmode = 3+5+6

700 700
i ta 1 +o • » ' 1 Xa ' l ta • dstmode =7

Figure 5.2 PDP-ll/20 Instruction Timing

 - iiinn—itMMWMmiMn MMi|||r _(|t|t|||-||||i||M1|

fp~mmm^^mmK^^^i^**'^*^^^mmimm*m^^^'<^^'^^*mMK»\m\.tx.\J9*mm*^ um nnWüWPriP»«»^^1" \\u\Anumm^miimmmmmmm^m^mm^fm^m^mmmmmmmm

Page 118

Doublo Operand Inotructionp with srcmode/O

D8tmode=0 Srcmode^O

i fetch »4-^

560 700 , 490

source H^ exec' -►

ta

490 , 560
I l
1 Y »

L 1

^ ffitch

560

Y |< ta
sremode = 1+2+4

700
t£. ta i

700

i sremode - 3+5+6

ta
700

ta i
—■

i i ta srcmode=7

Dstmode/O Srcmode/O

fetch

560
T r

i ta i

■*-H-

700 . 490

source
-*+*■

490 210

destination I exec.

280 560+490

Y I l Y

I —t
1
1
1

fetch

560
—^btf

ta
t- — +-

tw

Pig. 5.2 (contd.)

t*t-"-- — ■ ■■..■--.....- ^^. .-^.. .■^...-^^■■^ ^^^ra^^^^i^^^^. . ■»»^»^A.,^.^.^. ■_

a^mmimmmimw^mm ^mmmin^mm *><> «in wm^m^^~*m

branch Instructions

Unnuccessful

560

Sucessful

1

ta

700 560

Page 119

560

ta

490+1050 560

Return Subroutine

560

ta

1470

I ta

490

Jump to Subroutine

560

ta

1190

ta

840-ta

Pig 5.2 (contd.)

-.-— ..-

■■mpHpanMManmpmnivnp'tiBanvMiit wmmmmmimmmmiummmmmmmmmmmmimmmmwFm mmmmmmmmm

Page 120

TABLE 5.2

Effective Processing Time

tp in ns. No. of occurrences

SINGLE OPERAND INSTRUCTIONS
DOUBLE OPERAND WITH SRCnODE«8

dstmode ■ 8

dstmode ■ 1+2+4

dstmode - 3+5+B

dstmode ■ 7

1828

918
558
848

918
558
848
788

918

848
788

DOUBLE OPERAND INSTRUCTIONS - SRCflODE^B

srcniode*8 A dstmode-B

common to all cases

srrmode - 3+5+G

srcmode - 7

1198
1B18

788

788

1
1
1

1
1
1
1

1
1
1
2

1
1

1

2

-- . ^.-^.^.^ -

>•' ^ u i mi»■ 11^^^^ ■

Page 121

8rcinode»<B A datmodeuß

common to alI cases

srcmode » 3+5+B

srcmode « 7

dstmode - 3+5+G

dstmode ■ 7

BRANCH INSTRUCTIONS

successful

unsuccessful

RETURN SUBROUTINE

JUMP SUBROUTINE

1190
788
558
8A8

788

788

788

788

2188

12G8

1478
1858

1198
978

1
1
1
1

1

2

 ' -■'- '■- - —"""—« i i i—MiiMinMiaiiriM ^^^^j-g^^^^ggggggg^^ ,,,,,^^^^-1,-,^^^^

*^mmi^^mmnm

Page 122

TABLE 5.3

Instruction Mix

Single Operand Instructions

SstmodesO

Dstmode=l+2+4

DBtmode=3+5+6

Dstmode=7

Double Operand Instructions with srcmode^O

Dstmode=0

Dstmode=l+2+4

Dstmode=3+5+6

D8tmode=7

Double Operand t srcmode^O . dstmodeoO

Srcmode=l+2+4

Srcmode=3+5+6

Srcmode=7

Double Operand : srcmode^O . dstmode^O

Srcmode=3+5+6

Dstmode=3+5+6

Branch Instructions

Successful

Unsuccessful

Return A. Jump to Subroutine

Jump

Return

19 ^

10 5S

4.2 5S

5.755f

3.5#
0.0 fl,

0.156

2 %

2%

16 Jt

11 JJ

35S

3^

mmtmmmm ^^ HMMMMMMMMH

I- " ■ » 1 II "I I" ■!■ ""I 'm^^mtm^^^im

pa^e 123

TABLE 5.4

Relative Frequency Distribution of the Effective Pr ocessing Time

Value in ns.

558

788

848

918

978

1858

1198

1268

1478

1B18

1828

2188

Frequency

14.49 X

18.28 X

14.49 X

11.43 X

1.53 X

1.53 X

11.93 X

5.81 X

1.53 X

/.35 X

11.84 X

8.16 %

Average Value - 1158 ns.

 —- ■_.,.—^..^^.-^.k^..^ ..-^■. —

INI ■■ nil"»» mi:

Page 124

1 T CM
1
\

n

1

1 o o
\ o

o
«s

v.
\ 1

\ Cu
a

\ a.
\ o

o
00 5 'S

\
\
\ se

co
n

ti
m

e

\ o
o
vD na

no

si
n
g

i

\ w

\ 0)

\ 0
u

\ o CL

v
\

o
4)
>

>

N ti
m

e

fe
e

- \ ■■ o
o
CM 5 I

1 -5 *

\
\ o p

ro
ce

s

»n

o
f

N o \ 1 o •_4

^^-l r—

tl
v

e

L
bu

t

H I
N
N ~L •M ,«
V o

H 5 N o
N oo
V

N.
N.

N.
«4
.-i

V ■H
> o

s «

O

"-^ a.
•

s
>

H <t-
9

9
U

o
o
CM

in

, .^
u.

=> 00 vO vt CM
• • • • •
— c 3 O o o

— — ■■ ■
._ UM

Mwmmmm^ mmmm IHH

Chapter 5 : Empirical Moasurcmouts, Parameter Estimation. Model Validation Page 125
5.2 Validation of Unit Instruction Concept, Estimation of tp

time obtained from this analysis is 1150 ns. The dotted curve in Fig. 5.3 is a

shifted exponential distribution given by

Prob{tp<x} = 1 - exp[-(x-450)/700] for x>450
-0 for x<450

5.3 MODEL VALIDATION VIA C.mmp PERFORMANCE EVALUATION

In this section the models are used to predict the performance of C.mmp and

compared with actual measurements. Figure 5.4 shews the effect of D.map and the

crosspoint switch on the parameters tp, ta and tw. The access time of the C.mmp

core memory is 250 ns. However, a 200 ns nominal switch and memory control delay

yields an effective ta of 450 ns. Each Mp is 8-way interleaved. Thus the rewrite

time of 400ns is overlapped with the next access if the next access is to one of

the other 7 submoduki of the Mp-module. Assuming random accessing within a

module the average rewrite time experienced is only 50 ns. The effective average

processing time is 1200 ns; the 50ns delay associated with the relocation

registers D.map is added to the basic value of 1150 ns.

The following experimenttt was conducted on the partial realization of

C.mmp available to date. A program was loaded into one Mp-module and the three

ttC.Pierson and W.Broadley were instrumental in the experimental set-up.

WO« mmmmmm '■i1

Page 126

h- tp ^4^- ta ■H

Pc

HP
tw

© ©®©©® 0® ®

Legend:

1

2

3

5
6

7
8

9

Pc receives data from Mp

Pc finishes operating on the data

Pc has address of new data

Dmap computes physical address of data and
puts it on the Pc-Mp "bus.

Memory has received request at the crosspoint switch

Memory controller (part of crosspoint switch) selects
the request to be served and sets up switch.

Data read from storage location

Data sent through switch

Memory recovers and starts serving next request (if any)

Figure 5.4 Unit instruction timing diagram for C, mmp

 --— -

Chapter 5 : Empirical Mtfaturcmcntt, Parameter Estimation, Model Validation Page 127
5.3 Model Validation via C.mmp Performance Evaluation

available processors executed the code individually, in pairs of two, and

co'lectively. The number of memory cycles was measured. Table 5.5 presents the

results of the experiment. The analytic results predicted by the geometric model

of section 5.2 are depicted in Table 5.6; simulation results with processing

time having the shifted exponential distribution of Fig. 5.3 are also listed.

The analytic results are very close to the measured performance. However, for

the 3x1 multiprocessor case the analytic model is about 107. higher than the

measured value. This is due to the read-modify-write cycles which make the Mp

service time greater than tc. The effect of these read-modify-write cycles is

not crucial when the interference is not excessive. The simulation ind analytic

results show that the performance can be predicted by simple mathematical models

with reasonable accuracy.

MJHi—ll— ■ , ^_ .- -.— _ ..

immmmi^^mm**wm ii 111 i i«

Page 128

TABLE 5.5

Summary of Measurements on C.mmp

Number of Up accesses per second

(Mill ions/sec)

PctA] Pc[B] PclC] Up Access Rat

8 8 1 8.G2815

8 8 8.B1885

8 8.613657

1 1.14899

1 1.14672

8 1.14657

1 1.42466

8 - Pc is OFF

--^-~ ■ -- - ■ ■ - - — ..,.
- -■ - ^.^J^^__ _ _

"I'1"

TABLE 6.6

3 1 1.5B373

4 * 2.397B7

8 8 4.76889

16 IB 9,48638

Page 129

Analytic Results

E[tp] - 1288 ns.

ta -458 ns. tc-588 ns.

Number of Pc's Number of flp's flp Access Rate Simulation
(HiMions/sec) Results

1 1 8.68686

2 1 1.14157

2,411

4.751

9.47B

iiiiwiiiMiMMMii—■—M um mtmmmmuwmmm

i ju mmwmrwKwmKrm mi ■ IUI np^^avaiwainwiMi iwmm—^mi^mmmmi*^Hmmm*mmmmm*mmm*mmmm^^*i^™^~~^intmiujtimimt« IIMBUIWI m ^a^mmmmw I i J i ■ ■■■iniiaiiaiiiim IU ■nii.w

Page 130

CHAPTER 6

CONCLUSIONS

In the previous chapters several analytic models have been presented.

Chapter 2 was devoted to systems in which the effective processing time is equal

to the memory rewrite time. An important result observed was the absence of a

law of diminishing returns. The performance of a multiprocessor system with n

processors and n memories continues to rise at a constant rate as n increases. A

simple exponential server model showed this rate to be 0.5; a constant

processing time model predicted a slope of 0.586 for the average number of busy

Mp's. The exponential server model gives the average number of busy Mp's as

n-\:m/(n+m-l). An approximate result for constant processing times gives the

average number of busy Mp's as ix/Hl-I/WJ, where i-max(n.m) and j-min(n,m).

An intuitively obvious conclusion limits the maximum number of active Pc's by

min(n,m). This maximum is reached if each processor accesses only ^ne memory all

the time. The model of section 2.6 analyzed the effect of skewing the

processors' access patterns. Thus, the maximum MpflR is min(m,n)/te.

Chapter 3 contained several models for multiprocessor systems with tp>tw. A

new model for geometrical y distributed processing time was developed. A

different analytic approach was used to model systems with private caches for

the processors. In general, since the Pc is slow, it takes fewer memory units

-» , iiMiiiiiriünnmi—Mifiiii iiiiiiimiiiii iimii Wiiliiii m

mwrmmmmm^^ma^m^mmmmwiw unn^^^mM^m^r^mmm^mn^^^^n ■ Hiw^nm^mvMwwmppw

Chapter 6 : Conclusions p .g.

for the performance to exh(bit a saturation effect. This can be discerned by

comparing Figs. 2.11 and 3.3a. In the absence of memory contention (which can

now be possible even for m<n) the maximum Mp/IR is n/(ta*tp).

