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ABSTRACT 

The design of programs that generate ctuestions and exercises 

for students is discussed. The task of direct interest is the 

generation of programming exercises. This is dealt with in coma 

detail and sets of such pxercises produced Py programmed 

generators are presented. 

Several design strategies are investigated, starting u;th the 

use of grammar - iiKe generative mechanisms. The design of 

exercises is then vieyed as an assembly task, putting together 

compatibie elements to create an acceptable problem-structure, 

accCi'&ing kn^i-iledge cf the task jrea encoded as a semantic net. A 

sentence synt'iesi 2er which gen-rates coherent English sentences to 

describe the assembled problems '. r then described. Attention is 

also paid to the mechanisms necessary for controlling such an 

assembly process. Directing generators towards problems involving 

specified concepts and making use of information available about 

the student's faetUiartty with a hierarchy of concepts are two 

issues discussed in thic ^re.',. 

Other strategies discussed are: generalizing 'good* problems 

to produce useful variants; use of reasoning about actions in a 

task area to recognize good problem situations; and the design of 

surface detail to create prcblems having a t;:ven abstract 

structure. 



L-    INTRODUCTION 

The -.olion of a generative CA1 system har aitracted some 

at tention(i). An important issue in this area is th0 structure of 

generators for problems and exercises, and it is this issue that 

we concern ourselves uith in the following pages. Design of 

generators for interesting classes of problems appears within 

reach and is, of course, advantageous. Among the frequently cited 

advantages of generation, as against selection from a long list, 

are the controllability and adaptability that generation provides. 

These features provide for the creation of exercises having 

specified content and posing a specified levei of difficulty to 

suit the needs of an irdividual student at a specific jtaqe in 

lea-ning. And, of courte, generative schemes provide for 

potfntially larger sets of examples to choose from, compared to 

any   f ini te   list. 

Developing a generative scheme forces aialysis of problems 

and th„ task area to a level of detail that ia usually avoided in 

making a collection of exercises. in fact, such analysis might 

possibly lead to the the definition of knowledge domains 

operationally. For instance, in classifying exe-cises on the 

basis of complexity, one could use a response mea^u'-e such as 

'average time taken for solving*, but a generative scheme 

motivates attempts to understand the difficulty posed by an 

exercise   in  terms of   its structure. 

Another aspect of generative schemes is the level at which 

information is available to the system th^ handles the exercistf. 

Uhile a collection of exercises could be handled by a more or less 

sophisticated page-turner,   generative schemes require a   fine-grain 

(1)  Uhr,   1363;  Uttai  et al,   i37iD!  Uexler,   1370 and Koffman,   1972. 



representation of some knowledge of the task area in order to 

work. He use a semantic net in which is encoded a variety of 

information on the tack area. In the case of programming 

exercises, the semantic net contains information on types of 

rr.ampui able objects such as numbers, symbols, sets and sequences, 

their attributes, sets of examples for each type of object or 

generativo procedures for creating examples, data structures in 

terms of which each type of object may be realized, manipulations 

that may be performed on each type of object, etc.. Dealing with 

information in such detail is essential if we are ever to develop 

systems that understand the task area - to generate answers to 

exercises or to generate code to recognize a variety of acceptable 

answers along with the generation of the exercise, to answer 

questions about a specific exercise or about the task area, and to 

attempt to carry out generated exercises tc find out their 

characteri st ics. 

The recognition that generative techniques can make good use 

of a fine-grain representation of semantic information relevant to 

a task area hardly concludes the analysis of problem generation. 

In fact, this recognition is more appropriate as the first step 

than as the conclusion in any treatment of the subject. 

Development of a problem generator in a given area should start 

with the identification and analysis of viable sets of problems in 

that area, and proceed to specify suitable structures for programs 

that will generate these sets. Specific strategies for accessing 

representations of knowledge in the process of problem generation 

should be spei t cut. 

Undoubtedly, an understanding system with a well integrated 

store of knowledge of a subject area la the proper ultimate form 

for a problem generator.  Such a system would be able to answer 



questions about the area, design good problems in the area, 

discues them and even solve them. The uorK reported here does not 

yet aim at such a system. The approach taken here is exploratory 

and quite empirical. The presentation is in the forn* of a 

discussion of a sequence of siiaple strategies for using different 

aspects of information about a subject area for generating 

non-trivial problems. f1o"t of the strategies discussed are 

illustrated with examples of problems generated by programs based 

on them. AM the examples presented are in the area of 

programwinj exercises, though tha discussions are hopefuliy 

relevant to other kinds of problems as well. 



Lu ENUflERATlVE SCHEMES PATTERNED AFTER CONTEXT-FREE pRAriflARS 

The simplest generative scheme is an extension of the 

slot-and-fi!ler scheme, as it is cailed in linguistics. in this 

scneme, one has a set of probleüi franies incorporating variables. 

There is a specification of the admissible values that these 

variables may assume, either in the form of numerical iimi s or in 

the form of a set of admissible values for each variable. 

There are tue directions of development that enrich this 

•jchems. Uhrtl] reports one of them, which is to implement 

cemputationally defined relations between the variables. By 

choosing ce'iam independent variables randomly within the 

permitted ranges or from sets of admissible values, the others 

coyld be computed from lt,v&, thus ensuring compat ibi i i ty. The 

original scheme, of course, does not provide mechanisms for 

meeting such compatibiIi y requirements and forces the variables 

to be chu^n independently ot each other. 

The spcond direction of ü?vplopment involves the use of a 

grammar-1 ike scheme. Unlike slot-and-filler schemes, the 

gr^mmar-iike schemes a^e not limited tc finite-state languages. 

They have been used in the context of problem generation for 

synthesizing sentences having phrase structure. Koffman (1972) 

has reported the use of protaabi I isxic yraw*3ra for the ganeration 

of word problems. Simple programs that use grammar-1 ike schemes 

to generate questions in artificial intelligence (developed by 

Neuell and Robertson) and in cognitive psychology {developed by 

Uaterman) have been in use at the Cartiegie-Mel Ion University since 

1371, 



Fig.i shows the e.,jnier3t i ve scheme underlying the program 

which deals with artificial intelligence. The quöstions produced 

by this program are always gramtnat icaMy and semantical ly correct, 

and most of the questions are meaningful. Not shown in the scheme 

is a probability assignment convention that allows certain choices 

to be more or less freouent than other choices in the generative 

procedure, increasing the percentage of deciratle questions in the 

output. Figures 2 and 3 show some of the questions produced by 

the artificial intelligence program and the cognitive psychology 

program respectively. 

Enumerative schemes such as th'. s derive their po^^r from a 

basic device -- classification of a set of phrases into different 

subsets of syntactically and semantical ly similar items. Question 

frames are written incorpc ating variables which are substitutab!e 

by members of appropriate subsets of phraseo. Further, the 

phrases are themselves generatahie by this process by expansions 

of embedded variables into suitable sub-phrases, the variables in 

figure 1 are indicated by the terminal angle brackets '<' and '>'. 

sets of phrases that are subst i tutable for the varitbles are 

defined in the lower half of the figure. 

 - *■ 
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<ÜUESTIQNS>: (  ("UHAT iS " <ENTiTY> "?'} 

("WHAT MET HOC) DOES " <PROGRAi1> " USE?") 

("UHAT TAS^S GOES " <PROGRAn> " WORK; UN?") 

("HAS " <TASK> " BEEN ACCOflPLISHEÜ BY A PROGRAM?") 

("UHERE IS AI RESEARCH ON •' <TASK> " GOING ON?"} 

("UHAT !5 THE CURRENT ACHIEVEMENT IN " <TAS<'> "?") 

(■!UHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO " <AR£A> "?") 

("UHAT HAVE BEEN THE CONTRIBUTIONS f1F " <AREA> " TO AI?") 

("NAME A TASK THAT " <PRCGRAM> " DOES NOT DO, BUT MIGHT DO WITH SOME 

MODIFICATION.") 

("UHY IS " <ENTITY> " SO CALLED?") 

("UHAT PROGRAMMING LANGUAGE WAS USED FOR " <PROGRAM> "?") 

("HAS " <LANGUAGE> " BEEN USED TO ACCOMPLISH " <TASK> "?")  ) 

<ENTiTv>: ((<PROGRAfr.) t<HEURISTIC>) (<PHENOM£NA>) (<CONCEPT>) ...) 

