
AD-773 831

AN INTERFACE TO THE ARPA NETWORK FOR
THE CP/CMS TIME-SHARING SYSTEM.
VOLUME 1

Joel M. Winett, ec al

Massachusetts Institute of Technology

r
Prepared for:

Electronic Systems Division
Advanced Research Projects Agency

28 November 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

-—«WMfciM

I
I .

. '

Best
Available

Copy

ÜNCLASSmSO
S*c :*^v Clasiiftcattoii ßMlUU.

OOCUMENT CONTROL DATA - R2.D
'j.'fty cta^itiits^frm rl ntlm, body oi mbairmct imit mämtinj arnztjttsn mutt b« fitiftd wh»n (»>• vj-r*m!.l report it : .K^I.M«/'

Li von* l abiratorv, M.I. T.

im. RFHOP seCUBIT* CCASSt*tCA-| "«v

LncUssifiäd
25. OWOUP

j, ^-30«-

■\p. Inccrfice to th« ARPA Network for tht* CP/CMS Time-Sharing System -Volume l

A D£5C«?IPTIV= NOTES fr/P« of rvpore AI7</inefutiv« d«(e*>

Fechnical Noce

V AUTHOfliS) -Lait nmmr, Ural nmn», inltim))

Wine«, Joel M. and Sammes, Anthony J.

S RePORT DATE

28 November 1973
TOTAL NO. OF PAGES

116
76. NO. OF WCP«

20

a«, CONTRACT on ORAST so. Fl9628-73"C-0002

fr. FRGJECT NO ARPA Order 600

9m. ORlOiNATOd'S REPORT NUMftCWS)

Technical Note l«>7r>-30 -Vol.I

9fr. OTHER REPORT NO(S> (A*y othmmaumtmrm thot atay b*
mitiftnea thta report)

ESD-TR-73-335

t0. AVAILASILITY/LIMITATION NOTICE«

Approved f^r public release; distr button unlimited.

\, SUPPLEMENTARY NOTES

Supplement to E SD-TR-73-337

12. SPONSORING MILITART ACTIVITY

Advanced Reiearcb Projects Agency,
Department at Defense

13. ABSTRACT

)4. KEY WOROS

The interface to the ARPA network consists of a Network Control Program (NCP> which handles
Host to Host communications, a LOGGER/SERVER for providing access to a CP virtual machute from
the network, and a user subroutine package for communicating with other Ho^ts on rhe network from
a logged on CP virtual machine operating in the CMS environment. The NCP and the LOGGER each
run la separate virtual machines; the NCP handling the I/O operations viili the »MP and the LOGGER
handling pseudo I/O cperations with CP through a software supported virtual terminal device. CMS
virtual machines communicate with the NCP virtual machine through a special virtual machine to
virtual machine communications facility.

This report describes the routines which make up the NCP and the LOGGER. Volume l\ Includes
flow charts on the logic for each of these routines.

NATIONAL TECHNICAL
INFORMATION SERVICE

 Spr.ngf.eid VA 221^ __----____^_„__

ARPA network
time-sharing system

IBM 360/67
virtual machines

I.

UNCLASSIFIED

Security Classification

< -^ iav..mi*^t^^lw^m,'f^-fh^r*irTr

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

AN INTERFACE TO THE ARPA NETWORK

FOR THE CP/CMS TIME-SHARING SYSTEM

VOLUME I

J. M WINETT

A. J. SAMhfES

Group 23

TECHNICAL NOTE 1971-50

28 NOVLMBER 1973 [ff ^ "^ ^©H n n
im

-~4 I I

Approved for public release, distribution unlimited.

LEXINOTON "• M \S>A(HI SETTS

The work rt-ported in this document was performed at Lincoln Laboratorv,
a center foi research operated by Massachusetts Institute of Technology.
Ths work was sponsored by the Advanced Research Projects Agency of the
Department of Defense under Air Force Contiact Fl%28-7(K:-0230 (ARPA
Order 600).

This report may be reproduced to satisfy m «ds of U.S. Government agencies.

ill.

-^^^^^^^====^5^55^-^^-=.^

Tatle of Contents

Volume I

1. Introduction

2* Ihe ARPA Networ*

2.1 General Description

2.2 Network Concepts

2.3 Requirenents of the HOST Software

2.4 HOST-to-ir.' Protocol

2.5 HOST-to-HCST Protocol and the NCP

2.6 Process-to-Process Protocols

3. The CP-/CMS Time-Sharing System

U.I System Eesign

4.2 The NET Package

4.3 The logger-Server

4.4 The Network Control Program

4.4. 1 NCPWAIN

4.4.2 NCPXFIP

4.4.3 NCPIMPI

4.4.4 NCF1MP0

4.4.5 NCPÄONIT

4.4.6 NCP1NIT ar.d Error Recovery

4.5 The Treatment of Errors

4.6 concluding Remarks

1

1

1

5

8

o

13

16

17

4« The Lincoln Laboratory IE« 360/67 Network Software 19

21

23

33

37

39

41

44

46

47

46

49

50

Preceding page blank

.. ..

A.

H.

I.

K,

I.

Appendices

IWP Interface Specifications

HCST^to-IM? Messiges

IMF-to-HOST Messages

The HOST-to-HOST Protocol

CF Support for a Virtual Terminal Device

Ct Virtual Machine Ccmaunications Facility

Ihe N£T Houtine

NrT user Macros

Ihe MLCTST Frcgrair

Ihe laYNEI Prcgtaai

Ihe mNEl LCGGSR/SHFVrF

Ihe user TELNET

54

56

58

61

66

69

71

7U

76

77

79

36

Volume II: Flowcharts

A, NCriWIT Flowchart

£. NCFMAIK Flowchart

C. NCPXFF? Flowchart

D. NCFII*PI Flowchart

I. HCPIKPO Flowchart

F, KCFHORIT Flowchart

G. LOGMAIN Flowchart

F. IOGDFV Flowchart

I, LOGST Flowchart

Vi

Figure 1

Figure 2

Figure 3

Figure a

Figure

Figure 6

Figure 7

Figure ö

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure IS

Figure 19

Figure 2Q

Figure 21

Figure 22

Figure 23

Figure 24

List of Figures

Network Topology - lall 1971

ÄPPA NET logical Map - Fall 1971

Hosts on tie ARPA Netwcrk

HOST-to-IKP Kessaoe foraat

HCST-to-HOST Message Format

HOST-to-H05T Control Comroands

System resign

NET Package

NET to NCP Control Block Format

NET Command Format

Interrupt stack Format

NET Commands

NCP to NET Interrupt Codes

Format of Status Bits

NET Flee Bits

LOGOFF Foutine Flags

The Network Control Program

Port Table Format

Polling and Device Flags

Input and Output Euffer Formats

Accounting Fecord Format

RV Table Format

NCP Errcr Codes

Major Interfaces in the System

2

3

4

10

1i

14

22

24

26

26

26

28

28

3C

32

34

3a

4C

40

40

42

i*2

51

52

vii

' i art ■ Tia.i- - ,' ■■im -■ - ■ rr -• iä ^ ^^^-.^.■^^^■^,^.^^^==.

List of. Figures

(Continued)

Figure B,1

Figure C.1

Figure G.I

Figure G.2

Figure K#1

Figure L.I

Figure L.2

.'igure 1.3

Figure L.u

Figure L.5

Figure L.6

Figure L.7

Ficiure 1.8

IMP-to-HOST Message Format

HOST-to-HOST Message Portat

Inteiruft Stack Control Block

Interrupt Codes

LOGGEB ISCII/FBCDIC Code Mapping

Serving Hosts on the ARPA Network

The EßCEIC Code

The USASCIT Code

TELNET ASCII/EBCDIC Code Happing

2/^1 Keyboard Control Character Mappings

274 1 Character and Control Codes

Code for Characters on a PN Print Train

Code for Characters on a TN Print Chain

56

58

73

73

82

9ü

95

96

97

101

103

ioa

105

vlli

^——^^^—^^^^^^-"

An Interface to the ARPA Network

for ehe CP/CMS Tiae-Sharing Systen

1. Introduction

The interface to the ARPA network consists of a Network
Control Prograa (NCP) which handles Host to Host
coHJOunicaticns, a LOGG'JE/SEFVER for providing access to
a C? virtual machine from the network, and a user
subroutine package for contaunicating with other Posts on
the network from a logged on CP virtual machine
operating in the CMS environment. The NCP and the
LOGGEB each run in separate virtual machines; the NCP
hasdling the I/C operations with the IMP and the LOGGER
handling pseudo I/O operations with CP through a
software supported virtual terminal device. CMS virtual
macnines communicate with the NCP virtual machine
through a special virtual machine to virtual machine
communications facility.

All routines were written in assembly language for the
IBM 36C/67 system and operate with CMS in a CP virtual
machine environment.

A brief description of the ARPA network is given,
followed by an outline of the CP/CMS time-sharing
system. This provides the fram work for a more detailed
consideraticn cf the interface software and the
automatic initialization and error recovery features
that are incorporated in the system design,

2. The ARPA Network

2. 1 General Description

The ARPA Network is a store and forward, message
processing network which interconnects a number of
large, multi-processing computer systems throughout the
united States. The computer systems, known as HOSTs,
are linked together for the purpose of sharing resources
ameng member sites. (See ROBERTS 6 WESSLEF, Ref. 17).
At each node of the network is an Interface Message
Processor or IMF which controls all traffic through the
node. (See HEART, KAHN, ORNSTEIN, CRO»THER 6 HALDEN,
Ref. 9.) IMPs are interconnected by wide-band (50
kilobits per second) leased communication line.«."; and
provide for the connection to the network of up to four
HOSTs at each site. The IMP is a slightly modified
H ywell DDP-516 computer and has been developed by
BOLT, BERÄNEK & NEWMAN (Eef. 1).

The topology of the network, at the time the system was
iiplemented, was as shown in Fig. 1 and Fig. 2. The
computer systems connected were as listed in the table
of Fig. 3.

TERMINAL IMP (TIP)
• IMP

50 KB CIRCUITS

(SITE NAMEhSCMEOULeo BY

 /APRIL 1972

Fi: 1: Network Topology - Fall 1971

a.

U

o

as

(N

•H

TN73-50-I(3) 1

i
| HOST CCttPÜTERS
J 1,

SITE
NETWORK IDENTIFIER |

UCLA 1 Sigma 7
1 IBM 360/91

01 I
Ul «

SRI I PDP 10 02 |

ÜCSB 1 IBM 560/75 03 |

UTAH ! PDP 10 04 i

BBS j DDF 516
I PDP 10
I PDP 10

05 |
45 j
85 |

MIT | GE 645
! PDP 10

06 |
46 j

FAND IB^ 1800 07 |

SBC IBH 360/67 08 |

HAFVARD | PDP IC 09 |

LINCOLN j IBM 360/67
TX-2
TSP

0A |
4A j
8A |

STANFORD | PEP 10 OB |

ILLINOIS | PDP 11 0C |

CASE | PDF 10 OD |

CARNEGIE | PDP 10 OE |

PAOLI | Burroughs 6500

 J
OF |

■—-rr —-«rii n- r-» ■ r-■ »-r ™ - - ■ ■ - ■ ■

Fig. 3: Hosts on the ARPA Network - July 1971

—-"' ^^fe*-^ aa - ■ ^■ —-^-fci täiM ^-»^~ üsSSimJ

Since that time, the network has boen expanded, and a
more recent status report is given in KIPSTEIN (Ref,
10).

2.2 Ne:wcrh Concepts

The HOST coaputers typically diffe" froa one another in
typer spead, i'ord length and operating systeau though
the notion of multiprograaiiaing dominates most of the
s.ysteals. Such HOSTs could concurrently support several
users, with each user running one or more processes. A
•process«, in this context, is taken to mean any
software entity in a HOST with which ar instruction
counter is associated, and includes each concurrent
activation of a re-entrant program. 7.t corresponds
closely to the ter» •activity' used Ly SPOONEP (Ref.
18).

A fundamental requirement of the design is to provide
for process-to-process Cvitaaunicdtion over the network.
It was decided that s^ch communication should be based,
not on a solitary message, but rather ucon a sequence of
messages and that this sequence should conform to some
standard formatting procedure or •protocol1. A number of
svch procecs-to-process protocols have been defined and
included;

a. An Initial Connection Proton .,1 (TCP) which enaoles
any process to gain access to specific processes
(such as the system logger) at another HOST.

b. A T^leccmraunicdtion Network (lELHIll protocol
which enables any terminal serving process to be
connected to any remote keyboard-printer terminal
by mapping through a Network Virtual Terminal
(NVT) .

c. A Data Transfer protocol which specifies standard
methods of formatting data for transmission
through the network.

d. A File ^ :nsfer protocv" which specifies methods
tor reading, writing ana updating files sorted at
a remote POST.

e. A Graphics protocol whJch facilitates the transfer
of graphics display information

Processes which desire to communicate with one another
have to be coupled by cne or more •connections1. A
ccnnection is defined to be simplex (uni-dircctional)
and connects an output port of one process to an input
port of another. Once such a conntc*ion has been
established, messages passed to the output port of one
process are automatically received at the input port of
the other.

^^^J—

TTTi" "'

Difficulties exist in uniquely identifying ports
(network-wide) in that each HOST,, typically, has a
different internal scheme for naning its processes. For
this reason, a standard, intermediate name space is
used, with a separate portion of the name space
allocated to each HOST, The elements of the name space
are called •sockets' and each HOST is responsible for
mapping sockets to ports for its own internal processes,
A socket is specified by a UO-bit number, the first 8
bits of which identified the HOST, In the Lincoln
Laboratory implementation, a further 2U bits are used to
identify the internal process and the reamining 8 bits,
the port within the process. The 'gender1 of the socket
(that is, whether it is send or receive) is marked by
the lest bit, thus giving each process a maximum of 128
send and 128 receive sockets.

Although it would be possible for processes to establish
connections on their own behalf, it is considered
desirable that control be co-ordinated in a standard
manner, throughout the network, by a special purpose
Network Control Program (HCP) resident in each HOST,
Processes within a HOST then communicate with the rest
of the network through their local NCP, which
establishes, breaks, and controls data flow over
connections as required.