Chapter 4 discusses multiprocessor systems in which tp<tw. Since the

processor is fast, performance improvement is obtained for m>n. If m-n, these

systems do not yield significant improvement over systems with tp-tw. In

general, adding an extra memory improves the performance more than adding an

extra processor. The maximum average Mp/]R is the minimum of m/tc and n/(taHp>,

the maximum is achieved if the processors do not interfere. Note that since the

Pc is very fast, it can make a request to the memory that served it "ast before

the rewrite cycle is over. In this case, he Pc has to wait even though no other

Pc is being serviced by the memory module.

Chapter 5 presented some empirical measurements of PDP-11 programs; C.mmp

uses PDP-ll's as the Pc's. It also illustrated how unit instructions can be

extracted from the machine instructions. The measurement' and the

characterization of the processor's instructirn timing was used to obtain the

distribution of the effecti-e instruction processing time, which was then used

to evaluate analytically estimates of the unit execution rate of C.mmp. Contrary

to common intuition, the unit instruction concept yields a larger effective

processing time for register-register operations, since the processing time is a

measure of the interval between two memory accesses. The average processing time

was found to be 1150 ns. for the PDP-11/20. The average processing times for the

MaMaMBanaB^M^HaalHaH^Maaa^.-_a_alMMaiaMaaaBlaM

11 • ' ■' wmmm*mmmmmim*mmm*

Page 132

Chapter 6 : Conclutiom

PDP-11/40 and 11/45 ire approximately 625 and 400 nanoseconds. A PDP-11/20

instruction can require from 1 to 7 accesses to merrjry, but the average

PDP-11/20 instruction makes approximately 2 accesses to memory; it comprises two

unit instructions.

6.1 APPLICATIONS

The models developed in this thesis should give computer system designers

considerable insight into some of the design issues. If tp<tw, the performance

(as indicated by the Mp/]R) saturates for some value of m that is greater than n.

if tp>tw, however, it may saturate in some cases for m<n. Most system designers

tend to use optimality of cost/performanco as an over-riding factor. Another

important issue is the extendability or the effect of changing the system

parameters[BhatS72]. Performance requirements often change and the initial

design should be modifiable to meet the new performance desired. A good

extendable design should therefore have a certain amount of unutilized capacity-

The system should be designed to have a performance slightly greater than that

which maximizes performance/cost.

In a multiprocessor system, the alternatives for change include increasing

the number of Pc's or Mp's, as well as replacing the Mp's or Pc's with faster

versions. The adding of Pc's and Mp's It a less viable alternative due to the

—. . - . - - --■ miiiiiiir

f^mmmmm !■ i ■ I i ' mm^i^i**^mmmwemm

Chapter ft : Conrlusions
fi.l Applteatlont

Pagt 133

extent of the engineering effort involved. In some cases, the entire central

crosspomt switch may have to be either redesigned or rebuilt. However,

replacement with faster upward compatible processors or faster memories is

easie'. It is an undisputed fact that increasing the speed of the processor or

memory by a factor of k will not enhance the performance by the same factor. The

analytic models suggest that increasing the processor speed causes the

saturation point to shift to a larger m. If tp< tw a well-designed system is

likely to have m>n. Since the memory is the limiting factor, the best choice for

enhancing the performance is the use of faster memories. However, if the

original design used more memory modules than needed to saturate the

performance, faster processors will also yield some improvement. If tp>tw

substitution of faster processors effects an increase in the access rate. To

allow for future substitution of faster processors it is desirable to choose

m>n. Thus, a rule of thumb indicates that a good design choice is m>n, with a

not too large a mismatch in Pc end Mp speeds. As described in chapter 5, C.mmp

is a 16x16 multiprocessor system with tp=1200 ns, ta=450 ns and tw=50 ns. The

MpAH expected is 9.476 million/sec. If the PDP-11/20 processor is replaced by a

faster Pc (11/45) with a typical processing time of 450 ns the MpflR increases to

15.6 million/ser. However, since the system is very much processor speed

limited, a 150 ns cache for each Pc increases the MpAR only by 147. and 207. for

hit ratios of 0.5 and 0.7 respectively.

■!■ Mlll.il

Page 134

Chapter 6 : Conclusions
6.1 Application»

6.1.1 An Illustrative Example

In ord. r to illustrate the use of the models developed in this thesis,

consider a 8x8 multiprocessor system with tp-tw. This configuration is still

memory limited, as seen from Fig. 2.10. Let the memory cycle time be 950 ns;

access time-400 ns. Assume a switch delay of 200 ns and a 50 ns delay in the

relocation hardware. The processor has a typical processing time of 450 ns.

Hence, the effective processing time is 500 ns; effective access time is 600 nsj

and the effective cycle time is 1100 ns (assuming that 50 ns of the switch delay

is overlapped with the rewrite cycle).

The discrete Markov chain model of Chapter 2 gives the average number of

busy Mp's to be 4.9471; the Mp/IR is 4.4974 million/sec. Let us evaluate the

effect of replacing the original Pc with either a 300 ns or a 150 ns processor.

Note that the effective processing time is 350 ns and 200 ns. The corresponding

percentage increase in the Mp/IR, as computed by the models of chapter 4, is

4.337. and 9.057.. This is not surprising since the original system was memory

speed limited.

instead of changing the Pc's, the Mp's could be -.hanged. If the new Mp has

ta-250 ns and tw-300 ns, the effective ta and tw are 450 ns and 250 ns

respectively. The new cycle time is 700 ns. Since tp>tw the models of chapter 3

can be used. The new Mp access rate is 44.397 higher.

A third alternative is the use of a 150ns access time cache. The value of

.■...„...-,— ^.-~

mmmmm^tmm^^m .., „. ,. „ mmmmmmmmmm 1 "mi i -i^MWV^

Chapter 6 : Crnclusions
6.1 Applications

Page 135

e^, the probability of finding Ue data in the cache, depends on the size of the

cache. Consider three sizes that result in u-O.b, wOJ and <*-0.8. The cache

model of chapter 3 predicts performance enhancement of 672, 1077. and 1307,.

The above performance data coupled with cost information can be used to

select a profitable parameter change. When the number of design alternatives is

large, simple analytic models help to determine a judicious choice.

6.2 PROPOSALS FOR FUTURE WORK

This thesis is not a panacea for multiprocessor system designers. An

attempt has been made to develop some simple basic tools. Anyone working with

systems is aware of their high degree of complexity and is likely to be shocked

when he ^ees the simplicity of the models suggested. He may react negatively

when he notices how much of the real system has been left out and how

restrictive the assumptions are that have been made in the analysis. This

skepticism is not entirely justified; simple analytic models often exhibit

overall behavior similar to the complex system modeled.

One of the main assumptions made in this thesis is the independence of

successive memory requests. In most real systems, due to program locality, there

is some serial correlation between requests made by a Pc. Thus, if a Pc acresses

inn IIIMIII

' — mfmmmmmmmmmmmmm 1 " ,l11 ' • Uli !■! I ^ I • ■! "I ■ '"■"W

Page 136

Chapter 6 : Conclusiom
6.2 Propo»al» for Future Rexearch

Mp[j] it continue«- to do so for some amount of time. A modeling technique

suggested is dividing the system activities into various phases. The number of

Mp's accessed in each phase is different. Jackson's general exponential server

model[JackJ63] indicates that the stationary state probabilities depend only on

the average frequency of visits to the various servers. Therefore the effect of

the serial correlation of requests is not seen. However, for real systems which

are not exponential, some degradation may be observed. We also assume Pij-l/m.

As indicated in section 2.6, this is not the most desirable access pattern. The

effect of skewing the access patterns is to mt- >e the MpAR. Given the above

two opposing effects, Pu-l/m serves as a good parameter value for comparison at

a high level.

Since no a priori empirical evidence is available, a large portion of

future research activity should involve the measurement of real systems. This

will bring to light the seriousness of the assumptions and establish a proper

framework and area of applicability of analytic models. Measurement of dynamic

program behavior should be stressed. It should be remembered that the output of

the models can only be as good as the input. System analysts should not neglect

the parameter estimation phase of performance preoction.

Future analytic studies should attempt to differentiate between instruction

and data references. At a higher level, memory interference models can be used

as a part of an overall hierarchical model of the computer system at the program

level. Empirical studies should be conducted in order to obtain good concise

 ■ —

111 >■ .I'm ii.mwoi- m^nfmBmmmmm^^mmi^^fi^ mmmmmmmmmmmmmmmmmmmmmmmtnmm vmimmmmr-mmimmmm

Chapter 6 : Conclusion»
6.2 Proposals for Future Research

Page 137

characterization of component and subsytem behavior. Such information can be

used to drive more efficient simulations of complex systems.

. .„— ttm I - -

1 m ■^^^

Page 138

REFERENCES

AndeJ62 Anderson, J.P. et al : D825 - A Multiple Computer System for Command
and Control, AFIPS Proc. FJCC, Vol 22, pp.86-92, 1962.

AyguB?3 Aygun, B. : Dynamic Analysis of Execution, Ph. D. thesis, Computer
Science Dept., Carnegie-Mellon Univ., circa 1973.

BeckE64 Beckenbach, E. (editor): Applied Combinatorial Mathematics, Wiley,
New York, 1964

BellC7la Bell, CO. and A.Newell : Computer Structure*: Headings and
Examples, Mcgraw-Hill, New York,1971.

BellC?lb Bell, CG. et al : C.mmp: The CMU Multiminiprocessor Computer,
Dept. of Comp. Sei., Carnegie-Mellon Univ., Aug 1971.

BhatS72 Bhatia, S. : Techniques for Designing Balanced, Extensible Computer
Systems, Ph.D. Thesis, Carnegie-Mellon Univ., Oct. 1972.

BuzeJ?! Buzen, J.B. : Queueing Network Models of Multiprogramming, Ph. D.
Thesis, Harvard University, ESD-TR-71-345, August 1971.

FellW66 Feller, W. : An Introduction to Probability Theory and it»
Applications, Vol. 2, Wiley, New York , 1965.

GaveD67 Gaver, D.P. : Probability Models for Multiprogramming Computer
Systems,;/ICAf, Vol. 14, No. 3, July 1967, pp. 623-638.

GaveD?! Gaver, D.P. and G.S.Shedler : Control Variable Methods in the
Simulation of a Multiprogrammed Computer System, Naval Research
Logistics Quarterly, Vo\. 18, No. 4 Dec. 1971, pp.435-450.

GordW6? Gordon, W.J. and G.F.Newell : Closed queueing systems with
exponential servers, Oper. Res., 15 (1967), pp 254-265.

GrenU?2 Grenander, U. and R.F.Tsao : Quantitative Methods for Evaluating
Computer System Performance: A Review and Proposal, Statistical
Computer Performance Evaluation (ed. W.Freiberger), Academic
Press, New York, 1972.

JackJ63 Jackson, J.R. : Jobshop-like queueing systems, Afono^emcm Sei.,
lO.KOct 1963), pp 131-142.

 _—

■""•w ' ■"-■"■'■" mimm

Page 139

KobaH73

LittJ61

LJuC68

McCrJ73

MckiJ69

MuntR72

NeweG71

P«rzE62

SkinC69

Str«W70

WagnH69

WulfW72

Kobayashi, H. : Application of the Diffusion Approximation to
Queuemg Networks: Part I - Equilibrium Queue Distributions, Ist
Amwal SICME Conference on Measurement and Evaluation. March
1973, pp 54-60.

Littie, J. : A Proof of the Queueing Formula L-\W, Cveratiom
Rotcarch, Vol 9, No.3, pp. 383-387.

Liu. C.L : Introduction to Combinatorial Mothcmatics, Nev York
McGraw-Hill, 1968.

McCredie, J.W. : Analytic Models as Aids for Multiprocessor Design,
Proc. of the 7th Annual Princeton Conference on Information
Science and Systems, March 1973.

Mckinney, J.M. : A Survey of Analytic Time Sharing Models, Computing
Surveys, Vol 1, No. 2, pp.105-116, 1969.

Muntz, R.R. and F.Baskett : Queueing Network Models with Different
Classes of customers, Proc. of C0MPC0N 72, Sept 72, pp 205-209.

Newell, G.F. : Applications of QueueinB Theory, London, Chapman and
Hall, 1971.