<C.aNCEPT>-! ("A METHOD") ("A PROBLEM") ("A HEURISTIC") ,..) 

<PRnGRAM>: ((<RECOGNI riON-SYSTEn5>) (<GAME-PLAYERS-.) {<THEOREM-PROVERS>) 

(<QUESTION-ANSUERERS>) (<GENERAL-PROBL£M-SOLVERS>} ... 

(<UNDERSTANDING-SYSTEM5>) (<OESIGN--SYSTEMS>) 

(<CONSTRAiNT-SATISFIERS>) i 

<LHESS-PRCGRAMS>; ({"NEUELL-SHAU-S1MON CHESS PROGRAM") 

("BERNSTEIN'S CHESS PROGRAM") ("CMU TECHNOLOGY CHESS PROGRAM")  ...) 

<TASK>: ((<GAMES>) (<MANAGEnENT-SCIENCE>) (<CONCEPT-FORMAT10N>) ...) 

<PROGRAM~FEATURE>: ((<HEUR1STIC>) ("ALPHA-BETA") ("RECURSION')  ,..) 

E id. I       Part ot gn Enumerative Scheme Patterned after 

Context Free Cramrngrs 
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Q: WHAT AI PROGRAnS HAVE BEEN WRITTEN IN HLISP? 

Q: UHY IS FEATURE EXTRACTION SO CALLED? 

Q: HAS THERE BEEN ANY CONTRIBUTION OF AUTOMAIA THEORY TO AI? 

Ü: WHAT WAS THE FIRST AI EFFORT ON CHESS? 

Q: HAS SAIL BEEN USED TO ACCOriPLlSH CHECKERS? 

G; UHAT HAVE BEEN THE CONTRIBUTIONS OF Al TO PHYSICS? 

Q: ,iAS APL BEEN USED TO ACCOTFUSH ASSEtlBLY LINE BALANCING? 

Q: UHAT IS THE CURRENT ACHIEVEIIENT IN CHESS? 

Q: UHAT IS THE CURRENT ACHIEVEHENT IN PLANT LOCATION SELECTION? 

Q: UHAT HAVE BEEN THE CONTRIBUTIONS OF INDUSTRIAL AOMIN I STRATI ON TO AI? 

Q: UHAT IS A HEURISTIC? 

Q; HAS SAIL BEEN USED TO ACCOnFLISH RELATIONAL CONCEPT FORMAT I ON? 

Q] HAS ASSEMBLY LINE BALANCING BEEN ACCOMPLISHED BY A PROGRAM? 

Q: HAS COBOL BEEN USED TO ACCOMPLISH CHESS? 

Q; HAS THERE BEEN ANY CONTRIBUTION OF PHYSICS TO AI? 

Q: UHAT IS HORIZON PHENOMENA? 

Q: UHAT PROGRAMMING LANGUAGE UAS USED FOR REF-ARF? 

Qi UHAT UAS THE FIRST AI EFFORT ON RELATIONAL CONCEPT FORMATION? 

Qj UHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO YOUR EDUCATION? 

0; UHAT METHOD DOES GPS USE? 

Q) UHAT. TASKS DOES FREEMAN'S DSD UORK ON? 

Qt NAME SOME HEURISTICS USED IN SRI ROBOT. 

Q: UHO DEVELOPED EXPONENTIAL GROWTH? 

F)fl«2  EhÜfiUi ßl ibe Duet^ion Sftnarator isr Ar 1; 1 f Lslii Intel I iqence 

»iBBWWMi 
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UHAT CONTRIBUTION HAS LOEHL1N MADE TO THE STUOY OF COGNITIVE PSYCHOLOGY? 

UHAT IS CYBERNETICS? 

UHAT ARE THE SIMILARITIES BETUEEN TREE STRUCTURES AND NETWORKS? 

UHAT ARE THE SiniLARITiES BETUEEN ALGORITHM AND HEURISTIC? 

UHAT CONTRIBUTION HAS ABELSON MADE TO THE STUOY OF COGNITIVE PSYCHOLOGY? 

UHAT IS CONTENT ADDRESSABLE nEMüRY? 

UHAT IS AN EXAMPLE OF A GPS GOAL? 

UHAT IS A riAGIC SQUARE? 

UHAT ARE THE DIFFERENCES BETUEEN SYNTAX AND SEMANTICS? 

DEFINE MARKOV PROCESS. 

DESCRiBE A FEU METHODS THAT HAVE BEEN USED IN ARTIFICIAL INTELLIGENCE. 

UHAT IS A BIT? 

UHAT ARE THE DIFFERENCES BETUEEN TEMPLATE MATCHING AND FEATURE 

EXTRACTION' 

UHAT IS ALGOUS? 

UHAT CONTRIBUTION HAS CHOMSKY MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 

UHAT IS PANDEMONIUM? 

UHAT CONTRIBUTION HAS UIENER MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY? 

UHAT ARE THE SIMILARITIES BETUEEN COMPUTER AND HUMANS - BY ANALOGY? 

DEFINE DISCRIMINATION NET. 

UHAT ARE THE SIMILARITIES BETUEEN COMPILER AND INTERPRETER? 

UHAT ARE THE SIMILARITIES BETUEEN TEMPLATE MATCHING AND FEATURE 

EXTRACTION? 

Fig. 3  Output af ih£ Question Gengrato,' (or Coani tive Psycho I oqu 
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Uord categorization on a oemantic as well as syntactic basis 

enables these programs to produce a surprisingly high percentage 

of semantically meaningful sentences compared to programs that are 

based on generative syntax alone. Restricting oneself to the 

generative pouer of ccntext-free rewrite rules has its own 

advantages. The control structure of th^ problem generator 

becomes simple and straightforward, making it easy to construct 

trouble-free programs. The essence of these schemes is the simple 

hierarchical top-down control structure that relate a set of 

choices. For each choice that is made, th? grammar simply for-es 

the other (lower level) choices that one is conmitted to make as a 

result. Each act of choice transfers control to that part of the 

grammar where tne -ailable alternatives for lower level choices 

are contained. On the other hand, restriction to such a simple 

program structure does result in severe limitations. 

The basic limitation is the absence of a structurea 

representation of the task environment of the <ind found in 

practically every sys^t i that performs a ccgnitively significant 

task (CarboneM, 1378, ^. d Uexler, 197k}, describe in'truct iona I 

systems incorporating structured representatir.i? of knowledge). 

Generally in such systems associations are used to impose an 

object-attribute-value scheme on the task environment and to 

implement funrtionai and relational mappings. Computational 

mappinns of a functional or relational nature are performed hy 

programmed routines. This is in contrast to the implicit 

representation of knoHedcje in grammar-like systems which provide 

only two devices to ensure coherence in the output: co-occurrence 

of symbols in rewrite rules which ensures co-occurrence of 

complement"-u parts of the problem in the outputt and set 

membership -ihich enables semantical ly and syntactically equivalent 

items to ti  distributed ir  e output in an identical manner. 
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_yen the use of variab!«;^ for holding data and control 

information is not possible. This means for instance, that one 

cannot use a variable to hole on to the name of the data-structure 

that one has chosen to refer to in a problem being generated, so 

that it can be used repeatedly. Instead one requires one sei of 

ruies for generating, say, sorting exercises on lists and - 

similar but different set of rules for sorting exercises on 

arrays, unless of r.our3e there is a single reference to the nature 

of the data-structure. 

Final'y, syntactical and semantic similarities of phrases are 

clumped together uhiie classifying these phrases into subsets. 

The facx that a particular set of pnrases refers to investigators 

in a particular field nas to be rememberei along with the 

syntactic :nformation that all entries in this subset are singular 

in number, and that in addition they are all only last names. 

Achievements of investigators expressed '<n the past tense uive to 

be segregated from their activities expressed in other tenses. 

Flexibility in reference can be obtained only by entering 

grammatical variants of the same phrase in different tubi-ets. 

