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ABSTRACT

This research effort presents a new approach to programming language design.
Essentially, we have studied the close relationships of program structures and the data
structures they use, and found that reorienting programming style to emphasize these
relationships is a fruitful direction for future language designs. As a vehicle for
studying these relationships, a language "basis" is developed--a set of primitives, a
syntax, and an interpretation. The basis is "incomplete” in that it does not define a real
programming language, nor are all "fundamental® aspects of language design considered.
However, one is able to describe many algorithms concisely in the basis, which leads us
to believe it represents a significant step in programming language design.

We may ascribe the primary influences on the work to structured programming
studies and the programming languages Bliss, APL, and LISP. Secondary influences
include formal approaches to language design and program optimization. The parallel
work of Backus shares the basic precepts of pointerless representation and the concise

nature of combinatoric constructs; however, they differ radically in both approach and
emphasis.

Our approach to the design of the basis may be characterized as a derivative of
"structured programming” studies. In particular, “gotoless programming” proponents
advocate replacement of most explicit program pointers ("goto"s) in programming
languages by a set of control constructs--grouping, subroutine call, conditional,
selection, looping, and escape facilities--which impose a nested-sequential static
structure on programs. The germinal idea of this work is that perhaps the gotoless
constructs can be applied to nested-sequential structures in general--independent of
whether the structure is thought to represent program or data. We will then have a
"pointerless” representation for both structures.

Another desirable aspect of programs is that the invocation of the "next" instruction
to be executed is implicit; conventional data structures, on the other hand, must be
explicitly "pulsed” to obtain the next element. Very often, a one-to-one identification
can be made between program elements and the data structure elements they access.
(For example, a one-to-one identification between elements of an array and the
incarnations of a loop body can frequently be made.) The basis is designed to emphasize
this aspect of programs through the use of operators which apply programs to data
“cosequentially".




One of the "gotoless" constructs which does constitute use of an explicit "program
pointer” is the (potentially recursive) subroutine call. The research proposes
structuring the use of this pointer by substituting a set of "recursionless” constructs in
traditional programming languages (such as Algol); the analogy with "gotoless"
constructs is direct--no explicit recursive calls are required for recursive effects. The

data structure involved in implementing a recursive function parameter mechanism

follows the control structure so explicitly that a stack is frequently used to contain both
data and control information. “"Corecursive" operators--directly analogous to
cosequential operators--are thus introduced to emphasize the close relationship
between recursive data and control structures.

In specifying a programming language "basis”, we are admitting open-endedness a

priori. We feel that a formalization o’ this basis should prove beneficial to program

correctness techniques and formal semantics specification language development.
Additionally, program/data structure optimization and representation issues are unified
by the approach. We expect that a language developed from this basis will be

analozous in power for nested-sequential structures to APL for homogeneous, parallel
structures.
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CHAPTER |

INTRODUCTION AND APPROACH

Goals

All research in the field of programming language design requires justification in this
era of language proliferation. The fashionable criterion for effective progress in this
field is that any new language provide an “"order of magnitude improvement” over the
existing paragon. Until a language meets the criterion, there should be no new
compilers, no reprogramming, no low-yield design efforts, etc. Aside from the obvious
fiscal benefits, new language projects should decrease and the field of programming
tanguages should advance by more fundamental, farge increments. Additionally, the
criterion is “"suitably vagus": a designer who claims his new language meets it riust
identify the nature of the improvement that the language represents.

The primary goal of this dissertation is to indicate that an order of magnitude
improvement in general purpose programming languages is possible, and to provide a
basis for such a language. The basis is such that its extension to a real programming
language is non-trivial. Rarely can traditional language constructs enter the language
unaltered; frequently, they are found already embedded in the language in a
fundamental way. Some justification will be given for suspecting that consistent
incorporation of truly alien constructs into the language tends to be "synergistic"--the
actual gain is more than could have been expected from experience with the constructs
in other languages.

Indeed, the development of the language basis did not proceed from the criterion
above, but rather from insight into a pointerless program/data structure representation
arising from structured programming “gotoless” program studies. The resultant basis
was observably more concise than general purpose programming fanguages such as
Algol [NA]. Hence, as an attempt to discern the source of this conciseness, the order of
magnitude criterion was studied in terms of languages which have in some sense met "
the criterion (with respect to therr predecessors). We concluded that fundamental
improvement in languages has not arisen from extension of contemporary tanguages, but
rather by a reformulation of languages which emphasize common interrelationships of
concepts obscured in their predecessors.

The somewhat pretentious claim that our considerations of the germinal "pointerless
2 representation” concept may lead to a programming language which meets the order of
magnitude criterion is not intended to belittle the original considerations in the

development of the basis, but rather to emphasize their importance.




INTRODUCTION AND APPROACH 2

We proceed by placing this work in the programming language design milieu. Next
the order of magnitude improvement criterion is examined more closely, along with
aspects of language design contributing toward its satisfaction. We then establish the
approach and essential concepts embodied in the remainder of this work.

Programming Language Design: State of the Art

Most higher level languages of the early 1960s did meet the "order of magnitude"
criterion when compared with machine language or even, in some cases, FORTRAN (e.g.
APL, SNOBOL and LISP for wide (disjoint) classes of problems)t. However, in the late
1960s and the early 1970s computer scientists began to focus on the fundamental
concepts underlying the activity of programming and the machines for which programs
are written,

I.  The stimulation of machine technology

The rapid pace of hardware innovations has certainly kept one group of
programming language designers active; machines such as the Star [HT] and ILLIAC IV
[BN] have features to Occupy designers in merely allowing the higher-level language
programmer to use the machine effectively. A related group of
designers--disenchanted with the inefficiencies of general purpose languages--have
resorted to lower-level machine-oriented implementation languages; languages such as
Pascal [WI] and Bliss [WU,1971] have in fact contributed to the field of higher-level
language design, although that was at most a subcrdinate goal in their design.

