
V.

AD-Z."7: 839

A GEIJERATIVE. ,OTED SEQUENTIAL BASIS FOR GENERAL

PURPOSE PROGRAMMING LANGUAGES

CARNEGIE-MELLON UNIVERSITY

PREPARED FOR

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

ADVANCED RESEARCH PROJECTS AGENCY

ilOVEMBER 1973

DISTRIBUTED BY:

KFIn
National Technical Information Service
ü. S. DEPARTMENT OF COMMERCE

■ •»•**

UNCLASSIFIED
SECURITY CL AbSlFIC ATION OF THü PACE 'Hlirn I'nlm litli-r-d)

REPORT DOCI'MENTATION PAGE
I REPORT NUMBER

AFOSR- TR- 74- o0 9 7
2 OOVT ACCESSION NO

4. TITLE fajirf Subllltt)

A GENERATIVE, NESTED-SEQUENTIAL BASIS FOR
GENERAL PURPOSE PROGRAMMING LANGUAGES

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPI :NT'S C • TALOG NUMBER

5. TYPE OF REPORT & PERIOB COV 5. TYPE OF REPORT & PERIOB COVERED

Interim

6. PERFORMING ORG. REPORT NUMBER

7. AuTHORfj;

David Sheridan Wile

8. CONTRACT OR GRANT NUMBERC»;

F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

61101D
AO 2466

II. CONTROLLING OFFICE NAME ANT ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

12. REPORT DATE
November 1973

13. NUMBER OF PAGES

u£ (£/
15. SECURITY CLASS, fof thi» report)

UNCLASSIFIED

14. MONITORING AGENCY NAME S AODRESSr*' dillerent from Controlling Ollice)

Air Force Office of Scientific Research (NM)
1400 Wilson Blvd
Arlington, Virginia 22209 IS«. DECLASSIFICATION ÜOWNGHADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ot thi a Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the mbatracl entered In Block 20, It dillerent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on teveree aide II necessary and Identity by block nvmber)

20. ABSTRACT (Continue on reverae aide II neceaaery and Identlly by block number)

This research effort presents a new approach to programming language design.
Essentially, we have studied the close relationships of program structures and
the äiüüLi data structures they use, and found that reorienting programming style
to emphasize these relationships is a fruitful direction for future language
designs. As a vehicle for studying these relationships, a language "basis" is
developed—a set of primitives, a syntax, and an interpretation. The basis is
"incomplete" in that it does not define a real programming language, nor are
all "fundamental" aspects of language design considered. However, one is able

DD FORM
1 JAN 73 1473 EDITION OF t NOV 65 IS OBSOLETE

f
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered;

PPBBP ■—■

UNCLASSIFIED
SE.CUR.TY CLASSIFICATION OF THIS P*GF.'HT,»n D<i(a r.nfer»d)

Block 20. Abstract (Continued)

to describe many algorithms concisely in the basis, which leads us to believe
it represents a significant step in programming language design. XMKX Our
approach to the design of the basis may be characterized as a derivative of
"structured programming" studies. In particular, "gotoless programming"
proponents advocate replacement of most axplicit program pointers ("goto's)
in programming languages by a set of control construct—grouping, subroutine
call, conditional, selection, looping, and escape facilities—which impose a
nested-sequential statis structure on programs. The germinal idea of this
work is that perhaps the gotoless constructs can be applied to nested-
sequential structures in general — independent of whether the structure is
thought to represent program or data. We will then have a "pointer;ess"
representation for both structures.

.

Uf UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEflVh.n Dmlm Emend)

~ • - - ■ ■ ■ "■—
, -

r

A GENERATIVE, NESTED-SEQUENTIAL BASIS

FOR GENERAL PURPOSE PROGRAMMING LANGUAGES

David Sheridan Wile

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
November, 1973 D D Cv

JllbiiotSij u iSiil
B

Submitted to Carnegie-Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

This work was supported by the Advanced Research Projects Agency of the Office of

the Secretary of Defense (F44620-73-C-0074) and is monitored by the Air Force Office

of Scientific Research. This document has been approved for public release and sale;

its distribution is unlimited.

lb

... -.

wmmmmm

ABSTRACT

This research effort presents a new approach to programming language design.

Essentially, we have studied the close relationships of program structures and the data

structures they use, and found that reorienting programming style to emphasize these

relationships is a fruitful direction for fut ire language designs. As a vehicle for

studying these relationships, a language "basis" is developed—a set of primitives, a

syntax, and ar interpretation. The basis is "incomplete" in that it does not define a real

programming language, nor are all "fundamental" aspects of language design considered.

However, one is able to describe many algorithms concisely in the basis, which leads us
to believe it represents a significant step in programming language design.

We may ascribe the primary influences on the work to structured programming

studies and the programming languages Bliss, APL, and LISP. Secondary influences

include formal approaches to language design and program optimization. The parallel

work of Backus shares the basic precepts of pointerless representation and the concise

nature of combmatoric constructs; however, they differ radically in both approach and
emphasis.

Our approach to the design of the basis may be characterized as a derivative of
"structured programming" studies. In particular, "gotoless programming" proponents

advocate replacement of most explicit program pointers ("goto's) in programming

languages by a set of control constructs—grouping, subroutine call, conditional,

selection, looping, and escape facilities—which impose a nested-sequential static

structure on programs. The germinal idea of this work is that perhaps the gotoless

constructs can be applied to nested-sequential structures in general—independent of
whether the structure is thought to represent program or data. We will then have a
"pointerless" representation for both structures.

Another desirable aspect of programs is that the invocation of the "next" instruction

to be executed is implicit; conventional data structures, on the other hand, must be

explicitly "pulsed" to obtain the next element. Very often, a one-to-one identification

can be made between program elements and the data structure elements they access.

(For example, a one-to-one identification between elements of an array and the

incarnations of a loop body can frequently be made.) The basis is designed to emphasize

this aspect of programs through the use of operators which apply programs to data
"cosequentially".

H

 -■ - -

. .

One of the "gotoless" constructs which does constitute use of an explicit "program
pomter" is the (potentially recursive) subroutine call. The research proposes

structuring the use of this pointer by substituting a set of "recursionless" constructs in

traditional programming languages (such as Algol); the analogy with "gotoless"

constructs is direct-no explicit recursive ctU« are required for recursive effects. The

data structure involved in implementing a recursive function parameter mechanism

follows the control structure so explicitly that a stack is frequently used to contain both

data and control information. Torecursive" operators-directly analogous to

cosequential operators-are thus introduced to emphasize the close relationship
between recursive data and control structures.

In specifying a programming language "basis", we are admitting open-endedness a

priori. We feel that a formalization of this basis should prove beneficial to program

correctness techniques and formal semantics specification language development

Additionally, program/data st.ucture optimization and representation issues are unified

by the approach. We txptct that a language developed from this basis will be

analogous in power for nested-sequential structures to APL for homogeneous, parallel
structures.

rn

"

IIJIiriMlMM(l<llill —^-■^:^ .—-*-

ACKNOWLEDGEMENTS

1 with to express my ßratitude to rny thesis advisor, Professor William Wulf, for his

constant encouragement, direction and restraint. 1 would also like to thanK the

members of my thesis committee, Professors Raj Reddy and Andrew Wong, and
especially Professor Mary Shaw for her superb nitpicking.

My sincere thanks to my teachers, professors, friends and family for their guidance,

and especially to my wife, Lmnea, for her patience, support and encouragement during
my long career as a graduate student.

li

MBBM - - —

OTW^^H-iiw i ■> ^wm^*^^^

TABLE OF CONTENTS

Abstract

Acknowledgements
Table of Contents

Chapter II: The Initial Basis

Fundamental decisions in the design of the language basis
An applicative language
Primitives

Gotoless constructs

Crsequencing operators

Sequence generation
Cosoqjencing

Combinatorics
Examples

ii

iv
v

2

Chapter I: Introduction and Approach i
Goals

An "order of magnitude" improvement

A pointerless data representation i

Programming language design: state of the art

The stimulation of machine technology 2

Formal and informal methodologifs
Maturity

Language design: trade between technology and formalism
Order of magnitude improvement

Conciseness
Structure

Pointerless representation

"Gotoless programming"

Pointers in programs

Pointerless data representation

Cosequential decomposition: program/data structure correlation
Implicit sequence generation

Constraints: a language "basis"

Approach: a sequential, applicative language basis
Homogeneous sequences

Non-homogeneous sequences: the "recursionless constructs"

Cosequential decomposition and "coroutineless constructs"

3
4
5
6
7
9

10
10
11
13
14
16
17
18
18
20
21

25
26
28
31
37
45
47
47
50

 -- - —-

r ••■rWNHHM 'n*9**mw~^f~vim'**mm

Matrix multiphcat.on

Recursive programs

Reexamination of decisionr.

Chaptc-r III: Recursion

Rscursion
Sequential functions on recursive structures

Top down recursionless construct

Top down reexamined

Top down coaopiic.ition

Top down accumulation

Summary of top down operators

Hottom up

More general forns

A recursive "*"

Recursioniessness and structured programming

Chapter IV: Codependent Structures

Coroutines in applicative languages

Some remarks on names

Cosequencmg reexamined: partial cosequentiality

Non-cosequential result: the operator

Non-cor.equential operand: the operator

Codepcndency

Data structuring via coroutines

Orthogonal issues

Implementation issues

Chapter V: Conclusions and Future Directions

Innovation

A pcinterless representation

Operators relating data and control

The partially instantiated function ("sertion")

infinite sequence generation

Eliminatior of recursion

Correspondence between recursive data itructur« and control structure

Effects of sibroutines m applicative languar.es
Limitations

Orthogonal elements of the basis

Limitations of nested-sequential representation

51
55
59

61
62
65
65
70
74
76
^9
30
83
87
89

90
90
94
95
95
97
100
n6
108
no

in
in
in
in
112
112
113
113
114
115
115
116

VI

—^ - ■ ■ -■ ■

mm

Future research

Order of magnitude improvement

Appendix !: Instantiation, composition and evaluation notes

Appendix II: f-Jotes on the multi-valued logic operators

Appendix till Useful functions defined in the text

Appendix IV; Compiling expressions in the initial basis

Appendix V: Computational completeness of the initial basis

Appendix VI: Coroutine control example

Appendix VII: Recursion orthogonal to sequentiality

Appendix VIII; Implementation of in the initial basis

Bibliography

116
118

120

130

142
145
146

vii

■ - ■■ -

CHAPTER I

INTRODUCTION AND APPROACH

Goals

All research in the field of programming language design requires justification in this

era of language proliferation. The fashionable criterion for effective progress in this

field is that any new language provide an "order of magnitude improvement" over the

existing paragon. Until a language meets the criterion, there should be no new

compilers, no reprogramming, no low-yield design efforts, etc. Aside from the obvious

fiscal benefits, new language projects should decrease and the field of programming

languages should advance by more fundamental, largf m-rements. Additionally, fie

criterion is "suitably vague") a designer who claims ms new language meets it nust

identify the nature of the improvement that the language represents.

The primary goal of this dissertation is to indicate that an order of magnitude

improvement in general purpose programming languages is possible, and to provide a

basis for such a language. The basis is such that its extension to a real programming

language is non-trivial. Rarely can traditional language constructs enter the language

unaltered; frequently, they are found already embedded in the language in a

fundamental way. Some justification will be given for suspecting that consistent

incorporation of truly alien constructs into the language tends to be "synergistic"--the

actual gam is more than could have been expected from experience with the constructs
in other languages.

Indeed, the development of the language basis did not proceed from the criterion

above, but rather from insight into a pointerless program/data structure representation

arising from structured programming "gotoless" program studies. The resultant basis

was observably more concise than general purpose programming languages such as

Algol [NA]. Hence, as an attempt to discern the source of this conciseness, the order of

magnitude criterion was studied in terms of languages which have in some sense met

the criterion (with respect to their predecessors). We concluded that fundamental
improvement in languages has not arisen from extension of contemporary languages, but

rather by a reformulation of languages which emphasize common interrelationships of
concepts obscured in their predecessors.

The somewhat pretentious claim that our considerations of the germinal "pointerless
representation" concept may lead to a programming language which meets the order of

magnitude criterion is not intended to belittle the original considerations in the
development of the basis, but rather to emphasize their importance.

- - ■ - -■-■ -- --"—■—■■- ,, i.ii.iiJMI*iM—üil 1^1 •- ■ a*t ■ --■ --■ - ■■ -- .-J—1--^-^—.t^w^-. .-■.— -^-.-^- ...

INTRODUCTION AND APPROACH

We proceed by placing this work in the programming language design milieu. Next
the order of magnitude improvement criterion is examined more closely, along with

aspects of language design contributing toward its satisfaction. We then establish the
approach and essential concepts embodied in the remainder of this work.

Programming Language Design: State of the Art

Most higher level languages of the early 1960s did meet the "order of magnitude"

criterion when compared with machine language or even, in some cases, FORTRAN (e.g.

APL, SNOBOL and LISP for wide (disjoint) classes of problems)! However, in the late

1960s and the early 1970s computer scientists began to focus on the fundamental

concepts underlying the activity of programming and the machines for which programs
are written.

1. The stimulation of machine technology

The rapid pace of hardware innovations has certainly kept one group of
programming language designers active; machines such as the St?' [HT] and ILLIAC IV

[BN] have features to occupy designers in merely allowing the higher-level language

programmer to use the machine effectively. A related group of

designers-disenchanted with the inefficiencies of general purpose languages-have

resorted to lower-level machine-oriented implementation languages; languaces such as

Pascal [WI] and Bliss [WU,1971] have in fact contributed to the field of higher-level
language design, although that was at most a subordinate goal in their design.

The technology has further stimulated programming efforts in systems concepts;

paging, networks, associative memories, protection systems, etc., have all caused existing

programming languages to be reexamined, especially to determine whether applicability

of the concepts should be discovered by compilers or extensions made to facilitate their

use directly. Real-time facilities, exotic new peripherals, "applications" systems, and

microprogramming are only beginning to influence programming language design-as

evidenced by recent interest in "two-dimensioal languages", for example [WM].

Despite activity in the technological areas, with the exception of implementation

languages and graphics languages, the approach has been to extend existing languages,

rather than to invent new languages incorporating or anticipating hardware technology

in any fundamental way. It is more probable that we do not understand the implications

of features like streaming and parallelism than that they will not ultimately affect the

tSee [BA,1957], [McCR], [IV], [PAK], [FGP], [GPP], and [McC].

- - - ——>——— i^Ma^aaA>a^MaMga^^^>Ma^aMtMallaMteMaaMMIIM|^MaBaMaBia^aHMHaaai

INTRODUCTION AND APPROACH 3

heart of programming language design.

2. Formal and informal methodologies

Another group of programming language designers has begun to address the

problem of finding the fundamental underlying concepts of the activity of programming.

There are many approaches to this problem. Formal approaches include formal

semantics specifications for entire programming languages, program "schemata" studies,

program verification efforts, and various axiomdtizations suitable for correctness proofs

for pa-ticular programs in specific languages'1'. Rigorous approaches to systems

programming problems--cooperating sequential processes and protection schemes, for

example--provide practical problems for which formal analysis is a tool of obvious and

immediate benefittt.

"oiructured programming" presents a more empirical view of the activity of

programming; here the language design issue is primarily "can we use what we have?"

and only secondarily "how should w« improve itfttt. Even here the approach tends to

be mildly formal--propcrties preserved or destroyed by control constructs, for e> ample,

are closely examined and the "correct" way to program is preferably the way which

may be proved correct. However, the formal approach is a means to an end:

enhancement of understandability, principally through enforcement of a hierarchical

programming style. Considerable practical experience has led theoretical computer

scientists to accept "gotoless programming" as an improved technique [DI,1968],

[WU,197I]. Also, features for controlling the ill-structured properties of global

variables are emerging [WS].

A related issue is the management of large programming efforts—modularization a la

Parnas [PA]. Conventional decompositions of programming tasks tend to maximize

knowledge of the interfaces between components; a modularization which minimizes such

knowledge has been found to result in more easily modifiable systems. Unfortunately,

the decomposition is often orthogonal to that proposed by "structured programming"

enthusiasts.

tSee [AJS], [1A], [CG], [SN], [KI] and [GR].

•I'tSee [Dl,May,1968], [HA], and [BH].

tttSee [DI,1969], [HO], [WU], and [WS].

INTRODUCTION AND APPROACH

Other management issues a: e attacked by ihose interested in bootstrapping and
transportability!-, the major impact of these issues on programming language design it to

cause more exact distinction between the fundamental features of a language and those

which are actually syntactically or interpretively evtensible from the language core or

present for effiuency. Those interested in program management are approaching

language desifn from a fundamentalist viewpoint; we may expect at least the core of

future languaf er. from this group to be very sparse, compact and logically consistent.

3. Maturity

Of course, it is unfair to divide programming language design exclusively into two

camps-technology and management. General purpose languages continue to be

designed and implemented. However, many compute,- scientists feel that large
omnibus" languages such as Algol 68. PL/1 and Simula 67tf represent the end of the

large language era for several reasons:

1. They havt stimulated enough problems m their implementation and
desciption to keep computer scientists busy simply trying to
unterstand them;

2. Experience with them is so limited that no one can propose

absolutely better solutions for the problems they pose; in particular,

meager evidence does not show an "order of magnitude" return for
the investment, either in size or complexity decrease;

and

3. There is a general hope among computer scientists that prop/amming
languages need not be that complex.

Programming language design has also matured significantly since the early 1960s

Algol 60 [NA] is no longer thought divine, but has rather entered the small group of
universally understood languages-along with FORTRAN, LISP, and SNOBOL APL is

generally taken more seriously than previously, although its merits are far from

tSoe [BR],[WA,1967,1970].

ttSee LvW,1969], [IBM], and [DMN].

^

.,.. —fcM^_M._^.^_M^^^_ ^.^^...^ _ „ —_ —. _. _

INTRODUCTION AND APPROACH

universally recognized. Higher level languages have become viable alternatives to
assembly languages for systems problems.

Emphasis in the language design f,eld has sh,fted from the study of syntax and

compHer-compHers to "semant,cs"; the former stud^s have been subjugated to the

study o extensible languages, pursued by an act,ve (though currently d.sNIusioned)

group of des^ners [SCH]. issues of scope, storage management, control structures and

dat. strudures-although in no cense resolved-are considerably better understood.

The new languages wh,ch have ansen from hardware technology or program

management studies have been treated m the literature with emphasis on the technical
or management issues they consider.

In summary, those computer scenhsts in the mamstream of programming language
research are not designing programming languages.

Language Design: Trade between Technology and Formalism

General purpose programming language designers tend to emphasize either formal
or technological innovations in the languages they design; however, they cannot
satisfactorily rely wholly on either. The disparity between machine/system design and

formal axiomatization makes formal languages unusable from a practical standpoint
Similarly, the often ad hoc nature of advances in machine design, which are frequently

poorly matched with the systems and languages in wh,ch they are ultimately embedded

makes a purely technological approach unacceptable from a management viewpoint.

Certainly, a trend of the past decade is toward mutual trade between the formal and

echnological fields. In particular, formalists no longer propose alternatives to Turing

Machines unless the emphasis .s toward a more practical, realistic model of computing,

i.e the emphasis is no longer a bas.s for computablity. Computers, not computability.

motivate he formal approaches to problems such as assignment, data structure

axiomatizations and (to some extent) complexity. Analogously, programming languages

have borrowed the mathematically precise notions embodied in association mechanisms

and Set operations. Structured programming" and systems programming algorithms are

requenty proved correct, using rigorous approaches previously found only in the more
tormal studies.

The language basis developed below borrows extensively from both progamming

languages and formal applications. In searching for a powerful computation base

applicative languages are found to provide a pointer-free representation fo

INTRODUCTION AND APPROACH

computation. Without (tottroying this representation by in'roducmg the troublesome

notions of "assignment" and "side-effects", a sequence cen.rat.on mechanism ,s included

M an abstraction of the process wh,ch computers perform. Although the notations

used appear formal, the treatment is not. The results are pfMOnted as fruitful

directions for the design of future programming languages, not as an attempt to

mcorporate particular aspects of cjrrent hardware technology mto a formal basis for
cemputation.

Order of Mdp.mtude Improvement

The "order of magnitude improvement" criterion it intentionally vague; many

individual aspect! of programming languages could be improved by a factor of ten

without a corresponding improvement In the overall task of designina, writing

debugging, running, and modifying a program in the langauage. Possibly" the only

prec.se definition of an order of magnitude improvement in general purpose

programming languages would be economic-in terms of the total cost of developing and

using a program, measured for a diversified group of programs and programmers over

an extended period of timet. Certainly programming ,n the improved language must

become m ,re natural to a large group of programmers, and implementations of programs
must become more powerful.

Insisting that the implem,entation of a language be efficient on current machines

requires the definition to be relatively insensitive to hardware advances This poses

two roqui oments: (1) the language must be futuristic enough to predict machine

•Chnology advances, lest it be obsolete immediately, and (2) it must not depend on

uture technology for ,ts acceptance. However, it ,s unlikely that a language meeting

the criterion could be developed which doe. not require at least some improvement in

CM ^ni'^u ,eChniqUeC f0r ^^ mach'^ r-peciallZed languages such as APL and
SNOBOL which have (intuitively) met the criterion certainly require such advance^ for

acceptable implementation efficiency. Hence, although we wish to constrain our

considerations of the order of magnitude criterion to language design as influenced by

natural conceptualization of problems, implementation considerations cannot be ignored
a

tlhe criterion probably arose in response to the economic question, how much better

must a language be to warrent the vast implementation and programme, retraining costs

entailed by a new language? This initial overhead factor would be required in the
definition.

■kaataiuiato

INTRODUCTION AND APPROACH

Although we do not propose an exact definition of the order of magnitude

improvement criterion, it is clear that one economic effect must be that programming
must take less time than it does currently.

There are several approaches to decreasing the time required to program. Ignoring

the special-purpose language approach (we want a "general purpose" language), the

principal methods seem to hinge about the ability of a language to eliminate the

specification of "detail" that is necessarily specified in other programmng languages

Hence, for our purposes, we shall assume that a language in which programs need

contain only ono tenth of the detail that would be required in current languages,

represents an order of magnitude improvement in general purpose language design. At

least two constraints are appropriate: (1) the new language must be implementable

approximately as efficiently as those against which it is compared, and (2) the gams in

concise speci'ication of algorithms must not suffer from tne "write only language"

syndrome—complexity of interpretation of language constructs must not defeat gains in

conciseness. The principal effect of th,s latter constraint is to insure that programs are

not necessarily poorly structured. Below we present a discussion of language design

mechanisms for eliminating detail. Featu:es will be presented as methods for

introducing conciseness; aspects which mitrate against structure or efficiency will be
mentioned.

I. Conciseness

Higher level language design may be viewed as an attempt to make programs more

concise while preserving their structure. Note first that, although cncise primitives

are desirable, a blind attempt to minimize the number of primitives involves some loss of

efficiency whenever the underlying model is more powerful than the language itself.

For example, if the successor function is the only mechanism for addition, any

implementation on a machine with addition as primitive will be inefficient.

One of the principal methods for reducing a program's length is to eliminate or limit

the number and scope of "temporarily defined names" used by the programmert. The

most prevalent mechanisms for achieving this end are the inclusion of operators in a

language and the ability to define functions. Both have the effect of making the

program more concise by eliminating the necessity to initialize a temporary name—e.g.

a register—and then perform an operation on it—e.g. i machine code command. The

recent trend toward "expression languages" is an extension of this notion; languages

tTraditionally the phrase "temporarily defined names" refers to internal names

generated by a compiler. Here we mean names generated by the programmer for
temporary use.

- ■ ■■

it i mmmmmmm**,.

INTRODUCTION AND APPROACH

tends to la| behind machines from fear of inefficient implementation on current

machines. Sadly, natural formulations in programming languages of techniques such as
streaming and microprogramming are not their raisons d'etre.

Fortunately, recent developments in structured programming (e.g. gotolessness)
and operating systems (e.g. P and V synchronization) have emerged despite

inefficiency qualms (control structures were subsequently optimized and now no one

really worries about their inefficiency). Languages like SNOBOL and APL are

particularly noteworthy in that they have provided a conceptual framework for

constrained data structures. Their conciseness for problems over the class of data

structures for which they were designed is remarkable; their power derives from the

fact that detail related to implementation of the structures and operations on them is

subsumed in the implementation. That is, enough is known about the structures that an

acceptably efficient implementation can be built; the conciseness is often worth the

price of even poor implementations. Of course, these languages (in particular) lose

their leverage when problems outside their respective realms are attempted. Although

inclusion of more sophisticated control constructs would have enhanced their

applicability, the scope of their power is limited by the inability of their conceptual

structures—strings and homogeneous arrays—to model many aspects of the structures

used in computing. Naturally, part of their power derives from the assumptions they
can make about these limitations.

2. Structure

Conciseness as an ultimate goal in language design has some limitations. Natural

languages in particular contain redundancies which emphasize linguistic structure—which

then render unnaturalness "apparent" as was mentioned above. Redundancy in

programming languages is minimal, although one might argue that the preference of

parenthesization to oostfix notation in languages constitutes a concession to

redundancy. We are unable to propose any particularly effective methods for utilizing

redundancy in language design. However, a "structured decomposition" of a language,

and of the specifications of algorithms in the language, is considered desirable.

Inasmuch as "conciseness" has received considerable emphasis as a means for
meeting the order of magnitude criterion, its relationship to "structure" deserves some

attention. Reactions to APL "one-liners"t often leads (non-APL) programmers to believe

tThe "one-liners" are normally extremely complex, involve several APL operators, "just
fit" on one line, and accomplish tasks of considerable difficulty.

ia^mmmmmmmimmmmm~^^^*~~•'">"* ""."•~m^^^mm^immmmm*m*~^^m^mmmmi^^mmm*mm*m

INTRODUCTION AND APPROACH 10

that the ultimate in conciseness is incomprehensibility. Indeed, encoding techniques

more properly constitute the ultimate in conciseness, and may even have
incomprehensibility as their goal.

However, we claim that most APL "one-liners" are not sufficiently concise! The

principal grounds for such a claim lie in the fact that "structure" often aids conciseness

to the extent that once inside the context of a structured entity, the representation for

any particula;' effect is more concise than were the structure not present. For example,

the principal rear.on the APL one-liner is concise in ',he first place arises from the vast

structure of APL--in whose context the expression must be interpreted. The claim that

most APL one liners are not sufficiently concise is simply a claim that their programmers

have not found structural similarities between the one-lmer and the other programs

they have written. That is, in the context of programming (over a period of time, as

opposed to writing a particular program), the one-liner is probably decomposable into

previously obtained effects which should have been factored from the expression as

functions. Certainly, when common effects can not conceivably be recognized--i.e.(

when generalization seems unlikely--we prefer a structured decomposition of a
one-liner, while granting its superior conciseness.

In summary, we must find intrinsically powerful primitives wnose relationships,

though complex, provide sufficiently constrained assumptions for efficient

implemeniation, and which are amenable to change as well as concise description. In

the remainder of the thesis, a broader base for structures-nested sequences—is used.

We can therefore expect our assumptions to be less powerful than either of the above
languages allow. However the power gained by the naturalness of this structure to

machine computation should, in general, offset that lost by the less rigid assumptions,
and a more -oncise language for a wider class of problems will result.

Pointerless Representation

1. "Gotoless programming"

We begin by examining one recent technique developed by proponents of

structured programming—removal of the goto statement from programming languages.

Essentially, this removal involves the substitution of a "complete"t set of control

constructs for the goto. For example, the set might include subroutine call, selection,

f'Complete" in a pragmatic sense, more than mathematical. In particular, the set is in no
way computationally "minimal".

■■ ■■

INTRODUCTION AND APPROACH 1

grouping, conditional, loop and escape facilities. Tl,r set mentioned is not complete in

the r.en.e that every control structure obta' iable with the goto can be simply

represented using these constructs; rather the philosophy imposed is that the

constructs point oul those uses of the goto which are dangerously complex. In fact, the

set mentioned is not complete from another viewpoint: the forced representation of

certain useful, safe constructs is unduly complex. (The coroutine, "enable" mechanism,

and "select" expression in Bliss represent concessions to this incompleteness

[WU,1972].) Gotoless language designers resist the urge to remtroduce the goto in

order to obtain sue! constructs, preferring to extend the set of gotoless constructs.

One of the principal benefits of gotoless languages arises from the effective removal

of explicit program pointers from the language (Ly constraining pointers to particular

objects in a local context). While the programs winch can be written in the language

are visibly less complex than in a language with gotos, the complexity of the underlying

structure discoverable by a compiler is actually increased. Ihis increase is not simply

an amount which would make the efficiency of gotoless languages comensurate with

languages with the goto, but is actually a significant increase beyond that, arising from

the assumptions about language elements which gotolessness allows. Recent work in

code optimization by Gesenke [GEJ exploits this gam; recent work by Hansen [HAN]

indicates that such considerations need not lead to inefficiencies in the compilation

process.

2. Pointers in programs

An examination of programming languages in general indicates that misuse of the

goto (this notion is now well-defined) is only symptomatu of problems introduced by

the use of pointers in programming languagts. In effect, gotolessness controls

program-to-program pointers; it says nothing about progrnm-to-data and data-to-data

pointers, both of which present problems at least as rompi.?x as those introduced by the

goto. The problems incurred are analogous to those of ihe goto; "unnaturally complex"

entities can be built easily by the programmer and consideration of these by the

compiler writer defeats real gams which could be made if they were controlled.

For the unconvinced, brief examples of problems incurred with both of the above

types of pointers may be enlightening. Program-to-data pointers—yes,

"variables"--incur problem«; primarily from the side effects of the assignment operator.

When a programmer calls a subroutine (procedure) he is often unaware of global

variables which may change as a result of the call; common subexpression optimization

facilities in a compiler are also thwarted by this phenomenon. In effect, both the

compiler and the programmer must assume that any global variable may have changedt.

-'--"--•' -JWL-- MMM^kMM^^MMH

fr~~^r~vimimaim

INTRODUCTION AND APPROACH
12

Scope mechanisms are inadequate here-they do not constrain the access to global

variables effectively. (This problem is currently being studied independently as a
"structured programming" problem [WS].)

It is a rare programmer who has not incurred problems with data-to-data pointers-

LISP programmers using "nconc", "replaca", and "replacd", for example, create cyclic lists'

unintentionally. This is not to say that notions like "cycle" should be foreign to data

structures, but rather that they should be explicit; knowledge of such structures may

then be utilized more effectively by compilers and interpreters intended for the
language.

Data-to-program pointers are not as obviously misused as the olher two types

principally because of the extremely limited capabilities generally provided for such

pointers. Naturally, switches in Algol inherit all the problems associated with gotos

However, it will be shown below that tr e notion of "partially instantiated function-

actually generalizes this notion of pointer, yet retains the control required; i.e, this is a
type Of pointer which is not complex enough.

^ Any programming language with a reference concept is in one sense providing an

assembly language" for data structures, without providing controlled alternatives for

expressing sequential relationships. Indeed we lack knowledge of such alternatives

Those languages which do attempt to control pointers usually do so using type

structures (modes). Such facilities often prevent useful data structures from being

def-ned (for example, rings) or permit uncontrolled, arbitrarily complex structures to be
created.

