o)

AD-773 831

AN INTERFACE TO THE ARPA NETWORK FOR
THE CP/CMS TIME-SHARING SYSTEM.
VOLUME !

Joel M. Winett, et al

Massachusetts Institute of Technology

— J
am B

Prepared for:

Electrcnic Sysiems Division
Advanced Research Projects Agancy

28 November 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

s A

- Best
Available
Copy

UM LASSITIZED

Sac ity Classification

AD 773 3/

DOCUMENT CONTROL DATA - RID

i3+ urity classiiie stron of *ttle, body of absteact and indexind annstatian mdast be entersd when (he overall report ix civariiad:

T.OURILINATING ACTIVITY (Courporats author)

2a. REPOR - SECURITY CLASHA:CAT Yy

L_'_nclassiﬁed

Lowoln Laboratory, MLT. 25 GROUP

i 2=paac TivLE

An lnteriace to the ARPA Network for the CP/CMS Time-Sharing System —Volume |

4. TESCRIPTIVE NO3TES (Type nf report nnd inclusiva dates)
Technical Mote

S. AUTHORIS) {Last name, [irst name, initisl)

Winett, Joel M. and Sammes, Anthony].

5. REPORT DATE 7a. TOTAL NO. OF PAGES |7b. NO. GF REFS
28 November 1973 116 20

Sa. ORISINATOR’S FEPORT NUMBSENS)

. con smanT no. F19628-73-2-0002
L VR gl LG Technical Note 1973-50 = Vol.1

5. proJecT No. ARPA Order 600

aasigned this report)

: ESD-~TR-73-336

10, AVAILABILITY/LIMITATION NOTICES

Approved far public release; distr'bution unlimited.

15. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,

Supplement to ESD-TR~73-337 Department at Defense

13. ABRSTRACT

The interface to the ARPA network consists of a Network Control Program {(NCP) which handles
Host to Host communications, a LOGGER/SERVER for providing access to a CP virtual machire from
the network, and a user subroutine package for communicating with other Hosts on the network from
a logged on CP virtual machine operating in the CMS envircament. The NCP and the LOGGER each
run in Separate virtual machines; the NCP handling the 1/0 operations wiin the MP and the LOGGER
handling pseudo 170 perations with CP through a software supported virtual terminal device. CMS
virtual machines communicate with the NCP virtual machine through a special virtual machine to
virtual machine communications facility.

This report dezcribes the routines which make up the iNCP and the LOGGER. Volume Il includes
flow charts on the logic for each of these routines.

gapr-tured by

NATIONAL TECHNICAI
INFORMATION SERVI-..

U & Departmeant of Comme s
Springheid YA 22151

95, OTHER REPORT NOIS) (Any othes numbers thot may be

14, KEY WORDS

IBM 360767
virtual machines

ARPA network
time=-sharing system

——
S »

UNCLASSIFIED

Security Classification

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOCLN LABORATORY

AN INTERFACE TO THE ARPA NETWORK
FOR THE CP/CMS TIME-SHARING SYSTEM
VOL.UME 1

J. M. WINETT
A. J. SAMMES

Group 23

TECHNICAL NOTE 1973-50 ———

DD ™

NEGEaE
rf T I

28 NOVEMBER 1973 fiirn ArPrs

.A,i‘

FFR 4 1914 !
)

+ L

Approved for public release, distribution unlimited.

LEXINGTON ", MASSACHUSETTS

The work reported in this document was performed at Lincoln Laboratory,
a center {or sesearch operated by Massachusetts Institute of Technology.
This work was spensored by the Advanced Research Projects Agency of the

Department of Defense under Air Force Contiact F19628-70-C-0230 (ARPA
Order 600),

This report may be reproduced to satisfy ncads of U.S. Government agencies.

iiv.

R Al S e st S i M PED A i AT o ey

e e e e I e Sy

Takle of Contents

Volume I
1. Introduction
4s The ARPA Network

Z.1 General Cescription

<.2 Network Concepts

2.3 Requirements of the HOST Software
2.4 m35T-t0-IN” Protocol

2.5 HOST-to-HCST Protocol and the NCP

2.6 Process-to-Process Protoccls
3. The CP-/CMS Time-Sharing Systen
4. The Lincoln Laboratory IEM 3€0/67 Network Softwvare

b.1 System Cesign
4.2 The NET Package
.3 The logger-Server
4.4 The Network Control Progranm
Y.4.1 NCPMAIN
bot,2z NCPXFER
4.4,3 NCPINPT
b.4,4 NCFIMPO
4.4,5 NCPMONIT
U,4,€ NCPINIT ard Error Recovery
U.5 The Treatment of Errorcs

4.6 - Concluding Remarks

Preceding page blank

16

17

21
23
33
37
39
41
by
46
L7

48

49

Appendices
IMF Interface Specifications
HCST-to-IMP Messiges
IME-to~HOST Mescsages
The HOST-to=HOST Protocol
CF Support for a Virtual Terminal Device
Ce Virtual Machine Cemmunications Facility
The NZ27 Rcatine
NZT User Macros
The MLCTST Frogram
The TRYNET Prcqram
Ite TELNET LCGGER/SZEVZIF

The User TELNET

Volume 1I1: Flowcharts

A ACPINIT Flowchart
E. NCEMAIY Flowchart
C. NCEXFEF Flowchart
D. NCERIMPT Flowchart
E. NCPIMP?Y Flowchart
Fo MCTMCNIT Flowchart
Ge LOGMAIN Flowchart

Pe LOGDFV Flowchart

I. LoGsT Flowchart

vi

54

58
61
66
69
71
T4
76
77
79
ae

==L L e =

—_a

Figure
Figure
Tigure
Figure
figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Tigure
Figure
Figure
Fijure
Figure
Figure
Figure
Figure

Fi

[Ua 1

ure
Figure

Figure

"y

igure

e ¢]

10

11

List of Figures

Network Topeclogy - Fall 1971
ARPA NET logical Map - Fall 1971
Hosts on the ARPA Netwerk
HCST~to~IkP Messace format
HCST-to-HOST Message Format
HOST-to-HOST Control Commands
Svstem [esign

NET Fackage

NET to NCP Control Block Format
NET Command Format

Interrupt Stack Format

NET Comrands

NCP to NET Interrupt Codes
Focrmat of Status Bits

NET Floa Rits

LOGGEF Foutine Flags

The Network Control Progranm
Port Table Format

Polling and Device Flags

Input and Output Euffer Formats
Acccunting Fecord Format

RV Table Format

NCP Errct Codes

MHajor Interfaces in the Systenm

vii

10
12
14
22
24
26
26
26
28
28
3C
32
34
38
uc
4e

40

42
51

52

Figure
Pigure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Fiqure
Figure
Fiqure

Figure

L.7

L.8

List of Figures

(Continued)

IMP-to-HOST Message Zormat

HOST-to~HOST Message Pormat

Interrurt Stack Control Block

Interrupt Codes

LOGGEF ASCII/EBCDIC Code Mapping
Serving Hosts on the ARPA Network

The EBCLIC Code

The USASCIT Code

TELNET ASCII/EBCLIC Code Mapping

2741 Keyboard Control Character Maprings
2741 Character and Control Codes

Code for Characters on a PN Print Train

Code for Characters on a TN Print Chain

viii

56
58
73
73
82
94
95
36
97
101
103
104
105

= aya =

P T e e . %

b =

2,

An Interface to the ARPA Network

for che CP/CM5 Time-Sharing Systen

Intrcducticn

The interface to the ARPA network consists of a Network
Controli Progranm {(NCP} which handles Host to Host
communicaticns, a LOGGR/SERVER for providing access to
a CP wvirtual machine from the netwerk, and a user
Subroutine package for comiunicating with other Fosts on
the network from a logged en CP virtual machine
operating in the CMS environment. The NCP and the
LOGGER each run in Separate virtual machines; the NCP
hapdling the I/C operations with the IMP and the LOGGER
handling pseudo 1I,/0 operations with CP through a
software supported virtual terminal device. CMS virtual
macnines communicate with the NCP virtual machine
through a special virtual machine to virtual machine
copmunications facility,

All routines were written in assembly language for the
IBM 360/67 system and operate with CHS in a CP virtual
machine environment.

A brief description of the ARPA network 1is given,
followed by an outline of the CE/CMS time-sharing
system. This provides the fram work for a more detailed
consideraticn cf the interface software and the
automatic initialization and error recovery features
that are incorporated in the systenr design.

The ARPA Network
General Description

The ARPA Network is a store and forward, message
processing network which interconnects a number of
large, rulti-processing computer systems throughout the
United States, The computer systems, known as HOSTs,
are linked together for the purpose of sharing resources
amcng member sites., (See ROBERTS & WESSLER, Ref. 17).
At each node of the network is an Interface Message
Processor or INF which controls all traffic throuqh the
node. (See HEART, KAHN, ORNSTEIN, CROWTHER 6 WALDEN,
Ref. 9,) IMPs are interconnected by wide-band (50
kilobits per second) le2ased communication lines and
provide for the connection to the network of up tc four
HOSTs at each site. The IMP is a slightly modified
i :ywell DDP-516 computer and has been developed by
BULT, BERANEK & NEWNAN (Ref. 1).

The topology of the network, at the time the system was
igplemented, was as shown in Fig. 1 and Fig. 2. The
computer systems connected were as listed in the table
of Fig, 3,

‘McCLELLAN] BBN PROTOTYPE

(NCAR)

ILLINOIS

Rise _ MITRE
(TINKER)

@ TERMINAL IMP (TIP)
@ mvp

50 KB CIRCUITS

T (SITE NAME)1 SCHEDULED BY
e oo —JARRIL 1972

Fi; 1: Network Topology - Pall 1971

ez

LL6L TTed - dey Te21boT 38N vdEVY :7 *b1g

@ov)
WWMWM @\g o.don\fw_n&oc)

16/09¢
——— T i roon i
- ~

R e dmi
(i-e0drdi} dWI dni | awi rIllﬁ.:w,n......lJ dW! A (T rmoR) :
mm&H SHONOFZT - . _GUVAVH T SINNIL Y ONve von :
~ . f
r=- e T ,
141d | @ Ol-40d : { ovainn,) !
b!k-ﬂw L == Ci-d0d _
| _. m
dii dil @ a:._ dnI dwi - ;
P [90A10404¢1) 49/09¢ IG5 ssomwis 8san “
NEE g
e B P - SL/0U% m
TDa (vostrddint Goonydain __
29INSYI @ £9/09¢ Sr9-H 00598 S——=’ Loa :
h..m.h.—- hwlv% i

= Y} w
e,u! dii dWi dWI dni a:vll_n_:_l%: e a9

2078 NTIOIONIT

L]

] ' S\

: ' -)
’ -X = 1 ; J - Jmely L
: z-x1) (oi-404) (ot daq p (0 e0d) (0N e i
] 1

1 1

) i b
[]]

r—- =
R ddiLbmm e ddiLp-mmmam- 4
L—a {Sp—_1

- w
om9 HVIN)= M

_ g€ll-2- m \00922¢J)
~ i

—

AT S T Tty —

LTN73-50-1(3{7
=5

i l

SITE | HOST CCHMPUTERS { NETWORK IDENTIFIER |
. de —

{ | |

UCLA { Sigma 7 1 01 |

I IBM 360/91 | u1 '

| | |

SKI | PDP 10 | 02 |

| { |

UCSB] IBM 360,75 | 03 |

l | |

UTAH] PDP 10 (ou I

| | {

BBRN i DDFE 516 | 05 |

| PDP 10 { 45 |

| PDP 10 | 85 |

| | {

MIT | GE 645 } 06 |

| PDP 10 | L6 i

| | |

RAND | IBY 1800 | 07 {

| { {

SLC | ICM 360/67 | 08 [

| i |

HAERVAKRD | PDP 10 | 09 |
| { |

LINCGLN | IBM 360,67 | oA |
| TX-2 ‘ 4a |

| TSP | 8A |

| | |

STANFORD ! PLP 10 | 0B |
| | |

ILLINOIS | PCP 11 | 0cC |
| | |

CASE i PDE 10 I 0D |

| l |

CARNEGIE | PDP 10 | 0E |
| { l

PAOLI | Burroughs 6500 { OF {
-4 a L i

Fig. 3: Hosts on the ARPA Network - July 1971

Since that time, the network has been expanded, and a
more recent status report is given in KIRSTEIN (Ref.
10).