The technology has further stimulated programming efforts in systems concepts;
paging, networks, associative memories, protection systems, etc., have all caused existing
programming languages to be reexamined, especially to determine whether applicability
of the concepts should be discovered by compilers or extensions made to facilitate their
use directly, Real-time facilities, exotic new peripherals, "applications” systems, and
microprogramming are only beginning to influence programming language design--as
evidenced by recent interest in "two-dimensicnal languages”, for example [WM].
Despite activity in the technological areas, with the exception, of implementation
languages and graphics languages, the approach has been to extend existing languages,
rather than to invent new languages incorporating or anticipating hardware technology
in any fundamental way. It is more probable that we do ot understand the implications
of features like streaming and parallelism than that they will not L'lltimately affect the

tSee [BA,1957], [McCR], [IV], [PAK], [FGP), [GPP], and [McC].




INTRODUCTION AND APPROACH 3

heart of programming language design.
2. Formal and informal methodologies

Another group of programming language designers has begun to address the
problem of finding the fundamental underlying concepts of the activity of programming.
There are many approaches to this problem. Formal approaches include formal
semantics specifications for entire programming languages, program “schemata” studies,
program verification efforts, and various axiomatizations suitable for correctness proofs
for particular programs in specific languagest. Rigorous approaches to systems
programming problems--cooperating sequential processes and protection schemes, for
example--provide practical problems for which formal analysis is a tool of obvious and
immediate benefittt.

"Structured programming” presents a more empirical view of the activity of
programming; here the language design issue is primarily “can we use what we have?"
and only secondarily "how should we improve it?"i¥t. Even here the approach tends to
be mildly formal--properties preserved or destroyed by control constructs, for example,
are closely examined and the "correct" way to program is preferably the way which
may be proved correct. However, the formal approach is a means to an end:
enhancement of understandability, principally through enforcement of a hierarchical
programming style. Considerable practical experience has led theoretical computer
scientists to accept "gotoless programming" as an improved technique [DI,1968),
[WU,1971])  Also, featurcs for controlling the ill-structured properties of global
variables are emerging [WS].

A related issue is the management of large programming efforts--modularization a la
Parnas [PA]. Conventional decompositions of programming tasks tend to maximize
knowledge of the interfaces between components; a modularization which minimizes such
knowledge has been found to result in more easily modifiable systems. Unfortunately,
the decomposition is often orthogonal to that proposed by “structured programming"
enthusiasts.

tSee [AJS], (1A}, [CG], [SN], [KI} and [GR].
t+See [DI,May,1968], [HA], and [BH].

t++See [D1,1969], [HO], [WU], and [WS]
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INTRODUCTION AND APPROACH 4

Other management issues are att:cked by those interested in bootstrapping and
transportability #; the major impact of these issues on programming language design is to
cause more exact distinction between the fundamental features of a language and those
which are actually syntactically or interpretively extensible from the language core or
present for efficiency. Those interested in program management are approaching
language design from a fundamentalist viewpoint; we may expect at least the core of
future languages from this group to be very sparse, compact and logically consistent.

3. Maturity

Of course, it is unfair to divide programming language design exclusively into two
camps--technology and management. General purpose languages continue to be
designed and inplemented. However, many conputes scientists feel that large
"omnibus” languages such as Algol 68, PL/1 and Simula 67+% represent the end of the
large language era for several reasons:

1. They have stimulated enough problems in their implementation and
description to keep computer scientists busy simply trying to
understand them;

2. Experience with them is so limited that no one can propose
absolutely better solutions for the problems they pose; in particular,
meager evidence does not show an “order of magnitude” return for
the investment, either in size or complexity decrease;

and

3. There is a general hope among computer scientists that progiamming
languages need not be that complex.

Programming language design has also matured sighificantly since the early 1960s.
Algol 60 [NA] is no longer thought divine, but has rather entered the small group of
universally understood languages--along with FORTRAN, LISP, and SNOBOL. APL is
generally taken more seriously than previously, although its merits are far from

tSee [BR), [WA,1967,1970].

ttSee (vW,1969]), [IBM), and [DMN].
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universally recognized. Higher level languages have become viable alternatives to
assembly languages for systems problems.

e

Emphasis in the language design field has shifted fr
]

om the study of syntax and
compiler-compilers to '

'semantics”; the former studies have been subjugated to the

study of extensible languages, pursued by an active (though currently disillusioned)

group of designers [SCH]. Issues of scope, storage management, control structures and
data structures--although in

no sense resolved--are considerably better understood.
The new languages which have arisen from hardware technology or program

management studies have been treated in the literature with emphasis on the technical
Or management issues they consider.

In summary, those computer scientists in the mainstream of programming language
research are not designing programming languages.

Language Design: Trade between Technology and Formalism

General purpose programming language designers tend to emphasize either formal
or technological innovations in the languages they design; however, they cannot
satisfactorily rely wholly on either. The disparity between machine/system design and
formal axiomatization makes formal languages unusable from a practical standpoint.

Similarly, the often ad hoc nature of advances in machine des

sign, which are frequently
poorly matched with the systems and languages in which they are ultimately embedded,
makes a purely technological appr

oach unacceptable from a management viewpoint,

Certainly, a trend of the past decade is toward m
technological fields. In particular, formalis
Machines unless the emphasis is toward a
i.e., the emphasis is no longer a basis for
motivate the formal

utual trade between the formal and
ts no longer propose alternatives to Turing
more practical, realistic model of computing;
computablity. Computers, not computability,

approaches to problems such as assignment, data structure
axiomatizations, and (to some extent) complexity. Analogously,

have borrowed the mathematically precise notions embodied in
and set operations. "Structured programming” and systems
frequently proved correct, us
formal studies.

programming languages
association mechanisms

programming algorithms are
ing rigorous approaches previously found only in the more

The language basis developed below borrows extensively from both progamming
tanguages and formal applications. In searching for a powerful computation base,
applicative languages are found to provide a pointer-free representation for
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computation.  Without destroying this representation by in'roducing the troublesome
notions of "assignment" and "side-effects”, a sequence gencration mechanism is included
as an abstraction of the process which computers perform.  Although the notations
used appear formal, the treatment is not. The results are preser‘ed as fruitful
directions for the design of future programming languages, not as an attempt to
incorporate particular aspects of current hardware technology into a formal basis for
computation

Order of Magnitude Improvement

The “order of magnitude improvement™ criterion s intentionally vague; many
individual aspects of programming languages could be improved by a factor of ten
without a corresponding improvement in the overall task of designing, writing,
debugging, running, and modifying a program in the langauage. Possibly the only
precise definition of an order of magnitude improvement in general purpose
programming languages would be economic--in terms of the total cost of developing and
using a program, measured for a diversified group of programs and programmers over
an extended period of time, Certainly programming in the Improved language must
become m .re natural to a large group of programmers, and implementations of programs
must become more powerful.