This should not be misconstrued as an indictment of pointers in general; no one
would propose a gotoless language without the ability to define and reference

parameterized subroutines by name, which indeed does constitute a use of a program

pointer as well as data pointers. It is more the incompleteness of structuring
mechanisms for data with respect to pointers which magnifies the problem

tin a language without pointers, the compiler can determine information about which

variables can change over calls. Such a determination is directly analogous to internally

reformatting programs with gotos into the gotoless format for optimization purposes

s

■ — ■n - - - -

INTRODUCTION AND APPROACH 13

3. Pointerless data repreGentation

In order to remove the ability to UM explicit pointers in programs, we consider the

pof.siblity of '.sing the gotolecr, constructs directly; i.e., the hierarchical, nested

sequential ("embedded lists"), static structure of programs is examined as a base for

data structures. Indeed, such structures form the bass of data structures for se eral

higher-level languages. The combination of sequential structures witii the gotoless

sequencers is mdeed richer than the static structures alone. For example, a loop is a

gotoless construct for programming languages whose analog in data structures is a

cycle--a structure which must be simulated or constructed in languages with the same
static structure base.

There are several problems which data structures present beyond those

encountered with programs themselves. In particular, a data structure frequently

requires that different sequential structures be mapped onto the same entity; the utility

of the concept of the "reverse" operator should illustrate this sufficiently. Also, data

structures tend to be dynamic; for example, insertion and deletion of elements are

operations appropriate to data structures. However, such problems with respect to

programs do exist and are beginning to be considered in "incremental compilation"

studies within conversational language research [MI].

Note also that the notion of data structure is analogous to program structure in the

following sense: although programmers define many different programs they are all

considered to be instances of the same program structure—usually described

syntactically by some formalism such as BNF. It would appear that to define different

data structures requires, in effect, a specification language like BNF in the language.

That extensible language advocates often propose this for programming languages

suggests that such a mechanism should probably be a shared data structure and

program structure extensibility mechanism. It also suggests that a data structure

facility founded purely on a single syntax for data st'uctures--as there is a single

syntax for a programming language—must be examined critically before proceeding to

extension mochan'ims. To emphasize, just as gotoless language enthusiasts add new

gotolos- constructs instead of resorting to the inclusion of the goto to obtain a

desirable effect, we prefer the definition of a new construct to provide the effect for

which the inclusion of explicit pointers might be proposed.

I

Languages rarely have a sequential data structuring mechanism; sequence in

languages like Algol is induced by the program in terms of an alternative data structure

mechanism, the array. Although sequential operators occur in APL, their presentation is

as | convenience for describing and restructuring the parallel structures which

--—■■ --■- -

IM nwm\. IMIII i HUii.iM^ im ■ iw i wi i^vw^rnnN*

INTRODUCTION AND APPROACH 14

constitute the structure base. Languages which do offer sequences explicitly as data

structure units are the string languages—where concepts ol sequentiality and

relationships of sequences are constrained to a single level, or else revert to the
pointer-chasing mechanisms of other languages, such as LISP Some of the more

modern languages, like Pascal, while approaching adequate inclusion of controlling

statements for data structures, continue to represent the relationship between program

and data as controller (progtam) to controlled (data), in what follows, a much more

unified view will be established, and, in fact, the distinctions between program and data
become pleasantly "fuzzy".

4. Cosequential decomposition: program/data structure correlation

The correlation between data structure and program control structure has been

ignored to a large extent in programming language des gn. An example from APL may
help t'j illustrate the notion involved. In implementing

A + B + C

for conforming vectors A, B, and C m APL, a temporary vector, T, may be used in a loop

to compute T, = B, + C,. The expression's value may be computed in a subsequent

loop over T, = A, + T, (an implementation which closely matches the semantic

description). However, noticing that the result sequence of the first loop is

"cosequential" with the program sequence of the latter loop, the implementer is free to
merge the two loops into one, in whicn T, = A, + B, + C, is computed. In essence,

the loop is used to define a sequencer for the data structures (T, A, B and C) with which
the sequence of executions of the loop body is cosequential.

Although the APL programmer should be able to rely on such implementation
efficiency [AB], he may have doubts about an expression such as:

transpose (2, (rho A)) rho (A + B), A - B

where loop incarnations of

(Tu = Aj ♦ B,; T,2 = A, - B,)

would be the desired cosequential program elements. It is not necessary to understand
this example. The point is simply that a significantly complex APL expression may have
a relatively simple cosequential decomposition not likely to be discovered by a compiler.

■ ■■■ ^MaaaaBB^MBM —- - - -- -----

——

INTRODUCTION AND APPROACH 15

Even if a programmer recognizes program/data cosequentiality, in traditional

lanpuages he cannot specify the correspondence concisely. For example, many

programs produce result (data) sequences with which they are cosequential. The

following Algol program is such an example, producing the Fibonacci sequence in T:

begin

T[1]:=0;T[2]:= 1;

for i := 3 step 1 until INFINITY

doT[i]:=T[i-l] + T[i-2];
end

Note that there is a program element (statement) execution corresponding to each value

in the result sequence. The correspondence is not apparent—the resulting data
structure is subordinate to the control structure of the program.

Although the above examples tend to indicate cosequencing of a somewhat trivial

form--with program loops—examples dealing with more complex structures are common.

Recursive functions implementing top-down and bottom-up tree-scans generally admit

ideniificaton of a recursive program control structure with a nested data structure (a

1-1 sequential mapping between recursion points and tree nodes). Once again, in most

languages, the nested data structure is subordinate to the recursive control structure;
the sequencing for the data structure is explicit in the program statements themselves.

The extent to which cosequential relations exist in programs and the effect on the
programmer's conceptualizaton of them is of primary interest in the language basis

developed below. The notions of "partially instantiated function" and "sequence

generation" are found useful for emphasizing the cosequential relations mentioned

above. Hence, a short discussion of each is necessary before proceeding to particulars
of the basis.

The "partially instantiated function" is simply a function with only part of its actual

parameter list specified (bound). For example, if "a(i,j)" represents a function which

returrs the jth element of the ith row of some (implicit) array, "a(,2)" may be used to

represent the function "c2" defined by "c2(i) = a{\,2)". This ability to partially

instantiate functions—in this case to the second column of the array—has obviou-

consequences with resped to program generality. For example, if a function "q(x)"

expects a vector argumen, use of "q(a(,2))" eliminates the need to reprogram q to deal
with columns (or rows) of arrays.

INTRODUCTION AND APPROACH
16

Part,ally instant^tcd functions are called "sections" m mathematical literature [RO]

and we adopt the term here for convergence. The nature of sect.ons i« ambiguous-
they are both program and d.ta, and attempts to define them as one cr the other rely

on a preconc-.Mved irnplomontation. By themselves, sections do not aid the study of

cosequencmg; however, sequences of sections will be seen to represent a "m.ddle

ground between data structures and program structures, and constitute a large portion
ot cosequential result sequences in programs 1 the basis.

5. Implicit sequence generation

The notion of [mptic.j "sequence generation" is also separate from cosequentiahty,
but affects its utihty tremendously. It arises pnncpally from a des,re to express

mfimtei- structures in programming languages as entries wh,ch can be dealt with

operationally. For example, the Algol version of the Fibonacci sequence generation

given above never terminates, and hence does not constitute an algorithm.

Conceptually humans are able to cope with such a sequence; we Know that any actual

use of the Fibonacc. sequence would require it« termination. Once agam. in traditional
anguages. prosr(,m generallty |5 „^ ^^ ^ ^ ^^ ^ ^^.^ of

the loop sequence, we nust miU a separate version of the program which produces it

Alternatives such as passing toe termination condition as an argument to ,e DrOCMfcirt

for the Fibonacci sequence, or pulsmg a function wh,ch always produces the next

Fibonacci element, are unacceptable-the conceptually clean notion of an infinite

sequence is dirtied by termination mechanisms from within. We are able to write the
function we want (as above), but cannot use it!

e

e

in the basis presented bolow, the notion of implicit sequence generation permits the I
definition and use of mfimte sequences. They are terminated from "without"; ie

boundodnes: can be a property of the context of the use of a funct.on, not necessanlJ
of the unction itself. This ability is useful from a practical as well as the more

ZuZT ^näTabove- lnp[A sequonces ,o prosrams-operat^ •*•*•« »ff .eq ence . mterrupt sequences, etc., are al, realistic sequences which may never be

iealt with as sequences m programmmg languages, other than via expl.ct pulsing of

he. generators. U will be seen that the coroutme mechanism required to implement

mplicit sequence generation represents the beginnings of eff.cient implementation for
(frequently ineff.c.c-nt) algorithm decompositions prescribed by structured programming

■'•We do not distinguish between (conceptually) "infinite" and (actually) "^itely

un ounde ". When dealing with mathematical properties of programs, infinite is more ■ i

approp'n'at: ' ^ ^ ^"^ ^^ 0f the Pr08ramS' ,he latter ^ l

-- ■ - - ' ■■- - - J - "-^ —L.^,-^.^—..-—^^^ ^. .„»...., .^mj». ^^^m.^. ..

INTRODUCTION AND APPROACH 17

studies.

Constraints: a language "basis"

The principal goal of this thesis is to present a programming language basis (the

direct analogy to a linear vector space basis is intended). In essence, orthogonal

elements of program representation are examined and mechanisms for relating them

presented. The dimension of our space is unknown when defining elemems of

programming. At the very least, technology will add dimensions; at most new langu^e

designers can expect only to define a subspace of programming languages. In une

sense, the language space is spanned by any computationally complete set of

programning constructs. This is not of interest here. Rather, a language construct is

independent of a set of constructs according to some intuitive or explicit measure of
difficulty of programming without the construct. For example, recursion is a dimension
independent of those spanning the FORTRAN syntax.

Continuing the analogy to vector spaces, addition of a new dimension should require

reformulation of the existing basis to insure that basis elements remain orthogonal.

Orthogonality corresponds (again intuitively) to the optimal introduction of an

independent element, which certainly involves maximizing the independence of the

construct. This is in turn related to involution, conciseness and consistency. Indeed,

many languages are designed with a formal base of primitives--USP 10 [McC], Pascal

[WI] and Algol 68 [vW,1969] are certainly such languages. .However, once a language is

in wide use, in order to avoid reprogramming, independent constructs must be

reformulated in terms of the base language, instead of reviewing existing concepts in

terms of the addition. New constructs must be "tacked on" as consistently as possible,
and ortliogonality is rarely achieved.

Partially to avoid this phenomenon, the basis for programming languages proposed

below is not viewed as complete. Any reformulation of the language elements to insure

consistency with aspects of language design is considered appropriate. Thus, the

distinction between a "basis" and an extensible language "kernel" is intentional:

modifications to a language based on a kernel arise through extension, not reformulation

of the kernel itself. This concept of design methodology eliminates from the outset

attempts to incorporate the concepts into existing languages. We reiterate: it is

extremely difficult to continuously reformulate new bases of computation to include

orthogonal concepts in this manner (i.e. reorienting dimensions to insure orthogonality
is difficult).

BMAIMMMUM

m^mmmmwm

INTRODUCTION AND APPROACH 18

However, the thesis is very optimistic; for a fixed performance level, an order of

magnitude mprovement in general purpose higher-level languages for large classes of

problems is attainable. And this improvement will be gained in large part by

reconsiderations of our computing basis. Arguments are presented which indicate that

additions to and reformulations of the basis presented should accomplish this end.

Approach: a Sequential, Applicative Language Basis

In the discussion about sequences above, it was noted that the consequences of the

inclusion of pointers are particularly unmanagable when combined with "assignment" to

produce side-efects. Formal applicative languages (LISP [McC], lambda-calculus [CH])

do not suffer from this defect. The basis is therefore set in an applicative language

framewo, K. The store operator has been introduced in applicative languages (e.g., as in

Gedanken [RE,1970]) with the result that favorable properties of the applicative

language arr los.. In a sense, side-effects ultimately appear in our langauage base ir a
controlled manner—the assignment statement does not.

The applicative language chosen is not conventional, but rather based on operato-s

instead of functions. The expression is the fundamental unit of a program (it ma/

evaluate to a sequence), and c insists of a sequence of operators and operands, with

left-to-right precedence in evaluation. The choice of operators over functions is

significant from a syntactic and notational viewpoint, though both provide the temporary

name minimization aspects requisite to notational conciseness. The language is

typeless: types are implicit with the input format. A primitive operator definition

facility is introduced, with scope rules unspecified. This has the effect of avoiding

scope "tricks," or rather postponing the decision of w'iich tricks to prefer. Formal

considerations are not of interest here, so arithmetic, re ational, and boolean operators
are considered primitive.

1. Homogenous sequences

We eliminate the ambiguities intrinsic in allowing the notation for a sequence to be

the same for programs and data—the former often prefer the value of their last
expression, instead of the entire computation sequence of the program as value.

Aspects of data which differ from program sequences—including creation by algorithm,

and insertion and deletion of elements are then considered. There is considerable

flexibility in the basis here; the constructs are initially merely chosen to be consistent

with the operators described below. Alternative and possibly preferable formulations
can be made in this area.

^

----- ■ —— - - __

INTRODUCTION AND APPROACH
J9

The gotoless constructs are then introduced as operators over any type of

sequence-program, data or a combination. These consist of selection, cond tional, loop
and escape faclities. Careful examination has shown that two operations for combmmg

data and program sequences, in conjunction with the above language construe, provide

a powerful basis for computat.ons over homogenous sequences. (In a sense, only

appl.cative languages should be compared to this basis, however, real programmmg

anguages are compared in order to determine the directions of further extensions to

he base as well as to examine the form of conventual structures and constructs ir
te-ms of thi new baae.)

The operators accompHshmg tMt power are actually quite simple, and aspects of
them occur frequently m existmg languages (which is why they were chosen) The

coapply operator-"."-simPly combmes two sequences, one element at a" time

evaluating to a new sequence representing the combination. For example, if we have a
sequence of unary operators

<Ul! U2; U3>

and a sequence of arguments

*•!! 82; a3>
then

<ai; 32; a3> . <u1; U2; U3>

is the sequence

<•! Uli 32 U2I 33 U3>,

where "a. U|- is evaluated before .^ ^ ^ ^ ^^ ^^^ ^ ^

repet.tion-^ui, u,; up-the more conventional concept of distributed operator should
be recognized.

The second operator actually embod.es the notion of sequence. It is most easily

derived by examimng the consequences of removing the ass.gnment statement from a

r3dit,on3l language such as Algol. Clearly, one realistic interpretation of a program is

then the sequence of values of each expression. The more traditional meaning is the

value of the last executed express.on. In a language without the assignment statement

or escape facilities (return statement) this is always simply the last expression

(preceding expressions need not be evaluated, for they can have no effect on any other

■ - - -■ ■ -- - - - - - — --.-_—-- -■ —

INTROJUCTION AND APPROACH 20

expression in the same sequence). Inclusion of a return or escape operator merely

requires that the conditional of each such operator be examined sequentially; the

consequent of the first to escape is the only expression that requires evaluation.

Hence, a mechanism which establishe? a relationship between a given element and

its predecessor must be provided. The accumulation operator--"/"— accomplishes »his

by producing a sequence, each element of which is a function of its predecessor. An

initial value must be given along with the sequence of functions to be applied. For
example, if "s" is the (left-unary) successor operator,

0/<s;s;s>

5 < 0 s ,0 s) s; ((0 s) s) s> is

■ <1; 2 1>.

This operator s particularly related to the APL reduction operator—whose symbol it

shares—and to the notion of regular automaton. Its name derives from the action of
machine instructions on an accumulator, which it simulates.

2. Non-homogonoous sequences: the "rccursionless" constructs

The above considerations yield a langage bas^s which is quite concise for
homogeneous sequential structures. However, algorithms dealing with

non-homogeneous structures are not nearly as succinctly expressible. Traditionally

such structures are best dealt with using recursion—either via recursive function calls

or a recursive data structuring facility, or both. The awkwardness of recursive

expressions using the sequential constructs leads us to the (obv ous) conclusion that

recursion is indeed orthogonal to strict sequentiality and fundamental to the facile
treatment of indefinitely nested sequerces.

However, a recursive function definition facility never enters the basis (nor does

any equivalent, such as the LISP "label" facility). Instead 'corecursive operators",

analogous to cosequential operators ("." and " " abo^o) fc recursive structures are

introduced. Program and data structures in v ich a one-lo-one identification can be

made with recursion in the data structure and recursior in the program abound in

programming. For example, the correspondence between tree nodes and recursive
functions is quite obvious in "top-down" and "bottom-up" algorithms.

A LISP example will help to illustrate the conceptt. The function "D" is defined

below for a list "L". The value of the function is simply a list similar to "L" with the
function "d" applied to each of its elements:

INTRODUCTION AND APPROACH 21

Ü[L] ■ [null[L] =-> NIL;

T ^ const d[car[L]]; D[cdr[L]]]].

The nnn-trivlal conoequenl in "D" is an expression with precisely the same structure as

"L", but with "d" applied to each element. In particular, each time "D" recurs, "L" nests

(its "cdr" is taken). Thus, the recursive structure "L" is corecursive with the recursive
structure of the function "D".

The LISP example illustrates an essentially sequential algorithm which should not

even be dealt with recursively. We develop operators which are able to deal with

considerably more complex recursive structures. In particular, recursive analogs to the

"." and "/" operators are developed which deal with quite general recursive evaluation

structures. We are lead to an analogy between the "gotoless" constructs and

"recursionless" constructs: viz., recursion is implicit in the corecursive operators. Their

generality leads us to consider removing explict recursion from programming languages

and defining "recursionless" languages.

3. Cosequertial decomposition and "coroutmolcss constructs"

Even with the "cosequential" and "corecursive" operators, the basis is unable to

express some algorithm:, well. We should expect algO'ithms whose conceptualization

hinges on issues orthogona to nested-sequences to p/esent difficulties. These might,

for example, be algorithms in which parallel structures or random access mechanisms
are required. However, there are some algorithms which are clearly in the domain of

"nested-sequential" algor »hms, but which simply cannot be expressed well.

Partially as an effort to study such algorithms and partially to indicate how the

language basis can be implemented, we relax the "cosequential" assumptions about

programs and data and introduce "partial cor.equentiality". This ultimately leads to the

introduction of "coroutines" into the basis. The initial cosequential operators are found

to be easily implementable in terms of this more primitive control/selection mechanism.

Ultimately, we recognize the true nature of the "cosequential" and "corecursive"

operations as "coroutineless" constructs. Hence, in much the same manner as with the

goto and recursion, the coroutine facilities ultimately defined are presented only as a

low level mechanism to be used to define a richer set of "coroutineless" constructs.

That is, we advocate the removal of the explicit coroutine call at a future date, but

tThis example is too trivial to illustrate the actual corecursive operations of the basis;

this particular problem should never even be considered in a recursive context. In fact,

"maplist" in LISP can be used to accomplish this effect; i.e., this trivial form of

corecursion has been recognized in LISP.

 • ■

mmmmm

INTRODUCTION AND APPROACH 22

present tt as a tool for studying extensions to the set of "coroutineless constructs".

The remainder of this work deah with the material motivated in these last three
sections in considerably greater detail. n Chapter II the initial portion of the basis

dealing with strictly sequential effects is laid out. Recursive

considerations-'Vecursionlessness" and "corecursive operators" constitute Chapter III.
The coroutine as the fundamental mechanism involved in the implementation of the basis

is the subject of Chapter IV. In Chapter V, we draw conclusions about the significance

of the reformulation of programming that the basis entails, and indicate future directions
for its development.

/
/

_„ _ i_ -

■^I^LPH i»MI iwp^iwii ii » i * -^-^^^^^^fm^mm

J3

CHAPTER II

THE INITIAL BASIS

Programming language design decisions are often involuted and interdependent.

Frequently a distributed set of decisions must be made in order to satisfy a single

language design criterion. This is particularly characteristic o' a new language basis,

where each conventional language construct must be reexamined or reformulated.

As was Indicated in Chapter I, the germinal decision of this work is to control

pointers in higher-level languages by applying ihe gotoless constructs to

"nested-sequential" structures in general. At the outset only gains in expressiveness

were envisioned, gams analogous to those provided by the gotoless constructs in

traditional languages. In such languages, expressiveness benefits accrue from the

provision of a hierarchical decomposition to programs and the enlargement of the

common vocabulary for description of control beyond the primitive state represented by

the goto. In removing the pointer from languages, the only indication of potential gains

in efficient implementation—a language design criterion—is that the gotoless constructs

in languages do provide efficiency gams in the context of program control structures;

this must be weighed against the compelling reason for the inclusion of reference

variables in higher-level languages—namely, efficiency!

All decisions made in the design of the basis contribute toward an enhancement of

expression—concise representation. The decisions may be categorized as either

fundamental or syntactic. Fundamental decisions are of particular interest and will be

dealt with most thoroughly, particularly with regard to the design criteria of

expressiveness and efficiency. The studies of structured programming and program

optimization provide concrete methodologies for determining whether a decision

satisfies these vague criteria. The nature of the language "basis" is such that

fundamental decisions should not be altered when desig-ng a language from the basis;

syntactic decisions may be.

Although syntactic considerations are not considered paramoi.nt for development of

this basis, the principle of "involution" is adhered to, and an some sense, exaggerated

 --■

mm^rm. mmm

THE INITIAL BASIS 24

by what we term "combinatorics". "Involution" refers to the internal consistency of

lannuage primitives with respect to the ways in which they combine and admit

substitution of other primitives. Exoression languages illustrate the principle nicely, in

the sense that any expression in a program may be substituted syntactically for any

other expression, with only problems of variables' scopes to be considered. Hence, if

computation A depends on the result of a computation B, the particular form of

computation B need not be known in an expression language to implement A. In a

statement language, A will depend on whether the result of B is from a loop, and, hence,

left in some temporary about which A must know, or whether it is from a function or

expression, and can be computed directly.

By combinatorics we mean the way in which primitives interact to form the ";iiost

natural" result. Only recently have languages which use combinatoric notions

extensively come to popular consideration by the language design group at large, with

Backus' "Reduction Languages" [BA,1972] [CD] and the resurrection of Aiken's "Dynamic

Algebra" [NO]. However, combinatoric aspects of almost any language can be discerned,

and a few examples may aid the reader in understanding this notion (which is admittedly

vague conceptually, though not formally).

The LISP interpretation of non-NIL as the true condition in COND represents a

combinatoric decision. In SNOBOL, the ease with which a variable is assigned to the

portion of a pattern matched by an arbitrary string within the pattern may be construed

as a decision which aids SNOBOL's combinatoric power. In Algol 60, the ability to have

an if-thon statement is of similar utility. In particular, in LISP, the designers predicted:

(COND ((NONEMPTY X) El) ((NONEMPTY Y) E2) ...)

(where NONEMPTY has the more traditional, strict T/N1L value) would be the most useful

form for the condition, and chose to allow:

(C0ND(X E1)(Y E2)...).

In SNOBOL, syntax for the pattern-element by pattern-element detachment of substrings

to obtain the matching arbitrary string is clearly less concise than that actually chosen

to accomplish the effect. And obviously, the repeated use of "else dummy := 0" in

 . .- —,,.,, , ... - , _ ..—

THE INITIAL BASIS 25

Algol—the alternative were there no if-then conr.truc{--is less concise and represents a

probable frequent use of the conditional.

To generalize, combinatonc decisions involve the elimination of some syntactic

constructs from a preconceived model, to favor the most frequent use of that syntax.

Hence, it is particularly related to the notion of "defaults" and tendt. to enhance

involution. In general, combmaloric effects must be considered in the design of

primitive constructs. The nature Df combinatoric and mvolutionary decisions is such

that they may be described best after all constructs are known. Hence, in what follows,

frequent reference is made to "combinatoric reasons" for the particular format of a

primitive construct. The nature of these decisions will be presented after the entire

basis has been elaborated.

The basis described below is an "initial" basis, a "final" basis will be developed in

successive chapters. The presentation is not formal, but rather emphasizes the nature

of the decisions which produced the initial basis. As such, the description should be

viewed more as initial considerations toward a language design, rather than as a

language specification.

Fundamental Decisions in the Design of the Language Basis

The design of the basis is presented below under major headings which reflect the

fundamental decisions involved. First, the decision to use an applicative language is

examined. In order to establish a universe of discourse, the primitives are presented

next, although the fundamental decisions involved here are combinatoric in nature. The

gotolcss constructs are then considered and introduced into the basis.

The cosequencing operators ntroduced in Chapter I are then considered, followed

by a discussion of the notion of sequence "gene-ation". After rehashing the

cosequencing operators in light of sequence generation, the combinatoric decisions

involved in all of the major decisions are considered briefly.

— ■ ■■■-- —-^--"-—^ ■- - ■»-- - -■■ -■■-

wwmmmmmmm

THE INITIAL BASIS
26

1. An applicative language

An applicative language '-amework is chosen principally for its fight control over

pointers and related concepts. This choice is a fundamental language design decision.

The equivalence property which makes such a language desirable from both a

structurcc programming point of view and an implementation (optimization) viewpoint is

simply: identical expression „ the same static context have identical values. From an

optimization viewpoint, this permits multiply rtCUrring common subexpressions to be

evaluated once, and for all but one instance to be replaced by a direct reference to the
contents of a cell containing the value

Structured programmmg ,s concerned with the control of relations which do not

remain invariant over an expression. In particular, if we characterize the execution of a

program by it« effect on its environment-a dynamic description of the name/value

associations available to the program [RE,1972]-the effect of evaluating an expression

in applicative languages is simply to extend the environment of the caller. Hence, any

relations which fail to hold in the new environment are due solely to the "addition" of

the new value to the old environment. The impact of applicative languages to

structured programming hes in the localization of the dynamic effects to the

environment of evaluating a function application.

Naturally, applicative languages are no panacea to these two studies. It is often

extremely difficult to optimize functions in applicative languages to a point comparable

with corresponding algonthms for sequential languages. This difdculty arises in part

from the complexity of "untangling" the control/data space when dealing with recursive

structures of some complexity (see Chapter III). Additionally, even though an iterative

algorithm may be derived from a recursive specifica'ion, a creative "leap" to a more

efficient algorithm may be masked by the recursive structure, even though it is quite

clear from the sequential specification (see example at the end of this chapter).

Structured programming benefits from sequential languages to the extent that invariant

relations may be found over environments which do change drastically. The inclusion of

sequential constructs in the basis will permit use of positive ö-oects of both sequential
and applicative languages.

-- — ■ —

THE INITIAL BASIS 27

An operator version of an applicative language is chosen principally for notational

convenience arising from both combinatoric and operand-evaluation-sequence

considerations, which are best described after definition of the basis. The operator

notation, which allows nullary. left-unary, rigt t-unary and binary operators, is also more

general than a functional notation. In particular, given the ability to pass sequences as

operands, left- and right-unary operators may be extended to pre- and post-fix

functions, respectively, simply by providing a matching mechanism for the parameter

sequences at the function definition site. Also, although a left-to-right expression

parse/evaluation order is chosen, B more elaborate precedence structure may be

applied when operator relationships are better understood. Hence, the operator

notation is chosen initially simply because of the flexibility it admits.

The metalinguistic operator definition notation used is as followst;

Left-Formal Op-Name Right-Formal :: Defming-Expresoion;

Left-Formal Op-Name :: Definirg-Expression;

none Op-Name Right-Formal n Definhg-Expression; [1]

Op-Name :: Defining-Expression;

corresponding to binary, right-unary, left-unary and nullary operators, respectively.

For example, a right-unary identity function may be expressed:

X K, :: X [2]

A binary identity function which ignores its left-operand and returns its right, is:

x rid y :: y [3]

The "reserved word-it or "token" none resolves the ambiguity of two consecutive
names in unary operator definitions.

tOperator and formal names are any combination of decimal digits and upper or lower

case alphabetic characters; sequences of special characters are also permitted as
operator namrs (see Chapter III).

r VHBVC^^VM^VW

THE INITIAL BASIS 28

Use of an operator name m its defining expression does not constitute a recursive

call, but rather refers to the previously defined operator of the same name (which this

override s). This standard extensible language interpretation is chosen to permit

redefinition of functions, a useful device in the prc-.entation below. Operator definition

is initially "metalinguistic" to avoid scope considerations; an operator definition facility

must enter the basis at a later time.

A left-to-nght expression parse is chosen over a more elaborate precedence

scheme as a concession to inexperience with the unusual operators of the basis.

Although, in fact, a reasonable precedence could be proposed, its presence would cloud

the presentation of the basis. The choice of a left-to-nght scheme over API's

nght-to-l-ft scheme is primarily to remain consistent with the accumulate operator (see

below), the nature of "generation" precludes its right-to-left evaluation.

2. Primitives

Wo arr not overly concerned with the particular primitive operand and operator

types of the language. However, we assume a "typeless" language (like APL) for the

generality it provides; we may define operators which apply to different types of

operands, depending only on primitive relations defined on the types. Hence, it is

probably more accurate to state that the types of a language developed from this basis

should involve sets of relations or functions defined over what are more tradit onally

thought of as types. For example, in a "typeless" language, the function

min(a,b) = if a < b then a else b

has meaning only if the relation "<" has a boolean interpretation for the pair (a,b). This

is the case for any combination of real and integer variables in Algol. A typed language

ttln a language developed from this basis, reserved words should be present in the

initial symbol table, and the ability to override their deflation provided. This is the

preferred extensible language interpretation [RE,1971].

■■ — - —--■ - — ■ ■■- -■-— — ^MMuaMMMH I i^^

THE INITIAL BASIS 29

would insist that four separate functions be defined to cover all cases of this

expression. Subsequent definitions in terms of "min"--e.g.,

g(a,b) = ■ ♦ min(a,b)

--also require four definitions; the loss of generality can be exponential in the number

of distinct types. Hence, the basis is typeless. (The combinatoric implications of

♦ ypelessness are addressed below.)

The operand types initially present in the basis are

Type Examples Generic-Variablest

1. Possibly Negative

Integer (PNI) 1,36,-125 i.j.M.n

2. Character "Ä
M ' ^V t'llllll "a", -a", c,d

3. Sequence

4. String

<el1; el2; ...; eln>

"b+

=< b ; + ; >

s,P

u,v

5. The Empty Element nil.

We leave the description of sequence elements unspecified here, but, of course, allow

any instance of an operand type. In particular, the ability to nest sequences is

primitive. (The generic variable "t" will be used when dealing specifically with

nested-sequences—see Chapter HI.) A distinct unary minus, "~", f« adopted here for a

reason which will become apparent under the discussion of "section" below.

tThese names will be used in examples throughout fie text.

■ UMIIIlll ■

THE INITIAL BASIS 30

The arithmetic opcratorr,—-t-.-.mul.div, and mod--are primitive operators with results

of type PNI defined only on operands of type PNIt.

The relationalG--le,ge,lt)5t,=, and ne--are defined over pairs of PNIs and over pairs

of characters (the colatmn sequence is presently left undefined)''-. The definition of

relationals, however, is not traditional. If "r?!" is a relational, then "a re! b" has the

value "a" if the relation holds, nil otherw se. The important decision here is

combinatonc in nature; it is important that one of the operands be chosen as the value
of a true relation.

A unique primitive operation which produces primitive operators is also permitted;

this operation is termed "partial instantiation". The "section" or "partially instantiated

function" was motivated in Chapter I as a natural mechanism for expressing data

sti ucture concepts of re^.tr ction. In fact, they p'ay a much more significant role in the

basis in that many prograns are sequences of partially instantiated functions. In

particular, we allow the partial instantiation of any binary operator to produce either a

left- or right-unary operator. For example,

x (-3) s x - 3;

(4 mul) y s 4 mul y;

uminus :: 0-;

uminus 3 = (0-) 3 H (0-3) i O.

