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ABSTRACT

The design of programs that generate auestions and exercises
for students is discussed., The task of direct interest is the
generation of programming exercises. This is dealt with in zomc
detail and sets cof such exercises produced by programmed

generators are presented.

Several design strategies are investigated, starting with the
use of grammar-iike generative mechanisms, The desrign of
exercises is then viewed as an assembly task, putting together
compatibie elemznts to create an acceptable problem-structure,
accessing knniledge of the task urea encoded as 3 semantic net. A
sentence synthesizer uhich gen=rates coherent English sentences to
describe the assembled problems .- then described. Attention is
also pdid to the mechanisms necessary for controlling such an
assembly process. Oirecting generators towards problems involving
specified concepts and making use of information available about
the student's familiarity with a hierarchy of concepts are tus

issues discussed in thio are:.

ODther strategies discussed are: generalizing 'good® problems
to produce useful variants; use of reascniny about actions in a
task area to recognize good preoblem situations: and the design of

surface detail to create precblems having 3 ¢iven ahstract

structure.




1. INTRODUCTION

The -otion of a generative CAl system has attracted some
attention(l). An important issue in this area is the structure of
generators for problems and exercises, and it is this issue that
ue concern ourselves with in the following pages. Design of
generators for interesting classes of problems appears uithin
reach and is, of course, advantageous. Among the frequently cited
advantages of generation, as acainst setection from a long list,
are the controllabiiity and adaptability that generation provides.
These features provide for the creation o exercises having
specified content and posing a specified levei of difficulty to
suit the needs of an irdividual student at a specific stage in
lea~ning. And, of course, generative schemes provide for
potentially larger sets of examples to choose from, compared to

any finite list,

Developing a gererative scheme forces a.alysis of problems
and th. task area to a level of detail that is usually avoided in
making a collection of exercises., In fact, such analysis might
possibly lead to the the definition of knouledge domains
operationally. For instance, in classifying exe-cises on the
basis of complexity, one could use a response measure such as
'average time taken for soiving', but a generative scheme
mntivates attempts to understand the difficulty posed by an

exercise in terms of its structure.

Another aspect of generative schemes is the ievel at uhich
information is available to the system tha  handles the exercisec.
While a collection of exercises could be handled by a wore or less
sophisticated paye-turner, penerative schemes require a fine-grain

(1) Uhr, 1969; Uttal et al, 1973; Uexler, 1978 and Keoffman, 1972,



representation of some knowledge of the task area in order to
work. MWe use a semantic net in which is encoded a variety of
information on the tack area. In trz case of programming
exercises, the semantic net contains information on tupes of
manipulable objects such as numbers, symbols, sets and sequences,
their attributes, sets of examples for each type of object or
generative procedures for creating examples, data structures in
terms of uwhich each type of object may be realized, manipuiations
that may be perfermed on each type of object, etc.. Deaiing uith
information in such detai! is essential if we are ever to develaop
systems that understand the task area - to generate answers to
exercises or to generate code to recognize a variety of acceptabile
answers along with the generation of the exercise, to ansuer
jquestions abeut a specific exercise or about the task area, and to
attempt to carry out generated exercises tc find out their

characteristics,

The recognition that generative techniques can make good use
of a fine-grain representation of semantic information relevant to
4 teck area hardiy conciudes the analysis of problem generation.
In fact, this recognition is more appropriate as the first step
than 3s the conclusion in any treatment of the subject.
Development of a prcbiem generator in a given area should start
With the identification and analysis of viakle sets of problems in
that area, and proceed to specify suiable structures for progrems
that will venerate these sets. Specific strategies for accessing
representations of knowledge in the process of problem generation

shouid be spelt cut.

Undoubtedly, an understanding system with a well integrated
store of knouledge of a subject area is the proper ultimate form

for 2 problem generator. Such a system would be able to answer




questions about the area, design good problems in the area,
discues them and even solve them. The work reportec here does not
yet aim at such a csystem. The approach taken here is exploratory
and quite empirical. The presentation is in the form of a
discussion of a sequence of siuple strategies fcr using different
aspects of information about a subject area for generating
non-trivial problems. Most of the stratogies discussed are
illustrated with examples of problems generated by programs based
on  them. All the examples presented are in the area of
programaisey  exercices, though thz discussions are hopefully

relevant to other kinds of problems as well.
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2. ENUMERATIVE SCHEMES PATTERNED AFTER CONTEXT-FREE GRAMMARS

The simplest generative scheme is an extension of the
slot-and-filler scheme, as it is called in linguistics. In this
scheme, one has a set of problem frames incorporating variables.
There is a specification 0% the admissible values that these
variables may assume, either in the form of numerical (imi's or in

the form of a set of admissible values for each variable.

There are twe directions of deveiopment that enrich this
schema, Unhr{l] reports one of them, which is to implement
coemputationally defined relations tetween the variables., By
choosing ce-tair.  independent variables rendomly wuwithin the
permitted ranges or from sets of admissible values, the others
could be computed from trem, thus ensuring compatibility. The
sriginal scheme, of course, does no! provide mechanisms for
meeting such compatibili-y requirements and forces the variables

to b2 chy-en independently ot each other.

The second direction of development involves the use of a3
grammar-{ike  scheme. Unlike slot-and-filler schemes, the
grammar- like schemes are not limited tc finite-state languages.
They hrave been ussd in the context 4f problem generation for
synthesizing sentences having pbrase structure. Koffman (1972)
has reported the use of prohabilisitic yrammars for the gerneration
of uord problems. Simple programs that use grammar-like schemes
to generatec questicns in artificial inteliigence (developed by
Neuell and Robertson) and in cognitive psychology {(developed by
Haterman} have been in use at the Cartegie-Melion University since
13871,



Fig.1 shous the e.umerative scheme underlying the program
which deals with artificial intelligence. The gquestions nroduced
by this program are aluways grammaticai!y and semantically correct,
and most of the questions are meaningful., Not shoun in the scheme
is a probability assignment convention that allous certain ch~ices
to be more or less frecuent than other choices in the generative
procedure, increasing the percentage of decirable questions in the
output. Figures 2 and 3 shou some of the questinns produced by
the artificial intelligence program and the cegnitive psychology

program respectively.

Enumerative schemes such as this derive their power “rom a4
basic device - classification of a set of phrases into different
subsets of syntactically and semantically similar items, Question
frames are written incorporating variables which are substitutable
by members of appropriate subsets of phrases. Further, the
phrases are themselves generatable by this process by expansions
of embedded variables into suitahle sub-phrases, the variables in
figure 1 are indicated by the termiral angle brackets '<' and '>'.
sets of phrases that are subetitutable for the viriables are

defined in the louer half of the figure.
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<QUESTIONS>: {  ("WHAT IS " <ENTiTY> "?2'}

("WHAT MET400 DOES " <PROGRAM> " USE?")

("LHAT TASYS DCeS " <PROGRAM> " WORK ON?")

{("HAS " <TASK> " BEEN ACCOMPLISHED BY A PROGRAM?")

("WHERE IS Al RESEARCH ON * <TASK> " GOING ON?"}

("WHAT 1S THE CURRENT ACHIEVEMENT IN " <TASK> "?")

{"WHAT HAVE BEEN THE CONTRIBUTIONS OF Al TO " <AREA> "7")

("WHAT HAVE BEEN THE CONTRIBUTIONS NF " <AREA> " TO Al?")

("NAME A TASK THAT " <PRCGRAM> " DOES NOT DO, BUT MIGHT DO WITH SOME

MODIFICATION. ™)

{"WHY 1S " <ENTITY> " SO CALLED?"}

("WHAT PROGRAMMING LANGUAGE WAS USED FOR " <PROGRAM» "?")

("HAS " <LANGUAGE> " BEEN USED TO ACCOMPLISH " <TASK> "?"} )
<ENTITY>: ({<PROGRAl>) (<HEURISTIC>) (<PHENGMENA>) (<CONCEPT>) ...)
<CONCEPT>-~ ({"A METHOO") ("A PROBLEM") ("A HEURISTIC") ...)
<PROGRAM>:  ((<RECOGNI TION-SYSTEMS>) {<GAME-PLAYERS>) (<THEOREM-PROVERS:)

(<QUESTION-ANSWERERS>)  (<GENERAL--PROBLEM-SOLVERS>) ...