Insisting that the implementation of a language be efficient on current machines
requires the definition to be relalively insensitive to hardware advances. This poses
two requi ements: (1) the language must be futuristic enough to predict machine
technology advances, lest it be obsolete immediately, and (2) it must not depend on
future technology for its acceptance. However, it is unlikely that a language meeting
the criterion could be developed which does not require at least some improvement in
optimization techniques for current machines; specialized languages such as APL and
SNOBOL which have (intuitively) met the criterion certainly require such advances for
acceptable implementation efficiency.  Hence, although we wish to constrain our
considerations of the order of magnitude criterion to language design as influenced by a
natural conceptualization of problems, implenientation considerations cannot be ignored.

*The criterion probably arose in response to the economic question. how much better
must a language be to warrent the vast implementation and programmer retraining costs
entailed by a new language? This initial overhead factor would be required in the
definition.

N
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Although we do not propose an exact definition of the order of magnitude
improvement criterion, it is clear that one economic effect must be that programming
must take less time than it does currently.

There are several approaches to decreasing the time required to program. Ignoring
the special-purpose language approach (we want a “general purpose” language), the
principal methods seem to hinge about the ability of a language to eliminate the
specification of "detail” that is necessarily specified in other programming languages.
Hence, for our purposes, we shall assume that a language in which programs neeJ
contain only one tenth of the detail that wculd be required in current languages,
represents an order of magnitude improvement in general purpose language design. At
least twu constraints are appropriate: (1) the new language must be implementable
approximately as efficiently as those against which it is compared, and (2) the gains in
concise specification of algorithms must not suffer from tne "write only language"
syndrome--complexity of interpretation of language constructs must not defeat gains in
conciseness. The principal effect of this latter constraint is to insure that programs are
not necessarily poorly structured. Below we present a discussion of language design

mechanisms for eliminating detail. Features will be presented as methods for
introducing conciseness; aspects which miti-ate against structure or efficiency will be
mentioned.

1. Conciseness

Higher level lanquage design may be viewed as an attempt to make programs more
concise while prescrving their structure. Note first that, although cuncise primitives
are desirable, a blind attempt to minimize the number of primitives involves some loss of
efficiency whenever the underlying model is more powerful than the language itself.
For example, if the successor function is the only mechanism for addition, any
implementation on a machine with addition as primitive will be inefficient.

One of the principal methods for reducing a program’s length is to eliminate or limit

the number and scope of "temporarily defined names” used by the programmer®. The

most prevalent mechanisms for achieving this end are the inclusion of operators in a

language and the ability to define functions. Both have the effect of making the

program more concise by eliminating the necessity to initialize a temporary name--e.g.

i a register--and then perform an operation on it--e.g. a machir2 code command. The
recent trend toward “"expression languages” is an extension of this notion; languages

tTraditionally the phrase "temporarily defined names" refers to internal names
. generated by a compiler. Here we mean names generated by the programmer for
temporary use.

s " o P — s o o




INTRODUCTION AND APPROACH 8

such as Gedanken, Euler, Bliss, Algol 68, etc.t, use the LISP noiion of associating a va'ue
with each construct in the language--including those normally thought of as control and
command constructs. Limitation of the accessibility of temporary names is the primary
motivation for hierarchical scope rules in programming languages. Such rules lessen the
bookkeeping required of the programmer by permitting identical names in different
contexts. In addition, they provide a minimal concession to the preference of natural
language for context dependent interpretation. Although the efficiency issues involved
are by no means trivial or completely solved, most programmers prefer the use of these
mechanisms with the slight loss of efficiency incurred.

Another method for reducing program size is to provide a large number of highly
specialized primitives in the language; the conciseness of APL is due in part to this
property of the language. Clearly, if for most programs one need define only one tenth
as many functions in one programming language as in another, the former represents an
order of magnitude improvement over the latter (for a fixed performance level),
particularly if their invocation is concise as with APL single character operators. One
can usually identify subsets of related primitives in languases where a large number are
available--for exarmple, subsets related to strings, arrays, boolean variables, etc.
Efficiency problems do not generally arise when constrained to theec: subsets.
However, some languages--PL/1 and Algol 68--allow implicit relationships among the
sublanguages defined by the subsets: one may add a boolean to a real number.
Although this is an aid to conciseness (explicit conversion calls are not necessary) it
increases the complexity of interpretation, and may cause a loss of efficiency.
Extensible language enthusiasts tend to downgrade this aspect of language design,
preferring a minimal "kernel" from which all extensions are rade. Although the "kernel"
notion is excellent as an aid to the description and davelopment of a large number of
primitives, the lack of a large number of primitives in the language itself has severe
implications to its implementation and its utility as a tool for communication.

A third method for gaining conciseness involves the reformulation of groups of
concepts in languages in natural or structured ways despite a mismatch in their
implementation. In some sense, sach higher-level language construct causes a local loss
of efficiency in implementation; those which are of most benefit frequently increase
knowledge required of the relationships among language elements for efficient
implementation even though the relationships are not recognized at the source language
level. Current optimization techniques are concerned with discovering these
relationships. The technology will be directed by such language efforts, although it has
not been significantly prodded by them in the past; i.e., programming language design

tSee [RE,1970], [WW], [WU,1971], and [vW,1969].
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tends to lag behind machines from fear of inefficient implementation on current
machines. Sadly, natural formulations in programming languages of techniques such as
streaming and microprogramming are not their raisons d’etre.