Summing up, it appears that the initial advantages of a 

grammar-1 ike scheme are outweighed by the restrictions it imposes 

on the development of a problem generator. It becomes necessory 

to recognize and separt'te two concepts implicit in such schemes, 

one being more general than the other. The first is the concept 

of generative syntax with its power to generate well-formed 

sentences in natural language or in mathematical notation. The 

second l."« the concep' of an eltgant and 'jconcmical principle of 

program organization - that of a top-down enumerative scheme for 

generating a recursively defined set of structures. It is 

obviously  desirable  to  e»iploy  the  latter  concept  whenever 
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possibie, without committing oneself to tha fonnalization of ail 

the machinery required for problem generation in the form of 

generative syntax. Steps In this direction are particularly 

important if we visualize CAI systems having access to detailed 

representations of Kncuiedge of task areas. Uhatever fo^m such 

Knowledge is going to be in - semantic nets, sirfiuiation models or 

understanding systems - it certainly is not going tn be all 

syntax. 
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li- GENERATION QF A PROBLEH A^ IH£ ASSEHBLY QF A STRUCTURE 

3. \  Assembly gi. Problems 

Ue can vieu the creation cf exercises as a task in design. 

Given the function of a desired object, hew does one decide its 

structure? How does one recog. ize the system ui design decisions 

necessary in a given case? How does one encode decisions made in 

the earlier stages cf the process so that their implications for 

later decisions are readily ccmputable9 in this section ue will 

deal with the generation of a basic kind of programming problem in 

these terms. These problems exercise the student's skills in 

handling arrays and in organizing uata in the form of sets and 

sequences of numbers and symbol?. A tyoical hand generatec' 

problem of this type (1) is: 

YOU ARE GIVEN THE ARRAYS IARRAY[l:18e] AND flARRAY [1:108). FIND 

ALL SETS OF NUHBERS IN 1ARRAY. Uu HATTER WHAT THEIR ORIGINAL 

POSITION, UHICH CAN BE PUT IN COUNTING ORDER (I.E. EVERY ELEflENT 

IN A SET. EXCEPTING THE FIRST AND THE LAST, SHOULD HAVE ITS 

SUCCESSOR AND PREDECESSOR IN THE SÄHE SET). MARK THE FIRST SET BY 

PUTTING TS IN THE CORRESPONDING POSITIONS IN MARRAY, THE SECOND 

SET BY PüTTINr, 2,S IN THE CORRESPONDING POSITIONS. AND SO ON. PUT 

ZEROES IN THE POSITIONS OF ELEMENTS UHICH DO NOT BELONG TO ANY 

SETS. 

Consider the task of a program that has to generate problems 

in this form. A series of decisions have to be made, some of them 

independent and some contingent on the others. Analysis of a 

number of such problems shows that it is possible to repreaent in 

a compact manner the basis .'or making these de-is ions for 

(1) Courtesy of Ruven Brooks 
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producing reasonably large subsets of the studied problems. It is 

possible in t^ese cases to find a conimon form in the structures of 

the individual members of the probiern set. For examf-ls, the 

problems(l) of Fig.4 ►• .vc a coniRon Etructi're outlined in Fig.5. 

The problems in Fig.-i as neli as those in Fig.G were generated by 

programs having the simple control structure discussed in the last 

paragraph of Section 2. Use of this top-down generative structure 

is based on the recognition that the problfts to be constructed has 

a basically tree-like structure. The highest levei of the program 

therefore deals with the linking up of the major sub-structures of 

the tree which are assumed to exist. Lower level routines are 

then defined for creating these smaller structures. The 

parcelling out of tho assembly task can be spread üver several 

levels, the routines at the terminal nodes selecting and creating 

basic elements of the problem, while ine higher level routines 

assemble parts created at   lower   levels  into bigger  structures. 

(DGenerated by a program to be described shortly. 
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DEFINE AN ARRAY L(20P) AND READ NUnBERS INTO THIS ARRAY FROM THE 

F,LE FGR81.GEN CHOOSE A SUITABLE FORriAT FOR THE READ STATEMENT 

BY FIRST TYPIMG CUT FOR01.GEN AND EXAMINING IT. EXAMINE THE 

ELEMENTS OF L AND IDENTIFY THE MAXIMAL SET EACH ELEMENT OF UHICH 

IS A PRIME. SORT THE E! EMENTS OF THE SELECTED SET IN NUMERICAL 

ORDER. PLACE TH1S ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF 

L, IN DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE 

LOCATIONS OF L UHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED 

NUMBERS. "PINT OUT THE FINALLY SELECTED NUMBERS. 

DEFINE AN ARRAY L(30,30) AND READ NUMBERS INTO THIS ARRAY FROM THE 

FILE FOR0I.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT 

BY FIRST TYPING OUT FOR0i.GEN AND EXAMINING IT. EXAMINE ALL THE 

ROUS OF L AND IN EACH ROW. IDENTIFY ALL SEQUENCES OF 7 OR MORE 

NUMBERS HAVING ELEMENTS EACH ONE OF UHICH IS A NUMBER GREATER THAN 

4. POOL THE ELEMENTS OF ALL THESE SEOUL*:ES AND SORT THEM IN 

NUMERICAL ORDER. PLACE THE 30 LARGEST ELEMENTS ALONG THE LOUEST 

ROU IN NUMERICALLY INCREASING ORDER FROM LEFT TO RIGHT. PLACE A 

ZERO IN ALL THE LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE 

FINALLY SELECTEO NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS. 

DEFINE AN ARRAY L(300) AND ASSUME THAT THIS ARRAY IS FILLED UITH 

NUMBERS IN THE RANGE FROM -1000 TQ 1000. EXAMINE THE ELEMENTS OF 

L AND IDENTIFY ALL SEQUENCES OF 3 OR MORE NUMBERS HAVING ELEMENTS 

THAT ARE ALTERNATELY A CUBE AND A NON-CUBE. CONSIDER THE 

SEQUENCES IN THE ORDER OF INCREASING FIRST TERMS. CHOOSE THE 

FIRST G SEQUENCES IN THIS ORDER. IF THERE ARE MORE THAN B 

SEQUENCES. 0THERUI5E. CHOOSE ALL THE SEQUENCES. POOL THE 

ELEMENTS OF ALL THE CHOS£N SEQUENCES AND SORT THEM IN NUMERICAL 
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ORDER. PLACE THIS OPDERFO SEQUENCE OF NUMBERS AT THE BEGINNING OF 

L, IN INCREASING NUMERI GAL ORDER. PRINT OUT L. 

DEFINE AN ARRAY 1(18.18] AND READ NUMBERS IN'O THIS ARRAY FROH THE 

FILE FOR31.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT 

BY FIRST TYPING OUT FCR81.GEN AND EXAMINING IT. EXAMINE ALL THE 

ROiJS OF L AND IN EACH ROU. IDENTIFY ALL SEQUENCES OF 3 OR MORE 

NUMBERS HAVING ELEMENTS IN THE FOLLOWING ORDER - A NUMBER 

DIVISIBLE BY 7, AN ODD NUMBER. A NEGATIVE NUMBER. SUCH A SEQUENCE 

MAY START WITH AN, ONE OF THE SPECIFIED TYPES OF ELEMENTS. POOL 

THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL 

ORDER. PLACE THE 1 J LARGEST ELEMENTS ALONG THE FIRST COLUMN IN 

NUMERICALLY DECREASING ORDER FROM TOP TO BOTTOM. PRINT OUT THIS 

COLUMN. 

DEFINE AN ARRAY L(ee0) AND FILL M UP U!Th RANDOM NUMBERS IN THE 

RANGE FROM -1008038 TO 1000883. EXAfHNE THE ELEMENTS OF L AND 

IDENTIFY ALL SEQUENCES OF 7 OR MORE NUMBERS HAVING ELEMENTS EACH 

ONE OF WHICH IS 4 MULTIPLE OF ITS PREDECESSOR. POD' THE ELEMENTS 

OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL ORDER. PLACE 

THIS ORDERED ^QUENCH CF NUMBERS AT THE BEGINNING Or L, IN 

DECREASING NUMF AL ORDER. PLACE A ZERO IN ALL THE LOCATIONS OF 

L UIHICH DO NOI CONTAIN ONE OF THE FINALLY SELECTED NUMBERS. PRINT 

OUT L. 

Ficj.4  Examples of 'Array Order jpg Problems' 
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PROBLEfl- 

•SPECIFIED  INPUT.  RANGE OF NUflBERS DECIDED HERE 

•SPECIFIED DATA-STRUCTilRE.  DNE OR TWO DIMENSIONAL ARRAY 

-SOURCE OF DATA 

SUB-CTRIJCTURES CF GIVEN 

DATA-STRUCTURE   (EG.   ROUS/COLUMNS) 

•CBJECT  TO BE SEARCHED FOR 

SPECIFIED SETS 

SPECIFIED SEQUENCES OR 

SUBSTRUCTURES CONTAINING 

SPECIFIED OBJECTS 

►1ST MANIPULATION. 