{<UNDERSTANDING-SYSTEMS>) (<DESIGN-SYSTEMS>)

{<CONSTRAINT-SATISFIERS>))
<LHESS-PROGRANS>s  ( ("NEWELL-SHAW-SIMON CHESS PROGRAM")

{"BERNSTEIN'S CHESS PROGRAM"} ("CMU TECHNOLOGY CHESS PROGRAM™} ...)
<TASK>: ((<GAMES>) (<MANAGEMENT-SCIENCE>) (<CONCEPT-FORMATION>) ...}
<PROCGRAM-FEATURE>: ((<HEURISTIC>) ("ALPHA-BETA") ("RECURSION™) ...)

Fig,l Part of an Enumerative Scheme Patterned after
Context Freec Crammars
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WHAT Al PROGRAMS HAVE BEEN WRITTEN IN MLISP?
WHY IS FEATURE EXTRACTION SO CALLEQ?
HAS THERE BEEN ANY CONTRIBUTION OF AUTOMATA THEORY 70 Al?

: WHAT WAS THE FIRST Al EFFORT ON CHESS?

HAS SAIL. BEEN USEQ TO ACCOMPLISH CHELKERS?

WHAT HAVE BEEN THE CONTRIBUTIONS OF Al TO PHYSICS?

iAS APL BEEN USED TO ACCOMPLISH ASSEMBLY LINE BALANCING?

WHAT IS THE CURRENT ACHIEVEMENY IN CHESS?

WHAT IS THE CURRENT ACHIEVEMENT IN PLANT LOCATION SELECTION?
WHAT HAVE BEEN THE CONTRIBUTIONS OF INOUSTRIAL AOMINISTRATION TO Al?
WHAT [S A HEURISTIC?

HAS SAIL BEEN USEQ TO ACCOMPLISH RELATIONAL CONCEPT FORMATION?
HAS ASSEMBLY LINE BALANCING BEEN ACCOMPLISHEG BY A PROCRAM?
HAS COBOL BEEN USED TO ACCOMPLISH CHESS? .

HAS THERE BEEN ANY CONTRIBUTION OF PHYSICS T0 Al?

WHAT 1S HORIZON PHENOMENA?

WHAT PROGRAMMING LANGIJAGE WAS USED FOR REF-ARF?

WHAT WAS THE FIRST Al EFFORT ON RELATIONAL CONCEPT FORMATION?
HHAT HAVE BEEN THE CONTRIBUTIONS OF Al TC YOUR EDUCATION?

WHAT METHOO OOES GPS USE?

WHAT. TASKS OOES FREEMAN'S 0OSD WORK ON?

NAME SOME HEURISTICS USEQ IN SRI RCBOT.

WHO DEVELOPED EXPONENTIAL CROWTH?

Quiput of the CQuestion Generator for Artificial Intelligerce
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WHAT CONTRIBUTION HAS LOEHLIN MADE TO THE STUDY OF COGNITIVE PSYCHOLOGY?
WHAT IS CYBERNETICS?

WHAT ARE THE SIMILARITIES BETWEEN TREE STRUCTURES AND NETWORKS?

WHAT ARE THE SIMILARITIES BETWEEN ALGORITHM AND HEURISTIC?

WHAT CONTRIBUTIUN HAS ABELSON MAGE TO THE STUDY GF COCNITIVE PSYCHOLOCY?
WHAT 1S CONTENT AOORESSABLE MEMORY?

WHAT IS AN EXAMPLE OF A GPS GOAL?

WHAT IS A MAGIC SQUARE?

WHAT ARE THE DIFFERENCES BETWEEN SYNTAX ANO SEMANTICS?

DEFINE MARKQV PROCESS.

DESCRIBE A FEW METHOOS THAT HAVE BEEN USED IN ARTIFICIAL INTELLIGENCE.

WHAT IS A BIT?

WHAT ARE THE DIFFESENCES BETWEEN TEMPLATE MATCHING AND FEATURE
EXTRACTION?

WHAT IS ALOOUS?

WHAT CONTRIBUTION HAS CHOMSKY MADE TO THE STUQY OF COGNITIVE PSYCHOLOGY?

WHAT IS PANDEMONIUNM?

WHAT CONTRIBUTION HAS WIENZR MADE TO THE STUDY 0OF COGNITIVE PSYCHOLOGY?

UHAT ARE THE SIMILARITIES BETWEEN COMPUTER AND HUMANS - BY ANALOGY?

OEFINE DISCRIMINATION NET.

WHAT ARE THE SIMILARITIES BETWEEN COMPiLER AND INTERPRETER?

WHAT ARE THE SIFMILARITIES BETWEEN TEMPLATE MATCHING AND FEATURE
EXTRACTION?

Fig.3 Qutput of the Question Generator for Cognitive Psuchology
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Word categorization on a semantic as well as syntactic basis
enables these programs to produce a surprisingly high pcrcentage
of semantically meaningful sentences compared to programs that are
besed on qgencrative syntax alone. Restricting oneself to the
generative pouerr of ccntext-free reurite rules has its oun
advartages. The control structure of the problem generator
becomes simple and straightforward, making it easy to construct
troubie-free programs. The essence of thesz schemes is the simple
hierarchical top-doun control structure that relate. a sei of
choices. For each choice that is made, the gr.mmar simply for-es
the other (louer level) choices that one is committed to make as a
result, Each act of choice transfers control to that part of the
grammar udhere the r3jilable ailternatives for louer level choices
are contained. On the other hand, restriction to such a simple

program structure does result in severe limitations.

The basic limitation is the absence of a structured
representation of the task environment of the «ind found in
practicelly every syste1 that performs a ccgnitively signhificant
task (Carbonell, 1378, 2 4 Wexler, 1378, describe in~tructional
systems incorporating structured representaticaz of knouledge).
Generally in such systems asscciations are used to impose an
object-attribute-value scheme on the task environment and to
implement funrtional and relational mappings. Computational
mappinns of a2 functional or relational nature are performed by
programmed routines. This is in contrast tc the implicit
rrepresentation of knoitledge in grammar-like systems which provide
only tuo devices to ensure cohte-ence in the output: co-occurrence
of sumbols in reurite rules wuWhich ensures co-cccurrence of
complement~y parts of the problem in the output; and set
membership 4hich enables semantically and syntactically equivalent

items to ba distributad ir e output in an identical manner.
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-ven the use of variab'es for holding data and control
information is not possible. This means for instance, that one
cannot use a variable to hold on to the name of the data-structure
that one has chosen to refer to in a problem being generated, so
that it can be used repeated!y. Instead one requires one se’ of
ruies for generating, say, sorting exercises on lists and o
similar but different set of rules for sorting exercises on
asrays, unless of rourse there is a single reference to the nature
aof the data-structure.

Finally, syntactical and semantiz similarities of phrases are
clumped together wuhiie classifying these phrases into subsets.
The fact that a particular set of phrases refers to investigators
in a particular field nas to be remembered along with the
syntactic ‘nformation that all entries in this subset are singular
in number. and that in addition they are all only last names.
Achievements of investigators expressed in the past tense “3ive to
be segregated from their activities expressed in other tenses,
Flexibility in reference can be nbtained only by entering

grammatical variants of the same phrase in different subsets.

Summing up, it appears that the initial advantages of a
grammar-|ike scheme are outweighed by the restrictions it imposes
on the development of a problem generator. |t becomes necessary
to recognize and separote tuo concepts implicit in such schemes,
one being more general than the other. The first is the concent
of generative syntax with 1ts pouer to generate well-formed
sentences in natura! larguage or in mathematical notation. The
second i~ the concep* of an elegant and zconomical principle of
program orgenization - that of a top-doun enumerative scheme for
generating a recursively definad set of structures. It is

obviously desirable to eaploy the latter concept whenever




possibie, without committing oneself to thz formalization of all
the machinery required for problem yeneration in the form of
generative syntax. Steps in this direction are particularly
important if we visualize CAl syst'ms having access to detailed
representations of knouledge of task areas. UWhatever form such
knouledge is going to be in - semantic nets, siauiation modeis or

understanding systems - it certainly is not going to be all
suntax.
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2. CENERATION

[

A PROBLEM A3 THE ASSEMBLY OF A STRUCTURE

(]

3.1 Assembiy of Problem

We can view the creation of exercises as a task in design.
Given the function of a desired object, hou does one decide its
structure? Hou does one recog ize the system oi design decisions
necessary in a given case? How does one enccde decisions made in
the earlier stages of the process so that their implications for
later decisions are readily cocmputable? in th.s section we will
deal with the generation of a basic kind of programming problem in
these terms. These problems exercise the student's skills in
handlinyg arrays and in organizing data in the form of sets and
sequences of numbers and symbols. A typical hand generatec
problem of this type (1) is:

YOU ARE GIVEN THE ARRAYS [ARRAY([1:188] AND MARRAY([1:188). FIND
ALL SETS OF NUMBERS IN IARRAY, NO MATTER WHAT THEIR ORIGINAL
POSITICN, WHICH CAN BE PUT IN COUNTING ORDER (1.E. EVERY ELEMENT
IN A SET, EXCEPTING THE FIRST AND THE LAST, SHOULD HAVE ITS
SUCCESSOR AND PREDECESSOR IN THE SAME SET). MARK THE FIRST SET BY
PUTYTING 1°S IN THE CORRESPONDING POSITIONS IN MARRAY, THE SECOND
SET 8Y PUTTING 2'S IN THE CORRESPONGING POSITIONS, AND SO ON. PUT
ZEROES IN THE POSITIONS GF ELEMENTS WHICH DO NOT BELONG TO ANY
SETS.