2.2 Nerwecrk Councepts

The HOST computers typically differ from one another in
type, spe2d, vord length and operating system, though
the notion of mnultiprogramizing dominates most of the
systems. Suck HOSTs could concurrently support several
users, with each user running one or more processes. A
‘rrocess', in this context, is takep to mean any
scftvare entity in a4 HOST with which ar instruction
counter 1is associated, and includes each ccncurrent
activation of a re-entrant program. It corresponds
closely to the term tactivity' used Ly SPOONER ({(Ref.
18) .

A fundamental requirement of the design is t¢ provide
for process-to-process cuzmunicztion over the netvwnrk.
It was decided that such communication should ke based,
not on a sclita:y message, but rather ucon a sequence of
messages and that +this sequence should conform to some
standard formatting procedure or 'protocol'. A number of
svch procecs-to-process protocols have been detined and
jacluded:

a. An Initial Connection Protnrul (ICP) which enaples
any process to gailn access to specific processes
(such as the system logger) at ancther HOST.

b, & T~leccmmunication Netwcrk (IELNEY) protocol
which enakles any terminal serving process to be
connected to any remote keypoard-printer %tetrminel
by mapping through a Network Virttwal Terminail
(NV'T) .

c. A Data Transfer protocol whicl srecifies standard
methods of formatting date for transmission
through the network,

d. A File m-:onsfer protoc:” whick =specifies methods
for reading, vritirng ana wupdating files sorted at
a remote POST.

e, A Graphics protocol whizh facilitates the trunsfer
of yraphics display information-

Processes which desire to communicate with one another
have to he coupled by cne or more 'connections’. A
ccrnnection is defined to b2 simplex (uni-directional)
and connects an output port of one prccess to an input
port of another. Once such a connel*ion has been
established, messages passed %o the output port of one
process are autcmatically received at the input port of
the other.

TR SRR e S ST e = = . S ———

Bl b i e o s e e R MR s bl = i &~ 1

Difficulties exist in uniquely identifying ports
(netvork-wide) in that each HOST. ¢typically, has a
different internal scheme for naming its processes, For
this reason, a standard, intermediate name space is
used, with a separate portion of the name space
¢llocated to each HOST. The elements of the name space
ure called ‘'sockets'! and each HOST is responsible for
mapping sockets to ports for its own internal rrocesses,
A socket is specified by a 40-bit numbter, the first 8
bits of which identified the HOST. In the Lincoln
Laboraiory implementation, a further 24 bits are used to
identify the internal process and the reamining 8 bits,
the port within the process. The 'gender' of the socket
(that is, whether it is send or receive) is marked by
the last bit, thus giving each process a maximum of 128
send and 128 receive sockets,

Although it would be possible for processes to establish
connections on *their own behalf, it is coneidered
desirable that control be co-ordinated in a standard
manner, t+hroughout the network, by a spacial purpose
Network Control Program (MCP) resident in each HOST.
Processes vithin a HOST then communicate with the rest
of the network through their local «xCP, which
establishes, breaks, and controls data flow over
connections as required.

In order to ac-omplish its tasks, the NCP of one HOST is
required to communicate, in a well-defined manner, with
the NCPs of other HOCSTs. To this end a HOST-to-HCST
protocol was defined by the Network Working Group (XWG),
vhich specifies methods of establishing and breaking
ccmmunications gaths, the managing of buffer space, and
a method of ¢fproviding interrupt facilities, This
prctocol is known as the ‘'second-level protocol! and is
transparent to the higher 1level process-to-process
protocols outliined previously.

ihe nedium for communication between HOSTs is 1he
'link's. Every HOST is considered to have 256 receive
links frca every other HOST, which the NCP could aszian
to connections as reonired, Links are vpermanently
available to the NCr ani are specified by the 8-bit HOST
identifiers concatenated with an 8-bit link number, Link
nuaber 0 is used throughout the network as thc 'coatrol
link', over which NCPs can issue 'control messages'! to
one anotler in accordance with the standards specified
by the second level prctocol. Control messages ate
always interpreted by an NCP as a sequence of one (.
more 'control commands'! to effect such activities as th:
initiation of a connections, the assiqnment of buffer
space, or the nctification of an interrupt.

Each NCP maintains a *'rendezvous' (RV) ¢table wh.. h
reccras the current assignment of sockets to ainternal
Fr -esses and 1links to connections. Incoring messages
on a link, other than link 0, are passed by the NCP to
*hat port of that internal process specified by an

=

appropriate entry in the RV table. If no such entry
exists, the message is rejected. Outgoing messages,
frem .n internal preccess, are associated with the
arpropriate link number, obtained from the RV table,
before being transmitted to the appropriate HOST.

In order to effect any transmission of messages, via the
netvwork, an NCP has to coumunicate with its local 1INMP.
A well defined procedure, known as the HOST-to-INP or
'first 1level' protocol, Las been specified for this
purpose. Two types of messages are permitted ky this
protocol:

a. 'Regular' messages which are always associated
with a link and which are passed Ly the 1IMPs,
through the network, to a destination HOST. Such
messages provide the mechanism for all HOST to
HOST communication.

b. 'Irreqular' messages which are communications
between a HOST and its local IMP. Such wnessages
are not, in general, passed through the network to
a distant HOST, but are used for local control
purposes.

The protocol is implemented through the oedium of a
32-bit 'leade:r', appended to all messages. Fields in
the leader specify the Bessage type, the destination or
source HOST and the link number. Regular messages are
of message type 0, and irreqular messages are of type
non-zero, the particular value ¢f the type defining the
function of the irreqgular message, The protocol is
transgarent to the higher level HOST-to-HOST and
process-to-process protocols referred to above.

Any regular message, passed by a HOST to its local IuP,
is split, by that INP, into one or more 'packets' for
transmission through the network. Each packet is
preceded by a €4~bit routing ‘header' which contains
such informatior as the destination anA source HOSTg,
the link rumber, the message and packet numbers and a
set of flags,

A packet is passed, from IMP to IMP, throuah the network
urtil it reaches its destination, as specified in its
header, Fack intermediate IMP selects the next leg of
the transmission path, for the packet, on the tasis of
network topology, local tr “fic density and current line
qualities. The destinatior I[MP reconstructs the message
from the individual packets, re-crdering them as
necessary in accordance with the packet numbers. Such
re-ordering is required because of the potentially
different routes, and heace different transmission
times, taken by each packet. When the messages have
been reconstructed, the destination INP passes i% to the
destination HOST and transmits an acknowledgenent
message to the source INP. This acknovwledgerent message
is known as a Ready For Next Message (PFNNM), On

7

e

% Rl il e I o SR TS i bl T s Cad - oM ZEhe. NS £ Reui el

L R o T SR e e G RN o4 AleEE R

2.3

receipt of the RFNM, the source InP advises the source
HOST that the message had been passed and that the link
associated with it is now free for further
transmissions. The packet rmechanism and the IMP to IMP
communication fprocedures are transparent to all the
higher level prctocols,

At the hardware level, a HOST is connected to its IMP by
a specially designed interface, across which information
can be transmitted, bit serially, in either direction.
It is this interface which resolved the differences in
werd lengths and speeds between the HOSTs and IMPs.
Transmissions consist of a bit train, containing no
special indication of word or byte boundaries, but
interrugted as required while the sender fetches a new
word from memory, or the receiver writes an assembled
cre intc storage,

The Lincoln Latoratory 2€0/67 is connected to the IHMP
through a cpecially built iuterface box. This tox is
attached as a control unit on the multiplexer channel
and provides a duplex connection to the INP, Thus the
IMP appears as two devices, one for transmission of data
and one for the reception of data, both of which can
operate simultaneously. The specificavions of data
transfer to and from the 1IMP through this interface box
ic described in Appendixz A,

Fequirements of the HOST Software

The network control softwarc¢, r=2sident 1in each HOST, is
regquired to observe five major interfaces and effect the
protocols associated with them. These are:

a, The hardware interface between a HOST and its INP,
and the rprotocol which specifies the ccntrol of
that interface,

b. The =oftvare interface between a Network Control
Program and its 1lccal IMP, and the 1'0ST-to~-INP
protccol.

c. The software interface betvween Network Control
Programs, and the H(CST-to-H0OST protocol.

d. 1Th~2 software interface between and internal
process and its local Network Ccn*rol Program, and
the protoccl which describes the form of messages
between therm.

e. The software interface between orocesses, and the
various process-to-grocess protoccls.

Of these protocols, the HOST-to-14P, HOST-to-HOST and
precess-to-process are network da:=fined; the remainder
are implementation dependent and vary in detail frcm
sive to site, An outline description of the network

8

T %

EER e

defined protocols follows; the implementation dependent
cnes are descrited in Section 4.

HOST-to-IMP Protocol

The HOST-to-IMP protocol was specified hy BOLT, BEPANEK
& NEWMAN (Ref., 2) who designed the IMP software and
modified the Hcneywell DDP-51€ computer. This grotocol
is based on the concepts of » 'message' and a 'link?,

A message consists of not more +than 8096 bits of data
wvhich includes 22 bits for a leader and at least one bit
fcr tradding'.

Padding is added by the hardware interfaces to resolve
the word length mis-match problem of dissimilar HOSTs
and IMPs. The source HCST to IMP interface appends a
single one bit to the end of a message, followed by
sufficient trailing <zero bits to complete an integral
number of IMP words. The destinaticn IMP to HOST
interface arvends additional trailing zero bits to
ccrrlete ar integral numter of destination HOST words.
The end of the message can thus be 1located by a
destinatior HBOST by searching its input buffer, back
from the last word transferred, until it finds a
non-zero bit. The bit pricr to this will be the last bit
¢f the message sent by the source HCST. No network
significance is to be placed on HOST word or byte
boundaries.,

Two classes of message type are specified, as stated
previously; regular messages which have a zero message
tyre and which provided the medium for all HOST to HOST
commenications; and irreqular messages which have a
non-zero message type and which are wused for control
nv-poses hetween a HOST and its IMF. (It should be
ne ed that messages of non-zero messace type are
referred to in BOLT, BERANEK & NEWMAN (Ref. 2) as
‘control messages', Tris term is also wused in the
EOST-t0-i02ST prctocol for reqular messages on link zevto.
To avoidl ambiquity, the term 'irreqular message' is used
throuahout this report to refer to mescsages of non-zerc
mescsage type, and the term 'control message' is reserved
for HCST-to-HOST protocol use.)