—    "ORGANIZATION OF OBJECTS DETECTED 

POUL OR/AND ORDER SELECTED OBJECTS 

-RELOCATION OF REurlGANlZEO OBJECTS 

SPECIFY DESTINATION 

(SUCH AS THP  TOP 3 ROUS, 

Mi DOLE rtOU,   LAST COLUflN) 

'URIHER hAW'PULATlONS 

•OUTPUT AS SPECIFIED 

F i q. 5       The Structure oi a Class ul Arrau haniPUtatton Problems 

aaa-aajittfTwn 
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CONSIDER THE LIST L13 AND THE UNNAMED LIST ON THE STACK. SELECT 

THE SET OF ALL EVEN NL'^ERS WHICH ARE PRESENT IN L19 BUT NOT IN 

THE UNNAflED LIST. FIND THE SUM OF ALL THE SELECIED NUMBERS AFTER 

Eu IM INATING MULTIPLE OCCURRENCES. 

YOU ARE GIVtN THE LIST-STRUCTURES L13 LI« L15 AND L16 AND A 

UNNAMED LIST-STRUCTURES ON THE STACK. THEY MAY CONTAIN NUMBERS AT 

ANY AND ALL LEVELS. SELECT THE SET OF ALL PRIME NUMBERS WHICH ARE 
DRESENT IN LIB . IN L15 . IN LU . AS WELL AS IN L13 BUT NOT IN 

EACH UNNAMED LIST-STRUCTURE. ' IND THE SUM OP ALL THE SELECTED 

NUMBERS AFTER ELIMINATING MUL   IPLE OCCURRENC'_S. 

CONSIDER THE 3 UNNAMED LiST-ETRUCTURES ON THE STACK AND THE 

LI ST-STRUCTURES L18 L19 AND L2B. THEY MAY CONTAIN NUMBERS AT ANY 

AND ALL LEVELS. SELECT THE SET OF ALL NEGATIVE NUMBERS WHICH ARE 

PRESENT IN L20 BUT NOT !N L19. MERGE THESE WITH THE NUMBERS WHICH 

ARE GREATER THAN 100 FROM THE TOPMOST LIST-STRUCTURE ON THE STACK. 

PLACE ALL THE SELECTED NUMBERS ON L18 AFTER EMPTYING IT FIRST. 

SORT THE CONTENTS OF L18 IN DESCENDING NUMERICAL ORDER. FIND OUT 

ALL SEQUENCES OF PRIME NUMBERS IN IT ANO PLACE THEM ON THE 2 OTHER 

UNNAMED LIST-STRUCTURES- 

Fig.6      A Set of. Simple Liot-Prccessinq Problems 
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Some of the terminal routines make random choices, while others 

access the structures already assembled and choose compatible 

elements to be used in the sub-structures being constructed 

Access to a representation of knouledge of the task area having 

the form described on p.^ge 4 also occurs at this level as a part 

of the relevance snd compatibility computation. 

It is usefui at this stage to evaluate the utility of the 

selective raechanii^s discussed above. Very rough estimates can be 

made of the total number of structures tnat are in aome sense 

possible, and the fraction of these structures that are 

mean'ngful. The number of branchings that occur in the course of 

generating a problem of the type shown in Fig.A is of the order of 

15. corresponding to the branchings of Figure 5, 

While the choices tnat create structural differences between 

problems usually involve only two or three alternatives, e.g. the 

choice between one dimsnsional arrays and two dimensional arrays, 

numerical cho:ces ir.volve large numbers of alternatives. Most of 

the numerical choices are equivalent, but selecting a number in 

the wrong range could create absurd probiems, e.g., comparing 

numbers in the range from 0 to 108 with the threshold of 2583. 

Estimating that there are 2 or 3 significant alternatives at most 

branches, the total number of choice sequences that are available 

over 15 steps is in the rjnge frcin iötü to 18t7 . Typically, 

five or six of these decisions are contingent upon others, so that 

the amount of selection exercised by (he program in producing a 

coherent problem (out of what would be mostly nonsense problems if 

free choices were made at each point) is roughly I in 503. 
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d.2 Assembly Q± Sentences 

Uhat is the nature of the stru'ture assembled by a problem 

generator in relation to a comprehencfable external description of 

the problem? One possibility is that the structures assembled by 

the generator be directly ths deep-structures of sentences which 

would -„onftitute a readable description of the problem. In this 

case all the knouleclge reauired to translate these structures into 

readable descriptions can be localized in a 'sentence 

synthesizer'. Such a synthesizer would remove the burden of 

syntactic considerations from the problem-yenerator. The input 

requirements of this Synthesizer would define a range of possible 

formats for the data-structures to be created by the generator. 

iJe have implemented such a sentence synthesizer (see Simmons and 

SlocuM, 1972 for a detailed trtatment of sentence synthesis). The 

problems in Figures G, 8, 12 and 13 were all generated by programs 

which first created well-def'ned deep-structures for their 

sentences. These were then rendered into readable form by the 

sentence synthesizer. A brief discussion of the nature of the 

sentence structures used is given here. Some information on 

programming considerations and on, the sentence synthesizer may be 

found   in Appendices A and B. 

The deep-structures are in the form of labelled directed 

graph-structures. The nodes are unnamed lists representing 

specific occurencea (or 'tokens') of concepts symbolized by 

word-roots, numbers or symbols. The edges are associations 

implemented by using association lists and a hash-coding scheme. 

While the list itself represents the token, its content, genera iy 

a word-root (referring to a specific word-sense, in the case of 

ambiguous words), represents the "type'. There may be several 

lists   with   the   same  content   to  represent   different   tokens   of   the 
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same type. Structures are formed by creating labelled iand 

directed) associations between nodes to represent deep-case 

relations between the entities referred to in a sentence. Some of 

the functions performed by these relations are illustrated by the 

examples in Fig.7. the two appendices describe briefly the 

construction and interpretation of such sentence-struct'ires. 

Uhile token-to-token associations create sentence structures, 

other associations involving types embody the sentence 

synthesir^r's knowledge of the language. For example, such 

associa' link words to their syntactic categories and to their 

excep4 plural forms when these exist. They also link 

syntac ,. categories with appropriate synthesis routines which 

recognize basic sub-structures of sentences and have tht 

capabilities to generate appropriate word-groups for them. Uhile 

token-to-token associations are dynamic in the sense of being 

created and destroyed as sentences are generated and printed out, 

the syntactic and semantic associat iont, are permanent. However, 

the same association mechanism in the programming facility 

provides the three types of associations discussed so far: 

associations embodying information on the task area as described 

on page 4, the token-to-token links which are used to create 

sentence structures and the syntactic and semantic associations 

embodying the sentence synthesizer's knowledge of English. As may 

be expected, there is some overlap between what should belong to 

the first type and what should belong to the third type. 
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«unique— (TRUE) 

-«.unique (TRUE) 

M.number«. 8 

. object «(NUMBER)— • L—name— (A) 

_ location«. (ARRAY) 

^.subscr iptl„ 

•conjunction.. (SUCH THAT) . 

(ARRANGE)«JLadverbial  phrase z> 
(COnnENSURATE) — 

[ conjunction«, (UHtN) 

subject«. (ELEMENT) 

L-subscriptZ«. (40) 

«uni.ue- (TRÜFJ 

„name— (A) 

— subscript— (I) 

.object- (ELEMENT)-unique- (TRUE) 

name— (A) 

subscript— (J) 

adverbial phrase..(COMMENSURATE) «-_subject- (I) 

««object«. (J) 

Fig.7  Qgefi Structure ci ä One-Sentence Problem 
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3»? Control Qi. thg. Generative ProcegF 

In discussing programs having the control structure described 

in Section 3.1 it is useful to talk in terms of a search of the 

'design spate' which is a special case of the 'action space', 

using the search representation for problem-solving (Newel I and 

Simon, 1972). The series of design decisions that leads to the 

assembly of a suitable object is a special case of the 

' solut ion-act ion-set;/ence'. 

Complementing this description is the set representation fur 

problem-generation which deals with the target space of al! 

problems that can be produced by the generator. Starting at the 

highest level, the prog^a"" selects progressively smaller 

subspaces. till it identifies a single point in it which 

represents the problem generated at this attempt. The design of 

the program has to start with the visualization of a rich enough 

space. The control structure has to ensure that al ! the 

visualized space is accessible by a suixable sequence of choices. 