Consider the task of a program that has tc generate problems
in this form. A series of decisions have to be made, some of them
independent and some contingent on the cthers. Analysis of a
number of such problems shous that it is possible to represent in
a compact manner the basis vor making these dezisions for

AR e e e Y TR R O e M e S T em ¢ m e o v o A S e e em Em . S ) 4 e e e G > o e om -

(1} Courtesy of Ruven Brooks




producing reasonably large subsets of the studied problems. It is
possible in these cases to find a cowmon form in the structures of
the individual members of the problem set. For examrle, the
problems(l) of Fig.4 ¥ .vc 3 common ctructure outlined in Fig.S.
The problems in Fig.4 as uell'as those in Fig.6 were generated by
programs having the simple control strunture ¢iscussed in the last
paragraph of Section 2. Use of this top-rioun generative structure
is based on the recognition that the protlem to be constructed has
3 basically tree-like structure. The highest levei ot the program
therefcre deals with the |.nking up of the major sub-structures of
the tree uwhich are assumed to exisi. Lower leve! routines are
then defined for creating these smatler structures, The
parcelling out of the assembly task can be spread over several
levels, the routines at the terminal nodes selecting and creating
basic elements of the problem, whiie ine higter level routines

assemble parts created at louer levels into bigger structures.

. . 2 T = S o D O = S P e 4 W S -

(1)Generated by a program to be descrited shortly.
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DEFINE AN ARRAY L (2P@) AND REAQ NUMBERS INTD THIS ARRAY FROM THE
FiLE FORB1.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT
BY FIRST TYPING CUT FORBL.GEN AND EXAMINING IT. EXAMINE THE
ELEMENTS OF L ANO IDENTIFY THE MAXIMAL SET EACH ELEMENT OF WHICH
IS A PRIME. SORT THE E.EMENTS OF THE SELECTED SET IN NUMERICAL
ORDER. PLACE THIS ORDERED SEQUENCE OF NUMBERS AT THE BEGINNING OF
L, IN DECREASING NUMERICAL ORDER. PIACE A ZERO IN ALL THE
LCCATIONS OF L WHICH DO NDT CONTAIM ONE OF THE FINALLY SELECTED
NUMBERS. PRINT DUT THE FINALLY SELECTED NU/IBERS.

DEFINE AN ARRAY L (38,38} AND READ NUMBERS INTO THIS ARRAY FROM THE
FILE FORBL.GEN. CHOOSE A SUITABLE FORMAT FOR THE READ STATEMENT
BY FIRST TYPING OUT FORBL.GEN ANO EXAMINING IT. EXAMINE ALL THE
ROWS OF L AND IN EACH ROW, ICENTIFY ALL SEQUENCES OF 7 OR MORE
NUMBERS H/AVING ELEMENTS EACH ONE OF WHICH IS A NUMBER CREATER THAN
4. PDOL THE ELEMENTS OF ALL THESE SEQULNES ANO SORT THEM IN
NUMERICAL ORDER. PLACE THE 38 LARGEST ELEMENTS ALONC THE LOWEST
ROW IN NUMERICALLY INCREASING ORQER FROM LEFT TO RIGHT. PLACE A
ZERO IN ALL THE LOCATIONS OF L WHICH DO NUT CONTAIN ONE OF THE
FINALLY SELECTED NUMBERS. PRINT OUT THE FINALLY SELECTED NUMBERS.

DEFINE AN ARRAY L (388) AND ASSUME THAT THI!S ARRAY IS FILLED WITH
NUMBERS IN THE RANGE FROM -1888 TD 182@. EXAMINE THE ELEMENTS OF
L AND IDENTIFY ALL SEQUENCES OF 3 OR iMORE NUMBERS HAVING ELEMENTS
THAT ARE ALTERNATELY A CUBE ANO A NON-CUBE. CONSIDER THE
SEQUENCES IN THE ORDER (F INCREASING FIRST TERMS., CHODSE THE
FIRST 6 SEQUENCES IN THIS ORDER, IF THERE ARE MORE THAN b
SEQUENCES.  OTHERWISE, CHOOSE ALL THE SEQUENCES.  POOL THE
FLEMENTS OF ALL THE CHOSZN SEQUENCES ANO SORT THEM IN NUMERICAL
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GROER. PLACE THIS ORDERFD SEQUENCE GF NUIBERS AT THE BEGINNING OF
L, IN iNCREASING NUFERICAL ORDER. PRINT OUT L.

DEFINE AN ARRAY L(18,18) AND READ NUMBERS INO THIS ARRAY FROM THE
FILE FORQ1.GEM. CHOOSE A SUITABLE FORMAT FOR THE READ STATEZMENT
BY FIRST TYPING OUT FCR@L.GEN AND EXAMINING IT. EXAMINE ALL THE
ROWS OF L AND IN EACH ROW, IDENTIFY ALL SEQUENCES OF 3 OR MORE
NUMBERS HAVING ELEMENTS IN ThHE FOLLOWING ORDER - A NUMBER
OIVISIBLE BY 7, AN 0DD NUMBER, A NCGATIVE NUMBER. SUCH A SEQUENCE
MAY START WITH ANy ONE OF THE SPECIFIED TYPES OF ELEMENTS. POOL
THE ELEMENTS OF ALL THESE SEQUENCES AND SORT THEM IN NUMERICAL
ORDER. PLACE THE 1J !ARGEST ELEMENTS ALONG THE FIRST COLUMN IN
NUMER!CALLY DECREASING ORDER FRGM TOP TQ BOTTOM. PRINT OUT THIS
COLUMN.

DEFINE AN ARRAY L(B88) AND FILL IT UP WITH RANDZM NUMBERS IN THE
RANGE FROM -108882@ TO 18808@3. EXAMINE THZ ELEMENTS OF L AND
IDENTIFY ALL SEQUENCES OF 7 OR MORE NUMBERS HAVING ELEMENTS EACH
ONE OF LHICH 1S A hULTIPLE OF iTS PREDECESSCR. POQ'. THE ELEMENTS
OF ALL THESE SEUUENCES AND SORT THEM IN WNUMERICAL ORDER. PLACE
THIS ORCERED ~71UENCE CF NUMBERS AT THE BEGINNING 0F L, IN
DECREASING NUMF™ AL OROER. PLACE A ZERC IN ALL THE LOCATIONS OF
L WHICH DO N7T CONTAIN ONE OF THE FINALLY ScLECTED NUMBERS. PRINT
ouT L.