In order to accomplish its tasks, the NCP of one HOST is
required to communicate, in a well-defined manner, with
the NCPs of other HOSTS. To this end a HOST-to-HOST
protocol was defined by the Network Working Group (NKG),
which specifies methods of establishlug and breaking
communications paths, the managing of buffer space, and
a method of providing interrupt facilities. This
protocol is known as the 'second-level protocol' and is
transparent to the higher level process-to-process
protocols outlined previously,

rhe medium for communication between HOSTs is vhe
'link'. Every HOST is considered to have 256 receive
links frc« every other HOST, which the NCP could asc-3gn
to connections as ren'iire-d. Links are permanently
available to the NCr MU'. are specified by the 8-bit HOST
identifiers concatenated with an 8-bit link number. Link
number 0 is used throughout the network as the 'control
linK', over which NCPs can issue 'control messages' to
one anotler in accordance with the standards specified
by the second level protocol. Control messages are
always interpreted by an NCP as a sequence of one <-
more 'control commands' to effect such activities as the
initiation of a connections, the assignment of buffer
space, or the notification of an interrupt.

Each NCP maintains a 'rendezvous' (PV) table wh^h
recoras the current assignment of sockets to internal
pr -esses and links to connections, Incowing messages
^n a link, other than link 0, are passed by the NCP to
*hat port of that internal process specified by an

6

"-.rr-^ ^-"- -Ttrrir^Hrnrif^r

appropriate entry in the BV table. If no such entry
exists, the message ir> rejected. Outgoing messages,
from .n internal process, are associated with the
appropriate link number, obtained from the PV table,
before being transmitted to the appropriate HOST.

In order to effect any transmission of messages, via the
network, an NCP has to communicate with its local IMP.
A well defined procedure, known as the HOST-to-IMP or
•first level1 protocol, has been specified for this
purpose. Two types of messages are permitted by this
protocol:

a. 'Regular1 messages which are always associated
with a link and which are passed by the IMPs,
through the network, to a destination HOST. Such
messages provide the mechanism for all HOST to
HOST communication.

b. •Irregular1 messages which are communications
betneen a HOST and its local IMP. Such messages
are not, in general, passed through the network to
a distant HOST, but are used for local control
purposes.

The protocol is implemented through the medium of a
32-bit »leader1, appended to all messages. Fields in
the leader specify the message type, the destination or
source HOST and the link number, Regular messages are
of message type 0, and irregular messages are of type
non-zero, the particular value of the type defining the
function of the irregular message. The protocol is
transparent to the higher level HOS^-to-HOST and
process-to-process protocols referred to aoove.

Any regular message, passed by a HOST to its local IMP,
is split, by that IMP, into one or more »packets' for
transmission through the network. Each packet is
preceded by a 6U-bit routing •header• which contains
such information as the destination and source HOSTs,
the link number, the message and packet numbers and a
set of flags,

A packet is passed, from IMP to IMP, throuah the network
until it reaches its destination, as specified in its
he^er. Each intermediate IMP selects the next leg of
the transmission path, for the packet, on the basis of
network topology, local tr cfic density and current line
qualities. The destination IMP reconstructs the message
from the individual packets, re-crdering them as
necessary in accordance with the packet numbers. Such
re-ordering is required because of the potentially
different routes, and hence different transmission
times, takpn by each packet. When the messages have
been reconstructed, the destination IMF passes it to the
destination HOST and transmits an acknowledgement
message to the source IMP. This acknowledgement message
is known as a Peady For Next Message (PFNM). On

7

receipt of the RFNflr the source IhP advises the source
HOST that the message had been passed and that the link
associated with it is now free for further
transniissions. The packet pechanism and the IMP to IMP
connnunicat.ion procedures are transparent to all the
higher level protocols.

At the hard
a specially
can be tra
It is this
word lengt
Transsiissio
special in
interrupted
word from
ere into st

ware level, a HOST is connec
designed interface, across

nsmitted, bit serially, in
interface which resolved th

hs and speeds between the
ns consist of a bit trai
dication of word or byte
as reguired while the send
memory, or the receiver wri
orage.

ted to its IHP by
which information
either direction,
e differences in
HOSTs and I.MPs,

n, containing no
boundaries, but

er fetches a new
tes an assembled

The Lincoln Laboratory 360/67 is connected to the IMP
through a specially built interface box. This tox is
attached as a control unit on the multiplexer channel
and provides a duplex connection to th«» IMP, Thus the
IMP appears as two devices, one for transmission of data
and one for the reception of data, both of which can
operate simultaneously. The specif icav.ions of data
transfer to and from the IMP through this interface box
is described in Appendix A.

2.3 Feguirements of the HOST Software

The network control software, resident in fach HOST, is
required to observe five major interfaces and effect the
protocols associated with them. These ar* ;

a. The hardware interface between a HOST and its IMP,
and the protocol which specifies the control of
that interface,

b. The software interface between a Network Control
Program and its local IMP, and the i'03T-to-IMP
protocol.

c. The software interface between Network
Programs, and the HCST-to-HOST protocol.

Control

d, Ihi software interface between and internal
process and its local Network Control Program, and
the protocol which describes the form of messages
between them,

e. The software interface between orocesses, and the
various procecs-to-process protocols.

Of these protocols, the HOST-to-IMP, HOST-to-HOST and
process-to-process are network örfined; the remainder
are implpmentation dependent and vary in detail frcs
si\.e to site. An outline description of the network

 ——

defined protocols follows; the ioplementation dependent
ones are described in Section U,

2.U HOST-to-IMP Protocol

The HOST-to-IMP protocol was specified by POLT, BEPANEK
& NEWHAN {Ref. 2) who designed the IMP software and
modified the Honeywell DDP-516 cowputer. This protocol
is based on the concepts of n «fflessage1 and a »link1.

A message consists of not more than 8096 bits of data
which includes 32 bits for a leader and at least one bit
for •padding1.

Padding is added by the hardware interfaces to resolve
the word length mis-match probler» of dissimilar HOSTs
and IMPs. The source HOST to IMP interface appends a
single one bit to the end of a message, followed by
sufficient trailing 7ero bits to complete an integral
number of IMP words. The destination IMP to HOST
interface appends additional trailing zero bits to
ccirplete ar integral number of destination HOST words.
The end of the message can thus be located by a
destination HOST by searching its input buffer, back
from the last word transferred, until it finds a
non-zero bit. The bit pricr to this will be the last, bit
of the message sent by the source HOST. No network
significance is to be placed on HOST word or byte
boundaries.

Two classes of message type are specified, as stated
previously; regular messages which have a zero message
type and which provided the medium for all HOST to HOST
communications; and irregular messages which have a
non-zero message type and which are used for control
pu-poses between a HOST and its IMF. (It should be
nt ed that messages of non-zero messace type are
referred to in BOLT, BBRäNEK

-
 6 NEWMAN (Bef. 2) as

»control messages'. This term is also used in the
KOST-to-HOST protocol for regular messages on link zero.
To avoid ambiguity, the term 'irregular message1 is used
throuqhout this report to refer to messages of non-zerc
message type, and the term »control message' is reserved
for KCST-to-HOST protocol use.)

The 32-bit leader determines the type of the message and
the link, if any, with which it is to be associated
(Fig. 4).

Regular messages are always to b^ associated with a link
and this is fully specified oy a destination HOST
identifier, a source HOST identifier, and a link number.
Of these, the originating HOST specifies, explicitly,
only the destination HCST identifier in the HOST
identifier field, and the link number. At its
destination, the destination IMP regenerates the leader
from the packet header, replacing the value originally
in the HOST identifier field by the source HCST

9

""""^nmm if Tiiif inin'j^^^yjimL iiiij

lTN73-50-I(4)

! ^ j 4

I
FLAGS | «ESSAC£

| TYPE

8 I

* * m

I
8 j variable

I
I DATA HOST | LINK | NOT |

IDENTIFIER | NÜHBER | ASSIGNED f

-J

< .. 32-Bit Leader-^

• • «

>!

■"■ ^ ——— ■ " ""^'"*'*"'^~"""~*"*,""*',*",*~""""" ■" ' " ■»»«—•-—»—■— — n ■■ ir« »MaaHi^MH- * ■" ll11.""" ^^»'mmmtmitrntm MI WMMMM MMHI mm amammmmm^

HOST TO IHP HESSAGES | in? TO HOST MESSAGES

MESSAGE
TYF£

MEANING jl

 .. „. 1.

1E3SÄGE
TYPE

:; MEANING

1

0 Regular message HOST to HOST.f 0 (Regular message HOST to HOST.

1 Errct in leader. | ■| | El or in leader.

2 HOST going down, | 2 (in? going down.

3 I 3 |Elocked link.

Ü So oferation. j u f No operation.

5 Regular message for tliscard. | 5 jPFNH.

6 I 6 jLink table full.

7 1 7 |Destination IMP or HOST dead.

8 Erroi. not in leader. | 9 {Error not in leader.

Q 1 9 jIncomplete transmission.

10-15 j 10-15 {

 L

Fig. a: HOST-to-Iflf Message Format

10

~.

identifier. On
the link is sai
further transflsi
has either been
these events i
type five inäic
seven, that th
complete transffi
the link. Oth
enable an IMF
blocked; that
nessages; or th
indicate to its
have been not
particular mes
nessages are su
detail in Appen

ce a message had been assigned to a link,
d to be •blocked» and the IMP will refuse
ssions over it until the first messaae
delivered or rejected. Notification or

s by irregular IMP to HOST messages; a
ating successful delivery (KFNM); a type
e destination HOST did not receive the
issior. Each of these messages unblocks
er irregular messages in the protocol
to indicate to its K051 that a link is
errors have been noted in previous

at its link table is full. The HOST can
IMP that it is closing down; that errors

ed in previous messaa^s; or that a
tage is for test 7utposes only. The
mmarized in Fig. u md described in iiore
dix B and C.

With re
bits wi
by dest
coromnni
mainten
BESSAGE
and LIN
abov = -
unassig
unused
to the
iressage

fere
dth,
in at
cate
ance

TYP
K NU

Th
ned.
in i

HO

nee
is

ion
wit

or
E (
«BSP
e re

T
rreg
ST-t

to
set

HOS^
n in

fli

four
(ei

main
he
ular
o-HO

the
to

s.
P ba
easu
bit

ght
ing
DATA
H'€S

ST p

leader,
zero by
The fi

ck croun
resent
s) , HOS
bits) a
eight
field

sages
rotocol

the FLAG
source

eld is to
d program
purposes

T IDENTIF
r^ to be
bits of

, o f v a r
and is fo

convent

5 field, of four
HOSTs and ignored
he used only to

s for diagnostic.
The fields,

IEP height bi*s;
usea as described
the leader are

iable width, is
rmatted according
ions i'3 regular

The i:iPs exercist" traffic control and restrict the total
amount of data in transmission through Ine network by:

a. Fefusing additional messages ov»r a •blocked1

link.

b. Limiting the maximum size of a message to 9096
bits.

c. Limiting to 63 the number of transmit and receive
links a HCST can concurrently have active,

d. Rejecting any message which required longer than
15 seconds for re-assembly from its constituent
packets.

e. Bejecting any message which has not been collected
by a destination HOST srithin UO seconds of
re-assembly.

The censtraint of a regular aess&ge to not more tha.
8C96 bits in length is imposed by the IHP sub-network.
The second-level or HOST-to-HOST protocol passes this
constraint to the user process.

11

Esas^ia.n.d

TN73-50-I(5)

Rfegular Message LEADER j

32 Bits j

1 FILLB.fi (Ml)

I 6 bits

1 i 1
| CONKECTION | NUMBER OF BYTES (C) |
| BYIE SIZE (S) | j
1 8 bits ! 16 bits |

I FILLED r«2)

I 8 bits

TEXT I

C Bytes Each of S Eits per tyte |

I I
I FILLED («3) |
I I
I variable |

1 -- i-, , r-, ,-, „ ^ ^ - . -m- m- , „j _„„ ^ .„__. ^ -. ^ ^.— „ ^ _-_.-,,. ^ . »^ n i ^ », ■ i ■.» -■ . _■ ■■ nr ^.M wMM — m. '

Fig. 5: HOST-to-riOST Message Format

12

2.5 HOST-to-HOSI Protocol and the NCP

An early design for the HOST-to-HOST protocol was
reported on in CAHPr CROCKER 6 CERF (^ef. U), but the
versicn impiemented was formulated by the Network
Workino Group and is specified in CPOCKFF (Fef, 7),

This protocol is based on the concept of a HOST-resident
Network Control Program (NCF)# which can communicate
with other HOSI-resident Netsork Contrcl Programs, by
ireans of 'control messages», issued over 'control
links', for the purpose of effecting «connecticns1

between 'sockets' assigned to HCST-resident processes.

All HOST-to-HOST communications are regular me..;3ages,
control messages being sent over link zero and
interprocess transmissions over non-zero links. The
transmitting NC? is responsible for segmenting
in+erprccess transmissions into regular messages, not
more than 8096 bits in length. The receiving NCP is
therefore responsible for concatenating successive
regular messages into a single, or differently divided,
transmission for delivery to the receiving process.
Because of the differing word lengths of the
ccmmunj :ating HOSTS, the C*.TA fi^ld of regular messages
(Fig. u) will not, necessarily, start or end on word
bo idaries at the receiving HOST. In order to
concatenate successive regular messages, the receiving
NCP nas to be prepared to employ extensive bit shifting;
an expensive operation in terms of processor time. To
alle^icte this situation, the notions of a 'message
header' and a 'connection byte s.rze' have been
introduced.

The message header emtraces the regular message ?eaaer
and extends the reguired information at the beginniiig of
each message to a total of 72 bits. The figure of 72
was chosen as the lowest common multiple of most HOST
byte and word lengths; these being 8, 18, ?4 c:nd 36
bits. This header reduces the bit shifting problems, at
the beginninc, of a message, for the majority of HOSTs.
The format of the header is given in Fig. 5.

It consists of the 32-bit leader, specified by the
HOST-to-IÜP protocol; an 8-bit filler field (M) ; an
8-bit ccnnection byte size field (S) ; a 16-bit number of
bytes field (C) and a further 8-bit fiUer field (M2) .
The text field of a message consists of C bytes each of
S bits per byte. It was decided that, for each
connection, a connection byte size should be agreed
upon, by the communicating procedures, and that this
would typically be the lowest common multiple of the
respective HCS1 word lengths. The text of messages
would then be an integral number of these bytes. This
procedure reduces the bit shifting prcblems at the end
of a message. In addition, a variable lenoth filler
field («3), is specified at the end of a nessago which
can be USPI ny th«^ transmitting HOST to fill the message

13

vT.-ni - - -'I ii -II —ii ^ ---^i • - -- - - ! :- -T — " iifnYBTT^^^^-iriiriiilr1

NOP (0)

RIS (1)

8
SI« (2)

CLS (3)

e
ALL (^0

 1 -.1 1

GVB (5)

8
RET (6)

1MB (7)
..I

6
INS (8)

ECO (9)

8
ERP (10)
 1.

ERP (11)
 1.