Fortunately, recent developments in structured programming (e.g. gotolessness)
and operating systems (eg. P and V synchronization) have emerged despite
inefficiency qualms (control structures were subsequently optimized and now no one
really worries about their inefficiency). Languages like SNOBOL and APL are
particularly noteworthy in that they have provided a conceptual framework for
constrained data structures. Their conciseness for problems over the class of data
structures for which they were designed is remarkable; their power derives from the
fact that detail related to implementation of the structures and operations on them is
subsumed in the implementation. That is, enough is known about the structures that an
acceptably efficient implementation can be built; the conciseness is often worth the
price of even poor implementations. Of course, these languages (in particular) lose
their leveraje when problems outside their respective realms are attempted. Although
inclusion of more sophisticated control constructs would have enhanced their
applicability, the scope of their power is limited by the inability of their conceptual
structures--strings and homogeneous arrays--to model many aspects of the structures
used in computing. Naturally, part of their power derives from the assumptions they
can make about these limitations.

2. Structure

Conciseness as an ultimate goal in language design has some limitations. Natural
languages in particular contain redundancies which emphasize linguistic structure--which
then render unnaturalness "apparent” as was mentioned above. Redundancy in
programming languages is minimal, although one might argue that ihe preference of
parenthesization to postfix notation in languages constitutes a concession to
redundancy. We are unable to propose any particularly effective methods for utilizing
redundancy in language design. However, a "structured decomposition” of a language,
and of the specifications of algorithms in the language, is considered desirable.

Inasmuch as "conciseness" has received considerable emphasis as a means for
meeting the order of magnitude criterion, its relationship to "structure” deserves some
attention. Reactions to APL "one-liners"t often leads (non-APL) programmers to believe

tThe "one-liners" are normally extremely complex, involve several APL operators, "just
fit" on one line, and accomplish tasks of considerable difficulty.
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that the ultimate in conciseness is incomprehensibility. Indeed, encoding techniques
more properly constitute the ultimate in conciseness, and may even have
incomprehensibility as their goal.

However, we claim that most APL "one-liners" are not sufficiently concise! The
principal grounds for such a claim lie in the fact that "structure” often aids conciseness
to the extent that once inside the context of a structured entity, the representation for
any particular effect is more concise than were the structure not present. For example,
the principal reason the APL one-liner is concise in the first place arises from the vast
structure of APL--in whose context the expression must be interpreted. The claim that
most APL one liners are not sufficiently concise is simply a claim that their programmers
have not found structural similarities between the one-liner and the other programs
they have written. That is, in the context of programming (over a period of time, as
opposed to writing a particular program), the one-liner is probably decomposable into
previously obtained effects which should have been factored from the expression as
functions. Certainly, when common effects can not conceivably be recognized--i.e.,
when generalization seems unlikely--we prefer a structursd decomposition of a
one-liner, while granting its superior conciseness.

In summary, we must find intrinsically powerful primitives whose relationships,
though  complex, provide sufficiently constrained assumptions for efficient
implementation, and which are amenable to change as well as concise description. In
the remainder of the thesis, a broader base for structures--nested sequences--is used.
We can therefore expect our assumptions to be less powerful than either of the above
languages allow. However the power gained by the naturalness of this structure to
machine computation should, in general, offset that lost by the less rigid assumptions,
and a more concise language for a wider class of problems will result.

Pointerless Representation
1. "Gotoless programming”

We begin by examining one recent technique developed by proponents of
structured programming--removal of the goto statement from programming languages.
Essentially, this removal involves the substitution of a "complete"t set of control
constructs for the goto. For example, the set might include subroutine call, selection,

t"Complete” in a pragmatic sense, more than mathematical. In particular, the set is in no
way computationally "minimal®,
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grouping, conditional, loop and escape facilities. Tre set mentioned is not complete in
the sense that every control structure oblaiiable with the goto can be simply
represented using these constructs; rather the philosophy imposed 15 that the
constructs point out those uses of the goto which are dangerously complex. In fact, the
set mentioned is not complete from another viewpoint: the forced representation of
certain useful, safe constructs 1s unjuly complex. (The coroutine, "enable” mechanism,
and “select” expression i Bliss represent concessions to this incompleteness
(WU,1972])  Gotoless language designers resist the urge to reintroduce the goto In
order to obtain suclh constructs, preferring to extend the set of gotoless constructs.

One of the principal benefits of gotoless languages arises from the effective removal
of explicit program pointers from the language (Ly constraining pointers lo particular
objects in a local context). While the programs wiich can be written in the language
are visibly less complex than in a language with gotos, the complexity of the underlying
structure discoverable by a compiler 1s actually increased. This increase 1s not simply
an amouni which would make the efficiency of potoless languages comensurate with
tanguages with the goto, but is actually a significant increase beyond that, arising from
the assumptions about language elements which gotolessness allows. Recent work in
code optimization by Geschke [GE] exploits this gain; recent work by Hansen [HAN]
indicates that such considerations need not lead to inefficiencies in the compilation
process,

2. Pointers in programs

An examination of programming languazes in general indicates that misuse of the
goto (this notion is now well-defined) is only symptomatic of problems introduced by
the use of pointers in programming Ianguages. In effect, gotolessness controls
program-to-program pointers; it says nothing about prograin-to-data and data-to-data
pointers, both of which present problems at least us romplax as those introduced by the
goto. The problems incurred are analogous to those of the goto; "unnaturally complex”
entities can be built easily by the programmer and consideration of these by the
compiler writer defeats real gains which could be made if they were controlled.

For the unconvinced, brief examples of problems incurred with both of the above
types of pointers may be enlightening. Program-to-data pointers--yes,
“variables"--incur problems primarily from the side effects of the assignment operator.
When a programmer calls a subroutine (procedure) he is often unaware of global
variables which may change as a result of the call; common subexpression optimization
facilities in a compiler are also thwarted by this phenomenon. In effect, both the
compiler and the programmer must assume that any global variable may have changed*.
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Scope mechanisms are inadequate here--they do not constrain the access to global

variables effectively. (This problem is currently being studied independently as a
“structured programming" problem (Ws])

It is a rare programmer who has not incurred problems with data-to-data pointers;
LISP programmers using "nconc”, “replaca”, and "replacd”, for example, create cyclic lists
unintentionally. This is not to say that notions like “cycle” should be foreign to data
structures, but rather that they should be explicit; knowlzdge of such structures may

then be utilized more cffectively by compilers and interpreters intended for the
language.