Fia.4 Examples of 'Array Ordering Problens’
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—=-—SPECIFIED INPUT. RANGE OF NUMBERS DECIOEQO HERE

SPECIFIED DATA-STRUCTURE. ONE OR TWO DIMENSiONAL ARRAY
e SUURCE OF OATA

SUB-CTRUCTURES OF GIVEN
DATA-STRUCTURE (EG. ROWS/COLUMNS)

PHOBLEM e —=CBJECT TG BE SEARCHEQ FOR
SPECIFIED SETS

SPECIFIEC SERUENCES OR
e 1 ST MANTPULAT ] ON s SUBSTRUCTURES CONTAINING
SPECIFIED NBJECTS

m- “ORGANIZATICN OF OBJECTS DETECTED
POCL OR/ANO ORDER SELECTED OBJECTS

—=RCLOCATION OF REURGANIZED OUBJECTS
SPECIFY DESTINATION

{SUCH AS THF TOP 3 ROWS,

MINOLE ROW, LAST COLUMN)

=t UR THER MANTPULATIONS

e O TPUT AS SPECIFIEO

Fig.5 The Structure of a Class vuf Array Manipulation Probiens

[t et A A
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CONSIDER THE LIST L19 AND THE UNNAMED LIST ON THE STACK. SELECT
THE SET OF ALL EVEN NUMZERS WHICH ARE PRESENT IN L13 BUT NO7 IN
THE UNNAMEQ LIST. FIND THE SUM OF ALL THE SELECIED NUMBERS AFTER
ECIMINATING MULTIPLE OCCURRENCES.

YOU ARE GIVeN THE LIST-STRUCTURES L13 L14 L15 AND L16 AND 4
UNNAMED LIST-STRUCTURES ON THE STACK. THEY MAY CONTAIN NUMBERS AT
ANY AND ALL LEVELS. SELECT THE SET OF ALL PRIME NUMBERS WHICH ARE
PRESENT IN L16 , IN LIS , IN L14 , AS WELL AS IN L13 BUT NOT IN
EACH UNNAMED LIST-STRUCTURE. “IND THE SUM 0OF ALL THE SELECTED
NUMBERS AFTER ELIMINATING MUL™ IPLE OCCURRENC-S.

CONSIDER THE 3 UNNAMEC LIST-STRUCTURES OMN THE STACK AND THE
LIST-STRUCTURES Li8 L13 AND L2@8. THEY MAY CCNTAIN NUMBERS AT ANY
AND ALL LEVELS. OSELECCT THE SET OF ALL NEGATIVE NUMBERS WHICH ARE
PRESENT IN L20 BUT NOT [N L1S. MERGE THCSE WITH THE NUMBERS WHICH
ARE GREATER THAN 188 FROM THE TOPMOST LIST-STRUCTURE ON THE STACK.
PLACE ALL THE SELECTED NUMBERS ON L18 AFTER EMPTYING 1T FiRST.
SORT THE CONTENTS OF L18 1IN DESCENOING NUMERICAL ORDER. FiNO OUT
ALL SEQUENCES OF PRIME NUMBERS IN 1T AND PLACE THEM ON THE Z OTHER
UNNAMED LIST-STRUCTURES.

[€2]

Fig.6 A Set of Simple List-Processing Problems
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Some of the terminal routines make random choices, while others
access the structures already assembled and choose compatible
elements to be used in the sub-structures being constructed

Access to a representaticn of krouledge of the task area having
the form described orn page & also occurs at this level as a part
of the relcvance and compatibility computation.

It is useful at this stage to evalutte the utility of the
selective mechanisms discussed above. Very rcugh estimates can be
made of the total number of structures tnat are in some sense
possible, and the fracticn of these structures that are
meaningful. The number of branchings that cccur in the cours= of
generating a problem of the tupe shown in Fig.4 !s of the order of

15, vorresponding to the branchings of Figure G,

Hhile the choices that create structural diff2rences betueen
problems usually involve only two or threc alternatives, e.g. the
choice be‘ueen one dimznsional arrays and tuo rimensional arrays,
numerical choices irwvolve large numbers aof aiternatives. Most of
the numerical choices are equivalent, but selecting a number in
the wrong range could create absurd probiems, e.g., comparing
numbers in the range from O %o 182 with the threshold of 2583.
Estimating that there 2re 2 or 3 significant alternztives at most
branches, the total number of choice sequences that are available
over 15 steps is in the runge frem 18%4 to 18%7 . Typically,
five or =ix of these decisions are contingert upon othsrs, so that
the amount of selection exercised by the program in prcducing 3
coherent problem (out of what would be mostly nonsense probiems if

free choices were made at each point} is roughiy 1 in 50@.

i

F;
i
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3.2 Assembly of Sentences

What is the nature of the stru-ture assembled by a problen
generator in relation to a comprehendahle external description of
the problem? One possibility is that the structures assembled by
the generator be directiy the deep-structures of sentences which
wouid vonstitute a readable description of the protlem. In this
case al! the knou'edge recuired to translate these structures intn
readable descriptions can be localized in a ‘'sentence
synthesizer’. Such a synthesizer would remove the burden of
syntactic ceonsiderations from the problem-generator. The input
requiremenis of this sunthesizer would define a range of possible
formats tor the data-structures to be created by the generator.
e have implemented such a sentence synthesizer (see Simmons and
Stocum, 1872 for a detailed treatment of sentence synthesis). The
problems 'n Figures €, &, 12 and 13 were all generated by programs
which first created uell-defined deep~structures for their
sentences. These were then rendered into readable form by the
sentence synthesizer. A brief discussion of the nature of the
sentence structures used is given here. Some information on
programming considerations and on the sentence synthesizer may be

found in Appendices A and B.

The deep-structures are in the form of labelled directed
graph-structures. The nodes are unnamed |lists representing
specific occrurences lor 'tokens') of concepts sumbulized by
vord-roots, numbers or symbols. The edges are associations
impiemented by using association lists and a hash-coding scheme.
While the list itself represents the token, its content, genera.y
a word-root f(referring to a specific word-sense, in the case of
ambiguous uords), represents the “type'. There may be several

lists with the same content to represent different tokens of the

= :g._? A e = - R R ey 3 v g o Jf g e -
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same {ype. Structures are formed by creating labelled (and
directed) associations betueen nodes to represent deep-case
relations beiween the entities referred to in a sentence. Some of
the functions perforsed by these relations are il'ustrated by the
examples in Fig.7. the tuwo appendices describe briefly the

construction and interpretation of such sentence-structures.

While token-to-token associations create sentence structures,
other  associations involving types embody the sentence
synthesizer's knculedge of the language. For example, such
associa’ link words to their suntactic categories and to their
excep’ plural  forms uwhen these exist, They also link
syntac .. categories wuwith appropriate sunthesis routines uhich
recognize basic sub-structures of sentences and have the
capabilities to generate apprcpriate word-groups for them. While
token-to-token associations are dynamic in the scnse of being
created and destroyed as sentences are generated and printed out,
the suntactic and semantic associations are rermanent. Houever,
tne same association mechanism in the programming facility
provides the three tupes of associations discussed so far:
associations emboduing information on the task area as described
on page 4, the token-to-token links which are used to create
sentence structures and the suntactic and semantic associatiors
embodying the sentence synthesizer's knouledge of Englieh. As may
be expected, there is some overlap between what should belong to
the first type and what should belong to the third tupe.

T £

[
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e UN i QuEes (TRUE)

s NUMDET e B [_

ame 0D JEC 1 am (NUMBER) cones ' s NAME e (A)
e |OCati 0N (ARRAY) ...JE
l....subscriptl.. (1

unique (TRUE)

..conjunction., (SUCH THAT) t ;
LsubscriptZ.. (48)

{ARRANGE ) el adverbiai phrase . wuniiuee (TRUE)
" o SUD j€C t o (ELEMENT) cxndim name —  (A)
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bw subscripte (J)
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objectes (J)
Fig.7 Deep Structure of a One-Sentence Problem
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3.3 Control of the Generative Process

In discussing programs havina the control structure described
in Section 3.1 it is usefu! to talk in terms of a search of the
"design space’ which is a special case of the 'action space',
using the search representation for problem-solving (Neuel! and
Simon, 1972). The series of design decisions that leads to the
assembly of a suitable cbject is a special case of the

'solution-action-sec ience'.

Complementing this descriptinon is the set representation for
problem-generation which deals wWith the target space of all
problems that can be produced by the gene;ator. Starting at the
highest level, the prograr selects progressively smeller
subspaces, till it identifies a single point in it wuhich
represents the problem generated at this attempt. The design of
the program has to start with the visualization of a rich enough
space. The control structure has to ensure that alt the

visualized space is accessible by a suiiable sequence of choices.

An important question is concerned with the control of this
access path. How can one influence a series of choices selecting
one possible access path out of a large number all of which lead

to meaningful problems?