The 32-bit leader determines the type of *the message and
the link, if any, with which it is to be associated
(Fig., 4),

Regular aes:zages are always to be associated with a link
anéd this is fully specified by a destination HOST
identifier, a scurce HOST identifier, and a link number,.
0f these, the originating HOST specifies, explicitly,
only the destination HCST identifier in the HOST
identifier field, and the 1link rumber. At its
Zestination, the destination IMP regenerates the leader
from the packet header, replacing the value originally
in the H0ST identifier field by th2 source HGST

9

Iers-so-I (%)

[| ' I | [| |

! 4 i u | 8 | 8] 8 | variable |

| | | | l | {

| FLAGS | MESSACE | HOST | LINK | NOT | DATA |

| H TYPE { IDENTIPIER | NUMBER | ASSIGNED | |

I__ —l 1_ 1__ Y S SR S S S |

i |

| SEmoocoacnoncoaanci oo 32-8it leader<--s--v-re-cco=--- >|

| |
1m-__-___-“.__-_,---_-_u_. — e o e e e S S |
| HOST TO IMP MESSAGES | I4P TO BOST MNESSAGES H
jm—ry -_— ——— i - N
| i | l |
IMESSAGE | MEANING | ME5S AGE |} MEANING {
| TYEE | | TYPE | |
e I e S —— _—] | S S N |
! | | |
| 0 |Reqular message HOST to HOST.| 0 | Reqular message HOST to HOST.|
{ { | | |
| 1 jErrcr in leader. i L | E:r ~or in leader. |
| | | | !
| 2 { HOST going down. { 2 | INP going down. i
| | | i i
| 3 i - | 3 | Elocked link. |
| { i | |
i u INO oferaticn. | u i No operation, '
{ | | } |
| 5 |Regular- message for discard. | 5 i RFNM, f
{ | i | |
| € | - i 6 {Link table full. i
| { | i |
| 7 | - | 7 | Destination IMP or HOST dead.|
! | | | |
8	Erro. not in leader. i 3	Ecror not in leader.	
9 I -	9	Incomplete transmission.	
	i	{	
10-15 - i 12-15 1 -			
e | SR, SN N ... B ... Ve — s - |

10

D L e PR P T T i s B KR et i S i 5

[Fo S S A VP &

identifier. Once a message had becen ascigned to a link,
the link is =aid to be 'blocked' and the INP will refuse
further tranrsmissions over it until the first messaade
has either been delivered or rejected. WNotification of
these events 1is by irregular IMP to HOST messages; a
type five indicating successful delivery (RFNH); a type
seven, that the destinaticn HOST did not receive the
coaplete transmission, Each of these messages unblocks
the 1link, Otner arregqgular messages in the Fpintocol
¢nabls an IMFPF to indicate to its BHOST that a 1lank is
blocked; that errors have been noted in previous
messages; or that its link table is full. The HOST caw
indicate to its IMP that it is closing down; that errors
have been noted 3in ©previous messages; or that a
particular mes:zagye 1is for test ~-urposes only. The
m?ssages are surmarized in Fig., 4 2pd described in nore
detail in ippendix B and .

Vith reference to the leader, the PLAGS field, of four
bits width, iz set to zero by source HOSTs and ignored
ty destination HOSTs, The field is to he used only to
comnunicate with IMP kackcround progranms for diagnostic,
maintenance or measucement purposes, The fields,
MESSAGE TYPE (four bits), H2ST IDENTIFIER {eight bi*s)
and LINK NUMBER (eight bits) are to be used as descrited
abovz. The remaining eight bits of the 1leader are
unascigned. The DATR field, of variable width, is
unused in irregular wmessages and is formatted according
tc the HOST-to-HOST protoccl conventions i reqular
Tessaqges,

The IMPs exercice traffic control and restrict the total
amount of data in transmicssion through tne network by:

a. FKefusing additional messages over a ‘'blocked*
link.

b. Limiting the maximum size of a message {o 8096
bits.

c. Limiting to 62 the number of transmit and receive
links a HCST can concurrently have active,

d. Rejecting any message vhich required 1lcnger than
15 seconds for re-assembly from its constitucnt
packets,

e, Rejecting any message which hes not been collected
by a destination HOST 4ithin 40 seconds of
re-assembly.

The ccustraint of a regular message tc nct more tha.
8096 bits in 1length is imposed by the IMP sub-network.

The second-level or HOST-to-HOST protccol passes this
constraint to the user process.

11

il ¢F e e R e, T T e e 2 e R o i

| T873-50-1(5) |

o " Y | - —_ A s - P . o e - - -

Regular Message LEADER
32 Bits
= S
FILLER (M1) | CONNECTION { NUMBER CF BYTES (C)
| BYTE SIZE (S) |
€ pits | 8 bits { 15 bhits
______________ 1._. - - _—
|
FILLE®R (M2) |
8 bits i
____________ -
TEXT
C Bytes Each of S Bits per ivte
e
| FILLER (M3)
|
| variable
- e e w—— —— s s o > e — i —— — L ——— — - — - "

Fig. 5: HOST-to-dOST Message Format

12

it e i i S e S i et o il Jhia

e T o T e T o ts IS gy S ey TED ey VR G aa S e g B e apae AT g -~ g

2.5 BOST-to-HOST Protocol and the NCP

e A ik e e

An early design for the HOST-to-HOST vurotocol was
reported on in CARR, CROCKER & CERP (Ref, U), but the
versicn implemented was formulated by the Network
Workinc Group and is specified in CROCKER (Ref. 7).

This prstocol is based on the concept of a HOST-resident
Network Control Program (NCP), which can communicate
with other HOST-resident Netsork Contrcl Programs, by
reans of ‘'control nessages!, issued over ‘control
links', for the purpose of effecting ‘connecticns!
between 'sockets' assigned to HCST-resident processes.

21l HOST-1o-HOST communications are regular me.isages,
controli messages being sent over 1link Zero ana
interprocess transmissions over non-zero links. The
transmitting NCP is responsible for seqgmenting
interprccess +transmissions into regular messages, hot
more than 8096 bits in length. The receiving NCP is
therefore responsible for concaterating successive
reqular messages intc a single, or differentlv divided,
transmission ror delivery to the receiving process.
Recause of the differingy word lengths of the
ccomeni rfating HOSTs, the [ATA field of reqular messaqges
(Fig. #4) will no%t, necessarily, start or end on word
bo idaries at the receiving f0ST. In order to
ccncatenate successive reqular messages, the receiving
NCP nas to be prepared to employ extensive bit shifting;
an expensive operation in terms of processor time. To
alleviate this situation, the notious of a ‘'message
header' and a ‘'‘connection byte size! have been
introduced,

The message header emtraces the reqular message !eader
and extends the required information at the beginniug of
each message tc a total of 72 bits. The figure of 72
was chosen acs the Jowest cnmmon naltiprle of most HOST
byte and word lengths; these heing 8, 18, 24 znd 36
bits. 1This header reduces the bit shifting problems, at
the beginniny of a message, for the majority of HOSTs.,
The format of the header is given in Fig. 5.

It consists of the 32-bit leader, specified ty the
HOST-to-IMP vprotocol; an S-bit filler field (¥1; an
8-bit ccnnection hyte size field (S); a 16-bit number of
bytes field (C) and a further 8-bit filier field (M2).
The text field of a message consists of C bytes each of
S bits per byte, It was decided that, for each
connection, a connection byte size should be agreed
upon, by the communicating rrocedures, and that this
would typically be the lowest common multiple of the
respective HCST word lengths., The text of messages
would then be an integral number of these bytes. This
procedure re¢duces the bit shifting prcblems at the end
cf a @essage., In addition, a wvariahble lenath filler
field (M3), is specified at the end of & nessage which
can be used by the transmitting HOST to fill the message

13

= - e 2 e o TR R PR gy = el ams. o

B i il PRl 5

| TN73-50-1(6) |

| |

| e |

| NOP (0) |

| . | - - - -

| | | {

I 8 I 32 | 32 | 8
i RIS (1) | receive socket | send socket | link
R Lo j I - A

| | | |

| 8 | 32 | 32 | 6
I STIR (2) | send socket | receive socket | size
Y RN U S
{ | | l

| 8 | 32 | 32 |

| CLS (3) | my socket | your socket |
[, j . S S,
l {			
8	8	16 { 32	
ALL (%)	link	message space	bit space
—t L _— 1 c————			
{		{	
! 8 I 8	g I 8		
I GVB (%) i link	message fraction	bit fraction	
S SN - ==			
8	8	1€ { 32	
RET (6)	link	message space	bit space
i -1 S e S i_			
	i		

| 8 { 8 |

| INR (7) i link |

e !

{ | |

| 6 | 8 |

I INS (8) | link |

1 ____|I

! | |

| 8] 8 |

1 ECO (9) { data |

)y]

! i |

| 8 | 5 |

| ERP (10) i data |

o S S
| l {

| 8 | 8 | 80

| ERR {11) | code | data

UV (VY S, - —— _—
| l

i 8 |

| RST (12) |

R |

| i

| 8 { Fig. 6: HOST-to-HOST Control Commands
} PBREP (13) |

- o s S o oy —

14

out to a word boundary. All the filler fields have a
zero value,

A connection byte size is specified when the connection
is first established, on behalf of processes, by the
co-oferating NCFs. Connections between NCPs , c¢n links
nusher zero, are not, however, explicitly estalklished
but are considered to exist when a HOST becomes active.
The connection byte size for these connections 1is
irplicitly defined to be 8 bits, and the text field
always consists of an integral number of control
cormands.,

The format for each control comwand is given in Fig, 6;
the farst field of 8 bits, xncwn as the 'op-code',
defines the functien of the «command and successive
fields specify parameters to it. The fiquze sh.ws the
three character wnemonic name of each op-code; its
numeric value in parentheses; the size of the paraxeter
fields and the type of parameters required. Op-codes
are defined tor such functions as the establishment of a
cennection, RTS (receiver to sender) and STR (sender to
receiver); the termination of a cornection, CLS (close);
tte control of buffer space, ALL {allocate), GVE (give
back) ana RET (return); the notification of interrupts,
INR (interrupt receive 1link) and INS (interrupt send
link); tne repcrting of errors, ERF (error) and the
determination of status, ECO (echo), EEP (echo reply),
EST (reset) and RRP (reset reply).

When two processes desire *¢ establish a connection, the
rroespective sender reguests its NCP to 1issue an STR
command and the prospective receiver requests its NCP to
issue an RTS command. Thi¢ STR command specifies the
lccal <=end socket, the foreign receive socket and a
connection tyte size. The NTS conmmand specifies the
local receive socket, the foreign send =socket and a
previously wunassigned 1link nunmber for wuse Lty the
connection. Once these commands, known as 'requests for
connections' (RFCs), have been exchanged, and provideu
that the specified sockets wmatch and were nct already in
use, the NCP of the prospective receiver issues an ALL
ccomand specifying the amount of buffer space it is
prepared to assign to the connection. On receipt of this
command, the NCF of the prospective sender is rermitted
to transmit data, on behalf of its process, up to the
amcunt zpecified in the command. It is expected thnat ac
the NCP of the rrospective receiver passes the data to
its process and releases its internal buffer space, it
will issue further AILL commands to the sender, to enable
transmissions to continue. The NCP of the procpective
receiver can, at any time, request a return of all or
part of the tuffer allocation by means of a GVB command
and this 1is to be acknowledged by a RET command. All
NCPs are tc maintain message and bit counters for each
of their send connections which are to reflect the
current buffer allocation at the receiving site. They
are specitically prohibited from 1is=uing any message
15

TG o = 5 S e i Ak AR

which would result in either counter teing decremented
below zero. 7This flow control mechanism does not apply,
however, to control messages issued on links number
2erc.