An important question is concerned with the control of this 

access path. How can one influence a series of choices selecting 

one possible access path out of a large number all of which lead 

to meaningful problems? 

A powerful and yet simple control mechanism that provides a 

certain degree of direction in the generative process depends upon 

the use of a quasi-formal language to specify desired sets of 

problems. Por example, problems of the type in Fig.8 are easily 

produced by appropriate interpretation of brief high-level 

descriptions, e.g.: 
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(CREATE A LIST) 

(SCAN A CIRCULAR LI ST-STRUCTURE) 

(SUBSTITUTE COMPONENTS IN A SYmEYRIC LIST-STRUCTURE) 

(FIND PROPERTY OF GIVEN LIST-STRUCTURE) 

(TEST  IF A DATA-STRUCTURE  IS RECURSIVE) 

(DELETE COMPONENTS FROM A SYMMETRIC LIST-STRUCTURE) 

A sentence in such a language predetermines a specific set of 

choices to be made by the generator, leaving other choices to be 

made      freely Naturally,      the     strjcture     of      the      sentence 

interpreting mechanism uill determine the effectiveness of any 

such scheme. The Interpreting mechanism has to analyse the 

sentences and determi ie t-ihich steps of the generative process are 

being   forced,   and   in which direction. 

An appealing form for such an interpreter is a semantic 

ivs •<ter which find? out the deep-case relationships between the 

entities referred to by a sen'^nce, sharing syntactic and semantic 

information used by the sentence synthesizer. 

.  . 
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CREATE A LIST CONTAINING THE FIRST 42 PRIME NUHBERS 
> 

COUNT OCCURRENCES OF SEQUENCES OF NEGATIVE NUMBERS IN THE CIRCULAR 

LIST-STRUCTURE GIVEN 

> 

SUBSTITUTE ALL OCCURRENCES OF THE COflPONLNT-LlST CZ IN THE SYMMETRIC 

LIST-STRUCTURE GIVEN BY THE TERMING-NODE GIVEN 
> 

URITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LST-L2 
> 

SUBSTITUTE  THE LAST-BUT-ONE OCCURRENCE OF THE TERMiNAL-NODE T3  IN 

THE SYMMETRIC LIST-STRnrjURE L3 BY THE COMPONENT-LIST GIVEN 
> 

FIND  THE LENGTH OF THE LIST-STRUCTURE GIVEN 

> 

FIND IF THE CIRCULAR LiST-STRUCTURE LI IS RECURSIVE 

> 

URITE A PROGRAM TO CONCATENATE THE LISTS LiCT-Ll AND LIST-L2 
> 

DELETE ALL OCCURRENCES OF TERMINAL-NOCZS OF THE TYPE I IN THE 

SYMMETRIC LIST-STRUCTURE GIVEN 

Fiq.8  A Set of Problems Generated bti Interpret inci 

Br ief Probjem Speci ficat ions 
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The hiyh-leve! descriptions of probiems indicate to objects 

and processes which are to be referred to in the problem to be 

generated. Reference is mada to them directly or, sometimes, 

indirectly by mentioning sets of entities from which the generator 

may choose suitable members. Fig.9 shows some of the objects and 

processes referred to by the problems h ing discussed and their 

organization into progressively larger sets. The interpreter has 

to recognize case relationships to find the function each entity 

is to perform in the problem and use this information to control 

the generative process. 

The siwple interpreter which produced the problems of Fig.8 

from high-level descriptions was implemented by defining a 'search 

routine' for each word category, the categor irat ion being 

basically syntactic. Interpretation is performed by executing the 

search routine associated with each word, allowing it to find 

other words in the sentence which are related to i + . This process 

results in the construction of parts of deep-structures of 

ootential sentences to describe entities being referred to and 

their relationships to each o*her. The associative schemes 

referred to on page 24 are useful here too. After this parsing, 

the interpreter triggers» off the problem generator giving it the 

refs-ences to the entities it must use in i * ,-i operation. The 

generator processes any indirect references to obtain suitable 

entities which are to be used in problem generation and completes 

i ts task. 

W- ;= 
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objects. 

Iist/list-structure 

circular   i i ■st/i t st-structure 

syMMtr icat   I i st/ I i st-structure 

processes—i 

create ,—find properties -—count   them 

examine^. 

. tnodi fy. 

scan for specified 

content v. print them 

introduce 

concatenate 

.delete 

subst i tute 

component objects — 

sub-structures 

terminal nodes., 

numbers 

syrnboIs 

F iq.3  Altarnatlves for the Choice gl Components fgr ih£ 

Problems in Fig.8 



Uhile explicitly specified choices are easily forced upon iiie 

problem generator, there are several possibilities for handling 

the choices that are not forced. One such possibility is that 

information about the generation of sub-problems cam be 

accumulated in the course of generating a series of problems. 

This infoi-mation can then be used to ensure that sub-problems are 

well distributed in a generating run. For instance, from the 

knowledge »hat a particular series of tasks have been successfully 

carried out by a student, a set of sub-problems that he has 

carried out can often be identified. It can then be ensured that 

later problems do not incorporate these sub-problems already 

familiar to the student, unless there are special reasons. There 

is also the possibility that hierarchic reiat ionstvps between 

tasks can be exploited to produce sequences of problems of graded 

difficulty. Fig.10 shows recognizable sub-tasks uhich are 

incorporated in the problems of Fig.^t, organized to exhibit 

hierarchic dependencies. The sub- tasks appearing in underlined 

script are complete in the sense of being usable as ?eIf-contained 

exerc.ses. Appopriate organization of the generator should allow 

such exercises to be produced uhen needed, without use of any 

additional   machinery. 



SOLVING ARRAY PROCESSING PROBLEflS 

OF THE TYPE 1LLUSTPATEO IN FIG.4 
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REARRANGING AN ARRAY BY 

nOViNG SEQUENCES Jü U 

UlTHGin LOSING ITS CONTENTS 
I 

ACCUflULATiNG SETS OF 

NUMBERS THAT HAVE 

BEEN SELECTED FOR 

LATER USE 

SCANNING AN ARRAY. STORING REFERENCES 

SELECTING SPECIF!ED TO SEQUENCES IN AN 

EL^nENTS ARRAY FOR LATER USE 

i { 
ACCESSING ELEMENTS OF    SCANNING AN ARRAY 

THE ARRAY AND TESTING    SEARCHING FOR 

THEn BY COnPUTING SEQUENCES QF 

NUMERICAL PREDICATES      SPECIFIED 

STRUCTURE 

REARRANGING CONTENTS 

DE AN ARRAY BY 

EXCHANGE AND 

SUBSTITUTION 

CODING INPUT FROM 

QiÄ=EM 
m  

COOJJiS OUTPUT IQ 

PISC-FILF 

LLLLiNS U2 ARRAY 

UiTH RANDOM NUMBERS 

Fig.10  Sub-Tasks Encountered in Ihs Arrau Processing Problems pf Fiq.4 
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it. GENERALIZATION QF A PROTOTYPICAL PROBLEM 

Is it possible to start front a we!l-known problem and write a 

generator for producing useful generalizations of the original 

problem? This section describes experiments with this technique of 

generalization, applying it to a probie.i fi"st discussed by 

Hoare(19G4) and then by Djikstra (1971).  The probles is; 

Rearrange the elements of the array AdsNl such that 

for a given value of f (l<f<N) 

A[k]<Atfi if l<k<f and 

Atf]<A(k] if f<k<N . 

The r-jqui'-ed arrangement is said to 'split' the array around f. 

As a programming exercise thi? task has manifold appeal. It 

confronts the student with the problem of planning manipulations 

which interact heavily. If uie eliminate the brute force solution 

of sorting the array, perhaps by adding an economy clause to the 

problem statement, the solution is no lonyer obvious. Djikstra 

describes an elegant solution based on. recursion. 

Ue look at it from another point of view, attempting to 

generalize it into a class of array-order iny problems which test 

the student's understanding of the concepts relevant to sorting. 

Ue do not specifically concern ourselves with the existence or 

non-existence of an elegant recursive solution to the problems 

generated. 

Fig.11 lists some of the skills needed to program basic 

sorting, in an order intended to indicate the dependence of some 

of these skills on others, the more basic ones being generally 

Iower in the Ii st. 