8
RST (12)

8
RRP (13)

TN73-50-I(6)

32
receive socket

32
send socket

 i--

32
my socket

32
send socket

32
receive socket

-L

32
your socket

8
link

—.--1

6
size

8
link

8
link

e
message fraction

8
link

8
link

3
link

data

16
message space

16
message space

32
bit space

bit fraction

32
bit space

data

8
code

80 |
data |

Fig. 6: HOST-to-HOST Control Commands

U

^^„...^.„-^

out to a word boundary. All the filler fields have a
zero value.

A connection byte size is specified when the connection
is firf-t established, on behalf of processes, by the
co-operating NCFs. Connections between NCPs , on links
nuaber zero# are notr however, explicitly established
but are considered to exist when a HOST becomes active.
The connection byte size for these connections is
itplicitly defined to be 8 bits, and the text field
always consists of an integral number of control
coamands.

The format for each control command is given in Fig. 6;
the fjiist field of 8 bits, known as the »op-code1,
defines the function of the command and successive
fields specify parameters to it. The figure sh^ws the
three character mnemonic name of each op-code; its
numeric value in parentheses; the size of the parameter
fields and the type of parameters required. Op-codes
are defined lor such functions as the establishment of a
connection, RTS (receiver to sender) and STB (sender to
receiver); the termination of a connection, CIS (close);
the control of buffer space, ALL {allocate), GVE (give
back) and RE1 (return); the notification of interrupts,
INH (interrupt receive link) and INS (interrupt send
link); tne repotting of errors, EBP (error) and the
determination of status, 2C0 (echo), EFP (echo reply),
FST (reset) and RRP (reset reply) .

When two processes desire to establish a connection, the
prospective sender requests its N'CP to issue an STR
command and the prospective receiver requests its JJCP to
issue an RTS command. The STR command specifies the
Iccäl send socket, the foreign receive socket and a
connection byte size. The liTS command specifies the
local receive socket, the foreign send socket and a
previously unassigned link number for use hy the
connection. Once these commands, known as »requests for
connections' (RFCs), have been exchanged, and proviaeu
that the specified sockets match and were net already in
use, the NCP ot the prospective receiver issues an ALL
ccffEand specifying the amount of buffer space it is
prepared to assign to the connection. On receipt of this
command, the NCF of the prospective sender is permitted
to transmit data, on behalf of its process, up to the
amount specified in the command. It is expected that as
the NCP of the prospective receiver passes the data to
its process and releases its internal buffer space, it
will issue further ALL commands to the tender, to enable
transmissions to continue. The NCP of the prorpective
receiver can, at any time, request a return of all or
part of the buffer allocation by means of a GVB command
and this is to be acknowledged by a PET command. All
NCPs are to maintain message and bit counters for each
of their send connections which are to reflect the
current buffer allocation at the receiving site. They
are specifically prohibited from issuing any message

15

r .-rf^rMrtirii ^r-—^-^^'-■''■^'"■':^-»'*-
irnmr^-"

which would result in either counter being decremented
below zero. This flow control mechanism does not apply,.
however, to control messages issued on links number
zero.

Connections can terminate by either NC? issuing a CIS
ccasmand which the other NCP is to echo. Care is required
to ensi re that a CLS command, issued by a sending NCP on
link zero, does not arrive at the receiving NCP before
the last data message on the connection to which it
refers.

An NCP is permitted to issue an ERR command whenever it
detects a HOS?-to-HOST protocol error by another NCP,
The code field of this command specifies the type of the
error and the data field gives additional information
about it. A number of error types are network defir.ed
but it is expected that implementerc of NCPs would
publish details of their own additional error types.
t£ee Section 4) .

Further details of the HCST-to-HOST protocol are given
in Appendix E*

2.6 Frocess-to-Process Protocols

Two process-to-process protocols were defined at the
time the systen; to be described was implemented; the
Initial Connection Protocol (ICP) and the
Telecommumcaticn Network protocol (TELNET) . These
prctoccls are used both by the LOGGEB SERVER and the
user TELNET processes discussea in Section U.

A family of ICPs is formally specified, on behalf of the
Network Working Group, by POSTEl (Ref. 15). The
protocols require a »listen1 function to be defined
which permits a process to specify to its local NCP the
identity of a socket for which it is prepared to accept
a connection frcm any other process. On receipt of au
appropriate request for connection to such a socket, the
lecal NCP is to issue the matching RFC: thus completing
the connection, and to advise its process accordingly.
This function is effected in the Lincoln Laboratory
systen by the process-to-NCP command, enable connect
(ENC) and enable listen (ENL) described in Section u.

Uring thio protocol, a server process listens on one of
its send sockets, L, which is well known throughout the
network. A use*, process, wishing to communicate with
the server process, requests its NCP to establish a
ccrnection to L from one of its receive sockets, tf. On
establishment of the connection, which is to have a byte
size of 32 tits, the server process has two options. It
cculd either request its NCP to close the connection,
indicating that it is not prepared to communicate
further with the user process, or, it could send a
single 32-bit even number S, identifying a pair of
sockets, 5 and S*1, which are to be used for all

16

-r-ir.iiii. i ' ^L^:^
.-^—^ ^wiAJi^jaa^H.

subsequent transmissions. If the server process adopts
the latter opticn, both processes are to request their
respective NCPs to close the connection between L and U
and to establish new connections between S and IHB and
S*7 and Ü+2. The protocol thus provides a means of
establishing duplex communications between process. The
well kncwn socket, L, is called the Initial Connection
Socket and is defined to be X'OOOOCOOI1 for the LOGGER
SERVER, where X signifies a hexadecimal number. IH2 and
U<-3 are specified for use, rather than U and 0*1, in
order to avoid a race condition.

a process at a
to a terminal
The protocol is
Network Virtual

The TELNET protocol, described by 0«SULLIVAN (Ref. lU)
on behalf of the TE1NET committee, was designed to make
a process at a using site appear to
serving site as logically equivalent
directly connected co the serving site,
effected through the medium of a
Terminal (NVT) which normally uses a staidard,
intermediate terminal code. Both the serving and using
processes map their local codes to this intermediate
cede and must conform to the conventions of the NVT.
This approach eliminates the need for a HOST to keep
information about the characteristics of terminals and
terminal hanoling conventions at other host sites.

The intermediate data code of the NVT is defined to be
the 7-bit ASCII code transmitted in 8-bit bytes with the
high order tit set to zero. Connections between
processes are established using the Initial Connection
Prctccol and have a connection byte size of 8 bits. A
number of 8— tit TELNET control codes are also defined,
each with the high order tit set to one. These are used
for such purposes as the notification of a break or
reverse break signal; a request to echo or cease echoing
data characters, or a warning to suppress local printing
of input characters. In addition, a data type control
code can be sent as the first byte of data over a
connection to signify whether the standard NVT code is
to be used or some defined alternative such as EBCDIC.
A special synchronising code is also defined, which can
be inserted ii the data stieam ^nd which is always
associated with a network interrupt (INS) command. This
enables stacked input to a serving process, up to the
synchronising code, to be discarded or temporarily
ignored by those systems which recognised an »attention*
key as having a specified interrupt function.

3. The CP/CMS Time-Sharing Syst.m

The Lincoln Laboratory CP/CMS time-sharing system is a
modifx,d version of IBM's CP-67/CflS time-sharing system
(Ref, 6) and consists of two independent components: the
Contiol Program (CP) and the Conversational Monitor
Systep (CMS), The Control Program creates a set of
•virtual machines* which are time shared with one
another, and the Conversational Monitor System provides

17

.^-^^.^ .--^«aii lii^lMi f.ii-.n.niüiitriMfii

■ IIIIMI IIIIQII. i|iiiWKlLi.Jii^tjti, i'.jü'iüi

a conversational operating system which can be used to
control a virtual machine.

A virtual machine is a functional simulation of the r^al
IBM 360/67 and its associated input-output devices. The
virtual inon.ory and virtual devices of a virtual machine
are specified ty a predefined configuration which car-
differ for each virtual machine. The Control Program
allocates the CFU resources of the real machine, foi a
short period of timer to virtual machines in turn, in
accordance ^ith a scheduling algorithm.

Ail input/output commands from a virtual machine are
trapped bv CP and translated to real I/O operations-.
Unit record input-output is normally spooled onto disk.
Virtual memory is divided into U096-byte blocks, held on
paging drums and paged in and out of real memory as
required. Special hardware is provided en the IBM 360/f7
for paqing purposes which performs 'dynamic address
translation»

CP maintains a record of all permitted virtual machines
and identifies each one by means of a ÖSERID. Associated
with this ÜSERID is a password, accounting information
and a table describing the configuration of the related
virtual machine. Provided that the number of active
virtual machines is not the maximum that the system can
support at any one time, a user could request CP to
establish his virtual machine by logging in on an
unassigned terminal. "logging in" involves the typing
of a HSERID md password which are used to validate an
authorized user. The terminal enables a user to control
his virtual machine, by means of CP console functions,
in a manner similar to that of an operator at the
console of the real machine. The virtual machine
appears to a user and his programs to be
indistinguishable from the real machine.

Having established the virtual machine, the user can
employ CP console functions for such purposes as the
Initial Program Loading (IFI) of an operating system;
the display or modification of any portion of his
virtual memory; The stopping or restarting of his
virtual machine, the sending of messages to other
terminal users, the setting of special virtual machine
facilities; and the guerying of CP for systems
informa tion.

C?1S is cne of the operating systems which can be loaded
into a virtual machine by means of the IPL function. It
is a single user conversational system which provides a
coirprehensi ve command language and programming facility.
Commands exist for file creation and manipulation,
program compilation, execution control, debugging and
various utility operations.

The file handling commands enable the user to create,
copv, move, combine, edit, print and erase disk files

18

fcÄ*-«-*-« fa. i^SÄäsSi HT I1T ^^-—

and other ccanp^rids provided access to tape units, line
printers, card readers and card punches. Compilation
coamands are available for Assembler, Fortran IV and
PI/1, and the execution ccatrol commands allow the user
to load relocatable object programs and execute them
under terminal ccntrol. Ex^juting programs can be halted
at pre-determraed poinis, examined, modified and
restarted usirg the debug commands, utility functions
provide for tape and disk copying, sorting, dumping and
printing.

An EXEC tacility which includes su^stitutable parameters
and conditional statements allows a set of commands,
stored in a file, to be obeyed by the command
interpreter. Control can be transferred from the CMS
command interpreter to the CP console function
environment by means of ir 'attention* key, thus
allowing looping programs to '^e aborted.

Ecth Cp and CH^ commands can be issued from the term.nal
or called from user programs. All the network software
was designed to operate in a virtua? machine
environment, under control of the CMS operating system.

a. The Lincoln Laboratory IBM 360/67 Network Software

Support for the ARPA network on the IBM 360/67 computer
at Lincoln Laboratory is provided through a Network
Ccntrol Program (NCF) which runs in a virtual machine of
the CP-67 operating system. The NCP virtual machine has
direct access to the Interface Message Processor (IMP) ,
and hence to "he network, and communicates with other
virtual machines over a pair of virtual devices, one for
sending and one for receiving. The virtual device used
for sending can be directed to a particular virtual
machine in the same way that user virtual machines
direct transmission to the NCP virtual machine.
Transmissions to the NCF a^e identified is to the
sending user and thus re appropriately processed by the
NCP.

The implementaticn of the NCP in a virtual machine
rather than a£ part of the core resident system
facilitated its development since it cculd operate
independently of other virtual machines and, hence, not
impact the reliability of the operating system. The NCP
is written as a user program which calls en CMS system
facilities for program initialization, incl'iing program
re-initialization in the event of a catastrophic error,
for disk file services, and for virtual machine to
virtual machine communications.

By operating the NCP in a virtual machine, core memory
is not dedicated to support the network operation;
system resources are only required when network activity
occurs. In addition, operating the NCF in a virtual
machine is particularly convenient silica the protocol by

19

which NCP's ccrarounicate is being changed and Hill
continue to evolve. The added overhead to the operation
of the NCP caused by these techniques does not preclude
useful network operation and experimentation. A number
of improvements can be implemented to reduce this
overhead by giving the NCP special priorities if the use
of the network is limited fay the performance of the NCP.

The NCP keeps a table (the rendezvous table - PV table)
whose entries reflect the state of connections tetween
the local NCP and a foreign NCP. Each entry contains
the identification of a foreign socket and a local
socket, and the userid of the local virtual machine
which is to te associated with the local socket.
Entries are made in the RV table either on the receipt
of a Request For Connection (FFC) control message from a
foreign NCP or through a request from a local virtual
machine.

The communication protocol between a user virtual
machine and the NCP resembles the NCP to NCP protocol.
Data camot be transmitted until a connection is
initiateu by both the sender and the receiver and the
NCP to NCP requirements for flow control are met. The
NCP specifies the number of bits it is prepared to
buffer for a receive conn* t ion and stores messages
received from a foreign NCP until a local user makes a
request for a message. If no message has been receiveu
when a user makes a receive request, this fact is
returned to the user. The NCP will not accept a message
from a user for tranmission if the receiving NCP has not
provided adequate buffering. In this way, the
requirements for flow control between NCP and NCP are
passed to the user. The NCP also notifies the user of
any asynchronous change in the state of a connection so
that he can take appropriate action. For example, the
user is notified aj when a connection he has initiated
has been completed by the foreign host, b) when a
message is received and there had not been any previous
messages buffered, and c) when a connection is closed by
the foreign host. In addition, the user is notified
when a network interrupt has been received for the
ccrnection.

A set of low-level user routines (N£T) have been
provided to communicate with the NCF, These routines
follow the protocol defined for network ccmmunications
through the NCF. For each user request to the NCP, a
reply from the NCP is sent to the user virtual machine
indicating either successful or unsuccessful ccmfletion
ot the request and the current status of the connection.
Thtse ro-tines handle the stacking of asynchronous
interrupts which are unstacked through a call to the NET
routines.

One user virtual machine which has been developed is the
LOGGER virtual machine. The LOGGER controls a number of
virtual terminals which provide access to the CP system

20

,-, f,^^ -^~ ^.*.^^iiiM-rtrm-.vn»-i'i-

in a raan'-.er similiar to physical tetminals, but instead
of a haiaware terroinal, CP is interfaced with a
specially designed virtual terminal device which is
driven by software. Thus, inforiration normally typed on
a terminal by CP and information normally koy«?d into a
terminal is transferred between the LOGGER and CP
through one of these virtual terminal devices. The
prctccoi for controlling a software terminal is
described in Appendix E.