As an aid to involution, we extend partial instantiation to include any expression missing
an operand on the left or right:

x (-5 mul 3) s (x -5) mul 3

(4+(3 mul)) y = 4 + (3 mul y)

The parenthesization of the operator expression is preserved, as indicated in the

second example. The ability to instantiate is uniformly allowed with any binary

operator, including those defined in the metalanguage. In general, operators are

tit is convenient to have the relationals and arithmetic operators defined also on nil, but

motivation for the particular choice must be delayed until after the "conditional
operators" have been set forth.

x-

THE INITIAL BASIS 31

permitted as sequence elements. (A more precise formulation of the rules of

composition and instantiation appears in Appendix I.)

3. Gololess constructs

Application of the gotoless constructs to nested-sequential structures represents

the second "fundamental decision" toward the design of the b'.sis. The particular

constructs of interest here are: subroutine call, grouping, selection, conditionals, looping

facilities and escape mechanisms. As has been stated previously the single property

preserved by the gotoless constructs is program hierarchical decomposition. The

impact of this property to structured programming and optimization studies arises from

the ability to identify non-primitive program elements which have a single predecessor.

From a structured programming viewpoint, properties (relations on the environment)

preserved or destroyed over program element execution are of interest. Gotoless

constructs allow element identification to include larger elements than single program

statements. The gotoless constructs present a single predecessor to each program

element other than subroutines and loop bodies. The relations considered for any

given program element are localised to consequents of those holding after the

predecessor's execution. The predecessor may be hierarchical, as in the case of

selector to selection and boolean to conditional, or sequential as in the case of grouped

elements. Loops are given hierarchical depender^y on the negation of relations implied

by the termination condition. Hence, with the exception of the subroutine call,

consideration of predecessor relations is a linear process in a gotoless language,

whereas, inclusion of the goto potentially requires exponential considerations.

Optimization considerations often center about equivalence relations preserved on

environments; hence, any localization of the considerations of these relations aids

efficient implementation. Any structured programming efforts which localize

considerations of arbitrary relations on the environment will usually localize

considerations of equivalence relations as well, and hence aid efficient implementation!

This is borne out in Geschko's thesis on omptimization [GE].

The gotoless constructs enter the basis as operators. This is simply for

consistency with the rest of the basis and has extreme combinatoric significance. It will

THE INITIAL BASIS 32

be seen that some of the operators are more of the nature of applicative language

"forms", in that they allow operators as operands. However, consideration of them as

operators is useful presently.

The first gotoless construct to be considered-selection-anses in part from an

ambiguity introduced in allowing both programs mi data as sequences. In allowing

programs as sequences and sequential values, we have a notational choice: we can

distinguish between program and data sequences by distinct bracketing pairs, or not.

We choose not to make the distinction; i.e., type sequence above may contam

program (operator) or data elements. This allows the flexibility of operating on

programs as we do on data, without an additional conversion mechanism. However, this

decision immediately presents an ambiguous interpretation for a program sequence in

light of the recent sequential language interpretation of its value as the last program

element executed [RE.1970], [WU,197i]. For example, if

begin tu 62; ... ; en end

is a compound in an Algol-like expression language, where the "e," are expressions and

none escapes, we may choose to interpret it as representing

«•H 62; ...; en>

or

(the traditional interpretation). The sequential interpretation is chosen. If the last

value is desired, an explicit operator-val--must be applied.

^1; e2; ...; en> val s en.

In a sense, the val operator is the only form of selection in the basis, although only the

last element of a sequence k ever selected by it. Although the select operator,

hMa^nauiA« '

THE INITIAL BASIS

s sub i s s, (the ith element of s)

wlv M . is in the range [1, length of s]

[4]

H nil otherwise,

will be used frequently, it will later be demonstrated that the operator is derivable from

the initial basis.

The ability to derive operators from the basis is considered important in the context

of extensib;lity; i.e., although inclusion of a large number of primitive operations in a

language is desirable (see Chapter I), a layf-ed description of such operations is

considered invaluable to ut derstanding the language. Additionally, criteria for entry to

the basis of extensible operators should be developed; in particular, sub would enter

the basis for implementation reasons, to be described later.

A second ambiguity arises when we consider interpretation of nested sequences in

higher-level-languages. Again, if

begin ei; begin 62; 83 end; e« end

is a compound, we can choose either of:

<ei; 62; 63; e4>

(the actual program interpretation sequence) or

<ei; <e2; e3>; e4>.

The latter is chosen to include the gotoless construct for grouping as the already

present sequence brackets. To obtain the former interpretation, the gen operator must

be applied to the subsequence whose elements form a continuation of the

supersequence:

<ei; <e2; e3> gen; e4> = <e1; 62; 63; e4>.

 ^.
'

 _-.

THE INITIAL BASIS
34

For example, we may write a concatenate function:

s cone p :: <s gen; p gen> rc1

1 si'' s2: •■•; Sni Pi; P2; ..; pm>

Not,ce that gen only appHes to the sequence wh,ch i« it. argument, and not to It.
argument's subsequences; i.e.,

<1> cone <2; <3;4>; 5> . «1> gen; <2; <3;4>; 5> gen>

■ <1; 2; <3;4>; 5>.

Mote alto, if s is a sequence,

<. gen> = s, and hence, «> gen> H <>.

^ A third group of gotoless constructs, the conditionals, may be thought of as

sequential booleans". In order to express the conventional if-then-else control

construct operationally, ,hen and else operators are derived. Again for combmatonc

reasons the LISP boolean ,S used; ,n any context where a boolean occurs, the criterion

for valid.ty is that the result be a primitive other than nil. This ,s consistent with the

relational operators described above. Additionally, any operation wh.ch would

tradit.onally produce a boolean result must produce a non-empty element or nil The

choice of this non-empty value distinguishes the conditional operator definitions:

x else y H y when x is empty,

= x otherwise;

x then y s y when x is non-empty,
s nil otherwise.

MM. USP, no va,ue T for „ue I. p lrt of the ,a„8u,se. „ we cons,der boo|ean

funcons over ,he so. [fruo, „HJ, whore we def.ne ".roe" as a„y „on-emp,y vaioe
^e.g. 1) the following definitions are apparent:

THE INITIAL BASIS 35

and :: then

or else

However, there is no way to construct the "not" connective in this context. This is

indicative of a failure in completener.5 of our gotoless constructs: there is no

combination of else and then which evaluates to "y" precisely when "x" is empty in "x

conditional y". We could include a "not" function ir, the basis as having some random

non-empty value. However, the basis is biased towards use of non-empty results of

conditionals as expression values, and we would most frequently use "not x then".

Thus, the excludes operator is defined to permit this effect:

x excludes y = y when x is empty,

= nil, otherwise.

With this we can complete our boolean repertoire, by defining:

nonet not x :: x excludes true.

(Only the conditionals else and excludes are necessary. For a more complete

description of the somewhat strange ramifications of this logic system, see Appendix II.)

A fourth gotoless construct is the loop; unlike other languages, a set of terminating

facilities are not presented implicit with the looping construct. The loop operator, "*"

(the "Kleene star"), continuously replicates its argument until terminated implicitly, or by

using the escape operators:

x * = <x; xj x; ...>

In one sense, this operator is taken from data structure specification, where use of a

pointer to implement a cycle is common. Naturally, the interpreting program normally

must impose the interpretation as a cycle, and must terminate such an interpretation

explicitly. For example, a function which produces alternately its left and right

argument is:

tSee [1] above.

THE INITIAL BASIS 36

x alternate :; <x; y> gen *;

- <<x;y> gen; <x;y> gen; ...>

5 <x; y; x; y; ...>.

[6]

The choice not to require explicit termination mechanisms was made in the hope that

frequently the termination condition can be implicit to the usage context of the

non-tcrmmating sequence. As discussed in Chapter I (and also below), termination of

generated sequences is factored as not intrinsic to loops per se, but rather to

generated sequences independent of the generating mechanism. For example, we might

choose to define operations on a rational number representation formed by:

u rat v :: u conc'i' (v gen *)

£ <u gen; v gen * gQn>

= <u gen; <v gen; v gen; ...> gen^

5 <Ui; U2; ...; un; Vj; ...; vm; Vj; ...; vm; ...>

e.g., "3.7" rat "23" s "3.7232323..."

For some operations, the decision to terminate sequences thus formed will not be based

on properties of the repeated digits, but on precision considerations; i.e., the termination

s not a oroperty of the loop, but rather of the context of the sequence generation. It

s worthy of note that the same functions may then be used on sequences generated by

rrational number generators; i.e., the complications of termination are localized to the

use of the generated sequences, not to the various generation mechanisms for the

sequential arguments.

Explicit termination of sequences is accomplished with the use of the escape

(gotoless) operators, exs and txs. The former--exs, "else exit sequence"—exits the

innermost sequence in which it is embedded when its operand is empty; otherwise, its

value is its argument. When the decision to exit is made, the empty element does not

contribute to the resulting sequence; e.g..

tSee [5] and also Appendix III for useful functions defined in the text.

/

—"^^— _

I I "II. ^^^•WB^WWi

THE INITIAL BASIS 37

<U 2-2 exs; 2=3 exs; 4> ■ <1; 2 exs; nil exs; ^>

■ <1; 2>.

This intuitively corresponds to the "^hile-do" control construct of several higher level
languages.

"Then exit sequence", txs, exits the innermost sequence in which it is embedded

when its operand is non-empty; its value is nil when its argument is nil. Unlike exs, the

argument causing the sequence to be exited with txs is included in the result; e.g.,

<1; 2=3 txs; 2=2 txs; 4> s <1; nil txs; 2 txs; 4>

= <]; ml; 2>.

The intuitive correspondence with othe- IsnglMges here is with "do-untn", a traditional

search mechanism.

N.B. Although generation and factored termination represent a fundamental design

decision, the explicit gains are best presented following the discussion of the

cosequencmg operators.

^. Cosequencing operators

To this point the language basis is not "computationally complete". We have no

recursive function definition capabiliiy, and although tta loop operator, "*", is present,

there is no way to relate successive elements of a loop. Before we introduce the

necessary operators, notice that the basis includes:

1. An operator language with a left-to-right expression parse;

2. A metalinguistic operator definition notation;

3. Primitive types: Pl\li, character, sequence, string and empty element;

4. Primitive arithmetic and relational operators;

5. The gen operator (form);

6. The gotoless operators: conditionals (then, else and excludes), selection (sub

and val), loop ("*"), and escapes (exs and txs).

-i-—-_- m-mm - - - -

THE INITIAL BASIS 38

Formahr-to will note an ambiguity in the interpretation of applications of "*" and gen.

For example, although the form "+(mul 3)" is disallowed M an instance of operator

composition, the similar form % *" is permitted (each Is a binary operator followed by a

right-unary operator). One can either envision a set of quote rules, permitting the

application of some operators to other operators, an elab .rate precedence formulation,

or a notion of "form" in the lambda-calculus sense, to resolve the conflicts (see also

Appendix I). Presently we rely c , , Buid d by e derivations presented.

In Chapter I the coapply and accumulate operators were presented as means for

relating programs with their arguments and results. In particular, both operators are

forms of "apply" functions--or more accurately, "application generators"--in that they

relate a program sequence positionally with a esult sequence. The coapply operator,

".", additionally relates its argument sequence with its function sequence:

6 . q • <»| qu »2 q2; ...>.

Generation of this sequence terminates with the shorter sequence, iff one argument
sequence terminates.

In combination with a loop the conventional distributed operator concept is realized,
for example:

s . (+ 1 *) H s . <♦!} +1; ...>

2 <s1 + l; S2+1; ...>.

More exotic sequences can be expressed easily;

s . (♦ alternate'!- -Ms. (<+; -> gen *)

■ » . <+; -; ♦; -; ...>
5 vsi+l S2-i 53+; s«-; ...>.

'''See [6] for definition.

wmm*^.

THE INITIAL BASIS 39

(Appendix III contains a list of till functions whose previous definition in the text are

reused further along in the development of the basis.) The alternate "program'' may

then be used to express more complex data sequences, for example:

s . (+ alternate -) , (1 *)

■ <Si*li s:-l; S3+I; S4-l{ ...>

This instance of section sequence construction illustrates a frequent use of tha coapply

operator: to create function sequences with potentially complex components; i.e.,

propf ,•< ns.

The coapply operator is also used for controlling sequence generation. For

example, a function which produces a "header sequence" of q--a sequence consisting of

initial elements of q m the same ordcr--the same length as another sequen. 3 is:

s controls q :: s . (rid";' •) . q; [7]

£ <8j rid; ST rid; ... ; sn rid> . q;

■ <&! rid qj; S2 rid q-i ... ; sn rid qn>;

5 <qi; q:; ... ; qn>.

(when n = length s Ic (length q)).

Note that the notion of sequence involved here is somewhat trivial; the only truly

sequentiel relationship (as opposed to positionally parallel relationship) of the function

(program) sequencer with its data sequence concerns termination. For example,

consider the operato-:

s rplus p :: s . (+ *) . p;

- <f-'i + Pi; S2 + P2; ...>

"rplus" approximates the APL addition operator on two row vectors. However, there is

a subtle difference between this operator and the corresponding APL operator. The

implicit fmiteness of sequences p and q in APL permits "pregeneration" of p and q, and

■i'See [3] for definition.

 ' - ■ ..-„__^___—__ : ._.

, ^mm~wm •

THE INITIAL BASIS 40

computation in parallel of pa^rwise sums, given a sufficient number of adders on the

interpretms machine. The Oasis does not presume fimteness, and an implementation

cannot (in general) pregenerate p and q; a sufficient number of adders cannot be

guaranteed to exist. Thus, if we consider it a property of parallel operations that they

terminate, the basis does not admit a parallel implementation.

More crucial to the non-parallel implementation of the coapply operator are the

escape facilities. Consider the operator:

s nonempty :: s . (exs *);

■ <$j exs; S2 exs; ...> s <s1; S2; ...; sn>

where "«," are nonempty m the range [1^], and n is the length of s 0- I^J is empty.

Here, the parallel pairwise application of the sequence 1 oents is alsu inadmissable;

one cannot determine the operand lengths required until afU t the result is produced.

Despite the necessarily sequential nature of the coapply operator, the nature of the

sequentiality is trivial. No result element depends on its predecessor's value.

Traditional sequential languages are sequential for the same reason: statement si

modifies the environment in some Wc-y on which statement s,+1 may functionally
depend.

The accumulate operator, "/", introduces this dependency and represents a

constrained form of assignment. It is defined for an arbitrary initial value, y, and a
sequence, s:

y / s £ <y sj; (y s^ S2; ((y Ij) If) 53; ...>

Generation of the sequence terminates when and only when s terminates.

One interpretation of this operator is as the execution sequ-nce of a program on a

single-register machine (which has no store operation). The interpretation is not quite

appropriate for the register may contain an arbitrary sequence, if desired. The

program sequence can, however, have a complex control structure. For example, the
Algol program:

r~ rmmm^^f ■' ■—■

THE INITIAL BASIS 41

begin

real a; integer i;

a:- 3; i := 0;

for i := i + 1 whi'e a < 9

do a := a * b[i];

if a < 13 then a := sin(z) ülse a

end

cos(z);

can be represented as;

3/ < mul * . b . (It 9 exs *) gen;

(It 13 then sin else cos) z>

= 3 / «mul bi It 9 exs; mul b2 It 9 exs;...> gen;

(It 13 then sin else cos) z>

■ <3 mul oj; ... ; 3 mul bi mul ... mul bn;

3 mul bj mul ... mul bn (It 13 then sin else cos) z>

where accumulated product is less than 9. (The example is only intended to indicate

similar complex control structures; however, the final value of the Algol variable "a" will

be the same as the val of the latter expression above.)

However, this neither reflects the nature of most programs written in the basis, nor

of those written in Algol. Although the successive values of the accumulator may be

looked upon as the access sequence for an assignable variable, this sequence is

traditionally distributed throughout programs. Here it is not, and, indeed, a

reorientation of programming style must occur. The access sequence and the

controlling sequence are now equally important.

This completes the initial basis and we are now in a position to exhibit more realistic

functions. For example, the positive integers, P, may be represented:

P :: 0/(+ l*);

= 0/<+li +1;...>;

= <0+l; 0+1 + 1; 0+1 + 1 + 1; ...>;

■ <li 2;3;...>

[8]

-— - . ■

THE INITIAL BASIS 42

This is the first example of a useful non-termmatirj function. In particular, it is clea'ly

beneficial to be able to express infinite sequences in programming languages. K/Umy

mathematical formulations rely on such expressions: rational and irrational numbers,

infinite series, etc. Obviously, from a programming standpoint, such a function can

never be "executed" (control may not transfer to it expecting a return); in fact, it can

never be used in its entirety. It is the ability to express non-terminating sequences

which leads to the "generative" Implementation discussed below. In effect, each

sequence expression is considered to be a generator, an instance of which may be

"pulsed" to produce elements when needed.

It is the accumulate operator which gives utility to the escape operators. For

example, the function:

s while f :: s . (f exs *) [9]

is trivial if s is not produced using an accumulation (or as input to the program), for no

non-triviä relationship of the elements of s may be established without it. In

combination with the accumulation of positive integers, we may produce the .:irst n

positive integers:

n pos :: Pt while (le n);

£ < 1 lo n oxs; 2 le n exs; ... : n le n exs;

(n+1) le n exs; ...>;

■ <I exs; 2 exs; ... ; n exs; nil oxs; ...>;

£<1;2;... ; n>.

[10]

It is now an easy rmtter to illustrate that sub need not be a primitive operator; the

"head" function is defined which produces the sequence consisting of the first n

elements of the sequence s:

n head s :: n gt 0 then (n pos controhtt s) else <> [11]

tSee [8] for definition.

^^^mmm*^~m

THE INITIAL BASIS 43

The sub function simply selects the last element of this sequence:

s sub i :: i head s val.

which will be nil when "i" exceeds the length of "s", and otherwise, the "ith" element.

In fact, this is not an accurate representation of the sub function. The "controls"

function as defined above presumes that the length of the controlled sequence is at

least as long as the controlling sequence. Boundary conditions generally introduce

complexity in programming language definitions, especially when extending languages.

(User-defined functions need not be "general" when the particular case of interest is

known to have certain properties.)

In order to define a new "controls" function which behaves suitably for the sub

function, the initial functions defined on the empty sequence are considered:

<> val = nil;

<> . s 5 s . <> 5 <>;

y / <> = <>;

«> Ren> s <>.

Otherwise, the empty sequence acts as any other sequence; e.g.,

<> then 1 s 1.

The case in point--"controli"--has an erroneous value when its boundary conditions

are not met. For example,

<1; 2> controls <4>

£ <1; i.^ . (rid *) . <4>

ttSoe [7] for definition.

■

THE INITIAL BASIS 44

£ <1 rid; 2 rid> . <4>

2 <1 rid 4>

= <4>.

Although this may bo a reasonable interpretation for the value of "controls", alternative

interpretations are equally reasonable. To illustrate, the value could be nil when the

condition is not met:

s length :: s controls-!" P't";' vai else 0;

s control'., q :: s length It (q length) excludes (s controls'!" q).

However, the new function precludes controlling infinite sequences. In particular, the

length function could not now bo defined as it is above (m terms of the new "controls").

We can, of course, define a function which has the value "s" when its length exceeds

a particular number:

s controls q

s lengthge i

s controls q

: s . (rid *) . q;

: i post"1""'" controls s length = i then s;

: s controls (q lengthge (s length)).

The function will be in error when the condition is not met.

The interpretation chosen, however, which preserves the potential unboundedness

of "q", is to consider the controlled sequence always "infinite". In particular, the

sequence is augmented by an infinite cycle of nils:

"i"See [7] for definition.

"!""l"See [8] for definition.

tttSee [10] for definition.

x

■- ■■ - --' - - — - ■ -■ ■ ■

HUI m wmm ^^^m^mmmmm „.. ' -

THE INITIAL BASIS

s controls q :: <-, . (nd *) . (q conct (ml *)).

Thir. interpretation give«; the appropriate value for subtt as defined above.

5. Sequence generation

"Sequence generation" may now bo made more precise, and the fundamental nature

of the language design decision it represents more fully considered. No sequence is

c^/er gcncrated--evaluated, produced--unless it i- necessary, by virtue of its

requirement as the value rf a program, or in the computation of a value in the program.

When produced, only the successive elements needed are generated. For example, in

the "n pos" [10] function, neither "le n exs" nor "P" need (or could!) ever be generated

in their entirety before the coapphcation occurs. Only the portions needed before the

result terminates are necessarily generated. Also, this termination may not need to
occur; in:

<3; 25> controls (999 pos) s <l; 2>

only two elements from "999 pos" need ever be generated. The implementation

techniques developed by Abrarns for APL [AB]-"beatmg" and "draSging"--are essential

to the implementation of this basis.

The traditional notion of generator may be used to illustrate how this could be

implemented. A generator for a sequence consists of a set of own variables unique to

each instance of the generator, an initialization function, and a function for pulsing the

generator. The pulsed function returns the successive elements of the sequence

generatcd--one per pulse. The generator may, of course, run out of elements; the

pulse function must mclicate termination, and its caller must check for the condition.

tSee [b] for definition.

tt$M [4] for definition.

THE IMITIAL BASIS
^6

Evaluation of a program in the bas,o can be though) of M a sequence of rails on

generators. A generator for the loop operator ,s trivial, an own vanablo i« m,t,aliZed to

the loop operand; the pulse function always returns II as its value. The coapply

generator WtialilOl each of its constituent operand generators (preserved m own

variables); its pulse funct.on ,s the application of the results of pulsmg its constitutent

operand generators (after checking for termination). The accumulate venerator

m,t,al,Zes one own vanable to the initial value of the accumulator; pulsmg consists of

setting the accumulator own to the application of the accumulator with the result of

pulsing its operand sequence generator (after checking for termination).

Unfortunately, although generators are used frequently m programs, only languago«

which mclude the more general control structure "coroutine" can be used to describe

the generators in any clean way. The "universally understood" languages LISP

FORTRAN, Algol, APL, and SNOBOL are poorly designed for the expression of such

structures. Even SIMULA [DN], which allows coroutines through "activities", cannot be

used well to describe the generators for the basis because of its type structure A

further discussion of implementation considerations is left until Chapter IV.

o

The implications of generation m terms of the design cntena of naturalness and

power revolve about the programmer's conceptual.zation of a task vs its

implementahon. "Structured programs" have the property that they are hierarchically

decomposable. Frequently, tins gives nse to implementations incorporating "passes-

over the data: an entire sequence is processed by a function producing a result

sequence, which is passed on to the next function, etc., until the output sequence is

finally produced. The not,on of generation preserves this structured decomposmon but

allows it to mclude unbounded input and result sequences.

When implementing a program designed in passes over successive results the

tendency ,s to attempt to "collapse" the passes; "single pass" compiler considerations

have become trite. In fact, the generative mechanism, and its coroutine implementation

are generally recognized as the efficient way to implement structured programs The'

ortnogonality between "structured programming" and "efficient programming- is at the

heart of the "modulanzation" problem [PA] and is partially solved by the generative

notion mvolved in the basis. We reiterate: programs may be hierarchically structured in

passes, but the generative mechanism requires a coroutine implementahon, automatically
collapsing passes where possible.

r^—••■ww^"

THE INITIAL BASIS 47

6. Cosequencing

The fourth fundamental decision—to include the cosequencing operators "." and

"/"--may be viewod as a combinatoric decision. The operators do combine data and

programs to produce new data or progi ams, and are similar to the combinators in

Backus' Red 3 language [BA,1972]. Such operators are significant to program

expressiveness: in ■ very real sense, programmers do identify program elements with

data elements and build control structures around them. This activity is generally

masked by the subordination of data sequencing facilities to control sequencing facilities

in most programming languages. Recently developed languages such as QA4 [RU] and

PLANNER [HE] allow some identification of program elements with data elements, but

then "hide" the data structure in a global data base. The use of set generative features

in languages such as SETL [SC] also represents a limited form of program/data element

identification. The use of generators in 1PL-V [NE] permits cosequential identification;

however, it shares the problems of LISP in that the generators have to be explicitly

pulsed and produce results explicitly by "outputting" the generated elements. Thus, the

cosequencing notions are at least skirted by extant languages as worthwhile

programming features, not simply as combinatoric "tricks". The extent to which

cosequencing operators may be developed for less homogeneous structures is the

central subject of the remainder of this work.

7. Combinatorics

The decision to use combinatoric mechanisms is regarded as fundamental. Each of

the primitive forms will ultimately influance the other's definition by how they interact

in combination. As an example of such interaction note the effect of the decision to use

a left-to-right evaluation sequence in combination with the accumulate operator. The

accumulate operator must evaluate left-to-right, inasmuch as there is no rightmost

element of an accumulation before its execution. Had we used a right-to-left evaluation

scheme, the operation would have been entirely counterintuitive.

Combinatoric decisions influence and motivate the definitions of the relational and

arithmetic operators. It was mentioned above that such definitions should be extended

to include nil in their domain. This is done simply: all operations of type arithmetic and

relational are nil when either argument is nil. Additionally, it is convenient to have

THE INITIAL BASIS 48

undefined arithmetic opcratiOn5--zcro divide, overflow, underflow, etc.--produce nil as

their value. This effectively imposes the interpretation on nil of an "undefined

element", in the sense of "plus-or-mmus infinity".

Wc may then write functions which can pretest their operands before applying the

actual function. For example,

(n lo i go j) + 9

will have a non-empty value iff n is in the closed interval [i,j]. Its Algol counterpart:

if (n le i) and (n ge j) then n+9 else INFINITY

is less concise.

Combinations of conditionals and relationals provide further evidence of the

conciseness gained by combmatonc devices. For example, the "max" functicr

i rnax j - i ge j else j

would require an extra clause in Algol:

max(i,j)= if i ge j then i else j.

From a language design viewpoint, combinatorics should not be "unnatural" in the

following sense: when there is a clear choice between two possible interpretations for a

construct and neither is clearly more intuitively appropriate, the choice should not be

made. For example, it may be inappropriate to define addition between characters and

integers, for there is no obviously appropriate choice for the resjlt type.

This precept was violated in the choice of the left operand as the value of a true

relation. We now replace that choice with more consistent interpretation based on the

notion of "section" and an observation about of the usage of relations. We define the

"minor" argument of a binary operation to be its right operand. Binary operators are

considered to be instantiated in their minor argument when they stand unparenthesized:

J-

THE INITIAL BASIS 49

a - b = a (= b)

We modify the interpretation of relations:

a (rel b) s if a rel b then a else nil

and

(a rel) b H if a rel b then b else nil.

With this interpretation, the range specification can be made more naturally:

(i le) b le j

to have the value b when in the interval [i, j]. Most expressions involving relations

involve arguments which are ranked, in the sense that one is varying and one is

constant. The combinaloric decision represented by the above interpretation permits

the more constant operand to b* instantiated first as the minor operand. (Some formal

work is required to assure the above interpretation is consistent; for example, in

"a . (le ») . b", one must presume that the elements of "a" constitute the minor

argument to the relational, because of the left-to-right evaluation sequence.)

Note also that it is particularly important that no flexibility is lost by including

combinatorically useful interpretations of primitives. If one prefers to emphasize the

symmetry of a boolean decision, for example, he can always revert to the boolean

interpretation, as in:

a It b

then a

else b

In one sense, combinatorics may be envisioned as maximizing the useful default

interpretations of syntactic constructs, subject to the non-artibtrariness requirement

mentioned above. We reiterate, the fundamental decision is to use combinatoric

oower"—none of the particular decisions in these examples is neccessarily of global

si '.nificance to language design.

THE INITIAL BASIS 50

Examples

The following exampler. are presented primarily to familiarize the reader with use of

the basis in more realistic problems than have been presented above. The examples

evoke extensibility issues which relate to claims of conciseness for the language.

Throughout this work, each example program characteristically includes two sets of

functions which will be referred to as "basic" and "ad hoc". The former are those

functions which would presumably be part of a language developed from the basis.

Although each is expressed in terms of the basis, the function may be either'

implemented or part of a library facility in the actual language. The "ad hoc" functions

are very particularly related to the problem at hand, and could rarely be used

elsewhere. Naturally, it is to the language's credit if the "ad hoc" functions for any

particular task are few. That is, languages, once defined, are only ever rendered more

concise through extension; hence, the ability to easily define functions for general csage
is important.

Complex, inconsistent libraries can arise m any language; in the basis, care must be

exercised not to terminate sequences in an ad hoc fashion and not to take the val until

after the sequence has been isolated as a unique function. For example, the largest

power of "2" less than or equal to a number "n" could be written:

Ip2le n •: 1 / (mul 2 *) whilet (le n) val

The following factorization would be preferable, however:

powersof i :: <1; l/(mul i *) gon>;

poworsof2 :: powersof 2;

powersof2le n :: powersof 2 while (le n)j

Ip2le n :: powersof2le n val;

for each of the components of the function is of potential utility in other contexts.

Naturally the user must believe the original implementation will result from substitution

rather than an actual layer of "generator calls".

tSee [9] for definition.

THE INITIAL BASIS 51

1. Matrix multiplication

In the following, "u" and V represent row vectors, "M" and "N", matrices

(sequences of row vectors). All the functions in this example are basic:

M column i :: M . (sub i *);

s <Mi sub i; M2 sub i; ...>.

M transpose :: M column * . Pt|

5 < M column 1; M column 2; ...>

u rowmul v :: u . (mul *) . v;

s <ui mul vi; U2 mul V2; ...>;

u sigma :: 0 / (+* . u) val;

s <0+ui; O+U1+U2; O+U1+U2+U3; ...> val;

u ip v :: u rowmul v sigma;

£ 0+(ui mul V1HU2 mul V2)+ ... + (un mul vn)i

r rM M :: r ip * . 'M transpose)

H <r ip (M column 1); r ip (M column 2); ...>

M MM N :: M . (rM N *);

£ <Mi rM N-, M2 rM N; ...>

Although the basic functions are self explanatory, some problems are encountered

in dealing with the potentially infinite transpose function. The transpose defined is

appropriate for arrays with rows of unbounded length. Such an array could arise in a

histogram for a set of system parameters in an operating system, for example, where

termination of a row is tantamount to the system crashing, an event of finite but

unbounded length. The transpose might then be a very useful function for a printer

output routine.

However, the transpose function (by itself) will never terminate: its structure is

simply an infinite loop, and the later rows of the transpose will consist of ail nil

elements, as "i" in "column i" exceeds the row length. Although we are dealing with the

i,ame phenomenon as encountered in insuring that the head function could deal with an

infinite sequence, the termination is somewhat more complex. There are two issues

tSee [8] for definition.

 , ■ -■ ■ . ■ ■■ - ■■— — - ■■ ■! - -' ■ ^ ■..---■ .. -

THE INITIAL BASIS 52

which complicate the function. First, we prefer to allow the transpose of arrays with

different si^e rows. Second, we wish to allow empty elements in the array.

If we allowed empty elements only as the elements generated when the row was

exhausted, we could safely terminate the array with the following function, which simply

tests to see if the entire row consists of nil elements:

v notempties :: v . (txs *) val then v;

M transpose :: M column *. P while notempties

For example, if M = «3; 9>; <1>; <4; 7; 8», then

M column * . P

s «3; 1; 4>; <9j nil; ?>; <nil; nil; 8>; <nil; nil; nil>; ...>.

Also,

<3; 1; 4> notempties

£ <3 txs; 1 txs; 4 txs> val then <3; 1; 4>

a <3> val then <3j 1; 4>

5 3 then <3; 1; 4>

5 <3; 1; 4>.

Similarly,

<9; nil; 7> notempties

3 <9> val then <9; nil; 7>

s <9; nil; 7>

and

<nil; nil; 8> notempties

s <nil; nil; 8> val then <nil; nil; 8>

5 <nil; nil; 8>.