'—IMI II   „ -_  '-JinwrrntTrt-  I - 
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REARRANGING ARRAY AS SPECIFIED 

MANIFULATING ELEHENTS OF AN ARRAY LÖCALL' 

{SUBSTITUTIONS AND INTERCHANGES) 

PERFORniNG ARITHMETIC ON ELEMENTS OF ARRAY 

(COnPUTING FUNCTIONS AND PREDICATES 

DEFINED OVER ELEtlENTS OF THE ARRAY) 

SCANNING ARRAY FOR SPECIFIED ELEMENTS 

ACCESSING SPECIFIED ELEMENTS OF ARRAY 

BY GENERATING DESIRED SEQUENCE OF SUBSCRIPTS 

F i ci. 11  E lements of ihe Sor t inci Exerc i se 

In terms of these operations, soiting turns out to be a 

rearrangement of d given array A[1:N3 such that Atj] > A[i} if 

j > i . 

A simple generaiization of the Hoars problem which still has 

the listed concepts as essentials is: 

Rearrange elements of the array All:N] such that 

if Rl(<i>,<j>J then R2{A<i>,A<j>) 

where Rl and R2 stand for relations and <i> and <j> are 

generator var,ab!es which are to be substituted by a 

variable such as i.j.k or, when suitable, by a numerical 

constant. 
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A related set of problems is of the form: 

Rearrange elements of array A[1:N] such that 

if PlUi>) then P2(A(<i>]) 

where PI and P2 are predicates. 

Fig. 12 shows some of the problems generated by a program 

based on the two generalizations indicated above. Comparison of 

these problems with those presented in Section 3 shows that these 

problems have an element of programming difficulty not generally 

present in the earlier problems. The programmer now has to tackle 

the question of space needed by the contents of the array. Moving 

the content of a cell requires that space be found for it 

elsewhere. Creating space could involve disturbing elements which 

have been properly placed already and considerable interaction 

between desirable changes is caused thereby. """his is a 

significant aspect of the original problem that is preserved. 
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> 
ARRANGE  THE MUflBERS  IN THE ARRAY A[1,40]  SUCH-THAT THE ELEMENT  IN 

CELL All]   IS A SQUARE  IF  I   IS A CUBE. 

> 
ARRANGE  THE NUMBERS IN THE ARRAY A11,25]  SUCH-THAT THE ELEMENT A [11 

IS COMMENSURATE WITH THE ELEMENT A[11]  UHEN i   IS LESS THAN 11. 

> 
AhRANGE THE NUMBERS  IN THE ARRAY A[1.38]  SUCH-THAT THE ELEMENT AH] 

IS LESS THAN  THE ELEMENT A113]  UHEN  I   IS DIVISIBLE BY 13. 

> 
ARRANGE THE NUMBERS IN THE ARRAY A11.J9] SUCH-THAT THE ELEMENT IN 

ANY AN EVEN-NUMBERED CELL IS A SQUARE. 

> 

ARRANGE  THE NUMBERS  IN THE ARRAY A [1,30]  SUCH-THAT THE ELEMENT A [I] 

IS LESS THAN THE ELEMENT A [7]  UHEN  I   IS COMMENS1 W UITH 7. 

> 
ARRANGE  THE NUMBERS  IN THE ARRAY A[1,40]   SUCH-THAT  THE ELEMENT A III 

IS COMMENSURATE UITH THE ELEMENT A[J]   UHEN  I   IS COMMENSURATE UITH J. 

Fig. 12      ATTJü Dreier ing Problems 
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A sequence of several problems derived front the same 

prototype would be unsuitable for presentation to a student, if 

^hey show no more variation than the set of problems in Fig.12. A 

library of prototypes could provide some coverage and variety. On 

the other hand, focus on selected concepts would be useful, evan 

at the expense of variety, uhen producing probleffls for certain 

purposes: for introducing important concepts, for testing, for 

remediation or for review. If the student has a convenient 

addressing facility, he would often find it useful to ask for a 

few similar problems involving e specific set of concepts to 

confirm his own understarding of these, before he moves zn to 

other concepts. 



5J. REASONING ABQUI ACTIONS 

The basic characteristic of a problem situation is that the 

scheme of actions leading to a solution is not obvious, while the 

elements out of which such a scheme could be constructed ate more 

or less available. It is generally important in problem 

generation to estimate and control the complexity of the 

action-schemes which might lead to Er utions, ensuring that the 

problem presents a desired level of difficulty to the student. To 

some extent, the generator may also predetermine the content dnd 

structure of fruitful action-schemes. 

One device for the estimation of complexity of a problem 

involves the visualization of possible problem spaces that might 

be searched for a solution. In the case of programming exercises, 

the cost of searching the most easily intuited space of solutions 

can often be estimated easily by the generator. Ensuring this 

coi t is too high forces a step of refinement on the student, 

making him look for clues for augmenting the problem-space or, in 

some cases, compelling hit,i to restructure the program, for example 

by providing for storage of computed values to reduce 

computational cost or by substituting iteration for recursion. 

Uhen dealing with we I I-structured problems, a lower bound for the 

complexity of the program needed to solve a given problem may be 

estimated by identifying those features of the program which have 

been rendered essential. A generator could use such estimatas to 

arrive at problems presenting desired levels of difficulty. 

A second device that could be employed is the programming of 

limited deduction about the problem situation. The problems 

appearing in underlined script in Fig.13 provide good examples of 

situations where the scheme of actions needed to perform the given 
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task is of controlled complexity (1). Each of these problems 

involves an action or a set of actions that is to be performed in 

order to achieve a desired change or to achieve a desired state in 

the given situation. The fa8k is meaningful only if the action 

specified is relevant to the state change desired and if the 

performance of this action presents a desired level of difficulty. 

In order to take these requirements into account the problem 

generator has to have information relating possible actions to 

their effects. It also needs estimates of difficulty in carrying 

out possible actions (i.e. 'applying operators', to use the 

wording in Neue I I and Simon. 1372). The use of a table of 

connections (ibid) is a possibility. Deducing the information by 

following a suitable line of reasoning r.,ay be necessary in those 

cases wnere a table of connections becomes unwieldy. 

The oroblems under discussion deal only with a few possible 

types of simple manipulations that can be performed on graphs, 

i.e. addition or deletion of vertices and edges and the 

repositioning of edges. Each type of manipulation is generally 

capable of multiple application to a graph. 

ll) The other problems shown in this figure are not discussed 

iiere.   They were produced by generators having the structure 

discussed in Section 3 and share association networks with  the 

problems being discussed in this section. 

.    -i..r^ 
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> DELETE LESS THAN a EDGES FRQtl IH£ GRAPH £ |Q iNCR£AS£ US. BAQiuS 

m h. 
> ASSIGN NUnBERS IN THE RANGE FROH 1 TO 18 TO THE EDGES OF THE GIVEN 

GRAPH SUCH THAT THE NUIIBER ASSIGNED TO AN EDGE IS COmENSURATE WITH 

THE TOTAL NUMBER OF THE EDGES ADJACENT TO IT. ENSURE THAT THE SUM OF 

THE ASSIGNED NUHBERS IS A MAXmUM. 

> FIND BR1ÜGES UITH A LENGTH OF 4 IN THE GIVEN GRAPH. 

> ADO L£SS IRAN 5 EDGES ID IHE QRAPH G SUCH IHAI U LS NQ U3NG£R A 

PLANAR GRAPH. 

> FIND IF THERE ARE CYCLES IN THE GRAPH G. 

> ADn LESS. IHAN 3 NEU VERTICES UITH NECESSARY INCIDENT BIES Ifl IHE 

GRAPH G SUCH IfjAT JHE VERTICES V7 Y2 V13 V6 AND VI AfiE NQ LONGER 

THE CENTRAL .'ERT1CES. 

:• FIND CYCLES IN THE GRAPH G. 

> ASSIGN A COLOR NAME TO EACH EDGE SUCH THAT THE COLOR OF ANY EDGE 

IS DIFFERENT FROM THE COLOR OF ALL ITS ADJACENT EDGES. 

> ASSIGN NUnBERS. NOT NECESSARILY UNIQUE. IN THE RANGE FROM 1 TO 15 

TO THE EDGES OF THE GRAPH G SUCH THAT THE NUMBER ASSIGNED TO AN EDGE 

IS MULTIPLE IHE NUMBER OF THE CYCLES IT IS A MEMBER OF. 

> GENERATE BRIDGES UITH A LENGTH OF 4 FROM THE GRAPH G. 