Connections can terminate by either NC2 issuing a CLS
ccermand which the other NCP is to echo. Care is required
to ensire that a CLS comrmnand, issued by a sending NCP on
link zero, does not arrive at the receiving NCP before
the last data message on the connection to which it
refers.

An NCP is permitted to issue an ERR command whenever it
datects A HOST-to-HOST protocol errer by another NCP,
Tre code field cf this command specifies the type of the
error and the Jata field gives additional infcrmatiorn
about it. A number of error types are¢ network defiied
but it is expected ¢that implementers of NCPs would
putlish details of their own additional error types.
{See Section U).

Further details of the HCST-to-HOST protoccl are given
in Appendix L.

Frocess-to-Process Protoccls

Two process~to-process protoccls wvere defined at the
time the syster to be descrihed was implemented; the
Initial Connection Protocol (ICP) and the
Telecommunicaticn Network protocol {TELNET} . The se
rrctoccls are used both by the LOGGER SERVER and the
user TELNEY processes discussed in Section 4.

A family of I1CPs is foimally specified, on behalf of the
Network Working Group, by JOSTEL (Ref. 15). The
prctocols require a ‘'listen' function to be defined
which permits a process to specify to its local NCP the
identity of a sccket for which it is prepared to accept
a connection frcm any other process. Cn receipt of ai
appropriate request for connection ts such a socket, the
lccal NCP is to issue the matching RFC, thus completing
the connection, and to advise its process accordingly.
This function is e«ffected in the Lincoln Laboratory
system by the process-to-NCP conmand, enable connect
(ENC) and enable listen (ENL) described in Section 4.

lleing thi. protocol, a server process listens on one of
its send sockets, L, which is well known throughout the
netvork. A usei process, wishing to communicate with
the server process, requests its NCP to establish a
ccrnection to L from one of 1ts receive sockets, U. On
establishment of the connection, which is to have a byte
size of 32 Lkits, the server process has two options., It
cculd either request its NCP to close the connection,
indicating that it is not prepared to communicate
further with the wuser process, or, it could send a
single 32-bit even number S, identifying a pair of
sockets, S and S+1, wvhich are to be used for all

16

R,

Iy Ve G s o = 9

i e s il

subsequent transmissions. 1If the server process adopts
the lacter opticn, both processes are to request their
respective NCPs to close the connection betweern L and U
ard to establish new connections between S and U+3 and
3+1 and u+2. The protocol thus provides a means of
establishing duplex communications betveen grocess. The
well kncwn sccket, L, is called the 1Initial Ccnnection
Sccket and is defined to be X'00000001* for the LOGGEE
SERVER, where X signifies a hexadecimal number., U+2 and
U+3 are specified for use, rather than U and U+1, in
order tc avoid a race condition,

The TELNET jprotocol, described by O?SULLIVAN (Ref. 14)
on behalf of the TELNET committee, was designed to make
a process at a using site appear to a gfprocess at a
serving site as logically equivalent to a terminal
directly connected co the serving site., The protocol is
effected through the mediun of a Network Vir:tual
Terminal (NVT) which normally uses a stal dard,
intermediate terminal code. Both the serving and using
processes map their 1lecal codes to this intermediate
ccde and must conform tc the conventions of the NVT.
This approach eliminates the nced for a HIST to keep
information abcut the characteristics of terminals and
terminal handling conventions at other host sites.

The intermediate data code of the NYT is defined to be
the 7-bit ASCII code transmitted in 8-bit bytes with the
high order tit set to zero, Connections lLetween
processes are established using the 1Initial Connection
Prctccol and have a connection byte siz2 of 8 bits. A
number cf 8~ kit TELNET control codes are alsc defined,
€ach with the high order tkit set to one. These are used
for =such purposes as the notification of a break or
reverse break signal; a request to echo or cease echoing
data characters, or a warning to suppress local printing
cf input characters, In addition, a data type conatrol
ccd: can be sent as the first byte of data over a
connecticn to signify whetner the standard NVT code is
to be used or sore defined alternative sSuch as EBCDIC.
A special synchronising code is also defined, which can
be inserted ir the data stream and which is always
associated with a network interrupt (INS) ccmmand. This
enables stacked input to a serving process, up to the
synchronising code, to be discarded or temporarily
ignored by those systems which recognised an *attention’
key as havirg a specified interrupt function,

The CP/CMS Time-Sharing Syst-.m

The Lincoln latoratory CP/CHMS time-sharing system is a
modif...d version of IBM*s CP-67/CMS time-sharing systen
(Ref. 6) and consists of two indepeandent components; the
Contiol Program (CP) and the Conversational Monitor
System (CMS). The Control Program creates a set of
'virtual machines!' which are time shared with one
another, and the Conversational Monitor System provides

17

S

= R g R T ImT Mo e e R L 7 1<
P e e o

T T PR

a conversational operating system which can be used to
ccntrol a virtual machine,

A virtual machine is a functional simulation of the r=al
IBM 360,67 and its associated input-output devices, The
virtual memory and virtual devices of a virtual machine
are specified ty a predefined configuration which can
differ for each virtual machine., The Control Progran
allocates the CFU resources of the real :tachine, for a
short period of time, to wvirtual machines in turn, in
accordance 4ith a scheduling algorithm.

All irput/output commands from a virtual machine are
trapped by CP and translated to real I/0 operations.
Unit record input-output is normally spooled onto disk.
Virtual memory is divided into 4(0Y96-byte blocks, held on
paging drums and paged in and out cf real memory as
required. Special hardware is prcvided cn the IBM 360/€7
fer npaqing purposes which vperforms ‘dynamic address
translaticn'.

CP maintains a record of all permitted virtueal machines
and identifies eachk one by means of a USERID. Associated
with this USERID is a password, accounting information
and a table descriting the configuraticn of the related
virtual machine. Provided that the number of active
virtual machines is not the maximum that tke system can
sugrort at any one time, a user couléd request CP to
establish his wvirtual mwachine by 1logging in on an
unassigned terminal. "Loqgging in"™ invclves the typing
cf a USERID 1nd passvord which are used to validate an
anthorized user., The terminal enables a user to control
his virtual machine, by reans of CP console functions,
in a manner similatr to that of an operator at the
console of the real machine, The virtnal machine
arpears to a user and kis programs to be
indistinguishable from the real machine.

Having establiched the virtual machine, the user can
employ CP console functions for such purposes as the
Initial Program Loading (IFI) of an operating systen;
the display or modification of any pcrtion of his
virtual memory; The stopping or restarting of his
virtual machine, the sending of =aessages to other
terminal users, the setting of special virtual machine
facilities; and the querying of CP for systems
information.

CMS is cne cof the operating systems which can be loaded
into a virtual machine by means of the IPL function. It
i< a single user conversational system which provides a
corprehensive ccmmand language and programming facility,
Commands exist for file creation and ranipulation,
Frogram compilation, execution control, debugging and
varicus utility operations.

The file handling commands enable the user to create,

copy, move, combine, edit, print and erase disk files
18

e P e e i R R e = e o i R i o i e Sk

|

and other ccgpauds provided access to tare units, line
printers, card readers and card punches. Compilation
commands are availahle for Assembler, Pcrtran IV and
Pi/1, and the execution ccutrol commands allow the user
to locad relocatable object programs and execute then
under terminal ccatrol., Executing programs can be halted
at pre-determiaed pointis, examined, modified and
restarted usirg the debug commands. Utility functions
provide for tepe and disk copying, sorting, dumping and
printing.

An EXEC tacility which includes suostitutable parameters
and conditinnal statements allows a set of conmands,
stored in a file, to be obeyed by the command
interpreter, Control can be transferred from the CMS
comsmand interrreter to the CP console function
environment by means of ar ‘'attention' key, thus
allowing locyping programs to e abortegd.

Ecth CP and CML, commands can be issued from *he term:nal
or called from user programs. All the network softwire
vas designed to operate in a wvirtual machine
environment, under control of the CMS operating systenm,

The Linrcoln Laboratory IBM 360/67 Network Scftware

Support for the ARPA rnetwork on the IBM 360/67 computer
at Lincoln Laboratory is provided through a VNetwork
Ccntrol Program (NCF) which runs in a virtual machine of
the CP-67 operating system. The NCP virtual machine has
direct access to the 1Interface Message Processor (INMP),
and hence to “he network, and communicates with other
virtual machines over a pair of virtual levices, one for
sending and one for receiving. The victual device used
for sending can be directed to a particular wvirtual
machine in the same way that user virtual machines
direct transrission to the NCP wvirtual machine,
Transkissions to the NCP are identified 1s to the
sending user and thus ~re appropriately processed by the
NCP.,

The implementaticn of the NCP in a virtual machine
rather than as part of the <core resident systea
facilitated its development since it c¢culd operate
independently of other virtual wmachinres and, hence, not
impact the reliability of the operating system., The NCP
is written as a user program which calls c¢n CHMS systenm
facilities for fprogram initialization, inclrding program
re-initialization in the event of a catastrophic error,
for disk file services, and for virtual machine to
virtual machine commubications,

By operating the NCP in a virtuwal @machine, core aemory
is not dedicated to support the network operation;
system resources are only required when network activity
cccurs. In addition, operating the NCP 1in a wvirtual
machine is particularly convenient since the protocoli by

19

S o sor SRR

which NCP's ccmmunicate is being changed and will
continue to evolve. The added overhead to the operation
of the NCP caused by these techniques does not preclude
useful network cperation and experimentation. A number
of improvements can be implemented to reduce this
overhead by giving the NCP special priorities if the use
of the network is limited by the performance of the NCP.

The NCP keefps a table (the rendezvous table - RV table)
whose entries reflect the state of connections tetween
the local NCP and a foreign NCP. Each entry contains
the identification of a foreign sccket and a local
sccket, and the wuserid of the 1local virtual machine
which 1is to Le assoc:ated with the 1lccal socket.
Entries are made in the RV table either on the receipt
of a Request For Connection (RFC) control message from a
foreign NCP or throuch a request frowm a 1local virtual
machine.

The communication protocol between a user virtual
machine and the NCP resembles the NCP to NCP pretocol.
Data carnot be transm.tted until a connection is
initiateu by both the sender and the receiver and the
NCE to NCP requirements for flow contrcl are met. The
NCEF specifies the number of bits it is pregared to
buffer for a receive conn+r-ion and stores messages
received from a foreign NCP until a local user makes a
request for a message. If no message has been receiveu
wvhen a user makes a receive request, this fact is
returned to the user. The NCP will not accept a message
trcm a user for tranmission if the receiving NCP has not
provided adequate buffering. In this way, the
requirements for flow contrcl between NCP and NCP are
Fassed to the wuser. The NCP also notifies the user of
any asynchronous change in the state of a connection so
that he can take apyropriate action. For examgle, the
user is notified a) when a conrection he has initiated
has been completed by the foreign host, b) vhen a
message is received and there had ncot been any previous
messages buffered, and c) when a connection is closed by
the foreign host. 1In addition, the wuser is notified
when a network interrupt has been received fcr the
ccnnection.