Data-to-program pointers are not as obviously misused as the other two types,
principally because of the extremely limited capabhilities generally provided for such
pointers. Naturally, switches in Algol inherit all the problems associated with gotos.
However, it will be shown below that tie notion of "partially instantiated function”
actually generalizes this notion of pointer, yet retains the control required; i.e., this is a
type of pointer which is not complex enough.

Any programming language with a reference concept is in one sense providing an
“assembly language" for data structures, without providing controlled alternatives for
expressing sequential relationships. Indeed we lack knowledge of such alternatives.
Those languages which do attempt to control pointers usually do so using type
structures (modes). Such facilities often prevent useful data structures from being

defined (for example, rings) or permit uncontrolled, arbitrarily complex structures to be
created.

This should not be misconstrued as an indictment of pointers in general; no one
would propose a gotoless language without the ability to define and reference
parameterized subroutines by name, which indeed does constitute a use of a program
pointer as well as data pointers. It is more the incompleteness of structuring
mechanisms for data with respect to pointers which magnifies the problem.

tIn a language without pointers, the compiler can determine information about which
variables can change over calls. Such a determination is directly analogous to internally
reformatting programs with gotos into the gotoless format for optimization purposes.

i
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3. Pointerless data representation

In order to remove the ahility to use explicit pointers in programs, we consider the
possiblity of using the gotoless constructs directly; ie, the hierarchical, nested
sequential ("embedded lists"), static structure of programs is examired as a base for
data structures. Indeed, such structures form the bas's of data structures for several
higher-level languages. The combination of sequential structures with the gotoless
sequencers is indeed richer than the static structures alone. For example, a loop is a
gotoless construct for programming languages whose analog in data structures is a
cycle--a structure which must be simulated or constructed in languages with the same
static structure base.

There are several problems which data structures present beyond those
encountered with programs themselves. In particular, a data structure frequently
requires that different sequential structures be mapped onto the same entity; the utility
of the concept of the "reverse" operator should illustrate this sufficiently, Also, data
structures tend to be dynamic; for example, insertion and deletion of elements are
operations appropriate to data structures. However, such problems with respect to
programs do exist and are beginning to be considered in "incremental compilation”
studies within conversational language research [MI].

Note also that the notion of data structure is analogous to program structure in the
following sense: although programmers define many different programs they are all
considered to be instances of the same program structure--usually described
syntactically by some formalism such as BNF. [t would appear that to define different
data structures requires, in effect, a specification language like BNF in the language.
That extensible language advocates often propose this for programming languages
suggests that such a mechanism should probably be a shared data structure and
program structure extensibility mechanism. It also suggests that a data structure
facility founded purely on a single syntax for data structures--as there is a single
syntax for a programming language--must be examined critically before proceeding to
extension mechanisms. To emphasize, just as gotoless language enthusiasts add new
gotoless ccastructs instead of resorting to the inclusion of the goto to obtain a
desirable effect, we prefer the definition of a new construct to provide the effect for
which the inclusion of explicit pointers might be proposed.

Languages rarely have a sequential data structuring mechanism; sequence in
languages like Algol is induced by the program in terms of an alternative data structure
mechanism, the array. Although sequential operators occur in APL, their presentation is
as a convenience for describing and restructuring the parallel structures which
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constitute the structure base. Languages which do offer sequences explicitly as data
structure units are the string languages--where concepts of sequentiality and
relationships of sequences are constrained to a single level, or else revert to the
pointer-chasing mechanisms of other languages, such as LISP. Some of the more
modern languages, like Pascal, while approaching adequate inclusion of controlling
statements for data structures, continue to represent the relationship between program
and data as controller (program) to controlled (data). In what follows, a much more
unified view will be established, and, in fact, the distinctions between program and data
become pleasantly "fuzzy".

4. Cosequential decomposition: program/data structure correlation

The correlation between data structure and program control structure has been
ignored to a large extent in programming language des'gn. An example from APL may
heip to illustrate the notion involved. In implementing

A+B+C

for conforming vectors A, B, and C in APL, a temporary vector, T, may be used in a loop
to compute T, = B; + C,. The expression’s value may be computed in a subsequent
loop over T; = A, + T, (an implementation which closely matches the semantic
description).  However, noticing that the result sequence of the first loop is
“cosequential” with the program sequence of the latter loop, the implementer 1s free to
merge the two loops into one, in which T; = A, + B, + C; is computed. In essence,
the loop is used to define a sequencer for the data structures (T, A, B and C) with which
the sequence of executions of the loop body is cosequential.

Although the APL programmer should be able to rely on such implementation
efficiency [AB), he may have doubts about an expression such as:

transpose (2, {rho A))rho (A + B), A - B
where loop incarnations of
(Tiyr=A; +B;T,2=A, -B)
would be the desired cosequential program elements. It is not necessary to understand

this example. The point is simply that a significantly complex APL expression may have
a relativeiy simple cosequential decomposition not likely to be discovered by a compiler.
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Even if a programmer recognizes program/data cosequentiality, in traditional
lanpuages he cannot specify the correspondence concisely. For example, many
programs produce result (data) sequences with which they are cosequential. The
following Algol program is such an example, producing the Fibonacci sequence in T:

begin
T(1]:=0; T[2] := };
for i := 3 step | until INFINITY
do T[i]:= T[i-1] + T[i-2};
end

Note that there is a program element (statement) execution corresponding to each value
in the result sequence. The correspondence is not apparent--the resulting data
structure is subordinate to the control structure of the program.

Although the above examples tend to indicate cosequencing of a somewhat trivial
form--with program loops--examples dealing with more complex structures are common.
Recursive functions implementing top-down and bottom-up tree-scans generally admit
identificaton of a recursive program control structure with a nested data structure (a
1-1 sequential mapping between recursion points and tree nodes). Once again, ir most
languages, the nested data structure is subordinate to the recursive control structure;
the sequencing for the data structure is explicit in the program statements themselves.

The extent to which cosequential relations exist in programs and the effect on the
programmer’s conceptualizaton of them is of primary interest in the language basis
developed below. The notions of “partially instantiated function” and “"sequence
generation" are found useful for emphasizing the cosequential relations mentioned
above. Hence, a short discussion of each is necessary before proceeding to particulars
of the basis.

