
"\

A D - 7 7 3 8 4 f)

ON THE GENERATION OF PROBLEMS

S . R a rn a n i, e t a 1

Ca r negie - Me 11 on University

 Mil I i I

Prepared for:

Air Force Office of S c] e n r i f i c Research
Defense Advanced Research Projects Agency

N o v e i n b e r 19 7 3

DISTRIBUTFD BY:

National Technical !nfonnation Ser.e
ü. S. DEPARTMENT OF COMMENCE
5285 Porf Royal Road. Springfield Va. 22151

V
«Süa^sS*81 /

_^—

SECURITY CLASSIFICATION OF THIS ."AGE (Unrn Ptlm Emeredl

REPORT DOCUMENTATION PAGE
I REPOBV NJMOfR |2. GOVT ACCESSION NO

AFOSR- fR- 14-0098

HEAD INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBER

«. TITuC C«ncf Svbtium)

ON THE GENERATION OF PROBLEMS

5. TYPE OF REPORT h PERIOD COVERED

Interim

6. PERFORMING ORO. REPORT NUMBER

7, AUTMORf«;

S. Ramani
A. Newell

8. CONTRACT OR GRANT NUMSER,'»)

F44620-73-C-0074
9 PERFORMiNG ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Scitnce
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMEN', PROJECT. TASK
AREA » WORK UNIT NUMBERS

61101D
AC 2456

II. CONTRCLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

•2, REPORT DAI

Noveinber 1973
'3. NUMBER OF PAGES

'«. MONITOMNG AGE»4C-, NAME S AOORESSfif d///er»nf from Cunlrolling Oltict)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 2220-

IS. SECURITY CLASS, (ol !hit report}

UNCLASSIFIED

IS». OECLASSIFICATJO-N DOWNGRADING
SCHEDULE

■£. OiSTRIBUTION STATEMENT fct Ihls Rtponi —\

Approved for public release; distribution unlimited.

'•">■ DISTRIBUTION STATEMENT (ol Iht tbtlrmct tntmrmd In Block 30, II dlllmrtnl Iroir Hrpiri;

I«. SUPPLEMENTARY NOTES

!S. KEY WORCS (Cannrji on rftrtt tidt il ntumt. ^ry iw.d IdtnHly be b ■• -k numbmr)

NATIONAL TECHN'.AI.
INFORMATION SERVICE

(Of! -,■-'

ipfinKfieW VA 22151

20. ABSTRACT fContlnu» on r»vtr99 »id» It n«c««*fff>' mtd Identity by block nvmvr)

Several design strategies are investigated, starting with the use of grammar-HUf
generative mechanisms. The design of exercises is then viewed as an assembly
task, putting together compitible. elements to create an acceptable problem
structure, accessing knowledge of the task area encoded as a semantic r.et, A
sentence synthesize which generates coherent English sentences to describe the
assemblc-d problems is then described. Attention is also paid to the mechanisms

necessary far controlling such an assembly process. Directing ganerators toward,
problems involving specified concepts and making use of information available

UNCLASSIFIED DD .ÜST« 1473
srrisi-.

EDITION Cf I HOV «S IS OBSOLETE

SECURITY "--LASSIFICATlON O? THIS PAGE (\fhtr, D«r. Enlmrmdl

ON THE GENERATION OF PROBLEMS

S.Ramanhv and A.Nswell

November, 1373

Department of Computer Science

Carnegie-HelIon University

Pittsburgh. PsrnsyIvania 15213

This work uas supported bi, the Advanced Research Projects Agency of the

Office of the Secretary of Defense {F44G20-73-C-0B7A) and is monitored

by the Air Force Office of Scientific Research. This document has been

approved for public release and sale: its distribution is unlimited,

»On ieays. al ibaiosfi iim.''
Computer Group,

Tata Institute of Fundaimnta! Research,

Homi Bhabha Road, Bombay AB0 805. India.

ABSTRACT

The design of programs that generate ctuestions and exercises

for students is discussed. The task of direct interest is the

generation of programming exercises. This is dealt with in coma

detail and sets of such pxercises produced Py programmed

generators are presented.

Several design strategies are investigated, starting u;th the

use of grammar - iiKe generative mechanisms. The design of

exercises is then vieyed as an assembly task, putting together

compatibie elements to create an acceptable problem-structure,

accCi'&ing kn^i-iledge cf the task jrea encoded as a semantic net. A

sentence synt'iesi 2er which gen-rates coherent English sentences to

describe the assembled problems '. r then described. Attention is

also paid to the mechanisms necessary for controlling such an

assembly process. Directing generators towards problems involving

specified concepts and making use of information available about

the student's faetUiartty with a hierarchy of concepts are two

issues discussed in thic ^re.',.

Other strategies discussed are: generalizing 'good* problems

to produce useful variants; use of reasoning about actions in a

task area to recognize good problem situations; and the design of

surface detail to create prcblems having a t;:ven abstract

structure.

L- INTRODUCTION

The -.olion of a generative CA1 system har aitracted some

at tention(i). An important issue in this area is th0 structure of

generators for problems and exercises, and it is this issue that

we concern ourselves uith in the following pages. Design of

generators for interesting classes of problems appears within

reach and is, of course, advantageous. Among the frequently cited

advantages of generation, as against selection from a long list,

are the controllability and adaptability that generation provides.

These features provide for the creation of exercises having

specified content and posing a specified levei of difficulty to

suit the needs of an irdividual student at a specific jtaqe in

lea-ning. And, of courte, generative schemes provide for

potfntially larger sets of examples to choose from, compared to

any f ini te list.

Developing a generative scheme forces aialysis of problems

and th„ task area to a level of detail that ia usually avoided in

making a collection of exercises. in fact, such analysis might

possibly lead to the the definition of knowledge domains

operationally. For instance, in classifying exe-cises on the

basis of complexity, one could use a response mea^u'-e such as

'average time taken for solving*, but a generative scheme

motivates attempts to understand the difficulty posed by an

exercise in terms of its structure.

Another aspect of generative schemes is the level at which

information is available to the system th^ handles the exercistf.

Uhile a collection of exercises could be handled by a more or less

sophisticated page-turner, generative schemes require a fine-grain

(1) Uhr, 1363; Uttai et al, i37iD! Uexler, 1370 and Koffman, 1972.

representation of some knowledge of the task area in order to

work. He use a semantic net in which is encoded a variety of

information on the tack area. In the case of programming

exercises, the semantic net contains information on types of

rr.ampui able objects such as numbers, symbols, sets and sequences,

their attributes, sets of examples for each type of object or

generativo procedures for creating examples, data structures in

terms of which each type of object may be realized, manipulations

that may be performed on each type of object, etc.. Dealing with

information in such detail is essential if we are ever to develop

systems that understand the task area - to generate answers to

exercises or to generate code to recognize a variety of acceptable

answers along with the generation of the exercise, to answer

questions about a specific exercise or about the task area, and to

attempt to carry out generated exercises tc find out their

characteri st ics.

The recognition that generative techniques can make good use

of a fine-grain representation of semantic information relevant to

a task area hardly concludes the analysis of problem generation.

In fact, this recognition is more appropriate as the first step

than as the conclusion in any treatment of the subject.

Development of a problem generator in a given area should start

with the identification and analysis of viable sets of problems in

that area, and proceed to specify suitable structures for programs

that will generate these sets. Specific strategies for accessing

representations of knowledge in the process of problem generation

should be spei t cut.

Undoubtedly, an understanding system with a well integrated

store of knowledge of a subject area la the proper ultimate form

for a problem generator. Such a system would be able to answer

questions about the area, design good problems in the area,

discues them and even solve them. The uorK reported here does not

yet aim at such a system. The approach taken here is exploratory

and quite empirical. The presentation is in the forn* of a

discussion of a sequence of siiaple strategies for using different

aspects of information about a subject area for generating

non-trivial problems. f1o"t of the strategies discussed are

illustrated with examples of problems generated by programs based

on them. AM the examples presented are in the area of

programwinj exercises, though tha discussions are hopefuliy

relevant to other kinds of problems as well.

Lu ENUflERATlVE SCHEMES PATTERNED AFTER CONTEXT-FREE pRAriflARS

The simplest generative scheme is an extension of the

slot-and-fi!ler scheme, as it is cailed in linguistics. in this

scneme, one has a set of probleüi franies incorporating variables.

There is a specification of the admissible values that these

variables may assume, either in the form of numerical iimi s or in

the form of a set of admissible values for each variable.

There are tue directions of development that enrich this

•jchems. Uhrtl] reports one of them, which is to implement

cemputationally defined relations between the variables. By

choosing ce'iam independent variables randomly within the

permitted ranges or from sets of admissible values, the others

coyld be computed from lt,v&, thus ensuring compat ibi i i ty. The

original scheme, of course, does not provide mechanisms for

meeting such compatibiIi y requirements and forces the variables

to be chu^n independently ot each other.