A pouwertul and yet simple control mechanism that provides a
certain degree of direction in the generative process depends upon
the use of a quasi-formal language to specify desired sets of
problems. For example, problems of the tupe in Fig.8 2re easily
produced by appropriate interpretation of brief high-level

descriptions, e.y.:

L. sw E i z= pi: Pobismtesd | Th dETE g ogs i se il his Sl SRS aL | S S
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(CREATE A LIST)

(SCAN A CIRCULAR LIST-STRUCTURE)

(SUBSTITUTE COMPONENTS IN A SYMMEYRIC LIST-STRUCTURE)
(FIND PROPERTY OF GIVEN LIST-STRUCTURE)

(TEST IF A DATA-STRUCTURE 1S RECURSIVE}

(DELETE COMPONENTS FROM A SYMMETRIC LIST-STRUCTURE)

A sentence in such a ianguage predetermines a specific set of
choices to be made by the generator, leaving other choices to be
made freely- Naturally, the structure of the sentence
interpreting mechanism will detsriine the effectiveness of any
such scheme. The interpireting mechanism has to analyse the
sentences and determine which steps of the generative proces: are

being forced, and in which direction.

An appealing form for such an interpreter is a semantic
n=reer uwhich finds out the deep-case relationships betueen the
entities referred to by a sen’=nce, sharing syntactic and semantic

information used by the sentence synthesizer.
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CREATE A LIST CONTAINING THE FIRST 42 PRIME NUMBERS

>
COUNT OCCURRENCES OF SEQUENCES OF NEGATIVE NUMBERS IN THE CIRCULAR
LIST-STRUCTURE GIVEN

>
SUBSTITUTE ALL OCCURRENCES OF THE COMPONENT-LIST CZ IN THE SYMMETRIC
LIST-STRUCTURE GIVEN BY THE TERMINA' -NODE GIVEN

>
WRITE A PROGRAM TO CONCATEWATE THE LISTS LIST-L1 AND L ST-L2

>
SUBSTITUTE THE LAST-BUT-ONE NCCURRENCE OF THE TERMINAL-NODE T3 IN
THE SYMMETRIC LIST-STRI'TURE L3 BY THE COMPONENT-LIST GIVEN

>

SIND THE LENGTH OF THE LIST-STRUCTURE GIVEN

>

FIND IF THE CIRCULAR LiST-STRUCTURE L1 IS RECURSIVE

>

LRITE A PROGRAM 70 CONCATENATE THE LISTS LIST-L1 AND LIST-L2

>

UELETE ALL OCCURRENCES OF TERMINAL-NOCZS OF THE TYPE | IN THE
SYMMETRIC LIST-STRUCTURE CIVEN

Fia.2 A Set of Problers Generated bu Interpreting
Brief Problem Specifications
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The high-level descriptions of probiems indicate to objects
and processes which are to be referred to in the problem to be
generated. Reference is made to them directiy or, sometimes,
indirectly by menticning sets of entities from which the generator
may choose suitable members. Fig.9 shous some of the objects and
processes referred to by the problems teing discussed and their
organization into progressively larger sets. The interpreter has
to recognize case relationships to find the function each entity
is to perform in the problem and use this information to control

the generative process.

Tne simple interpreter uhich produced the problems of Fig.8
from high-level descriptions vas implemented by defining a ’search
routine’ for each word category, the categorization being
basicaily suntactic. Interpretation is pertormed by executing the
searcn routine associated with each word, allowing it to find
other unrds in the sentence uwhich are related to i*. This process
results in the construction of parts of deep-structures of
notential sentences to describe entities being referred to and
their relationships to each octher. The asscciative schemes
referred to on page 24 are useful here too. After this parsing,
the interpreter triggers off the problem generator giving it the
references to the entities it must use in i‘s operation. The
generator processes any indirect references to obtain suitable
entities which are to be used in problem generation and compietes

its task.
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count them

print them



While explicitly specified choices are easily forced upon e
problem generatcr, there are several possihilities for hand!ing
the choices that are not forced. One such possibility is that
information about the generation of sub-prohiems can be
accumulated in the course of generating a series of problems.
This information can then be used to ensure that sub-problems are
well distributed in a generating run. For instance, from the
knowledge that a particular series of tasks have been successful ly
carried out by a student, a set of sub-problems that he has
carried out can often be identified. It can then be ensured that
later problems do not incorporate these sub-problems already
familiar to the student, uniess there are special reasons. There
is also the possibility that hierarchic relationships betueen
tasks can be exploited to produce sequences of problemz of graded
difficulty. Fig.18 shous recognizable sub-tasks which are
incorporated in the problems cof Fig.4, organized to exhibit
hierarchic dependencies. The sub- tasks appearing in under!lined
script are complete in the sense of being usable as relf-contained
exerc.ses. App -opriate organization of the generator shouid allou
such exercises ‘o be produced uwhen needed, without use of any

additional machinery.
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SOLVING ARRAY PROCESSING PROBLEMS
OF THE TYPE ILLUSTRATED IN FIG.4

Fig.10

L

REARRANGING AN ARRAY BY

1gy

ING CEQUENCES IN IT

WITHOUT LOSING ITS CONTENTS

ACCUMULATING SETS OF
NUMBERS THAT HAVE
BEEN SELECTED FOR
LATER USE
—®
SCANNING AN ARRAY,
SELECTING SPECIFIED
ELEMENTS

:
ACCESSING ELEMENTS OF
THE ARRAY ANG TESTING
THEM BY COMPUTING
NUMER!CAL PREDICATES

&

STORING REFERENCES
10 SEQUENCES IN AN
ARRAY FOR LATER USE

0
REARRANGING CONTENTS

OF AN ARBAY BY
EY.CHANGE ANO
SUBSTITUTION

*-————|
CODING INPUT EROM
DISC-F

-
CONING QUTPUT 10

&

SCANNING AN ARRAY

SEARCHING FOR

SEQUENCES OF
C

(o]

F

PECIFIED
STRUCTURE

DISC-FILE

-
FILLING P ARRAY
WITH RANDOM NUMBERS

Sub-Tasks Encountered in the Array Processing Problems of Fig.4
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4, NERALIZATION OF A PROTOTYPICAL PROBLEM

Is it possible to start from a well-knoun problem and urite 2
generator for producing useful generalizations of the original
problem? This section describes experiments uith his technique of
generalization, applying it to a probles fi~st discussed by
Hoare (1964) and then by Djikstra (1971). The problem is:

Rearrange the elements of the array A[1:N] suzh that
for a given value of £ (1<f<N)

AlKISALf] if l1sk<f and

Alfl<Alk] if f<k<N .

The raqguired arrangement is said to "split’ the array around f.

As a programming exercise this task has manifold appeal. It
confronts the student with the problem of planning manipulations
which interact heavily. If we eliminate the brute force solution
of sorting the array, perhaps by adding an economy clause to the
problem statement, the solution is no longer obvious. Djikstra

describes an elegant solution based on recursion.

We look at it from another point of view, attempting to
generalize it into a class of array-orderiny problems uwhich test
the student’s understanding of the concepts relevant to sorting.
We do not specifically concern ourselves uith the existence or
non-existence of an elegant recursive solution to the problems

generated.

Fig.1l1 lists some of the skills needed to program basic
sorting, in an order intended to indicate the dependence 0% some
of these skills on others, thc more basic ones being generally

lower in the list.
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REARRANGING ARRAY AS SPECIFIED

MANIFULATING ELEMENTS OF AN ARRAY LOCALL
(SUBSTITUTIONS AND INTERCHANGES)

PERFORMING ARITHMETIC ON ELEMENTS OF ARRAY
(COMPUTING FUNCTIONS AND PREDICATES
DEFINED OVER ELEMENTS OF THE ARRAY)
SCANNING ARRAY FOR SPECIFIED ELEMENTS
ACCESSING SPECIFIED ELEMENTS OF ARRAY

BY GENERATING DESIRED SEQUENCE OF SUBSCRIPTS

Fig.il Elements of the Sorting Exercise

In ‘erms of these operations, sorting turns out to be a
rearrangement of o given array A[ll:N] such that Al)] 2 A[i)] if

i

A simple generalization of the Hoarz problem uhich still has

the listed concepts as essentials is:

Rearrange elements of the array All:N] such that

if Rllcis, <j>) then R2{A<i>,A<)>)
uhere Rl and R2 stand for relations and <i> and <j> are
generator var.ables which are to be substituted by a
variable such as i,j,k or, uhen suitable, by a numerical

constant,
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A related set of problemz is of the form:

Rearrange elements of array All:N] such that
if Pl{<i>) then P2{A[<i>])
where Pl and P2 are pred:cates.