When the LOGGER is initialized it is prepared to
ccirmunicate with tne NCF over the socket defined for
LOGGER operation under the Initial Connection Pr tocol
(TCP) . Comaunication under th^ ICP will result in a new
pair of sockets being defined through which the LOGGER
will provide CP services to the network. Once this pair
of sockets is defined, the LOGGFP acts as a SERVE?
interfacing a virtual terminal with a remote process
through the NCP.

During the ini
received networ
and compares th
the user id doe
userid is pass
network passwo
userid specifie
sent to CP, S
passwords do no
system from the
be restricted
Though the oper
virtual machine
overhead, this
does not limit

tial login
k message
ese with
S not ap
ed to Cpi
rd corres
d in the
incc netwo
t have to
network i

to a subse
ation of t
introduce
does not
its use.

sea
; fo
en + r
pear

If
pond
fil

rk
be
s s
t o
he I

an
app

uence, the
r 'userid
ies in a
i u t he
the pass

ing to th
e, the sy
passwords
identical,
pecially c
f authoriz
CGGEF/SEFV
other lev
ear to be

LOGGEH
• and •
special
file, an
word ma
e valid
stem pas
and val
access
entrolle
ed syst
ER as a
el of di
siqnifi

analyzes
password •
file. If

invalid
tches the

network
sword is
id system
to the CP
d and may
em users.
separate

spatching
cant and

a,1 System Desian

Eigure 7 outlines the major elements of the
software and the interfaces between thcir.

network

The Network Control Picgram (KCp) resides in a virtual
machine (VfM in the figure) to which is attached the IMP
hardware interface and a terminal. The terminal is used
for establishing, and menitorinq tho activity of the
NCt, Processes in other virtual machines communicate
with the NCF through the CF virtual machine to virtual
machine communications (VMCOM) interface. This facility
was specially designed for efficient virtual machine to
virtual nachine communications.

In an earlier version of the network software, the CP
facility for transferring card image from the virtual
card punch of one virtual machine to the virtual card
reader of another virtual machine wis used. This process
used the CP spoclino facility which limited the rate of
virtual machine inter-communications to the speed of
writing a spooled file to the di^k and then reading the

21

smtg^m
u-mmtim ^umMmmmm

U-M130B

TERMINAL

r
NCP VM1

TRANSFER INTERFACE

rERMINAL

CP VIRTUAL TERMINALSI
i ,—,, 1

VM3 NET
USER PROCESS

TERMINAL

NET ^
\USER PROCESS^ VM4

USERN
PROCESS) VM5

Fig. 7: System Design

22

-■-■ .f.Tiif«-m^ in n -inirmr--—-TTTT-T"" ■ - r --■iW.i. a.ii-nmim

spooled file. With the VMCOrt facilityr data is rooved
frcm the virtual anemoiy of one virtual machine to a CP
free storage area, and then from the CP free storage
area to the virtual memory of another virtual machine.
A descripticn cf the VHCOM facility is contained in
Appendix *.

In Figure 7, three virtual machines are shown connected
to the NCP through the VWCOH interface. VM3 represents a
virtual machine, controlled by a user at his terminal,
executing a process which is in communication with the
network. All user processes communicate with the NCP by
means of a sutroutine and macro packaqe, NET, which
effects a locally defined process-to-NCF protocol.

V«2 represents a virtual machine containing the
logger-server process. This process uses the NET
package to communicate with the NCP and observes the
1ELNE1 and ICF process-to-process protocols for all
network transmissions. A modificatio'. was made to CP,
by the system maintenance group, to provide a CP virtual
terminal interface for use by the logger-server. This
interface enables the logger-server to establish and
service virtual machines as though it, itself, was a set
of local terminals each controlled by a separate user.

The figure shows two virtual machines, VMU and VMS,
established from the network, by the logger-server,
through the virtual terminal interface. Both virtual
machines contain user processes which arc executing
under the remote control cf network users or their local
processes. In addition, VMU represents the case where
the executing user process is itself accessing the
network by means of the NET package.

This design allows for more complex configurations to oe
established than that shown in the figure. Any number of
active virtual machines could use the »ET/füCOM
interface and each user process is permitted a miximum
of Zb6 connections to the network. The logger-server
currently supports up to three virtual machines, at any
one time, as thj.s is considered to represent the
maximum, in terms of local resources, that should be
allocated to the network.

Brief descriptions of each of the major elements follow,
together with scse implementation details.

U.2 The NET Package

Figure 8 shows in block schematic form the way in which
a user process communicates with the Network Control
Prcgram.

A set of high-level NET commands are defined which can
be employed by a process to call subroutines which used
the NET package. Each high-level command is in the form
of a macro, which expands into one or mere primitive NET

23

■—--—^■nrTtr"t-i'^-A— J *-' ^ww»»-^!--^ - - ^jrn.r--. -

LI
■

TRANSFER INTERFACE

i i

NET TO NCP
INTERFACE

USER
VIRTUAL
MACHINE i'

PRIMITIVE
NET

COMMANDS

HIGH-LEVEL
NET

COMMANDS

NET PACKAGE

i

1
I

SUBROUTINES

AND MACROS

i

■

USER PROCESS

18-2-1130?
 j

Fig. 6: NET Package

24

nn B hWti -^mtirilTtim I iTlllI ■' I -^^^•^•--iir f-ifrrft- ITrnfinnarniunrii ̂
^^^^ ^ ^

cosmands. These coBBands, which can be used directly by
the user process, are interpreted by the NET package and
issued as requests to the NCP through the aecliui of the
VMCOW facility, Coaiunications between NET and the NC?
consist of an 80-byte control block together with a data
bleck cf fro! 0 to 1024 bytes.

The format of the control block is shown in Figs. 9, 10,
and 11 as a set of field names, each followed by the
field byte size in parentheses.

The CODE field, one byte, is used • o specify the type of
control block and the remaining fields are used for
parameters set by either NET or the NCP. The CODE is
given by a numeric value, in the range 0 to 12, and the
significance of each is indicated in Fig. 12.

CODEs are defined which allowed NET to request the NCP
to:

a. Issue, on its behalf, certain network commands
such as STF (0), RTS (1), CIS (4), INS and INfi
(6) .

b. Transait, on its behalf, interprocess messages
over established connections (2),

c. Deliver to it, interprocess messages from the
network which the NCP had buffered until required
(3).

d. Advise on the status of particular sockets (5).

e. Enable specified sockets to accept foreign STPs
(9) or ETSs (10) without having to know in advance
the foreign socket numcers. (The »listen1 function
referred to in Section 2.6).

f. Disable sockets which previously had been enabled
(11).

g. Purge all local references to connections not
correctly closed by foreign KOSTs (12).

The NCP replies to each NET request with a reply control
blocV; (7) which contains appropriate status information
in certain of its parameter fields. When the NET request
is for the delivery cf an interprocess message (3), the
reply control block is followed by a dato block, which
represented the message. The NCP can also pass
asynchronous interrupts to NETr at any time, by aeans of
an interrupt control block (8), A nuaber of interrupt
codes are defined to notify the process of such events
as:

 -

a. The receipt of a network interrupt (INS or INP) on
one of its current connections.

25

NET TBANSMISSiON CODE (1)
ÜSEF ID (8)
LOCAL ID (3)
LOCAL TAG (1)
FOFEIGN HOST 117
FOREIGN ID (3)
FOREIGN TAG (1)
EIT COUNT (2)
INTERRUPT CODE (1)
STATUS (<*)
EIT ALLOCATION IEFT (4)
MESSAGE ALLOCATION LEFT (2)
CONNECTION BYTE SIZE (1)

TN73-50-I(9)

LOCAL SOCKET (U)

FOREIGN SOCKET (5)

Fig. NET to NCP Control Message Format

CHARACTER COEfi (U)
ICCAL IP (3J
LOCAL TAG (1>_)
FOREIGN HOST (1)
FOREIGN ID (3)
FOREIGN TAG (1)
rue (i)
BIT COUNT SENT CR RECEIVED (2)
EUFFEH ADDRESS (4)
STATUS (4)
BITS LEFT (4)
MESSAGES L£fT (2)
CONNECTION BYTE SIZE (1)
UNUSED BYTE (1)
ADDRESS OF INTERRUPT STACK (4)

TN73>5G-I(10)j

LOCAL SOCKET (4)

FOREIGN SOCKET (c)

Fig. 10: NET Command Format

TN73-50-X(ll)
INTERRUPT CGCE (1)
NEXT ENTRY IN IMEPR'JPT STACK (3)
LCCAL SOCKE1 (4)
FOREIGN SOCKET (5)
SPARE (3)
STATUS (4)

/ig. 11: Interrupt Stack Format

26

■—■-■-• -
rTBif-^rr iir Ii ii irm nm r n ■igiilifiTfll

b« The acceptance, by a foreign HOST, of a request to
establish a send connection to it, (i.e., the
receipt of a foreign KTS which auitched a
previously issued STP)•

c. The loading of NCF buffers tor one of its receive
connections.

d. The closing of one of its connections by a foreign
HOST.

e. The matching of 'enabled* sockets with appropriate
foreign STRs or RTSs.

f. The shutdown of the local NCF.

g. The resetting of any foreign NCP associated with
one of its connections.

The interrupt codes ate listed in Fig. 13 ard any
interrupt control block sent from the NCP to NFT would
contain one of these codes in the second byte of the BIT
CCUNT field, which doubles as the INTERRUPT CODE field
<Fig. 9).

The ÜSERID field it employed by both the NCP and NET to
identify the virtual machine associated with tho NET
request. NET accesses the CP ÜSEPID, en behalf of its
process, and completes this field accordingly. Sockets
are defined (Section 2.2) to consist of an 8 - bit HOST
identifier concatenated with a 32- bit socket number.
Local sockets are specified fcy the 32-tit socket number
alone, since the local NCP can add its own HOST
identifier as necessary. The LOCAL SOCKET field is
divided into LOCAL ID and LOCAL TAG fields for
ccüvenience of mapping to process identifiers and ports,
and the FOfiEIGN SOCKET field is similarly divided., but
includes a FOREIGN HOST field. Both the LOCAL SOCKET and
FOREIGN SOCKET fields are normally completed by NET,
except in the case of enable requests where NET
ccmpletec only the LOCAL SOCKET field and the NCP issues
en interrupt control message, when the enabled socket is
matched, with the FOREIGN SOCKET field completed. The
BIT COUNT field is used by NET when sending an
interprocess message to the NCP and by the NCP then
delivering an interprocess message to NFT.

The STATUS field is always completed by the NCP whenever
it issues a reply or interrupt control message. The
field is divided into U groups, each of 8 bits; the
first two groups describe the reply status of the
previous NET request, and the second two groups refer to
the connection status of the associated entry in the RV
tadle. Each bit, when set, indicates that a particular
event has occurred or a particular state exists and the
signilicance of each is given in Fig. 1U,

27

 rifflf^^^-'MiTMiiii i-ii r--riT- iffif iJITiT

TN73-50-I(l2)

NET COMMAND
CHABACTEP

CCDE

NCF CONTPOJ.
RESSA^E
CODE

EESCRIPTION

CON
IIS
SND
PCV
CLS
STÄ
TNT
NOP

ENC
ENL
DIS

0
1
2
3
a
c

6
7

8
(Enable connect) 9
(Enable listen) 10
(Disable) 11
(Purge) 12

(Connect)
(Listen)
(Send)
(Receive)
(Close)
(Status)
(Interrupt)
(No-operation)

request NCF to issue an STR.
Request NCP to issue an RTS.
Bequest NCP to transmit a buffer.
Accept a buffer fro» the NCP.
Pequest NCP to close a connection.
Request status from the NCP.
Request NCP to issue an INS or INP«
Request status froa NET. Reply code fron; NCF.
Interrupt code fro» NCP.
Bequest NCP to accept a foreign STP.
Request NCP to accept a foreign RTS.
Request NCP to disable an enabled socket.
Request NCP to purge an entry.

Fig« 12: NET Commands

TN73-5(M(13)

IKTEFPUPT MEANING i
COTES

C Network interrupt received. 1
1 Foreign RTS received completing connection.!

Receive Duffers now loaded, I
^ Foreign CIS received. 1
a Enable connect new matched, \
c Enable listen now matched, 1
t NCF has died. |
7 Foreign NVCP Peset (RST received) , |

Fig. 13: NCF to NET Interrupt Codes

28

i - ^ ^ ritnrniiia irittmtf ynrrnf. -iTTfiii --——'—■'nir "niWfmiii

Those bits marked with an asterisk (*) in the RV status
are reset by the NCP after it has replied to an NC?
status request.

The BITS LEFT and MESSAGES LEFT fields are completed by
the NCPr whenever it replies to a NET request associated
with a send connection, to notify NET of the current
foreign allocation for that connection. The CONNECTION
BYTE SIZE field is completed bj NET for all connection
requests, though only issued to the network, by the NCP,
for send connections, A zero valu^ on receive
connection requests implies acceptance by NET of any
connection byte size.

One advantage of this NCP mechanism is tha^: a virtual
machine, containing a process ir. communication with the
network, can be »logged off* without breaking network
connections. All incoming messages tor the process are
buffered by the NCP and all information relating to
interrupt control messages are recorded in the status
flags. On resuming activity, the process can determine
its current connections ty requesting status from the
NCF and can continue operations by taking the
appropriate action on its connections.

Figure 10 shows the format of the parameter list to be
used by a pro ess when issuing a primitive NET command
to the NET package, i^ET is accessed by a subroutine
call which is asüociated with a pointer to the parameter
list. The CHAFAC R CODE field of the parameter list
contains the mnemonic names of the ccmirand required and
this is interpreted by NET which issues the appropriate
control message to thp NCP, The mnemcric names of all
permitted commands are shown in Fig. 12 associated with
ine control message codes which are qenerateo hy NZT.
All commands cause the generation of a control message,
with the single exception of NOP which is used to obtain
the NET interrupt status. The LOCAL SOCKET, FOREIGN
SOCKET, BIT COUNT, STATUS, BITS LEFT, MESSAGES LFFT and
CONNECTION BYTE SIZE fields are all used for the same
purposes as, and mapped by the NET package to, the
fields of the same name in the control tressage. The FLAG
field is reserved for use by the high-level NET commands
and the BUFFEP ADDRESS field contains a pointer either
to a buffer holding the message for transmission ir a
SND command or to a buffer prepared for reception of a
message in a FCV command,

NET maintains in free store an interrupt stack on behalf
of its process. The ADDRESS OF INTEPPÜP? STACK field
holds a pointer to the head of this •.tack, each entry of
which is to be in the format shown in Fig, 11, If there
are no entries, the pointer has a value of zero. NET
will read interrupt control messages, from the NCP,
either on receipt of a NOF command from the user process
or when awaiting a reply control message from the NCP,
Irformaticn contained in each interrupt control message
is transferred to the appropriate fields of a separate

29

. MMäamuiamlmma —. -. - , . . .