The spcond direction of ü?vplopment involves the use of a

grammar-1 ike scheme. Unlike slot-and-filler schemes, the

gr^mmar-iike schemes a^e not limited tc finite-state languages.

They have been used in the context of problem generation for

synthesizing sentences having phrase structure. Koffman (1972)

has reported the use of protaabi I isxic yraw*3ra for the ganeration

of word problems. Simple programs that use grammar-1 ike schemes

to generate questions in artificial intelligence (developed by

Neuell and Robertson) and in cognitive psychology {developed by

Uaterman) have been in use at the Cartiegie-Mel Ion University since

1371,

Fig.i shows the e.,jnier3t i ve scheme underlying the program

which deals with artificial intelligence. The quöstions produced

by this program are always gramtnat icaMy and semantical ly correct,

and most of the questions are meaningful. Not shown in the scheme

is a probability assignment convention that allows certain choices

to be more or less freouent than other choices in the generative

procedure, increasing the percentage of deciratle questions in the

output. Figures 2 and 3 show some of the questions produced by

the artificial intelligence program and the cognitive psychology

program respectively.

Enumerative schemes such as th'. s derive their po^^r from a

basic device -- classification of a set of phrases into different

subsets of syntactically and semantical ly similar items. Question

frames are written incorpc ating variables which are substitutab!e

by members of appropriate subsets of phraseo. Further, the

phrases are themselves generatahie by this process by expansions

of embedded variables into suitable sub-phrases, the variables in

figure 1 are indicated by the terminal angle brackets '<' and '>'.

sets of phrases that are subst i tutable for the varitbles are

defined in the lower half of the figure.

 - *■

I
I

8

<ÜUESTIQNS>: (("UHAT iS " <ENTiTY> "?'}

("WHAT MET HOC) DOES " <PROGRAi1> " USE?")

("UHAT TAS^S GOES " <PROGRAn> " WORK; UN?")

("HAS " <TASK> " BEEN ACCOflPLISHEÜ BY A PROGRAM?")

("UHERE IS AI RESEARCH ON •' <TASK> " GOING ON?"}

("UHAT !5 THE CURRENT ACHIEVEMENT IN " <TAS<'> "?")

(■!UHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO " <AR£A> "?")

("UHAT HAVE BEEN THE CONTRIBUTIONS f1F " <AREA> " TO AI?")

("NAME A TASK THAT " <PRCGRAM> " DOES NOT DO, BUT MIGHT DO WITH SOME

MODIFICATION.")

("UHY IS " <ENTITY> " SO CALLED?")

("UHAT PROGRAMMING LANGUAGE WAS USED FOR " <PROGRAM> "?")

("HAS " <LANGUAGE> " BEEN USED TO ACCOMPLISH " <TASK> "?"))

<ENTiTv>: ((<PROGRAfr.) t<HEURISTIC>) (<PHENOM£NA>) (<CONCEPT>) ...)

<C.aNCEPT>-! ("A METHOD") ("A PROBLEM") ("A HEURISTIC") ,..)

<PRnGRAM>: ((<RECOGNI riON-SYSTEn5>) (<GAME-PLAYERS-.) {<THEOREM-PROVERS>)

(<QUESTION-ANSUERERS>) (<GENERAL-PROBL£M-SOLVERS>} ...

(<UNDERSTANDING-SYSTEM5>) (<OESIGN--SYSTEMS>)

(<CONSTRAiNT-SATISFIERS>) i

<LHESS-PRCGRAMS>; ({"NEUELL-SHAU-S1MON CHESS PROGRAM")

("BERNSTEIN'S CHESS PROGRAM") ("CMU TECHNOLOGY CHESS PROGRAM") ...)

<TASK>: ((<GAMES>) (<MANAGEnENT-SCIENCE>) (<CONCEPT-FORMAT10N>) ...)

<PROGRAM~FEATURE>: ((<HEUR1STIC>) ("ALPHA-BETA") ("RECURSION') ,..)

E id. I Part ot gn Enumerative Scheme Patterned after

Context Free Cramrngrs

9

Q: WHAT AI PROGRAnS HAVE BEEN WRITTEN IN HLISP?

Q: UHY IS FEATURE EXTRACTION SO CALLED?

Q: HAS THERE BEEN ANY CONTRIBUTION OF AUTOMAIA THEORY TO AI?

Ü: WHAT WAS THE FIRST AI EFFORT ON CHESS?

Q: HAS SAIL BEEN USED TO ACCOriPLlSH CHECKERS?

G; UHAT HAVE BEEN THE CONTRIBUTIONS OF Al TO PHYSICS?

Q: ,iAS APL BEEN USED TO ACCOTFUSH ASSEtlBLY LINE BALANCING?

Q: UHAT IS THE CURRENT ACHIEVEIIENT IN CHESS?

Q: UHAT IS THE CURRENT ACHIEVEHENT IN PLANT LOCATION SELECTION?

Q: UHAT HAVE BEEN THE CONTRIBUTIONS OF INDUSTRIAL AOMIN I STRATI ON TO AI?

Q: UHAT IS A HEURISTIC?

Q; HAS SAIL BEEN USED TO ACCOnFLISH RELATIONAL CONCEPT FORMAT I ON?

Q] HAS ASSEMBLY LINE BALANCING BEEN ACCOMPLISHED BY A PROGRAM?

Q: HAS COBOL BEEN USED TO ACCOMPLISH CHESS?

Q; HAS THERE BEEN ANY CONTRIBUTION OF PHYSICS TO AI?

Q: UHAT IS HORIZON PHENOMENA?

Q: UHAT PROGRAMMING LANGUAGE UAS USED FOR REF-ARF?

Qi UHAT UAS THE FIRST AI EFFORT ON RELATIONAL CONCEPT FORMATION?

Qj UHAT HAVE BEEN THE CONTRIBUTIONS OF AI TO YOUR EDUCATION?

0; UHAT METHOD DOES GPS USE?

Q) UHAT. TASKS DOES FREEMAN'S DSD UORK ON?

Qt NAME SOME HEURISTICS USED IN SRI ROBOT.

Q: UHO DEVELOPED EXPONENTIAL GROWTH?

F)fl«2 EhÜfiUi ßl ibe Duet^ion Sftnarator isr Ar 1; 1 f Lslii Intel I iqence

»iBBWWMi

18

UHAT CONTRIBUTION HAS LOEHL1N MADE TO THE STUOY OF COGNITIVE PSYCHOLOGY?

UHAT IS CYBERNETICS?

UHAT ARE THE SIMILARITIES BETUEEN TREE STRUCTURES AND NETWORKS?

UHAT ARE THE SiniLARITiES BETUEEN ALGORITHM AND HEURISTIC?

UHAT CONTRIBUTION HAS ABELSON MADE TO THE STUOY OF COGNITIVE PSYCHOLOGY?

UHAT IS CONTENT ADDRESSABLE nEMüRY?

UHAT IS AN EXAMPLE OF A GPS GOAL?

UHAT IS A riAGIC SQUARE?

UHAT ARE THE DIFFERENCES BETUEEN SYNTAX AND SEMANTICS?

DEFINE MARKOV PROCESS.

DESCRiBE A FEU METHODS THAT HAVE BEEN USED IN ARTIFICIAL INTELLIGENCE.

UHAT IS A BIT?

UHAT ARE THE DIFFERENCES BETUEEN TEMPLATE MATCHING AND FEATURE

EXTRACTION'

UHAT IS ALGOUS?

UHAT CONTRIBUTION HAS CHOMSKY MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?

UHAT IS PANDEMONIUM?

UHAT CONTRIBUTION HAS UIENER MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?

UHAT ARE THE SIMILARITIES BETUEEN COMPUTER AND HUMANS - BY ANALOGY?

DEFINE DISCRIMINATION NET.

UHAT ARE THE SIMILARITIES BETUEEN COMPILER AND INTERPRETER?

UHAT ARE THE SIMILARITIES BETUEEN TEMPLATE MATCHING AND FEATURE

EXTRACTION?

Fig. 3 Output af ih£ Question Gengrato,' (or Coani tive Psycho I oqu

11

Uord categorization on a oemantic as well as syntactic basis

enables these programs to produce a surprisingly high percentage

of semantically meaningful sentences compared to programs that are

based on generative syntax alone. Restricting oneself to the

generative pouer of ccntext-free rewrite rules has its own

advantages. The control structure of th^ problem generator

becomes simple and straightforward, making it easy to construct

trouble-free programs. The essence of these schemes is the simple

hierarchical top-down control structure that relate a set of

choices. For each choice that is made, th? grammar simply for-es

the other (lower level) choices that one is conmitted to make as a

result. Each act of choice transfers control to that part of the

grammar where tne -ailable alternatives for lower level choices

are contained. On the other hand, restriction to such a simple

program structure does result in severe limitations.