Fig.12 shous some of the probklems generated by a program
based on the tuo generalizations indicated above. Comparisor of
these problems uith those presented in Section 3 shouws that these
problems have an element of programming difficulty not generally
present in the earlier preblems. The programmor now hee to tackle
the question of space needed by the contents of the array. HMoving
the content of a cell requires that space be found for it
eiseuhere. Creating space could invoive disturbing elements which
have been properly placed already and considerable interaction
betueen desiracie changes is caused thereby. This is a

significant aspect of the original problem that is preserved.
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>

ARRANGE THE NUMBERS IN THE ARRAY Al[l,48) SUCH-THAT THE ELEMENT IN
CELL ALI] 1S A SQUARE IF 1 1S A CUBE.

>

ARRANGE THE NUMBERS IN THE ARRAY A(1,25) SUCH-THAT THE ELEMENT Ali]
IS COMMENSURATE WITH THE ELEMENT A[11) WHEN . 1S LESS THAN 1l1.

>

AHRANGE THE NUMBERS IN THE APRAY A[1,38) SUCH-THAT THE ELEMENT Afl]
IS LESS THAN THE ELEMENT A113) WHEN I 1S DIVISIBLE BY 13.

>

ARRANGE THE NUMBERS IN THE ARFAY All,28) SUCH-THAT THE ELEMENT IN
ANY AN EVEN-NUMBERED CELL IS A SQUARE.

>

ARRANGE THE NUMBERS IN THE ARRAY Al[1,38) SUCH-THAT THE ELEMENT ALl]
1S LESS THAN THE ELEMENT A[7) WHEN 1 1S COMMENS' 3AT™ WiTH 7.
>

ARRANGE THE NUMBERS IN THE ARRAY Al[l,48) SUCH-THAT THE ELEMENT A (1]
IS COMMENSURATE WITH THE ELEMENT A[J) WHEN I IS COMMENSURATE WITH J.

Fig.12 Array Ordering Problems
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A  sequence of several problems derived from the same
prototype would be unsuitable {or presentation to a student, if
they shou no more variation than the set of problems in Fig.12. A
library of prototypes could provide some coverage and variety., On
the other hand, focus on selected concepts would be useful, even
at the expense of variety, uwhen producing problems for certain
purposes: for introducing important concepts, for testing, for
remediation or for reviedw. If the student has a convenient
addressing facility, he would often find it useful to ask for a
few similar probless involving 2 specific set of concepts to
confirm his oun understarding of these, before he moves sn to

other concepts.

= —————
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S. REASONING ABOUT ACTIONS

The basic characteristic of a preblem situation is that the
scheme of actions leading to a solution is not obvicus, while the
elements out of uwhich such a scheme could be constructed are more
or less available, It is generally important in problem
generatior to estimate and control the complexity of the
action-schemes which might lead to s~ utions, ensuring that the
problem nresents & desired leve! of difficulty to the student. To
some extent, the generator may also predetermine the content dand

structure of fruitful action-schemes.

One device for the estimation of complexity of a problem
involves the visualization of possibie problem spaces that might
be searched for a solution. In the case of pregramming exercises,
the cost of searching the most easily intuited space of solutions
can often be estimated easily by the generator. Ensuring this
coet is too high forces a step of refinement on the student,
making him look for clues for augmenting the problem-space or, in
some cases, compelling hin to restructure the program, for example
hy o~oroviding for storace of computed values to reduce
computational coet or by substituting iteration for recursion.
When dealing uwith uell-structured problems, a lower bound for the
complexity of the program needed to solve a given problem may be
estimated by identifying those features of the program which have
been rendered essential. A generator could use such estimates to

arrive at problems presenting desired levels of difficulty.

A second device that could be employed is the programming of
limited deduction about the problem situation. The problens
appearing in underlined script in Fig.12 provide good examples ot
eituations uhere the scheme of actions nesded to perform the given
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task is of controlled complexity (1). Each of these problems
involves an action or a set of actions that is to be performed in
order to achieve a desired change or to achieve a desired state in
the given situation. The t*task is meaningful only if the action
specifieq is reievant to the state change desired and if the
performance of this action presents a desired level of difficuity.
In order 'to take these requirements into account the problem
generator has to have information relating possible actions to
their effects. [t also needs estimates of difficulty in carrying
out possible actions (i.e. ‘applying operators’, -to use the
wording in Newell and Simon, 1872). The use of a table of
connections {ibid) is a possibility. Deducing the information by
following a suitable line of reasoning ray be necessary in those

ca3ses unere a table of connections becomes unuieldy.

The problems under discussicn deal only with a few possible
types of simple manipulations that can be performed on graphs,
i.e. addition or deletion of vertices and edges and the
repositioning of edges. Each type of maripulation is generally
capable of multiple application to a graph.

t1) The other problems shoun in this figure are not discussed
ihere, They were produced by generators having the structure
discussed in Section 3 and share assoc:ation netuwosrks wuwith the

problems being discussed in this section.
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DELETE LESS THAN 3 EOGES EROM THE GRAPH G TQ INCREASE IT3 BADIUS
&

> ASSIGN NUMBERS IN THE RANGE FROM 1 TO 18 TO THE EDGES OF THE GIVEN
GRAPH SUCH THAT THE NUMBER ASSIGNEO TO AN EDGE IS COMMENSURATE WITH
THE TOTAL NUMBER OF THE EDGES ADJACENT TO IT. ENSURE THAT THE Sum OF
THE ASSIGNED NUMBERS IS A MAXIMUM.

> FIND BRIDGES WITH A LENGTH OF 4 IN THE GIVEN GRAPH.

> ADD LESS THAN S EDGES TO THE GRAPH G SUCH THAT 1T IS NO LONGER A
PLANAR GRAPH.
> FIND IF THERE ARE CYCLES IN THE GRAPH G.

> ADD LESS THAN 3 NEW VERTICES WITH NECESSARY INCJOENT EDGES 10 THE

v

=

—— i, SR L el em

THE CENTRAL /ERTICES.
> FIND CYCLES IN THE GRAPH G.
> ASSIGN A COLOR NAME TO EACH EDGE 3UCH THAT THE COLOR OF ANY EDGE
IS DIFFERENT FROM THE COLOR OF ALL ITS ADJACENT EOGES.
> ASSIGN NUMBERS, NOT NECESSARILY UNIQUE, IN THE RANGE FROM 1 TO 1S
TO THE EDGES OF THE GRAPH G SUCH THAT THE NUMBER ASSIGNED TO AN EOGE
IS MULTIPLE THE NUMBER OF THE CYCLES IT IS A MEMBER OF.
> GENERATE BRIDGES WITH A LENGTH OF & FROM THE GRAPH G.
> FIND IF THE GIVEN GRAPH IS A BLOCK.
REPOSITION 3 UR MORE EDGES IN THE GRAPH G SUCH THAT THE ECCENTRICITY

VS REMAINS UNCHANGEQ.

)
ov

Fig,13 Graph Hanipulation Probiems
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Some of the problems require that the graph be modified to attain
a given rroperty by performing only a limited number of a
specified type of manipuiation. Other problems require that a
given number of manipulations of a specified type be performed
without 3ltering the graph in a specified uay. Since these are
programming problems, *he real task is to write a prog. am «hich
oerforms the required manipulations on .3y graph given as its
input,

The problems are interesting because performance of the task
under the given constraints becomes a critical matter, requiring
considerable analysis of the problem situation an! careful
planning of the solution. A special difficulty is that the
solution should be applicable to an indefinitely large <et of
graphs any of uhich may be giver az input to the program that is
to be written. These features, and the presence 2f a body of
theory on graphs, make these problems gocd exercises  in

non-numerical programming.