«

OÜRIMP
ALLSTE
LNKTBL
POBIHF
FORLINK
'"AGMIS
HPCEKB
RFCRFC
♦

•
SOCKMIS
LINKMIS
TXr.EJ
CMDREJ
DRAINON
CLSCLS
BADFAF
NOTPFR

OOBCOS
HI SCON
EÜFFLi:
INTFBFT
OURCL5
HISCLS
CEASE
RFNB

ALLOCOK
ENABLED
ALLCCNOK
MSGFAIL
SNDNOK
BYHIS
UNUSED
INTFFLST

* <**) "
* (*♦♦)

* (♦♦♦♦)

GROÜP 1 NET STATUS TN73-50-I(14)

EQÜ
EQU
EQÜ
EQÜ
EQÜ
EQU
EQÜ
EQÜ

XMO «
X'OB«
X'OU»
X»02»
X^l •

OÜR I«F DEAD
ALL OUR FREE STORE IS IN OSE
OUR IBfS LINK TABLE IS FÜLL
FOREIGN IMP/HOST IS i>EÄD
ALL LINKS TO HIK ARE IN USE
TAG IS OF WRONG POLARITY FOR RFC
ATTEMPT TO ISSUE AN RFC ON ENABLED SOCKET
ATTEMPT TO REPEAT AN F?C

GROUP 2 - NET STATUS

EQU
EQÜ
EQU
EQU
EQU
EQU
EQU
EQU

X^SO •
X'^O «
X*20'
X • 10 •
x'ce«
you«
x'oa1

x^i«

SOCKET MISMATCH
LINK IS OF WRONG POLARITY
TRANSMISSION REJECTED - SF RV STATUS
COMMAND REJECTED - SEE RV STATUS
DRAIN SET ON
TTEMPT TO ISSUE CLOSE ON CLOSED SOCKET
BAD PARAMETERS
NOT PERMITTED - HOST NOT KNOWN ETC

GROUP 3 - NET AND ?V STATUS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'BO •
I« 40*
f2Q*
XMO •
X'OS •
x^u«
X'C^1

X'OI «

OUR CONNECT/LISTEN ISSUED
HIS CONNECT/LISTEN ISSUED
2UFFERS ARE LOADED
INTERRUPT RECEIVED
OUR CICSE ISSUED
HIS CLOSE ISSUED
CEASE ON LINK ISSUED
RFNM AWAITED

GROUP U - NET AND HV STATUS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'BO f

x'ao •
X^O»
XMO •
X'OS *
x'oa»
X,02l

X»01 •

ALLOCATE SENT OR RECEIVED
ENABLED FOR CONNECT OR LISTEN ONLY **
ALLOCATE TOO SMALL FOR CURRENT ORDLR *♦♦
LAST MESSAGE FAILED IN TRÄNSMISSION **♦*
SEND CFDEB HAS BIT COUNT >8000 ♦♦**
BYTE SIZE MISMATCH

NETIN INTERRUPT LOST

THE INIFRPI BIT IS CLEARED BY STATUS
THE ENAELID BIT IS CLEARED ON OUR LIS OR CON

- THE UI.OCNOK BIT IS CLEARED WHEN MORE ALLOCATION IS RECEIVED
- THE MSGPAIL AND SNDNOK BITS ARE CLEARED ON THE NEXT SND

Fig. 1a: Format of Status Bits

30

,, M^i^iniriir v^i in nil Bmr^^fe-^'-= --^■-*:- j"'-5^ --- ^" «^.^^

entry in the interrupt stack, the entries being chained
by means of the NEXT ENTRY IN INTEEBOPT STACK field.
The last entry contains a value of zero in this field.
It is the responsibility of the user process (or the
high-level NET couiaands) to take action on the stack
entries, to return to free storage the block associated
with each one and to maintain the pointer in the ADDRESS
OF INTERRUPT STACK field.

In addition to the full status reply in the STATOS field
of the parameter list, a return cr *e is placed in
general purpose register 15 in order to conform with the
standard CHS interface. This, together with the
standard calling procedure, allows the NET package to be
used by a process written in any of the languages
supported by the CMS system. Cee Appendix G.

It is expected that most processes would access NET
through the set of macros which effect the high-level
NET commands (see Appendix H)• For each connection
required, a NETSOCK or NETSOCKV macro is to be specified
which generates a buffer for the NET command parameter
list (Fig. 1C) and associates identifiers with certain
cf its fields. Before opening a connection a NETID
macro is to be issued, which initializes the FLAG field
of the paraneter list and obtains a value for the LOCAL
ID field of the LOCAL SOCKET. The CP ÜTÄBLE address for
the virtual machine is used for the ID field. A NETOPEN
raacrc can then be issued to establish the connection
whose polarity is determined by the value in the LOCAL
TAG field. This can be followed by NE1READ or NETWP.ITE
macros, as appropriate to the polarity, in order to
transfer interprocess messages. Flags (Fig. 15) are set
in the FLAG field of the appropriate parameter list,
associated with each connection, by a routine which
analyzes and collapses the Interrupt stack each tije a
high-level command is issued. A NETNOP macro is also
provided for this purpose. Network interrupts can be
issued by means of the NETINT macro, status obtained by
means of NETSTAT and the connection clcsed by means of
NEICLOSE.

Most macros expand into cod«? which calls subroutines of
the same name as the macro. Each subroutine is
associated with an appropriate parameter list and
generates one or mor* calls to the NET package.

The arrival of interrupt control messages, from the MCP,
is detected ny an interrupt from the VMCOM device on the
virtual machine, A process, therefore, which wishes to
suspend itself awaiting some network activity can issue
a CMS WAIT SVC on the VHCOH device until an interrupt
control message has arrived. A NETMAIT macro is provided
for this purpose, when the interrupt arrives and control
is returned from NETWAIT, the process can then issue a
NBTNOP macro and act en its flaqs accordingly. An
example of this procedure, together with the use of most
of the macros, is given in the TELNET process.

31

*
OPEN
SEND
NETIN
LISTEN
BUFFERS
CLOSED
ENABLE
DEAL

EQÜS FCB FLAGS IN NETPLIST
TN73-50-I(15)

EQU
EQU
EQÜ
EQU
EQU
SQÜ
EQU
EQU

X«80»
XMO »
X»2C«
XMO»
X»ö8»
x'oa •
X»02»
X'OV

OPEN/NOTOPEN
SEND/HECEIVE
NETWORK INTERRUPT
LISTEN ISSUED
BUFFERS LOADED
LINK CLOSED
ENABLE MATCHED
NCP DIED OR RESET ISSUED

OPEN

SEND

NETIN

LISTEN

BÖFFEFS

CLOSED

ENABLED

DEAL

Set when OPEN or OPENE macro successfully issued
Cleared on successful close.

Set when OPEN or OPENE macro issued on send socket
Set when enable on send socket issued
Cleaned on successful close.

Set on receipt on network interrupt
Cleared on a netstat before STA issued.

Set on receipt on a LISTEN interrupt
Cleared on a netstat before STA issued.

Set on receipt of a Buffers loaded/ready interrupt
Cleared on a netread before RCV issued
Cleared on a netwrite before SNC issued
Cleared on a netstat before STA issued.

Set on receipt of a socket closed interrupt
Cleared on successful net close.

Set on receipt on an enabled completeu interrupt
Cleared or- a netopen.

Set on receipt of an NCP dead interrupt
Not reset.

Fig. 15: NET Flag Bits

3 2

"' "' ' i " ir mM'tuSfmmiMMtr^^^^^^*1'^^^ ^gitngTf---^^^-^^ =- -^^^ = »^ ^TfiiPfiiiffWT tnftr-—'—^^^^

U,5 The Lcgger-Servcr

The NET system is designed to operate in the CWS
environiaent which supports a single user process only.
When more than one user process is required to be
concurrently active in a virtual machine, as in the case
of the loggcr-serverr a polling or scheduling routine is
needed and ehe high-levtl NET coamands cannot be used.
One reason for this is because the high-level coramands
deny access to the interrupt stack maintained by NET and
for multi-process working it is necessary for the
polling routine to associate NET interrupts with the
separate processes. Father than complicate th3
high-level command interface, it was decided to use the
primitive NET commands for the logger-server system.

The logger-server is designed to be interrupt driven by
a simple polling routine which activates a number of
processes in turn id suspends itself whenever all
outstanding interrupts have been serviced. iour devices
can raise interrupts on the logger-server virtual
machine and thus cause the polling sequence to be
resumed. These are the vnccn device, whose interrupt
signifies the receipt of an interruot control message
from the NCP, and thres CF virtual terminals whose
in errupts indicated the presence of messages for their
associated remote users. Associated with each process is
a table which contains sufficient details on the state
of the process to enable it to be restarted fro» its
current suspension point. The table includes copies of
the program status word <FSW)r all general purpose
registers, huffers. flags and pointers (see Fig. 1G).

The poller accesses two flags in each table; the WAIT
flag and the START flag. If the WAIT flag of a process
is set, that process will no* be re-activated durina the
current poll, but if it is clear, the poller will set it
and 2st the state of the START flag. If the START flag
is clear, the pcller will restore all registers from the
table and re-activate the process at the point defined
by its PSW, tut if it is set, the poller will clear it
and activate the process at a start address specified by
a start entry in the table.

Fonr processes are supported by the pcller; an enabling
process and three CP virtual terminal control processes.
The control processes are al! identical in function and
are trnpiemented by a single segment of re-entrant code.
An interrupt handler is itiplemented which recognizes all
interruFf^ on the virtual machine and associates each c£
the four devices with ? particular process. The WICOH
device is associated with the enabling routine and each
of the CP virtual terminals is associated with one of
the control processes. On receipt of an interrupt, the
interrupt handler examines the STAB! flag of the
associated process and if this is clea. it clears the
WUT flag. If, however, the START flag is set, it
ignores the interrupt. Since a device interrupt will

33

 ^ ——.

*
WT1
DU
UEi
ÜC1
AT1
UN1
ST1
INI
*
:ii2
«0 2
AW2
ADDCP
CH
PUFPÜKGE
HINT
SEPLCG

INTS
LISS
BUFS
CLSS
ENCS
ENLS
NC?S
CHKFW

INTF
LISF.
BÜFB
CLSP
ENCF
ENLF
NCPR
DOWN

EQ(;
EQÜ
EQU
EQü
EQÜ
EQÜ
EQÜ
EQÜ

EQU
EQU
EQÜ
EQÜ
EQU
EQÜ
EQJ
EQU

SQÜ
EQl
EQÜ
EQÜ
EQU
EQÜ
EQÜ
ECU

EQÜ
EQU
EQÜ
EQü
EQU
EQU
EQÜ
EQU

TN73-50-I(16)

X'SO«
X'UO •
X«20•

X«08»
X«04«
X«02»
X'OI •

X»80 •
X'UO «
X^O»
XMO«
x^e»
x'oa«
X»02»
X«01 •

X»80»
x'ao»
X«20«
X» 10 •

x^ou»
X«02»
X • 0 1 •

X'BG«
X • UC •
X»20»
X« 10»
x'oe«
x»cu«
X«02'
X'GI«

WAIT FLAG FOR POLLER
DEVICE END
UNIT EXCEPTION
UNIT CHECK
ATTENTION
UNEXPECTED INTERRUPTS
START BLAG - USED FOE ENABLING
INTERRUPT STACK FLAG

HIO OUTSTANDING
KORE TC COME FRO« NCF BÜFFERS
AWAITING DESPATCH TO CP
CA!Vrtii»GE RETURN TO BE ADDED
CARRIAGE RETURN DETECTED AS LAST IN 3UF
BUFFER PURGE IN PRCGFESS
HIO INTERRUPT AWAITED
REPEAT ...JIN FLAG

INTERRUPT ON SEND IIKK
LISTEN ON SEND LINK
BUFFKES LOADED ON SEND LINK
CLOSE CN SEND LINK
ENABLE CONNECT ON SEND LINK
ENABLE LISTEN ON SENt LINK
NCP DIED CN SEND LINK
CHECK PASSWORD FLAG

INTERRUPT ON RCV LINK
LISTEN ON RCV LINK
BUFFERS 1CADED ON RCV LINK
CLOSE ON RCV LINK
ENABLE CONNECT ON RCV LINK
ENABLE LISTEN CN FCV LINK
NCP DIED ON RCV LINK
LOGGER GOING DOWN

Fig. 16: LOGGER Routine Flags

34

also re-start the pollerr if it is suspended, the
process which services the device will eventually be
re-activated.

In the case of VMCO« interrupts, which signifies the
arrival of an interrupt control message from the NCP,
the enabling routine issues a NO? command to NET
followed by a subroutine call to an interrupt stack
handler. This handler analyzes the NET interrupt stack
and generates frosi it separate interrupt stacks for each
of the processes. When a new entry for a particular
process is received, the WAIT flaq for that process is
cleared and its INTERRUPT STACK flag set.

A process suspends itself, when awaiting network or
device activity^ by means of a special wait subroutine
(WBACK) which saves all process registers and the
current PSH in the appropriate table before returning
ccntrol to the polier.

On first becoming established, the logger-server calls
an initializing subroutine which attempts to clcse all
connections between itsell and the network, purge all
references to any of its sockets from the NCP, and log
out all CP virtual terminals. Follcwinq this, the
ptocess tables are initialized and the WAIT and START
flags set for each process except the enabling routine,
for which only the STAFT flag is set. Control is then
passed to the pcller.

The pcller can activate only the enabling routine at
this time, and this causes an enable connect (SNC)
command to be issued to NET for the initial connection
socket (ICS) of the logger-server. The routine then
suspends itself by means of the WEACK subroutine.

When a network
the logger-ser
interrupt cont
routine to be
above. On re
request for con
at least one C
issue the appr
the I^itia] C
Section 2.6, to
the sockets of
process and the
completion of t
the WAIT bit as
ftccess, issue
connection sock
the cycle of
unassigned, the
connection, and
fcllowed by the

user completes a connection to th
ver, the NCP sends an app
rol message. This causes the
re-activated by the mechanisms
-activation, this routine acce
nection xrom the network user if
P virtual terminal unassigned,
cpriate NET commands, in accorda
ennection Protocol (ICP) descr
establish duplex communications
the next unassigned CP virtual
network user process. On the su
his protocol, the enabling routin
sociated with the newly assigned
s an enable connect for th^
et, and suspends itself, ready t
events. If th^re is no control
enabling routine rpfuses the req

then issues the enable connect
WBACK subroutine call.

e ICS of
ropriate
enabling
outlined
pts the
there is
It will
nee with
ibed in
between

terminal
ccessful
e clears
control
initial

o repeat
process

uest for
command

35

Ihe newly assigned control process will, in its turn, be
activated by the poller at its start address and will
couirnence to transfer information between the network
user process and the CP virtual terminal interface, in
accordance with the TELNET protocol and the CP terminal
conventions. Initially, the control process is ccncerned
with the logging on sequence, the verification that the
required virtual machine is marked for network use, and
the mapping of a network password to the local ono.
Subsequent activity is concerned with the actual passage
cf messages tetween the network us^r process and its
local virtual raachine; the translation cf characters, as
required, tetween ASCII and EBCDIC; and the
interpretation of special control characters such as
•oreak1, »reverse break1 and 'synchronize'.