> FIND IF THE GIVEN GRAPH IS A BLOCK. 

> REPOSITION 3 OR MORE EDGES IN IH£ GRAPH Q SUCH MI IS ESffiffEfCITY 

OF V9 REMAINS UNCHANGED. 

Fig.13  Graph Manipulation Problems 
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Some of the problems require that the graph be modified to attain 

a given rroperty by performing only a limited number of a 

specified type of manipulation. Other problems require that a 

given number of manipulations of a specified type be performed 

without altering the graph in a specified uay. Since these are 

programming problems, ^he real task is to urite a prog, am which 

oerforms the required manipulations on ^ly graph given as its 

input. 

The problems are interesting because performance of the task 

under the given constraints becomes a critical matter, requiring 

considerable analysis of the problem situation an-J careful 

plunnmg of tm.> solution. A special difficulty is that the 

solution sbouM be applicable to an indefinitely large «=et of 

graphs any of uhich may be given as input to the program that is 

to be written. These features, and the oresence af a body of 

theory on graphs, make these problem? good exercises in 

non-numerical programming. 

The generator which produced the examples in ^iQ.13 performs 

limited deduction to arrive at the relation between the five 

allowed manipulations on graphs to a dozen or so st?te changes 

that could occur in the graphs as a result. In the case of the 

problems in Fig.13, the deduction is based on the heuristic use of 

knowledre about gross chenges that occur in the graph as a result 

of simple manipulations. Two gross indicators are the change in 

the number of oaths between an arbitrary pair of points as a 

restit c of 3 manipulation aid the change in distance between an 

arbitrary pair of points. table 1 relates manipulations to their 

effects in terms of these gross indicators. Table 2 relates these 

indicators to several state char is that can be produced in 

graphs.  In these tables, an entry of a '1' shows a tendency for 
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the cause to increase the quantity it is related to; and an entry 

of a '-1' shows the opposite tendency; and an entry of '0* 

indicate? that a predictable link is not present. 

Oloerat ion Q&m in Chanqe _in 

Path Lenath Number pf P?th? 

Delete Vertices with edges +1 

Delete Edges +1 -1 

Add Edges -1 + 1 

Add VertictiS and edges B + 1 

Reposi tton Edges B e 

Tah'e 1  Operators and Their Effect on G^aph Parameters 
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Süifi 

Paiü Lmaiti 
Incregse In Number 
Qi Paths 

Radius +1 
Diameter +1 

Eccentrici ty +1 

Connectivi ty 0 

Number of 

Components B 
Planar i ty 8 

Possibi1i ty of 

Hami1 tonian Paths 3 

Identity of 

Center e 
Distance Between 

Two Nodes +i 

Possibi1i ty of 

Eulerian Paths 8 

-1 

-1 

-1 

+1 

-1 

-1 

+1 

8 

-1 

B 

iMdS. Z      Slaifl Changes snä Associgted Variations m 

Graph Parameters 

 - —  
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To generate the examples raierred to, the generator chooses a 

permitted manipulation and identifies a re'evant state change by 

using the tables. Further, it computes from these tables the 

direction of state chanys and introduces a suitable constraint 

which ensures   that   the   task being constructed   is not   too easy. 

Extensions can easily be made to the generator employing the 

line of reasoning described above. Consider, for instance, the 

problems which require that a particular state change be realized 

without altering a specified feature of the given graph. A simple 

computation involving Table 2 enables the generator to produce 

pairs of state changes requiring opposi's directions of change in 

the two paramete-s involved. A reference to Table 1 identifies a 

relevant manipulat i^1- on me graph. These two steps enable the 

generator to create a problem by requiring that the specified 

manipulation be repeatedly performed to obtain a given state 

change  ensuring  that   the other  state change  does not  occur. 
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^ QOVER SIORl£S 

Large classes of problems can be viewed as having an abstract 

structure. In these problems, *he specific objects functions or 

relations that appear are not of much significance, and ar-s 

generally substituted by formal variables early in the 

problem-solving process. The same abstract-structure obtainsd 

from many problems yhich differ oniy trivially describe the 

essence of the problem situation. School text-books on 

mathematical subjects employ the well-known technique of taking 

interesting problem-structures and fleshing them out with 

sufficient surface detail to generate exercises. It is 

conceivable that problems generated by this technique, apart from 

providing variety , also focus attention on the skills necessary 

to abstract the basic structure of given problems (1). The 

process of creating a coherent surface structure is worth 3 brief 

discussion, even though we have not yet implemented a program to 

i ilustrate i t. 

At the IOJCS'. level of sophistication would be schemes which 

operate with > fixed number of abstract problem-structures and a 

fixed number üf surface structures. Using some indexing scheme, a 

compatible peir of structures would be selected and the formal 

varibles in the abstract structure would be replaced by the 

corresponding terms of the surface structure. At the other end of 

the spectrum would be an understanding system which has straU es 

for finding or creating real-world rituations corresponding to any 

given abstract problem-structure. 

(1) Hayes and Simon (1973) are studying subjects' behavior when 

presented with differently structured external cover Btories for 

the same abstract problem structure (tower of hanoi). 
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Possible compromises between what is desirable emu «.lat is 

implementable include systems which exploit strong links between a 

large body of theory of a class of structures and a related area 

of 'real-world* problems with adequate diversity. Consider, for 

instance, probie-s involving transport and communication networks. 

It is obvious that many graph manipulation prcblsms can be 

paraphrased as problems in this area. Implementing a system which 

can perform such a paraphrasing intelligently involves several 

problems. Such a system could use a set of associations linking 

entities in the abstract theory wilh corresponding entities in the 

application area. A partial mapping may be possible, and it will 

indicate, to some extent, those asoects of the theory that are 

relevant to the application area. For example, the concept of a 

weighted graph is specially relevant to the application area being 

considered here because it provides for the possibility of taking 

into account physical lengths of the edges. 

Unless such information on relevance is used to shape the 

aostract problem being created, only a very small fraction of 

generated structures can be paraphrased as natural-Iooking 

application area problems, Hciever, the complexity of detail that 

has to he attended to appears formidable. This is best 

illustrated with examples. In the area of transport and 

communication networks, some of the information that should be 

available to the generator, directly or indirectly, is: 

Road networks which are non-planar have to be 

constructed with the use of underpasses and 

overpasses which are expens ve in relation to the 

cost of roado. This is not the case with 

air-routes and telecommunication circuits. 

The presence of cut-vertices and small cut-sets is 

relate^ to the problems of reliability of the 

network. 
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Paths passing through every edge lEulerian paths) 

are relevant to bus routes ledges being streets), 

while they are not of significance in the case of 

telephone networks. 

It is possible to think of railroad stations as 

fuelling or non-fuelling stations (say for 

generating problems involving dominant sets of 

vertices in a graph). This is generally not true 

in the case of airports, all of which can provide 

fuel. 

These examples illustrate the wealth of knowledge that a 

human designer brings to bear on the task of creating cover 

stories. Programming a generator to design cover stories 

therefore has to face the problems of representing the basis for 

such knowledge and of utilizing it. 
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Lu CONCLUSIONS 

Uhi !e simple generative schemes do, in seme cases, produce 

surprisingly coherent questions, it is clear that the creation of 

a good problem is in general a design task which involves 

considerable knowledge of the task area. Detailed representations 

of relevant knowledge of the task area are as important in problem 

generators as they are in the case of any program which performs a 

cognitiveiy significant task. These representations structure the 

task area in terms of objects and processes, assign attributes to 

these entities and provide static links as well as computational 

routines to implepent functional and relational mappings. 

Given such a representation of knowledge, the questions that 

arise aboui a problem generator concern its structure and the 

strategies that it incorporates. Are generators arbitrary 

programs which have to be conceived ad-hoc, or is there a common 

set of principles theu can be based upon? 

Ue have developed the view that generators perform a design 

task, assembling a complex object - the protjlem - while operating 

within a variety of constraints. A top-down generative 

control-structure appears attractive. The second suggestion was 

that this generative mechanism be freed from the burden of 

syntactic considerations it carries in the case of grawmar-like 

mechanisms. The data-structures it operates with could be 

deep-structures of sentences, pro-'iding a rich representational 

scheme easily extended by borrowing from natural language. A 

sentence synthesizer which creates readable descriptions of 

generated problems was described. 
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Problem generators for specific areas have to be developed by 

inventing appropriate representations for knowledge about problems 

in that area. Some sets of problems hav«? a prototype and a 

process of what might be called semantic generalization results in 

a set of problems which are similar to the original and yet 

provide significant diversity. Some sets of problems can be 

created by performing limited deduction about operators and state 

changes they cause in the relevant, problem space. These 

strategies have been discussed and illustrated with examples 

produced by programs based on them. 