The "partially instantiated function” is simply a function with only part of its actual
parameter list specified (bound). For example, if “a(i,j)" represents a function which
returrs the jth element of the ith row of some (implicit) array, "a(,2)" may be used to
represent the function "c2" defined by "c2(i) = a(i,2)". This ability to partially
instantiate functions--in this case to the second column of the array--has obvious
consequences with respect to program generality. For example, if a function "q(x)"
expects a vector argument, use of "g(a(,2))" eliminates the need to reprogram q to deal
with columns (or rows) of arrays.
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Partially instantiated functions are called "sections” in mathematical literature [RO],
and we adopt the term here for convenience. The nature of sections is ambiguous:
they are both program and data, and attempts to define them as one or the other rely
on a preconccived implementation, By themselves, sections do not aid the study of
cosequencing; Fowever, sequences of sections will be seen to represent a "middle
ground” between data structures and program structures, and constitute a large portion
of cosequential result sequences in programs 1 the basis.

5. Implicit sequence generation

The notion ¢ implic; "sequence generation" is also separate from cosequentiality,
but affects its utility tremendously. It arises principally from a desire to express
infinitet structures in programming languages as entities whicli can be dealt with
operationally.  For example, the Algol version of the Fibonacci sequence generation
given above never terminates, and hence does not constitute an algorithm.
Conceptually, humans are able to cope with such a sequence; we know that any actual
use of the Fibonacci <equence would require ils termination. Once again, in {raditional
languages, program generality is limited, because for each condition of termination of
the loop sequence, we nust write a separate version of the program which produces il.
Alternatives such as passing the termination condition as an argument to . .e procedure
for the Fibonacci sequence, or pulsing a function which always produces the next
Fibonacci element, are unacceptable--the conceptually clean notion of an infinite
sequence is dirtied by termination mechanisms from within. We are able to write the
function we want (as above), but cannot use it!

In the basis presented helow, the nation of implicit sequence generation permits the
definition and use of infinite sequences. They are terminated from "without"; i.e.,
boundecdness can be a property of the context of the use of a function, not necessarily
of the function itself. This ability is useful from a practical as well as the more
mathematical standpoint above. Input sequences to programs, operating system state
sequences, interrupt sequences, etc, are all realistic sequences which may never be
dealt with as sequences in programming languages, other than via explicit pulsing of
their generators. It will be seen that the coroutine mechanism required to implement
implicit sequence gencration represents the beginnings of efficient implementation for
(frequently inefficient) algorithm decompositions prescribed by structured programming
*We do not distinguish between (conceptually) “infinite" and (actually) "tinitely
unbounded"., When dealing with mathematical properties of programs, infinite is more
appropriate; when dealing with the algorithmic nature of the programs, the latter is
appropriate.
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studies.

Constraints: a language "basis”

The principal goal of this thesis is to present a programming langnage basis (the
direct analogy to a linear vector space basis is intended). In essence, orthogonal
elements of program representation are examined and mechanisms for relating them
presented. The dimension of our space is unknown when defining elements of
programming. At the very least, technology will add dimensions; at most new language
designers can expect only to define a subspace of programming languages. In one
sense, the language space is spanned by any computationally complete set of
programmning constructs. This is not of interest here. Rather, a language construct is
independent of a set of constructs according to some intuitive or explicit measure of
ditficulty of programming without the construct. For example, recursinn is a dimension
independent of those spanning the FORTRAN syntax.

Continuing the analogy to vector spaces, addition of a new dimension should require
reformulation of the existing basis to insure that basis elements remain orthogonal.
Orthogonality corresponds (again intuitively) to the optimal introduction of an
independent element, which certainly involves maximizing the independence of the
construct. This is in turn related to involution, conciseness and consistency. Indeed,
many languages are designed with a formal base of primitives--LISP 1.0 [McC), Pascal
[WI] and Algol 68 [vW,1969] are certainly such languages. However, once a language is
in wide use, in order to avoid reprogramming, independent constructs must be
reformulated in terms of the base language, instead of reviewing existing concepts in
terms of the addition. New constructs must be “tacked on" as consistently as possible,
and orthogonality is rarely achieved.

Partially to avoid this phenomenon, the basis for programming languages proposed
below is not viewed as complete. Any reformulation of the language elements to insure
consistency with aspects of language design is considered appropriate. Thus, the
distinction between a "basis”" and an extensible language “kernel” is intentional;
modifications to a language based on a kernel arise through extension, not reformulation
of the kernel itself. This concept of design methodology eliminates from the outset
attempts to incorporate the concepts into existing languages. We reiterate: it is
extremely difficult to continuously reformulate new bases of computation to include
orthogonal concepts in this manner (.e. reorienting dimensions to insure orthogonality
is difficult).
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However, the thesis is very optimistic; for a fixed performance level, an order of
magnitude improvement in general purpose higher-level languages for large classes of
problems is attainable. And this improvement will be gained in large part by
reconsiderations of our computing basis. Arguments are presented which indicate that
additions to and reformulations of the basis presented should accomplish this end.

Approach: a Sequential, Applicative Language Basis

In the discussion about sequences above, it was noted that the consequences of the
inclusion of pointers are particularly unmanagable when combined with "assignment" to
produce side-efects. Formal applicative languages (LISP [McC), lambda-calculus [CH))
do not suffer from this defect. The basis is therefore set in an applicative language
framewo:k. The store operator has been introduced in applicative languages (e.g., as in
Gedanken [RE,1970]) with the result that favorable properties of the applicative
language are losi. In a sense, side-effects ultimately appear in our langauage base in a
controlied manner--the assignment statement does not.

The applicative language chosen is not conventional, but rather based on operators
instead of functions. The expression is the fundamental unit of a program (it may
evaluate to a sequence), and cansists of a sequence of operators and operands, with
left-to-right precedence in evaluation. The choice of operators over functions is
significant from a syntactic and notational viewpoint, though both provide the temporary
name minimization aspects requisite to notational conciseness. The language is
typeless: types are implicit with the input format. A primitive operator definition
tacility is introduced, with scope rules unspecified. This has the effect of avoiding
scope "tricks," or rather postponing the decision of which tricks to prefer. Formal
~onsiderations are not of interest here, so arithmetic, re ational, and boolean operators
are considered primitive.