 . --- , _ _. ^

«p^H^mnw«

THE INITIAL BASIS 53

However,

<nil; nil; nil> notempties

s <nil txs; nil txs; nil txs> val then <nil; nil; nil>

£ <nil; nil; nil> val then <nil; nil; nil>

5 nil.

Hence, the transpose terminates with:

«3; 1; ^>; <9; nil; 7>; <nil; nil; 7».

Now note that the above function works for unbounded arrays: the transpose

tei minates iff the original array generator does, and the transpose generation proceeds

along with (cosequentiaily with) the original array generation. However, the general

case--permitting empty elements anywhere within the array--remains problematic. For

example,

«3| nil; 4>; <1>; <9; nil; 7» transpose

s «3; 1; 9>; <nil; nil; nil>; <4; nil; 7»,

but the above function will terminate with the first element.

Two solutions suggest themselves. The simpler is to replace nil by our own version

of "NIL"—a token. The normal problems with finding an unique element are attendant

with this solutiont, but it is of some pedagogic interest to illustrate how it may be

accomplished. Assume, "NIL" is a unique element which cannot occur within the

argument matrix. We may replace nil in an array by NIL using:

M fromnil :: M . (. (else NIL *) *).

For example:

tUltimately, an unbounded sequence of unique tokens in nested cc »texts is required.

 ■ -- -■ - ■— — ■ ■ ■- -■■ - ■--■■-^-->.

THE INITIAL BASIS 54

«3; nil; 4>i <1>; <9; nil; 7» fromml

5 «3; nil; 4>.(olse NIL *); <l>.(t.,';e NIL> *);

<9; nil; 7> . (else NIL *)>

= «3 else NIL; nil else NIL; 4 else NIL>; <1 else NIL>;

<9 else NIL; nil else NIL; 7 else NIL»

= «3; NIL; 4>| <1>; <9; NIL; 7».

We may then remove NIL after applying the Iranspose above, using a similar fund ion:

M fromNIL :: M . (. (ne NIL *) *),

and can define the new transpose in terms of the old:

M transpose :: M fromnil transpose fromNIL.

However, finding a unique element not present in any array requires a dynamic

unique name generation scheme which we are not prepared to deal with presently, and

which we are never prepared to deal with efficiently. Thus, a second solution It
proposed.

Again, we use the transpose function which terminates with a row of empty

elements. The method used is to simulate a "boolean array" which has nonempty

elements wherever the transposed array has elements of any sort. This boolean mask
array may be generated:

M Bmask :: M . (controlst (U) *).

E.g.,

«3; nil; 4>; <1>; <9; nil; 7» Bmask

= «3; nil; 4> controls (1*); <1> controls (1*);

<9; nil; 7> controls (!*)>

■ «1; 1; 1>; <1>; <!; 1; 1»

tSee [7] for definition.

•MMBa^m^MMoiM ■

THE INITIAL BASIS 55

Applying the trancpose above to this array will then terminate after the same number

of rows are generated as in the required transpose for "M". Hence, this can control the
length of the actual transpose:

M transpose :: M Bmask transpose controls (M column *. P).

This is the general transpose for 2-dimen5ional arrays which permits:

1. nil '.,'lements;

2. Rows of arbitrary lengths;

3. Arbitrary elements;

4. Unbounded cosequential generation of the transpose as the argument array is
generated.

Another negative aspect of the functions is that many are primitive in APL, and

hence, the basis is less concise for this problem. This is to be expected throughout:

APL will always do better when problems are formulated directly in its representation.

On the positive side, the transpose is more general than APL's (for matrices), in the

sense that it allows unbounded length rows in non-homogeneous arrays with possibly
empty elements.

Also note the ease with which the basis is extended; each of the defined functions is

useful for a large class of problems. The same functions in Algol-like languages involve

temporary arrays and loops, and by no means lend themselves to simple functional
composition, as do these.

2. Recursive programs

Although any Turing Machine may be defined in terms of the basist, and hence, all

recursive functions are computable using it, such justification is not germane to

•i*See Appendix V for a construction.

' ~-l."l wm^^m^^

THE INITIAL BASIS 56

higher-levnl language design. Recursion mud be part of the basis unless suitable

operators exist which allow a more concise specification of what would normally be
accomplished through recursion.

We illustrate conversion of a particular recursive schema to the basis, and
consequently to an iterative algorithm:

f(x) = if x = k then y else up{f(down{x))1x),

where "up" and "down" are not recursive functions. (The simple termination predicate

i chosen to avoid clouding the primary issues involved; an arbitrary predicate and

termination function may be substituted for {=k) and y, respectively, with only minor

modifications to the function to be presented.)

The essential implementation device is to compute an accumulation sequence of

values of the function "down". In an implementation this sequence would correspond to

the "stack". The sequence, reversed, becomes an argument to an accumulation of the

function "up". In particular, note that computation of the stack sequence preceeds the
computation of f:

<down(x)i down(down{x)); down(down(down{x))); ...>

until its last element is such that "down(lastel) = k". Substituting:

<•!! S2i ... ; sn>

for the above sequence, the sequence:

<up(y,sn)i up(up(y,sn),5n.1); ...

up(up(...up(y,5n),sr,.1),..),51)>

will be computed. The val of this sequence is the value of the funct

Hence, we can define a stack sequence function:

ion.

■ __^_

mm »TiHiTii IT TlTi f.

THE INITIAL BASIS 57

x computestack :: <x; x/(down *) gen> while (no k).

The recursion sequence reverses the stack and simply accumulates the recursive result:

x f :: y/(up * . (x computestack reverse)) val

where the reverse function is:

s prefix y :: <y> cone s;

s reverse :: <>/ (prefix * . s) val.

Of course, this is less concise than recursion! However, recursion is frequently a poor

way to implement a function, as the following example will illustrate.

To compute the exponential function "i" to the "jth" power, a recursive function (for

constant i) is:

f(j) ■ if j=0 then 1 else

if odd(j) theni*f(j-l)

else f(j/2)*f(j/2).

We may write:

k odd :: k mod 2 = 1;

j down :: j odd then (j-1) else (j div 2);

m up j :: j odd then i else m mul m.

Substituting these functions in the above schema then gives the appropriate function in

terms of the basis.

Note that the recursive function may be rewritten:

f(j) = if j=0 then 1 else

(if odd(j) then i else 1) * f(j/2)*f(j/2)

j

THE INITIAL BASIS 58

where "/" indicates integer division. (This ir a result of the fact that j-1 will be even

when j is odd, and hence, that f(j/2)=f{(j-l)/2) will be computed immediately on the next

recursive call.)

We may now write:

j down :: j div 2;

m up j :: m mul m mul (j odd then i else I)

Note that for this value of down:

x computestack :: <x; x/(div 2 *) Ron> while (ne 0)

is the sequence of numbers arrived at by right-shifting an accumulator initially

containing x (j in this case) on conventional machines. (Its reverse requires coupleu

accumulators and/or special instructions for efficient machine implementation.) The point

is that from a canonical reformulaton of a recursive function, consideration of the

resultant stack sequence rr?y indicate a much more efficient implementation than would

be expected; in this case, the standard "2 log2 j" multiplications algorithm is illuminated

[KN]t.

The complexity of the above material perhaps indicates why "factorial" is normally

chosen as the showcase recursive function. If one recognizes:

<n; n/(-l *)> while (ne 0) reverse

as equivalent to:

n pos

the normal basis expression for factorial will be derived using the above schema

substitution:

tSee Appendix IV for a similar example (right-to-left instead of left-to-right) and its

compilation from the basis.

^

 ..-.—~~~-~~~~—~~-^~^~^~~-*-~-~~'~- —-^ ———.

THE INITIAL LA3lS 59

n factorial :: J/(niul * . (n pos)) Vci

iCoc,;otiiinjtiün of Dccir.ions

The fundamfnlfil decWom involved in HKI rlevelopment of the basis are:

1. To UM an ripplicativo l«r^U430 framrwork;

2. To apply the gotoie'S constructs to nested 'equential structures;

3. To ucc a generative technique for the production of sequences;

•. To include nun-trivi.il "apply" operators as primitive--in particular, "." and "/";

5. To use a syntax with hrgh combinalonc power.

Of remaining interest regarding the first two decisions is the question of how the use of

pointers so constrained differs from tr.ulitinnal use of reference variables and

assignment statements. Of particular mtere.t is whether additional control constructs

are needed to accomplish what are considered ("orrect, well-controlled notions that the

removal of the pointer from data structures precludes.

The decision to use a generative mechanism is based on the separate views

programmers have of the action of algorithm-, on data structures and the way the action

actually occurs. The generative notion is piesently quite simplistic and extremely

constrained. What remains to be seen is iha extent to which generative aspects of

programs may exist m the constrained environment of an applicative language. The

implementation technique of coroutine utagG for generative programming activities is

clearly the fundamental mechanism to be studied: how can we include the coroutine and

how must it be constrained to fit the structured programming framework? The notion of

factored Icrmmation is separable from that of genera.ion; one can imagine a generative

specification of APL operations. In fact, Abram's work [AB] essentially emoloys a

generative implementation about which efficiency considerations are more easily made.

However, there is no way for the programmer to exploit a generative specification or

implementation of APL, for all operations are defined over finite arrays. Additionally,

APL's consistent extension to deal with unbounded sequences in any general way would

be non-trival. E3y separating lenglh-controllmg facilities for sequence generation from

their speci:ication, the issue of generation of results becomes fundamental in the

basis--programs may be written with infinite sequences in mind.

THE INITIAL BASIS 60

Choice of the cosequential operations over a recursive generation base represents

another major decision, largely independent of the others. The extent to which the

cosequential application of programs to data to produce a result sequence summarizes

operations over homogeneous sequences remains to be presented, as well as the extent

to which "corecursive" operations over non-homogeneous nested sequential structures

can be developed.

The major implication of this section lies in the development of a syntax with high

"combinatoric power", not in the particular sysntactic mechanisms used in examples.

The combinatoric power relates to extension facilities as well as to primitive operation

definitions. The decisions to use an operator language, a typeless language, a

nonstandard definition of the relationals, to apply the gotoless constructs as operators,

to rely on the "partially instantiated function", etc., all relate to concise combination of

operators. In fact, the cosequencing operators can be looked upon as "combining

mechanisms". In order to separate issues of syntax from semantics. Backus' work

[BA,1972,1973] encourages us to look upon the entire activity of programming as an

exercise in combinatorics. Although we do not ho'd this view (our operators are

derived from machine-oriented operations). Backup work makes it clear that

combinatoric considerations are important to language design. Insofar as possiblf;, we

wish to avoid syntactic issues for the remainder of this work, in order to concentrate on

the semantic issues of cosequencing and its relation to traditional data/control

structures.

"TT

CHAPTER III

RECURSION

The initial language baoK. adequately lummwizes many sequential operations on

data structures and the sequential creation of many honogeneous data structures. In

this chapter, non-homogeneous program and data structures are examined in an attempt
to describe more complex operations concisely.

It is important to notice that the basis at this point is computationally complete, for

the effect of a Turing Machine may be encoded easily (see Appendix V). Hence,

hereafter, the addition of operators to the basis represents efforts to obtain "difficult"

effects more easily. The approach is guided by common usage of traditional language

facilities not present in the basis, m conjunction with cosequential-generation notions

introduced previously; no attempt is made to duplicate the traditional facilities
themselves.

The primitives added hereafter must be considered even more tentative than those

in the initial basis, for more complex entitites are considered and

combinatonc/involutional problems expand exponentially. Additionally, issues

orthogonal to sequential considerations—viz. association mechanisms, atomic

representation issues, types, etc.--complicate on the more realistic problems arising

from non-homogenoous sequences. However, the extent to which they are bothersome

is reduced by careful selection of examples for presentation; i.e., the reader is led down
a "primrose path" in order to amplify the relevant issues.

We wish to deal with a broader class of nested-sequential structures than can be

handled easily with the initial basis. In particular, in the initial basis sequences

consisting of elements which may be cither sequences or primitives (non-homogeneous

sequences) must be dealt with via explicit "pulsing" of the data structures by the

program. The use of "car" and "cdr" in LISP constitute "pulsing" a list—see Chapter I,

for example. Analogous functions must be defined to deal with recursive structures in

the language basis (see Appendix VII for an example). If is exactly this pulsing which is

is eliminated for sequential structures by the cosequencing operators, and so we look

for cosequential recursive ("corecursive") operators to deal with non-homogeneous
sequences.

The task of compiler construction is considered as a motivation for corecursive

operations. A fairly standard breakdown of this task consists of functions—"lexemes,

RECURSION 62

syntax, code, output"--which, when applied successively to the input sequence produce
the translated program, viz.

inputseq lexemes syntax code output = compiled program.

Commo. ,y, the above program would be called a four pass compiler—one pass per
function applied to the arguments

The implementation of a compiler as a single pass over the input data is of frequent

concern to compiler writers. In such an endeavor, the breakdown above is retained,

but the functions are executed "cosequentially". In particular, assume "syntax" creates

a parse "tree" (in terms of "atoms" from the function "lexemes"), and "code"

(optimization) proceeds by considering successive "syntactic handles" of the tree [FG].

The program starts by attempting to "output" code. Initially, no code has been

produced, so "output" pulses "code" until it produces enough of a free--a statement, for

example--for which "output" can output code. Naturally, "code" has no input initially so

it calls "syntax" until it can produce enough handles for code to optimize. This process

continues until enough of the input sequence is read to produce enough lexemes that

"syntax" can generate enough tree for "code" to proceed with satisfying "output". The

process then cycles. That this process is "cosequential" is clear; however, the

structures with which we are dealing--trees—cannot be handled well with the primitives

from the initial basis. In what follows we shall exhibit cosequential operators for trees.

Recursion

In order to study recursive program and data -.tructures, a recursive definition
ability is added to the basis (temporarily). The gains represented by the cosequencing

operates of the initial basis are then considered briefly in terms of a recursive

formulation of these operators. It will be shown that the notions of cosequencing,
unbounded generation and factored termination affect such a formulation.

Although it would be possible to extend these notions to recursion—and include the

recursive definition capability permanently—we choose to limit the recursive structures

definable within the basis. This limitation parallels the way the gotoless constructs limit

the sequential structures definable in programming languages that lack the goto. Hence,

tHistorically, the notion of "pass" referred to the number of times the program had to

be read by the compiler until ultimately enough information was available to compile it.

Present day (large memory) machines have modified this to the number of complete

scans of intermediate representations the program undergoes during the compilation.

RECURSION 63

the existence of "recurcionlesr." constructs, analogous to gotoless constructs, is

postulated and studied in detail below.

We choose to (temporarily) install the recursive definition ability via introduction of

a quote operator, , which precludes operator body variable binding at operation

definition time. For example,

x f :: x 1 else (x-1 "f mul x) Ul

then represents the factorial function expreoed recursively (divergent for 0). Note that
it "f" were not quoted in the body, whatever previous definition of "f" exists would be

the appropriate reference. (Quoted names have the "normal" LISP binding, names which

are not quoted have the "FUNARG" [McC,1965] or Algol binding.)

To illustrate recursive definitions of "." and "/" we need two primitive functions,

"1st" and "tail", analogous to the LISP functions "car" and "cdr", respectively, when

applied to lists.

x id :: x;
x null :: <> gen;

list 1st :: list . <id> val;

list tail :: list . <null; id * gen>;

Given these two functions as primitive, we can describe "." and "/" (used as names

below) recursively:

s . q :: <s 1st (q 1st); s fail *. (q tail) ger,>; [2]

v / s :: <v (s 1st); v (s ht) 7 (• tail) gen>

This implementaion is inadequate in that no termination conditions are present. With an

additional primitive, "isemptyseq", the functions could terminate when "s" or "q" is
empty. By providing a mechanism for dealing with "quoted programs" (a desirable

provision) we could terminate contingent on escape function values. However, this

would still be inadequate, for unbounded sequences such as "+*.P" would never

terminate.

Providing a truly adequate evaluation mechanism is tantamount to implementing the

basis (considered in Chapter IV and Appendix IV). Essentially, a recursive coroutine

simulation is required; more arguments ar? required to each function call of "." and "I".

MriüMHHMMflM

RECURSION 64

Hence, a recursive implementation requires a significant amount of detail to simulate "."

and "/", and is less "natural" than the basis for modelling cosequential activity.

As we mentioned above, the ideas of cosequentiality and unbounded generation can

be extended directly to recursive functions such as [2]; we do so in a more constrained

manner below. The above discussion simply points out that it is no easier to implement

the cosequencing operators in the framework of a recursive language than in the

framework of a sequential language.

Notice, also, the use of "1st" and "fail" constitutes explicit "pulsing" of a data

structure by a program structure. For some programs in the basis, this explicit pulsing

is eliminated by the "." and "/" operators. Programs written in the basis in which

pulsing is required may be characterized as either "recursive" Or "codependent" (or

both). Two structures are "codependent" if they depend on each other functionally but

neither can be classified as functionally superior in importance. An "inventory file" and

a "manufacturing order file" exhibit signs of codependence. The necessity for such

structures arises when a function in an applicative language has no "clean" functional

decomposition. Such structures are considered in Chapter IV.

Recursive structures are characterized by potentially infinite nesting, as well as

some degree of "branchiness" (see "essential recursion" below). This infinite nesting

could arise either from (traditional) explicit recursive use of finite operators or from use

of potentially infinitely recursive operators analogous to "." and "/". The simple

extension described above handles the first case. For the second case, we will define

recursive analogs of "." and "/". These will have the properties of the corresponding

operators in the initial basis, permitting:

1. Unbounded cosequencing, and hence,

2. Factored and implicit termination, and

3. Factored data/program representation (non-pulsed data structures).

This chapter represents a search for recursive operations which are amenable to

the ideas of cosequentiality, unbounded generation and factored termination introduced

in the initial basis. In one sense, such a search is premature: the initial basis relies

heavily on the ability of the gotoless constructs to adequately summarize sequential

activity of programs. This point of departure is significantly more advanced than that

for recursion. We do not possess a set of "recursionless constructs" which adequately

cover recursive program activity in the same sense as the gotoless constructs cover

sequential program activity.

/

 ._.

RECURSION
65

Intellectually, this parallel between the goto and the recursive call is very

appealmg-multiply nested mutually recursive functions are easily as complex as

programs with "rats' nests" of goto statementst. Ideally, the definition of a set of

recursionless constructs wou'd lead to the elimination of a recursive function definition
facility in programming languages. Naturally, this elimination would complete the

removal of complex program-to-program pointers from programs, relegating function

call to a substitution process (which is is already required of any practical
implementation of the initial basis).

_ Thus, m what follows, we are faced with two separate issues: defining
recursionless" constructs and understanding the relationship of of the concepts of the

initial basis to these constructs. Unfortunately, our results m this area are only

suggestive"-we cannot propre a set of recursive operators which cover well all
instances of recursion (again, in the same sense as gotoless constructs cover well all
instances of sequentiality). It is not surprising that our results in this area are

incomplete, in view of the history of the development of the gotoless constructs, the
difficulty of expressing their operators in the basis, the constraints imposed by

requiring that they apply to data structures as well as program structures, and the

unbounded generation notions. However, we do feel that a search tor "recursionless"

constructs is a fruitful area for future research, and attempt to indicate an approach to
this problem in the following pages.

Sequential Functions on Recursive Structures

Two very common types of recursive algorithm are considered in initial attempts to
define recursionless constructs for the evaluation of functions on recursive structures-

top down" and "bottom up". From the recursionless constructs which arise from these
considerations, operators are derived for inclusion in the basis. The operators so

derived, although arising from q^te specific recursive algorithm types, are extremely

general when used in combination. Hence, at the end of this section they are related to
some very general recursive forms.

1. Top down recursionless construct

Although "top down algorithms" are very common, languages dc not generally

contain constructs which permit their concise specification or explicit identification as

such. When one refers to a "top down" evaluation procedure defined on a tree

(arbitrarily nested sequence, in this context), some function is applied to the root node

tArbitrarily complex programs using gotos may be simulated with procedure calls
[vW,1966].

^^mm^m^rm^ p^^^^w^"- ^■" -■■

RECURSION 66

before any function is applied to its subnodes. This may be expressed recursively m %

the bas's as:

t topciown ;: t fd . ('topdown *) [3]

whc re "td" is the top down function applied. For example, if

t td :: <t 1st; t val>

then the tree argument ("t") is simply trimmed by the top down function:

«l;?i3>; 4; <5;6» topdown

s «1;2;3>; 4l <5f6» td . C'topdown *)

5 «1;2;3>; <5;6» . (topdown *)

a «1;2;3> topdown; <5;6> topdOwn>
5 «1;2;3> td . (topdswn *); <5;6 ■ td . (topdown *)>

■ «i|3* . (topdown *); <5;6> . (topaown *)>

This example will not terminate (ex')t ptrhaps from an error of attempting to coapply

an integer to a sequence).

Hence, some termmat-n predic '? ("tp") is used to decide whether to continue the

recursive algorithm, and a termination function ("tf") is applied when the recursion halts

along any path in the structure; i.e..

x topdown :: x tp then (x tf) else (x td . ('topdown *)) [4]

Of course, this is a very simplified version of a topdown algorithm, for there may be

multiple arguments, mutually recursive topdown functions, etc., and, in fact, normally

some information is passed down as recui "ion occurs. The<^ will be considered in some

detail later in this section. However, HM relationship of the recursive control to the

invoked function is captured by this formulation.

Normally, the notion of a "top down" algorithm implies that the result of the top

down function itself is related to the Original node; i.e., "td" acts as a selector of a

sequence of subnodes. By not insisting on the selector relationship, the functions

tAI this point we may drop the quote (","), for the function "topdown" (in this case) is

now defined.

■ —

^51»«

RECURSION 67

above {[3] and [4]) are, in fact, too general to represent top down functions constrained

to trees, ^his generality is convenient, for it provides a broader notion of top down

algorithm which is constrained not to trees, but rather to a control structure which is a

tree. This models the intuitive notion of top down algorithm very precisely. If this

tree-like control strucure arises from application of a top down algorithm to a free, the

nodes of the control structure will correspond to the nodes of the argument tree. A
notion of "corecursion" is emerging.

Despite the objections to the form [4], we can attempt to define a recursionless

construct for an Algol-like, higher-level language. Its syntax might appear thus:

<recursionless construct ;:■
topdown <control vflriable><-<initial value>
termination specitication>
do <top down function body>;

[5]

termination specification> ::= termination part> application part>

«termination part> ::= ■'empty>

/ until <termmation predicate>

/ while <termination predicate>

application part> ::= <;empty>

/ whence <termination function>

where the correspondences; "fp" with termination predicate^ "tf" with termination

function>, "td" with <top down function body>, are only approximate. (Empty

alternatives for the termination part> are to permit a default interpretation for these
constructs.)

Although semant,.3 of such a construct would be very language dependent, the

construct itself is to be included in an expression language, and the language must be

equipped to deal with lists. Then the value of the <top down function body> must be a

list. Recursion will occur on each element of the list produced by the <top down

function body>. (These elements are normally themselves lists.) The control variable

takes on the value of the current subnode at any point in the recursion, and the

variable is available for reference in the various parts of the construct. Before

recursion occurs on any node in the structure, the termination predicate is tested.

When satisfied, the action of the termination function takes place; otherwise, recursion

occurs. For example, a function which adds "3" to the terminal nodes of a tree, "T",
might be written;

RECURSION

■HM

topdown t<-T until atom(t) whonco t*-t+3 do t; [6]

A more complex function, which does ti e same only to nodes arising from the first and

third branches from each node, could be written:

topdown t<-T until atom(t) whence t<-t+3

do concatenate (t[l],t[3]).
[7]

The nature of the created value would be particularly language dependent--i.e. the

construct might be modifying a recursive data structure as intended in [6] and [7], or it

might be creating a new one. Several constructs may be necessary to cover these
interpretations.

At this point we have a recursionless construct; before proceeding to the

development of others we consider the problems involved in putting such a construct

into the basis. Clearly, we would not include it directly, but would rather reformulate it

as separate operators dealing with the various portions of this somewhat
command-oriented syntactic construct.

In order to do so, we examine the loop construct of Algol-like languages and note

the aipect, which allowed its factorization and subsequent inclusion in the basis. A

raditional predicate based construct, the for statement, consists principally of:

for <variable>'-<exp> [until/while] termination predicaie>
do <loop body>.

This construct takes on several different forms in the basis depending on whether the

variable is used to count, accumulate, or index, but invariably the termination predicate

is separate from the loop in another (cosequential) loop in which one of the escape

operaicrs is used, or else the termination is implicit.

Naturally, we would like to retain the separation of termination from a recursive top

down operator. For the moment, we ignore the various relations of coitrol variable to

top down functiont. We can then consider including a top down operator in the basis,
"i", which will accomplish the top down recursion between a tree "t" and right-unary
function, "td";

t I td :: t td . {'i td *) [8]

A natural implicit termination condition is that recursion has reached a primitive node
(integer, character, etc.).

/

 - ■ .

RECURSION 69

However, we are then left with the problem of the termination functions If we
default this to the identity function ^agam temporarily), we can then write some

reasonable top down functions. For example, using the "tail" function defined above,
we have:

<1; <3;5i7>i 9> 1 tail

= <1; <3;5;7>i 9> tail . (i tail*)

= «3;5;7>; 9> . U tail *)

= «3;5;7> i tail; 9 i tail>

= «3;5;7> tail . (i tail *); 9>

= «5;7> . (i tail *); 9>

s «5 1 tail; 7 i tail>; 9>
= «5;7>; 9>

which is the tree with all initial sub-nodes removed.

A more complex function which selects only the odd sub-nodes at each node is:

t oddsn :: t I (.(<idi null> gen *))

For example,

<1;<2>; <3i 4; 5>; 6; <7» oddsn

= <1; <2>; <3;4;5>; 6; <7» . <id; null; id; null...>. (oddsn*)
= <1; <3;4;5>; <7» . (oddsn*)

= <1 oddsn; <3; 4; 5> oddsn; <7> oddsn>

■ <ij <3;4;5>.<id; null; id; ...>.(oddsn *);
<7>.<id; null...> (oddsn *)>

s<l;<3;5>. (oddsn *); <7> . (oddsn *)>

= <1; <3 oddsn; 5 oddsn>; <7 oddsn»
■ <ll <3;5>; <7»

[9]

tThroughout this section, the top down operator is generalized (through redefinition) to

enable effects which would be obtained through the use of a control variable. Do not

be misled by the constrained nature of the first few definitions of the top down
operator.

■ " .ti vm*mm—*mmimmim'***'*****—m*wmm*miwmmir'

RECURSION 70

Hence, we have a viable implicit termination mechamom. The problem of application

of the termination function (the "whence" clause in [5]) can be surmounted to some
extent by the introduction into the basis of primitive predicates:

x atom? s x if x is atomic (primitive), nil otherwise;

x seq? H x if x is a sequence, nil otherwise.

If it is desired to apply f jnction "tf" to the implicitly terminal nodes, we can rewrite the

top down function to do this. For example, in the tree with initial nodes removed [9], if
it is desirable to add one to the terminal nodes, we may write:

x auxf :: x atom? +1 else x

Then,

<1; <3;5;7>i 9> i (tail . (auxf *)) [10]

H <1; <3;5;7>; 9> tail. (auxf*). (1 (tail . (auxf*))*)
= «3;5;7>; 9> . (auxf *) . (1 (tan (auxf *)) *)

= «3;5;7> auxf; 9 auxf> . (i (tail . (auxf *)) *)

= «3;5;7>; 10> . (i (tail . (auxf *)) *)

5 «3;5;7> ((tail . (auxf *)); 10 1 (tail . (auxf *))>

= «3;5;7> tail . (auxf *) . (i (tail . (auxf *)) *); 10>

s «5;7> . (auxf*). (I (tail, (auxf *))*); 10>

s «5 auxf; 7 auxf> . (1 (tail . (auxf *))*); 10>
= «6;8> . (J. (tail . (auxf *)) *); 10>

= «6 | (tail . (auxf *)); 8 1 (tail . (auxf *))>; 10>
= «6;8>; 10>

However, this skirts the termination function issue to a large extent. Both the

termination predicate and the termination function are troublesome. In the following

section we generalize the top down function somewhat, and approach the problem of

termination in greater detail, for the issues involved have analogs in the initial basis and
are related to the coroutine notions of Chapter IV.

2. Top down reexamined

We may summarize the problems with our attempts to express the top down
mechanism of the preceding section as operators in the basis:

--■■-- ■■ ■--

mmmmmm»

RECURSION 71

1. Termination is necessarily implicit;
2. The termination function had to be applied from within the top down function

itself;
3. The termination function could not itself produce a sequence—otherwise, the

top down mechanism would have continued to be invoked.

Additional problems remain, related principally to the <variable> portion of the

recursionless construct specification. In the gotoless loop constructs, several

constructs were required to replace the control variable—the use of "." and "/" as well

as some functional tricks frequently applied to the positive integers, "P". These

problems occur within top down control, also, although they may be subverted through

encoding tricks to a large extent.

To illustrate, a top down func' on, "f", which replaces each terminal node ("n") of a
tree "t" w th the length of the longest sequence of which "n" is a subsequence is

programmed below-'":

i max j :: i gt j else j;
i merge s :: s seq? then <i; s gen> else i;
t tdf :: t length - 1 max (t 1st) merge * . (t tail);

t f :: <0; t gen> i tdf

Clearly, the recursive implementation is more concise and intuitive:

t aux len :: t atom? then len
else (t . ('aux (t length max len) *));

t f :: t aux 0

[11]

The failing Is a natural one common to r ^cursive functions restricted to a single

argument—secondary arguments must be encoded. In the material below, top down

functions for more than one argument are developed. Also, some of the objections to

the previous top down function are removed.

tThat is, with the degree of the node of highest degree on the path from the root to

"n".

(i

mmrm

RECURSION 72

Presently, a top down function is developed which represents a recursive function

defined on a single argument but which is a simple extension to the previous top down

function and which permits some multiple argument recursion effects quite easily. It

essentially involves the notion that recursive control can be imposed on a sequence of

functions instead of a single function, "td" A vertical relationship between the nodes of

a tree and the elements of the program sequence is established; viz.

Tree Program

In particular, the top down function above [8] is redefined as:

t i fs :: t (fs 1st) . H (fs tail) *) [12]

Recursion terminates when the function sequence terminates or when t is atomic. The

ability to terminate the sequence of sections ("partially instantiated functions") permits

termination prior to the ad hoc nodes of the tree. Also, the depthwise orientation of

the function sequence application allows some effects that would require either multiple

arguments to the recursive function or mutually recursive functions. The former effect

is illustrated telow by a function which trims its argument tree by going no deeper than
"n" levels, replacing the nodes at level "n+1" by the number ^10000:

x lid y :: x;

x rid y :: y;

t depth n :: t i <lid * . (n pos) gen; rid 40000>

For example,

<1; <2; <3;4>; 5>; 6> depth 2

= <1; <2; <3;4>; 5>; 5> I <lid * . <1;2> gen; rid 40000>

= <1; <2; <3;4>; 5>; 6> 1 <lid 1; lid 2; rid 40000>

= <1; <2; <3;4>; 5>; 6> (lid 1) . (i <lid 2; rid 40000> *)

■ <l 4 <lid 2; rid 40000>; <2;<3;4>;5> i -,id 2; rid 40000;
6 i <lid 2; rid 40000»

s <1; <2;<3;4>;5> (lid 2).(i <rid 40000> *); 6>

s <1; <2 i <rid 40000>; <3;4> i <rid 4000>; 5 i <rid 40000»; 6>

 - — - - ..- . .