The basic limitation is the absence of a structurea

representation of the task environment of the <ind found in

practically every sys^t i that performs a ccgnitively significant

task (CarboneM, 1378, ^. d Uexler, 197k}, describe in'truct iona I

systems incorporating structured representatir.i? of knowledge).

Generally in such systems associations are used to impose an

object-attribute-value scheme on the task environment and to

implement funrtionai and relational mappings. Computational

mappinns of a functional or relational nature are performed hy

programmed routines. This is in contrast to the implicit

representation of knoHedcje in grammar-like systems which provide

only two devices to ensure coherence in the output: co-occurrence

of symbols in rewrite rules which ensures co-occurrence of

complement"-u parts of the problem in the outputt and set

membership -ihich enables semantical ly and syntactically equivalent

items to ti distributed ir e output in an identical manner.

12

_yen the use of variab!«;^ for holding data and control

information is not possible. This means for instance, that one

cannot use a variable to hole on to the name of the data-structure

that one has chosen to refer to in a problem being generated, so

that it can be used repeatedly. Instead one requires one sei of

ruies for generating, say, sorting exercises on lists and -

similar but different set of rules for sorting exercises on

arrays, unless of r.our3e there is a single reference to the nature

of the data-structure.

Final'y, syntactical and semantic similarities of phrases are

clumped together uhiie classifying these phrases into subsets.

The facx that a particular set of pnrases refers to investigators

in a particular field nas to be rememberei along with the

syntactic :nformation that all entries in this subset are singular

in number, and that in addition they are all only last names.

Achievements of investigators expressed '<n the past tense uive to

be segregated from their activities expressed in other tenses.

Flexibility in reference can be obtained only by entering

grammatical variants of the same phrase in different tubi-ets.

Summing up, it appears that the initial advantages of a

grammar-1 ike scheme are outweighed by the restrictions it imposes

on the development of a problem generator. It becomes necessory

to recognize and separt'te two concepts implicit in such schemes,

one being more general than the other. The first is the concept

of generative syntax with its power to generate well-formed

sentences in natural language or in mathematical notation. The

second l."« the concep' of an eltgant and 'jconcmical principle of

program organization - that of a top-down enumerative scheme for

generating a recursively defined set of structures. It is

obviously desirable to e»iploy the latter concept whenever

13

possibie, without committing oneself to tha fonnalization of ail

the machinery required for problem generation in the form of

generative syntax. Steps In this direction are particularly

important if we visualize CAI systems having access to detailed

representations of Kncuiedge of task areas. Uhatever fo^m such

Knowledge is going to be in - semantic nets, sirfiuiation models or

understanding systems - it certainly is not going tn be all

syntax.

u

li- GENERATION QF A PROBLEH A^ IH£ ASSEHBLY QF A STRUCTURE

3. \ Assembly gi. Problems

Ue can vieu the creation cf exercises as a task in design.

Given the function of a desired object, hew does one decide its

structure? How does one recog. ize the system ui design decisions

necessary in a given case? How does one encode decisions made in

the earlier stages cf the process so that their implications for

later decisions are readily ccmputable9 in this section ue will

deal with the generation of a basic kind of programming problem in

these terms. These problems exercise the student's skills in

handling arrays and in organizing uata in the form of sets and

sequences of numbers and symbol?. A tyoical hand generatec'

problem of this type (1) is:

YOU ARE GIVEN THE ARRAYS IARRAY[l:18e] AND flARRAY [1:108). FIND

ALL SETS OF NUHBERS IN 1ARRAY. Uu HATTER WHAT THEIR ORIGINAL

POSITION, UHICH CAN BE PUT IN COUNTING ORDER (I.E. EVERY ELEflENT

IN A SET. EXCEPTING THE FIRST AND THE LAST, SHOULD HAVE ITS

SUCCESSOR AND PREDECESSOR IN THE SÄHE SET). MARK THE FIRST SET BY

PUTTING TS IN THE CORRESPONDING POSITIONS IN MARRAY, THE SECOND

SET BY PüTTINr, 2,S IN THE CORRESPONDING POSITIONS. AND SO ON. PUT

ZEROES IN THE POSITIONS OF ELEMENTS UHICH DO NOT BELONG TO ANY

SETS.

Consider the task of a program that has to generate problems

in this form. A series of decisions have to be made, some of them

independent and some contingent on the others. Analysis of a

number of such problems shows that it is possible to repreaent in

a compact manner the basis .'or making these de-is ions for

(1) Courtesy of Ruven Brooks

15

producing reasonably large subsets of the studied problems. It is

possible in t^ese cases to find a conimon form in the structures of

the individual members of the probiern set. For examf-ls, the

problems(l) of Fig.4 ►• .vc a coniRon Etructi're outlined in Fig.5.

The problems in Fig.-i as neli as those in Fig.G were generated by

programs having the simple control structure discussed in the last

paragraph of Section 2. Use of this top-down generative structure

is based on the recognition that the problfts to be constructed has

a basically tree-like structure. The highest levei of the program

therefore deals with the linking up of the major sub-structures of

the tree which are assumed to exist. Lower level routines are

then defined for creating these smaller structures. The

parcelling out of tho assembly task can be spread üver several

levels, the routines at the terminal nodes selecting and creating

basic elements of the problem, while ine higher level routines

assemble parts created at lower levels into bigger structures.

(DGenerated by a program to be described shortly.

16

DEFINE AN ARRAY L(20P) AND READ NUnBERS INTO THIS ARRAY FROM THE

F,LE FGR81.GEN CHOOSE A SUITABLE FORriAT FOR THE READ STATEMENT

BY FIRST TYPIMG CUT FOR01.GEN AND EXAMINING IT. EXAMINE THE

ELEMENTS OF L AND IDENTIFY THE MAXIMAL SET EACH ELEMENT OF UHICH

IS A PRIME. SORT THE E! EMENTS OF THE SELECTED SET IN NUMERICAL

ORDER. PLACE TH1S ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF

L, IN DECREASING NUMERICAL ORDER. PLACE A ZERO IN ALL THE

LOCATIONS OF L UHICH DO NOT CONTAIN ONE OF THE FINALLY SELECTED

NUMBERS. "PINT OUT THE FINALLY SELECTED NUMBERS.

DEFINE AN ARRAY L(30,30) AND READ NUMBERS INTO THIS ARRAY FROM THE

FILE FOR0I.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT

BY FIRST TYPING OUT FOR0i.GEN AND EXAMINING IT. EXAMINE ALL THE

ROUS OF L AND IN EACH ROW. IDENTIFY ALL SEQUENCES OF 7 OR MORE

NUMBERS HAVING ELEMENTS EACH ONE OF UHICH IS A NUMBER GREATER THAN

4. POOL THE ELEMENTS OF ALL THESE SEOUL*:ES AND SORT THEM IN

NUMERICAL ORDER. PLACE THE 30 LARGEST ELEMENTS ALONG THE LOUEST

ROU IN NUMERICALLY INCREASING ORDER FROM LEFT TO RIGHT. PLACE A

ZERO IN ALL THE LOCATIONS OF L WHICH DO NOT CONTAIN ONE OF THE

FINALLY SELECTEO NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS.

DEFINE AN ARRAY L(300) AND ASSUME THAT THIS ARRAY IS FILLED UITH

NUMBERS IN THE RANGE FROM -1000 TQ 1000. EXAMINE THE ELEMENTS OF

L AND IDENTIFY ALL SEQUENCES OF 3 OR MORE NUMBERS HAVING ELEMENTS

THAT ARE ALTERNATELY A CUBE AND A NON-CUBE. CONSIDER THE

SEQUENCES IN THE ORDER OF INCREASING FIRST TERMS. CHOOSE THE

FIRST G SEQUENCES IN THIS ORDER. IF THERE ARE MORE THAN B

SEQUENCES. 0THERUI5E. CHOOSE ALL THE SEQUENCES. POOL THE

ELEMENTS OF ALL THE CHOS£N SEQUENCES AND SORT THEM IN NUMERICAL

17

ORDER. PLACE THIS OPDERFO SEQUENCE OF NUMBERS AT THE BEGINNING OF

L, IN INCREASING NUMERI GAL ORDER. PRINT OUT L.

DEFINE AN ARRAY 1(18.18] AND READ NUMBERS IN'O THIS ARRAY FROH THE

FILE FOR31.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT

BY FIRST TYPING OUT FCR81.GEN AND EXAMINING IT. EXAMINE ALL THE

ROiJS OF L AND IN EACH ROU. IDENTIFY ALL SEQUENCES OF 3 OR MORE

NUMBERS HAVING ELEMENTS IN THE FOLLOWING ORDER - A NUMBER

DIVISIBLE BY 7, AN ODD NUMBER. A NEGATIVE NUMBER. SUCH A SEQUENCE

MAY START WITH AN, ONE OF THE SPECIFIED TYPES OF ELEMENTS. POOL

THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL

ORDER. PLACE THE 1 J LARGEST ELEMENTS ALONG THE FIRST COLUMN IN

NUMERICALLY DECREASING ORDER FROM TOP TO BOTTOM. PRINT OUT THIS

COLUMN.