Whenever network or device responses are required, the
process suspends itself, using the «BACK subroutine,
until the response has been received. During this
period, one of the other processes can be re-activated
and thus the pcller is able to suppcrt the enabling
process and the three CF virtual terminal processes
concurrently, without any apparent loss in response.

The system is implemented in three program segments;
LOGMAIN, LOCDEV, and LOGST. LOGMAIN contains a small
initializing routine, the poller, the enabling routine,
the interrupt handler, the NET interrupt stack handler
and various subroutines for stack analysis and character
code conversion. LOGDEV is the re-entrant segment which
effects the three CP virtual terminal control processes
and LOGST is the main initializing routiine.

The logger-server can be closed down by issuing to its
virtual machine an 'external' interrupt. This causes
the WAIT flag tc be cleared for all processes in use and
the DOhN flag to be set. On re-activation, each CP
virtual terminal control process will issue a 'L0GGE3
CLOSING DOWN' message to its network user and then close
its network connections. When all processes have
terminated, the logger-server halts.

Error recovery is directed at maintaining a service to
the network as a whole, for as long as possible. Errors
detected in CP virtuil terminal contrcl processes are
either network cortmand rejections by the NCP, through
NET, or virtual terminal transmission rejections by CP.
In either case, the recovery of the failing process is
not attempted but the virtual machine associated witn it
is legged off, its network connections are closed, and
its process table re-initjalized. Tn this way, the
integrity of the other processes are maintained, the
network user is infermed of the failure by the closing
of his connections and the facilities of the tailing
process are recovered for re-use. Errors detected by
the enabling process are network command rejections
only. Certain rejections are recoverable as in the case
of an initial SND command failing because of an

36

insufficient allocation from the network user. In such
cases the cotrmand is repeated, at a reasonable
frequency, until it is either accepted or a repeat, count
has become exhausted. In the latter situation, the
connection is then closed. Other rejections are not
recoverable, as in the case of an enable connect comnand
failing. Under these circuastances, the logger-server is
shut down after a trace flag has been set, indicating
the source of the error, and a core dump output to the
line printer. This procedure is also followed if a
»prograffl1 interrupt condition, signifying a fault in the
prcgram code, is signalled by CP,

4,a The Network Control Program

As in the case cf the logger-server, the network control
program (NCP) is designed to be interrupt driven by a
simple polier ühich supports a number of concurrent
processes in the NCP virtual machine. An outline, in
block schematic form, of the inter-relationships between
these processes is shewn in Fig. 17,

Each process is implemented by a separate segment of
code and is identified en the diagram by its segment
name.

Coeraunication aith user processes, in other virtual
machines, is through the VHCOH interface which is
described in Section U,2, Communication with the IMP is
through the IMJ hardware interface, which was designed
by BEYAN (Ref. 3) and is described in Appendix 12,

NCPINIT performs initialization and error recovery tasks
and NCFMAIN contains tne poller, the interrupt handler
and vcrious subroutine- associated with accounting and
recording activities. Processes are re-activated
accotdmg to the state of flags in the PORT TAPLE wnich
are updated by other processes and fw interrupt
handler.

NCFXFEE accepts control messages from the VMCO«
interface and interprets them in accordance with the NET
to NCP control message protocol (Fig. 9) , Depending
upon the type of request and the current state of the RV
TAELF, NCPXFEH adds items to the LIP1 S QUEUE for
transmission over the network,, adjusts entries in the RV
TABLE and issues a reply to the user process via the
VffCCM interface.

NCFIHPO is concerned solely with the output of the I?* 5
QUEUE to the network and the associated control of «Jie
IHF hardware interface, A facility is included whereby
this output can be channeled directly into the input
buffers of NCFIMPI, for test purposes or for local use
when the IMP is not available,

NCPIMPI processes all input from the IMP and implements
the HCST-to-IKP protocol. The HCST-to-HOST protocol is

37

NCP
VIRTUAL
MACHINE

NCPINIT

NCPVAIN

Li

PORT
TABLE

NCPIMPO NCPIMPI

IMP'S

QUEUE i RV TABLE

I

1

NCPXFER

 I

NCPMON'T

! TERMINAL

TRANSFER INTERFACE

(i

TO USER PROCESSES

Fig. 17: The Network Control Prograi

38

- ■ i—-T-n.rirMTrwTia.ii.rfl.Mr ,. i.r ^—^^^imVfitr-mt i^mmui \mm

inplemented partly by NCPIJ1FI and partly by NCPXFER.
Depending upon the type of message frei the network and
the current state of the FV TABLE, NCPIMPT loads buffers
for collection by local user processes, sends interrupt
ccrtrcl messages over the VMCOM interface, adjusts
entries in the PV TABLE and add items to ^he I^P'S QUEUE
in reply to network messaces.

NCPMONIT provides facilities whereby entries in the PV
TABLE can be inspected, certain network commands
generated, NCF status monitored and the system cleanly
closed down.

U.U.I NCFMAIN

The polling mec
the Icqger-ser
devices are fl
determine the
device is assoc
this table. Ent
IS* with NCFIM
NCFIMPO; the
console tprmira
for the output

nanism
ver.
agged
next
iated
ties a
El; th
VHCCfi
1 w it
portio

of N
Interr
in a
proces
wi t h a
ssocia
e out.
inter

h NCPH
n of t

CPMAIN is si
upts receiv
PO^T TABLE
s for re-a

process th
t€ the input
put channel
face with N
ONTT. No e
he VnCOn int

milar to that of
ed from external
which is used to
ctivation. Each
rough an entry in
channel from the
to the IMP with
CPXF^P; and the
ntry is required
pr f ac?.

Each entry in the FCPT TAPLE has the format shown in
Fig. 18 which was originally designed for duplex
devices.

It was sub
simplex ent
The format
followed by
sets of fla
bv the poll
reactivated
FLAGS w hich
device. The
in Fig. 1°.

sequently found more convenient to implement
ri^s but the earlier structure was retained.
is described as a set of field names, each
its field byte size in parentheses. Two

qs are defined; POLLING FLAGS which are used
er tc determine whether the process should be
, and if so, at which address; and DEVICE
indicate the current state of the associated
significance of both sets of flags is given

Other fields contain the start address of the process,
save areas for its PSW and registers, and a buffer
address. These fields are duplicated, in each entry, to
provide facilities for both input and output channels.
The CMS DEVICE ADDRESS and DEVICE ID are also specified
in the POPT TAB1E pntry.

The format of the buffers is given in Fig. 20, and
provides fields for a variable length ^ATN PUFFED, the
current CHANNEL STATUS WORD (CSW) of the device, and
wcrkspace for the process.

On receipt of an interrupt from a device, th^ interrupt
handler sets the associated DEVICE FLA^S, copies the CSy
to the appropriate field ir. the buffer, and clears the
HAIT5ET bit in the PCLLIKG FLAGS. The HAIS EQfFER is
used by the device for any input or output transfers.

39

 . .

|TN73-50-I(I8) I
POLLING FLAGS (1)
DEVIC£ INPIH ROÜ7INI ADDRESS (3)
DEVICE INPUT ROUTINE PSW (8)
DEVICE INPUT ROUTINE PEGISTEPS (64)
INPUT EUFFEE ADDRESS (4)
DEVICE FLAGS (1)
DEVICE OUTPUT ROUTINE ADDRESS (3)
DEVICE OUTPUT ROUTINE PSW (8)
DEVICE OUTPUT ROUTINE REGISTERS (64)
OUTPUT BUFFER ADD?ESS (U)
SFAFE (2)
DEVICE ACCEESS (2)
DEVICE ID (U)

Pig. 18: PORT TABLE FORMAT

FCLLING FLAGS

BUFIN EQU X^O«
BUFCUT ECU x'ao»
STATIN EQU X^O«
STÄTOÜT EQU X* IC»
HAITSET EQU x'oe»
SNDSET EQU x'Oa«

DEVICE FLAGS

INPFOG EQU X'SO»
DEVENL EQU x'ao»
UEX EQU X^O»
UCKK EQU XMO«
ATTN ECU X'OB*

TN73-50-I(19)

INPUT BUFFER LOADED
OUTPUT PUFFER LOADED
INPUT STATE CÜSY
OUTPUT STATE BUSY
WAIT STATE SET
SEND STATE NOT RECEIVf

IN FPOGF.E:;S STATE
DEVICE END
UNIT EXCEPTION
UNIT CHECK
ATTENTION

UNEXB1I EQU X'OU» UNEXPECTED PITS

Fig. 19: r-olling and Device Flags

POINTER TO MAIN BOPFEP (**)
SIZE OF MAIN EUFFEP (4)
CHANNEL STATUS WORD (U)
WORKSPACE (variable)
MAIN BUFFER (variable)

TN73-50 ■J^IL

Fig. 2ö: Input and Output Buffer Formats

40

^v ^ , y . r.^-^w^-.A».

The poller, if suspended on a CMS WAITr is restarted on
the receipt of an interrupt and re-activates the first
process whose HAITSET bit is clear. The re-activation
is either at the start address of the process or at its
current PSH depending upon the state of its STATIN or
STATOUT flags. Additionally, an output process requires
its BUFOÜT flag to be set before the poller re-activates
it.

After servicing the data buffer and any current
interrupts associated with a device, the process saves
its registers and PSW in the appropriate fields and
returns control to the polier, awaiting further
interrupts. Process activity typically includes the
initiation of further transfers over the device channel
and the setting of certain POLLING FLAGS in the PORT
TABLE entries of other processes.

NCEMAIN contains a subroutine for writing accounting
records to disk, in the format shown in Fig. 21.

The sub
a reco
establi
frcm th
the tin
is made
esta bli
receive
fully c
total
connect
sockets
charges
conside
recorde
their u

routine
rd eac
shed or
e approp
e at whi
; the
shed;
d; and
losed,
number
ion: t h
; the fo
are not

red des
d to al
tilizati

is c
h t
ful
riat
ch t
ine
he
the
Othe
of
e lo
re ig
bei
irab
low
on o

ailed
imp a
ly clo
e ent
hp fir
at whi
time
time a
r fiel
messag
cal Ö
n HOST
ng rai
le th
the id
f syst

by NCPXF5P
ny connect
sed. The re
ry in the P
st Request
ch the con
at which t
t which th
ds in the
es and bit
SEFID; the
and the li

sed against
at suffici
entificatic
em resource

and NCP
ion b
cords
V T A aL
for Con
aection
he fir
e conn
record

s issu
identi

nk numb
networ

ent in
n o f a

IMPI t
ecomes
are co
I and
neetic
bee am

st cl
ection
cent a

ed ov
ties o
er. A
k user
format
II us

o write
fully

mpieted
include
n (RFC)
e fully
ose is
became

in the
er the

both
Ithougn
s it is
ion be
ers and

Other elements contained in N'CFflAIN includes a
subroutine for writing legging records to disk and a
HOSTS WE KNOW table. The subroutine is used for
recording any unusual events or error conditions
detected by thp NCP. Th^- HOSTS WE KNOW taole is used to
maintain an entry for the current status and link
utilization of every POST on the network.

U.a.2 NCFXFEP

NCFXFER consists of a routine to read iressaqes from the
VMCOrt interface and a set of command routines. Each
message is analyzed and interpreted as a command from
NET and the appropriate command routine Is then entered.
These routines typically generate, refer to, and modify
entries in the FV TABIE; add network messages to the
TMP's QUEUE, and send reply messaqes back to the
requesting local process.

'.]

ÜSEFID <8)
DATE WRITTEN (8)
FIRST RFC TIME (8)
CCMFLETED CONNECTION TIME
FIRST CLOSE TIME (8)
COBPLETED CLOSE TIHE (8)
ICCAL SOCKET (U)
FOREIGN SOCKET (4)
FOREIGN HOST (1)
FOREIGN LINK (1)
FV TABLE STATUS (2)
NUflPER OF MESSAGES (")
NUHEEF CF EITS (4)

(8)

L TN73-50 -1(21) |

Fig, 2 1: Accounting Record Foiroat

USER
LOCA
rCCA
FORE
FORE
FCRE
LINK
STAT
CONK
HEAD
TEST
TAIL
ADDR
MESS
MESS
M25S
DATE
TIME
TIME
NOSE
NUMB
BITS

ID (8)
L ID (3)
L TAG (1)
IGN HOST (1)
IGN ID (3)
IGN TAG (1) __
(1)

US (2)
ECTION EYTE SIZE
OP BUFFER CHAIN
BYT? (1)
Cf 5ÜFFER CHAIN (3)

(1)
(3)

ESS
AGE
AGE
AGE
(8)

1 (8^
2 (8)
EF OF
£F OF

OF NEXT RV
AILOCATICN
ALLOCATION
FOP RETURN

ENTRY
(2)
(2)
(2)

_TN73-5Ö-I(22)]

ICCAL SOCKET (4)

FOREIGN SOCKET (5)

(4)

MESSAGES TRANSMITTED OVER CONNECTION (U)
BITS TRANSMITTED OVER CONNECTION (U)

FOR RETURN (U)

Fig. 22: PV Table Forroat

42

I ■ ■ : . ^^ . ■ iMif iTiffr^"" i TnnitMl run ■

The RV TABLE contains an entry for every connection
supported by the NCP and the format for each entry is
shown in Fig. 22.

Fields are
the local a
to the con
current mes
contain det
tiiue of cl
and bits t
field holds
current sta
to the head
it and the
KETilRN and
when a ne
foreign NCP

provided for the USERID of the local process;
nd foreign sockets; the link umber assigned
nection; the connection byte size and the
sage and bit allocations. Accounting fields
ails of the date; the time of connecting; the
osing and the cumulative number of messages
ransmitted over the connection. The STATUS

a set of flags (Fig. 1U), describing the
te of the connection and address fields point

and tail of a buffer chain associated with
next entry in the table. Thp «ESSAGES FOR
BITS FOR HETUPN rields are used to determine
w allocate command should be issued to a

RV TABLE entries are established for control
connections, on links zero, to all HOSTs in the HOSTS W£
KNOW table, during the initialization phase. This
enables a common, internal procedure to be adopted for
all network transmissions. Any message for cutput to
the network, including KCST-to-HOST control messages, is
formatted by the originating routine and added to the
chain of buffers supported by the appropriate stnd
connection entry in the RV TABLE. A pointer to this RV
TABLE entry is then added to the IMF'S QUEUE, unless one
already exists. HOST-to-IKP messages are; treated as a
special case and are only issued 'luring initialization
and shutdown by NCPINIT. NCPIJ1P0 uses the pointers in
the IMP'S QUEUE to access the RV TABLE entry and the
associated buflers for transmission, controlling flow
over the connection by means of the RFNfl AWAITED flag.