RECURSION 73

<1; <2; <3;4> rid 40000; 5>i 6>

<1; <2; 40000; 5>i6>

The recursive function which it replaces requires either two arguments (for fixed
"n"), or use of the messy encoding scheme presented above in [11]:

t auxf d :: d gt n then 40000

else (t atom? else (t . ('auxf (d+1)»)));
t depth :: t auxf 1

Hence, a very simple aspect uf multiple argument recursive functions is captured by the
(final) reformulated top down function [12].

A more important aspect of recursive functions permitted by the

sequential/recursive top down function is the ability to define mutually recursive

functions by alternating the operators applied in the top down sequence. For example,

when dealing with "and/or" freest, it is normally the case that different types of nodes

are treated differently. Given such a tree, "aot" ("or" node at root), we can program a

function which selects t> first alternative consistently (at each "or" node) as:

aot basetree ;: aot i (<lst; id> j;en *)

A canonical recursive formulation would be best written using mutually recursive
functions:

aot and :: aot atom? else (aot . ('or *));

aot or :: aot atom? else (aot 1st and);

basetree :: or

Inasmuchas "td" is a sequence, we can consider the effect of allowing escape

functions in the sequence. Although several choices for the meaning of an escape are

possible (terminate recursion, terminate use of any successive elements of the function

sequence throughout the remainder of the tree) the most reasonable seems to be to

terminate the sequence along the current path only. That is, recursion is terminated for

tAnd/or trees are frequently used in game-playing applications, syntax tree

representations, theorem proving systems, etc., [NI] where problems can be formulated

on the mutu'al occurrence (and) of choices from a set of alternatives (or).

RECURSION 74

the particular node m quPition, but for no others. For example, the function "trim" in:

s L p :: s length p then s;
t trim n :: t i (L (le n) exs f *)

would apply "f" to each subtree until it reaches subtrees whose length (i.e. "order" or
"node size") exceeds "n".

The value nt the terminated node can be defined as the node which caused the

escape in the case of exs and the function value (operand) of txs. Thus, the above

example terminates recursion with the nodes whose length exceeds "n". The original

recursionless construct [5] should probably not be extended to approximate the

embellished top down operator, unless an analog were introduced for loops. In

particular, one could imagine the do loop consisting of a sequence of loop bodies,

successive elements of which are used as the loop is pulsed. Although the possibility

should not be ruled out, such a construct seems a rather unlikely candidate for inclusion
in most languages.

At this point there are three problems with the top down operator:

1. The terminal function (If" m [4]) must be applied by top down in an awkward
manner (see example [10]);

2. Binary argument recursion requires encoding techniques (see example [11]);

3. We have not achieved a separation of termination from top down generation,

and, in fact, are unable to terminate well other than with atomic nodes-- i.e.
implicitly.

Presently, we discuss two more top down operators which alleviate problems 1 and 2,

which further develop the notions of cosequential/recursive generation, and which

relate very directly to the initial basis. Their development helps to illuminate the third
problem.

3. Top down coapplication

To reiterate, the definition of the top down operator with termination condit

t -L td :: td emptyseq then t else

(t atom? else (t (td 1st) atom"')

else (t (td 1st) . (U (to tail) *)))

ions is:

RECURSION 75

In particular, we never recur on atomic nodes. This has the beneficial effect of not

requiring the top down functions to be defined on both sequential and atomic

arguments. However, it requires the messy implementation of [10] whenever we want

to recur on atomic nodes or when we simply wish to apply a terminal function "tf", to
the atomic nodes.

Notice that if we rewrite the top down form as hough there were no implicit

termination (other than not to recur on atoms produced by the "td" functions) we have:

t -I td :; t tp then (t tf)

else (t (td Ist) atom')

else (t (td 1st). H (td tail) *))

If "td" sequences are defaulted to the identity sequence, "id *", we have simply:

t i<id«)a1 tp then(t tf)

else (t . Cl (id •) *))

We could then consider merging the termination predicate and function, which seems

quite consistent with the combinatonc nature of the basis-i.e., we could define an
operator:

t ! tf :: t tf else (t . ('! tf *))

This would terminate recursion when "tf" returned a non-empty value, with that value.

Otherwise, recursion would proceed on each eltment of the argument sequence, "t".

However, this eliminates nil terminal nodes and propagates the problem we are trying to

eliminate: the "tf" function must then be defined on both sequences and atoms. Hence,

an alternative formulation, applying the function "tf" only when the node is atomic may
be considered:

t ! tf :: t atom? then (t tf)

else (t . ('! tf *))

This do-!s permit terminal function application to atomic nodes, which is one problem we
intendeo to solve. In particular, example [10] may be rewritten:

t I (tail *) !(+ !)

-— -- ■ -

RECURSION 76

The extension of the above operator to allow a sequence of terminal functions as

the right argument is consistent with "1", and provides the same multiple

■argument/mutual recursion capabilities as it does in the original top down function.
Hence, the top down "coapplication operator", "!", is defined:

t ! tf :; tf emptyseq then t eise

(t atom'' then (t (tf 1st)))

else (t . nuftail)*))

[13]

(Throughout this chapter, the use of nil as an element is restricted because we are

using tne language itself to fescribt the effects we want m the language. Presumably
an implementation would be more careful about such a restriction.)

For example, if we wish to replace all terminal nodes with their depths in the tree,
we may writ',1:

t ! (rid * . P)

and, hence,

<1; <3;7>; 9> ! (rid » . P)

■ <1 rid 1; <3;7.> ! <rid 2; rid 3; ...>; 9 rid 1>
s <1; <3 rid 2; 7 rid 2>\ 1>
■ <1; <2;2>; |>

The potation T arises from the correspondence between this function and a
"vertical" coapply operator; the cosequential correspjndence between the depth of the
argument tree and the section's index in th« "tf" sequence is apparent.

4. Top down accumulation

The second problem we wish to solve is that of binary argument recursive
functions. We do not solve it entirely here, but develop the top down accumulation

operator, "V", to relate one aspect of the multiple argument recursive function to the
rest of the basis.

Frequently, top down functions act as accumulations, with the accumulation sequence
branching recursively to the subnodes. For example, the function [11] (rewritten here

as [14]) defines a tree, each terminal node of which is the length of the maximal
sequence (node size) of which it is a subnode in tree "t":

- —_______^—_—.—

RECURSION 77

t f maxel :: t atom? then maxel else

t . ff (t length max maxel)*);

t maxltree :: t f 0

[14]

The accumulated value is the maximum of the length and the accumulator--"maxel" in
this case.

Notice that this effect cannot be obtained using the final top down function [12], for
Mie right argument passed ("maxel") depends on both "t" and "maxel". In addition, the

topdown recursionless construct above [5] does not pei nil a multiple variable

capability. Before introducing an operator into the basis to accomplish this effect, we

can consider extending [5] to obtain the effect in the traditional language

"recursionless" cnstruct, An effective, simple method for allowing it would be to let

local variables -'efined in the <top down function body> be propagated in the recursion.

Initial values would have to be set in the declaration and the value retained when

recurring. The above function could be written:

topdown T«-t until atom(T) whence maxel

do begin

integer maxel ■ 0;

maxel *- max (length(T), maxel);

T

end.

Naturally, this mechanism would also be very language dependent, and a separate
phrase may be preferred for the accumulator specification and subsequent value.

The operator we are about to develop for obtaining this effect is related to the way

multiple variables are handled in the initial basis with iterations. In particular, in the
initial basis a form of accumulation which occurs frequently is:

iv / (fs . s)

It occurs so frequently that it is reasonable to attempt to make an operator which

depsnds only on "fs" and "s" which acodmplishes the effect; e.g.,

fs reduce s :: fs functionzero / (fs . sV

where the initial value depends on the function itself. Another possibility is to simply

write the function and have its value be a section:

' /

RECURSION 78

fs reduce s :: / (fs . s)

Yet another is to insist that the function sequence have the initial value as its first
element:

fs reduce s :: fs 1st / (fs tail . s)

Any of these operators could enter the t^sis, or could perhaps replace the
acLumulation operator of the basis. The top down accumulation operator is an analog
of the last choice:

t V td :: t atom? else (td . <id;id> length = 1)

then(td Ist)

else (t . TV <t (td 2nd) (td Ist); td drop 2> ♦)

where

s drop i :: s . <i head (null *) gen; id * gen>

The accumulation taKes a tree argument, T, and a sequence of binary operators, "td",

preceded by the initial value of the accumulator. These functions are applied to the

non-terminal nodes and the current value of the accumulator. When the function

sequence terminates or the tree node is atomic, the accumulator replaces the terminal
node in the result.

The function defined above [14] may then be written:

t maxltree :: t V <0; length max * Ren>

For example,

<1; <2;3;4;<5;6»; 7> maxltree

* <1| <2;3;4j<5;6»; 7> . (V < <!; <2;3;4;<5;6»; 7> length max 0;

length max * gen> *)
£ <1 V <3; length max I gen>;

<2;3;4;<5;6» V <3; length max « gen>;
7 V <3; length max * gen»

* <3; <2;3;4;<5;6» . (V «2;3;4;<5;6» length max 3;
length max * gen>*);

3>

5 <3; <2 V <4i length max * gen>; 3 V ...; 4V ...; <5;6> V ...>; 3>

RECURSION

= <3; <4;4;4; <5;6> . (V «5;6> length max 4; length max * gen>*)>; 3>
s "^ <4^i4; <5 V <4; length max * gen^

6 V <4; length max * gen»>; 3>
■ <3; <4;4;4; <4;4»; 3>

The accumulation operator is the most tentative of the top down operators

introduced, for the operation never applies to terminal nod-s and the association of the

initial value with the function sequence is distasteful. However, .t is clear that a

relationsh.p exists between cosequential accumulation and top down accumulation, and,

in fact, the basis should ultimately be reformulated to emphasize this consistency'
There is a similar relationship between "| 4 td" and "iv / fs". More extensive study
along these lines is necessary before a concrete reformulation can be maoe.

5. Summary of top down operators

At this point a top down "recursionless" construct has been sketched for use in

tradit.onal Algol-like languages. The construct arises from pragmatic considerations of

how recursion is frequently used to generate a recursive structure. From this

construct (and imagined extensions) several top down operators--"!, !, and V"-have

been defined, which have implicit termination facilities and which relate effects obtained
using the recursionless construct in conjunction with its control variable.

These effects are analogous to those obtained in factoring the loop from gotoless

languages, and the top down operators are directly (vertically) analogous to the various

forms of usage of accumulation and coapplication from the original basis. The side

benef.ts of simulating mutual recursion and multiple argument recursive functions arise
from these operations.

The only serious problem concerns "corecursion", insofar as termination of top down

generation .s not factorable in the same sense as is sequential cogeneration. More
precisely, an implementation of:

s . fsl . fs2

is able to pulse generators for V, "fsl" and "fs2" in a loop, apply the functions and
pulse all three again. The same is true for T;

t I fsl ! fs2

We can recur to the first terminal node, pulsing at each recursion level both "fsl" and
fs2", applying the resultant function, etc. This is permissible because:

RECURSION 80

t ! fsl !fs2 B t !(fsl . fs2)

However, this association is not possible using 'T or "V", for

t i fsl i fs2 is not s t i (fsl . fs2)

and hence, if "fs2" is a termination function (a tree trirrimer) we cannot obtain the ef ect

of tht cosequential application. This is not the case with iterative accumulation—it an

be executed cosequentially with coapplied or coaccumulated functions. The problem

arises from the lack of a result definition which is defined "stage-wise" with recursion.
For example, the function:

«0>; 1; <2» i (. (rid *) . < «0>i 1; <2»; 1; «()>; 1; <2» >) [15]

first defines

«<0>; 1; <2» 7; 1; «0>i 1; <2» 7>

and recursion will occur where the Ts have been placed. The second level of
recursion will generate:

< <«0>; 1; <2»7; Ij «0>; 1; <2»7.>;

1;
«<0>; 1; <2»7i If «0>j 1 <2»7> >

Because there is no intermediate representation of these stages of recursion analogous

to the stages in iterative accumulation, infinite generations cannot terminate in the same

manner. (In essence, it is as though accumulation were defined as the val of its current
definition; the accumulation sequence per se would then be inaccessible.)

Although we can deal with this problem in terms of coroutines (see Chapter IV), a

development which makes the various stages of the recursion part of the result would

be preferred. We simply do not see how to do this currently, but believe it can be
done.

6. Bottom up

A second candidate for a "recursionless" construct is a "bottom up" operator. In

developing a bottom up recursionless construct we proceed exactly as with the top

down operator. A bottom up algorithm is frequently explained in terms of "reducing the

MMMMaMMMMMMlMM

RECURSION
81

handle" of a tree, in the jargon of translator writing formalists [FG]. In essence, a

function is applied to and replaces the deepest nodes in a tree before it is applied to
their superior nodes.

A recursive formulation of such an operation for a tree "t" may be expressed:

t f :: t tp then (t tf) else (t . ('f *) bu) r16]

A recursionless construct for such a form in an Algol-like language could be:

<recursionless construct ::=

bottomup <variable> «- Recursive structure>
■«termination $pecification>

do <bottom up function body>.

Again the <variable> refers to the entire subnode within the body, predicate and

termination function, but the structure must be a tree (unlike top down operators,

where any value which causes a sequence to be generated is acceptable). This'

requirement arises simply because the operand structure must initially contain terminal

nodes; a bottom up algorithm cannot generate the structure to which it is applied; the

top down algorithm must. For example, a bottom up operation which sums the elements
at the terminal nodes of a binary tree, T, might be written:

bottomup T*-t until atom(T) whence T do T[l]+T[2].

In developing a bottom up operate for inclusion in the basis, we proceed as with

the top down case, by defaulting the termination predicate to "atom?" and introducing a

sequence of bottom up operators or "sections". The bottom up operator, "T", may be
written:

t T bu :: t atom? else (t . ('T (bu tail)*) (bu 1st)) [17]

It retains the correspondence between function sequence index and tree node depth as

before. However, the last element of the sequence (corresponding to the last terminal
node) is applied first.

A recursive evaluation procedure which sums the elements at the odd depths of a
binary tree, and takes their difference at the even depth-, may be written:

s sum :: s 1st + (s 2nd);

s diff :: s 1st - (s 2nd);

 M

 ——

RECURSION
82

t sumdif :: t T (<sum; diff> gon *)

For example,

<1; <2; «3;4>; 5»> t (<sum; diff> gen »)

= <1; <2i «3;4>; 5»> . (T <diff; sum; diff...>*) sum
■ <1 T ...; <2i «3;4>i 5»T<diff; sum; diff...» sum

a <1; <2; «3;4>; 5» . (T <sum; diff; sum.,.>*) diff> sum

= <1; <2 T ...j «3;4>; 5> t <5um; diff; sum...> >diff>sum

■ <1; <2; «3;4>; 5> . (T <diff; sum; diff...>*) 5um>diff>sum

= <1; <2; «3;a> T <diff; sum; diff...>; 5 T ...>sum> diff> sum

s <1| <2; «3;4> . (1 <sum; diff; sum...> *) diff; 5> sum> diff> sum
* <1; <2; «3 T ...; A T ...> diff; 5> sum> diff> sum

s <1; <2; «3;4> diff; 5> sum> diff> sum
■ <1; <2; <3-4; 5> ;um> diff> sum

■ 1*{2- ((3-4) + 5))

[18]

Although termination continues to be a problem, it is clearly a separable problem: both

top down and bottom up have the identical termination part> specification in the
recursionless constructs. In particular, the T operator permits application of the
termination function for both operators, separably.

A more general form of bottom up operation allows the recursive traversal of the
argument tree and the subsequent possibility of retaining the original node as well as

the bottom up value at each level of recursion. The recursive form below allows the
bottom up function to be binary:

t f :: t tp then (t tf) else (t . ('f *) bu t) [19]

Notice that in the expression [18] the action of the bottom up function has meaning

even if the operators "sum" and "diff" had been bmary. In fact, this is permitted, the

bottom up function is defined as [18] exemplifies, for binary functions. That is the

"tree" of "sections" defined by the bottom up form [17] is the value of the operator

when the sequence of functions consists of binary functions. A section so defined will
be referred to as a "recursive section".

To obtain the effect of [19], the bottom up function is extended to allow one of its

arguments to be a recursive section (instead of a sequence of sections). The structure

of the recursive section participates in the operation in the following way. The tree

/

RECURSION 83

structure of the argument to the section must be identical to the other argument tree

(or have a terminal node where the argument tree does not). The functions are then
applied bottom up to the corresponding pairs of nodes.

For example,

<a; <bi c» T (f *) T <q; <r; <s;t»> [20]
s <a; <b;c>f>f T <q; <r; <s; t»>

s <a; <b;c> f <(; <s; t>» f <q; <r; <s; t»>

In one sense, the "recursive section" it, the only truly recursive representation for a

"program" we have dealt with. In particular, each of the recursive operators imposes a

recursive interpretation on sequences >f functions used in a recursive control context.

The recursive function, by contrast, contains the recursive structure explicitly. Later in
this chapter we deal with the significance of this structure more fully.

More general forms

The top down and bottom up operators mimic the standard notions which they

represent. Not to belie their significance when used alone, it might appear as though a

plethora of "recursionless constructs" are required to cover recursive functions in

general. That is, one might feel significantly constrained were the recursioness

operators used in lieu of recursion in the basis-much more so than with the gotoless
constructs.

We do not feel this should be so, and divert our attention to recursion in general,
momentarily, to substantiate our convictions. We are primarily interested in two
questions:

1. When is a recursive algorithm preferrable to a sequential equivalent?

2. What aspects of recursion are not captured by the recursionless operators?

To approach the first question, we notice that it is not the case that all functions
defined on recursive structures need themselves be recursive. For example, if a

sequence "s" is a path in a tree (a sequence of successive indices of subnodes), the
node at the end of the path in tree "t" is:

t / (sub * . s) val

A recursive formulation is unneceisary:

RECURSION

x f p :: p isemptyseq then x

else {x sub(p 1st)'f (p tail)):

The point is simply that recursive data structures do not necessarily require ;ecursive
accessing functions.

The recursive implementations of "." and "/" [2] demonstrate that recursive control

structures need not Jeal with recursive data structures. In Chapter II (p. 56) a

recursive schema was presented which was also not "essentially recursive"; however, a

brief study of that schema is in order. It may be reformulated without termination
conditions in terms of the basis as follows:

x f :: x td 'f bu / [21]

This function nay be written iteratively as a double accumulation:

x f :: terminal-value/(bu*.(x/(td*) reverse))val [22]

whene "terminal-value" and the termination of the mrer accumulation depend on the

omitted predicate and terminal functions. In essence, the reverse of the top down

accumulation is the "argument stack" sequence, which is then an argument to the bottom
up accumulation sequence.

In effect, no control information is needed in the stack—that is, the return point

position is fixed. We therefore say the function is not "essentially" recursive. Indeed,

the recursive implementations of "." and "/" [2] are of this form, and the iterative

definition is preferred. (Both would puKe the sequential arguments, but a recursive
implementation wastes "stack space" by storing a constant return point.)

Only a slight modification to the schema is required to produce an "esentially"

recursive function—one in which the bookkeeping of the return point is non-trivial and

justifies a stack implementation. Consider a recursive function whose body contains
several recursive calls:

x f :: ...'f ... 'f ... f.

In fact, this form of function is "essenüally" recursive, for the context of the call (the

bookkeeping of the return point) is non-trivial (it would be very difficult to do

iteratively—in fact, it would require pulsing a data structure via "push" and "pop"

primitives). These calls are either multiply recursive-i.e. f(gl(f(g2(x))))—, or they may

be executed independently, dependent on context-i.e. bu(f(tdl(x)), ... , f(tdn(x))).

MwhüM

RECURSION 85

A stronger generalization would permit the recursion to occur within a loop. This

form would also be "essentially" recursive, for the bookkeeping of the loop indices at
the various levels of recursion would be non-trivial.

Both cases (excluding multiply recursive calls) require that recursion occur in some

sequence within the recursive function body. Thus, a more general recursive

form-and, indeed, an essential one, may be derived (again without termination
conditions);

* f :: X td . ('f * bu x) r^l

Notice that, for td 44 (the left identity function), x f is a combination of the bottom up

forms and for bu £ lid (a left identity ignoring its right argument), x f is a top down
accumulation form:

x id . Cf * bu x) s x T (bu *) T x;
x td . ('f * lid x) 5 x i (td *)

But notice particularly,

x td . ('f * bu x) = t T (bu *) T (x i (td *)) [24]

where t is a function of "'xiad*)" and the termination function--e.g. "x i(td*)!(tf*)".

That is, the quite general recursive form [23] is equivalent to a separable application of
.he top down ..md bottom up forms.

The "double accumulation" analog between [22] and [24] is particularly striking. It
is as though the top down form were an accumulaton which branches at each subnode

(forks) and bottom up is a "merging" form of accumulation (joins). Both forms are
"essentiallv" recursive, for a stack is required for the index of the loops in [121 and
[13]. J

Actually, more general forms involving multiple arguments and mutuallv recursive

functions are obtainable. In particular, if we introduce a new notation to allow mrltiple

arguments (in excess of two) to operators, we can demonstrate the extreme complexity

of functions which can be composed using the recursionless operators. The notation
simply requires multiple arguments to be in brackets. Both

[a;b] f c :: body

RECURSION 86

and

a f [bjc] :: body

represent three argument operators whose calling sequences are:

[actual-1; actual-2] f actual-3

and

actual-1 g [actual-2; actual-3],

respectively.

The function,

t f [td; tf; bu] :: t i td ! tf t bu [25]

is equivalent to the recursive implementation:

t f [td, bu, tf] :: t rf [td 1st; tf; fd tail; bu] [26]

t rf [ace; tf; td; bu] ::

(tf emptyseq else (td emptyseq) else (bu emptyseq))
then t

else ((t atom?) then (t (tf 1st)))

else (t . (Vf [t (id 1st) ac; tf tail; td tail; bu tail] *) (bu 1st))

This is indeed a fairly general recursive form, and the implementation of the function

does not even include the effects of escape functions in the recursive programs!

The application of corecursive operators should not be implemented

sequentially—that is, the top down operator should not be applied to the entire tree

before proceding to apply the next top down operator, etc. In fact, the functions [26]

should be the implementation for the function [25]. The "recursionless" operators are

clearly "corecursive" in the same sense as functions of sequential objects using
coapplication and accumulation are cosequential.

/

MiiiMliiMaMMaHMMniaii

RECURSION 87

A Recursive "*"

Although the corecursive operators may be used to replace the recursive functionr,,

it is no' clear that the basis contains any "recursionless constructs" analogous to the

"gotoless operators" of the initial basis. In particular, we can draw the following
parallels between the sequential constructs and recursive constructs:

1. Constant representation: <1;2;3> sequence and <li<3i5>;<9i<6>;7» tree;

2. Cosequential/Corecursive: "." & "!" and "/", "V" t 'T;

3. Gotoless/Recursionless: "*" and ?.

There is no obvious potentially infinite recursive form to correspond to the potentially
infinite sequential form, the loop.

In fact, the corecursive operators impose a recursive interpretation on sequences of

functions; the unbounded recursive elements to correspond with loops arise from using

loops on funtions which (sequences) are then interpreted recursively by the corecursive
operators.

The correspondence between the corecursive and cosequential constructs can be

emphasized much more strongly if the loop is considered to be a form of "quote"

operator. To understand such an interpretation of the loop, consider the expression

s . <1;2;3> . p

If it is desired to suppress the "normal" action of cosequencing the sequence "<1;2;3>",
the loop operator is used, viz.

(<1;2;3>*) . p [27]

"Quoting" is generally understood as the act of suppression of the normal interpretation,
and hence, "*" may be viewed as a "quote" operator of sorts.

Now, if the corecursive operations were modified to "coapply" two recursive

structures, instead of using the interpretation between sequences and trees imposed in

the definitions above, the notion of a recursive "quote" in the same sense as for "*"

arises. For example, in the bottom up operator discussion, it was convenient to define

a "recursive section" consisting of a sequence of binary operators applied (bottom up)

— _

P.l.JUJJ """l^^^^^^"— ■ ii ii || ai ■ ii i ■- ^mm^^^~^~^^ i • i ^—m*~mmi

RECURSION
M

to a recursive data structure (see [19] and [21]). if the top down operations were

defmed analogously, a recursive quote "8" could be defined which imposed the recursive
sequence structure used above. That is, to obtain the e'fect of:

t t (ev *)

we would have to write

t T (ev * «)

to suppress attempt", to interpret "ev*" as a recursive form, just as V suppresses
attempts to interpret its argument as a sequential form.

This presents a more unified view of corecursion and cosequentiality, for now we
can consider the effect of recursive "data" structuring using the recursive quote, "S"

Previously, the interpretation of the sequence of functions was accomplished by the

corecursive operators themselves; .e., recursive interpretations of sequences were

confined to sequences of functions. With the recursive quote X-a true recursionless

construct-, fences of "data" can be considered. That is, we can define a function on

the recursive representation, relying less on whether it represents a program or data.

This notion represents the fringe of our understanding of the recursionless
constructs' interactions with the language basis. Obviously, several different recursive

quotes could be considered; this might be significantly more complex than imposing a

recursive interpretation depth-wise on a sequence as has been done above. Although
future considerations of recursionlessness and corecursion should probably be based in
part on this recursive quote, the implicit (recursive) quote in the corecursive nDerations

should not be disregarded. Even in the initial basis, it would be quite consistent to

permit * to be imposed implicitly; for example, there is little reason not to permit the
implicitly quoted interpretation:

a . + . b e a . (+ *) . b

for V simply does not have an interpretation as a sequence. Obviously, the explicit
use of the quote must be permitted for cases such as [27] above. There is no
ambiguity between:

<f; f> and f<l;2>

with respect to how to treat them as operands of corecursive operations-the former

 ^ - - - ■

RECURSION 89

requires the (implicit) "8", the latter does not. Hence, the formulations above of the

corecursive operations may ultirnatoly be preferred; however, the notion of a recursive

"quote" should be considered for a future formulation of the basis.

Recursionlessness and structured programming

We emphasize that our considerations of recursionlessness are preliminary.

Although we are able to express significantly complex recursive functions (see [25] and

[26]), we do not feel we have more than "scratched the surface" of what might be

interesting and useful.

In terms of eliminating recursion, we are not convinced that we have as strong a

case against recursion as we do against the goto. Although the potential for misuse of

recursion is at least as great as for the goto, the actual (observable) misuse is not.

This arises from users' qualms over the inefficiency of using recursion a! all in

programs, and in general, from confinement of recursive programming to academia (at

least in the U.S.). That is, if students vj^re taught that recursion is as important and

useful as the goto, the programming dilemma might be considerably more complex.

We are thus in a position of being able to structure a potentially dangerous concept

before it actually becomes dangerous. Such structuring is useful in its own right--for

example, it begins to eliminate the detail arising from implementing algorithms which are

naturally expressed as "top down" or "bottom up".

Historically, would we have had to advocate eliminating the goto if news of its

existence had awaited the last few lessons of instruction in programming courses?

— .

•wwpwwi^r' w^-^^^^^mmmim

CHAPTER IV

COUEPENDENT STRUCTURES

In Chapter 111 it v.as mentioned that come programs written in the initial language

basis were unduly complex because of their lack of a "clean functional decomposition".

This chapter examines the nature r' ,uch pro-ams and ultimately shows that their

concise specificat^n hinges on the r 1 of coroutines or "codependent structures".

We shall be dealing with structures which are described independently and each of

which can oe thought of as being in some "state" || any given time. Such a group of

structures will be referred to as "coroutines", although the traditional notion implies that

the "state" include a program counter, which is not alw, ,s necessary here. In this

chapter, we are concerned with the extent to which the independently described

structures can and should depend on the states of each other.

Coroutines in Applicative Languages

Although there are many examples of programs whose implomenh.tion is made more

efficient through the use of coroutines^, it is somewhat more difficult to justify

coroutine control from a structured prop/ammmg point of view. We are not concerned

with justifying the coroutine control present in the cosequencing and corecursive

operators, for the decomposition there is essentially functional. However, if we move

to a more general coroutine structure, issues involving Blobal variables and side-effects
emerge.

In one sense, the argument for the Inciusion of a coroutine mechansim is a

counter-argument to the primary argur„e„t for an applicative langauge. In an

applicat.ve language, identical expressions in the same static context have identical

values; that is, functions are well-defined in an applicative language. This allows the

programmer to depend on the preservation of relations on the environment over control
constructs such as function calls.

•fFrequent reference has been made to compiler decompositions, for example.

mm

CODEPENDENT STRUCTURES 91

From a structured programming point of view, programming in an applicative

language may become dangerous because the programmer might become dependent on

such invariant relations. For example, the invariant relations may arise from the way in

which a data structure has been implemented, and assumptions based on these relations

may then become an integral part of the program. Changing the data structure would

then be impossible, even though the changes were consistent with the original

specification of the problem. That is, we must distinguish between apparent structure

and the implementation of that structure. In and of itself, this is actually only an

argument for a data structuring mechtnism. However, it will be shown that the explicit

subordination of one structure to another required in an applicative language presents
particular problems to modifying the program structure.

To understand how this arises, and in particular, to understand how a problem can
lack a "clean functional decomposition", a LISP 1.0 program will be rather thoroughly

dissected. LISP 1.0 is an applicatve language, and, hence, all problems require a
functional decomposition whether it be "clean" or "unclean". The problem to be solved

by the program is intentionally unrealistic: given two lists, "def" and "s", the function

"de" below will produce a result whose elements are those of "s" except where

elements of "s" are less than "3". In those cases, the elements chosen will be
successively from the list "def". Thus,

• •(1 3 2 4)|
def = (7 9)

de[def;s] = (739 4).

Two LISP functions which accomplish this are:

de[def;s] = [null[s] ^ NIL; [!]

Iessp[3;car[s]] =» cons[car[s]; de[deficdr[s]]];
T =» F[defj s]];

F[defis] = cons[car[def]; de[cdr[def];cdr[s]]];

("F" is separate for explication below; we assume "def" is of sufficient length that we
cannot run out of default values.)

First notice that the bc.y of "de" is free to reference "def" in any way desired.

For example, there is no protection from using "caadr" on it. This argues for a means

of structuring "def" in the sense of constraining its accessors to a particular set of
functions—"car" and "cdr" in this case.

MMMMMrMMHHIM

CODEPENDENT STRUCTURES 92

Notice also that V and "de" are "corecursive"--each time "de" is called, "s" is
pulsed by taking its "cdr". This is not the case with "def"; however, "def" and "F" are

corecursive in the same sense. Although we might immediately imagine that a

decomposition which emphasizes this cosequentiality is possible, we first consider the

implications of allowing the element of "det" chosen to depend functionally on the

elements of "s" which are less than "3". This can be accomplished by respecifying "F"
as:

F[def;s] = cons[f[def;car[s]]; de[deficdr[s]]]. [2]

where "f" accomplishes the functional dependency. If we were able to instantiate "def"

with "f" previous to the execution of "de", or were able to define it global to the

functions called by "de", there would be no need to pass "def" as a parameter. The
implementation below could be used.

[3] de[def;s] = de^s];

de'Cs] = [null[s] =» NIL;

lessp[3; car[s]] ^ conr,[car[s]; de^dr^]]];
T 4 F[s]];

F[s] = cons [f^carts]]; de[cdr[s]]];

f'[e] = f[def; e].

This implementation uses the LISP binding which permits "def" to be global to ,-ll the

functions called by "de". This is subject to the same dangers as [IJ-i.e., there is no
way to confine the access of "def" to the call "f".