DEFINE AN ARRAY L(ee0) AND FILL M UP U!Th RANDOM NUMBERS IN THE

RANGE FROM -1008038 TO 1000883. EXAfHNE THE ELEMENTS OF L AND

IDENTIFY ALL SEQUENCES OF 7 OR MORE NUMBERS HAVING ELEMENTS EACH

ONE OF WHICH IS 4 MULTIPLE OF ITS PREDECESSOR. POD' THE ELEMENTS

OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL ORDER. PLACE

THIS ORDERED ^QUENCH CF NUMBERS AT THE BEGINNING Or L, IN

DECREASING NUMF AL ORDER. PLACE A ZERO IN ALL THE LOCATIONS OF

L UIHICH DO NOI CONTAIN ONE OF THE FINALLY SELECTED NUMBERS. PRINT

OUT L.

Ficj.4 Examples of 'Array Order jpg Problems'

18

PROBLEfl-

•SPECIFIED INPUT. RANGE OF NUflBERS DECIDED HERE

•SPECIFIED DATA-STRUCTilRE. DNE OR TWO DIMENSIONAL ARRAY

-SOURCE OF DATA

SUB-CTRIJCTURES CF GIVEN

DATA-STRUCTURE (EG. ROUS/COLUMNS)

•CBJECT TO BE SEARCHED FOR

SPECIFIED SETS

SPECIFIED SEQUENCES OR

SUBSTRUCTURES CONTAINING

SPECIFIED OBJECTS

►1ST MANIPULATION.

— "ORGANIZATION OF OBJECTS DETECTED

POUL OR/AND ORDER SELECTED OBJECTS

-RELOCATION OF REurlGANlZEO OBJECTS

SPECIFY DESTINATION

(SUCH AS THP TOP 3 ROUS,

Mi DOLE rtOU, LAST COLUflN)

'URIHER hAW'PULATlONS

•OUTPUT AS SPECIFIED

F i q. 5 The Structure oi a Class ul Arrau haniPUtatton Problems

aaa-aajittfTwn

19

CONSIDER THE LIST L13 AND THE UNNAMED LIST ON THE STACK. SELECT

THE SET OF ALL EVEN NL'^ERS WHICH ARE PRESENT IN L19 BUT NOT IN

THE UNNAflED LIST. FIND THE SUM OF ALL THE SELECIED NUMBERS AFTER

Eu IM INATING MULTIPLE OCCURRENCES.

YOU ARE GIVtN THE LIST-STRUCTURES L13 LI« L15 AND L16 AND A

UNNAMED LIST-STRUCTURES ON THE STACK. THEY MAY CONTAIN NUMBERS AT

ANY AND ALL LEVELS. SELECT THE SET OF ALL PRIME NUMBERS WHICH ARE
DRESENT IN LIB . IN L15 . IN LU . AS WELL AS IN L13 BUT NOT IN

EACH UNNAMED LIST-STRUCTURE. ' IND THE SUM OP ALL THE SELECTED

NUMBERS AFTER ELIMINATING MUL IPLE OCCURRENC'_S.

CONSIDER THE 3 UNNAMED LiST-ETRUCTURES ON THE STACK AND THE

LI ST-STRUCTURES L18 L19 AND L2B. THEY MAY CONTAIN NUMBERS AT ANY

AND ALL LEVELS. SELECT THE SET OF ALL NEGATIVE NUMBERS WHICH ARE

PRESENT IN L20 BUT NOT !N L19. MERGE THESE WITH THE NUMBERS WHICH

ARE GREATER THAN 100 FROM THE TOPMOST LIST-STRUCTURE ON THE STACK.

PLACE ALL THE SELECTED NUMBERS ON L18 AFTER EMPTYING IT FIRST.

SORT THE CONTENTS OF L18 IN DESCENDING NUMERICAL ORDER. FIND OUT

ALL SEQUENCES OF PRIME NUMBERS IN IT ANO PLACE THEM ON THE 2 OTHER

UNNAMED LIST-STRUCTURES-

Fig.6 A Set of. Simple Liot-Prccessinq Problems

20

Some of the terminal routines make random choices, while others

access the structures already assembled and choose compatible

elements to be used in the sub-structures being constructed

Access to a representation of knouledge of the task area having

the form described on p.^ge 4 also occurs at this level as a part

of the relevance snd compatibility computation.

It is usefui at this stage to evaluate the utility of the

selective raechanii^s discussed above. Very rough estimates can be

made of the total number of structures tnat are in aome sense

possible, and the fraction of these structures that are

mean'ngful. The number of branchings that occur in the course of

generating a problem of the type shown in Fig.A is of the order of

15. corresponding to the branchings of Figure 5,

While the choices tnat create structural differences between

problems usually involve only two or three alternatives, e.g. the

choice between one dimsnsional arrays and two dimensional arrays,

numerical cho:ces ir.volve large numbers of alternatives. Most of

the numerical choices are equivalent, but selecting a number in

the wrong range could create absurd probiems, e.g., comparing

numbers in the range from 0 to 108 with the threshold of 2583.

Estimating that there are 2 or 3 significant alternatives at most

branches, the total number of choice sequences that are available

over 15 steps is in the rjnge frcin iötü to 18t7 . Typically,

five or six of these decisions are contingent upon others, so that

the amount of selection exercised by (he program in producing a

coherent problem (out of what would be mostly nonsense problems if

free choices were made at each point) is roughly I in 503.

21

d.2 Assembly Q± Sentences

Uhat is the nature of the stru'ture assembled by a problem

generator in relation to a comprehencfable external description of

the problem? One possibility is that the structures assembled by

the generator be directly ths deep-structures of sentences which

would -„onftitute a readable description of the problem. In this

case all the knouleclge reauired to translate these structures into

readable descriptions can be localized in a 'sentence

synthesizer'. Such a synthesizer would remove the burden of

syntactic considerations from the problem-yenerator. The input

requirements of this Synthesizer would define a range of possible

formats for the data-structures to be created by the generator.

iJe have implemented such a sentence synthesizer (see Simmons and

SlocuM, 1972 for a detailed trtatment of sentence synthesis). The

problems in Figures G, 8, 12 and 13 were all generated by programs

which first created well-def'ned deep-structures for their

sentences. These were then rendered into readable form by the

sentence synthesizer. A brief discussion of the nature of the

sentence structures used is given here. Some information on

programming considerations and on, the sentence synthesizer may be

found in Appendices A and B.

The deep-structures are in the form of labelled directed

graph-structures. The nodes are unnamed lists representing

specific occurencea (or 'tokens') of concepts symbolized by

word-roots, numbers or symbols. The edges are associations

implemented by using association lists and a hash-coding scheme.

While the list itself represents the token, its content, genera iy

a word-root (referring to a specific word-sense, in the case of

ambiguous words), represents the "type'. There may be several

lists with the same content to represent different tokens of the

■

22

same type. Structures are formed by creating labelled iand

directed) associations between nodes to represent deep-case

relations between the entities referred to in a sentence. Some of

the functions performed by these relations are illustrated by the

examples in Fig.7. the two appendices describe briefly the

construction and interpretation of such sentence-struct'ires.

Uhile token-to-token associations create sentence structures,

other associations involving types embody the sentence

synthesir^r's knowledge of the language. For example, such

associa' link words to their syntactic categories and to their

excep4 plural forms when these exist. They also link

syntac ,. categories with appropriate synthesis routines which

recognize basic sub-structures of sentences and have tht

capabilities to generate appropriate word-groups for them. Uhile

token-to-token associations are dynamic in the sense of being

created and destroyed as sentences are generated and printed out,

the syntactic and semantic associat iont, are permanent. However,

the same association mechanism in the programming facility

provides the three types of associations discussed so far:

associations embodying information on the task area as described

on page 4, the token-to-token links which are used to create

sentence structures and the syntactic and semantic associations

embodying the sentence synthesizer's knowledge of English. As may

be expected, there is some overlap between what should belong to

the first type and what should belong to the third type.

23

«unique— (TRUE)

-«.unique (TRUE)

M.number«. 8

. object «(NUMBER)— • L—name— (A)

_ location«. (ARRAY)

^.subscr iptl„

•conjunction.. (SUCH THAT) .