A set of low-1level user routines (NET) have been
provided to communicate with the NCE. These routines
follow the protocol defined for network ccmmunications
through the NCE. For each user request to the NCP, a
reply from the NCP is sent to the wuser virtual machine
indicating either successful or unsuccessful ccmgletion
ot the re-uest and the current status of the connection.
These 1ro.tines handle the stacking of asynchronous
interrupts which are unstacked through a call tc the NET
rcutines,

On€ user virtual machine which has been developed is the
LOGGER virtual machine. The LOGGER controls a number of
virtual terminals which provide access to the CP systenm

20

et Raliaid 2

in a manrer similiar to physical terminals, but instead
of a harawvare terminal, CP is interfaced with a
specially designed virtual terminal device which 1is
driven by softwvare. Thus, information normally typed on
a terminal by CP and information normally keyed into a
terminal 1is transferred Letween the LOGGER and CP
thrcugh one of these virtual terminal) devices, The
prctccoir for controlling a software terminal is
described in Appendix FE,

When the [IO0GGER s initialized it is ©prerared to
ccrmunicate with tne NCF over thke socket deficd for
LOGGER operation wunder the Initial Connection Protocol
(ICP) . Comumunication under the ICP will result ir & new
rair of sockets being defined throuagh which the LOGGER
will provide CP services to the network. Once this pair
of sockets is defined, +the LOGGFR acts as a SERVEPR
interfacing a virtual terminal with a remote ©process
through the XNCP,

During the 1initial login sequence, the LOGGFE analyzes
received network messages for ‘*userid' and ‘rpassword'
and ccmpares these with entries in a special file. If
the wuserid do2s wnot appear in the file, an 1invalid
userid is passed to CP, If the password matches the
network password correspornding to the wvalid network
userid specified 1in the file, the <csvstem passvword 1is
sent to CP, Since network passwords and valid systen
passwords do not have to be identical, access to the CP
system from the netwerk is specially ccntrclled and may
be restricted to a subset of authorized system users.
Though the operation of the LCGGEF/SERVER as a separate
virtual machine introduces another 1level of dispatching
overhead, this does not arpear to be significant and
does not limit its use,

System Cesiagn

Figure 7 outlines the major elements of the network
software and the interfaces tetween ther.

The Network Control ?ricqram (NCP) resides in a virtual
machine (VM1 in the fiagure) to which is attached the IMP
hardware interface and a terminal. The termiral is used
for establisting, and mcnitoring the activity of the
NCE. Processes 1in other vwvirtual rachines communicate
with the NCEF through the CF virtual macaine to virtual
machine communications {VMCOM) interface. This facility
vas specially designed for efficient virtual machire to
virtual machline communications.

Tn an earlier version of the network software, the CP
facility for transferring card image from the virtual
card punch of cne virtual machine to the virtual card
raader of another virtual machine was used., This fprocess
used the CP <pocling facility vhich lirited the rate of
virtual machine inter-communications to the speed of
vriting a spooled file to the disk and then reading the

21

ki

IIAP\> llb-?-llSOB:

TERMINAL |
C)::. (NCP) VM1

TRANSFER INTERFACE

TERMINAL
| (\) I— VM2 ym3| - NET
\ ‘ ’ USER PROCESS
1 P o
CP VIRTUAL TERMINALS | (>
b T
TERMINAL
NET

USER PROCESS/ | VM4

USER
(PROCESS VMS

———e—

Fig. 7: System Design

22

_ = - B e L

u.z

spooled file, With the VMCOM facility, data i=s moved
frcm the virtuwal memory of one virtual machine to a CP
free storage area, and then from the CP free storage
area to the virtual memory of another virtual machine.
A descripticn cf the VMCOM facility is contained in
Arrendix =,

In Figure 7, three virtual machines are shown conne.ted
to the NCP through the VMCOM interface. VM3 represents a
virtual machine, controlled Ly a user at his terminal,
executing a process which is in communication with the
network. All user processes communicate with the NCP by
means of a sukroutine and macro pacrage, NET, which
«ffects a locally defined process-to-NCE protocol.

VM2 represents a virtual nachine containing the
leogger-server process. This process uses the NET
package to conmpunicate with the NCP and observes the
TELNET and ICP process-to-process protocols for all
network transaissions. A modification was made to CP,
by the system maintenance group, to provide a CP virtual
terminal interface for use by the logger-server. This
interface enables the 1logger-server to establish and
service virtual machines as though it, itself, was a set
of local terminals each controlled by a separate usear.

The figure <cshows two wvirtual machines, VM4 and VM5,
established from the network, by the 1logger-server,
through the virtual terminal interface., Both virtual
macltines ccontain user processes which are executing
under the remote control c¢f network users or their local
Frocesses. In addition, VM4 represents the case where
the executing user process is itself accessing the
network by means of the NET package,

This design allows for more complex configurations to ne
established than that shown in the figure. Any nutber of
active virtual machines c¢nuld use the NET/VMCOM
interface and each wuser procers is permitted a miximum
of 256 connections to the network. The 1logger-server
currently supgports up tc three virtual machines, at any
one time, as thls 1is considered to represent the
maximum, in terms ¢of local resources, that should be
allccated to the network.

Brief descripticns of each of the major elements follow,
together with scme implementation details.

The NET Puckage

Fiqure 8 shows in block scheratic form the way in which
a user process communicates with the Network Control
Prcgranm.

A set of high-level NET commands are defined which can
be employed by a process to call subrot*ines which used
the NET package. Zach high-level command is in the form
of a macro, which expands into one or mcre fprimitive NET

23

e AR i . A e o TR o R

R

TRANSFER INTERFACE

)

NET TO NCP
INTERFACE

USER

VIRTUAL
MACHINE '

NET PACKAGE

/ PRIMITIVE
NET
COMMANDS

4

SUBRQUTINES
AND MACROS

¢ HIGH-LEVEL |
NET
COMMANDS

USER PROCESS

[16-2-11307]

Fig. €: NET Package

24

e Aty s sckai, 3 e S W e s i S . S e

commands., These commands, which can be used directly by
the user process, are interpreted by the NET package and
issued as requests to the NCP through the medium of the
VMCCHM facility. Communications between NET and the NCP
consist of an 80-byte control block together with a data
blcck cf from 0 tc 1024 bytes.

The format of the control block is shown in Figs. 9, 10,
and 11 as a set of field names, each followed by the
field byte size in parentheses.

The CODE field, one byte. is used .0 specify the type of
control block and the remaining fields are used for
parameters set by either NET or t{he NCP, The CODE is
givern by a numeric value, in the range 0 to 12, and the
significance of each is indicated in Fig. 12.

CODEs are defined which alloved NET to request the NCP
to:

a. Issue, on its behalf, certain network commands
such as 3TR (0), RTS (1), C..S (4), INS and INR
(6) .

b. Transmit, on its behalf, interprocess messages
over estatlished connections (2).

c. Deiiver to it, interprocess messages froam the
network which the NCP had bufierea until required
(3).

d. Advise on the status of particular sockets (5}.

e. Enable specified sockets to acTcept foreign STRs
(9) or RTISs (10) without having to know in advance
the foreign socket numbers, (The 'listen' fun-<ion
referred to in Section 2.6).

f. Disable sockets which previously had been enaoled
(M).

g. Purge all 1local references tc¢ connecticns not
correctly closed by foreign HOSTs (12).

The NCP replies to each NET request with a reply control
block (7) which contains appropriate status information
in certain of its parameter fields. When the NET request
is for the delivery ¢f ar interprocess m>ssage (3), the
veply ccntrol block is followed by a date block, which
regresented the ressage. The NCP can also pass
asynchronous interrupts to NET, at any time, by means of
an interrupt control block (8). A number of interrupt
ccdes are defined to notify the process of such events
as:

a. The receift of a network interrupt (INS or INR) on
cne of its current connections.

25

1~TN73-50-I(9)]

NET TRANSMISS10N CODE (1)
USER ID {8)

LOCAL ID (3)) LOCAL SOCKET ()
LOCAL TAG (V) ____ .. ___)

FOFEIGN HOST 1))

FOREIGN ID (3)) FOREIGN SOCKET (5)
FOREIGN TAG (1) ___________)

EIT COUNT (2)

INTERRUPT CODE (1)

STATUS (4)

EIT ALLOCATION LEFT (4)
MESSAGE ALLOCATION LEFT (%)
CONNECTION BYTE SIZE (1)

Fig. %: NET to NCP Control Message Format

TN73-50-1(10) |

CHARACTER CCLz (W)

- v s -

LCCAL ID (3)) LOCAL SOCKET ()
LOCAL TAG (1) _________)

FOREIGN HOST (1))

FOREIGN ID (3)) FOREIGN SOCKET (%)
FOREIGN TAG (1) ___________)

TLAG (1)

ETT COUNT SENT Ck RECEIVEL (2)
EUFFER ADDRESS (4)

STATUS (4)

BLTS LEPT (4)

MESSAGES LEFT (2)

CONNECTION BYTE SIZE (1)
UNUSED BYTE (1)

ADDFESS OF INTERRUPT STACK (4)

Fig. 10: NET Command Format

| TN73-50-1(11)
INTERRUPT CGLE (1)

NEXT ENTRY IN INTEPRUPT STACK (3)
LCCAL SOCKET (4)

FCEEIGN SOCKET (5)

SPARE (3)

STATUS (4)

fig. 11: Interrupt Stack Fcrmat

T

P eeP Ty Tod T LRGP ey

b. The acceptance, by a foreign HOST, of a request to
establish a send connection to 1it, (i.e., the
receipt of a foreign RTS which matched a
previously issued STR).

c. The loading of NCF buffers for one of its receive
connections.

d. The closing of one of its connections by a foreign
HOST.

€, The matching of 'enabled' sockets with appropriate
foreign STIRs or RTSs.

f. The shutdcwn of the local NCF,

g. The resetting of any foreign NCP associated with
one of its connections.

The interrupt codes are 1listed in Fig. 13 a=d any
irterrugt ccntrcl block sent from the NCP to NET vwould
contain one of these codes in the second byte of the BIT
CCUNT field, which doubles as the TNTERRUPT CODE field
{Fig. 9).