Now, what if "f" were to be programatically dependent on its calling sequence--that
is, what if "f[def;s]" were different dependent on the number of times it has been called

from "F"? A particular example for "f" will help to illustrate the problem. Notice that [2]

or [3] could not be used to implement [1], in which the element of "def" selected

depended on how many had previously been used. Hence, if we desire "f" to act
exactly as [1], but additionally insist that it add the element of "s" to the element of
"def", the need for a new programming device arises.

What is frequently used in such a situation is an encoding device—the value of "f"

must be encoded with the updated state of the computation which we desire for "f". In

this case, the updated state will be the "cdr[def]". Thus, we can accomplish the effect
by defining F (in scheme [1]) as:

 - .-■-■--

■ '

CODEPENDENT STRUCTURES 93

Ftdefis] = cons [car[f[def|car[5]]]]; r4j

de[cdr[f[def;5]];cdr[s]]

f[def;e] = cons [add[car[def]ie]i cdr[def]].

This decomposition is what is meant by an "unclean functional decomposition" to a

problem. In essence, we have a program T which produces a sequence of values

depending on "def" and an argument sequence of Vs. However, the program "f" is

considered entirely subordinate to "de", and its state must be continually passed around
as a parameter.

If this subordinate were important from a structured programming point of view
then the above functional decomposition ([4] with [1]) it to be preferred. However'

from the statement of the problem, there is no reason to prefer implementation [4] to'

one hke [3]. To be precise, even if "f" had the side effect that the "cdr[defr replaced

det -which would enable us to define [4] more concisely as [3]-there would be no
effect on the relationships to be considered in "de".

The only objection to [3] is that the global variable "def" ,s accessible by "de" If

there ,s a way to specify the existence of two programs-each with its own state

vanables-and limit their references to each other to a functional interface, this

objection is removed. This is almost an exact definition of "module" according to Parnas

PA . and the theory surrounding his work has a definite bearing on the coroutine

aciht.es about to be introduced into the basis. It is also consistent with the efforts
toward constraining global variable usage [WS].

It is particularly interesting to note that the notion of side-effect-which the above

implementation introduces-can be independent of "assignment". That is, no notion of

assignment ever enters the basis-yet codependent structures introduce the notion of
side-effect.

Our approach to the inclusion of corou'ines in the basis it as follows First the

coroutine nature of the cosequencing operators is examined, and operators' are

developed to introduce more general coroutine facilities, which are presented next

Fma ly, some implications of coroutmes to data structuring are discussed, followed by a
brief discussion of the implementation of the basis in terms of coroutines.

As in Chapter III, it should be emphasized that the operators presented in this
chapter are tentative. We are more interested in explaining the desired effects than in

proposing a concrete syntax for their specification. AIM, the reader should be

M

CODEPENDENT STRUCTURES 94

forewarned that the operators introduced in this chapter do not produce expressions

which are significantly more concise than corresponding Algol programs, for example.

This effect arises from tho more primitive nature of the coroutine operators themselves;

effectively, they introduce the ability ;o explintly pulse sequential structures. Much

has been made of the lack of such a requirement in the basis to this point; here we

examine where the ability to puloe structures is desirable, if only to define and study
higher-level cosequencing and corecursive operators.

Some Remarks on Names

A brief digression is now in order. The basis operations generally tend not to

impose special interpretations on names, but the facilities presented in this chapter rely

on names to a much greater extent. In particular, none of the operators in the basis at

this point is defined with a name as a required argument, nor does any defined operator

give a preferred interoretation to a particular name as, for example, the for construct in
Algol gives preferent.al treatment to the control variable.

This lack of reliance on names for semantics is .ntentional. Any construct requiring

a name increases the number of names temporarily introduced by the programmer--a

phenomenon the "operator" notion avoids (see Chapter 1). Also, scope issues are

frequently very complex, and when semantics can be specified without their

involvement, a description is often simplified immensely. We advise this language
design technique: defer issues of names as long as pcssible.

We do not, however, deny the language enhancement that names can and do
provide. In particular, the escape operators should be extended to allow named control

context escapes, and such are included in the final basis [WU,I972]. Also, where

temporary functions are required--as occurs frequently with accumulations-scope

control such as block structure should be permitted to localize the definitions and

possibly even control variables or named accumulators. However, the lack of such

facilities has been a very effective aid to simplifying the presentation of the basis to
this point.

In the operators oresented below, names cannot be ignored as easily--in fact, some

Of the operators would be needlessly complex without reliance on names. This does

not reflect a change in philosophy, but rather a concession to the more primitive nature
of the coroutine operators.

/

__,__. _ - - -■■ —--*—^^-^ "■■ -J-' - ydfe.

CODEPENDENT STRUCTURES 95

Cosequencirii, Roexamined: Partial Cosequentiality

By way of introduction to coroutines, the cosequencing operators "." and "/" are
reexammed. In particular, notice that in the expression "data . program", the data is

cosequential with the program. Also, the revilt is cosequential with both the program

and the data. That is, not only does "." identify data element "i" with program element

"i", but also the value of "." is a sequence whose "ith" element can be identified with the

1th" element of the data or program sequence. There ate programs in which one such

cosequential identification can be made but not the other two (i.e. program with data,

program with result or data with result). They are considered separately below:

I. Non-cosoquontial result: the emit operator

An example in which the program is cosequential with the data but not with the

result is the "mask" operation; the nonempty elements of the argument sequence make

up the result sequence of the "mask" operation (see Chapter 11 or Appendix III). If the

implementation does not rely on "<> gen" (see discussion. Chapter II), the function must
be written using an accumulation:

s tf x :: x then (s cone <x>) else s;
s mask :: <> / (tf * . s) val;

[5]

In this implementation of the mask function, no element of the masked sequence can be

produced until the entire argument sequence (s) has been generated (by virtue of the

val operation). Unless the implementation is exceedingly clever and notices that the

resu.t sequence only changes by appending, an unbounded argument cannot be used.

Even then, the semantics of val should ensure that the sequence terminates; i.e., the
expression "1 * val" should be undefined.

However, it is clear that in a simple scan across the sequence an element could be

output (entered into the result sequence of "mask") whenever it is nonempty. The emit

operator is defined to accomplish this, and actually constitutes an ability to "pulse" the

output sequence, or to explicitly "generate" elements one at a time. The operator

outputs its (left) argument as an element of the result sequence for the innermost

sequential expression in which it is embedded. The mask function above [5] can then
be rewritten:

x them f :: x then (x f);

s mask :: s . (the \l emit *);
[6]

 ' - ■

—■-——.

CODEP^NDENT STRUCTURES 96

Then,

<1| nil; 3> mask

5 the sequence emitted from

<1 then (1 emit); nil then (nil emit); 3 then (3 emit)>
s <1; 3>

Only emitted values constitute the result of a sequence expression containing an emit.
The expression value of the emit is its argument.

The introduction of an emit operator which requires a name as operand is
particularly useful, and motivates the second operator of this section. The named emit

operator--emitn--hinges on the notion of an "emittor-collector" expression, which is of
the form-'':

emittor-expression : [collector-name^ collector-name2; ...]

The emitn operator requires a collector name as its right operand, and simply emits its

left operand to the named collector. (Its value in the expression, as with emit, is its left
operand.)

A collector is simply a named entity which accumulates the elements emitted to it in

a sequence. The emmitor-collector expression (hereafter abbreviated "EC") defines a

result which is a set of named sequences. An element of the collected sequence set
may be selected by name as though the name were an operator; e.g.,

exp : [a;b] a = sequence emitted to "a".

This may be clarified if one thinks of a set of associations specified:

[namei '•'• valuer name2 '■• value2; -]•

Specifying any name after the set selects the value associated with that name in the
set: viz.

[a :: 1; b :: 2] a s 1

tActually this is a simplified version of the emittor-collector expression. It will be
embellished throughout this chapter.

1

CODEPENDENT STRUCTURES 97

Thus, the emittor-collector expression potentially has a set as its value.

The following example defines an operator "co" which produces an EC whose

collectors have the even- and odd-indexed elements of a sequence "s" as collectors
named "even" and "odd":

s eo :: s. (<emitn odd;emitn even> gen *) : [even; odd]; [7]

<1;1;2;3> eo odd

= sequence emitted to "odd" in

<M;2;3> . <emitn odd; emitn even; emitn odd; ...> : [even; odd]

■ <i}2>

The EC expression is especially useful -vhen several functiont rhare a common complex

control structure. It also represents the beginning of an association mechanism whxh

is of significance to thu concept of "structured data", discussed later in this chapter.
The collector portion of ECs is generalized presently.

2. Non-cosequential operand: the collect operator

The emit operator WM introduced to permit program and data cosequentiality,
without requiring either to be cosequential with the result. The collect operator, to be
introduced presently, facilitates writing programs which have cosequential program and

result, but not cosequentiality of data and program or data and result. The accumulate
operator is already of this form: only the program and result are cosequential.
Frequently, functions are written which "pulse" an input sequence—the accumulated

argument. This pulsing is in terms of "Ist" and "tail" in much the same way as LISP

functions use "car" and "cdr" (see Chapter III and [l]-[4] above). Here the ability to
explicitly pulse a codcpendent sequence is introduced.

The problem used to explicate the "unclean decomposition" (see [1]) is now reused

to introduce the semantics of the emit operato.-. In particular assume that a sequence

called "def" is to be used to replace elements which are smaller than "3" in a sequence
"s" by a function named "de". This may be written in the initial basis:

i f a :: <a then i else (i + 1);

a else ('def sub i)>;

def de s :: <1; nil> / (1st f * . (s . (ge 3 *))) . (2nd*) [8]

CODEPBNDENT STRUCTURES
JO

The reader need not understand the part,culars of th.s function, but in essence, the
accumulation keeps track of the mde* of the defaults sequence to be used in the event
of an empty element in s. Thus,

<100; 200> def <3; 1; 4; 2>

would produce the accumulation:

«1;3>; <2i<100;200> sub !>; <2;4>; <3; <100;200> sub 2».

The selector * 2nd *" then produces the result: <3; 100; 4; 200> In effect, the

accumula .on pulses" the default sequence (by mcrementmg the index used for

d'e'ctly ' COlleCt ^^ Perm,,S the ab,",y t0 PUl5e an argUment se^ence

The collect operator is introduced as an extension to the EC expression above

Instead of a set of collector names, a s,mPle collector expression is permitted in

conjunction with an emittor expression wh.ch uses the emit operator (and not the emitn
operator). In addition, any sequence may be used to stand for an emittor which emits
that sequence. For example, the function "de" [8] may be rewritten:

def de s a def i (s . (ge 3 else collect *)) r^

The value of the collect operator is the element pulsed from the emittor. The value of
an EC of this form is the sequence to the right of the ":". Thus,

<100; 200> def <3; 1; 4; 2>

■<100|200>,(<3,ll4|2>. (ge 3 else colled *))
■ <100; 200> : <3i collect; 4; collect>
s <3; 100; 4| 200>.

Once again, the introduction of an interpretation reliant on names is useful The

em, .or expression .s now permitted to be a set of named em.ttors; again none of the
emittors may reference named collectors. Such a set .s specified:

[emittor-namel :: emittor-expression;

emittor-name2 :: emittor-expression; ...]

irt'evn
a|
theC!l!eCtn|OP!ra,0r iS ,ntr0dUCed ,0 5eleCt,Vely >ulse" the ***** by name Its value is the pubed element.

x

.... , -,^. _,. ^ _ . . .-.-

CODEPEIMDENT STRUCTURES 99

To illustrate, the following EC interleaves the elements of two sequences into one:

s interleave p :: [s::s; p::p] : v<collect s; colled p> gen *)

Assuming a collector expression terminates if it attempts to collect a terminated emittor,
the above function wiil produce:

<1;2> interleave <3;4>

s[s::<lj2>i p::<3;4>] : <collectn s; collectn p;; ...>t
= <1;3;2;4>.

[10]

It is important to nott that the collector expression is controlling the pulsing of the

emittors, and not vice versa. That is, this construct should not be confused with that of

several languages which permit a loop driven by an emittor (generator) [SC]. (The
initial basis permits this latter facility quite easily.)

To summarize, the emit operator has been introduced in order to permit

cosequentiality of program with data, without insisting on the cosequentiality of either

with the result. This capability corresponds directly to the notion of a generator or

"pulsed" output. Similarly, the collect facility was introduced in order to permit

cosequentiality of result with program, but not insist on tt.e cosequentiality of either
with the data. Analogously, this facility provides "pulsed" input from a generator.

We are about to proceed to a discussion of ? more general coroutine facility. It will
be useful to have the emiitor/collector expression? summarized syntactically in BNFtt:

<emittor-collector> ::=<simple emittor-collector>
/<join etnittor-collector>

/<fork emittor-collector>

<simple emittor-collector> ::= <unnamed-collector emittor-expression> :
<unnamed-emittor collector-expression> nn

tA quote problem becomes quite pronounced here: do the collects occur before the
looped expansion or not? For now, assume not.

ttThe notation <x>-list is used to ndicate a list of <x>s separated by semicolons.

 —■—■■■

CODEPENDENT STRUCTURES 100

<join emittor-collector> ::= <einiftor-set> : <named-emittor conector-expression>

<forK emlttor-collector> ::■--• <nameJ-collector emittor-expression> : <collector-set>

<emittor-set> ::= [<emittor ä•■,sociation>-ll5.t,]

<emittor association> ::= <name; :. <unnamed-collector emittor-expression>

<collector $et> ::= [<name>-liGt]

Where the "unnamed" expressions (e.g. <unnarned-collector emittor-expression>)

contain neither collectn or emitn (in <unnanned-emittor...> and <unnamed-collector>

respectively), and the "named" expressions contain only those constructs. To reiterate,

any expression producing a sequence may be ur^d as an <unnamed-collector

emittor-cxpression> and the value of an EC is either a set of named sequences or the

collector expression. Of course, ECs are simply expressions, and may be used in any

context where an expression may be used.

Codependency

The emit and collect operations quite clearly require a coroutine structure for their

implementation. In this section the relationship of these operations to a more general

coroutine facility is discussed. It will be shown that the operations are not fully

adequate for expressing programs which do not admit a clean functional decomposition;

in particular, the nature of "codependent" structures is examined more closely.

The emit and collect facilities do permit a cleaner decomposition than does the

coresponding expression in the initial basis; they always eliminate iin extra accumulated

variablet. For example, compare [4] and [5] or [8] and [9]. Thh results from the

factoring of the state of the non-cosequential sequence from thp primary sequence

(result from program and data in emit and data from program and result in collect).
Although definitions of "coroutine" vary, they share the separation of states of

processes as one aspect of coroutine control. It must be emphasized that coroutine

execution is a sequential process; although the states of coroutines are separate thoy

depend functionally on the sequence in which they invoke each other. In this sense,

the emit and collect facilities define "codependent" expressions.

tin the initial basis, a sequence is frequently used as the accumulated value in an

accumulation. This sequence is often of fixed length, and the various elements of it are

selected, much as variables in a program. See [5] and [8].

 — - - — — -■■

CODEPENDENT STRUCTURES 101

The distinction between a function call and a call to collect a value is extremely

important. A function will be a constant; the collected value will not (in general).

Neither codependent function can change the other's value; they can merely cause each
to "change" their own value, by producing another sequence element.

The distinction between a fully general coroutine facility and the collect/emit facility

lies in the extent to which the collected sequence can depend functionally on its calling

sequence. A general coroutine facility permits this dependence to be parameteric. To

explain such functional codependence the Bliss coroutine mechanism is examined
briefly.t

In Bliss the ability to create coroutines (named "A" and "B" here) is provided. The

precise syntax and mechanism used for the creation is -10t relevant. In essence, the

ability to associate a control/data space (stack and program counter) with the named

coroutines is provided. Assume that control resides in "A. Then a coroutine call,

"exchange jump" (abbreviated exch), consists of an argument and the name "B":

arg exch B [12]

much as the emit operation is used above. However, the value of the expression [12] is

not "arg" as with emitn, but rather an argument to the exchange (in "B") which cruses
the return to "A".

For example,

coroutine A(al) = begin local t; Ma)+2) exch R end [13]

coroutine B(b2) = begin local p; p^-bl; p^(bl + l) exch A end

abstracts the Bliss facility for coroutine declarations. The parameters "al" and "bl" are

the initial parameters to the coroutines—the parameter of the first function call or

exchange jump. They are undefined after the first exchange jump from within the

body. Assume the coroutine can be invoked by the body of the block in which these

coroutines are defined. Then the call "A(5)" will cause "A" to begin execution, with "5"

as the value of "al". "A" will immediately exchange jump to "B", as though a call of

tin Bliss, the coroutine facility was introduced as an effect difficult to obtain without

using the goto. The synopsis here is actually a modification of a much more general

facility than is presented. Liberties have been taken with the syntax as well
[WU,1970,1972].

-■ - -

COOEPENDENT STRUCTURES 102

"6(5+2)" were made. Control begins in "B" , with "bl" equal to "V". After it is stored

m "p", the exchange is made back to "A", with the pararr.etor "7+1". Eyecution resumes

m "A" at the point of exchange to "B", with the v.ilue of the exchange expression as "f".

Control then returns from "A" to the calling program. The final state of the local
variables is:

t = 8; p = 7.

If the original call had been "B(5)" (instead of "A(5)") the state of the variables would
have oeen:

p = 8, t = undefined.

Control would never return to the exchange in "A" in this case.

The point is simply 'hat the coroutines depend functionally on each other--there is

no input/output identification to be made. "A" appears as a function to "B", and "B"

likewise to "A". Each coroutine presumes its task is primary and the coi-outines it calls
are auxilliary to it.

Examples of the utility of such a conceptualization are most often complex, for at

least two non-trivial tasks must be dependent on each other, yet of distinct utility when

standing alone. However, a conversational (interactive) language provides a nice

environment in which such a conceptualization is enlightening. Consider two interactive

chess-playing programs "W" and "B". A user with two terminals could play the

programs against one another by allowing "W" the first move. He could enter "W's

response as his first move to "B". "B"^ response could then be entered to "V»", etc.

The user should feel quite trivial—he is acting precisely as an exchangt jump-!-.

Each program presumes the other to be its input function. Thus, if the two programs

had been written with exchange jumps, and adequate naming facilities were avaUble to

make this dynamic connection [KR], the programs would have been "more general" in the

sense that this frequently interesting activity was made easier for the programmer.

Ths also establishes the activity of the human player (with either program) as a

coroutine in nature. The implications to conversational system design are beyond the

scope of this work; minimally, facilities to separate the user's "state" from the executing

tActually the record of the moves is typed out to the user; hence, an intermediate

coroutine would be required if anyone were interested in the progress of the game.

■ata. -■■- -- -■-■ ■ -■ ■ — ■ ^.—. ■ ■ — .. . - . III,,,-- - ■■■■--^ ■ ■

CODEPENDENT STRUCTURES 103

coroutines are necessary.

Coroutines can be introduced into the basis by extending the emitter-col'ector

expressions to allow emitters to collect and collectors to emit. Taking the rimpie case

first, <simple emittor-collector> in [11], each expression may contain unnamed emits and

collects. For example,

x exch :: <x emit; collect> val; [14]

x f :: x gf 2 else (x exch);

defaults deff s :: defaults . (sub collect emit *) : (s . f *);

defines a function "deff" which produces the sequence "s", (a subset of the positive

integers), except where the elements of "s" are less than or equal to "2", elements from

an array "defaults" are chosen. The elements from "s" which are chosen depend

functionally on the value of the element in "s", and the number of defaults chosen to

that point. (See [4].)

In particular,

«100;10i>;<200;201» deff <3;1;4;2> [15]

= «100;101> sub collect emit; <200;201> sub collect emit> :

<3;< 1 emit; collect> val; 4; <2 emit; collect> val >

Assume control begins at the collector m the EC-i.e. to the right of the ":". Then "1"

will be emitted to the left expression. This causes the left expression to begin

evaluation and when the first collect is reached, its value will be "1". Using "7." for

"program counters" or sequencer positions, the evaluation state at this point is:

«100;101> sub 1 ■ emit; <200;201> sub collect emit> :

<3; <1 7; collect> val; 4; <2 emit; collect> val>

The "»" is the program (control) sequence position. Evaluation proceeds, producing

"100 emit" as the first element of the emittor expression. Control now changes back to

the collector expression with an emitted value of the next collect in the collector

expression. The evaluation of the collector side proceeds until its next emit, at which

time the state of the computation will be:

<100 Z; <200;201> sub collect emit> :

<3j 100; 4; <2 emit; « collect» val>

CODEPENDENT STRUCTURES 104

Control resumes in the emitter cxpresssion until the collect is done, and the result "201"
is computed (<200;?01> sub 2 = 20J):

<100; 201 l emit> : <3; 100; 4; <2; 1 collect> val>

The emittor's emit then causes control to resume in the collector, the value emitted by

the collector is "201", and the sequence terminates. The value of .he EC is the
collected expression, and, hence, the value is :

<3}lO0}4;201>.

The simple coroutine expression above does permit the definition of functionally

codependent st-uctures. Although the emittor-collector relationship prevails--i.e. the

collector is the 'alue of the expresion--the subordmance of the emittor is not evident

from an examination of the emittor-expression standing alone. For example, if he

emittor and collector are interchanged In "def." [15], the value of the collector (the
previous emittor) is "<100i201>".

If both sequences were of potential interest, both expressions would have to be
specified ([15] and [15] with emittor and collector interchanged). In order to permit

the use ot both sequences without such recomputation the <fork emitter-collector> of

[11] is extended. The Collector set> is expanded to allow a list of named coroutine

expressions (which use unnamod collect and emit operators). The "<named-collector

emittor-expression" may both collectn and emitn tc the r?med coroutine expressions,

and the result of such an expression is the association set of named corout;ne'
expresJons.

For example,

q :: <collcctn a emitn b; collectn b emitn a> * : ne]
[a :: <3i 1 exch; 4; 2 exch>;

b:: «100;101> sub collect emit; <200i201> sub collect emit>]

has the value:

[a :: <3;10Cj4;201>; b :: <100;201>]

and the selectors "a" and "b" may be used functionally:

q a H <3;100;4;201>;
q b £ <101; 201>.

. . -^.^.. _. ^ ■...^-^_,. - ...-■■■.. . .-- -. .,.., ... ii mi im--—-- - -■— . . -. . . .^ ^,_ hM,iM .

CODEPENDENT STRUCRJRES 105

In [16], the reader will recognise the expressions involved in the explications of [15]

above. A description of the evaluation process analogous to that provided for [15] is
presented in Appendix VI.

To complete the coroutine facilities, the <jom emittor-collecfor> is extended to
permit a coroutine set as the emittor portion of the expression. Again the elements of

the emittor set expressions must use (unnamed) emits; we extend the facility by

permitting (unnamed) collects in those expressions. This permits the controlling

mechaniLm--the collector--to produce the value. For example, if the collector and

emitter are interchanged in [16], the value of the expression will be the sequence of
pairs:

«1; 100>; <?;201»

This introduces a flexibility into the language which is relevant to the works of

Krutar [KR] and Parnas [PA]t. The ability to define named entities-coroutines, emittors

and collectors-permits a dynamic linkage similar to that proposed in Krutar's work.
Such a flexibility is consistent with the work of Parnas, but is not quite as general a
facility as we presume he would desire.

To return to the introductory example of this chapter and the nature of "unclean

functional decomposition", notice in particular how difficult the effect of [16] would be

to obtain in an applicative language. To obtain the "defaults" subsequence,
"<100;201>", the entire function would have to be rewritten. In the basis, we merely
modify the order of the coroutines, or put them into "sets".

Before proceeding to a discussion of "data structures" and their relationships to
coroutir , some mention of the lack of an explicit exch operator as the unique

coroutine mechansim is wai ranted Needless to say, the proposed mechanism is more
general in that exch can be implemented in terms of collect and emit. Our reluctance to

base the mechanism on exch involves initialization problems (parameters "al" and "bl"

in [13]). Our scheme allows the definition of coroutines which are of the nature of

emittors--by using (...emit...collect...)-or of the nature of collectors-by using

(...collect...emit...). That is, the former is able to emit (once) independent of any collected

data, the latter is not. (Naturally, by using conditional facilities, more complex

expressions can be built which are not so easily classified.) We do not have enough

tThese works are not easily related; however, they are both concerned with the ability
to replace "modules" easily. This is the sense of relevance intended.

■kMMHMM

CODEPENDENT STRUCTURES 106

experience with the facilities to propose either as strictly preferrable from a language
design viewpoint.

Data Structuring via Coroutines

The relationship of our concept of "data structureG" to coroutines is extreme. To

understand how the relationship arises, consider "conventional" data structures, such as

arrays, lists, cyclic lists, stacks, etc. Each imposes a set of relat onships onto the

elements of the structure. The structure essentially translates into a set of accessing

functions for items so structured, which can be used by the program (see [WU,1971]
and [WG]).

The design of some data structures is such that a particular set of accessing

sequences is assumed. In particular, a stack implementation enforces that the length of

the sequence of pops dene to the stack never exceeds the length of the sequence of

pushes. The implementation of a FORTRAN array assumes that the accessing sequence

is sufficiently random to warrant such a general structure (or that the combined effects

of the structure's accessing sequences is best implemented with such a general

structure). The implementation of lists presumes access will be to successive elements.

If we move to more modern data structures such as sparse arrays, paged arrays,
files described as data structures, etc., such assumptions become even more

pronounced. In fact, the nature of accessors for such structures requires a
specification of how the accessor is being used. For example, in a sparse array "A",
distinct accessors must be used in the expressions:

A[3,4,5] < 0 and A[3,4,5]«- 234.

Thus the accessing sequence is important to a data struchir«? represemation.

Going even farther, intended accessing sequences for the data structures arising in

very complex programs such as operating systems, compilers and interpreters, become

even more apparent from their conceptual (pictoral, verbal presentation) description.

However, their description in terms of their implementation becomes complicated

because of the inability to map different accessing sequences onto a group of elements

to form a structure Instead, more primitive successor relationships must be imposed.

In particular, either the relationships are imposed by a primitive pointer structure, or

they are specified to a limited extent as a heirarchical entity and the program imposes

the relationships whose specification is precluded by the enforcer of this hierarchy—be
it a type mechanism or an applicative language.

■ - ■- - •-- ■■

CODEPENDENT STRUCTURES 107

The coroutine facilities are the beginnings of a structure mPthanism which admits

multiple (possibly complex) mappings onto t data structure. For example, a

donDly-linked list may be used because it is Hjsirable to sequen.e through the list in
either dirprton. This may be expressed:

■ prefix y :; <y; s gen>;

s dblylnk :: s . (emitn forward emitn reverse *) :

[forwardt; reverse::<>/(prsfix collect *) val];

We may then define:

DIR :: <IM, E; S; W; N> dblylnk

Then reference to "DIR reverse" will cause the creation of the reversed sequence.

Naturally, a compiler is free to determine the implementauon of such a structure, which

might be a vector in this case, but would differ drastically if "dblylnk"^ argument is a
magnetic tape file.

In the same vein, the coroutine primitives can be used to study and express
structures which are modified by insertion, delclion, and assignment. Knowledge of thr.

use of functions such as insert and delete not only affects the implementation of a d:.(a

structure, but our conceptualization of the structure as an array, string, list, etc. The

major reason the coroutine primitives are helpful in this area if that in the initial basis

such considerations may be expressed in terms of gentt, which may in turn be
implemented using emit:

s cone q :: <s gen; q gen>

£ <s . (emitn L *); q . (emitn L *)> i [L] L

tin light of the expanded emmitor-collector notation, this is an abbreviation for "forward
:: collect *".

ttActually, gen is not an essential function in the following sense: for a potentially

unbounded sequence "s", a function "s genf i" can be defined which produces "s" with

its "ith" element gened, which does not depend on gen itself. See Appendix VIII.

CODEPENDENT STRUCTURES 108

r. gen * s G . (emitn L •) • : [L] L

where "L" is a unique label.

For example, "insert", "delete", and "assign" may be expressed (in terms of a fixed
sequence, V):

i assign y :: i-1 head s cone <y> cone (i rest s);

i insert y :: i-1 head I cone <y> cone (i-1 rest s);

i delete :: i-l head s cone (i rest s);

where

i rest s :: c . d head (id *) cone (emitn L *)): [L] L

We do not propose including those functions as primitives in the language. The basis to

this point has demonstrated the i).tcnt to which we do not need assignment. It is much

more important thst the uses of insert tnd delete be approached in terms of the more

general effect which they are jsed to accomplish. That is, we are not able to

categorize the need for assignment yet; considerably more work is required in the

direction of determining where we do not need it.

Orthogonal Issues

As we described in Chapter I, the language bösis we developed was a priori

constrained to attempting to describe the nested-sequential representation subspace of

interesting programming structures. Although the remainder of the (semantic

representation; space may bo best described as the "nested parallel" space-with

orthogonal elements of sets, association mechanisms, parallel operations, type

mechanisms, ncme spaces, ete.-it would be inaccurate to say that nested sequential

structures can be best described without the use of elements from this orthogonal

space. For example, the selection gotoless construct case is semanticaly a parallel

structure: retrieving an association from a set However, it is very desirable to use this

construct to express sequential program elements.

In the basis (as in LISP) this construct must be simulated by associating numbers

with the elements of the set. Furthermore, the associated numbers are constrained to

an initial sequence of the positive integers. Then we are able to count to the

appropriate element by running through the sequence. However, it is actually

semantically important that the distinction between a set and a sequence be delineated

 —■

CODEPENDENT STRUCTURES 109

in future studies of the basis. (The specification that a program or data is a sequence
may indicate that selection of an element from the sequence is not germane.)

Although the parallel space is conceptually orthogonal to the sequential spaco, many

direct analogies from the language basis apply--even within the corecursive operators.

Severs! examples may help to illustrate the point. In a discussion in Chapter II

("cosequencing operators"), the distinction of the co.-.pply operator as a sequential

operator was stressed, for the sequence could terminate at any point and could be

unbounded. However, if the termination characteristics of the arguments to coappiy are

known in advance, the coapplication can occur in parallel. In fact, the compilation

considerations of Appendix IV a, e app-opnate in this domain, for we may even

determine rather complex functions which can be applied in parallel using the same
technique.

At a more primitive level, the emit and collect operators discussed above are quite

similar to operations which spawn processes and wait for processes, respectively. In

fact, any time an emit is encountered, the computation can "fork" (until a collect is

encountered); any time the collect operator is encountered, the computation can "join".

Of course, the combined effects of parallel, sequential and nested representations is
more complex than any in isolation. For example, sequences may conceptually change

to sets for a parallel operation and back to sequential for output. More complex effects

like the ability to map a sequence of nar,,cs onto a sequence of values to produce a set

of associations obviously parallel the semantics of coapplication, but are currently

outside its domain. The recursionless constructs are potentially parallel each time a

sequence of recursions must occur—i.e. everything described using the coapp'ication

operator has a potentially parallel implementation given the proper constraints on the

sequences. Thus, in effect the basis even at this stage is amenable to parallel

implementation considerations; however, it lacks the means to express explicitly parallel

effects. This is a deficiency, for the knowledge of pa^a ■ vs. sequential

implementation drastically affects the algorithm chosen (paralle version^ of good

sequential algorithms may be less efficient than parallel versions ot inefficient
sequential algorithms).

The basis has been pushed to the point where orthogonal aspects (parallelism)

should begin to be considered. For example, the recursionless constructs will be aided

significantly by a type mechanism (for implicit termination) and an association

mechanism. The lack of even a simple association mechanism for accumulated elements,

for example, will probably thwart compilation efforts (or at least misdirect them) to

some extent (see Appendix V for an example of how the lack of such a mechanism

MI^^MBMaMMMfc

CODEPENDENT STRUCTURES HO

affects program concir.eness adversely). Many attempts to program in the basis are

made more difficult than is necessary becaose of the lack of even simple association and

type mechanisms; however, defining them would have clouded the iriue$ we wished to
emphasize and would necessarily have been incomplete.