The generatcr which produced the examples in ~“ig.13 performs
limited deductiorn to arrive at the reiation between the five
allouwed manipulations on graphs to a dozen or so stete changes
that could occur in the graphs as a result. In the case of the
problems in Fiy.13, the deduction is based on the Feuristic use of
knowledce abcut gross changes that occur in the graph as a result
cof simple manipulatinns. Tuo gross indicators are the change in
the number of bpaths betuween an arbitrary pair of points as a
resitl: of a manipulation a.d the change in distance betueen an
arbitrary pair of points. iable 1 relates manipulations to the'ir
2tfects in terms of these gross indicators. Table 2 relates these
indicators to several state char >s that can be produced in

graphs. In these tables, an entry of a '1' shous a tendency for

|

=== i Sl
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the cause to increase the gquantity it is related to; and an entry
of a '-1' shous the oppcsite tendency; and an entry of '@’
indicates that a predictable link is not present,

Operation Change in Change in

Path Lenath  Numher of Paths
Delete Vertices with edges - +1 -1
Delete Edges +1 -1
Add Edges -1 +1
Add Vertices and edges 8 +1
Reposition Edges a 8

Tat'e 1 Operalors and Their Effect on Graph Parameters
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State Increase in lncrease in Number
riptor Bath Length Qf Paths
Radius +] -1
Diameter +1 -1
Eccentricity +1 -1
Connectivity 8 +1
Number of
Components B -1
Planarity 8 =

Possibility ot
Hami ! tonian Paths B +1

Identity of

Center 8 8
Distance Between
Tuo Nodes +1 -1
Possibility of
Eulerian Paths 8 8

Taple 2 State Changes and Associzted Varjations in
Craph Parameters

LI b M || L

S e R Sk s T E R e g e e w ) ik b e " iy
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To getierate the examples reierred to, the generator chooses a
permitted manipulation and identifies a re'evant state change by
using the tables. Further, it computes frum these tables the
direction of state change and introduces a suitabie constraint

which ensures that the task being constructed is not tco easy.

- Extensions can easily be made tc the generator employing the
line of reascning described above. Consider, for instance, the
problems uhich require that a particular state change be realized
Wwithout altering a specified feature of the given graph. A simple
computaticn involving Table 2 enables the generator to produce
pairs of state changes requirinyg opposi*c directions of change in
the tuwo paramete-~s involved. A reference to Table 1 identifies a
relevant manipulatinr~ on (ne graph. These tuwo steps enable the
generator to create a problem by requiring that the spccified
manipulation be repeatedly performed to ohtain a given state

change ensuring that the other state change does not occur.
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€. COVER STORIES

Large classes of problems can he viewed as having an abstract
structure. In these nroblems, *he specific objects functions or
relations that aprear are not of much significance, and are
generally substituted by formal variables early in the
problem-solving process. The scame abstract-structure obtained
from many prohliems which differ oniy trivially describe the
essence of the problem situation. School text-books on
mathematical subjects employ the well-knoun technique of taking
interesting problem-structures and fleshing them out with
sufficient surface detail to generate exercises. It is
conceivable that probliems generated by this technique, apart from
providing variety , also focus attention on the skills necessary
to abstract the basic structure of given problems (1). The
process of creating 3 ccherent surface structure is worth a brief
discussinn, even though we have not yet impiemented a pragram to

illustrate it.

At the icies’. level of scphistication uwould be schemes which
operate uith : fixed number of abstract problem-structures and a
fixed number »f surface structures. Using some indexing scheme, a
compatible pair of structures uwould be selected and the formal
veribles in the abstract structure would be replaced by the
corresponding terms of the surface structure. At the other end of
the spectrum would be an understanding system uhich has stratr es
for finding or creating real-world cituations corresponding to any

given abstract problem-structure.

(1) Hayes and Simon (1973) are studying subjects’ behavior when
presented with differently structured external cover stories for

the same abstract problem structure {touwer of hanoil.
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Possible compromises betueen what is desirable anw wnat is
implementable include systems which exploit strong |inks betueen a
large boduy of theory ot a class of structures and a related area
of 'real-uorid' problems with adequate diversity., Consider, for
instance, proble-s involving transport and communication networks.
It is obvious that many graph manipulation preblems can be
paraphrased as problems in this area. Implementing a system uhich
can perform such a paraphrasing intelligentliy involves several
problems. Such a sysiem could use a set of associations linking
entities in the ahstract theory with corresponding entities in the
application area, A partial mapping may be possible, and it will
indicate, to some extent, those asperte of the theory that are
relevant to the application area. For example, the concept of a
Heighted graph is spec.ally relevant to the application area being
considered here because it provides for the possibility of taking

into account physical lengths of the edges.

Unless such information on relevance is used to shape the
apstract problem being created, oniy a very small fraction of
generated structures can be paraphrased as natural-looking
application area problems. Hcuever, the complexity of detail that
has to be attended tc appears formidsble. This is best
iflustrated with examples. In the area of transport and
communication netuworks, some of the information that should be
available to the gensrator, dire~tly or indirectly, is:

Road netuorks uhich are non-planar have to be
constructed with the wuse of underpasses and
overpasses uhich are expens ve in relation to the
cost of roads. This is not the case with
air-routes and telecommunication circuits.

The presence of cut-vertices and small cut-sets is
relate! to the problems of reliability of the

netuork.




AR W H I we)

R

WW'WVY\‘ il

45

Paths passing through every edge (Eulerian paths)
are relevant to bus routes (edges being streets),
while they are not of significance in the case of
telephone networks,

It is possible to think of railroad stations as
fuelling or non-fuelling stations (say for
generating problems invoiving dominant sets of
vertices in a graph). This is generally not true
in the case of airports, all of which can provide

fuel.

These examples illustrate the uwealth of knowledge that a
human designerr brings to bear on the task of creating cover
stories. Programming a generator to design cover stories
therefore has to face the prcblems of representing the basis for

such knouledge and of utilizing it.
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7. CONCLUSIONS

WUhile simple generative schemes do, in scme cases, produce
surprisingly coherent questions, it is clear that the creation of
8 good problem is in general a design task which involves
considerable knouledge of the task area. Detailed representations
of relevant knowledge of the task area are as important in problem
generators as they are in the case of any program uhich performs a
cognitively significant task. These representations structure the
task area in terms of objects and processes, assign attributes to
these entities and provide static links as uell as computational

routines to implerent functiona! and relational mappings.

Given such a representation of knowledge, the questicns that
arise about a problem generator concern its structure and the
strategies that it incorporates. Are generators arbitrary
programs uhich have to bhe conrceived ad-hoc, cor is there a common

set of principles theuy can be based upon?

Ue have developed the view that generators perform 3 design
task, assembling a complex object - the proclem - while operating
within a variety of constraints, A top-doun generative
control-structure appears attractive. The second suggestion wuas
that this generative mechanism be freed from the burden of
syntactic consid2rations it carries in the case of grawmar-!ike
mechanisms, The data-structures it operates with could bec
deep-structures of sentences, providing a rich representational
scheme easily extended by borrowing from natural language. A
sentence synthesizer which creates readable descriptions of

generated problems was described.
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Problem generators for specific areas have to be developed by
inventing appropriate representations for knowledge about problems
in that area. Some sets of problems have a prototype and &
process of what might be called semantic generalization results in
a set of probiems which are similar to the original and yet
provide significant diversity. Some sets of problems can be
created by performing limited deduction about operators and state
changes they <cause in the relevant problem space, These
strategies have bheen discussed and illustrated uith examples

produced by programs based on them.

Another strategy, which is based on the des{gn of cover
stories for good abstract problems has been iritroduced. Problems
of controlling the generative process Ly using explicit
specifications and the problems of using informaticn available
regarding the student’s familiarity with a set of concepts have

also been briefly dealt with.
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APPENDIX A: FROGRAMMING DETALLS
1. Languages Used

Ali the generatcrs mentioned in the preceding pages uere
srogrammed in the list processing implementation language Lw(F)
(Newell, et al, Jan. 1971). The main implication of the use of
Le(F) is that one adopts a specific approach to system-building
{(Neuell, et al, Sept. 713, This approach ieads‘ to the
construction of large systems in a layered fashion, adding
facility after facility (e.g.,: an association mechanism based on
the use of hash-coding techniques for accessing association lists;
the semantic parser discussed in Section 3.3} in 2 number of
steps, later laysrs using the tools provided by the earlier ones
and building on them. The other implication of the use of (Lx(F)
is that the total access provided to the language processor’s
machinery encourages the user to adopt this machinnery ihen needed

rather than building 2 language prucessor on his oun,

2. Primitive operations

The basic operations of random choice, ueighted choice, wvalue
assignment, creation of associations and accessing of associations
are specified by the use of the operators *, # , « , <= , ? and $
» the last one being the statement terminator used in tonjunction
with the operators « and <= . These six operators as uell as the
comma are assigned necessary ‘character actions’ and 'syntax
actions’ (Newell, et al, Jan. 1971) as per the conventions of
Lw(F)., ensuring tie proper parsing and interpretation of
expressions of the following form embedded within regular L (F}

programs,
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Comment fields follow the

semi-colons.