The USERID field it employed by both the NCP and NET to
identify the virtual machine associated with the NET
request. NET accesses the CP USERID, cn behalf of its
prccess, and ccampletes this field accordingly. Scckets
are defined (Section 2.2) to consist of an 8 - kit HOST
identifier concatenated with a 32~ bit socket numrber.
Local sockets are specified bty the 32-tit socket number
alcne, since the local NCP can add its own HOST
identifier as necessary. The LOCAL SOCKET field is
divided into 10CAL ID and LOCAL 1TAG fields for
ccnvenience of mapping to process identifiers ard ports,
and the FOREIGN SOCKET field is similarly divided, but
includes a FOREIGN HOST field. Both the LOCAL SOCKET and
FOREIGN SOCKET fields are normally ccmpleted by NET,
except in the case of enable requests where NET
completes only the I1OCAL SOCKET field and the NCP issues
en interrupt control message, when the enatbled socket is
matched, with the FOREIGN SOCKET field completed. The
BIT COUNT field 1is used by NET when sending an
interprocess message to the NCP and by the NCP v«vhen
delivering an interrrocess message to NET,

The STATUS field is always completed by the NCP whenever
it issues & reply or interrupt control message. The
field is divided into 4 groups, each of 8 bits; the
first two groups describe the reply status of the
previous NET request, and the second twc grcups refer to
the ccnnection status of the associated entry in the kV
table. Each btit, when set, indicates that a particular
event has occurred or a particular state exists and the
significance of each is given in Fig. 14,

27

St Lova? N

= = ok i s v i e s i G Kl > il

TN73~50-1(12)

NET COMMANT NCE CONTPOL
CHAFACTER MESSAGE LESC
CCDE CODE

. o T e S - o . T G - D L W =S D - G TR VPR P T GNP S D S P G w D . G e e S S T W - —— e

CON (Connect)

1Lis (Listen)

SND {Send)

ECV (Recei ve)

CLS (Close)

STA (Status)

INT (Interrupt)
NOP (No-operation)
< 8
ENC ({Enable connect) @
ENL (Enable listen) 1C
DIS (Disable) 1
PUR (Purge) 12

SO E L) D

Fequest NCF to
Request NCP to
kequest NCP to
Accept a buffe
Pegjuest NCP to
Request status
Pequest NCP to
Request status
Interrupt code
Request NCP to
Request NCP to
Request NCPB to
Fequest NCP to

issue an STE.

issue an RTS.

transmit a buffer.
r from the NCP.

close a connection.,

from the NCP.

issye an INS or INR.

from NET. Reply code from NCP,
from NCP.

accept a foreign STR.
accept a foreign RTS.
disable an enatled socket,
purge an entry.

Fig. 12: NET Co

—— e ————

TN73-50-1(13) |

mnmands

INTEFRUPT
COTES

MEANIN

G

- o - —— - -y - —

e —— —— o~ — —

¢ Network interrupt received,

1 Foreign RTS received compieting connection.
yi Peceive puffers now loaded,

2 Foreign CLS received,

4 Fnable ccnnect ncw matched,

£ Enable listen now matched.

[NCE has died.

7 Foreign NCP Peset (RST received),

28

— et > — oy — o

Those bits marked with an asterisk (*) in the RV status
are reset by the NCP after it has replied to an NC?
status request,

The BITS LEFT and MESSAGES LEFT fields are conmpleted by
the NCP, whenever it replies to a NET request associated
with a send connection, to notify NET of the current
foreign allocation for that connection., The CONNECTION
BYTE SIZE field is completed b, NET for all connection
reguests, though only issued to the network, by the KCP,
for send connections, A zero valae cn receive
ccnnection Trtequests implies acceptance by NET of any
connection tyte size,

One advantage of this NCP mechanism is tha® a virtual
machine, containing a process in communication with the
network, can be *logged off' without ©breaking retwork
connections., All incoming messages tor the fprocess are
buffered by the NCP and all information relating to
interrupt control messages are recorded in the status
tlags., On resuming activity, the prccess can determine
its current connections ty requesting status from the
NCE and can continue orerations by taking the
arpropriate action on its connections,

Figure 10 shows the format of the parameter 1list to be
used by a process when issuing a primitive NET command
to the NET packeagqge. #ET is accessed by a subroutine
call which is associated with a pointer to the parameter
list., The CHAFRAC™ 'R CODE field cf the parameter list
contains thke mnemonic names of the ccmrand required and
this is interpreted by NET which issues the appropriate
control message to the NCP, The mnemcric names of all
permitted ccmmands are shown in Fig. 12 associated with
‘ne ccntrol message codes which are generated bty NZT.
All cormmands cause the generaticn of a control message,
with the single exception of NOP which is used to obtain
the NET interruvpt status. The LOCAL SOCKET, FCPREIGN
SOCKET, BIT CQUNT, STATUS, BITS LEFT, MESSAGES LEPT and
CCNNECTION EYTE SIZE fields are all used fcr the same
Enrgfoses as, and mapped by the NET packaage to, the
fields of the same nsme in the control message. The PLAG
field is recserved for use by the high-level NET commands
and the BUFFEER ADDRESS field contains a pointer either
to a buffer holding the message for transmission ir a
SNC ccmmand or to a ktuffer prepared for reception of a
message in a RCV ccemmand,

NET maintains in free store an interrupt stack on behalf
of its process. The ADDRESS OF INTERRUPT STACK field
hclds a pointer to the head of this stack, each entry of
which is to be in the format showa in Fig. 11. If there
are no entries, the pointer has a value of <zerc. NET
will read interrupt control nmessages, from the NCP,
either c¢n receipt of a NOF command from the user process
or when awaiting a reply control message from the NCP.
Irfermaticon contained in e€ach interrupt ccntrol message
itz transferred tc¢ the appropriate fields of a separate

29

*

* GROUP 1 - NET STATUS - [Tw3-50-1(14) |
*

OURIMP EQU X'80' OUR IME DEAD

ALLSTR EQU X'40' ALL OUR FREE STORE IS IN USE

LNKTBL EQU X'20' OUR IMES LINK TABLE IS FULL

FORIME EQU X'10' FOREIGN IMP/HOST IS LEAD

FORLINK EQU X'08' ALL LINKS TO HIM ARE IN USE

TAGNIS EQU X'04° TAG IS OF WRONG POLARITY FOR RFC
RFCENB EQU X?02' ATTEMPT TO ISSUE AN RPC ON ENABLED SOCKET
RFCRFC EQU X'01' ATTEMET TC REPEAT AN F¥C

*

= GROUP 2z - NET STATUS

b

SOCKMIS EQU X'80' SOCKET MISMATCH

LINKMIS EQU X'40' LIINK IS OF WRONG FOLARITY

TXLEJ EQU X'20* TRANSMISSION REJECTED - SF RV STATUS
CMDREJ EQU X'16°' COMMAND REJECTED - SEE RV STATUS
DRAINON EQU X'G8' DRAIN SET ON

CLSCLS EQU X'04° TTEMPT TO ISSUE CLOSE ON CLOSED SOCKET
BADEAF EQU X'02' BAD PARAMETERS

NOTPER EQU X'01' NOT PEFMITTED - HOST NOT KNOWN ETC

»

* GROUP 3 - NET AND RV STATOS

*

QURCON EQU X'80° QUR CONNECT/LISTEN ISSUED
HISCON EQU X*4Q HIS CONNECT/LISTEN ISSUEL
BUFFLL EQU X*20°" 2UFFERS ARE LOADED
INTERET EQU X*10 ¢ INTERRUPT RECEIVED *
OURCLS EQU X108 OUR CLCSE ISSUED

HISCLS EQU Xtour BIS CLOSE ISSUED

CEASE EQU Xxto2' CEASE ON LINK ISSUED

RFNM EQU X'01¢ RFN# AWAITED

*

* GROUP 4 - NET AND RV STATUS

*

ALLOCOK EQU X'a0¢ ALLOCATE SENT OR RECEIVED

ENABLED EQU x40 ENABLED FOR CONNECT CR LISTEN ONLY *&
ALLCCNOK ECO X*20° ALLOCATE TOO SMALL FOR CURRENT ORDLR ***
MSGFAIL EQU Y10 LAST MESSAGE FAILED IN TRANSMISSION **xx
SNDNCK EQU xe08¢ SEND CEDER HAS BIT CCUNT >8000 L b
BYMIS EQU X'our BYTE SIZE MISMATCH

UNUSET EQU X102

INTRRLST EQU X*01? NETIN INTERRUPT LOST

a

(*) -~ THE INTFRPT BIT IS CLEARED BY STATUS

(¥*) - THE ENABLEL BIT IS CLEARED ON OUR LIS OR CON

(***) - THE ALLOCNOK BIT IS CLEARED WHEN MORE ALLOCATION IS RECEIVED
(##*#%) -~ THE MSGFAIL AND SNDNOK BITS ARE CLEARED ON THE NEXT SND

* B %N

Fig. 14: Format of Status Bits

30

e S o e et i i e A e . S i N AT . i DA Nl
= il -

entcy in the interrupt stack, the entries being chained
by means of the NEXT ENTRY IN INTERRUPT STACK field.
The last entry contains a value of zero 1in this field.
It is the responsitility of the user process (or the
high-level NET commands) to take action on the stack
entries, to return to free storage the block associated
with each one and to maintain the pointer in the ADDRESS
OF INTERRUPT STACK field.

ITn addition to the full status reply in the STATUS field
cf the parameter list, a return ce?e is placed in
general purpose register 15 in order to conform with the
standard CHMS interface. This, together with the
standard calling procedure, allovws the NET package to be
used by a process written in any of the languages
sugported by the CMS system. Cee Appendix G.

It is expected that most processes would access NET
through the <set of macroz which effect the high-level
NET commands (see Appendix H). For each connection
required, a NETSCCK or NETSOCKV macro is to be specified
vhich generates a buffer for the NET command parameter
1ist (Fiq. 10) and associates identifiers with certain
cf its fields. Before opening a connection a NETID
macro is tc be issued, which initializes the PLAG field
of the paranmeter list and obtains a value for the LOCAL
IT field of the LOCAL SOCKET., The CP UTABLE address for
the virtual machine is used for the ID fieid. A NETOPEN
nacre can then be issued to establish the connection
vhose polarity is determined by the value in the LOCAL
TAG field., This can be followed by NETIREAD or NETWRITE
macrus, as appropriate to the polarity, in order to
toarsfer interprocess messages. Flags (Fig. 15) are set
in the PLAG field of the appropriate parameter list,
~ssociated with each connection, by a routine which
analyzes and collapses the interrupt stack each tiane a
high-level command is issued. A NETNOP macro 1is also
nrovided for this purpose. Network interrupts can be
issued by means of the NETINT macro, status ottained by
meancs of NETSTAT and the connection clcsed by means of
NETCLOSE.

Most macros expand into code which calls subroutjies of
the same name as the macro., Each subroutine is
asscciated with an appropriate parameter 1list and
generates one or more calls to the NET fpackage.

The arrival of interrupt control messages, from the NCP,
iz detected ny an interrupt from the VMCON device on the
virtual machine. A process, therefore, which wiches to
suspend itself awvaiting some network activity can issue
a CMS WAIT SVC on the VMCOM device until an interrupt
centrol message has arrived, A NETWAIT macro is provided
for this purposeé. When the interrupt arrives and control
iz returned from NETWAIT, the process can then issue a
NETNOP macro and act o¢n its flaas accordingly. An
examgple of this procedure, together with the use of most
of the macros, is given in the TELNET process.

K3 |

A, ot

»
*

»

OPEN
SEND
NETIN
LISTEN
BUFFERS
CLOSED
ENABLE
DEAL

*

NETIN
LISTEN

BUFFEPS

CLOSED
ENABLED

DEATL

| T973-50-1(15)]

EQUS FCR FIAGS IN NETPLIST

EQU X'80¢" OPEN/NOTOPEN

EQU Xt40! SEND/RECLEIVE

EQU Xt2c! NETWORK INTERRUPT

EQU 10 LISTEN ISSUED

EQU xrgg BUFFERS LOADED

ZQU X'0q e LINK CLOSED

EQU Xxv02:? ENVABLE MATCHED

EQU Xtg1e NCP DIED OR RESET ISSUED

Set when CPEN or OPENE macro successfully issued
Cleared on successful close.