Parzen, E. : Stochastic Process**, Holden-Day, San Francisco,1962.

Skinner, C. and J.Asher : Effect of Storage Contention on System
Performance, IBM Sys. J., Vol 8^0. 4,1969, pp 319-333.

Strecker, W.D. : Analysis of the Instruction Execution Rate in
Certain Computer Structures, Ph.D. thesis, Carnegie-Mellon
Univ., 1970.

Wagner, H M. : Principles of Operations Research, Prentice-Hall
Englewood Cliffs, 1969.

Wulf, W.A. and C.G.3ell : C.mmp - A Multi-mini-processor, AFIPS FJCC
Proc. 1972, Vol. 41, Par! Ii, pp. 765-777.

 — __»_

"■' 1 "

Page 140

APPENDIX A

Appendix A-l

Appendix A-2

Appendix A-3

Appendix A-4

Appendix A-5

Appendix A-6

Appendix A-7

Listing of Program for tho algorithm shovm in

Kig. 2.5.

Listing of Program for the algorithm shown in

Pig. 2.8.

Approximate harkov Chain Model for tp=tw.

Approximate Model for Arbitrary Py, tpstv^m^n.

Approximate Markov Chain Model for tp=>tw+tc.

Approximate Markov Chain Model for tp>tw.

Cache Model for tp^tw.

.>—- •^MM yan

mm^mmmmm** "■"'»■^"'■wmiWPHH

Paffe 141

C
C
c
c
c
c

1973

1974

1975

28

21
30

22
31
C
C
2888

17
C

60

APPENDIX A-l

LISTING OF PROGRAfl FOR THE ALG0RITHI1 SHOWN IN FIG. 2.5

DISCRETE MARKOV CHAIN TP-TU - STATE(NO. OF STATES. NO. OF PC)
INTEGER STACK(IG.IB).STATE(25.IB).A{16),FIRST(IB)
1,IDONE(25).PTR(16).DONE(1B).NUIAYS(1B),BOUND(17)
DltlENSION TRANS(25.25).B(25).Z(25)
COmON TRANS.B.Z.NPARTS
INTEGER SUn.T.X.O
TYPE 1973

FORMAT(IX.'NUMBER OF PROCESSORS'./)
ACCEPT 1974,NPC

FORMAT (I)
TYPE 1975

FORMAT(IX.'NUMBER OF MEMORIES'./)
ACCEPT 1974.NMP
MINPM=MIN0(NPC,NMP)

M-l
PTR(NPC-1M
GO TO 31
CONTINUE
IF (NPC. GT. M) PTR (NPC-M) -NPARTS+1
DO 21 I.2,M
A(I).l
SUM-0
DO 22 U2.M
SUM-SUM+A(I)
A(1)-NPC-SUM

URITE(15.2088).(A(I).I-1.M)
F0RMAT(1X,1B(I3.1X))

NPARTS.NPARTS+1
DO 17 K=1.M
STATE(NPARTS.K)-A(K)

T-2
CONTINUE
IF(T.GT.M)GO TO 128
X-A(1)-A(T)
IF(X.GT.l)GO TO 188
T-T+l

 ~-. ■ — ■MM mm

m^*^^*~!^^mmmmmmmmme^m^*^^**m'™i III...IIII JI i nunuu mnn t, .mm, viimvr^m^mmmmmmmmmmmimHma^mimmTmmimmmmmmmmm'mmmum i i i i

Page 142

Appendix A-1
Lilting of Program for the Algorithm thoun in Fig. 2J>

GO TO B8
188 CONTINUE

ITnP-A(T)
DO 181 I-2,T

181 A(I)-ITnP+l
GO TO 38

128 fl-M+l
B0UN0(n)-NPARTS

C WRITE(15,2881),NPARTS
2881 FORMAT (/.IX.'VoWoWrVn'r* MS.'^rt^AVr****',/)

IF(M.LE.f11NPri)G0 TO 28
URITE(15,111),NPARTS

HI FORMAT (/.IX/NUMBER OF PARTITIONS-M)
URITE(15,3113)

3113 FORMAT(///)
C
C
C
C INITIALIZE THE STACK, NUAYS, FIRST
C

00 2188 I-1,NPC-1
STACK(I,1)-I
NUIAYSm-l

2188 FIRST(I)-2
FIRST (NPC-D-l

C
C BEGIN UALK THROUGH TREE
C

L-NPC
1 CONTINUE

IF(D0NE(L).EQ.1)G0 TO 25
C
288 K-L-l

J-FIRST(K)
C

DO 18 I-J,NMP
IF(STACK(K,I).NE.STACK(K,J))GO TO 15

18 CONTINUE
C

D0NE(L)-1
FIRST(K)-l
I-Ul

C
15 NUAYS(L)-I-J
C

DO 388 KK-1,NMP

MMlillMMIIiaiHtMH&M — --^ ^ ~ ^ «^

wm^^mfmmwm^^mm

^

Appendix A-1
Listing of Program for the Algorithm thoum in Fig. 2.S

Page 143

360

C

C

c
c
c
c

c

c

32
C

34
C
35
C
38
C
C
c

c
c
25

c
c
c
c
leee
c

STACK(L.KK)-STACK(K,KK)
STACK(L.J)-STACK(K.J)+1

IF(D0NE(L).NE.1)FIRST(K)-I

IFd.EQ.NPOGO TO 1888

SET PTR TO ORIGINAL STATE AT LEVEL L

IF(DTR(L).NE.8)ID0NE(PTR(L))-1
K-NFC-L
K1.B0UND(K)+1
K2-B0UND(K+1)

DO 35 JJ-K,1,-1

DO 32 KK-K1,K2
IF(STATE(KK,JJ).EQ.STACK(L,JJ)+1)G0 TO 34
CONTINUE

KK-8
GO TO 36
Kl-KK

CONTINUE

PTR(L)-KK

L-L+l
GO TO 288

DONE(L)-8
L-L-l
IF(L.EQ.l)GO TO 7777

GO TO 1

FIND TERMINAL STATE

CONTINUE

^mamKB^mmm^**^* wmmn

Page 144

Appendix A-1
Listing of Program for the Algorithm thoum in Fig. 2.5

nee

c
use

c

c

132
C

987G
C
134
C
135
C
C
c

ise
c

c
c
c
c
7777
C
CS544
C4455
C

DO nee K-i,Nnp
IF(STACK(NPC,K).EQ.e)GO TO 1158

CONTINUE
K-NnP+1

K-K-l
Kl-BOUND(K)+l
K2-B0UND(K+1)

DO 135 JJ-K,1,-1

DO 132 KK-K1,K2
IF(STATE(KK,JJ).EQ.STACK(NPC,JJ))G0 TO 134

CONTINUE

TYPE 987B
FORMAT(IX,'CANNOT FIND TERMINAL STATE !!!!!!')

Kl-KK

CONTINUE

UPDATE TRANSITION MATRIX

TEMP.l
DO 161 NNPC-1,1,-1
II-PTR(I)
TEMP-TEMPvfNUAYS(I+l)
iF(ii.EQ.e)Go TO ise
IFdOONEd I) .NE.l) TRANS(KK. 11)-TRANS(KK, I D+TEMP

CONTINUE

IF (NPC.LE.NMP) TRANS (KK.NPARTS)-TRANS (KK,NPARTS)+TEMP>vNMP

GO TO 1

TRANSITION MATRIX HAS BEEN GENERATED

CONTINUE
DO 5544 I-1,NPARTS

URITE(15.4455),{TRANS{I,J),J-1,NPARTS)
F0RMAT(1X,25(F8.4,1X))

DO 7258 I-1,MINPM
Y-NMPv«vI

i -■ -- ^x -^

rmr^^^^mi^mm^^

/Ippcndix A-l
LUting of Program for the Algorithm shown in Fig. 2.5

Pag« 145

71B0
7250
C
C5544
4455
C

8008
C

C

c

c

8250
C
8500
C

8750

C
c

c
c
c

c

5

10

DO 7250 J-B0UND(I)+1,B0UND(I+1)
DO 7100 K-1,NPARTS

TRANS(K.J)-TRANS(K,J)/Y
CONTINUE

DO 5544 Ul.NPARTS

URITE(15,4455),(TRANS(I,J),J-1,NPARTS)
FORMAT(IX,25(F8.G. IX))

DO 8000 I-l.NPARTS
TRANS(I,I)-TRANS(1,I)-1.0

TRANS(NPARTS,I).1.0

B(NPARTS)-1

CALL GAUSS

DO 8500 I-i,niNPn

TMP-0
DO 8250 J-B0UND(1)+1,B0ÜN0(I+1)

TnP=TnP+Z(J)

occ-occ+Tnp»vi

URITE(15,8750),OCC
FORMAT (//ax/EXPECTED VALUE OF NO. OF BUSY MP- '

1,F10.B)

STOP
END

SUBROUTINE GAUSS
THIS SUBROUTINE SOLVES SIflULTANEOUS LINEAR EQUATIONS

A«X«8

DinENSION A(25,25),B(25),X(25)
connoN A,B,X,N
INTEGER S

S-N
CONTINUE
IF(S-l) 50,50,10
CONTINUE
IF(S.GT.2)G0 TO 105
O-A (1,1) ,vA (2,2) -A (1,2) »vA (2,1)

— ---•"-■■ ■■I r in iiliiiiiiMaiirai'MUIMliaMiiif rtiirtaüM—■ «HütaAlMtaB.. - .^

^■PIM^« JHUIB II i^B^^Mmn«! mm^mmmmm^mmmmmm

Page 146

Appendix A-1
Listing of Program for the Algorithm shown in Fig. 2.5

IF(ABS(D).GT.B.B8B5)G0 TO 185
TYPE 25
GO TO 188

185 DO 28 1-1,8
n-s-i+i
IF(ABS(A(t1,S)).GT.8.8885)60 TO 38

26 CONTINUE
TYPE 25

25 FORMAT(IX,'THE COEFFICIENT MATRIX IS SINGULAR'
GO TO 188

,/)

38 CONTINUE
IF(M.EQ.S)G0 TO 48
T-B(S)
B(S)-B(M)
B(M)-T
DO 35 J-1,S
T-A(S,J)
A(S,J)-A(M,J)
A(M,J).T

35 CONTINUE
48 CONTINUE

DO 45 1.1,5-1
K-8-1
IF(ABS(A(S,S)).GT.B.B885)G0 TO 42
GO TO IBB

42 B(K).B(K)-B(ShvA(K,S)/A(S,S)
DO 45 J-1,S-1
A(K,J)-A(K,J)-A(K,S),vA(S,J)/A(S,S)

45 CONTINUE
S-S-1
GO TO 5

58 CONTINUE
DO 78 I-1,N
SUM-B(I)
DO 68 J-1,I-1
SUM.SUM-A(I,J),vX(J)

68 CONTINUE
IF(ABS(A(I,I)).GT.8.BBB5)G0 TO 61
GO TO IBB

61 X(I)-SUM/A(I,I)
78 CONTINUE
188 CONTINUE

RETURN
END

- -

>i.._,... , »■ ■ UM i <twmm^mtrmm*mm

'

VnVVfVfiVVrVnVVnVVfVoVVoVVfVnVirfiVVfVnV>V>VVf>VVoVVnVVnVVoV>VV«V>VVf>VVrVfVf»V*VnV>VVfVoVVnVVfVf*»ViV

Page 147

C APPENDIX A-2
C
C LISTING OF PROGRAM FOR THE ALGORITHM SHOWN IN FIG. 2.8
C
C
c
C THIS PROGRAM SOLVES THE OISCRETE MARKOV CHAIN FOR TP-TU
C USING SINGLE LEVEL TRANSITIONS
C LONG VERSION
C

INTEGER STATE(186,16).BOUND(17),B1(17) ,B2(17)
INTEGER SI(116.16).52(146,16)
DIMENSION TRANS(186.186),B(186),Z(186),X12(146,116),X23{186,146)
DIMENSION C(186)
COMMON NPARTS,TRANS,B,Z
INTEGER T,Q
INTEGER A(16),BD(17)
TYPE 1973