Messages received from the network are analyzed by
NCPIMPI, and all IME-to-HCST and KOST-to-HOST messages
are trapped ana acted upon directly tv this routine.
Process-to-process messarer are stripped of their
message headers and added to the buffer chain of the
appropriate receive connection entry ir the RV TAFLE.

The CONNtCT an
after validatin
cc uplementa ry
and, if none ex
ccrtrol message
buffer chain o
for transmissi
request matche
cortrol message
The SEND cemman
appropriate sen
that there
interprocess roe
the allocation
routine, after

c LISTEN command routines
g the request, examine the H
tntry 5;et by NCPIMPI fro:n
ists, generate a new one.

will, in either case, be
f the appropriate link zero
en to the foreign NCP. Wh
£ a foreign STF entry, an
is also addtd to the same

d routine examines the HV
d connection entry and, af
is sufficient allocation,
ssage to its buffer chain,
fields accordingly. Th«3 PE
having found the appropr

43

of NCPXFEF,
V TABLE for a
the netWv^K,
An STR or RTS
added to the

send entry.
en a LISTEN
initial ALL
buffer chain.
TABLE for the
ter ensuring

adds the
decrementing
CEIV£ command
iate receive

connection entry, collects the next buffer froiu the
buffer chain and passes it to the requesting local
process. It increments the MESSAGES FOP PE10RN and BITS
FOR BETUPN fields by the size of the message and if
either value exceeds a given thresholds limit, it chains
an ALL control message to the associated link zero send
entry buffer chain and resets the return fields.

The other comma
CLOSE routine i
the PV TABLE e
received; the E
generate new R
messages; the D
without network
an INS or INP
clears certain
its value, toge
control message

nd routine
issues a C
ntry if th
NABLE CONN
V TABLE e
ISABLE and
messages

control ■
bits in t

ther with
buffer.

s follow simil
IS control nes
€ foreign CLS
ECT and ENABL
ntries without

PURGE routin
; the INTEPRUP
essage; and th
he STATUS fie
the system s*a

ar sequenc
sage and
has alrea

E LISTEN r
issuing

es remove
1 routine
e STATOS
Id after
tus, in th

es; the
removes
<3y been
outines
network
entries
issues

routine
placing
e reply

In all cases the command routine issues a reply control
message to the requesting local process and returns
ccntrol to the calling routine. This routine returns
control to the poller, with its WAITSET flag clear if
there are further messages to be read, or with it set if
the last message has been analyzed.

u.a.3 NCFIKPI

Thi'} process ac
eituer the re
artificial soft
initialization
routines in
corresponding
with a load ti
routine passes
analysis routin
mcde of operat
without disturb

cepts and
al IHP ha
ware •IMP«
phase, eit
both NCP
artificial
me parapet
the outpu
e of NCPIM
ion is to
ing the re

anlyzes input
rdware interf
. NCPINIT acti
her the hardwa
IMPO and N

IMF routines
er. The NCPIM
t from the NCP
PI via an inte
test new sec

st of the netw

information from
ace or from an
vates, during the
re device control
CPIMPI, or the
, in accordance
P artificial IMP
directly to the

r na 1 buffer- J 'his
tions of the NCP
ork.

The same analysis routine is used in either case, and
separates input into three classes of messages;
irregular messages of the IHP-to-HOST PROTOCOL; reaular
messages on link zero of the HCST-to-HCST protocol; and
regular messages on non-zero links which are part of
interorocess transmissions.

means of a
flags are

KNOW status
5 irregular
flaq to be

Most irregular messages are logged, by
subroutine in NCPMAIN, and appropriate
adjusted in PV TABLE ENTRIES, HOSTS WE
fields, and system status words. A type
message (RFNM) causes the RPN« AWAITED
cleared in the associated PV TABLE entry and the NCPIMPO
routine to be flagged for re-activation. A type 7
(destination IMF or HOST dead) causes a flaq to be set
in a particular entry of the HOSTS WE KNOW table, the

44

RFN« AWAITED flag to be cleared in an BV TABLE entry,
and a logging record to be written to disk. Other
irregular messages cause similar sequences to be
followed.

Host-to-Host control messages, on links zero, are
interpreted as one or more control commands and cause
the appropriate control command routine to be entered.
These routines perform similar tasks and are
cofplementary to the coromanJ routines of N'CPXFEE, The
STB and RTS control command routines, after validating
the format of the command, examine the RV TABLE for a
matching entry set by NCPXFER on behalf of a local
process, and, ii none exists, generate a new one. When
an SIR matches a local LISTEN REQUEST, an initial ALL
control message is added to the buffer chain of the
appropriate link zero send entry in the RV TAELE. When
an SIR matches an ENABLE LISTEN or an RTS matches an
ENABLE CONNECT, an interrupt control message is sent,
over the ViiCCM interface, to the associated process. The
CLS routine clears the RV TADLE entry if a CLOSE command
has already teen issued by the local process, otherwxse,
it chains a CLS control command to the appropriate link
zero entry in the EV TAELE and issues an interrupt
control messages to the local process. INS and INK
ccmmand routines issue interrupt control messages to th-
local process; the GVF routine returns the required
fraction of the allocation by chaining a RET control
command to a link zero entry in the RV TABLE; and PST
removes all RV TABLE entries associated with the issuing
NCF and warns all local processes involved via an
interrupt control message. Similar sequences are
followed by the other command routines.

If errors are detected in a message from a foreign host,
an ERR control message is returned to that host. Errors
that may cccur are:

a. Illegal OP Code encountered in operations
deblocking.

Short parameter space. End of iessage
encountered before all expected parameters.

Bad pa rameter (s) , e.g., two receive (send)
sockets in a HTS (STR) , link nuirber not 1<L<32,
bad socket polarity within command,

d. Request on a closed (null) socket. A request
(other than RTS/STF) was made for a non-existent
socket.

b.

c.

Socket (link) not connected. A request which
requires a connected socket (link), (i.e.r ALL,
INR, transmit) was made for an existing but not
connected socket (link).

Pyte size not consistent.

45

g, RFC for your socket already issued by me (timing
error) •

h, RFC on an existing socket pair.

i. RFC on a closed socket pair.

j. Allocation too small for this transmission.

Only the first five errors have been given a network
defined error code. Refer to Appendix D for a
description cf the ERR control message.

Regular messages on non-zero links are stripped of their
message headers and added to the buffer chain of the
associated receive entry in the RV TABLE. If the BUFFLD
f]^g (Fig. 1U) is clear, it is set and an interrupt
jcrtrol message sent to the local user process.

After completing all activity associated with the
current input buffer, NCFIHPI issues a new input
transfer order to the IMP interface and suspends itself,
to await further interrupts, by returning control to the
pcller.

H.U.ü NCPIMPO

NCPIMPO accesses buffers indirectly pointed to by
entries in the Ifip^s QUEUE and outputs their contents to
either the real IMP hardware interface or the artificial
I1!? internal buffer. Only messages addressed to (and
originated by) the local NCF are passei by the
artificial IMF, since wh€n operation is in this mode,
all foreign HOSTs are flagged as being dead in the HOSTS
WE KNOW table«

For each entry in the IMP'S QÖEOE, the PV TABLE entry is
accessed ind if the connection has not been closed and
the RFNM AWAITEt flag is not set, the nex4 buffer in the
buffer chain is output to the IMP, and th^ RFNM AWAITED
fl^T set. As buffers are output, the routine frees the
associated stör ige and when all buffers in a chain have
been output the corresponding pointer in the IMP^ QUEUE
is removed.

When a connection is fully closed, the closing routine
(NCPXFER or NCFIMPI) frees any storage associated witii
the buffers ir, the buffer chain, removes the entry from
the RV TABLE and flags the pointer in the IMP'S QUEUE as
•closed1. NCPIMFO, on detecting such t pointer, removes
it from the IMP »S QUEUE.

After initiating a transfer, NCPIMPO suspends itself by
returning control to the poller with its «AITSET and
BUFOUT flags set, awaiting reply interrupts from the
IMP. On re-activation, after completion of the transfer,
NCPIMPO attempts to output further buffers, until either
all have been tranferred or only buffers associated with

46

„
i^wf—

RFN« AWAITED flags ace left. Under these circumstances,
it suspends itself, by returning control to the polier
with its HAIT^T and BUFOÜT flags clear. It can then
cnly b€ rt-acU-.at.Gd hy NCPIttPI or NCPXFER setting its
BÜFOÜT flag. Thio occurs when NCPIMPI clears a RFN«
AWAITED flag in the RV TABLE as a result of a network
message, or when KCFIHPI or NCPXFER adds a new entry to
the I^S Qü£UF

4.4,5 NCFHONIT

The NCP virtual machine can be run disconnected from its
control cop-jle which is the nocnal mode of operation
employed. ror monitor purposes, however, the virtual
machine is re-connected, usually to a visual display
unit^ and the NCPrtONIT process activated by means of an
•externaj i^cerrupt. This interrupt is detected by a
routine in NCPINIT which cause the typing of a monitor
message and the clearing of the WAITSET flag in the
NCPrtCNIT entry of the POBT TABLE.

Once activated, NCFMONIT attempts to read and obey
ronitrrc commands typed on the console keyboard until a
Pt3I^ command is entered. This command de-activates the
NCPftGNIT process until the next »external* interrupt is
received.

I!» addition to BEGIN, commands are available tc perform
tue following functions:

a. Disconnect the console from the NCP virtual
machine and obey a BEGIN command (DISC).

b. Set the CHAIN flag in the system status word to
deny any further requests for connection (CRAIN).
This is normally issued shortly before shutdown.

c. Issue an echo network control command to a named
foreign HOST, aw^it the echo reply, ehe v its
validity and type an appropriate message on the
console (ECHO), "his is useful for determining
whether the NCP or a rem:te HOST is active or rot.

d. Output to the console, the current status of all
HOSTS in the HOSTS WE KNOW table (FHOST).

f. Issue a NOP network contLol command to all HOSTs
in the HOSTS WE KNOW tafcle and obey a DISC MONITOR
CCflMANE (NOP). This is useful in that it obtains,
fiom the network replies, the current status of
all HOSTs.

g. Issue an FST network control comna;a to all HOSTs
in the HOSTS WE NOW TABLE AND 0B5i A DISC monitor
command (BESET) This i-o issued whenever the NCP
is re-established ^'ter a shutdown.

b. List, either on the console or to a named disk

47

"iflTi ■■i'fBiifi' r iBir^i ---r --^

fiie# aix the entries in the PV TABLE (PV) •

i. List, on th-^ cunsole, all the entries in the RV
T^BLE associated with a named socket (SOCKET).

i. Output to, either the console cr a named disk
tAle, a record of the current utilization of the
NCP (STATCS).

k. Shut the N'CP down cleanly by closing all current
connections, notifying all local users and warning
the IM? (SHUTDOWN). The final part of this process
is perforired ty NCFINIT.

1. List, on the console, all the entries in th« RV
TABLE associated with a named local firtot»!
machine (USER) .

U.U.6 NCPINII and Error Recovery

NCPINIT consisted of a set of routines which are called
by NCPMAIN for initialization, by NCPMONIT for shutdown,
and by all processes for error recovery.

The initialization routine reads and analyzes lead time
parameters which determine whether the real or
artificial ISP routines are o be established in NCPIKPI
and NCPIHPO, and whether or not NCPnONIT is to be
activated at lead tine. Additional parameters can be
•stacked* in the console input buffer by this routine,
for later interpretation, by NCPHONIT. This mechanism
is normally used to issue a RESET monitor command when
the system f-^st becomes active.

After analysis of the load time parameters, the
interrupt handler in NCPHAIN is established and all
ccntrol link entries are set in the PV TÄEI5, Selection
of the appropriate device control routines in NCPIMPI
and NCPIUPO is then made and if the artificial IMP has
been specified, all foreiqn HOSTs are flagged as dead in
the HOSTS WE KNOW TABLE. If the real ISP is specified,
the hardware interface is activated and HOST~to-Tf!P
protocol NOP messages are sent to the IMP until a
satisfactory reply has been received. A HOST-to-HOST
PPCTOCOL ECO control command is then sent, by NCPINIT,
to itself, and when this is received correctly the If!P
interface is considered to te established.

Eefore returning control to NCPMAIN, the program
interrupt PSW is set to the address of the error
recovery routine in NCPINIT and the external interrupt
trap to the address of the external interrupt handler.

When an external interrupt is received, the routine in
NCPINIT determines whether or not a console is connected
te the NCP virtual machte and, if one is connected,
activates HCFMCNIT. If no console is connected, a
SHUTDOWN monitor message is stacked in tho console input

48

, : mi-ffini. ■!■ Ji iramt-r i -fwT— JÜMÜMt —^^*'r^-^n
u \i\awmMihiivr-

buffer before the activation of NCPWONIT. The systenj
can, therefore, be closed down sifflply by sending an
external interrupt .to the disconnected NCP virtual
machine.

The shutdown routine in NCPINIT issues an interrupt
ccutrol aessage to all local users, a HOST-to-IHP
protocol »HOST going down1 message to the IMP, and
closes the hardware interface. It (.hen clears the
interrupt handler and returns control to CMS with a
return code set. When the shutdown is a direct result of
a SHUTDOWN monitor command, al? network connections are
closed by NCPROINT in the normal way, and control
returned to CHS with a return code of zero.

In the case of an involuntary crash, caused by a program
interrupt from CP, the program interrupt PSW is set to
the address of a final error recovery routine; a copy of
all registers and core storage is dumped to the line
printer; the «vent logged; and a clean close down
attempted by transferring control to the shutdown
routine with an identifying return code set. If a second
program interrupt occurs, control is returned directly
to CHS with a different return code set. The other
processes call NCPINIT whenever they detect an
irrecoverable error condition by deliberately causing a
program interrupt, ürter logging the event.