Set when CPEN or OPENE macro issued on send soncket
Set when enable on send socket issued
Cleaied on successful close.

Set on receipt on network interrupt
Cleared on a netstat before STA issued.

Set on receipt on a LISTEN interrupt
Cleared on a netstat tefore STA issued.

Set on receipt of a Ruffers loaded/ready interrupt
Cleared on a netread before RCV issued
Cleared on a netwrite before SNLC issued
Cleared on a netstat before STA 1issued.

Set on receipt of a socket closed interrupt
Cleared on succesr.ful net close.

Set cn receipt on an enabled completed interrupt
Cleared or a netopen.

Set on receipt of an NCP dead interrugt
Not recset.

Fig. 15: NET Flag PRits

32

4,5 The Lcgger-Server

The NET system is designed to operate in the CHMS
environment which supports a single user process only.
When more than cne user process 1is required t> be
concurrently active in a virtual machine, as in the case
cf the logger-server, a polling or scheduling routire is
n<eded and che high-level NET commands cannot be used.
One reason for this is because the high-level commands
deny access to the interrupt stack maintained by NET and
for mnuiti-process working it is necessary for the
pclling routine to associate NET inte.rupts with the
separate processes. Rather than complicate th=2
high-level command interface, it was decided to use the
Frimitive NET ccamands for the logger-server systenm.

The lcgger-server is designed to be interrupt driven by
a simple pclling rou*ine which activates a number of
processes in turn :3 suspends itself whenever all
outstaading interrupts have been serviced. :our devices
can raise interrupts ob the 1logger-server virtual
machine and thus cause the polling sequence to be
resumed., These are the VMCCM device, whose interrupt
signifies the receipt of an interrupt control message
from the NCP, and three CF virtual terminals whose
in-errupts indicated the presence of messages for their
asscciated remote users, Associated with each process is
a table which contains sufficient details on the state
of the process to enable it to be restarted from its
current suspension point. The table includes copies of
the program status word (ESW), all ageneral purpose
r2gisters, hkuffers, flags and peointers (see Fig. 156).

The poller accesses two flags in each table; the WAIT
flag and the START flag., If the WAIT tlag cf a rrocess
is set, that prccess vwill not be re-activated durinqg the
current poll, but if it is clear, the poller will set it
and * »st the state of the START flag. If the START flag
ie clear, the pcller will restore all registers from the
table and re-activate the process at the point defined
by its PSW, tut if it is set, the poller will clear it
and activate the process at a start address specified by
a start entry in the table.

Fonr nreccesses are supported by the pcller; an enrsbling
vrocess and three CP virtual terminal ccntrcl rrecesses.
The ccntcol processes are all identical in function and
are (mplemented by a single segment of re-entrant code.
An interrupt handler is inplemented whichk recognizes all
interrupts on the virtual machine and associates each of
the four devices with ¢ rarticular process. The VMCOM
device is associated with the enabling routine and each
of the CP virtual *erm’nals 1is associated with one of
the control processes, On receipt of an interrupt, the
intcrrupt handler examines the START flag of the
associated process and if this 1is clea. it <clears the
WAIT flag, If, however, the START flag 1is set, it
igncres the interrupt., Since a device interrupt will
33

EE i Corg peim e e T S S . SF i ¢ i, i e AV A

[-TN73-50—I(16)

*

NT1 EQL X'80' WAIT FLAG FOR POLLER

DI EQU X'40* DEVICE END

UEi EQU X'20*' UNIT EXCEPTION

uc1 EQu X'’ UNIT CHECK

AT EQU X'08* ATTENTION

UN1 EQU X'04' JINEXPECTED INTERRUPTS

ST1 EQU X*02°* START FLAG - USED FOR ENABLING
IN? EQU X'01* INTERRUPT STACK FLAG

*

412 EQU X'80°' HIO OUTSTANDING

02 EQU ~ X'40* MORE TC COME FROM NCF BUFFERS
AW2 EQU X'20' AWAITING DESPATCH TO CP
ADDCR EQU X'10' CARk1AGE RETURN TO BE ADDED
CR EQU X'C&*' CARRIAGE RETURN DETECTED AS LAST IN BUF
BUFPURGE EQU X'04' BUFFEF PURGE IN PRCGEESS
HINT EGJ X'02' HIO INTERRUPT AWAITED
SEPLCG EQU X'01' REPEAT L.GIN FLAG

x

INTS QU X'80' INTERRUPT ON SEND LIMNK

LISS EQL X*40' LISTEN ON SEND LINK

BUFS EQU X*20* BUFI"KS LOADED ON SENC LINK
CLSS EQU X*'10' CLOSE CN SEND LINK

ENCS EQU X'08' ENABLE CONNECT ON SEND LINK
ENLS EQU X'04* ENABLE LISTEN ON SENT LINK
NCDS EQU X'02' NCP DIED GN SEND LINK

CHYEW EQU X'91' CHECK PASSWORD FLAG

x

INTE EQU X'8C' INTEFRUPT ON RCV LINK

LISF EQU X'uG' LISTEN ON RCV LINK

BUFR EQU X*20' BUFFERS IGADED ON RCV LINK
CLSF EQU X'10' CLOSE ON RCV LINK

ENCE EQU X'08' ENABLE CONNECT ON RCV LINK
ENLK EQU X*C4' ENABLE LISTEN ON RCV LINK
NCPK EQU X'02' HCP DIED ON RCV LINK

DOWN EQU X'01' 10GGER GOING DOWN

®

Fig. 16: LOGGER Routine Flags

A A o B . B

also re-start the poller, if it 1is suspended, the
process which services the device will eventually be
re-activated,

In the case of VMCOM interrupts, which signifies the
arrival of an interrupt control message from the NCP,
the emnabling routine issues a NO2? command to NET
fclloved by a subroutine call to an interrupt stack
handler., This handler analyzes the NET interrugpt stack
and generates from it separate interrupt stacks for each
of the processes, When a new eutry for a particular
process is received, the WAIXT flagy for that process is
cleared and its INTERRUPT STACK flag set.

A process suspends 1itself, when awaiting network or
device activity, by means of a special wait subroutine
(WBACK) vhich saves all process registers and the
current PSW in the appropriate table before returning
ccntrol to the poller.

On first hecoming established, the ogger-server calls
an initializing sulroutine which attempts to clcse all
cennections tetseen itseli znd the network, rfurge all
references to any of its sockets from the NCP, and log
out Aall CP w9irtual terminals. Follcwing this, the
process tables are initialized and +the WAIT and START
flags set for each process except the enabling routine,
for which only the STAFT flag is set. Control is then
passed to the pcller,

The pcller «can activate only the enabling routine at
this time, and this causes an enable connect (ENC)
command to be issuea to NET for the initial ccnnection
sccket (iICS) of the logger-server, The routine then
susgends itself by means of the WEBACK subroutine,

when a network user completes a cornnection to the ICS of
the logger-server, the NCP sends an appropriate
interrugt control message. This causes the enatling
routine to be re-activated by the mechanisms outlined
above, On re-activation, this routine accerts the
request for connection Yrom the network user if there is
at least one ZP virtual terminal unassigned. It will
issue the agpprcpriate NET commands, in accordance with
the 1Initial Ccnnection Proteccol (ICP) descrited in
Section 2.6, to establish duplex coamunications between
the csockets of the next unassigned CP virtual termiral
proccess and the netvork user process. On the successful
completion of this protoccl, the enabling routine clears
the WAIT bit associated with the newly assianed control
frccess, issues an enable connect for the initial
connection socket, and suspends itself, ready to repeat
the «cycle of events, If there is no control o©orocess
unassigned, the erabling routine refuses the request for
connection, and then issues the enable connect conmumand
fcllowed by the WBACK subroutine call.

35

oo s R e s il e . S el

2 e

The newly assigned control process will, in its turn, be
activated by the poller at its start address and will
commence to transfer information between the network
user process and the CP virtual terminal interface, in
accordence with the TELNET protocol and the CP terminal
conventions, Initially, the control process is ccncerned
with the logging on sequence, the verification that the
required virtuval machine is marked for netwvork use, and
the mapping of a network password to the local ono,
Subsequent activity is concerned with the actual fpassage
cf messages Letween the network user process and its
local wvirtual machine; the translation cf characters, as
reguired, tetseen ASCIX and EBCDIC; and the
interpretaticn of special contrecl characters such as
'‘preak', 'revercse break' and 'synchronize'.

Whenever network or device responses are required, the
process suspends itself, wusing the WBACK subroutine,
until the resronse has been received. During this
period, one of the other processes can be re-~activated
and <thus the [pcller is atcle to suppcrt the enabling
Frccess and the three CPF virtual terminal processes
concurrently, without any apparent loss in response.

The systam is 1wplemented in three program segments;
LOGMAIN, LOCDEV, and L1LOGST. LOGMAIN contains a small
initializing routine, the poller, the enabling routine,
the interrupt handler, the NET interrupt =stack handler
and various subroutines for stack analysis and character
code conversion. LOGDEV is the re-entrant segnent which
effects the thrce CP virtual terminal control processes
and LOGST is the main initializing toutiine.

The lcgger-server can be closed down by 1issuing to its
virtual machine an 'exterral' interrugt. This causes
the WAIT flag tc be cleared for all grocesses in use aad
the DOWN flag to be set, Orn re-activation, each CP
virtual terminal control process will issue a 'LOGGER
CLCSING DOWN' meéssage to 1ts network user and then close
its network connections, Wwhen all processes have
terminated, the logger-server halts.

Error recovery is directed at naintaining a service to
the network as a whole, for as lona as possible. Errors
detected in CP virtual terminal contrcl processes are
either network comnmand rejections by the NCP, through
NET, or vartual terminal transmission rejections by CP.
In either case, the recovery of the failing process 1is
not attempted but the virtual machine associated with it
is lcgged off, 1its network coanections are closed, and
1ts process table re-initjalized. In this way, the
integrity of the other processes are rairntained, the
network user is infcrmed of the failure by the closing
of his connections and the facilities of the tailing
process are recovered for re-use. Frrors detected by
the enpabtling f[frocess are network command rejections
only. Certain rejections are recoverable as in the case
of an 1initial SND command failing because o0f an

36

insufficient allocation from the network user. In such
cases the cormand is repeated, at a reasonable
frequency, until it is either accepted or a repeat count
his become exhausted, In the latter situation, the
connection is then <closed. Other rejections are not
recoverable, as in the case of an enable connect command
failing. Under these circumstances, the logger-server is
shut down after a trace flag has been set, indicating
the source of the error, and a core dump output to the
line printer. This procedure is also followed if a
'‘program’ interrupt condition, signifying a fault in the
prcgram code, ics signalled by CP,

The Network Ccntrol Frogram

As in the case cf the logger-server, the network control
program (NCP) 1is designed to be interrupt driven by a
simple poller shich =supports a number of concurrent
Frocesses in the NCP virtual machine. Anh outline, 1in
block schematic form, of the inter-relationships between
these processes is shcwn in Fig. 17.

Each process 1is implemented by a <separate segment of
~ode and 1is identified c¢n the diagram by 1its =egment
name.