1973 FORMAT(IX,'NUMBER OF PROCESSORS'./)
ACCEPT 1974,NPC

1974 FORMAT(I)
TYPE 1975

1975 FORMAT(IX,'NUMBER OF MEMORIES'./)
ACCEPT 1974,NMP
URITE(15,1949),NPC,NMP

1949 FORMAT(IX,'NUMBER OF PROCESSORS -',12,/,
1IX,'NUMBER OF MEMORIES -',12,/)
MINPM=MINB(NPC,NMP)
LEVEL-NPC

C
IPRT-1
GO TO 4800

C
C PARTITION NPC INTO NMP PARTS
C FINAL STATE VECTOR — STATE
C
421 NPARTS-NNPART

DO 4421 I-1,M
4421 BOUND(I)=BD(I)
C

IPRT-2
LEVEL-NPC-1
GO TO 4000

C
C PARTITION NPC-1

mi ^IIMMM-*-1
- - -^^-^^■*-^^^*-^-^"- .-—*-—, *~~-^.. ,_.^^,...„.._ ^ -..■.-■....■ ^ .-■^J--... ^ -.^..■.■

■^Bir>"~

Page 148

Appendix A-2
Listing nf Program for the /ilgorithm shown in Fig. 2.8

C
c
A22

4422
C
c
c

PARTIAL ST, TE VECTOR — S2

20

25

27
32
48
C
C
C

c

c

N2.NNPART
DO 4422 I-l.M

B2(I)-BD(I)

GENERATE NUMBER OF HAYS OF GOING FROM S2 TO STATE

LSRC-niNB(NPC-l,NnP)
DO 1 I-l.NPARTS
DO 1 J.1,N2
X23(I,J)=B
DO 40 K-l.LSRC
I1-B2{K)+1
I2-B2(K+1)
DO 40 L.I1.I2
Kl-BOUND(K)+l
K2-BDUND(K+2)
IF(n'NPn.LT.<+l)K2.B0UND(K+l)
n 32 KK-K1,K2
n=0
jj.niN0(niNPn.K+i)
DO 20 Nl.JJ
IF(S2(L.I).EQ.STATE(KK.I))G0 TO 20
IF(S2(L,I).NE.STATE(KICI)-1)G0 TO 32
n-n+i
II-I
CONTINUE
IF(n.NE.l)GO TO 32
DO 25 MI.NnP
IF(S2(L,I).NE.S2(L,II))G0 TO 27
CONTINUE
I-I+l
X23(KK,L)=I-II
CONTINUE
CONTINUE

UPDATE TRANSITION MATRIX — TRANS

K-l
Kl-BOUNO(K)+l
K2-B0UND(K+1)

DO 100 L-1,N2

DO 35 JJ-K,1,-1

**-- ■■ ■■ - ■■ ■ ■ ■- -^'-—• -■ - - -
■■'-■ — -' ^.i.

.. ._

. ■■"'WPI^*PWWW»P»«W»™ mm mtm^m^ mmmmmmm^mmt ■ ■«u

Appendix A-2
Lifting of Program for the Algorithm shown in Fig. 2.8

Pag« 149

5G32
C

34
C
3B
C
3B

58
iee
c
c
c

280

c
c
c
c

423

4423
C
C
c

c

341

DO 5B32 KK-K1,K2

IF(STATE(KK,JJ).EQ.S2(L.JJ)+1)G0 TO 34
CONTINUE

KK-a
GO TO 3B
Kl-KK

CONTINUE

CONTINUE
IF(KK.EQ.0)GO TO 108
DO 50 M.NPARTS
TRANS(I,KK)=TRANS(I,KK)+X23(I,L)

CONTINUE

DECRErENT LEVEL

LEVEL-NPC-2
CONTINUE

IF{LEVEL.EQ.0)GO TO 300

PARTITION LEVEL
PARTIAL STATE VECTOR — SI

IPRT=3
GO TO 400a

N1=NNPART
DO 4423 I-l,n

B1(I)-B0(I)

COHPUTE NUAYS FOR GOING FROM 81 TO S2

LSRC-niN0(LEVEL.NMP)

DO 341 I-1.N2
DO 341 J-1.N1

X12{I,J)-0
DO 5740 K-l.LSRC
I1=B1(K)+1
I2.B1(K+1)
DO 5740 L.I1,I2
K1=B2(K)+1
K2-B2(K+2)
IF(niNPn.LT.K+l)K2=B2(K+l)

111 11 ' ■ I WlVfKlllllj.ll,

Page 150

Appsvdix A-2
Lining of Program for the Algorithm shown in Fig. 2.8

DO 5732 KK-Kl.KZ
n-e
jj-niN8(niNPn.K+i)
DO 577 I-l.JJ
IF(S1(L.I).EQ.S2(KK,I))G0 TO 577
IF(S1{L,I).NE.S2(KK,I)-1)G0 TO 5732
n-n+i
II-I

CONTINUE
IFCfl.NE.DGO TO 5732
DO 5725 I-II.NMP
IF(S1(L.I).NE.S1(L,1I))G0 TO 979

CONTINUE
I-I+l

X12(KK,LM-II
CONTINUE
CONTINUE

577

5725

979
5732
5748
C
C
C

1255
C
C
C

MATRIX MULTIPLICATION TO GET NUAYS FROM 51 TO STATE

IC-1
GO TO 125

CONTINUE

UPDATE TRANS

K-NPC-LEVEL
IF(K.GT.MINPM)GO TO 588B
Kl-BOUND (O+l
K2-B0UN0(K+1)

c
DO 5888 L-1,N1

C
DO 5835 JJ-K.l.-l

C
DO 5832 KK-K1,K2
IF(STATE(KK.JJ).EQ.S1(L.JJ)+1)G0 TO 5834

5832 CONTINUE
c .

KK-e
GO TO 583B

5834 Kl-KK
C
5835 CONTINUE
C
5836 CONTINUE

 ■ - - ■'"' -- . . . ■IM —'—tfiiiiiiifrüMi

"■" ■ " ■Hwni m^m^m^v^tmmmm^

Appendix A-2
Listing of Program for the Algorithm $houm in Fig. 2.8

Pag« 151

5858
5808
C
C
c

c
c
c
c

424

4424
C
C
c

591

5928

5925

IF(KK.EQ.B)GO TO 5880
DO 5858 I-1,NPARTS

TRANS(I,IOO.TRANS(I.KK)+X23{I,L)
CONTINUE

DECREMENT LEVEL

LEVEL=LEVEL-1
IF(LEVEL.EQ.8)GO TO 388

PARTITION LEVEL
PARTIAL STATE VECTOR — S2

IPRT.4
GO TO 4888

N2-NNPART
DO 4424 1-1,n

B2(I)-B0(I)

COriPUTE NUAYS FROfl S2 TO SI

LSRC.niN8(LEVEL,NHP)

DO 591 I-1,N1
DO 591 J-1,N2

X12(I,J)-8
DO 5948 K-1,LSRC
I1-B2(K)+1
I2-B2(K+1)
DO 5948 L-I1,I2
K1-B1(K)+1
K2=B1(K+2)
IF(niNPH.LT.K+l)K2-Bl«+l)
DO 5932 KK-K1,K2
11-8
JJ-niN8miNPM,K+l)
DO 5928 I-1,JJ
IF(S2(LtI).EQ.Sl(KK,I))G0 TO 5928
IF(S2(L,I).NE.S1(KK,I)-1)G0 TO 5932
n-M+l
il-l

CONTINUE
IF(n.NE.l)GO TO 5932
DO 5925 I.II,NnP
IF(S2(L,I).NE.S2(L,II))G0 TO 5927

CONTINUE

~**m ■- - ■

■ Hl i um i mmmmn^n^n^^fimmmH

Page 152

Appendix /\-2

Listing of Program for thr /Hgoriihm thoton in Fig. 2.8

I-I+l
5927
5932
5948
C
C
c

12B8
C
C
c

c

c

c

6332
C

G334
C
B335
C
G33G

G358
G388
C
c
c

3c _

358

XIKKK.LM-II
CONTINUE
CONTINUE

MATRIX MULTIPLICATION GIVES NUAYS FROM S2 TO STATE

IC-2
GO TO 125

CONTINUE

UPDATE TRANS

K-NPC-LEVEL
IF(K.GT.MINPM)GO TO G388
K1-B0UND(K)+1
K2-B0UND(K+1)

DO G388 L-1,N2

DO G335 JJ-K,1,-1

DO G332 KK-K1,K2
IF(STATE(KK,JJ).EQ.S2{L,JJ)+1)G0 TO G334

CONTINUE

KK=8
GO TO G33G

Kl^KK

CONTINUE

CONTINUE
IF(KK.Ea.8)G0 TO G388
DO G35B I-l.NPARTS

TRANS(I,KK)-TRANS{I,KK)+X23(I,L)
CONTINUE

DECREMENT LEVEL

LEVEL-LEVEL-l
GO TO 288

CONTINUE
IF(NPC GT.NMP)G0 TO 488
DO 358 I-l.NPARTS

TRANS (I. NPARTS) -TRANS (I. NPARTS) +1.8,vNMP,vX23 (1,1)

■-- ■ ■■

wm

Appritdix /1-2
Luting of Program for the Algorithm shown in Fig. 2.8

Page 153

48e
c
c
c
c
7777
C
C5544
C4455
C

7182
7258
C
C5544
C4455
C

8888
C

C

c

c

8258

9321
C
8588
C

8758

C
C
C

CONTINUE

TRANSITION MATRIX HAS BEEN GENERATED

CONTINUE
DO 5544 Nl.NPARTS

URITE(15.4455).(TRANS(I,J),J-1,NPARTS)
F0RnAT(lX.25(F8.4.1X))

DO 7258 Ul.niNPn
Y-(1.8*NnP)**I
DO 7258 J=BOUND(n+l,BOUND(I+l)
DO 7188 K-1,NPARTS

TRANS (K.JNTRANS«.J)/Y
CONTINUE

DO 5544 I-l.NPARTS
UIRITE(15,4455).(TRANS(I,J),J-1,NPARTS)
r-0RnAT{lX,25(F8.B.lX))

DO 8888 I-l.NPARTS
TRANS{I,I)-TRANS(I.I)-1.8

TRANS(NPARTS,I)-1.B

B(NPARTS)=1

CALL GAUSS

DO 8588 Ul.fllNPfl

Triple
DO 8258 J-BOUND(I)+l,BnUND(I+l)

Tnp=Tnp+z(j)
URITE(15.9321),I,TnP

FORnATdX.'PROBCNO. OF BUSY nEI1S-M2,')-MX,F18.8)

OCC-OCC+TflP*!

URITE(15,8758),0CC
FORMAT(//.IX/EXPECTED VALUE OF NO. OF BUSY MP- '

1,F18.6)

STOP

MATRIX MULTIPLICATION IN-LINE SUBROUTINE

■- -——■-'• .. .-.::~^-^U~^.~~^~
- ■- - -■

■ " ^^.t^.-.

■' " ' ■ " n niw^m^^^*^mmmmmm^^~** * ■'■■i »»^^w—m

Page 154

Appendix A-2
Lifting of Program for the Algorithm shown in Fig. 2.8

125 CONTINUE
N-NPARTS
NH-NZ
n-Nl
IFdC.EQ.DGO TO 126
NM-Nl
ri-N2

126 CONTINUE
C

DO 511 M.N
DO 5111 J-l,n
C(J)-8
DO 5111 K-l.Nfl

5111 C{J)-C(J)+X23(I,K)v,X12(K.J)
DO 511 J-l.n

511 X23(I,J)-C(J)
IFdC.EQ.DGO TO 1255
GO TO 12B8
STOP

C
C

C IN-LINE SUBROUTINE FOR GENERATING PARTITIONS
C STATE VECTORS
C
c

^000 " MlNL-niN8(LEVEL,NnP)
C

NNPART=B
sun-0
n-i
GO TO 31

22B CONTINUE
DO 21 1-2.M

21 A(I)-1
38 sun-B

DO 22 I-2,n
22 sun-sun+Ad)
31 A(l)-LEVEL-SUn
C
C URITE(15,2000), (Am.I-l.ri)
2000 F0WAT(1X,1G(I3,1X))

NNPART-NNPART+1
GO TO (171,172.173,172), IPRT

171 CONTINUE
DO 1711 K-l,n

1711 STATE (NNPART, KNACK)

 ^~~~~~~~*~~*~~~-~~~~a.,.