(ARRANGE)«JLadverbial phrase z>
(COnnENSURATE) —

[conjunction«, (UHtN)

subject«. (ELEMENT)

L-subscriptZ«. (40)

«uni.ue- (TRÜFJ

„name— (A)

— subscript— (I)

.object- (ELEMENT)-unique- (TRUE)

name— (A)

subscript— (J)

adverbial phrase..(COMMENSURATE) «-_subject- (I)

««object«. (J)

Fig.7 Qgefi Structure ci ä One-Sentence Problem

24

3»? Control Qi. thg. Generative ProcegF

In discussing programs having the control structure described

in Section 3.1 it is useful to talk in terms of a search of the

'design spate' which is a special case of the 'action space',

using the search representation for problem-solving (Newel I and

Simon, 1972). The series of design decisions that leads to the

assembly of a suitable object is a special case of the

' solut ion-act ion-set;/ence'.

Complementing this description is the set representation fur

problem-generation which deals with the target space of al!

problems that can be produced by the generator. Starting at the

highest level, the prog^a"" selects progressively smaller

subspaces. till it identifies a single point in it which

represents the problem generated at this attempt. The design of

the program has to start with the visualization of a rich enough

space. The control structure has to ensure that al ! the

visualized space is accessible by a suixable sequence of choices.

An important question is concerned with the control of this

access path. How can one influence a series of choices selecting

one possible access path out of a large number all of which lead

to meaningful problems?

A powerful and yet simple control mechanism that provides a

certain degree of direction in the generative process depends upon

the use of a quasi-formal language to specify desired sets of

problems. Por example, problems of the type in Fig.8 are easily

produced by appropriate interpretation of brief high-level

descriptions, e.g.:

25

(CREATE A LIST)

(SCAN A CIRCULAR LI ST-STRUCTURE)

(SUBSTITUTE COMPONENTS IN A SYmEYRIC LIST-STRUCTURE)

(FIND PROPERTY OF GIVEN LIST-STRUCTURE)

(TEST IF A DATA-STRUCTURE IS RECURSIVE)

(DELETE COMPONENTS FROM A SYMMETRIC LIST-STRUCTURE)

A sentence in such a language predetermines a specific set of

choices to be made by the generator, leaving other choices to be

made freely Naturally, the strjcture of the sentence

interpreting mechanism uill determine the effectiveness of any

such scheme. The Interpreting mechanism has to analyse the

sentences and determi ie t-ihich steps of the generative process are

being forced, and in which direction.

An appealing form for such an interpreter is a semantic

ivs •<ter which find? out the deep-case relationships between the

entities referred to by a sen'^nce, sharing syntactic and semantic

information used by the sentence synthesizer.

. .

2B

CREATE A LIST CONTAINING THE FIRST 42 PRIME NUHBERS
>

COUNT OCCURRENCES OF SEQUENCES OF NEGATIVE NUMBERS IN THE CIRCULAR

LIST-STRUCTURE GIVEN

>

SUBSTITUTE ALL OCCURRENCES OF THE COflPONLNT-LlST CZ IN THE SYMMETRIC

LIST-STRUCTURE GIVEN BY THE TERMING-NODE GIVEN
>

URITE A PROGRAM TO CONCATENATE THE LISTS LIST-LI AND LST-L2
>

SUBSTITUTE THE LAST-BUT-ONE OCCURRENCE OF THE TERMiNAL-NODE T3 IN

THE SYMMETRIC LIST-STRnrjURE L3 BY THE COMPONENT-LIST GIVEN
>

FIND THE LENGTH OF THE LIST-STRUCTURE GIVEN

>

FIND IF THE CIRCULAR LiST-STRUCTURE LI IS RECURSIVE

>

URITE A PROGRAM TO CONCATENATE THE LISTS LiCT-Ll AND LIST-L2
>

DELETE ALL OCCURRENCES OF TERMINAL-NOCZS OF THE TYPE I IN THE

SYMMETRIC LIST-STRUCTURE GIVEN

Fiq.8 A Set of Problems Generated bti Interpret inci

Br ief Probjem Speci ficat ions

27

The hiyh-leve! descriptions of probiems indicate to objects

and processes which are to be referred to in the problem to be

generated. Reference is mada to them directly or, sometimes,

indirectly by mentioning sets of entities from which the generator

may choose suitable members. Fig.9 shows some of the objects and

processes referred to by the problems h ing discussed and their

organization into progressively larger sets. The interpreter has

to recognize case relationships to find the function each entity

is to perform in the problem and use this information to control

the generative process.

The siwple interpreter which produced the problems of Fig.8

from high-level descriptions was implemented by defining a 'search

routine' for each word category, the categor irat ion being

basically syntactic. Interpretation is performed by executing the

search routine associated with each word, allowing it to find

other words in the sentence which are related to i + . This process

results in the construction of parts of deep-structures of

ootential sentences to describe entities being referred to and

their relationships to each o*her. The associative schemes

referred to on page 24 are useful here too. After this parsing,

the interpreter triggers» off the problem generator giving it the

refs-ences to the entities it must use in i * ,-i operation. The

generator processes any indirect references to obtain suitable

entities which are to be used in problem generation and completes

i ts task.

W- ;=

28

objects.

Iist/list-structure

circular i i ■st/i t st-structure

syMMtr icat I i st/ I i st-structure

processes—i

create ,—find properties -—count them

examine^.

. tnodi fy.

scan for specified

content v. print them

introduce

concatenate

.delete

subst i tute

component objects —

sub-structures

terminal nodes.,

numbers

syrnboIs

F iq.3 Altarnatlves for the Choice gl Components fgr ih£

Problems in Fig.8

Uhile explicitly specified choices are easily forced upon iiie

problem generator, there are several possibilities for handling

the choices that are not forced. One such possibility is that

information about the generation of sub-problems cam be

accumulated in the course of generating a series of problems.

This infoi-mation can then be used to ensure that sub-problems are

well distributed in a generating run. For instance, from the

knowledge »hat a particular series of tasks have been successfully

carried out by a student, a set of sub-problems that he has

carried out can often be identified. It can then be ensured that

later problems do not incorporate these sub-problems already

familiar to the student, unless there are special reasons. There

is also the possibility that hierarchic reiat ionstvps between

tasks can be exploited to produce sequences of problems of graded

difficulty. Fig.10 shows recognizable sub-tasks uhich are

incorporated in the problems of Fig.^t, organized to exhibit

hierarchic dependencies. The sub- tasks appearing in underlined

script are complete in the sense of being usable as ?eIf-contained

exerc.ses. Appopriate organization of the generator should allow

such exercises to be produced uhen needed, without use of any

additional machinery.

SOLVING ARRAY PROCESSING PROBLEflS

OF THE TYPE 1LLUSTPATEO IN FIG.4

30

REARRANGING AN ARRAY BY

nOViNG SEQUENCES Jü U

UlTHGin LOSING ITS CONTENTS
I

ACCUflULATiNG SETS OF

NUMBERS THAT HAVE

BEEN SELECTED FOR

LATER USE

SCANNING AN ARRAY. STORING REFERENCES

SELECTING SPECIF!ED TO SEQUENCES IN AN

EL^nENTS ARRAY FOR LATER USE

i {
ACCESSING ELEMENTS OF SCANNING AN ARRAY

THE ARRAY AND TESTING SEARCHING FOR

THEn BY COnPUTING SEQUENCES QF

NUMERICAL PREDICATES SPECIFIED

STRUCTURE

REARRANGING CONTENTS

DE AN ARRAY BY

EXCHANGE AND

SUBSTITUTION

CODING INPUT FROM

QiÄ=EM
m

COOJJiS OUTPUT IQ

PISC-FILF

LLLLiNS U2 ARRAY

UiTH RANDOM NUMBERS

Fig.10 Sub-Tasks Encountered in Ihs Arrau Processing Problems pf Fiq.4

31

it. GENERALIZATION QF A PROTOTYPICAL PROBLEM

Is it possible to start front a we!l-known problem and write a

generator for producing useful generalizations of the original

problem? This section describes experiments with this technique of

generalization, applying it to a probie.i fi"st discussed by

Hoare(19G4) and then by Djikstra (1971). The probles is;

Rearrange the elements of the array AdsNl such that

for a given value of f (l<f<N)

A[k]<Atfi if l<k<f and

Atf]<A(k] if f<k<N .

The r-jqui'-ed arrangement is said to 'split' the array around f.

As a programming exercise thi? task has manifold appeal. It

confronts the student with the problem of planning manipulations

which interact heavily. If uie eliminate the brute force solution

of sorting the array, perhaps by adding an economy clause to the

problem statement, the solution is no lonyer obvious. Djikstra

describes an elegant solution based on. recursion.

Ue look at it from another point of view, attempting to

generalize it into a class of array-order iny problems which test

the student's understanding of the concepts relevant to sorting.

Ue do not specifically concern ourselves with the existence or

non-existence of an elegant recursive solution to the problems

generated.