{Al A2 A3 A4] Create the specified data-list

; lof type list on Lw(F}).

TAl A2 A3 A4l 7 Choose an item randomly from

the given list.
Al 3 A2 5 A3] *

-n

Choose by a weighted random

; process. MWeights are prefixed

o

with the number sign,

[R1 R2z R3] 4 X Choose one of the routines in

the 1ist and execute it, obtaining

; a value. Expressions of the above

forms can be used in the piace of

the variable B in the following

statements.

P

A-Bgs ; Replace the contents of list A
; by the contents of list B. wused

; mainiy to assign values to variables.

ATT, OBJ <= B § : Associates a value, B, uith the
; given attribute of the given object.
ATT, 08J ? ; Obtains the value of the given

» attribute of the given object.

ATT, -- ? Obtains the value of the givan

attribute of the object on top

-

of the Lw(F) working stack.

-

he brief description above does not cover all primitives
used in the system. However, a brief mention should be made of
variants of the choice operator *. One has a memory cell for its
most recent choice and avoids repeating it. Another variant
refers tc information associatively linked to its data-list by
other parts of the program before making a selection. This iatter

et b e e p—
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variant is useful in programming generators wWhich are

controliable.

3. Creation of Data-Structures

A structure synthesizing routine .C is used extensively by
the problem generators, The execution of a statcient of the form

((TYP, ASUBI VSUBl, ASUBZ2, VSUB2, ASUB3 vSuB3l .C)
creates a list representing a token, or instance, of an entity of
the type TYP. Associatively linked to this 1list are the
attributes ASUBl, ASUB2 and ASUB3 which are assigned ¢ values
VSUBL, VSUB2 and VEUB3 respectively. [f any attribute value pair
ASUBI VSUBI is followed by the separator .e instead of the comma,
VSUBI is e ecutea (it is presumed to be a routine) and the value
obtained is assigned to the attribute ASUBI. SIMILARLY IF TYP is
tollowed by .E, the type is obtained by executing the routine TYP,
the type is obtained by executing the routine TYP. Examples of
the usage follou:

([LIST, LINK-TYPE SYMMETRICAL, UNIQUE TRUE] .C)
creates a structure to represent 'THE SYMMETRICAL LIST’.

( {ARRAY, DIMENSION 2, NUMBER 31 .C)
creates a structure to represent 'THREE TWO DIMENSIONAL ARRAYS'.

There are special ssparators which are used in the place of
the comma follouing the tupe to specify in a compact manner the
values of the attributes UNIQUE and NUMBER. These separators are
not used in the illustrations in this Appendix in order to keep

the illustrations simple.

The main reason for the utility of the routine .C in the
programming of top-doun generators is that it can be wused

resursively. A specification list om which .C operates may
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indicate that the value cf ASUBI should be computed by the routine
VSUBI.  Frequently, VSUBI itself is defined in terms of a
construction to be performed by .C, creating a sub-structure which
i iinked to the main structure by the ASUBI ~-- VSUBI bond. The
follouing example illustrates such usage. The routine TP
specifies the construction of members of &2 set of simple

sentence-structures.

TP:  ([TP1 .E 0BJ. TPZ .E LOCATIVE TP3 .E} .Ci

TP1: (IFIND DELETE PRINT) ¢

TP2: (INUMBER, QUANT ALL, UNIQUE TRUE, NUMBER 8,
~dJC TP21 .El .C)

TP21: ({0DD EVEN POSITIVE NEGATIVE PRIME M)

Assignment of 'B° to NUMBER is interpreted to mean that
NUMBER>1. The routine TP3, not defined here, accesses a fragment
of sentence-structure assumad to have been created before the
execution of t'ie statements in the example. The accessed fragment
represents an object such as "THE LIST L1°, "THE GIVEN t1S7°', 'THE
ARRAY L(28)" or THE ARRAY L(38, 38)°. TP3 sunthesizes 2
sentence-fragment to refer to the object or ts sub-objects. The
new fragments are transliatable as 'THE FIRST ROl OF THE ARRAY’,
"THE ARRAY L°, 'ALL THE SUBLISTS OF L' or 'THE LAST COLUMN OF L°.

The sentence synthesizer, briefly described in Appendix B,
synthesizes readable sentences ii um the sentence-structures of the
kind produced by the routine TP, to generate sentences such as the
folloning:

FING ALL THE PRINE NUMBERS IN THE LAST COLUMN OF THE ARRAY L.

DELETE ALL THE EVEN NUMBERS IN THE FIRST SUBLIST OF L.

PRINT ALL THE POSITIVE NUMBERS IN THE ARRAY L.
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AFPENOIX B: THE SENTENCE SYNTHESIZER

The sentence synthesizer deals with associative structures
representing the content of potential sentences or parts thereof.
Fig.7 showed an example of such a struct re. By convention, the
sentence structure as civen to the syntlesizer starts uith the
list-structure representing an occurrence of & predicate term.
Linked to this list-structure by labelled, directed associations
are sub-structures representing entities that stanc ir various
deep~-case relations tu the predicate, Fach sub-~structure
similarly consists of a list-structure representing the occurrence
of a uord-sznse with associations leading off to related entities.
It is 2lso the convention to bind each occurrence of a uord-sense
uith relevant markers such as those for tense. number and gender

using attribute-value associations.

The implementation of the sunthesizer is based on the
principle that for each category of semantic entity in the
sentence structure there should be a synthesis routine which has
oneraticnal knouledge of that category of entity. At the highes!
level, the synthesizer finds out the ~=tegory of entity it has to
dezal with and triggers off the associated synthesis routine.
Recursive calls by cne synthesis routine to others zre necessary
because parts of the sentence structure Jre compused of smaller

sub-structures.

The routine dealing uith predicates looks for associations to
sub-structures of the follouwing types: subject; voice marker;
tense marker; object, in case of transitive verbs; indirect
objects: locatives; adverbial of purpose; and otner adverbial
phrases. The routine d:aling with objects attends to any need for
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:terminers, quant.fiers, adjectives, number markers, and several
jpes of adjectives and 2djectival phrases.




54

REFERENCES

1. Carbonel!, J. R., "Al in CAl: An Artificial-Intelligence Approach
to Computer-Assisted "nstruction,” IEEE Transactions on Man-Machine
Systems, MMS-11 (4), 198-282, (Dec., 1978)

2. Hayes, J. R. and 4. A. Simon, "Understanding Written Problem
Instructions,” Complex Information Processing Working Paper 236,
Department of Psychology, Carnegie-Mellon University, (May, 1873)

3. Koffman, E.B., "A GCenerative CA] Tutor for Computer Science
Concepts," Proceedinngs of the Spring Joint Computer Conference,
1972.

4. Koffman, E.B., "Individualizing Instruction in a Generative CAIl
Tutor Lommunications of the ACM, 1S (6), bp. 472-473, (1972)

S. Neweil, A., D. McCracken, G. Robertson, and L. OeBznedetti,
"L (F),"” Department of Computer Science, Carnegie-mellon University,
(Jan., 1971)

6. Newell, A., P. Freeman, D. McCracker, and G. Robertson, "The
Kerne! Approach to Buildiig Software Systemg,” Computir Science
Research Review, 1978-71, Department of Computer Science,
Carnegie-Me.lon University, (Sept., 1371)

7. Neue!l, A. and H.A.Simon, Huran Problem Solving, Prentice Hall,
Englewood Cliffs, M. J., (1972)

8. Simmons, R. and J. Slocum, GCenerating Engiish Discourse from

Semantic Networks, Communications of the ACM, 1% (18), pp. 8391-885
(1372).



55

3. Uphr, L., "Teaching Machine Programs that Generate Problems as a
Function of Interaction with Students," Proceedings of the 24th ACM
National Conference, (New York, N.Y.), pp. 125-134, 1969,

18. Uttal, W. R., T.Pasich, M.Rogers and R.Hieronymus, Generative
Computer-Assisted Instruction in Analytic Geometry, Entelek,
Newburyport, Mass. (1378) 11. Wexler, J. D., "Information N=tuorks
in Generative Computer-Assisted Instruction,” IEEE Transactions on
Man-Machine Systems, MMS-11 (4), 181-198, (Jec., 1978)