Appendix A-2
LUting of Program for the Algorithm thown in Fig. 2.8

Page 155

181

172

1722

182

173

1733

183
1788
B8

1888

181

1228

C
2281

C
c

IFCNMP.LE.fDGO TO 1788
DO 181 K-n+l.NflP

STATE(NNPARTlK)-8
GO TO 1788

CONTINUE
DO 1722 K-l.n

S2(NNPART,K)-A(K)
IF(Nf1P.LE.mG0 TO 1788
DO 182 K-fl+l.NnP

S2{NNPART,K)-B
GO TO 1788

CONTINUE
DO 1733 K=l,n

S1(NNPART,K)-A(K)
IF(NnP.LE.n)GO TO 1708
DO 183 K-f1+l,NnP

Sl(NN?ART,K)-8
T-2

CONTINUE
IF(T.GT.n)GO TO 1228
IIX-A(1)-A{T)
IFCIIX.GT.DGO TO 1888
T-T+l
GO TO 68

CONTINUE
ITflP-AlT)
DO 181 I-2,T

A(I)-ITnP+l
GO TO 38

n-n+i
BDmUNNPART
WRITE(15,2281),NNPART

FORMAT (/, 1X,'i>i>M»i ' ,12,' »MUMMi1, /)
IF(n.LE.niNL)GO TO 228
GO TO (421.422.423,424),IPRT

END

C
C
C

SUBROUTINE GAUSS
THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS

A,vX-6

DIMENSION A(18G,18B),8(186),X(186)
COMMON N,A,B,X
INTEGER S

- - — ----- —■„ , ****** m- -- -- - ■"—■"-— - ---^^—iiniifgiiii iiini^i^^r iiinii

Page 156

Appendix A-2

"»ting of Program for the Algonihrn shown in Fig. 2.8

C

5

18

18E

28

25

35
4"

42

45

58

68

S-N
CONTINUE
IF(S-l) 58.58.18
CONTINUE
IF{S.GT.2)G0 TO 185

?r^(i;1),vA(2'2,-A(1'2,^2.i)
1F(ABS(D).GT.8.8885)G0 TO 185
TYPE 25
GO TO 188

DO 28 I-1,S
M-S-I+l

CONTINUE(n,S,,,GT,0,0005,GOT030

TYPE 25

GFSR^T1{88,,THE C0EFFIC,ENT "W* IS SINGULAR'./,
CONTINUE
IF(f1.EQ.S)G0 TO 48
T-B(S)
B(S)=B(n)
B(f1)-T
DO 35 J-l.S
T-A(S.J)
A(S,J)-A(n.J)
A(n,J).T
CONTINUE
CONTINUE
DO 45 I-1,5-1
K-S-I

(IF(ABS(A{S.S)).GT.8.8885)G0 TO 42

B«)-B(K)-B(S)vfA(K,S)/A(S,S)
DO 45 J-1,S-1

cA0N^NUEA(K,J,~A(K'S,>vA(S•J,/A(S's,

S-S-l
GO TO 5
CONTINUE
DO 78 M.N
SUfl-B(I)
DO G8 J-1,I-1
sun-sun-Au.jhvxu)
CONTINUE

IF(ABS(A(I.I)).GT.8.8BB5)G0 TO Gl
GO TO 188

^^■BMMMH IIHI ■

Appendix A-2
Lifting of Program for the Algorithm ihourn in Fig. 2.8

Page 1B7

6i xm-sun/AU.n
78 CONTINUE
188 CONTJNUE

RETURN
END

 - —'—--"

Page 158

C
C
c
c
c
c
c
c

c •
c

1973

1974

1975

C
c

see

c

488
C

588
C

18

APPENDIX A-3

APPROXinATE MARKOV CHAIN MODEL FOR TP-TU

DIMENSION S(17,17).CM(1B,16),TRANS(17,17)
INTEGER COMB(IB,IB)
DIMENSION Z(17),B{17)
INTEGER D
COMMON TRANS.B.Z.MINPM

TYPE 1973

FORMAT(IX,'NUMBER OF PROCESSORS',/)
ACCEPT 1974.N

FORMAT(I)
TYPE 1975

FORMAT(IX,'NUMBER OF MEMORIES',/)
ACCEPT 1974.M
XM-1. 8>vM
MINPM-MIN8(N,M)

DO 388 1-1,17
S(I,1).8

S(l,l)-1
S(l,I).e

DO 488 I-1,1B
DO 488 J-1,I

S(I+l.J+l)-1.8,vJ,vS(I,J+l)+S(ItJ)

DO 588 U1.1B
CMd.D-I
DO 588 J.2,I

CM(I.J)-CM(I.J-l)va.8>v(I-J+l)

CDMBd.D-l
DO 28 K-2,16
COMB«,l)-K
L-MIN8(K,1B)
DO IB U2,L
COMB(KtI).COMB(K,I-l),v(K-I+l)/I

— --- i - - - - m~mm.

Appendix A-3
Approximate Markov Chain Model for tp'tu *

29 CONTINUE
C
C

DO 1998 M.niNPM
C

XM.9*I/Xn
C

DO 799 J-9,I

r uJL™* NUMBER 0F ACTIVE PC,S THAT "AKE A REQUEST TO THE I HP'S
C XPROB IS THE PROB THAT N-UJ PC MAKE A REQUEST TO THE I HP'S

IF(J.EQ.B)XPR0B-(1.8-XI),v,vI
XriULT-(1.9-XI)v«v(I-J)
IFd.EQ.JIXMULT-l.B
IF (J. NE. 9) XPROB-1. NCQNB (I, J) ,v (XI ,v,vJ) ^XMULT
NN-N-I+J
Kl-niN9(NN,I)
11-1
IF(K1.EQ.9)11-0
DO 799 L1-I1,K1
TEHPl-l
IF{L1.EQ.9)G0 TO 595
Xl.(1.9,vI)vnvNN
TEHPl-CM (I, LI) t8 (NN+1,Ll+1) /Xl

C NBUSY-NO. OF BUSY MP'S DURING NEXT CYCLE
595 K2-niNB(I-J,r-I)

12-1
IF(K2.EQ.9)12-9
DO 799 L2-I2,K2
TEriP2-l
NBUSY-L1+L2
IF(L2.Ea.9)G0 TO 635
X2-(l.g,v{ri-I))v„v(I-J)
TEMP2-Cn(t1-I.L2)vfS(I-J+l,L2+l)/X2

S TRANS(NBUSY'I) ■TRANS (NBUSY. I > +XPR0BvJEnPl,vTEnP2 /ö0 CONTINUE
C
ißöe CONTINUE
C

DO 8999 I-l.niNPfl
TRANS(I,I)-TRANS(I,I)-1.0

8000 TRANS(MINPn,I)-1.9
C

BmiNPm-i

CALL GAUSS

-■'- ■ - - ■ --j-^'"—"- -"•- -.-—--.-. >.-^-^..-.. ^.^I.■.■„■. .^ -■.— -■..^-J. | n rtiinin lim gtmääMtmma^ttämäimttumM

Page 160

Appendix A-3
Approximate Markov Chain Model for ip-iio

2088
C

1
C

c
c

c
c
c

c

5

IB

185

28

25

38

35

DO 2888 I-l.niNPH
UER-UER+1.8»vZ(n,vI

CONTINUE

TYPE l.UER
F0RnAT(lX,F18.B)

STOP
END

SUBROUTINE GAUSS
THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS

A>vX-B

DIMENSION A(17.17),B(17).X(17)
COMMON A.B.X.N
INTEGER S

S-N
CONTINUE
IF(S-l) 58.58,18
CONTINUE
IF(S.GT.2)G0 TO 185
D-A(l,l),vA{2,2)-A(1.2)vfA(2,l)
IF(ABS{D).GT.8.BB85)G0 TO 185
TYPE 25
GO TO 188

DO 28 I-1,S
M-S-I+l
IF(AB?(A(M,S)).GT.B.BB85)G0 TO 38
CONTINUE
TYPE 25
FORMAT(IX.'THE COEFFICIENT MATRIX IS SINGULAR',/)
GO TO 188
CONTINUE
IF(M.EQ.S)GO TO 48
T-B(S)
B(S)-B(M)
B(M)-T
DO 35 J-1,S
T-A(S,J)
A(S,J)-A(M,J)
A(M,J)-T
CONTINUE

 - ...-.■ ^w...^.. -. llminiMHi iM^ in i

Appendix A-3
Approximate Markov Chain Model for Ip-Jte

Page 161

4e

42

45

56

G0

61
78
lea

CONTINUE
DO 45 1-1.8-1
K-S-I
IF(ABS(A(S,S)).GT.9.8805)00 TO 42
GO TO IBB
B(K)-B(IO-B(ShvA(K,S)/A(S.S)
DO 45 J-l.S-l
A(K,J)-A(K,J)-A(K.S)»vA(S,J)/AfSlS)
CONTINUE
S-S-l
GO TO 5
CONTINUE
DO 78 I-1,N
SUn-B(I)
DO GB J-l.I-1
SUf1-SUn-A(I,JhvX(J)
CONTINUE
IF(ABS(A(I, I)).GT.8.8885)00 TO 61
GO TO IBB
X(I)-SUn/A(I,I)
CONTINUE

CONTINUE
RETURN
END

■-!-■- - ..-.■■. -1
■- ■■-- -■

Page 162

C
C
c
c
c
c
c
c
c
c

1973

1974

1975

C
c
c

18
11
C
C
c

bo
78

APPENDIX A-4

APPROXIMATE MODEL FOR ARBITRARY P(I.J). TP-TU, n>-N.

P(I.J)-ALPHA FOR I-J
-B OTHERUISE

DIMENSION QPRdB.lG)
DIMENSION RATE(16).¥(18,161

DATA ALPHA/8 8. B5..1..15..2..25..3..35..4..45..5..55..B.
1.65,.7,.75,.8..85..9,.95.1.8/
TYPE 1973

FORMAT(IX,'NUMBER OF PROCESSORS'./)
ACCEPT 1974,NPC

FORMAT(I)
TYPE 1975

FORMAT (IX,'NUMBER OF MEMORIES',/)
ACCEPT 1974,NMP
,.INPM-MIN8(NMP,NPC)
XM-1. NMP
XN=1.3>vNPC

COMPUTE UER FOR VARIOUS VALUES OF ALPHA

DO 9999 IJK-1,21
A.ALPHA(IJK)
B-(1.B-A)/(XM-1)
DO 11 Ul.NPC
DO 18 J=1,NMP
PROB(I,J)-B
PROB(I,I)-A

COMPUTE QUEUE ING FREQUENCIES BASED ON ACCESS FREQS.