Fig.11 lists some of the skills needed to program basic

sorting, in an order intended to indicate the dependence of some

of these skills on others, the more basic ones being generally

Iower in the Ii st.

'—IMI II „ -_ '-JinwrrntTrt- I -

32

REARRANGING ARRAY AS SPECIFIED

MANIFULATING ELEHENTS OF AN ARRAY LÖCALL'

{SUBSTITUTIONS AND INTERCHANGES)

PERFORniNG ARITHMETIC ON ELEMENTS OF ARRAY

(COnPUTING FUNCTIONS AND PREDICATES

DEFINED OVER ELEtlENTS OF THE ARRAY)

SCANNING ARRAY FOR SPECIFIED ELEMENTS

ACCESSING SPECIFIED ELEMENTS OF ARRAY

BY GENERATING DESIRED SEQUENCE OF SUBSCRIPTS

F i ci. 11 E lements of ihe Sor t inci Exerc i se

In terms of these operations, soiting turns out to be a

rearrangement of d given array A[1:N3 such that Atj] > A[i} if

j > i .

A simple generaiization of the Hoars problem which still has

the listed concepts as essentials is:

Rearrange elements of the array All:N] such that

if Rl(<i>,<j>J then R2{A<i>,A<j>)

where Rl and R2 stand for relations and <i> and <j> are

generator var,ab!es which are to be substituted by a

variable such as i.j.k or, when suitable, by a numerical

constant.

33

A related set of problems is of the form:

Rearrange elements of array A[1:N] such that

if PlUi>) then P2(A(<i>])

where PI and P2 are predicates.

Fig. 12 shows some of the problems generated by a program

based on the two generalizations indicated above. Comparison of

these problems with those presented in Section 3 shows that these

problems have an element of programming difficulty not generally

present in the earlier problems. The programmer now has to tackle

the question of space needed by the contents of the array. Moving

the content of a cell requires that space be found for it

elsewhere. Creating space could involve disturbing elements which

have been properly placed already and considerable interaction

between desirable changes is caused thereby. """his is a

significant aspect of the original problem that is preserved.

34

>
ARRANGE THE MUflBERS IN THE ARRAY A[1,40] SUCH-THAT THE ELEMENT IN

CELL All] IS A SQUARE IF I IS A CUBE.

>
ARRANGE THE NUMBERS IN THE ARRAY A11,25] SUCH-THAT THE ELEMENT A [11

IS COMMENSURATE WITH THE ELEMENT A[11] UHEN i IS LESS THAN 11.

>
AhRANGE THE NUMBERS IN THE ARRAY A[1.38] SUCH-THAT THE ELEMENT AH]

IS LESS THAN THE ELEMENT A113] UHEN I IS DIVISIBLE BY 13.

>
ARRANGE THE NUMBERS IN THE ARRAY A11.J9] SUCH-THAT THE ELEMENT IN

ANY AN EVEN-NUMBERED CELL IS A SQUARE.

>

ARRANGE THE NUMBERS IN THE ARRAY A [1,30] SUCH-THAT THE ELEMENT A [I]

IS LESS THAN THE ELEMENT A [7] UHEN I IS COMMENS1 W UITH 7.

>
ARRANGE THE NUMBERS IN THE ARRAY A[1,40] SUCH-THAT THE ELEMENT A III

IS COMMENSURATE UITH THE ELEMENT A[J] UHEN I IS COMMENSURATE UITH J.

Fig. 12 ATTJü Dreier ing Problems

35

A sequence of several problems derived front the same

prototype would be unsuitable for presentation to a student, if

^hey show no more variation than the set of problems in Fig.12. A

library of prototypes could provide some coverage and variety. On

the other hand, focus on selected concepts would be useful, evan

at the expense of variety, uhen producing probleffls for certain

purposes: for introducing important concepts, for testing, for

remediation or for review. If the student has a convenient

addressing facility, he would often find it useful to ask for a

few similar problems involving e specific set of concepts to

confirm his own understarding of these, before he moves zn to

other concepts.

5J. REASONING ABQUI ACTIONS

The basic characteristic of a problem situation is that the

scheme of actions leading to a solution is not obvious, while the

elements out of which such a scheme could be constructed ate more

or less available. It is generally important in problem

generation to estimate and control the complexity of the

action-schemes which might lead to Er utions, ensuring that the

problem presents a desired level of difficulty to the student. To

some extent, the generator may also predetermine the content dnd

structure of fruitful action-schemes.

One device for the estimation of complexity of a problem

involves the visualization of possible problem spaces that might

be searched for a solution. In the case of programming exercises,

the cost of searching the most easily intuited space of solutions

can often be estimated easily by the generator. Ensuring this

coi t is too high forces a step of refinement on the student,

making him look for clues for augmenting the problem-space or, in

some cases, compelling hit,i to restructure the program, for example

by providing for storage of computed values to reduce

computational cost or by substituting iteration for recursion.

Uhen dealing with we I I-structured problems, a lower bound for the

complexity of the program needed to solve a given problem may be

estimated by identifying those features of the program which have

been rendered essential. A generator could use such estimatas to

arrive at problems presenting desired levels of difficulty.

A second device that could be employed is the programming of

limited deduction about the problem situation. The problems

appearing in underlined script in Fig.13 provide good examples of

situations where the scheme of actions needed to perform the given

37

task is of controlled complexity (1). Each of these problems

involves an action or a set of actions that is to be performed in

order to achieve a desired change or to achieve a desired state in

the given situation. The fa8k is meaningful only if the action

specified is relevant to the state change desired and if the

performance of this action presents a desired level of difficulty.

In order to take these requirements into account the problem

generator has to have information relating possible actions to

their effects. It also needs estimates of difficulty in carrying

out possible actions (i.e. 'applying operators', to use the

wording in Neue I I and Simon. 1372). The use of a table of

connections (ibid) is a possibility. Deducing the information by

following a suitable line of reasoning r.,ay be necessary in those

cases wnere a table of connections becomes unwieldy.

The oroblems under discussion deal only with a few possible

types of simple manipulations that can be performed on graphs,

i.e. addition or deletion of vertices and edges and the

repositioning of edges. Each type of manipulation is generally

capable of multiple application to a graph.

ll) The other problems shown in this figure are not discussed

iiere. They were produced by generators having the structure

discussed in Section 3 and share association networks with the

problems being discussed in this section.

. -i..r^

38

> DELETE LESS THAN a EDGES FRQtl IH£ GRAPH £ |Q iNCR£AS£ US. BAQiuS

m h.
> ASSIGN NUnBERS IN THE RANGE FROH 1 TO 18 TO THE EDGES OF THE GIVEN

GRAPH SUCH THAT THE NUIIBER ASSIGNED TO AN EDGE IS COmENSURATE WITH

THE TOTAL NUMBER OF THE EDGES ADJACENT TO IT. ENSURE THAT THE SUM OF

THE ASSIGNED NUHBERS IS A MAXmUM.

> FIND BR1ÜGES UITH A LENGTH OF 4 IN THE GIVEN GRAPH.

> ADO L£SS IRAN 5 EDGES ID IHE QRAPH G SUCH IHAI U LS NQ U3NG£R A

PLANAR GRAPH.

> FIND IF THERE ARE CYCLES IN THE GRAPH G.

> ADn LESS. IHAN 3 NEU VERTICES UITH NECESSARY INCIDENT BIES Ifl IHE

GRAPH G SUCH IfjAT JHE VERTICES V7 Y2 V13 V6 AND VI AfiE NQ LONGER

THE CENTRAL .'ERT1CES.

:• FIND CYCLES IN THE GRAPH G.

> ASSIGN A COLOR NAME TO EACH EDGE SUCH THAT THE COLOR OF ANY EDGE

IS DIFFERENT FROM THE COLOR OF ALL ITS ADJACENT EDGES.

> ASSIGN NUnBERS. NOT NECESSARILY UNIQUE. IN THE RANGE FROM 1 TO 15

TO THE EDGES OF THE GRAPH G SUCH THAT THE NUMBER ASSIGNED TO AN EDGE

IS MULTIPLE IHE NUMBER OF THE CYCLES IT IS A MEMBER OF.

> GENERATE BRIDGES UITH A LENGTH OF 4 FROM THE GRAPH G.

> FIND IF THE GIVEN GRAPH IS A BLOCK.

> REPOSITION 3 OR MORE EDGES IN IH£ GRAPH Q SUCH MI IS ESffiffEfCITY

OF V9 REMAINS UNCHANGED.

Fig.13 Graph Manipulation Problems

39

Some of the problems require that the graph be modified to attain

a given rroperty by performing only a limited number of a

specified type of manipulation. Other problems require that a

given number of manipulations of a specified type be performed

without altering the graph in a specified uay. Since these are

programming problems, ^he real task is to urite a prog, am which

oerforms the required manipulations on ^ly graph given as its

input.