We emphasize: leaving out even simple orthogonal basis tiements is an effective

meanr for focussing on the issues at hand. We recommend this approach !o language
design.

Implementation issues

One of the primary reasons the coroutine primitives have been introduced is to

move one level clo-er to an implementation. In particular, if one is able to refer to the

most recently emitted value as "lastn", we can program both "." and 7" In terms of the
coroutine primitives:

s . q :: [al :: s; a2 :: q] : (collectn al (collectn a2) *);
v / s :: [fs :: s] : <v (collectn fs) emitn ace;

lastn ace (colloctn fs) emitn ace *> : [ace] ace

Notice, then that the emittor set is effectively a declaration of new instances of the

generator for the sequence to the right of the "::"s. This can normally be implemented

very trivially in terms of a set of variables, a "program counter" and a pointer to the
gen-jrating expression.

The above considerations might lead to an interpretive implementation. However,
such an implementation is not necessary; some compilation considerations are given in

Appendix IV. Although the details of those considerations are not important here, the
fact that "." and 7" are operators defined in the language is important. In particular, an

extensible language definition might prefer a "kernel" definition, which has the coroutine

primitives as primitive and from which one may build "." and 7". The compilation

considerations of Appendix IV are based on compiler knowledge of these particular

operators and their relationships. That is, by defining a language "basis", we define not

only the primitive operators but some of the operators which can be extended from a

kernel, but which will be of obvious utility both conceptually and in implementation

considerations. To define a language from the basis, the same step should be taken:

more operators must be defined in terms of the coroutine primitives and "." and 7" (and

recursion and "corecursive operators"). Ultimately, we may be able to eliminate the

primitive coroutine facilities and provide the most useful effects of coroutines, using
"coroutineless" operators.

■MI i ■■■>■ i mi mm

CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

Several new ideas have been presented in this dissertation; each has caused the

coining of a new phrase such as "recursionless construct", "cosequencing operator",

"factored termination", or "implicit generation". In this chapter, we examine the extent

of innovation represented by these ideas. We then present an overview of the extent

to which the basis reorients our concept of control and data structures. Next the

limitations of the language basis are considered, followed by some directions for future

research alcng these lines. Finally, we consider the basis in the context of the order of
magnitude criterion, discussed in Chapter I.

Innovation

Below we review the new ideas independently, then discuss their combined effects:

1. A pointerless representation

Explicit pointers in control or data structures are difficult to deal with in every

approach to programming, principally because they vastly expand the relationships

within and between data and control structures. That the gotoless constructs

eliminate pointers from cor^rol structures suggested their potential utility for

eliminating pointers from Jda structures as well. Although analogies hciween

data structures and gotoless con'rol structures have been drawn previously

[H0,1968], the new idea in our work is to apply the gotoless constructs to a

particular representation (nested sequences) independent of the elements of the

representation. We then allow elements to be either programs or data. The most

obvious benefit of this approach is to allow the explicit sequential representation

of data structures without requiring explicit pointers to represent nested elements
and cycles in the structures.

2. Operators relating data and control

AlthOLgh LISP 1.0 allows the interpretation of pairs as sequences (lists), programs

must explicitly "pulse" lists by using the "car" anc "cdr" functions to impose a

sequential interpretation. On the other hand. APL operators operate on

structured data without explicit reference to the elements of the operand

structures by imposing an element-by-element correspondence between operands.

Such operators are defined to act in parrliel on the elements of their operands;

CONCLUSIONS AND FUTURE DIRECTIONS 2 22

we sought sequential dnalogies that emphasized the exter,! to which an

element-by-element identification between sequential operands could be made.

The "cosequencmg" operators relate sequences in such a fashion, again

independent of the elements of the representation. Thus, they tend to emphasize

the extent to which data sequences follow the structure of the programs that use
them, or equivalently, the extent to which control structures follow the data
structures on which they operate. In essence, by providing a common interpreter

for all structures in the language basis, the necessity to "pulse" data structures is

lessened and operators which incorporate necessarily sequential effects are
definable.

3. The partie :v hstahiiated function ("section")

The ability to describe cosequenfial activity hinges on the partially instantiated

function-a function with only part of its argument list specified. The "section"

generalizes such diverse programming objects as machine language instructions,

Bhss data structures, and Simula new activities, none of which can be strictly

classified as program or data. Its contribution to com.ise program specification

arises because it allows some specific information to be '^ound, while leaving other

information unbounl The "section" has been defined previously as a

programming language construct [LR]. Several languages have a similar notation
for implicit iterative control (FORTRAN IV, APL, PL/1), but do not permit the

"section" in its full generality. Hence, we include it here as "innovative" to

emphasize its importance as an idea which should be incorporated directly into
existing programming languages.

4. Infinite sequence generation

The ability to aefine and operate on conceptually infinite sequences is the most

obvious novelty in the language basis. Terminating a sequence external to its

specification permits the effect. This idea is not new to data structures, where a

pointer back k a previous element in a sequence may be interpreted by the
program as a cycle. However, such a mechanism in programs is newt.

tits utility relies significantly on the ability of a progrc.m to "represent" its result as
distinct from "constructing" its result.

- —-•— — --

CONCLUSIONS AND FUTURE DIRECTIONS 113

Programming experience with the basis has shown that the process of going

from mathematical formulations of algorithms—in terms of polynomials, infinite

teries, etc.--to algorithms in the basis is aided significantly by the ability to

represent unbounded sequences. From a more formal mathematical viewpoint, this

is the first language in which it is possible to deal with the
recursively-ennumerable sets directly.

5. Elimination of recursion

Any recursive language which permits the definition of functionals—functions with
functions as arguments—has the facility for expressing what we havu termed

"recursionless constructs": operators which apply a function argument to other

arguments recursively. For example, "maplist" in LISP applies a function to each
of the elements of a list recursively.

The innovation in this work is (1) in identifying that such functions as "maplist"

eliminate the need for explicit recursion in some cases, (2) in postulating that a

"covering set" of such operators may exist which would ultimately permit the

removal of all explicit recursion from languages, and (3) in providing examples of

some rather powerful "recursionless constructs" which can be used in extant

higher level languages. Although it may not be necessary to remove recursion

from languages, it is important that we identify how recursion is and should be
used, and then designate that activity with a language construct.

6. Correspondence between recursive data structure and control structure

Although the "recursionless constructs" we propose do not "cover" the common

uses of recursion completely, we were able to show that recursive analogs to the

"cosequential" operators can be defined and integrated int) the language basis.

The analogy is direct in the sense that "corecursive" operators were defined

which emphasize the extent to which recursive data structures follow the
recursive control structure of the functions which operate on them, or

alternatively, the extent to which recursive functions follow the recursive data

structures on which they opera'e. Although we were able to identify some quite

powerful "corecursive operato s", we are not convinced that they are fully

adequate for the expression of desirable recursive effects. However, the
indications are strong that the apiroach will be fruitful.

1 '" "I i I ■■

CONCLUSIONS AND FUTURE DIRECTIONS 114

7. Effects of subroutines in applicative languages

The demonstration that coroutines can exist in a langauage without an assignment

statement is innovative. That is, coroutines may be defined as an association of a

"state" and a computation in that state, functionally dependent on other

coroutines. The basis provides a method for expressing independent states and a
method for relating them functionally. By allowing the effects of coroutines in an

applicative language, we preserve the important equivalence property of
applicative languages: identical expressions in the same static context have the
same value.

None of the above ideas is extremely jignificant in isolation; the innovation of the
basis derives principally from the ability of the above ideas in combination to reorient

our approach to programming. In terms of traditional programming structures, the
impact of th^ above ideas in combination is twofold:

1. By extending the representation traditionally used for control

structures to data structures, we exter.H the implicit data structure

representation. Although these data structures can be imposed

explicitly by programs using data pointers or array subscripts, their

implicit representation is significant to p ogram conciseness.

2. Traditional data structures are accessed element-by-element by

programs. Thus, the explicit dynamic relationships between a program

and its data structures are very primitive. By emphasizing the

relationship of sequences of accesses o, data structures to the

programs which perform the access, we have begun to structure the

dynamic relationships between data ano program. The operators

accomplishing this dynamic structure are thus able to replace the

traditional mechanisms for accomplishing these effects—namely,
subroutines.

The primary languages which influenced the design of the basis were Bl;ss, APL, and

LISP (in that order of importance). Their influence only becomes apparent after

experience with programming in the oasis. Relationships to other languages are

similarly masked because of the reorientation of programming style the basis demands.

The reorientation is not solely dependent on the absence of an assignment operator, but

rather involves the necessity to recast forrt ulations of programs to emphasize close

correspondences between program and data s ructures. One quickly becomes cognizant

 - -

CONCLUSIONS AND FUTURE DIRECTIONS 115

01 the extent to which the implementation of a sequence as a program or data depends

on the context of the use of the sequence. Implicitly, one then recognizes the utility of

specifying sequences independent of the context of their use. The basis forces one to

re tructure his approach to programming to emphasize the commonality of data

structures and control structures and their relationships. This 1«= the most

important/innovative aspect of the basis, and it results from the combination of tee
ideas above.

Limitations»

The limitations of the basis (.s developed in this thesis) arise from two areas:

aspects of programming languages orthogonal to nested-sequential representation, and

reformulation issues in terms of applicative languages and nested sequences in general.

1. The orthogonal elements of the basis

The language basis was a priori constrained to describing interesting programming
structures, through the use o; nested-sequential structures only. We may characterize

the remainder of the (semantic representation) space as the "unordered" or "parallelism"

space, with orthogonal elements; sets, association mechanisms, parallel Operations, type

mechanisms, name spaces, etc. It is quite e'ear that the descnp.ion of even

nested-sequential structures is aided by elements from this spacet. The basis has been

pushed to the point where the interactions between parallelism and sequentiality should
begin to be studied.

The basis is presently able to simulate parallel activity, but simulation of effects
obtained easily in another representation indicates poor design when that

representation is naturally implementable. For example, simulating sub is unrealistic, if

a sequence can be recast as a parallel construct amenable to random access. An

apparent alternative is to seek parallel implementation techniques for activities which

are described as sequential. This is not a reasonable approach, for the choice of

parallel vs. sequential implementation drastically affects the algorithm chosen for any

particular task-parallel versions of efficient sequential algorithms are frequently less

tThe case gotoless construct is actually an element from this space, and is not present
in the basis.

■ ■

CONCLUSIONS AND FUTURE DIRECTIONS 116

efficient (of time) than parallel versions of inefficient sequential algorithms.

To summarize, by leaving out considerations of parallel structure description, we

have approached the extent to which sequential activity can be described solely in

terms of itself. We do not suggest that parallel description is unimportant, even for
sequential representations.

2. Limitations of nested-sequential representation

Naturally, forced sequential or recursive simulation of rffects aciiieved best in a
parallel representation--as through the use of sets or APL arrays-is not considered a

limitation of this work. An adequate language basis must include the orthogonal

elements mentioned above. Of more concern is the limitation of the pointerless
representa'ion for obtaining effects normally obtained using pointers.

We are faced with a problem in using the pointerless representation for data.
Sometimes data must reflect a "real world" structure which may simply not be amenable

to treatment as (potentially infinitely nested, cyclic) nested-sequences. Certain graphs

cannot be adequately represented in this way, for example, and there are occasions

when we do not have the freedom to impose the artificial gotoless representation.

Although we have confidence in tl,a "gotoless" constructs in control contexts, based on

both formal and practical experience, we await future research along the lines

developed above to establish a similar empirical base for the gotoless constructs appliec
to data structures.

Although many problems arising from the lack of an assignment statement are
properly part of the parallelism domain (random access, for example), we cannot yet

claim that all uses of assignment in traditional languages are preferably reformulated in

the basis. The coroutine primitives may be used to study the extent to which we can

define constructs which give the effects of assignment such as modification of data

structures. We f el that more work in discovering such coroutineles-; constructs is
required before the necessity for assignment can be characterized effectively.

Future Research

Work of this nature is successful solely to the extent that it is able to stimulate
future research: we have not in any sense attacked a problem and solved it, but have

rather presented a set of ideas and indicated how they are interrelated. The work is

so open-ended that we hesitiate to eliminate any subfield of computer science as a

candidate for its further development. However, there are three major areas which

 - . •■ - — --"-"—•■■-- ^- -- ---^^^., , „ — III I Mllll1-- ■- ■■— - ..

CONCLUSIONS AND FUTURE DIRECTIONS 117

should pay attention to the ideas presented herein: language design, formal
programming studies (program verification, structured programming, and formal

semantics specification), and implementation studies (optimization and machine design).

The impact of this work on language design may take some time to emerge; the

ideas in the basis are not easily factored from the basis in a manner directly applicable

to improving existing languages. As we have mentioned, the "section" and the

recursionless constructs may be useful in such a context, but it should be clear that

existing languages must be sigrficanfly reformulated to incorporate most of the ideas in
the basis.

The principal stimulation this work can provide to language design is to demonstrate

that a fundamental reformulation of languages may be in order. Although we have

spent significant effort demonstrating the evolution of the elements of the basis from

conventional concepts, the impact of the basis is that it is fundamentally different from

other languages. Continued research along the hne of reasoning followed in the

development of the basis is necessary: what other "coroutineless" constructs--both

sequential and recursive--are desirable, what formulation of the parallelism space is

appropriate, how do data structures, name spaces, type mechanisms, etc., impact the

work? There are a large number of questions that only researchers with considerable

programming experience can answer, dealing with the aptness of new constructs which

should enter the basis. That is why the presentation has been so obviously informal
and directed to the language design audience specifically.

This work may have considerable impact as a formal semantics specification
language (after it is extended and formalized). Formal semantics should be specified as

concisely as possible. They should also require as little "conceptual interpretation" as

possible. The only distinction between the best programming language and the best

formal semantics Isnguagt should be that the semantics language is higher-level. It is
considerably more dift.cult to specify how something should be built up than to

demonstrate how it is a special case of something more general about which
considerable knowledge has already been accumulated.

The impact of the basis on program verification and other formal approaches to

programming should be considered. The techniques of Gerhart [GR] in verification

studies of APL are probably more appropriate in this context than those of King [K1J

and Hoare [HO]. In particular, one does not arrive at algorithms in the basis as easily

by modifying variables in an invariant relation as he does deriving the algorithm directly
from a mathematical model involving sequences. (See Appendix IV for an example of

this phenomenon.) In fact, it is almost as difficult to understand the transformation of E

CONCLUSIONS AND FUTURE DIRECTIONS 118

traditional gotoless language algorithm into an algorithm in the basis, as it is to

understand the analogous transformation from assembler language into a higher-lrvel
language.

Finally, implementation of the basis looks ext'-emely interesting as a future research

effort. The primary language from which the basis was derived was Bliss—it is very

likely that compilation of programs in the basis is not too difficult. Naturally, by

interpreting a representation as opposed to interpreting programs or data, we open the

area of internal representation of programs and data—by the same token, we unify the

approach. We strongly suggest the approach of Hansen [HA] to implementing the basis,

optimizing only when necessary and only to the extent necessary. The ultimate goal of

every language designer is to produce a machine for which the language is the machine
language. E'forts in machine design such as the STAR VI [HT] are very promising as a
technology for such an implementation.

Obviously, by defining an (unnamed) language basis, we are not interested in
controlling the future research from »he basis (although we would certainly be

interested in hearing of any such effort). We a, e particularly uninterested in defining

a sequence of (upward compatible) anguages from the basis, but encourage any

reformulation appropriate to the reseaxh at hand. It is a rare opportunity for those

interested in optimization efforts to bo permitted to reorient a language to facilitate
their effort—here is a basis for one.

Order of Magnitude Improvement

In Chapter 1 considerable attention was paid to finding rn order of magnitude

improvement in general ourpose programming languages. Our only claim is that we feel

a language derived from the basis may attain such a distinction. The lack of an

association mechanism and other "parallelism space" desirables prevents a concrete

demonstration of the claim. We can only summarize that the basis is presently

significantly more concise than Algol for a larger class of problems than is APL, but it is

not as concise as APL for the problems for which APL is particularly well-suited. This

conciseness relies on the build-up of a considerable library of useful functions;

however, we are far better able to rely on such a traditionally difficult entity because

of our ability to represent infinite sequences and to deal wah programs and data

uniformly. Implementation does not appear to be a difficult task-for some programs in

the language basis, efficiency can be commensurate with that of current languages.

In the last twelve years of language design research, the order-of-magnitude

criterion has not been met for general purpose programming languages by pushing

CONCLUSIONS AND FUTURE DIRECTIONS 119

traditional language constructs. We feel it will only be met by making both the

programmer and the implementation aware of higer-level relationships between program

and data structures, and by emphasizing these relationships with language constructs
facilitating their concise expression and efficient compilation. Expressing such

relationships demands that we step outside traditional language structure;.. We believe
that the basis represents a significant step in this direction.

.. , _.

1
APPENDIX I

INSTANTIATION, COMPOSITION AND EVALUATION NOTES

Instantiation rule: For b a binary operator and x an operand:

a. x b stands for the operator defined by:

none op y :: x b y;

b. b x stands for the operator defined by:

y Op :; y b x;

c. x b y stands for the instantiation: x (b y).

Composition rule: If b, I and r are binary, left-unary, and right-unary operators,
respectively:

a. b I stands for the binary operator defined by:

X op y :: x b (I y);

b. r b stands for the binary operator defined by:

x op y :: x r b y;

c. ri ri stanas for the right-unary operator defined by:

x op :: x rj r2i

d. Ii I2 stands for the left-unary operator defined by:

none op y :: Ij (l2 y).

The resulting operators are then subject to the composition rules. No other
combinaiion of operators is a composition (see next section).

■ !■ !■ Ml M IIIM I I - -

'• I ll"^w^ I

APPENDIX I: INSTANTIATION. COMPOSITION AND EVALUATION NOTES 121

Extensions to the composition rule:

The composit;on rules above expliotly disallow composmons of the forms: "b r". "I

intPrn l ; ' r and b b"- In ^ct, the f.rst two forms have reasonable

r:::: t" bnoamejy th:i,he unary operator be appiied ^ ^ o^zzi parameters be bound as though the unary operator were not present That is tZ
above composition rules could be extended to perrr.t: ' *

e. b r stands for the binary operator defined by:

x Op y :: x b y r;

f. I b stands for the binary operator defined by:

x Op y :: I (x b y).

The forms "r I" "I r" anri "u u- u ,
/ b b crjld be used to allow parameters to ent^r Hi. e^o* ,rcm e,ther side, bu, ,s rejected as nonintu|ljve ^P ^^^-s ****J*

Impact of evaluation function on composition rules

Reference is made in Chapter II to the amb.guity of permitting:

+* == <+i +. .>

but not allowing:

+ (mul 3).

operator can be apphed to another operator directly.

 ■'-• ■-•

-——

APPENDIX I: INSTANTIATION, COMPOSITION AND EVALUATION NOTES 122

"patterned expansion" of the functions has beun used to convey the intended choice.

Quote rules always cause problems when several levclr of quoting occur. We see no
solution to this problem, but do make the followirv, "noteb":

F'ermitting the ability to quote an arsumont at the operator definiton site is

desirable. For example, assume precemimg an argument name in an operator

definition (to the left of the "::") indicate: that whon the operator is called, the

corresponding actual parameter may be an unevaluated function. Assume also

that "" in an expression inhibits evaluation of i function, and indicates that the

argument is to be considered "data"~i e directs the evaluation function to apply

the function instead of compose the two. Then the distributed usage of the

function throughout the program does not require that the argument-function be
quoted in each instance. I.e.,

'a f b :: b . (a*)

does not require

(..> f bl ... '-f b2... 'mulf b3... etc.)

but rather permits the same effect using

(... + f bl ... -f b2... mulf b3 ... etc.).

The designers of LISP recognized this whrn defining "setq" for example, but did
not permit the user to define such functions.

2. The ability of an operator to quote its argument may be inferred from its usage

in its defining expression (by an interpreter or compiler). In the example above,

given that V can quote its argument, it is redundant to specify the fact explicitly
using the "'•'.

3. The V is already a form of quote operator (see Chapter III; A rocursiv« "*".)

/

•niiiiinii iu

/^i

APPF.NDIX II

NOTES ON THE MULTIVALUED-LOGIC OPERATORS

In Chapter II it was indicated that the operators then, else and excludes have

somewhat anomalous properties. These stem from the interpretation of any non-nil

value as "true" and nil as "false". In particular, if D is the (a) domain of the logic

operators, and 0 the set of such operators (called connectives), then for no o in 0 is
there an element t in D - {nil} such that: nil o nil = t.

We first consider such a logic for the domain {0,1}, where "0" is an abbreviation for

nil. The set of connectives for this domain is c ied 0'; they are ennumerated in Table
AII.l below.

o' in O't null and *-y lid y-x rid xor or

0 o r\

0 1 0 0 0 0
- u

1 1 1 1
1 0 0 0 1 1 0 0 1 1
i 1 c i 0 1 0 1 0 1

TABLE AII.l: Restricted Boolean Connectives, 0'.

Notice the absence of the "eAotic" connectives such tu nand and nor.

We can now define the logic system of the basis as the set of binary mappings o in
0 from D x D into D subject to the following constraints:

1. For all o in 0, ril o nil «= nil;

2. For all x, y in D, x o y is in {nil, x, y};

tlid is the binary left identity function, rid is the binary right identity function, and the
operator "-" is actually "monus".

I_a>^a>l_l^__

APPENDIX II: NOTES ON THE MULTIVALUED-LOGIC OPERATORS 124

3. For each o in 0, there must be an o' in 0' such that the mapping b defined by

b(xM if x is in D - {nil}
-0 if x = nil,

is a hjmomorphism. That is:

b(x o yv = b(x) o' b(y).

These latter two constraints remove domain dependencies from the connectives. In

particular, (2) eliminates a connective which maps (x.nil) onto y, and (3) eliminates
connecti-es which map (x.nil) onto x but (y.nil) onto nil (for x,y in D-{nil}). The table
below represents all such connectivest (with "0" substituted for nil):

x y Ccnr.octivcs

0 y 0 0 0 0 0 0 y y y y y y
x 0 0 0 0 X X X 0 0 0 X X X
x y 0 X y 0 X y 0 X y 0 x y

Ref. « 1 2 3 4 5 6 7 8 9 10 11 12
Partitions

null x-y y-x xor
namest+ and !id rid or

Converses 1 3 2 7 i 8 4 6 5 10 12 11

TABLE AII.2: "Language Basis" connectives, 0.

tTo be precise we would have to define a homomorphism from an arbitrary D onto fx v
nil}, etc. ' /'

ttThe homomorphism b induces a partition on 0. In particular, o and p in 0 are in the
same partition iff for all x, y in D, b(x o y) «b(x p y). The corresponding element of 0*
is given here as a name for the partition.

■ ■■ -■ ■■-—■—

APPENDIX II: NOTES ON THE MULTIVALUED-LOGIC OPERATORS 125

Completeness Properties

This logic system has some rather interesting "completeness properties". A set of
-nnect, S(wi|| be cal|ed comp|ete)ff ^ ^^ c ^ W ^ ^A^of

well formed expression in terms of K, y and the elements of S.

The properties of interest her e are:

1. {excludes, else} ,s a complete set of connectives;

2. There is no complete unitary set of connectives;

3. {excludes, then} is not a complete set of connectives.

In Chapter II the correspondences between excludes and not. then and and. and els.

and or were made. Thus, the property (2) and (3) may seem somewh. startling in
terms of regular Boolean logic. The proofs of these properties are sketched below

Proof Sketches

1. {excludes, else} is a complete set of connectives.

[LSSI ^'r ^^ ^ ^ "^ ^^^ 0UrSelVeS W,,h COnverses Simultaneously
substitute x for y and y for x in an express,on to obtain the converse of the

onnective which the expression defines). Aiso note that the left and ngh
.dent,ties, d and r.d, respe lively, can ba obtained directly (e.g. for "exp lid y"

-bstitute "exp"). Hence, we need only construct the connectives with re e ence
numbers (in Table AIi.2) of 1, 3, 6 and 10: ererence

x (1) y = x excludes x;

x (3) y = (x excludes y) excludes y;

x (6) y = ((x excludes y) excludes y) else x;

x (10) y = (y excludes x) else (x excludes y).

QED

There is no complete unitary set of connectives.

CLP^V ! uS' ard aSSUme the Set ,S {C}' Then the corresponding Boolean
connective c' must be such that {c'} is a complete set for 0' (C is the label of the

su^Toio* C IS 3 member ,n Table AII•2,• In ^ ,here iS n0 COmp,ete Unita-

■ MM.

APPENDIX II: NOTES ON THE MULTIVALUED-LOGIC OPERATORS 126

None of the following sets is complete: | - , null, lid, rid, and}, {xor, null, lid, rid},
{or}. Hence, no proper subset of these ^ots is complete. Since each of the

connectives appears in at least one of theM sets.no unitary set is complete. (The
sets arise from generating all expression«; involving "-", xor, and or, respectively.)
Hence, th?re is no complete unitary subset of 0.

QED

3. The set {then, excludes} is not complete.

Pf. The proof of property 1 expresses then m terms of excludes (alc.ie). This set

is complete, therefore, iff {excludes} is complete, which it is not, by property 2.

QED

s

- — - ■--■ - - - - — - - ■

/^/

APPENDIX III

USEFUL FUNCTIONS DEFINED IN THE TEXT

Note: many of these functions can be simplified to be defined in terms of other useful,

rr^ore primitive functions. We do not propose this set as a well-integrated set of

functions, but include the list merely for reference from within the text. If an

operator is redefined, each version appears here, in the order of redefinition in

the text. Most operators which are used only m a very local context in the text
are not redefined here.

Function Page Defined

and :: then

x alternate y :: <x; y> gen *

M Bmask :: M . (controls (1*) *)

35

36

54

s cone p :: <s gen; p gen>
s controls q

s controls q

s controls q

s controls q

M column i :

;: s . (rid *) . q

u s length It (q length) excludes (s controls q)
;: s controls (q lengthge (s length))

: s . (rid *) . (q cone (nil *))
M . (sub i *)

s eo :: s. (<emitn odd;emitn even> gen *) : [even; odd]
x exch :: <x emit; collect> val

M fromnil :: M . (. (else NIL *) *)

M f-omNIL :: M . (. (ne NIL *) *)
n factorial :: l/(mul * . (n pos)) val

n head s :: n gt 0 then (n pos controls s) else <>

x id :: x

u ip v :: u rowmul v sigma

s interleave p :: [s::s; p::p] : <collect s; collect p> gen

34
39
44
44
45
51

97
103

53
54
59

42

27
51
99

 —^ _—__ . .

APPENDIX III: USEFUL FUNCTIONS DEFINED IN THE TEXT 128

s length :: s controls P val else 0

s lengthge i :: i pos controls s length = 1 then s

" max j :: i ge j else j

M MM N :: M . (rM N *)
s mask :: s . (thenf emit *)

none not x :: x excludes true

s nonempty :: s . (exs ♦)
v notempties :: v . (txs *) val then v
x null :: <> gen

or

k odd
else

k mod 2 ■ 1

P " 0/(+l*)
n pos :: P while (le n)
s prefix y :: <y> cone s

s prefix y :: <y; s gen>

x rid y :: y

s rplus p ::

u rowmul v

r rM M :: r

s reverse ::
fs reduce s

fs reduce s

fs reduce s

s .(+*). p
" u . (mul *) . v

ip * . (M transpose)
<>/ (prefix * . s) val

:: fs functionzero / (fs
:: / (fs . s)

- fs 1st / (fs tail . s)

s)

s sub i :: i head s val

u sigma :: 0 / (+* . u) val

M transpose :

M transpose :

M transpose :

M transpose ::
list tail :: list

x thenf f :: x

M column * . P

M column *. P while notempties
M fromnil transpose fromNIL

M Bmask transpose controls (M column ♦. P)
. <null; id * gen>
then (x f)

44
44

48
51
95

35
40
52
63

35
57

41
42
57
107

27
39
51
51
57
77
78
78

43
51

51
52
54

x whenf f :: x f then x
(Appendix V)

irr?

APPENDIX III: USEFUL FUNCTIONS DEFINED IN THE TEXT 129

s while f :: s . (f exs »)

list 1st :: list . <id> val

list 2nd :: list . <null; id> val

list 3rd :: list . <nulli null; id> val

42

63

vAppendix V)

(Appendix V)

___^. — --—-■■ -■-■ ■ J

APPENDIX IV

COMPILING EXPRESSIONS IN THE INITIAL BASIS

To indicate that we are indeed very BtrktiHi about the basis as a realistic approach

to programming, the following section indic«t65 how Lompilation is possible for some

expressions in the basis. A fairly complex cxnrple ic worked out in considerable detail,

producing a very efficient program (which could seem unlikely to one who is seeing the
basis for the first time).

To illustrate, Knuth's "Algorithm A" for computing x raised to the power n (originally

Legendre's algorithm) [KN, pp. 399-400] is compiled. A few words about the algorithm

and formulation in the basis are in order before the compilation process is indicated.

The algorithm essentially arises from the equivalence: (using "T" to indicate
exponentiation here)

x T n « x T (dx + 2 d: + 4 ds + ... + (2T(i-l)) d

-(« T dx) ((x T 2) T dz)... ((x T (2 I U-U)M di)

where the "dj" are the coefficients in the binary expansion of "n".

When dj=0, the term in the product above is "1". That is,

(x T (2 T k)) t 0 = 1

and

(x t (2 t k)) T 1 = x T (2 t k).

Thus, the algorithm simply involves computing factors involving successive squares of
"x"

V are
To represent the algorithm in the basis, we first note that the squared powers of

x squared :: x mul x;

x power2 :: <x; x/ (squared *) gen> MI

The binary coefficients in right-to-left order can be obtained:

 ._ _

APPENDIX IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS 131

n bincoef n <ni n/(div 2 *) gen> while (ne 0) . (mod 2 ♦)

The factors to be multiplied can be written:

x factor; n :: n bincoef . (=0 then 1 else *) . (x power2)

Thus, the algorithm for "xTn" can be written:

v tothe n :: l/(mul * . (x factors n» val

[2]

[3]

[4]

In compilmg programs in the mtial bas,s we deal w,th three separate program

representations; the source, an intermediate representation which we call "generator
expressions" and the target language, here a dialect of Bliss [WU,1972].

Generator expressions will be objects from which we can "collect" a value The
objects will be triples:

G = [[L; D; E]].

(The double brackets are used to avoid confusion with the coroutine set notation of

Chapter IV.) A generator is such that a program counter or sequence position counter
can be associated with it. The portions of the generator are:

UG) = label set;

D(G) = declaration/ initialization set;
E(G) = generating expression.

The label set arises from escapes m sequences expressions. In translating from the

basis to generator notation, several levels of sequencing operations will be merged-i e

the escaped sequence would become ambiguous unless we tied it to a unique label The*
declaration sets arise from "accumulate" operations where a temporary variable must bo

declared to accumulate the result. The expressions. E. will be quite similar to

expressions ,n the basis defined solely in terms of the primitive functions, except they

Will mvolve the declared variables of the "declaration/initialization set", and assignment.

We will be concerned with when we can translate a generator expression into either

a subroutme with own variables-i.e. a coroutme-and when we are able to convert

the expression to a closed function with local variables. Below we introduce rules used

' ' ■ ' ■ '

APPENDIX IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS 132

to transform sequence expressions from the Initial basis into the intermediate generator
notation from which either subroutines or functions can be compiled.