DO 78 N1,NPC
DO 78 J-1,NMP
Y(I,J)-1.8
DO 58 L=1,NPC
IF(L.EQ.nGO TO 58
Y(I,J).Y(I,J),v(1.8-PR0B(L,J))
CONTINUE
CONTINUE

.. — ._ UiMu ii ■! II ii III ^

Appendix A-4 m
Approximate Model for Arbitrary Pij, tp-tto, min '

DO 60 I-1,NPC
DO BB J-l.NMP
QPR(I,J)-8.8
DO B5 L-1,NPC
IFd.EQ.DGO TO 65
aPR(I,J).PROB(L,J),v{l-Y(L,J))+QPR(I,J)

B5 CONTINUE

QPR(I,J).(1.8-Y(I,J)),v(QPR(I.J)+l.B)
BB QPRn.J)-PRDB(I.Jhv(Y(I,J)+QPR(l,j))

DO 8B I-1,NPC
TEMP-B.B
DO 85 J-l.NnP

85 TEMP-TEnP+DPRd.J)
DO 8B J.l.NflP
QPR(I,J)-QPR(I,J)/TEnP

88 CONTINUE
43 F0RnAT(lX.'Q(M2,V.I2.')-',F9.5)
C
C COflPUTE UER BASED ON QUEUE ING FREQUENCIES
C

DO 355 J-l.NHP
RATE(J)-1.8
DO 35 I-1,NPC

35 RATE(J)-(1.8-QPR(I,J)hvRATE(J)
355 RATE(J)-l.a-RATE(J)

DO 3B J-l.NriP
3B UER(IJK)-UER(IJK)+RATE(J)
C
999S CONTINUE

XflAX-l.BftniNPn
C
C PLOT RESULTS
C

CALL PL0T{21,XnAX,UER)
WRITE(19,332),NPC.NMP

332 FORMAT (///, IX,'NUMBER OF PROCESSORS -' .2X. 12 /
11X,'NUMBER OF MEMORIES .'.2X.I2,//) »«.«*.'.
DO 288 1-1,21

l22 WRITE(19,331),ALPHA{I),UER{I)
331 FDRMATdX,'ALPHA-',FS^.SX.'UER-'.FS.B)

STOP
END

C
C PLOTTING SUBROUTINE
C

SUBROUTINE PLDT(LIMIT,XMAX/ALUE)

-^ r—„.„^..^-^.^-^-^^ __— ^__J„^^__—J—._ _

Page 164

Appendix A-i
Approximate Model for /IrbUrary Pij, tp-tu,. min

C
2

11

59
IB

DiriENSIOl^ VALUE (188)
DIMENSION JCltlJ
JdeB)-'.'
WRITE (19,2)
^Rf1ATülX.'

zi
DO IB Nl.LIMIT
IX-lBB.B,vVALUE(I)/XMAX+8.5
ILAST-IX
DO 5 K-l.IX
J«)-' '
JUX+D-V
Jd)-'.*
WRITE(19.11),(j(L)fL.1JX+1)

FORMAT (UX.lBKAl))
URITE(19,59)
FORMAT(/)
CONTINUE
RETURN
END

• • « •
• • • •

•■•«••.. • ••••• ■ ■ •

..')

k.. ntä^^^^M •MMMH^d^UHMa^Ba

Page IBS

C
C
c
c
c
c
c
c

c
c

1973

1974

1975

100
c

308

C

408
C

588
C

C
C

APPENDIX A-5

APPROXinATE MARKOV CHAIN flOOEL FOR TP-TU+TC

<r»<>i<i»<i»<i»»|iiit»»»i<mtlHi<tt>ii>t>iiiitt><ii<iii<)iiiitiii<ttt

DIMENSION S(17.17),CM(1B,16),TRANS(17.17)
DIMENSION Z(17),B(17)
COMMON TRANS.B.Z.NSTATE

TYPE 1973

ACCEPT 1974,N
FORMAT(IX,'NUMBER OF PROCESSORS',/)

TYPE 1975

ACCEPT 1974.M
XM-1.8vfM
K-MIN8(N.M)
NSTATE-K+l

IF(K.NE.N)GO TO 100
TRANS(NSTATE.l)-1.0
11-1

CONTINUE

DO 300 1-1,17
S(I.l)-0

FORMAT(I)

FORMAT (IX.'NUMBER OF MEMORIES'./)

S(l.l)-1
S(l.I)-0

DO 400 1-1,18
DO 400 J-1,I

S(I+1,J+1)-1.0«J,-.S{I.J+1J+S(I.J)

DO 500 1-1.16
CMd.D-I
DO 500 J-2.I

CMn,J)-CM(I.J-lhvl.0*(I-J+l)

DO 1000 II-I1+1,NSTATE

11....INDEX TO THE STATE DURING CURRENT CYCLE

 ■ li ^1« !!■.■■ II ■ I - - -

Page 166

Appendix AS
Approximate Markov Chain Model for tp-tu*tc

I-II+N-K-1
C
c I NUMBER OF PROCESSORS MAKING NEU REQUEST IN CURRENT CYCLE
C

X-XMvnvI
KK-MINB(I,M)
DO 988 JJ-l.KK

C
c JJ NUMBER OF BUSY MRS IN CURRENT CYCLE
c J NUMBER OF PCS MAKING NEU REQUEST DURING NEXT CYCLE
C Jl INDEX TO STATE M NEXT CYCLE
C

J-N-JJ
Jl-J-N+NSTATE
TRANS(Jl.II)-1.8vfCM(M,JJ),vS(I+l.JJ+l)/X

900 CONTINUE
C
1000 CONTINUE
C

DO 8888 M.NSTATE
TRANS(I,I)-TRANS(I,I)-1.8

8000 TRANS(NSTATE,IM.8
C

C

c

B(NSTATEM

CALL GAUSS

DO 2888 IM1+1,NSTATE
I-II+N-K-1
UER.UER+XM.V (1.8- (1.8-1.8/XM) Vnvl) ,vZ (11)

2008 CONTINUE
C

TYPE l.UER
1 F0RMAT(1X,F18.G)
C

STOP
END

C
c

SUBROUTINE GAUSS
C THIS SUBROUTINE SOLVES SIMULTANEOUS LINEAR EQUATIONS
C A,vX=B
C

DIMENSION A(17,17)tB(17),X(17)
COMMON A.B.X.N

■ — —-J"
--L.-^-^-..--.^. ^-...^..-^^ ^ ._...■ .,, , ,^^—^ *. „^^«^^t^j-M^,^^.^^^^ -. ^ ^—■■■■. ^

Appendix A-5 n 1g7

Approximate Markov Chain Model for tp-ttoHc ***

INTEGER S
C

S=N
5 CONTINUE

IF(S-l) Ba,58,18
IB CONTINUE

IF(S.GT.2)G0 TO 185
O.A(l,l)>vA(2,2)-A(l,2),vA(2,l)
IF(ABS(0).GT.8.8885)00 TO 185
TYPE 25
GO TO 188

105 00 28 Ul.S
M-S-I+l
IF(ABS(Mn,S)).GT.8.8885)00 TO 38

28 CONTIN! £
TYPE 25

25 FORMAT(IX,'THE COEFFICIE-.,T MATRIX IS SINGULAR«./)
GO TO 188

38 CONTINUE
IF(n.EQ.S)G0 TO 48
T-B(S)
B(SUB(n)

00 35 J=1,S
T=A(S,J)
A(S,J)-A(nfJ)
A(n,J)-T

35 CONTINUE
48 CONTINUE

DO 45 1-1,5-1
IC-8-1
1F(ABS{A(S.S)).GT.8.8885)00 TO 42
GO TO 188

42 B(iCUB(K)-B{ShvA(K,S)/A(S,S)
DO 45 J»1,S-1
A(K,J)-A{K,J)-A(l<:,S)vfA{S,J)/A(S,S)

45 CONTINUE
S-S-l
GO TO 5

58 CONTINUE
DO 78 M,N
sun-Ben
DO 68 J-l.I-1
sun-sun-A(i,j),vx(j)

58 CONTINUE
IF(ABS(A(I,I)).GT.8.8885)G0 TO 61

 - — - — -- ■ -,——^ -i—Hlllllli I - - ■ -'— ■ ■ - rim in «r - ■ -^J"

w!~^r-~rrT— mmmmmmmmmmmgm^mmmm '-•■"■

Pige 168

Appendix A-5

Approximate Markov Chain Model for tp-twHc

GO TO 188
SI x (i)-sun/A n, i)
78 CONTINUE
iee CONTINUE

RETURN
END

■aiMMMHMMMiaillMMil - -■ I - - - mmd

' iw^w-^" ii ■in ii uimmmmm^*^^^

Page IBS

C APPENDIX A-G
C
C AAAMiAAilAAAAAAAAAAAAAAAAAAAiiAIIAiAAiHHHHHMMHHHMftAAAItAMHHHHMMI
C
C APPROXiriATE MARKOV CHAIN MODEL FOR TP>TU
C PROB (TP-TU+UTC) -BETAvrALPHAvnvI
C E(TP)=TU+TC»vALPHA/BETA
C ALPHA+BETA-l
C
C AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHHHHHHHHHHHHHHHMHHHHMM
C

DIMENSION S(17,17),CM (IB,IG),TRANS(17,17)
INTEGER C0MB(1G,1G)
DIMENSION Z(17),B(17)
INTEGER 0
COMMON TRANS,B,Z NSTATE

C
C

TYPE 1973
1973 FORMAT (1X,'NUMBER OF PROCESSORS',/)

ACCEPT 1974,N
1974 FORMAT(I)

TYPE 1975
1975 FORMAT(IX.'NUMBER OF MEMORIES',/)

ACCEPT 1974,M
XM.1.B*M
TYPE 197G

197G FORMAT (IX,1 ALPHA : PROB OF ONE MORE CYCLE OF
EXECUTION',/)

ACCEPT 1977,ALPHA
1977 FORMAT(F)

BETA-l.B-ALPHA
NSTATE-N+1

c
c

DO 388 1-1,17
S(I,l)-8

388 S{l,I)-8
S(l,l)-1

C
DO 488 N1,1G
DO 488 J-1,I

488 S(I+l,J+l)-1.8,vJvfS(I(J+l)+S(I,J)
C

DO 588 I-1,1G
CM(I,1)-I

- -- ^..^»a^——M—^^ IIII---^ 1-- ■ ■■ -mltMl—IliM—JMY—I» II IIWllrtlMiaiMI I

m^*ma^*m^*^*mi* m •• I»H^«^^^^^^^I■ i i MM .»iw^^mnMOTw um immm

Page 170

Appendix A-6
Approximate Markov Chain Mod* I for Geometrie tp

DO 530 J-?,I
500 CM(I.J)-cri(I,J-l),vl.8,v(I-J+l)
C

COMBd.D-l
DO 20 K-2,1G
COMB (K. INK
L.niN0«,i6)
DO 10 1-2,L

10 COnB{K,l)-COMB(K,I-lhv(K-I+l)/I
20 CONTINUE
C
C

DO 1000 I-1,N

c
C K IS THE riAX. NO. OF OCCUPIED HP'S
C 0 IS THE NUMBER Cr OCC. MP'S
C

K-niN0(i,m
DO 1000 0=1,K

C
C I-D PC ARE LEFT IN HP QUEUES
C NN PC ARE TO BE REASSIGNED TO PC OR IIP QUEUES
C XPROB IS THE PROB OF D MP'S BEING BUSY

XPROB-CM(M,D),vS(I+l,D+l)/X
900 NN-N-I+D

TRANS (I -0+1,1 +1) -TRANS (I -D+l, I +1) +XPROB,vALPHAvnvNN
IF(NN.EQ.0)GO TO 1000

C
DO 1000 NEUPC-l.NN

C

C NEUPC- NO. OF NEW PC'S TO BE ASSIGNED TO MP QUEUES
C NEUMP- TOTAL NO. OF PC'S THAT MAKE MP RED. NEXT CYCLE
C

NEUMP.I-D+NEUPC

TEMP=1. 0>vCOMB (NN,NEUPChv(BETAvovNEUPChv(ALPHAvoV(NN-NEUPC))
TRANS (NEUMP+l, I +1) -TRANS (NEUMP+1,1 +1) +XPROB>vTEMP

C

1000 CONTINUE
c

DO 1500 I-1,NSTATE
1500 TRANS (1,1)-TRANS(1,2)