The problems are interesting because performance of the task

under the given constraints becomes a critical matter, requiring

considerable analysis of the problem situation an-J careful

plunnmg of tm.> solution. A special difficulty is that the

solution sbouM be applicable to an indefinitely large «=et of

graphs any of uhich may be given as input to the program that is

to be written. These features, and the oresence af a body of

theory on graphs, make these problem? good exercises in

non-numerical programming.

The generator which produced the examples in ^iQ.13 performs

limited deduction to arrive at the relation between the five

allowed manipulations on graphs to a dozen or so st?te changes

that could occur in the graphs as a result. In the case of the

problems in Fig.13, the deduction is based on the heuristic use of

knowledre about gross chenges that occur in the graph as a result

of simple manipulations. Two gross indicators are the change in

the number of oaths between an arbitrary pair of points as a

restit c of 3 manipulation aid the change in distance between an

arbitrary pair of points. table 1 relates manipulations to their

effects in terms of these gross indicators. Table 2 relates these

indicators to several state char is that can be produced in

graphs. In these tables, an entry of a '1' shows a tendency for

48

the cause to increase the quantity it is related to; and an entry

of a '-1' shows the opposite tendency; and an entry of '0*

indicate? that a predictable link is not present.

Oloerat ion Q&m in Chanqe _in

Path Lenath Number pf P?th?

Delete Vertices with edges +1

Delete Edges +1 -1

Add Edges -1 + 1

Add VertictiS and edges B + 1

Reposi tton Edges B e

Tah'e 1 Operators and Their Effect on G^aph Parameters

hl

Süifi

Paiü Lmaiti
Incregse In Number
Qi Paths

Radius +1
Diameter +1

Eccentrici ty +1

Connectivi ty 0

Number of

Components B
Planar i ty 8

Possibi1i ty of

Hami1 tonian Paths 3

Identity of

Center e
Distance Between

Two Nodes +i

Possibi1i ty of

Eulerian Paths 8

-1

-1

-1

+1

-1

-1

+1

8

-1

B

iMdS. Z Slaifl Changes snä Associgted Variations m

Graph Parameters

 - —

42

To generate the examples raierred to, the generator chooses a

permitted manipulation and identifies a re'evant state change by

using the tables. Further, it computes from these tables the

direction of state chanys and introduces a suitable constraint

which ensures that the task being constructed is not too easy.

Extensions can easily be made to the generator employing the

line of reasoning described above. Consider, for instance, the

problems which require that a particular state change be realized

without altering a specified feature of the given graph. A simple

computation involving Table 2 enables the generator to produce

pairs of state changes requiring opposi's directions of change in

the two paramete-s involved. A reference to Table 1 identifies a

relevant manipulat i^1- on me graph. These two steps enable the

generator to create a problem by requiring that the specified

manipulation be repeatedly performed to obtain a given state

change ensuring that the other state change does not occur.

43

^ QOVER SIORl£S

Large classes of problems can be viewed as having an abstract

structure. In these problems, *he specific objects functions or

relations that appear are not of much significance, and ar-s

generally substituted by formal variables early in the

problem-solving process. The same abstract-structure obtainsd

from many problems yhich differ oniy trivially describe the

essence of the problem situation. School text-books on

mathematical subjects employ the well-known technique of taking

interesting problem-structures and fleshing them out with

sufficient surface detail to generate exercises. It is

conceivable that problems generated by this technique, apart from

providing variety , also focus attention on the skills necessary

to abstract the basic structure of given problems (1). The

process of creating a coherent surface structure is worth 3 brief

discussion, even though we have not yet implemented a program to

i ilustrate i t.

At the IOJCS'. level of sophistication would be schemes which

operate with > fixed number of abstract problem-structures and a

fixed number üf surface structures. Using some indexing scheme, a

compatible peir of structures would be selected and the formal

varibles in the abstract structure would be replaced by the

corresponding terms of the surface structure. At the other end of

the spectrum would be an understanding system which has straU es

for finding or creating real-world rituations corresponding to any

given abstract problem-structure.

(1) Hayes and Simon (1973) are studying subjects' behavior when

presented with differently structured external cover Btories for

the same abstract problem structure (tower of hanoi).

kk

Possible compromises between what is desirable emu «.lat is

implementable include systems which exploit strong links between a

large body of theory of a class of structures and a related area

of 'real-world* problems with adequate diversity. Consider, for

instance, probie-s involving transport and communication networks.

It is obvious that many graph manipulation prcblsms can be

paraphrased as problems in this area. Implementing a system which

can perform such a paraphrasing intelligently involves several

problems. Such a system could use a set of associations linking

entities in the abstract theory wilh corresponding entities in the

application area. A partial mapping may be possible, and it will

indicate, to some extent, those asoects of the theory that are

relevant to the application area. For example, the concept of a

weighted graph is specially relevant to the application area being

considered here because it provides for the possibility of taking

into account physical lengths of the edges.

Unless such information on relevance is used to shape the

aostract problem being created, only a very small fraction of

generated structures can be paraphrased as natural-Iooking

application area problems, Hciever, the complexity of detail that

has to he attended to appears formidable. This is best

illustrated with examples. In the area of transport and

communication networks, some of the information that should be

available to the generator, directly or indirectly, is:

Road networks which are non-planar have to be

constructed with the use of underpasses and

overpasses which are expens ve in relation to the

cost of roado. This is not the case with

air-routes and telecommunication circuits.

The presence of cut-vertices and small cut-sets is

relate^ to the problems of reliability of the

network.

-I

45

Paths passing through every edge lEulerian paths)

are relevant to bus routes ledges being streets),

while they are not of significance in the case of

telephone networks.

It is possible to think of railroad stations as

fuelling or non-fuelling stations (say for

generating problems involving dominant sets of

vertices in a graph). This is generally not true

in the case of airports, all of which can provide

fuel.

These examples illustrate the wealth of knowledge that a

human designer brings to bear on the task of creating cover

stories. Programming a generator to design cover stories

therefore has to face the problems of representing the basis for

such knowledge and of utilizing it.

46

Lu CONCLUSIONS

Uhi !e simple generative schemes do, in seme cases, produce

surprisingly coherent questions, it is clear that the creation of

a good problem is in general a design task which involves

considerable knowledge of the task area. Detailed representations

of relevant knowledge of the task area are as important in problem

generators as they are in the case of any program which performs a

cognitiveiy significant task. These representations structure the

task area in terms of objects and processes, assign attributes to

these entities and provide static links as well as computational

routines to implepent functional and relational mappings.

Given such a representation of knowledge, the questions that

arise aboui a problem generator concern its structure and the

strategies that it incorporates. Are generators arbitrary

programs which have to be conceived ad-hoc, or is there a common

set of principles theu can be based upon?

Ue have developed the view that generators perform a design

task, assembling a complex object - the protjlem - while operating

within a variety of constraints. A top-down generative

control-structure appears attractive. The second suggestion was

that this generative mechanism be freed from the burden of

syntactic considerations it carries in the case of grawmar-like

mechanisms. The data-structures it operates with could be

deep-structures of sentences, pro-'iding a rich representational

scheme easily extended by borrowing from natural language. A

sentence synthesizer which creates readable descriptions of

generated problems was described.

47

Problem generators for specific areas have to be developed by

inventing appropriate representations for knowledge about problems

in that area. Some sets of problems hav«? a prototype and a

process of what might be called semantic generalization results in

a set of problems which are similar to the original and yet

provide significant diversity. Some sets of problems can be

created by performing limited deduction about operators and state

changes they cause in the relevant, problem space. These

strategies have been discussed and illustrated with examples

produced by programs based on them.

Another strategy, which is based on the design of cover

stories for good abstract problems has been introduced. Problems

of controlling the generative process hy using explicit

specifications and the problems of using information available

regarding the student's familiarity with a set of concepts have

also been briefly draait with.

AcKnowl edciement: One of the authors (S.R.) wishes to acknowjedge

the award of a Homi BhabKa fellowship which provided partial

support for this re'.jearrh. he also wishes to thank Dr. Ma thai

Joseph for helpful comments and suggestions on problem generation

in the early stages of the work reported.

A 8

APEENOLK AL FRggRAItliNC: QEMJ

1. Languages Used

AM the generators mentioned in the preceding pages were

prograinmed in the list processing impiementat ion language LiV(F)

{Newell, et at, Jan. 1371). The main implication of the use of

LsvCF) is that one adopts a specific approach to system-building

(Newell. et al. Sept. 71). This approach leads to the

construction of iarge systems in a layered fashion, adding

facility after facility (e.g.,: an association mechanism based on

the use of hash-coding techniques for accessing association lists;

the semantic parser discussed in Section 3.3; in a number of

steps, later layers using the tools provided by the earlier ones

and building on them. The other implication of the use of (L>v(F)

is that the total access provided to the language processor's

machinery encourages the user to adopt this machinnery when needed

rather than building a language processor on his own.