1. Homogenous sequences

We eliminate the ambiguities intrinsic in allowing the notation for a sequence to be
the same for programs and data--the former often prefer the value of their last
expression, instead of the entire computation sequence of the program as wvalue.
Aspects of data which differ from program sequences--including creation by algorithm,
and insertion and deletion of elements are then considered. There is considerable
flexibility in the basis here; the constructs are initially merely chosen to be consistent
with the operators described below. Alternative and possibly preferable formulations
can be made in this area.
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The gotoless constructs are then introduced as operators over any type of
Séquence--program, data or a combination. These consist of selection, cond tional, loop
and escape facilities. Careful examination has shown that two operations for combining
data and program sequences, in conjunction with the above language constructs, provide
a powerful basis for computations over homogenous sequences. (In a sense, only
applicative languages should be compared to this basis; however, real programming
languages are compared in order to determine the directions of further extensions to
the base as well as to examine the form of conventional structures and constructs in
terms of thz new base.)

The operators accomplishing this power are actually quite simple, and aspects of
them occur frequently in existing languages (which is why they were chosen). The
coapply operator--""--simply combines two sequences, one element at a time,
evaluating to a new sequence representing the combination. For example, if we have a
sequence of unary operators

<Uy U2 uz>
and a sequence of arguments

<a); ap; az>
then

<ay; az a3> . <uj; uy; uz>
is the sequence
<a) Uy a2 up; a3z uz>,

where "a; u;" is evaluated before "aisl Uis1".  When the operator sequence is a

repetition--<uy; uj; uy>--the more conventional concept of distributed operator should
be recognized.

The second operator actually embodies the notion of sequence. It is most easily

derived by examining the consequences of removing the assignment statement from a

traditional language such as Algol. Clearly, one realistic interpretation of a program is

then the sequence of values of each expression. The more traditional meaning is the

value of the last executed expression. In a language without the assignment statement

or escape facilities (return statement) this is always simply the last expression

. (preceding expressions need not be evaluated, for they can have no effect on any other




INTRODUCTION AND APPROACH 20

expression in the same sequence). Inclusion of a return or escape operator merely
requires that the conditional of each such operator be examined sequentially; the
consequent of the first to escape is the only expression that requires evaluation.

Hence, a mechanism which establishes a relationship between a given element and
its predecessor must be provided. The accumulation operator--"/"-- accomplishes this
by producing a sequence, each element of which is a function of its predecessor. An
initial value must be given along with the sequence of functions to be applied. For
example, if "s" is the (left-unary) successor operator,
0/<s;s36>
<0s; 05s)s((0s)s)s>is

<ly 2 3>,

This operator s particularly related to the APL reduction operator--whose symbol ‘it
shares--and to the notion of regular automaton. Its name derives from the action of
machine instructions on an accumulator, which it simulates.

2. Non-homogeneous sequences: the "recursionless” constructs

The above considerations yield a langage basis which is quite concise for
homogeneous sequential  structures. However,  algorithms  dealing with
non-homogeneous structures are not nearly as succinctly expressible. Traditionally
such structures are best dealt with using recursion--either via recursive function calls
or a recursive data structuring facility, or both. The awkwardness of recursive
expressions using the sequential constructs leads us to the (obv ous) conclusion that
recursion is indeed orthogonal to strict sequentiality and fundamental to the facile
treatment of indefinitely nested sequences.

However, a recursive function definition facility never enters the basis (nor does
any equivalent, such as the LISP “label" facility). Instead ‘corecursive operators”,
analogous to cosequential operators (" and "/ above) fci recursive structures are
introduced. Program and data structures in v ich a one-to-one identification can be
made with recursion in the data structure and recursior in the program abound in
programming. For example, the correspondence between tree nodes and recursive
functions is quite obvious in "top-down" and "bottom-up" algorithms.

A LISP example will help to illustrate the concept®. The function "D" is defined
below for a list "L". The value of the function is simply a list similar to "L" with the
function "d" applied to each of its elements:
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D(L] = [null[L] = NIL;
T = cons[ dfcar[L]}; D{cdr[L]]]}.

The non-trivial consequent in "D" i1s an expression with precisely the same structure as
"L", but with "d" applied to each element. In particular, each time "D" recurs, "L" nests
(its “cdr" is taken). Thus, the recursive structure “L" is corecursive with the recursive
structure of the function "D",

The LISP example illustrates an essentially sequential algoritam which should not
even be dealt with recursively. We develop operators which are able to deal with
considerably more complex recursive structures. In particular, recursive analogs to the
"" and "/" operators are developed which deal with quite general recursive evaluaticn
structures. We are lead to an analogy hetween the “"gotoless" constructs and
"recursionless” constructs: viz, recursion is implicit in the corecursive operators. Their
generality leads us to consider removing explict recursion from programming languages
and defining "recursionless” languages.

3. Cosequential decompasition and "coroutineless constructs”

Even with the "cosequential® and “corecursive" operators, the basis is unable to
express some algorithms well.  We should expect algorithms whose conceptualization
hinges on issues orthogonal to nested-sequences to present difficulties. These might,
for example, be algorithms in which parallel structures or random access mechanisms
are required. However, there are some algorithms which are clearly in the domain of 1
"nested-sequential” algor.thms, but which simply cannot be expressed well.

Partially as an effort to study such algorithms and partially to indicate how the
language basis can be implemented, we relax the "cosequential” assumptions about
programs and data and introduce "partial cosequentiality”. This ultimately leads to the
introduction of "coroutines” into the basis. The initial cosequential operators are found
to be easily implementable in terms of this more primitive control/selection mechanism.
Ultimately, we recognize the true nature of the "cosequential” and “corecursive"
operations as "coroutineless” constructs. Hence, in much the same manner as with the
goto and recursion, the coroutine facilities ultimately defined are presented only as a
low level mechanism to be used to define a richer set of "coroutineless" constructs.
That is, we advocate the removal of the explicit coroutine cail at a future date, but

s

*This example is too trivial to illustrate the actual corecursive operations of the basis; 1
this particular problem should never even be considered in a recursive context. In fact, |
"maplist" in LISP can be used to accomplish this effect; ie. this trivial form of ‘
corecursion has been recognized in LISP. %
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present it as a tool for studying extensions to the set of "coroutineless constructs”,

The remainder of this work deals with the material motivated in these last three
sections in considerably greater detail. In Chapter II the initial portion of the basis
dealing with strictly sequential effects is laid out. Recursive
considerations--"recursionlessness" and "corecursive operators" constitute Chapter IlI.
The coroutine as the fundamental mechanism involved in the implementation of the basis
is the subject of Chapter IV. In Chapter V, we draw conclusions about the significance
of the reformulation of programming that the basis entails, and indicate future directions
for its development.