DO 8000 I-1,NSTATE
TRANS(I,I)-TRANS(I,I)-1.0

8000 TRANS(NSTATE,I)-1.0

■ -- KHf—^ _^..^M^—^^^»^-^-^—^^-^^--^ . .. - -..■ -—^—^

—————— ' '■ ■ ■

Appendix A-6
Approximate Markov Chain Model for Geometric tp

Page 171

C

C

c

2088
C

1
c

c
c

c
c
c

c

5

18

185

23

25

38

B(NSTATE)-1

CALL GAUSS

DO 2888 I-1,N
UER.UER+Xnvf(1.8-(l.B-1.8/xm.-«vI)>vZ(I+l)

CONTINUE

TYPE l.UER
F0RnAT(lX.F18.B)

STOP
ENO

SUBROUTINE GAUSS
THIS SUBROUTINE SOLVES SlflULTANEOUS LINEAR EQUATIONS

A,vX-B

DIMENSION A{17.17).B{17).X(17)
COmON A.B.X.N
INTEGER S

S-N
CONTINUE
IF(S-l) 58,58.18
CONTINUE
IF(S.GT.2)G0 TO 185
D=A(l,l)vfA(2,2)-A(1.2hvA(2,l)
IF(ABS(D).GT.8.8885)00 TO 185
TYPE 25
GO TO 188

00 28 I-l.S
n-s-i+i
IF(ABS(A(n,S)).GT.B.B885)G0 TO 38
CONTINUE
TYPE 25
FORHATdX/THE COEFFICIENT MATRIX IS SINGULAR'./)
GO TD 188
CONTINUE
IF(n.EQ.S)GO TO A0
T-B(S)
B(S)=B(n)
B(m-T
DO 35 J-1,S

■ niiiiiim ^i«^—^

i"'""« mimmi m ■ J ■ ■^■^■w^

Page 172

/Ipprndix /I-6
Approximate Markov Chain Model for Geometric tp

T-A(S.J)
A(S.J)-A(n,J)
Am.jM

35 CONTINUE
48 CONTINUE

DO 45 1=1,5-1
K-S-l
1F(ABS(A(S,S)).GT.B.0805)GO TO 42
GO TO 108

42 B(K)=B(K)-B(ShvA(K,S)/A(S,S)
DO 45 J-l.S-1
A(K.J)-A(K,J)-AfK,S)vfA(5,J)/A(S.S)

45 CONTINUE
S-S-l
GO TO 5

58 CONTINUE
DO 78 1=1.N
SUn=B(i)
DO 68 J=1.I-1
SUM=SU!1-A(I.J),vX(J)

B8 CONTINUE
IF(ABS(A(l,Ii).GT.8.0005)00 TO 61
GO TO 100

Bl xu)-sun/A (i.n
78 CONTINUE
188 CONTINUE

RETURN
END

 I !■ !■! lllJiMMII—1*1 ■■■■ -- —---- ^JM

' "'• "liPMlll ■ ' ■"■■l I HI 1 ■ 1

Pag* 173

c **ft*»»»»>«»**ft***M>*»MM>MiM»H»iMM>*»»>*iiM*WMI
c
c CACHE HODEL FOR 1 rP>-TU, CONSTANT.
c APPENDIX A-7
c
c
c AAAAftftAftAftAAAAAAAAAAAAftAAAiNAAIIAiAAilAAilAMHHHHHHHHHHHHHMM

TYPE 1
ACCEPT A.TP

1 FORMAT UX,* ENTER VALUE OF TP,FORMAT F',/)
TYPE 2 •

ACCEPT 4,TF
0 FORMAT(IX,'ENTER

TYPE 5
VALUE OF TF',/)

ACCEPT 4.TC
5 FORMAT(IX,'ENTER VALUE OF TC'./)

TYPE 6
ACCEPT 4.TU

E FORMAT(IX.'ENTER VALUE OF TU',/)
4 FORMAT(F)

TYPE 1973
1973 FORMAT(1X,'NUMBER OF PROCESSORS. INTEGER FORMAT',/)

ACCEPT 1974,N
1974 FORMAT(I)

TYPE 1975
1975 FORMAT(IX,'NUMBER OF MEMORIES',/)

ACCEPT 1974.M
XN-l.&vN
XM-l.evfM
TA-TC-TU
00 2088 1-0,9
ALPHAS. 1*1
BETA-l.B-ALPHA
CONSxALPHA*(TP+TF)+BETA*(TP-TU)

c •

PMAX-1.8
PM!N>8.B
P.8.5

18 PNEU=1.8-CONS* (1.8- (1.8-P/XM) MN) >vXM/XN/TC/BETA
DEL=P-PNEU
DEL=ABS(DEL)
IF(0EL.LE.8.8881)G0 TO 1088
IF(PNEU.GT.PJPMIN=P
IF(PNEU.LT.P)PMAX-P
P-8.5*(PM1N+PMAX)
GO TO 18

— - - ■ ■-■ ■- —■—-—"""^

w^tmmmmmmmm

Page 174
Appendix A-7

Cachti Model for tpiiw

c
leaa

2000
2B

P-8.5>v(PNEU+P)
UER-1.8-{l.fa-P/Xn)vnvN
UER-UER>v„7l/BETA

TYPE 28,UER
FORMAT(IX/EXECUTION RATE-',F8.4)
STOP
END

- - n H mil ■ ^i- ill! II ■Hill !■ I THH^aiM ilMMM ■ i ifcl HH II

■—»w^ «»«•■■•-■"-■-•■ ■^-——»»-^

Page 175

APPENDIX B

MULTIPROCESSOR SYSTEM SIMULATOR

This simulator can be used for multiprocessor systems with NPC processors

and NMP memory units connected by a single crosspoint switch. Pc[i] has a

probability PROB(l,J) of requesting service from memory j. The matrix PROB can

be carefully chosen to model partially assigned crosspoints and private caches

e.g. if memory unit 1 is a private cache dedicated to PcU], then PROPd,!)-

Prob{Pc[i] hits cache] and PR0B(K,l)-0 for Kf<l.

The simulation program consists of four main parts:

(i) Main Program

(ii) Subroutine PC(ID)

(iii)Subroutine MP(ID)

(iv) BLOCK DATA

The main program contains the scheduler, which calls the two subroutines

when a processor or memory is activated. This is a discrete event simulator

where the two subroutines are analogous to activities in SIMULA, The scheduling

is done by maintaining a doubly linked list called the sequencing set or SQS.

Figure B-l shows the structure of the SQS array.

 -- : -^ ^ . ■ - -

mmmmmmmmmmmm 1 ■'■",

Page 176

Successor Predecessor
Scheduled
Activation

Time
Event Type

Event
rdentificatinn

Niunber

Figure B-l Structure of the SQS array

Wkw ■ - -^■l-.--^.^J..-^w^m. ^^o.^^.^ ^ ^^_». ^ ^■^. -^ '■--■--■■ — '.*-■ - -■ ■-.^■-. . _ ^.-^-i^—^-^^1—^--il^-^^L^»^ rMi ■■■^■IMi

fHHVMMH immmt^mmm^mmmm*

Appendix B
Pe<r« 177

The first element or the head of the SQS is a dummy element, whose

successor is the first real event notice. Thus, when the SQS Is empty (i.e. no

event notices) the first element of the SQS points to itself. The SQS is

maintained in proper time order with the iwri most imminent event as the

successor of the head.

Figure B-2 depicts a simple flow chart for the main program. The program

executes in a loop until a preset simulation time Is reached. At this stage it

jumps out of the loop and operates on the statistics collected a...1 outputs

parameters like the number of instructions executed, the execution rate, and the

queue lengths and waiting times for the various memories. A typical output is

shown in fig. B-3.

The processor activity is characterized by a subroutine PC(ID); the flow

chart is depicted in fig B-4. A uniform random number with range (0,1) is

compared with the access probabilities in the array PROS to select a memory. A

request is entered into the queue corresponding to that memory unit. An event

notice for activating the memory is entered into the SQS if necessary.

Figure B-5 illustrates the working of the subroutine MP(ID). In its current

version, a processor is selected as per FII-0 discipline. The processor is then

scheduled to be activated after a time interval equal to the sum of the memory

access time(ta) and the processor's execution time(tp). The processing time

distribution can be arbitrarily chosen. The progran. listed here has an

-

wmmm^^^mmm^w^ imm "■ '" »' »■'"■■■

Page 178

Initialize List Pointers
and other variables

Enter event notices for
all the procescors at
T1HE=0 into tho SQS.

Examine the SQS and remove
the first event scheduled.

Update TIME,

Activate the current ;vcnt
"by transforing control vto
the subroutine character-
ing that event.

Figure B-2 Plow chart of the main program.

 ■-■" i i __.
 , -.,. - . .—^-^—

■ Ill 1 ■—>- '■'■""^ " "' '

NO. OF UNIT INSTR EXEC IN
UNIT EXEC RATE- 0.886938

588888 TIMEUNITS IS
Page 179

34G5

UNIT INSTRUCTIONS EXECUTED BY INDIVIDUAL PROCESSORS
868
863
8B4
864

ACCESS FREQUENCIES

8.297235 8.38133G 8.321A29
8.383797 8.331415 8.3B4787
8.383241 8.3B5741 8.331819
8.312588 8.343758 8.343758

****** MEMORY UNIT 1 ******
NO. OF REFS- 1854
MAX Q LENGTH- 2
AVG. Q LENGTH- 8.814G7
AVG. WAITING TIME- B.9573

****** MEMORY UNIT 2 ******
NO. OF REFS- 1232
MAX Q LENGTH- 2
AVG. Q LENGTH» 8.82154
AVG. WAITING TIME- 8.7419

****** MEMORY UNIT 3 ******
NO. OF REFS- 1179
MAX Q LENGTH- 2
AVG. 0 LENGTH- 8.82187
AVG. WAITING TIME- 8.9372

AVERAGE VALUE- 8.82188

AVERAGE VALUE- 8.B24B4

AVERAGE VALUE- 8.82358

Figure B-3 Typical Simulator Output

tma ■ - ■- ■ — -- i IIMM—mm« mi ■ IM «I

wmmmmmmmmmi^^rmmmmrmfm mmmmmm

Page 180

Appendix B

exponentially distributed processing time. The memory reschedvles itself at the

end of the cycle if any request are pending in its queue.

The BLOCK DATA contains input parameters for the simulation.

This simulator could have been written in SIMULA. However, the scheduling

involved does not necessitate all the capabilities of SIMULA. Moreover, the easy

access to FORTRAN on the PDP-lO's time-sharing system was an important

consideration in its selection.

■ -

tmmmmwmfmm^mm mm i m—*mmmi

Page 181

Select the memory
to be acr.ecRed.

Enter request into the
queue of the selected
memory.

Enter an event notice for
the memory at the end of
itß current cycle.

RETURN

Enter an event notice for
the memory at the current
value of TIME,

RETURII

RETURN

Pirjurc B-4 Piw.; chart of the proceocor'n activity.

—^ -*■— -

— ^ : w-^...^--.^-- . ■■-. ,.„■...._.- ,,,.._ .^^ ■IIM*il|-hM

II«» " " ' " wmmmmmmmim ~~m "^1

Page 182

Identify the firot
proccsticr rcqwoct in
"the queue.

Enter an event notice for
■;he processor at
TIME* memory access time

+ procor.sing time.

Enter an ?v ;nt notice for
itself at he end of this
memory cycle.

RETURN

Figure B-5 Flow chart of the memory's activity.