2L Pr i m i t [yji operations

The basic operations of random choice, weighted choice, value

assignment, creation of associations and accessing of associations

are specified by the use of the operators t ,#,«.,<•, ? and S

, the last one being the statement terminator used in conjunction

with the operators «- and <= . These six operators as well as the

comma are assigned necessary 'character actions' and 'syntax

actions' (Newell, et al, Jan. 1971) as per the conventions of

LitiF), ensuring f.ie proper parsing and interpretation of

expressions of the following form embedded within regular L*(F)

programs.

^9

[Al A2 A3 A4]

[Al A2 A3 A4J t

[Al 3 A2 5 A3] f

[Rl P2 R3] t X

A «- B t t

ATT. OBJ <» B 8

ATT, OBJ ?

ATT. — ?

CoRini=nt fields follow the

semi-co Ions.

Create the specified data-1 ist

(of type list on Lfc(F)).

Choose an item randomly from

the given list.

Choose by a weighted random

process. Ueights are prefixed

Mi th the number sign.

Choose one of the routines in

the list and execute it, obtaining

a value. Expressions of the above

forms can be used in the place of

the variable B in the following

statements.

Replace the contencs of list A

by the contents of list B. usea

Mainly to assign values to variables.

Associates a value, B. with the

given attribute of the given object.

Obtains the value of the given

attribute of the given object.

Obtains the value of the giv«;n

attribute of the object on top

of the Liv(F) working stack.

The brief description above does not cover all primitives

used in the system. However, a brief mention should be made of

variants of the choice operator t. One has a memory cell for its

most recent choice and avoids repeating it, Another variant

refers to information associatively linKsd to its data-list by

other parts of the program before making a selection. This letter

58

variant is useful in programming generators which are

controli able.

2.1. Creation Q± Data-Structures

A structure synthesizing routine .C is used extensively by

the problem generators. The execution of a statr.iient of the form

UTVP, ASUB1 VSÜB1, ASUB2, VSUB2. ASUB3 VSUB3] .C)

creates 3 list representing a token, or instance, of an entity of

the type TYP. Associat i veiy linked to this list are the

attributes ASUB1. ASUB2 and ASUB3 which are assigned io values

VSUBl. VSUB2 and VSUB3 respectively. If any attribute value pair

ASUB! VSUBl is foMowed by the separator ,e instead of the comma,

VSUBI is e-ecuteo (it is presumed to be a routine) and the value

obtained is assigned to the attribute ASUB1. SIHILARLY IF TYP is

followed by .E. the type is obtained bj executing the routine TYP,

the type is obtained by executing the routine TYP, Examples of

the usage follow:

([LIST. LINK-TYPE SYmETRICAL. UNIQUE TRUE] .CJ

creates a structure to represent 'THE SYMMETRICAL LIST'.

([ARRAY. DIMENSION 2. NUMBER 31 .C)

creates a structure to represent 'THREE TUO DIMENSIONAL ARRAYS'.

There are special separators which are used in the place of

the comma following the type to specify m a compact manner the

values of the attributes UNIQUE and NUMBER. These separators are

not used in the i I !uet'~at ions in this Appendix in order to Keep

the illustrations simple.

The main reason for the utility of the routine .C in the

programming of top-down generator a is that it can be used

resursively. A specification list on uhich .C operates may

SI

indicate that the value cf ASUBi sihould be computed by the routine

VSUBI. Frequently, VSUB! 'tself is defined in terms of a

construction to be performed by .C, creating a sub-structure which

ir (inked to the main structure by the ASUB! — VSUBI bond. The

foI lowing example illustrates such usage. The routine TP

specifies the construction of members of a set of simple

sentence-structures.

TP: (ITP1 .E OBJ. TP2 .E LOCATIVE TP3 .EI .C!

TP1: ([FIND DELETE PRINT] t

TP2: ([NUflBER. QUANT ALL, UNIQUE TRUE, NUMBER 0,

^OJC TP21 .EI .C)

fP21:((0DD EVEN POSITIVE NEGATIVE PRIME t)

Assignment of '6' to NUMBER is interpreted to mean that

NUI1BER>1. The routine TP3, not defined here, accesses a fragment

of sentence-structure assumed to ha^e been created before the

execution o^ fie statements in the example. The accessed fragment

represents an object such t.s 'THE LIST LI". 'THE GIVEN LIST'. 'THE

ARRAY L^B)' cr THE ARRAY L(38, 30)'. TP3 synthesizes a

sentence-fragment to refer to the object or ts sub-objects. The

new fragments are translatable as 'THE FIRST ROD OF THE ARRAY',

'THE ARRAY L'. 'ALL THE SLlBLISTS OF L' or 'THE LAST COLUMN OF L'.

The sentence synthesizer, briefly described in Appendix B,

synthesizes readable sentences it on the sentence-structures of the

kind produced by the routine TP, to generate sentences such as the

fol lowing:

FIND ALL THE PRIME NUMBERS IN THE LAST COLUMN OF THE ARRAY L.

DELETE ALL THE EVEN NUMBERS IN THE FIRST SUBLIST OF L.

PRINT ALL THE POSITIVE NUMBERS IN THE ARRAY L.

52

AFPEND1X Bs THE SENTENCE SYNTHESIZER

The sentence synthesizer deals uith associative structures

representing the content of potential sentences or parts thereof.

Fig.7 showed an example of such a struct re. By convention, the

sentence structure as c;'1 ven to the synthesizer starts i-;ith the

list-structure representing an occurrence of a predicate term.

Linked to this list-structure by labelled, directed associations

are suh-structures representing entities that stand ir various

deep-case relations; to the predicate. Each sub-structure

similarly consists of a list-structure representing the occurrence

of a word-sense with associations leading off to related entities.

It i & a I so the convention to bind each occurrence of a word-sense

with re!ev?nt markerä such as those for tense nu^ber and gender

using attribute-value associations.

The implementation of the synthesizer is based on the

principle that for each category of semantic entity in the

sentence structure there should be a synthesis routine which has

operational knowledge of that category of entity. At the highest

level, the synthesizer finds out the category of entity it has to

deal with and triggers off the associated synthesis routine.

Recursive calls by one synthesis routine to others zrs necessary

because parts of the sentence structure .jre comptsRd of smaller

sub-structures.

Thp routine dealing with predicates looks for associations to

sub-structures of the followi.-,y types; suhjecti voice marker;

tense marker; object, in case of transitive verbs; indirect

objects; locatives; adverbial of purpose; and other adverbial

phrases. The routine dealing with objects attends to any need for

53

.■terminers, quantifiers, adjectives, number markers, and several

jpes of adjectives and ?djectival phrases.

54

R£FE3ENC££

1. Carboneil. J. R., "Ai in CAI: An Artificial-Intelligence Approacn

to Computer-Aapisted nstruction," IEEE Transactions on Man-Machine

Systems, MMS-U (4). 198-282. (Dec. 1970)

2. Hayes. J. R. and H. A. Simon, "Understanding Written Problem

Instructions," Complex Information Processing Working Paper 23S,

Department of Psychology, Carnegie-Mellon University, (May, 1973)

3. Kofftnan, E.B.. "A Generative CAI Tutor for Computer Science

Concepts," Proceedings of the Spring Joint Computer Conference,

1972.

4. Koffman, E.B.. "Individualizing Instruct'on in a Generative CAI

Tutor Communications of the ACM, 15 (S), op. 472-473. (1972)

5. Newell, A., D. McCracken, G. Robertson, and L. DeBanedetti,
HLK{F)," Department of Computer Science, Carnegie-melIon University,

(Jan., 1971)

G. NeueM, A., P. Freeman, D. McCracken, and G. Robertson, "The

Kernel Approach to Building Software Systems," Comput-r Science

Research Review, 1378-71, Department of Computer Science,

Carnegie-Me.Ion University. (Sept., 1971)

7. NeweM. A. and H.A.Simon. Hurran Problem Solving, Prentice Hail,

Englewood Cliffs. M.J., (1972)

8. Sifflmons, R. and J. Slocum, Generating English Discourr^ from

Semantic Networks, Communications of the ACM, 15 (18), pp. 891-985

(1372).

55

3. Uhr, L.. "Teaching Machine Programs that Generate Problems as a

Function of interaction with Students," Proceedings of the 24th ACM

National Conference, (New York, N.Y.), pp. 125-134, 19G9,

10. Uttal. U. R., T.Pasich, fl.Rogers and R.Hieronymus, Generative

Computer-Assisted Instruction in Analytic Georattry. Entelek,

Neuburyport, flass. (1378) 11. Uexler. J. 0., "Information Nstuorks

in Generative Computer-Assisted instruction," IEEE Transactions on

Man-Machine Systems, MMS-11 (4), 181-138. (Dec. 1978)