CHAPTER I

THE INITIAL BASIS

Programming language design decisions are often involuted and interdependent.
Frequently a distributed set of decisions must be made in order to satisfy a single
language design criterion. This is particularly characteristic of a new language basis,
where each conventional language construct must be reexamined or reformulated.

As was indicated in Chapter I, the germinal decisior of this work is to control
pointers in higher-level languages by applying the gotoless constructs to
"nested-sequential” structures in general. At the outset only gains in expressiveness
were envisioned, gains analogous to those provided by the gotoless constructs in
traditional languages. In such languages, expressiveness benefits accrue from the
provision of a hierarchical decomposition to programs and the enlargement of the
common vocabulary for description of control beyond the primitive state represented by
the goto. In removing the pointer from languages, the only indication of potential gains
in efficient implementation--a language design criterion--is that the gotoless constructs
in languages do provide efficiency gains in the context of program control structures;
this must be weighed against the compelling reason for the inclusion of reference
variables in higher-level languages--namely, efficiency!

All decisions made in the design of the basis contribute toward an enhancement of
expression--concise representation. The decisions may be categorized as either
fundamental or syntactic. Fundamental decisions are of particular interest and will be
dealt with most thoroughly, particularly with regard to the design criteria of
expressiveness and efficiency. The studies of siructured programming and program
optimization provide concrete methodologies for determining whether a decision
satisfies these vague criteria. The nature of the language "basis" is such that
fundamental decisions should not be altered when designing a language from the basis;
syntactic decisions may be.

Although syntactic considerations are not considered paramount for development of
this basis, the principie of "involution” is adhered to, and an some sense, exaggerated
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by what we term "combinatorics”. “Involution" refers to the internal consistency of
language primitives with respect to the ways in which they combine and admit
substitution of other primitives. Expression languages illustrate the principle nicely, in
the sense that any expression in a program may be substituted syntactically for any
other expression, with only problems of variables’ scopes to be considered. Hence, if
computation A depends on the result of a computation B, the particular form of
computation B need not be known in an expression language to implement A. In a
statement language, A will depend on whether the result of B is from a loop, and, hence,
left in some temporary about which A must know, or whether it is from a function or
expression, and can be computed directly.

By combinatorics we mean the way in which primitives interact to form the "most
natural” result. Only recently have languages which use combinatoric notions
extensively come to popular consideration by the language design group at large, with
Backus® "Reduction Languages" [BA,1972], [CU] and the resurrection of Aiken’s "Dynamic
Algebra” [NO]. However, combinatoric aspects of almost any language can be discerned,
and a few examples may aid the reader in understanding this notion (which is admittedly
vague conceptually, though not formaily).

The LISP interpretation of non-NIL as the true condition in COND represents a
combinatoric decision. In SNOBOL, the ease with which a variable is assigned to the
portion of a pattern matched by an arbitrary string within the pattern may be construed
as a decision which aids SNOBOL’s combinatoric power. In Algol 60, the ability to have
an if=then statement is of similar utility. In particular, in LISP, the designers predicted:

(COND ((NONEMPTY X) E1) ((NONEMPTY Y) E2) ...)

(where NONEMPTY has the more traditional, strict T/NIL value) would be the most useful
form for the condition, and chose to allow:

(COND (X E1) (Y E2)...).

In SNOBOL, syntax for the pattern-element by pattern-element detachment of substrings
to obtain the matching arbitrary string is clearly less concise than that actually chosen

to accomplish the effect. And obviously, the repeated use of "else dummy := 0" in
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Algol--the alternative were there no if=then construct--is less concise and represents a
probable frequent use of the conditional.

To generalize, combinatoric decisions involve the elimination of some syntactic
constructs from a preconceived model, to favor the most frequent use of that syntax.
Hence, it is particularly related to the notion of “defaults" and tends to enhance
involution. In general, combinatoric effects must be considered in the design of
primitive constructs. The nature of combinatoric and involutionary decisions is such
that they may be described best after all constructs are known. Hence, in what follows,
frequent reference is made to "combinatoric reasons” for the particular format of a
primitive construct. The nature of these decisions will be presented after the entire
basis has been elaborated.

The basis described below is an "initial" basis, a "final" basis will be developed in
successive chapters. The presentation is not formal, but rather emphasizes the nature
of the decisions which produced the initial basis. As such, the description should be
viewed more as initial considerations toward a language design, rather than as a
language specification.

Fundamental Decisions in the Design of the Language Basis

The design of the basis is presented below under major headings which reflect the
fundamental decisions involved. First, the decision to use an applicative language is
examined. In order to establish a universe of discourse, the primitives are presented
next, although the fundamental decisions involved here are combinatoric in nature. The
gotoless constructs are then considered and introduced into the basis.

The cosequencing operators introduced in Chapter I are then considered, followed
by a discussion of the notion of sequence “generation”.  After rehashing the
cosequencing operators in light of sequence generation, the combinatoric decisions
involved in all of the major decisions are considered briefly.
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1. An applicative language

An applicative language ‘~amework is chosen principally for its tight control over
pointers and related concepts. This choice is a fundamental language design decision.
The equivalence property which makes such a language desirable from both a
structured programming point of view and an implementation (optimization) viewpoint is
simply: identical expressione ... the same static context have identical values. From an
optimization viewpoint, this permits multiply recurring common subexpressions to be
evaluated once, and for all but one instance to be replaced by a direct reference to the
contents of a cell containing the value

Structured programming is concerned with the control of relations which do not
remain invariant over an expression. In particular, if we characterize the execution of a
program by s effect on its environment--a dynamic description of the name/value
associations available to the program [RE,1972]--the effect of evaluating an expression
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