Another strategy, which is based on the design of cover 

stories for good abstract problems has been introduced. Problems 

of controlling the generative process hy using explicit 

specifications and the problems of using information available 

regarding the student's familiarity with a set of concepts have 

also been briefly draait with. 
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APEENOLK AL FRggRAItliNC: QEMJ 

1.  Languages Used 

AM the generators mentioned in the preceding pages were 

prograinmed in the list processing impiementat ion language LiV(F) 

{Newell, et at, Jan. 1371). The main implication of the use of 

LsvCF) is that one adopts a specific approach to system-building 

(Newell. et al. Sept. 71). This approach leads to the 

construction of iarge systems in a layered fashion, adding 

facility after facility (e.g.,: an association mechanism based on 

the use of hash-coding techniques for accessing association lists; 

the semantic parser discussed in Section 3.3; in a number of 

steps, later layers using the tools provided by the earlier ones 

and building on them. The other implication of the use of (L>v(F) 

is that the total access provided to the language processor's 

machinery encourages the user to adopt this machinnery when needed 

rather than building a language processor on his own. 

2L Pr i m i t [yji operations 

The basic operations of random choice, weighted choice, value 

assignment, creation of associations and accessing of associations 

are specified by the use of the operators t ,#,«.,<•, ? and S 

, the last one being the statement terminator used in conjunction 

with the operators «- and <= . These six operators as well as the 

comma are assigned necessary 'character actions' and 'syntax 

actions' (Newell, et al, Jan. 1971) as per the conventions of 

LitiF), ensuring f.ie proper parsing and interpretation of 

expressions of the following form embedded within regular L*(F) 

programs. 
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[Al  A2 A3 A4] 

[Al  A2 A3 A4J   t 

[Al     3 A2    5 A3]   f 

[Rl  P2 R3]   t X 

A «- B t t 

ATT.   OBJ <» B 8 

ATT,   OBJ ? 

ATT.   — ? 

CoRini=nt  fields  follow  the 

semi-co Ions. 

Create the specified data-1 ist 

(of type list on Lfc(F)). 

Choose an item randomly from 

the given list. 

Choose by a weighted random 

process. Ueights are prefixed 

Mi th the number sign. 

Choose one of the routines in 

the list and execute it, obtaining 

a value. Expressions of the above 

forms can be used in the place of 

the variable B in the following 

statements. 

Replace the contencs of list A 

by the contents of list B.  usea 

Mainly to assign values to variables. 

Associates a value, B. with the 

given attribute of the given object. 

Obtains the value of the given 

attribute of the given object. 

Obtains the value of the giv«;n 

attribute of the object on top 

of the Liv(F) working stack. 

The brief description above does not cover all primitives 

used in the system. However, a brief mention should be made of 

variants of the choice operator t. One has a memory cell for its 

most recent choice and avoids repeating it, Another variant 

refers to information associatively linKsd to its data-list by 

other parts of the program before making a selection. This letter 
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variant  is  useful  in  programming  generators  which  are 

controli able. 

2.1. Creation Q± Data-Structures 

A structure synthesizing routine .C is used extensively by 

the problem generators. The execution of a statr.iient of the form 

UTVP, ASUB1 VSÜB1, ASUB2, VSUB2. ASUB3 VSUB3] .C) 

creates 3 list representing a token, or instance, of an entity of 

the type TYP. Associat i veiy linked to this list are the 

attributes ASUB1. ASUB2 and ASUB3 which are assigned io values 

VSUBl. VSUB2 and VSUB3 respectively. If any attribute value pair 

ASUB! VSUBl is foMowed by the separator ,e instead of the comma, 

VSUBI is e-ecuteo (it is presumed to be a routine) and the value 

obtained is assigned to the attribute ASUB1. SIHILARLY IF TYP is 

followed by .E. the type is obtained bj executing the routine TYP, 

the type is obtained by executing the routine TYP, Examples of 

the usage follow: 

([LIST. LINK-TYPE SYmETRICAL. UNIQUE TRUE] .CJ 

creates a structure to represent 'THE SYMMETRICAL LIST'. 

([ARRAY. DIMENSION 2. NUMBER 31 .C) 

creates a structure to represent 'THREE TUO DIMENSIONAL ARRAYS'. 

There are special separators which are used in the place of 

the comma following the type to specify m a compact manner the 

values of the attributes UNIQUE and NUMBER. These separators are 

not used in the i I !uet'~at ions in this Appendix in order to Keep 

the illustrations simple. 

The main reason for the utility of the routine .C in the 

programming of top-down generator a is that it can be used 

resursively.  A specification list on uhich .C operates may 
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indicate that the value cf ASUBi sihould be computed by the routine 

VSUBI. Frequently, VSUB! 'tself is defined in terms of a 

construction to be performed by .C, creating a sub-structure which 

ir (inked to the main structure by the ASUB! — VSUBI bond. The 

foI lowing example illustrates such usage. The routine TP 

specifies the construction of members of a set of simple 

sentence-structures. 

TP:  (ITP1 .E OBJ. TP2 .E LOCATIVE TP3 .EI .C! 

TP1: ([FIND DELETE PRINT] t 

TP2: ([NUflBER. QUANT ALL, UNIQUE TRUE, NUMBER 0, 

^OJC TP21 .EI .C) 

fP21:((0DD EVEN POSITIVE NEGATIVE PRIME t) 

Assignment of '6' to NUMBER is interpreted to mean that 

NUI1BER>1. The routine TP3, not defined here, accesses a fragment 

of sentence-structure assumed to ha^e been created before the 

execution o^ fie statements in the example. The accessed fragment 

represents an object such t.s 'THE LIST LI". 'THE GIVEN LIST'. 'THE 

ARRAY L^B)' cr THE ARRAY L(38, 30)'. TP3 synthesizes a 

sentence-fragment to refer to the object or ts sub-objects. The 

new fragments are translatable as 'THE FIRST ROD OF THE ARRAY', 

'THE ARRAY L'. 'ALL THE SLlBLISTS OF L' or 'THE LAST COLUMN OF L'. 

The sentence synthesizer, briefly described in Appendix B, 

synthesizes readable sentences it on the sentence-structures of the 

kind produced by the routine TP, to generate sentences such as the 

fol lowing: 

FIND ALL THE PRIME NUMBERS IN THE LAST COLUMN OF THE ARRAY L. 

DELETE ALL THE EVEN NUMBERS IN THE FIRST SUBLIST OF L. 

PRINT ALL THE POSITIVE NUMBERS IN THE ARRAY L. 
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AFPEND1X Bs THE SENTENCE SYNTHESIZER 

The sentence synthesizer deals uith associative structures 

representing the content of potential sentences or parts thereof. 

Fig.7 showed an example of such a struct re. By convention, the 

sentence structure as c;'1 ven to the synthesizer starts i-;ith the 

list-structure representing an occurrence of a predicate term. 

Linked to this list-structure by labelled, directed associations 

are suh-structures representing entities that stand ir various 

deep-case relations; to the predicate. Each sub-structure 

similarly consists of a list-structure representing the occurrence 

of a word-sense with associations leading off to related entities. 

It i & a I so the convention to bind each occurrence of a word-sense 

with re!ev?nt markerä such as those for tense nu^ber and gender 

using attribute-value associations. 

The implementation of the synthesizer is based on the 

principle that for each category of semantic entity in the 

sentence structure there should be a synthesis routine which has 

operational knowledge of that category of entity. At the highest 

level, the synthesizer finds out the category of entity it has to 

deal with and triggers off the associated synthesis routine. 

Recursive calls by one synthesis routine to others zrs necessary 

because parts of the sentence structure .jre comptsRd of smaller 

sub-structures. 

Thp routine dealing with predicates looks for associations to 

sub-structures of the followi.-,y types; suhjecti voice marker; 

tense marker; object, in case of transitive verbs; indirect 

objects; locatives; adverbial of purpose; and other adverbial 

phrases.  The routine dealing with objects attends to any need for 
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.■terminers,   quantifiers,   adjectives,   number   markers,   and  several 

jpes of  adjectives and ?djectival  phrases. 
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