'-- ■

...—^.■.^-.. . . .,-- -
_- ■ ■ ■ - ■ - - - *

c
c
c

21

22

23
C

24
C
c
188B

781

PROCESSING TIME — EXPONENTIAL Paße l83

THIS PROGRAH SIMULATES A MULTIPROCESSOR UITH A
CROSS-POINT BETUEEN PROCESSORS & MEMORIES
INTEGER SQS(1B8.5),EMPTY{99)
INTEGER SUC.PRED.SCHED.EVTYPE.EVID.EVNUM.TOPMT
f2^^S?!!Iil

SS'EriPTY'SÜC'P^3.SCHEO.EVTYPE.EVID,TOPm
INTEGER TA(58),TC(58).TP(58)
INTEGER TIME.SIMTIM
COMMON/GLOBAL/ TA.TC.TP.TIME.NPC.NMP.SIMTIM.NINSTR
DIMENSION C0UNT{58.58).INSTR(58) ';5im in'N1Nb,R

COMMQN/MEM/COUNT.INSTR
DIMENSION PROB(58,58)
COMMON/PROC/ PROB.ISEEU

rnmn^cIIS !5?i' TLAST (50)'LENGTH (50) • "^ ™
COMMON/STAT/TTQ,TLAST.LENGTH,MAXQL
rnl^un^l^ 'FIRST (50)'NEXT (50) • NEXTAC (58) COMMON/Q/ QMP,FIRST,NEXT,NEXTAC
COMMON/EXP/ISD
INITIALIZE SOS AND EMPTY LIST
DIMENSION RATE(58),JMP(58),JPG(58)
DIMENSION OPR(58.58).TEMP(58)
DATA SUC.PRE0.SCHED.EVTYPE,EVID/1,2,3,4.5/
DATA TOPMT/1/
DO 21 1-1,39
EMPTY(I)ol+i
DO 22 M.NMP
NEXT (IM
FIRSTdM
SQS(1.SUC)-1
SQS(1,PRED)-1
ACTIVATE ALL PROCESSORS AT TIME-B
DO 23 I-l.NPC
CALL INSERT(1,1,8)
CONVERT ACCESS PROBS. TO CUMULATIVE ACCESS PROBS.
DO 24 I-l.NPC
DO 24 J-2.NMP
PROB(I.J)=PROB(I.J)+PROB(I,J-l)
THIS IS THE SCHEDULER
REMOVE 'FIRST' ELEMENT IN SOS AND RESTORE PTRS.
I-SQS(l.SUC)
IFd.EQ.DTYPE 781
FORMAT(IX.'EVENT LIST EMPTY')
J=SQS(I.SUC)
SQS(1,SUC)=J
SOS (J.FRED)=1
UPDATE TIME
TIflE-SQSd.SCHED)
IF(TIME.GE.S1MTIM)G0 TO 2881
EVNUM-SQS(i.EVTYPE)
1D-SQS(I,EVID)
UPDATE EMPTY LIST
TOPMT-TOPMT-1
EMPTY(TOPMT)-l
ACTIVATE CURRENT EVENT
GO TO (1,2) EVNUM

"f ■ ^-^—*. ■- .■■■-.- ■-- -- *d

■«■—■■■. ■IMH« ^OT 1 ■

41

Page 184

TYPE 782
782 FORMAT(IX/SCHEDULER HAS UNKNOWN EVENT TYPE')

STOP
1 CALL PC(ID)

GO TO 1808
2 CALL HPUOJ

GO TO 1888
C OUTPUT STATISTICS
2881 CONTINUE

DO 2882 I-l.NflP
2882 N1NSTR=NINSTR+1NSTR{I)

TinE-simin
WRITEil9,41),TIME,NINSTR
FORMAT(IX.'NO. OF UNIT INSTR EXEC IN* ,2X,I12,2X,'TIME
1UNITS IS',2K,112)
UER=NINSTR/TinCvrl.8
URITE{19.40),UER
TYPE 48,UER

48 FORMAT (IX,'UNIT EXEC RATE-',H8.6)
C. FIND NO. OF INSTR EXEC BY E^H PROCESSOR

DO 31 I-1,NPC
DO 31 J-l.NHP

31 JPC(I).JPC(I)+COUNTn,J)
C F'ND NO. OF ACCESSES TO EACh. nEMORY

DO 32 I-l,NnP
DO 32 J-l.NPC

32 JMP(I)-JMP(I)+COUNT(J.I)
URITE(19,42),(JPC(I),I.1,NPC)

42 FORMAT (/.IX/UNIT INSTRUCTIONS EXECUTED BY INDIVIDUAL
1 PROCESSORS'./,58(1X,118./))

C FIND ACCESS FREQUENCIES FOR THIS SIMULATION RUN
DO 33 I-l.NPC
DO 33 J-l.NnP

33 PROB(I.J)=COUNT(I,J)/JPC(I)
URITE(19.443)

443 FORMAT(IX.'ACCESS FREQUENCIES',/)
DO 333 Nl.NPC

333 URITE(19.43),(PR0B(I,J).J-1,NMP)
43 F0RMAT(1X.8(F8.G.2X))
C COMPUTE AVG UAIT TIME.AVG Q LENGTH

DO 34 Nl.NMP
AVQL-l.B*TTQ(I)/TinE
AVUT«.l.e*TTQ(I)/jnP(IJ

34 URITE(19.44),I.JMP(I).MAXQL(I).AVQL,AVUT
44 FORMAT (.MX,'****** MEMORY UNIT ',12.' *******,/,

IIX.'NO. OF REFS^'.I^./.IX.'MAX Q LENGTH-M2,/,
IIX.'AVG. Q LENGTH-'.F8.5./.IX,'AVG.
2UAITING TIME-',FIB.4)
N-TIME/18
DO 881 IO-1.NMP
AV-INSTR(ID)/TIMEv:18.8

881 URITE(19.282).AV
282 FORMAT(/.IX.'AVER^GE VALUE-',F18.5)

STOP
END

mt

•~^mmmmmmmmmmmmmmmi^mmmmimm*^m^^m*mm*^m^*wmm^*'Mmnm\mv ■

Page 185

L it Vf vr »V ft)V Vf ft >v ft ft >V >V ft »V »V >V >V it it it it it it it it It It

SUBROUTINE PC(ID)
DIMENSION PR0B(5e,58)
COmON/PROC/ PROB.ISEED
INTEGER QnP(58.58),FIRST(58).NEXT (58).NEXTAC(58)
COfinON/Q/ OMP.FIRST,NEXT.NEXTAC
INTEGER TA(58),TC{58),TP(58)
INTEGER TinE.sinTin
COmON/GLOBAL/ TA. TC. TP. TinE.NPC.NIIP.SinTin.NINSTR
1 NTEGER TTQ(58).TLAST(58).LENGTH(SB),MAXQL (58)
COmON/STAT/TTQ.TLAST. LENGTH, MAXQL

C PROBd.JN PROBABILITY(PC(I) ACCESSES PC (J))
C GENERATE A UNIFORI1 RV & DETERMINE MEMORY TO BE ACCESSED
1 RV=UNIRAN(!SEED)

RV=RV+1.8/NPC*ID
IF(RV.GT.1.8)RV-RV-1
DO 18 Ul.NMP
IF(RV.LE.PROB(IO.I))GO TO 188

IB CONTINUE
GO TO 1

188 IMP-I
C INCREMENT Q MEASURE COUNTERS

TTQ(lMP)=TTQ{lMP) + (TIME-TLAST(IMP)hvLENGTH(IMP)
LENGTH(IMP)=LENGTH(1MP)+1

IF(LENGTH(inP).GT.MAXQL(IMP))MAXQL(IMP).LENGTH(IMP)
TLAST(IMP)=TIME

C PUT IN REQUEST IN QUEUE FOR CHOSEN MEMORY
QMP(IMP.NEXT(IMP))-ID
NEXT(JMP)=NEXT(IMP)+1
IF(NEXT(IMP).GT.NPC)NEXT(IMP)-1

C CHECK IF MEMORY UNIT HAS OTHER REQUESTS QUEUED
IF(LENGTH(IMP).GT.1)RETURN

C CHECK IF MEMORY IS READY TO GRANT THIS ACCESS NOU
IF(TIME.GT.NEXTAC(IMP))GO TO 288
CALL INSERT(2,IMP,NEXTAC(IMP))
RETURN

288 CALL INSERT(2,IMP.TIME)
RETURN
END

C ft it ft ft ft ft ft ft ,v it it it it it it if if ft »v >V >V ft it it it it

SUBROUTINE MP(ID)
I NTEGER QMP(58,58).FIRST(58),NEXT (58).NEXTAC(58)
COMMON/O/ QMP.FIRST.NEXT.NEXTAC
INTEGER TA(58),TC(58).TP(58)
INTEGER TIME.SIMTIM
COMMON/GLOBAL/ TA. TC. TP,TIME,NPC.NMP,SIMTIM,NINSTR
DIMENSION C0UNT(58.58).INSTR(58)
COMMON/MEM/COUNT.iNSTR
I NTEGER TTQ(58).TLAST(58).LENGTH(58).MAXQL (58)
COMMON/STAT/TTQ.TLAST.LENGTH,MAXQL
COMMON/EXP/ISEEO
IF(LENGTH(I0).EQ.8)TYPE 783

783 FORMAT (IX/MEMORY ACTIVATED UITHOUT SCHEDULED REQUEST')
C INCREMENT Q MEASURE COUNTERS

- -—. k. , imm - - - - - -

w^^^mim^mww ■■■mil ii v.iniin ■ ■■ w~—*mtm*^mmrmmm*mmm^mmmß i i i^^mm*^ n■ .i«!!! ■ n ■ ■

Page 186
INSTR(1D)-1NSTR(1D)+1
TTQ(IO)-TTQ(im*(TIME-TLAST<IOn«LEHCTH{lO)
LENGTH(1D)=LENGTH(ID)-1
TLAST(ID)-TinE

C IDENTIFY PC TO BE SERVICED Ab PER FIFO STRATEGY
IPC-OnPdO.FIRSTdO})
FIRST(1D)=FIRST(1D)+1
C0UNT(IPC.ID)-C0UNT(IPC,ID)+1
IF (FIRST (101.CT.NPOFIRSTUOM

9374 RV-UNIRAN(1 SEED)
TPROC-A50-TP (IPO .vALOG (RV)
IF(TPRÜC.GT.18>vTP(IPC))G0 TO 9374
JTinE-TinE+TA{lü)+TPROC

C SCHEDULE PC
CALL INSERT (l(iPC,JTir.E)
NEXTAC(ID)-TI!1E+TC{ID)
lF(LtNGTH(IDi.EQ.8)RETURN
CALL INSERT(2.ID.NEXTAC(ID))
RETURN
END

C i< it it it u it it it it it it it it it it it it it it it it it it it it it it It

SUBROUTINE INSERT(JTYPt.ID.TSCHED)
C THIS ROUTINE INSERTS ELEMENT I AFTER K URT TIME

INTEGER TSCHED
INTEGER SQS(188.5),EnPTY(S9)
INTEGER SUC.PRED.SCHEO.EVTYPE.EVID.EVNUM.TOPflT
COnnON/SQSET/ SOS,EMPTY.SUC,PREO.SCHED.EVTYPE.EVID.TOPni

380 IF(T0PnT.EQ.8) TYPE 784
784 FORMAT(IX/SCHEDULER OVERFLOU')

IF(SQS(l,SUC).EQ.l) GO TO 328
J-SQSd.SUC)

318 CONTINUE
IF (SOS(J.SCHED).GT.TSCHED) GO TO 338
1F(SQS(J.SUC).EQ.1)G0 TO 348
J-SQS(Jt3UC)
GO TO 318

328 K=l
GO TO 188

338 K=SQS(J,PRED)
GO TO 188

348 K=J
188 1=EMPTY(T0PMT)

SDS(I,SUC)=SaS(K,SUC)
J=SQS(K,SUC)
SaS(l,PRED)=K
SDS(K,SUC)-I
SQS(J,PRED)=I
SDS(I,SCHED)-TSCHED
SQS(I.EVTYPE)-JTYPE
SQSd.EVIOMO
T0PMT=T0PMT+1
RETURN
END

-■— ' .■..-J..^—... ^.

m««mv<« mmmmtm^"^" wmm wummmmmmmmmr m wm "WB

1
2

REAL FUNCTION UNIRANUSEED)
JSEED-JSEED)v3141B92G21
JSEED=.JSEED+726ieG7113
IF(JSEED)1,2,2
JSEED=JSEED+343597383B7+1
TEMP-JSEED
UN I RAN=TEnP,vB. 291838a3HBE-l 8
RETURN
END

Page 18?

!■■■ ^lmmmmmmmmmiam