The » ==>[[{L};; cycle e']]

where L is a unique label, and •' has all exs expressions redefined as «xsn L
L need only be defined when such an exit exists in e.

12: [[L; D; cycle E]] . [[L'; D'; cycle E']] —>

[[L union L'; D union D"; cycle (E [E,))]]

T3: x / [[L; D; cycle E]] ==>

[[L; D union {declare v = x}; cycle (v<-v(E))]]

where v is a unique name, not in the program.

T4: ([[L; D; E]]) --> [[L; D; (E)]]

The transformations are to be applied "inside out" and "left to npht" to expressions in

the initial basis. They transform primitive functions (nrithmetic, relational, conditional)
and expressions composed only of primitive functions intact.

We now consider the compilation of the "xTn" algorithm above. However, to

circumvent issues involving the gen operator, we redefine "powe^" and "bincoef" in the
following somewhat artificial way+:

x power2 :: x sqrt / (squared *)
x bincoef :: 2 mul n / (div 2 *)

while (ne 0). (mod 2 *)

[5]

[6]

tNote, we can replace <v; v/(f*) gen> by Mv (f inverse)/ (f*)" when T has a unique

inverse. In general, we can replace it by: H<IiV>/(2nd/<id;'>*).(lst*)". This latter

expression corresponds to the normal nasty situation where a side-effect must occur,

but the previous value of the changed variable is desired after the assignment.

i nn nimii■

APPENDIX IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS

We begin by applying the transformations above to the subfunctions of [4].

x p wer2 :: x &qrt/(squared*)

Tl ==> x 5qrt/[t;;cycle squared]]

T3 ==> [[; [declare Z=x sqrt}; cycle (Z^Z(5quared))]] [7]

n bincoef :: 2 mul n/(div 2*).((no 0) exs*).{mod 2*)

Tl ==> 2 mul n/[[;;cycle div 2]].(ne 0 exs*).(mod 2*)

T3 ==> [[; {declare N=2 mul n}; cycle (N«-N(div 2))]].

(ne 0 exs *),(mod 2 *)

Tl ==> [[; {declare N=2 mul n}; cycle (N*-N(div 2))]].

[[{DONEI;; cycle (ne 0 exsn DONE)]] .(mod 2 *)

Tl ==> [[; {declare N=2 mul n}; cycle (N<-N(div 2))]].

[[{DONE}» cycle (ne 0 exsn DONE)]] .
[[;; cycle (mod 2 *)]]

T2 ■-> [[{DONE}; {declare N=2 mul n};

cycle ((N-N(div 2)) (ne 0 exsn DONE))]].

[[;; cycle (mod 2 *)]]

T2 ==> [[{DONE}; {declare N=2 mul n};

cycle (((N-N(div 1)) (ne 0 exsn DONE)) (mod 2))]] [8]

Note also that we can transform "(=0 then 1 else *)" by "Tl" to:

[[;;cycle (=0 then 1 else)]]

We can then do "factors" using [7], [8], and [9]:

x factors n :: [8]. [9]. [7]

T2 ==> [[{DONE}; [declare N=2 mul n};

cycle ((((N^N(div 2)) (ne 0 exsn DONE)) (mod 2))

(-0 then 1 else))1].

[[; {declare Z=x sqrt}; cycle (Z«-Z(squared))]]

T2 ==> [[{done};

{declare n=2 mul n; declare Z=x sqrt};

cycle (((((N»-N(div 2))(ne 0 exsn DONE))(mod 2))

[9]

__11^__— ■

i i ' ' "n" *~*^*^^^^^^****^*mmmtmmmmm

APPENDIX IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS 134

(=0 then 1 else))

(Z«-Z(squared)))] rjQ-,

Now, using [10] in [4] we can transform the exponentiation function:

x tothe n :: l/(mul * . [10]) val

Tl ==> !/([[;; cycle mul]] . [10]) val
JAJ2 ==> l/[[{00NE}j

{declare n=2 mul n; declare Z=x sqrt};

cycle (ml ((({(N^N(div 2))(ne 0 exsn DONE))(mod 2))
(=0 then 1 else))

(Z«-Z(5quared)))]] val
T3 ==> [[{DONE};

■declare n=2 mul n; declare Z-x sqrt; declare Y=l};

cycle (Y^Y((mul (((((N«-N(div DKne 0 exsn DONE))
(mod 2))(=0 then 1 else))

(Z^Z(squarcd))))]] val fj|i

Using the mstantiat.on rules of Appendix I, we can remove pa: enfheses to obtain:

x tothe n :: [[{DONE};

{declare N=2 mul n; declare Z=x sqrt; declare Y=l};
cycle Y*-Y mul

(«N<-N div 2) ne 0 exsn DONE mod 2)=0
then 1

else (ZMZ squared)))]] val n2]

The expression inside the cycle should look at least reasonably close to a "real-

program for "x tothe n". (The names of the vanables are consistent with those used in

Knuths vers.on of the algorithm.) Notice that the computation sequence (cycled

expression) could be "pulsed" if there were occas.on to do so. by producing a program

from the generator expression translating declare into own in Bliss or Algol However

the val operation mdicates that the vanables of the generator are temporary in nature'

and hence, that loe declares can be local declarations in Bliss. We can convert the
above program into a Bliss program almost trivially:

 - ■

APPENDIX IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS 135

routine tothe(x,n) =
begin

local N=2 * .n, Z=sqrl(.x)I Y=l;
label DONE;

DONE : while true do
Y-.y * if

(if (N*-.N/2) eq 0

then leave DONE

else .N mod 2 eq 0)
then 1

else {1*-.I * .2);
.Y

end;

[Note: in Bliss, "." takes the contents from a machine address, which declarations

associate with declared variables. The leave expression escapes from the expression

labelled by its argument. The value of a block is the last expression in the block-VT
in this case.]

Although this expression is not optimal, normal optimization will transform the
multiplication so it only occurs on odd values of "N". Bliss will even do a right shift for
the divide and a mask operation for the test.

The expressions for the initial values of X and Z are discomforting. We claim

(without proof) that they could be hanndled in a better way by using the somewhat

obscure formulation in the footnote above, or, in fact, by the proper considerations of
gen.

We will not present any more compilation issues here: the above discussion is

intended to indite that we do not feel that the basis is even as unrealistic as LISP in

terms of compilinj efficient programs. Some efficient programs can be compiled with an
almost trivial amount of optimization effort.

Our considerations are far from complete; the mechanism above may have to be

modified drastically to accomodate the other operations in the basis. In addition, we

have ignored issues of parameter substitution mechanisms (used implicitly in the

transformed expression above), data structure creation, nested loops, etc Such

considerations should await a formalization of the basis: both formalization and
compilation constitute significant research efforts in themselves.

APPENDIX IVs COMPILING EXPRESSIONS IN THE INITIAL BASIS 136

However, ine point is extremely important: the compilation considerations above are

possible only because "." and "/" have been identified as primitive coroutineless

constructs, hid they been extended from "collect" and "emit" as is suggested in

Chapter IV, opti nizers might have missed the transformations above and not compiled as

efficient programs. The analogy is direct between "coroutineless" and "gotoless"

programs: each presents a set of constructs whose interrelationships can be considered

by implementers to produce well optimized programs. If the constructs are not

present, tne optimizer is unable to confine his attention to the most frequent functional

usage of the goto or coroutine call. He will probably not be able to focus on the

specific cases above because of the interference of the uses of the primitive constructs.

That is, he must recognize the use of "." and "/" by "pattern match", insure other
coroutine calls do not interfere, and then apply the transformations.

- - - — -1——^^——._^^J———^-
-■

■IW'I" ■■

/ ̂

APPENDIX V

COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS

Computability

In order fo prove that the initial basis (described in Chapter II) is computationally
complete, we show that an arbitrary Turing Machine can be implemented using the basis.
Thus, in particular, a universal Turing Machine can be simulated, and the partial

recurs.ve functions are computable in the basis. The terminology follows Hopcroft and
Ullman [HU].

A Turing Machine is a finite state device with a semi-infinite tape on which symbols
from an alphabet, GAMMA, can be written and from which they can be read. The set of

states will be called, K. A Turing Machine instruction, called a "move", determines the
next configuration of the machine by specifying:

1 The next state;

2. The symbol to be written on the current position of the tape (under the
read/write head);

3. The direction the tape must be moved-left, L, or right, R.

A move depends on the current symbol under the tape head and the current state.
A program (set of moves) must be specified by a function,

delta: K x GAMMA --> K x (GAMMA-{B}) x {L, R}

where B (blank) is the symbol in any tape position not yet scanned (read) by the

machine. A computation proceeds one move at a time, unti, a state in the final state set

F (a subset of K), is reached. The non-blank portion of the tape is the result of the
computation.

Initially, a machine is started in state q0, with a sequence of symbols AL A2 A

on the tape. The head .s positioned at the leftmost symbol (Aj) and the remainder of
the tape is blank (all Bs).

To implement a Turing Machine in the basis, the function delta, the initial state q0,
the final state set F and the argument sequence A must be provided. (These latter two

■ --

•~r~^m—m~*m*m~*—~*m*mimm'iw*****imim

APPENDIX V: COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS 138

sets are specified as sequences in the basis with the same names--i.e. F and A.) We

define an mtantaneous description of the computation (similar to Hopcroft and Ullman's
"TM configuration") as the following sequence:

Current state—"q"j

<Tape to the left of the head, reversed--"LH";
Symbol under the head--"h";

Tape to the right of the head-'RH"»

Thus, if the machine is in ^tate "b", the tape has the symbols "xyzpqBB...", and the
head is positioned on "z", the instantaneous description is:

<b; «y; x>; z; <p; q; B; B; ...»>

The various fields of an instantaneous description, ID, may be accessed by the functions
defineH Lelow:

q :: ltt| h :: 2nd 1st; LH :; 2nd 2nd; RH ;: 2nd 3rd,

The function delta's result is formattedt.ii':

q delta g ==

<next state-V; written symbol--"g""; head direction—"LorR">

where q is the current state and g is the symbol under the nead. Accessors for values
of this function are defined:

q' :: 1st; g' :: 2nd; LorR :: 3rd.

nechmcally we must show the basis is able to express arbitrary "delta" functions. By

naming the states with posit ve integers, and a GAMMA of the decimal digits (union {B}),

an array of triples in the above format may be simply selected to produce the result of
delta.

ttWe prove tnat the initial basis including an operator definition facility is complete.

This differs from lambda-expressions [CH], for example, where a universal function may
be expressed as a closed expression in the system.

I ir ii i i ■ ■ ■ - ..-.,■■ ...-■■_ ,

m^

APPENDIX V: COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS 139

The implementation essentially relies on a two stack machine simulation of the TM

computation. A stack is stored as a sequence, the first element of which is its "top".
The relevant operations on stacks are:

stack push x :: <x> cone stack;

stack pop :: stack tail;

stack top :: stack 1st.

A "move" function which transforms one instantaneous description to the next may
then be written:

ID move :: ID q delta (ID h) MOVE ID

where MOVE is defined:

D MOVE ID ::

<Dq';

ID * . (D LorR = "L"

then <LH pop; LH top; RH push (D |>

else <LH push (D g'); RH top; RH pop>)>

The computation sequence may then be described as:

COMP :: <q0; «>; <A 1st else B>; A tail cone (B *)» / (move *)

However, the above computation does not torminate. To obtain the finite

computation sequence (when there is one), the following auxilliary functions are useful:

x isnotin s :: s . (= x txs *) val excludes x;
x whenf f :: x f then x.

The terminating computation sequence is then simply:

COMP' :: COMP while (whenf (q itnotin F»

To obtain the value of the computation we simply decode the last ID in COMP':

ID decode :: ID LH reverse cone <ID g> cone (ID (vH) while (ne B);
TMCOMP :: COMP' val decode.

Q.E.D.

 ■■■'-■- — - - - '--,*. t., ,, IIHMtWHIMi IMIMlMMt-MtM^MMnMI

APPENDIX V: COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS 140

Oiagonalization

Perhaps a more interesting effect in the basis is the ability to deal with recursively

ennumerable sets directly. To demonstrate, we express a function whose value is the
dovetailed computation of all TM computations on a blank tape.

We postulate a generator for "deltas" which generates all 2-dimensional arrays of

triples conforming to the rule that the computation begin in state "1" (qO ■ 1) and

terminate in state "2" (F = {2}), if it terminates. (Obviously, there is no loss of

generality here.) Call the generator for the deltas, DEtTA-assume each element of

DELTA is a two-dimensional array of triples such that the first subscript (the rows)

correspond to states, and the second subscript corresponds to tape symbols from a

fixed alphabet, the decima1 digits. We interpret "0" as "B" and disallow it from being
written.

Then for DEL an element of DELTA, we define:

args del DEL :; DEL sub (args 1st) sub (args 2nd)

(where args is a two element sequence <current state, current symbol>). The functional

(del DEL) then represents a valid "delta" with its arguments encoded. That is, we can
redefine "move" as:

ID move DEL :: <1D q; ID h> del DEL MOVE ID

In particular, we can now define the (blank tape) computation sequence of a Turing
Machine .n DELTA as:

BTC DEL :: <1, «>; 0; 0*»/ (move DEL*)
while (whenf (q ne 2))

vhere MOVE is as a'jove.

All blank tape computations can then be described as:

ALL3TC :: BTC * . DELTA

Obviously, we must be rather careful how we aciess this monster. We cannot ask for

the value of the first computation and hope to do anything with the second.

Frequently, such sequences are considered, however, and "dovetailing" is used to

 ____ — _.. ,—.—. _.. .._ -

APPENDIX V: COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS 141

describe a desired effect. If we arrange the computations in the following way, it wil
be clear how such a process works:

<<Clil C12; C13; C14; ... >;

<nilj C2ii C22; C23J - >;
<nil; nil; CfU 032; ... >;

The empty elements have been introduced as "place holders" for the dovetailing
process. Dovetailing involves taking the columns of the doubly infinite array described

above (ALLBTC), until an empty element is encountered in the column. Equivalently, we

can take one element from column 1, 2 elements from column ?, 3 from 3, etc. Thus, we
can define a dovetail function for any two dimensional infinite array as:

none convert A :: <0; P gen> . (head (nil *) *). (cone *) . A

A DOVETAIL :: P . (head *). (convert A)

(remember transpose works for such arrays; must check that "0 head s =- <>")

The dovetailed blank tape computations are then:

ALLBTC DOVETAIL

Noticing that the dovetailed array's rows increase in length for each successive row,

and that nil will be the value after a computation halts, we c^n ennumerate the index in

DELTA of the machines that halt (redundantly, here) by "HALTING" below:

row halt :: row . (excludes *). P mask

HALTING :: ALBTC DOVETAIL . (halt gen *)

 ' -■'- —

APPENDIX VI

COROUTINE CONTROL EXAMPLE

Below, the evaluation sequence for the coroutine expression [IV, 12] is presented. The

symbol f represents the current sequencer position in each of the coroutines. The

"«■• indicates thr current "program counter", the print at which control actually resides

(see [IV, 11] ff). Assume control is initiated at V, as would occur if that sequence
were explicitly selected.

<collectn a emitn b; collectn b emitn a> * :

[a :: <3; <1 emit; collect> val; 4; <2 emit; collect> val>i

b :: <« <100il01> sub collect emit; <2C0i201> sub collect emit>]

<collectn a emitn b; collectn b emitn a> * i

[a :: <3; <1 emit, collect> val; 4; <2 emit; collect val>;

b :: «100;101> sub « collect emit; <200;201> sub collect emit>]

< » collectn a emitn b; col'ectn b emitn a> * i

[a :: <3; <1 emit; colloct> val; 4; <2 emit; collect> val>;

b :; < <100;10i> sub 7 collect emit; <200;201> sub collect emil>]

<collectn % a emitn b; collectn b emitn a> * :

[a :: <« 3; <1 emit; collect> val; 4; <2 emit; collect> val>;

b :: < <100,101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn 7 a emitn b; collectn b emitn a> * ;

[a ;: <3; <1 i emit; collect> val; 4; <2 emit; collect> val>;

b :r < <100;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn a « (= 1) emitn b; collectn b emitn a> * :

[a :: <3; <1 7; collect> val; 4; <2 emit; collect> val>;

b :: < <100;101> sub 7 collect emit; <200;201> sub collect emit>]

<collectn a emitn i b; collectn b emitn a> * :

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>;

b :: < <100;101> sub 7 collect emit; <20ü;201> sub collect emit>]

<collectn a emitn 7 b; collectn b emitn a> * :

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>;

amamt^^Mlt^

APPENDIX VI: COROUTINE CONTROL EXAMPLE 143

b :: < <100il01> sub collect « (= 1) emit; <200i201> sub collect emit>]

<collectn a emitn 2 b; collectn b emitn a> * :

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>;

b :: <100 /; <200;201> sub collect emit>]

<collectn a emitn b; collectn b ■ (= 100) emitn a> * :

[a :: <3i <1 7 emit; collect> val; 4| <2 emit; collect> val>;

b :: <100 7; <200;201> sub colled emit>]

<collectn a emitn b; collectn b emitn » (= 100) a> * i

[a :: <3; <1 / emit; collect> val; 4, <2 emit; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn b; collectn b emitn 7 (= 100) a> * :

[a :: <3; <1 emit; collect ■ (= 100)> val; 4i <2 emit; collect> val>;
b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn b; collectn b emitn 7 (= 100) a> « i

[a :: <3; 100; 4; <2 * omit; collect> val>;

b :: <100 7; <200;201> sub collect emit>]

<collectn » (= 2) a emitn b; collectn b emitn a> * :
[a :: <3; 100; 4; <2 7 ; collect> val>;

b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn i {= 2) b; collectn b emitn a> * i
[a :: <3; 100; 4; <2 7 ; collect> val>;

b :: <100 7; <200;201> sub collect emit>]

<collectn a emitn 7 (- 2) b; collectn b emitn a> *
[a :: <3; 100; 4; <2 7 j collect> va^;

b :: <100 «; <200;201> sub collect omit>]

<collectn a emitn 7 (= 2) b; collectn b emitn a> * :
[a :: <3; 100; 4; <2 7 ; collect> val>j

b :: <100; <200;201> sub collect i (= 2) emit>]

<collectn a emitn 7 (= 2) b; collectn b emitn a> * :
[a :: <3j 100; 4; <2 7 ; collect val>i

b :: <100;201 emit «>]

[1]

I

 -_ . -t ^_J^- .- -- L^*^^^. ^^^ ^^^^ ^^^^.^_.^. -..^^..... _ _. , _■■_.■_. J...J.....^.„...^._ ■

APPENDIX VI: COROUTINE CONTROL EXAMPLE 144

<collectn a emitn b; collecfn ■ (=201) b emitn a> * :
[a :: <3; 100; 4; <2 1 ; collect> val>;

b :: <100;201 X >]

<collectn a emitn b; collectn b emitn « (= 201) a> *
[a :: <3; 100; 4; <2 t ; collect> val>;

b :: <100;201 % >]

<collectn a emitn b; collectn b emitn 7 (= 201) a> *
[a :: <3; 100; 4; <2 « ; collect> val>;

b :: <100;201 7 >]

<colloctn a emitn b; collectn b emitn 'I (= 201) a> * ;
[a :: <3; 100; 4; <2; collect i (= 201)> val>;

b :: <100;201 7- >]

<collectn a emitn b; collectn b emitn 7 (= 201) a> * :
[a :: <3; 100; 4; 201 • >;

b :: <100;201 % >]

At this point termination of "a" must cause control to resume in "b" and then pass
the last element ("201") to the caller of "b". Note, the caller of "b" would have received

the first element of "b" at the point marked [1], after the return from the «mit. This is
the point ([1]) when the value of emit is defined.

, i

■ - - - - ■ ■■ - ■ •MiMMMMI^aHilMiiMMi„„_. .-„.. . .

/VS

APPENDIX VII

RECURSION ORTHOGONAL TO SEQUENTIALITY

The functions below implement the "bottom up" function:

t bu f :: t atom? els« (t . fbu f *) f)

Preliminary functions:

a :: 1st

v :: 2nd

top :: 1st

stacK push x :: <x> cone stacK
stack pop ;: stack tail

Top level function:

t bu f :: «i>; «>;<>» / (g ») va| v t0p lsf

where

s g :: s a notempty exs

top empty then

<% a pop; s v pop pop push

(s v pop top cone <s v top f>)>
else

s a top 1st atom? then

<$ a pop push (a top tail);

s v pop purh (s v top cone <s a top lst>)>
else

<$ a pop push (a top tail) push (a top 1st);
s v push <»

J

APPENDIX VIII

IMPLEMENTATION OF GEN IN THE INITIAL BASIS

For a potentially unbounded sequence, s, and an index, i, the following functions

define the sequence s with it ith element "gened"--e.g.

<li <3i6>; 7> genf 2 ■ <1; 3; 6; 7>

To obtain the actual function, both s and i must be encoded in a second sequence

argument to f. They are passed as globals here for "clarity".

s genf i :: <nil; 1; 0> / (f *) . (1st »)

where

q f ::;q 2nd = i then (s sub i lengthge (q 3rd + 1))

ther <s sub i sub (q 3rd + 1); q 2ndi q 3rd + 1>

else
(s lengthge (q 2nd) exs

then <s sub (q 2nd); q 2nd + 1; 0>)

(The first element of q is the element of the result sequence. The second element is an

index for s. The (hird is an index for s, when the second element is equal to i.)

Note, the sub function is the first function defined in Chapter 2:

s sub i :: i pos . (rid*) . s val

None of pos, rid and lengthge is defined using gen.

 --—■——■ ■

■ ■ —' »

/V?

BIBLIOGRAPHY

[AB] Abrams, P. S. An APL Machine, Ph.D. Thesis, Stanford Univ., 1970.

[AJS] Adams, J. M., Johnston, J. B., Stark, R. H. (ed.) SIGPLAN/SIÜACT Proc. of
an ACM Conference on Proving Assertions about Programs (Jan. 1972).

[BA] BacKus, J. W., et al. The FORTRAN Automatic Coding System. Proc. of the

Western Joint Computer Conference, vol. 11, pp. 188-198,1957.

[BA] Backus, J. Reduction Languages and Variable-free Programming. IBM
Research Report RJ1010, 1972.

[BA] "^ckus, J. Programming Language Semantics and Closed Applicative
Languages. IBM Research Report RJ1245, 1973.

[BH] Brinch Hansen, P. Structured multiprogramming. Comm. ACM 15,7 (July
1972), pp. 574-578.

[BN] Barnes, G. H, et al. The ILLIAC IV computer. IEEE Trans. C-17, 8 (Aug.
1968), pp. 746-757.

[BR] Buxton, J. N., and Randell, B. Portability and adaptibility (discussion).

Software Engineering Techniques (April 1970), pp. 28-41.

[CM] Church, A. The calculi of lambda-conversion. Annals of Mathematical Studies,
No. 6 (Princeton Univ. Press, Princeton, 1941).

[CG] Constable, R. L and D. Gries. On classes of program schemata. SIAM J.
Computation 1, 1 (1972).

[CF] Curry, H. B. and Feys, R. Combinatory Logic Vol 1 (North-Holland,
Amsterdam, 1968).

[DMN] Dahl, 0. J., Myhrhang, B., and Nygaard, K. SIMULA 67 common base

language. Publ. « S-2, Norwegian Computing Center, Oslo (May, 1968).

[DN] Dahl, 0. J., and Nygaard, K. SIMULA-an ALGOL-based simulation language.
Comm. ACM 9,9 (Sep. 1966), pp. 671-678.

BIBLIOGRAPHY
H8

[DI] Dijkstra, E. W. Goto statement considered harmful. Letter to the editor
Comm, ACM 11, 3 (Mar. 1968).

[01] Dijkstra, E. W The structure of the "THE"-mult,programm,ng system. Comm
ACM 11, 5 (May 1968), pp. 341-346.

[DI] Dijkstra, E. W Structured programming. Software Engineering (Oct., 1969
Rome). '

[FGP] Färber, D. J., Gnswold. R. L, and Polonsky, I. P. SNOBOL, a string

manipulation language. J. ACM. 11,1 (Jan. 1964), pp. 21-30.

[FG] Feldmann, J. and Gnes, D. Translator wrifmg systems. Comm. ACM 11 2
(Feb. 1968), pp. 77-113.

[GR] Gerhart. S. L Venfication of APL Programs. Ph.D. Thes.s, Carnegie-Mellon
Univ., 1972.

[GE] Geschke, C. M. Global Program Optimizations, Ph.D. Thesis, Carnegie-Mellon
Univ., 1972.

[GPP] Gnswold, R. E., Poage, J. F., Polonsky, I. P. The SNOBOL 4 Programming
Language (Prentice-Hall Inc. 1968).

[HA] Habermann, A. N. Synchronization of commumcatmg processes. Comm
ACM 15, 3 (Mar. 1972), pp. 171-.

[HAN] Hansen, G. Work m progress at Carnegie-Mellon Univ.

[HE] Howitt, C. Description and theoretical analysis (using schemata) of PLANNER- a

language for provmg theorems and manipulating models in a robot AI Memo
No. 251, MIT Project MAC (April 1972).

[HT] Hmtz, R. G. and Täte, D. P. Control Data STAR-100 processor design.
IEEE CompCon. (Sept. 1972), pp. I-/}.

[HO] Hoare, C. A. R. Notes on the theory and practice of data structuring.
Working paper for 1963 Software Eng. Conf. in Romp.

:H0\ru\l' .^ R- ^ ay'0ma,IC ba5,S ,0r COmpu,er P^Srammmg. Comm.
ACM12, 10(0ci. 1969), pp. 576-580 and 583.

■ ' ' ■,l

BIBLIOGRAPHY 149

[HO] Hoare, C. A. R. Procedures and parameters: an axiomatic approach.
Symposium on Semantics of Algorithmic Languages. E. Engeler (ed.),
(Springer-Verlag, 1971), pp. 102-116.

[HO] Hoare, C. A. R. Programm proving: jumps and functions. ACTA Informatica
1, 1972, pp. 214-224.

[HU] Hopcroft, J. E. and Ullman, J. D. Formal Languages and their Relation to
Automata (Addison-Wesley, 1969), 81-84.

[HOP] Hopkins, M. A case for the goto. Proc. ACM National Conference (Aug.
1972).

[IA] lanov, I. The logical schemes of algorithms. 1958 (English translation in:
Problems of Cybernetics 1, Pergamon Press, 1960).

[IBM] IBM System/360 PL/1 Reference Manual, IBM Corp., C28-8201-0, Data
Processing Devision, White Dlains, N.Y. (1967).

[IV] Iverson, K. E. A Programming Language (J. Wiley, 1962).

[KI] King, J. A Prog am Verifier, Ph. D. Thesis, Carnegie-Mellon Univ., 1969.

[KN] Knuth, D. E., The Art of Computer Programming: Seminumerical Algorithms Vol
2 (Addison-Wesley, Reading, Mass., 1969), pp. 398-400.

[KR] Krutar, R. a. Conversational systems programming by incremental extension

of system configuration. SIGPLAN Proc. of the Int. Symposium on Extensible

Languages, Grenoble, France (Sept. 1971), pp. 113-116.

[LR] Lombard!, L A. and Raphael, B. LISP as the language for an incremental
computer. Project MAC Memorandum MAC-M-142, MIT, (Mar, 1964).

[McC] McCarthy, J., et al. LISP 1.5 Programmer's Manual (MIT Press, 1965).

[McC] McCarthy, J. Recursive functions of symbolic expressions and their
computation by machine. Comm. ACM 3 (Apr. 1960), pp. 184-195.

[McCR] McCracken, D. D. A Guide to FORTRAN Programming (J. Wiley, 1961).

-1 ■ - --■-■■--

BIBLIOGRAPHY J50

[MI] Mitchell, J. G. The Design and Construction of Flexible and Efficient

Interactive Programming Systems, Ph.D. Thesis, Carnegie-Mellon Univ., 1970.

[NA] Naur, Peter (ed.) Revised report on the algorithmic language Algol 60. Comm.
ACM 6 (Jan 1963), pp. 1-17.

[NE] Newell, A. (ed.) Information Processing Language-V (Prentic-Hall, Englewo^d
Cliffs, 1961), pp. 1-244. IPL-V.

[NI] Nilsson, N. J. Problem Solving Methods in Artificial Intelligence (McGraw-Hill,
1971)116-155.

[NO] Noonan, R. E. Computer Programming with a Dynamic Algebra, Ph. D.
Thesis, Purdue University, 1971.

[PA] Parnas, D. L On the criteria to be used in decomposing systems into

modules. Comm. ACM. 15, 12 (Dec. 1972), pp. 1053-1062.

[PAK] Pakin, Sandra. APL\360 Referen-.e Manual (Science Research Associates,
1968).

[RE] Reynolds, J. C. GEDANKEN--a simple typpless language based on the

principal of completeness and the reference concept. Comm. ACM. 13, 5 (May
1970), pp. 308-319.

[RE] Reynolds, J. Definitional interpreters for higher order programming

languages, Tech. Rep., Sys. Info. Sei. Dept., Syracuse Univ., 1972.

[RO] Rogers, H. Theory of Recursive Functions and Effectivr Computability
(McGraw-Hill, New York, 1967), p. 67.

[RU] Rulifson, J. F. et al. QA4: a procedural calculus for intuitive reasoninng.
SRI AI Center Technical Note 73 (Nov. 1973).

[SCH] Schumann (ed.) SIGPLAN Proc. of the Int. Symposium on Extensible
Languages Grenoble, France (Sep. 1971).

[SO] Schwartz, J. Notes on the algorithmic language SETL, Courant Institute, New
York Univ., N. y.

BIBLIOGRAPHY 151

[SIM] Snyder, L An Analysis of Parameter Evaluation for Recursive Procedures,
Ph.D. Thesis, Carnegie-Mellon Univ., 1973.

[vW] van Wijngcarden, A. Recursive definition of syntax and semantics. Formal

Language Description Languages for Computer Programming (T. B. Steel, Jr.,
ed.) (North-Holland Pub. Co., Amsterdam, 1965), pp. 13-24.

[vW] van Wijngaarden, A., et ai. Report on the algorithmic language Algol 68.
Numerische Mathematik 14, 2, 1969, pp. 79-218.

[WA] Waite, W. M. A language independent macro processor. Comm. ACM 10, 7
(July 1967), pp. 433-440.

[WA] Waite, W. M. The mobile programming system: STAGE2. Comm. ACM 13 7
(July 1970), pp. 415-421.

[WM] Wells, M. and Morris, James (ed.) SIGPLAN Proc. of a Symposium on
Two-Dimensional Man-Machine Communication (Oct. 1972).

[WI] Wirth, N. The programming language Pascal. ACTA Informatica. 1, 1 1971
pp. 35-63.

[WW] Wirth, N. and Weber, H. EULER-a generalization of ALGOL and its formal
definition: Pt. I, Pt. II. Comm. ACM. 9, 1 and 2, (Jan. and Feb. 1966). pp
13-25,89-97.

[WG] Wile, D. S. and Geschke, C. M. An implementation base for efficient data
structuring. Int. J. of Comp. and Inf. Sciences 1, 3 (Sept. 1972) D

209-224.

[WU] Wulf, W. Programming without the goto. IFIP, 1971.

[WU] Wulf, W. et al. Bliss: a language for systems programming. Comm. ACM
(Dec. 1971), pp. 780-790.

[WU] Wulf, W., et al. Bliss Reference Manual, Computer Science Department Report,
Carnegie-Mellon Univ., 1970.

[WU] Wulf, W. et al A case against the goto. Proc. ACM National Conference
(Aug. 1972).