Cogmurnication 4ith wuser frocesses, in other wvirtual
machines, 1is through the VMCOM 1interface which is
described in Section 4.2, Communicatior with the IMP is
through the 1IMP hardware interface, which was designed
by BEYAN (Ref. 2) and is described in Appendix 12.

NCPINIT performs initialization and error recovery tasks
and NCEMAIN contains tne poller, the interrupt handler
and various subroutines associated with accounting and
recording activities. Processes are re-activated
according to the state of flags in the PORT TARLE which
are wupdated by other processes and the interrupt
handler.

NCFXFER accepts control messages from the vMCcoNM
interface and interprets them in accordance with the NET
to NCP ccntrol message protocol (Fig. 9). Cepending
upen the type of request and the current state of the RV
TAELE, NCPXFEE adds items to thx IMP'S QUEUE for
transmission over the network, adjusts =ntries 1ia the RV
TABLE and 1issues a reply to the user process via the
VMCOM interface.

NCEIMPO is concerned solely with the output of the I §
QUEUE to the network and the associated control of c(he
IMF hardware interface. A facility is included whercby
this output can be channeled directly into the input
buffers of NCFIMPI, for test purposes or for local use
when the IMNF is not available,

NCPIMPI processes all input from the IMP and implements
the HCST-to-~IMP protocol. The HOST-to-HOST protocel is

37

|

!

“Tre-2-11308]

IMP HARDWAR INTERFACE

}

38

NCP
VIRTUAL
MACHINE - R
NCPIMPO NCPIMP]
) 4
NCPINIT IMP's
‘ TERMINAL
NCPMAIN QUEUE RV TABLE NCPMONIT ﬁu
4 4
Y |
PORT . R
TABLE NCPXFER -
]
|
!
TRANSFER INTERFACE
— .
8
TO USER PROCESSES
Fig. 17: The Network Control Progranm

inrplemented partly by NCPIMEI and npartly by NCPXFER.
Depending upon the type of message frcm the network and
the current state of the EV TABLE, NCPIMPT loads ‘uaffers
for collection bty local user processes, sends interrupt
ccrtrcl messages over the VMCOM interface, adijusts
entries in the RV TABLE and add items to the IMP'S QUEUE
in reply to network messaces.

NCPMONIT provides facilities whereby entries in the RV
TABLE can ke inspected, certain network commands
generated, NCP status monitored and the system cleanly
closed down.

1 NCEMAIN

The polling mechanism of NCPMAIN is similar to that of
the 1lcgger-server., Interrupts received from external
devices are flagged in s PORT TABLE which is wused to
determine the next process for re-activation, Each
device is asscciated with a process through an entry in
this table., Entries associate the input charnel from the
TP with NCPIMEI; the output channel to the IMP with
NCEIMPO; the VMCCM 1interface with NCPYFFR; and the
console termiral with NCPMONIT, No entry 1is required
for the outgut portion of the VMCOM interfac:.

Each entry in the PCPT TABLE has the format shown in
Fig, 18 which was originally designed for duplex
devices,

It was subsequently found more convenient to implement
simplex entries but the <earlier struccure was retained,
The fcrmat 1is decscribed as a set of field names, each
followed ty its field byte size 1in parentheses. Two
sets of flagu are defined; POLLING PLAGS which are used
by the poller tc determine whether the process should be
reactivated, and if so, at which address: and DEVICE
FLAGS which indicate the current state of the ascsociated
device. The significance of both sets of flags is given
in Fig. 19,

Other fields contain the start address of the process,
save areas for 1ts ©PSW ard reqgisters, and a buffer
address., These fields are duplicated, in eacnh entrv, to
provide facilities for both input and output channels.
The CMS DEVICE ADDRESS ancé DEVICE ID are also specified
ir the POPFPT TABIE entry.

The format of the huffers is given in Fig. 2¢, and
provides fields for a variable length MATN PRUFFER, the
current CHANNEL STATUS WORDN (CSW) of the device, and
wcrkspace for the process,

On receipt of an interrupt from a device, the interrupt
handler sets the associated DEVICE FLAGS, copies the CSwW
to the appropriate field ir the buffer, and clears the
WAITSET bit in the PZLLING FPLAGS, The MAIN FEUFFER is
used by the device for any input or output transfers.

39

5. e Ty . 1 i aaited & < - ;T T o o I g ey TRy R T

| TN73-50-1(18)

POLLING FLAGS (1)

DEVICE INPUT ROUTINE ADDRESS (3)
DEVICE INPUT ROUTINE PSW (8)

DEVICE INPUT ROUTINE PEGISTERS (6U)
INFUT BUFFER ADLCEESS (4)

DEVICE FLAGS (1)

DEVICE OUTIPUT ROUTINE ADDRESS (3)
DEVICE OUTPUT ROUTINE PSW (8)
DEVICE OUTFUT ROUTINE REGISTERS (€4)
OUTPUT BUFFEK ADD2IESS (U)

SEAFE (2)

DEVICE ALCRESS (2)

DEVICE ID (4)

Fig. 18: PORT TABLE FORMAT

ECLLING FLAGS T“?3-50-I(19)|
BUFIN EQU X'80' INPUT BUFFER LOADED
BUFCUT EQU X'40' GUTPUT BUFFER LOADED
STATTN EQU X'20' INPUT STATE BUSY

STATOUT EQU X*1C* OUTPUT STATE BUSY
WATTSET BQU X'08' WAIT STATE SET

SNDSET EQU X'O4* SEND STATE _ NOT RECEIVE

DEVICE FLAGS

INPEOG EQU X'80' IN FROGEESS STATE
DEVENL EQU X*u0' DEVICE END

UEX EQU X*20* UMIT EZXCLETION
UCHK EQU X*10* UNIT CHECKX

ATTN ECU X'08' ATTENTION

UNEXBIT EQU X'0u* UNIZXPECTED BITS

Fig. 19: [rolling and Device Flags

POINTEK TO MAIN EUFFEF (4) N 2

| gy
SIZE OF MAIN EUEFER (4) Lll
CHANNEL STATUS WORD (4)

WORKSPACE (variabtie)

MAIY EUFFER (variabie)

ZO)I

73-50-
jm_iii__J_

Fig. 20: Input and Output Buffer Formats

PR W e B SRR Dl i, e v i s S ===

— e A
ol Sl o B X S S il ot Sl Wt o s S ale

The polier, if csuspended on a CHMS WAIT, is restarted on
the receipt of an interrupt and re-activates the first
process whose WAITSET bit is clear. The re-activation
ic either at the start address of the frocess or at its
current PSW derending upon the state of its STATIN or
STATOUT flags. Additionally, an output process requires
its BUFOUT flag to be set before the poller re-activates
it.

After servicing the data buffer and any current
interrupts associated with a device, the process saves
its registers and PSW in the appropriate rfields and
returns control to the poller, awaiting further
interrupts. Process activity typically 1includes the
initiation of further transfers over the device channel
and the setting of certain POLLING FLAGS in the PORT
TABLE entries of other prccesses.

NCEMAIN contains a subroutine for writing accounting
records to disk, in the format shown in Pig. 21,

The subroutine is called Lty NCPXFER and NCPIMPI to write
a record each time any connecticn becomes fully
established or fully closed. The records are compieted
frecm the appropriate entry in the BV TARLE and include
the time at which the first Reguest for Connection (RFC)
i< made; the tine at which the connectior became fully
established; ttke time at which the first close 1is
received; and the time at which the connection became
fully closed, Other fields in the record contain the
total number of nmessages and bits issued over the
connection; the local USEFID; the identities of both
scckets; the foreign HOST and the link number. Although
charqges are not being raised against network users it is
considered dGesirable that sutficient information be
recorded to allow the identificaticen of all wusers and
their utilization of system resources.

Other elements contained in NCEMAIN includes a
subroutine for writing lcaging records to disk and a
HOSTS &E KNCW table. The subrcutine is wused for
recording any unusual events or error conditions
detected by the NCP. The HOSTS WD KNOW taple is used to
maintain an entry for the current =status and link
utilization of every #OST on the network.

4.,4,.2 NCEXFEFR

NCEXFER consists of a routine to read messages from the
VMCOM interface and a set of command routires. Each
messaqe is analyzed and interpreted as a command from
NFT and the appropriate command routine is then entered.
These routines typically gernerate, refer to, and mogify
entries in the EV TABLE; add network messages to the
IMP's QUEUE, and send reply messiges back to the
request ing local process,

41

T T R TR b i i i R el 1 ki

USERIC (8) T
DATE WRITTEN (8j L
FIRST RFC TIME (8)

COMELETED CONNECTION TINE (8)

FIRST CLOSE TIME (8)

COMPLETED CLOSE TIME (8)

1CCAL SOCKET (4)

FORFIGN SOCKET (4)

FOREIGN HOST (1}

FOREIGN LINK (1)

FV TABLE STATUS (2)

NUMBER OF MESSAGES (4)

NUMBEF CF EITS (4)

TN73-50-1(21)

Fig. 21: RAccounting Record Foimat

L;N73-50-1(2i§1

ICCAL SOCKET (U)

USERID (8) _______ ___
LOCAL ID (3))
LQCAL TAG (V) __ . ___)
FOREIGN HOST (1))
FOREIGN ID (3))
PCREIGN TAG (1)
LINE (1)

STATUS (2)
CONNECTION EYTE SIZE (1)

HEAD OF BUFFER CHAIN (3)

TEST BYIF (1)

TAI1 CF SUFFER CHAIN (3)

ADDRESS OF NEXT RV ENTRY (4)

MESSAGE ALLOCATICN (2)

MESSAGE ALLOCATION (2)

MESSAGE FOP RETURN (2)

DATE (€)

TINE1 (8)

TIME2 (8)

NUMEEF OF MESSACES TRANSMITTED CVER CONNECTION (&)
NUMBEF OF BITS TRANSMITTED OVER CONNECTION (4)
BITS FOK RETURN (4)

FOREIGN SOCKET (5)

Fig. 22z: RV Table Format

e

The RV TABLE contains an entry for every connection
supported by the NCP and the format for each entry is
shown in Fig. 2z,

Fields are rrovided for the USERID of the local process;
the local and foreign sockets; the link .umber assigned
to the connection; the connection byte =<size and the
current message and hit allocations. Accounting fields
centain details of the date; the time of connecting; the
tine of closing and the cumulative nuvber of messages
and bits transcitted over the connection. The STATUS
field holds a set of flags (Fig. 14), descriting the
current state of the connection and address fields point
tc the head and tail of a buffer chain associated with
it and the next entry in the table., The MESSAGES FOK
RETORN and EITS FOR RETURN rields are used tc deteraine
wvhen a new allocate command should be issued to a
foreign NCP.

RV TABLE entries are established for control
ccnnections, on links zero, to all HOSTs in the HOSTS WE
KNOW table, during the initialization phase. This
enables a <ommon, internal grocedure to be adopted for
all network transmissions. Any message for cutput to
the network, including HCST-to-HCST control messages, is
formatted by the origirating routine and added to the
chain of tEtutfers supported by the apprcpriate send
connection entry in the RV TABLFE, A pointer to this RV
TABLE entry is ther added to the IMF'S CUEUE, unless one
already exists, H0ST-to-IMP messages are treated as 4
special case and are only issued 4during initialization
and shutdown by NCPINIT. NCPIMPO uses the pointers in
the IMP'S QUEUE to access the RV TABLE entry and the
associated buflers for transmission, controlling f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>