The NCP virtual machine, after having been automatically
established by CP, executes a »profile1 of CH? commands
by means of the EXEC facility (Section 3), These
commands cause the Network Control Program to he loaded
from disk and to be entered at its start address. On
control being returned to CHS, furtner commands in the
profile cause a warning message to be sent to the CP
console operator and either the re-loading of the NCP or
the elogging off» of its virtual machine according to
the value of the return code and the number of times
re-loading has been attempted,

^,5 The Treatment ot Errors

It is considered that the major requirpment of error
recovery for the network system is to maintain effective
connections, on behalf of users, for as long as possible
and to notify them whenever a crash is imminent, A
secondary requirement is to record those events which
lead up to a crash, in order that remedial action can be
taken in future versions of the system.

Three classes of error are detected; device errors
associated with the Ifl? and VMCOH interfaces; system
errors caused by faults ir. the program logic or the
exhaustion of facilities; ana protocol errors in the use
of any of the software interfaces. A fourth class of
error, outside the control of the virtual machine, is
ccccerned with real machine failures. Detection and
recovery procedures for this class are the

49

responsibility of CP.

IMP hardware errors, occurring during the initialization
phase, result in an identifying message beina typed on
the NCF virtual machine console, a particular return
cede set and control returned to CJ1S. The profile,
controlling th€ NCP virtual machine, attempts to
re-initialize fYe syster a number of times and if the
failure persists notifies the CP operator so that the
I«P can be investigated.

device errors occurring after the initialization phase
has been completed invariaLIy cause a system crash. The
type of error is then recorded in the NCP disk log and
the crash routine in NCPINIT is entered. The crash
routine attempts to issue an interrupt control message
to all local users and a 'closing down' message to the
IK? after sending a complete core dump to the (virtual)
line printer. Any device errors detected by the routine
are ignored.

System errors (Fig. 23) in any part cf the Network
Control Program also results in the event being logged
and the crash routine in NCPINIT entered.

System errors are caused by such events as the failure
to obtain a block of free store for new table or queue
entries; the detectior. of ar inconsistent entry or
structure in one of the tables; the receipt of an
interrupt from a device not in the POFT TABLE and the
detection by CF of an attempt to perform an illegal
operation.

Protocol errors in the use of the software interfaces
(Fig. 24) never result directly in a system crash.

Most IMP-to-HOSfT messages are logged and any format
errors from the TM? are ignored. Checks are carried Out
en the validity of all requests from foreign NCPs and
ar.y inconsistencies or errors in format are loag^d ana
an appropriate error messane despatched to the
originator. The validity of all requests by NFT is
checked and the status field in the reply control
message set accordingly (Fig. 1 ü) . ihe NFT routines
tests the validity of requests from a process and
replies with error codes as previously listed.

U.6 cere lud ing Fe marks

This report has described the approach adopted by one
site in implementing its network software. Other sites
have adopted different approaches consistent with tneir
own local requirements. The NCP dpveloped by WHITE
(Pef. 2^) for the Ihn ?6G/75 is accessed from a
batch-mode job under the MVT operating system. Some
sites directly modified their operatinq systems in order
to incorporate the network facilities.

so

^■.,»f- --f j-iif ■ 1 Trr-T -i - - '

TN73-5(M(23)
* 1

CODE ADD INFO PEASON CRASH

0 Header and Code 11 (ERR) message detected
12 bytes from forNCP (NCPIMFI) No

1 Header Code 1 message detected from IMP
(NCPIflPI) No

2 Header Code 3 message detected from IMF
(NCPIMPI) No

3 Header Code 8 message detected from IMF
(NCPIMFI) No

a Header Code 9 message detected from IMP
(NCirlHPI) No
We get a reset reply No
SIO IMP IN IMOPERADL^ (NCPIflPI) Yes
SIO IMP IN BUSY (NCPIMPI) Yes
UE ON CC=1 IMP IN (NCPIMPI) Yes
Other error CC=1 IMP IN (NCPIMPI) Yes
Unexpected Bits IMP IN (NCPIMPI) Yes
UE IMF IN (NCPIMPI) Yes
Not DE on IMP IN (NCPIMFI) Yes
Insufficient free store (NCPIMPI) Yes
Our IMP dead (NCPIMPI) soon
IMPS link table full (NCPIMPI) No
NOP From NCP No

We sent error message to NCP
(NCPIMFI) No
We get a re. -t (NCFIMEI) No
System error in CIS (NCPIMPI) Yes
New host sent to us No
FOR IHF/HCSI DEAD (NCFIMPI) No
NCP frcm IMP No
sio IMP OUT Inoperable (NCPIMPO) Yes
SIC IMF CUT Eusy (NCFIMPO) Yes
ü£ ON CC=1 IMPOUT (NCPIMPO) Yes
Other error CC=1 IMPOUT (NCPIMPO) Yes
unexpected bits IMFOUT (NCPIMPO) Yes
UE IMP OUT IMPOUT (NCFIMPO) Yes
Interrupt Handler error NCPMAIN Yes
Date/time up No
Card reader error (NCPXFER) Yes
Insufficient free store (NCPXFER) Yes
Software Table error (NCPXFER) Yes

Fig. 23: NCP Error Codes

5 Header
6
7
8
9

10
11
12
13
14
IS
16
17
16
19 Header and

16 bytes
20 Header
21
22 Header
23 Header
2M Header
25
26
27
28
29
30
31
32 XX/XX/XX
3 3
^4
35

51

18-M1305

IMP INTERFACE

HOST/HOST

■'T
HARDWARE

i

IMP/HOST

NCP/TRANSFER

TRANSFER INTERFACE

f

/TRA.^

..i

NET/NCP

NET/TRANSFER

PROCESS/NET

PROCESS J

Fig. 24: Major Interfaces in the System

S2

Subsequent to the original development of the network
software, a nuaifcer of changes have been made to the
network. New HOSTs have been connected, bringing the
total now to thirty-six, and a terminal IMP (TIP) has
been introduced (OHNSTEIN, Ref, 13) to allow terminal
users without a HOST to access the network. Some changes
have been implemented in the HOST-to-IMP protocol
(MCKENZIE, Fef, 11) and proposals made for a different
HOST-to-HOST protocol (WALDEN, Ref. 19), Further work
has been carried out on the process-to-process protocols
(CFOCKEE, Ref. 7), on the design of the network
(MCQUILLAN, Fef, 12), and on its performance measurement
(COLE. Ref. 5). Future development and utilization has
been discussed ty ROBERTS (Ref. 16)•

Seme of these changes necessitated modifications to the
NJf, In the case of new HOSTs, this simply requires the
<dditici of new entries to the HOSTS WE KNO« table, but
^rctoco.1 changes require some modifications to the
routines themselves. It is believed that the
develop nent of the NCP in a virtual machine and its
modular structure has assisted the modification process.

5"

Appendix k

IMP Interface

The IHP is connected to the 36C multiplexer channel via
a duplex interface unit. The 360 BEAr coramand may be
issued only to the input seqment of the controller
(address 60j and the 360 WRITE comisard may be issued
only to the output segrent of the controller (address
61).

The controller will not allow its Hcst Masher Peady
relay to close unless the CONTPOL~ON command has bepn
issued. This relay closure is tested by the IMP at all
times. The 360 proqram must issue a CONTROL-ON to
initiate IMF operation and must maintain such a command
at all times. When terminating IMF operation the
CTNTFOL-OFF command should be issued. This command
renders the controller inert to all IMP service requests
and no "Attenticn" interrupts will be sent to the 360.

The CONTROI.-CN command the CCNTFOI-OFF command may he
issued only to the read address. The NO-Or TEST I/O,
and HALT I/O ccmmands may be issued to eit address.
All other commands^ or an improper combination, will
then result in the command being rejected during initial
selection. Unit Check (Bit 6) will appear in the
initial status.

After the 36C program has issued a CCNTROL-ON command
the controller goes into a ready state. This condition
win allow the input seament to receive data from the
IMP. Should the IffF send a message to the input
segment, the first 16 bits are shifted ir. If no READ
command had teen issued by the 360 proqram an
"Attention" interrupt is sent to the 3^0, The 360
program is expected to respond by issuing a HEAD
comm and,

The status response in the CSW during initial selection
may take the following format:

a. All zero for ^EAD, WPITF, or TIG, indicating that
the command was successfully initiated,

b. Unit Check, indicating an improper command. The
conmand will have been rejected,

c. unit Exception, indicating that the IMP Master
Peady relay is not closed,

d. Device End/Channel End will be given in response
to CONTPOi-ON, CONTRCL-OFF, and HO-OP. This is
also considered as final status for th€se
commands,

e. Status Modifier/Control Unit End/Busy will result
if the controller is "Eusy" at the time the
command is issued.

V.

Final Status will be given at the completion of all
operations. It will consist of Device End/Channel End
(rE/CE) for toth READ and WHITE. Certain other
conditions may te indicated, as follows:

a. unit Exception will be given if the last data
transfer in, or out, was interrupted by the Ifip
dropping its Master Beady signal, even
uciientarily. Unit Exception indicates that the
data received, or sent, nay be in error.

b. A Device End/Channel End will be given in response
tc Halt I/O if a cüramand was indeed in operation
at the tiaie the Halt was issued.

c. Final status may include an Attention Bit along
with DE/CE. This indicates that a subsequent READ
must be issued to obtain data already within the
input segment.

53

Appendix B

HOST-to-IKF Messages

A HOST-to-IMP message consists of not more than 8096
bits of information of which the first 32 bits are known
as the •leader».

TN73-50-I(B.l)

U | 4 | 8 | 8 | 8
II i I

FLAGS IIESSAGFj EESTINATIONI UNK | NOT
| TYPE | HOST |NÜKBHH|ASSIGNED

•32-Bit leader

variable

TATA

Fig. B.I: HOS^-to-IKP Message Format

The leader is always present and defines the type of
message, its destination and the link number, if any,
with which it is to be associated. A descriotion of each
hOSI-to-IHP message type follows:

a. Regular Message (Message Type *)).

Regt jlar m
and prese
the DEST1
reg Jlar I
the meui
the DATA
HOST-to»H
message o
be •block
unt: Li a
has bepn

essages are
nted to a
NATION HOS
fP-to-HOST
urn for all
field bein

OST convent
n a particu
ed • and fu
PFNK or
received.

forwar
destina
T field
message

HOST-t
g form
ions, H
lar lin
rther m

oth

ded
tion

in
. F
O-KO
atte
ävin
k, t
ess a
er

throug
HOS^,
the
eaular
S? co
d acco
g is
hat li
qes ca
•unblo

h th€
speci

leader
messa

ntmunic
rding
ued a
nk is
nnot
ckina'

network
fied by
, as a
ges are
ations,
to the

regular
said to
te sent
message

b. Error in leader (f^ssage "ype 1),

If the *CF receives an IffF-to-HCST message with an
invalid leader, it can respond with a Type 1
HOST-to-IM? messaqf.
format prror.

to advise the IBP of the

c, HOST Going Down (Ressage Type 2)

The NCF should transmit a Type 2 HOST-to-IMP
message about 10 seconds before voluntarily
closinq dewn. Thp IMP would then mark the HOST
dead and advise the rest of the network
accordingly. The 10-second delav is re allow time
for the notification to reach all other T^Vs in

36

the network and for messages already in transit to
be processed.

d. No Operation (Message Type 4) •

The IMP always discards this message which is
intended for use during initialization, A number
of Type 4 HOST-to-IffP messages are to be issued by
the NCF, on re-activiation after a shutdown, to
advise the IMP that the HOST is alive. The IMP
will then relay this information to other IMPs in
the network.

e. Regular Message for Discard (Message Type 5)•

This message has all the properties of a Type 0
HOST-to-IMP regular message except that it is
discarded by the destination IMP, before it
reaches the destination HOST, and a Type 9
IMP-to-HOST message, rather than FFNM, is returned
to the originating HOST to unblock the link. The
message can be used for test purposes.

f. Error not in Leader (Message Type 8).

If the NCP receives an IMP-to-HOST message which
has a valid leader but is otherwise in error with
regard to the HOST-to-IMP protocol, it car. respond
with a Type 8 HOST-to-IMP message. The NCF might
respond with such a message upon receiving an
IMP-to-HOST message of excessive length.

g. All other HOST-to-IMP message types are undefined.

57

Appendix C

IMP-to-HOST Messages

A IMf-to-HOST message consists of not more than 8096
bits of information of which the first 32 bits are known
as the »leader1.

TN73~5C-I(C1)"]

'T T
8 | fi | 8 | variable

FLAGS nSSSAGIjSOüRCEl LINK j NOT | DATA
I TYPE I HOST | HOREFf»! ASSIGNED |

. 1 i I 1 I • • •
 -32-Bit Leader >|

i

Fig. C.I: IMP-to-HCST "essage Format

The leader is always present and defines the type of
message, its source and link number, if any, with which
it is associated, A description of each TMP-to-HOST
message type follows:

a. Pegular Message (Message Type 0).

Type C IMP-to-HOST message, received by a
destination HOST, oriqinates as Type 0 HOST-to-IMP
messages in the source HOST, All fields are
preserved except that what originates as the
destination HOST identifier in the HOST-to-IMP
leader is converted to the source HOST identifier
in the IMF-to-HOST leader.

b. Error in leader (Message Typ*3 1) .

The IMF issues a Tyf*3 1 IMP-to-HOST message on
detecting an error ir the leader of a previous
HOST-to-IMP message. With the exception cf the
MESSAGE TYPE field, no siqnificance is to be
placed on the contents of the Type 1 leader.

c. ISP Going Down (Messacp Type 2).

A Type 2 IMP-to-HC5T messaqo is ir ,ued by the I^P
about S to 10 seconds before it vc1'intarily closes
dewn. Th€ delay is to allow notit cation of its
impending shut down to propagate through the
network and for messages already in transit to be
processed. With the exception of the MESSAGE TYPE
field, no significance is to b^ placed on the
contents cf the Type 2 leader.

58

u. blocked Link (Message Type 3) .

The IflP will issue a Type 3 IMF~to-HOST message
ubenever the NCP attempts to transmit a regular
HOST-to-I«P message on a blocked link. with the
exception of the MESSAGE TYPE field the contents
of the leader will be identical to that of the
discarded HOST-to-IUP message,

e. No Operation (Wessace Type U) ,

The HCP is to discard all Type U messages from the
IMP, These are intended for use during the
initialization phase only.

f. Ready For Next Message (Message Type 5).

This message is used to notify the NCP that the
first packet of a HCST-to-IMP regular message has
been successfully passed ' *• ~ destination HOST
and that the link afisuciateu th it is now
unblocked. The link is identified by the contents
of the SOÜPCE HOST and LINK NUMBER fields in the
leader of the Type 5 message.

g. Link lable Fu?l (Message Type 6).

The IMP is capable of supporting at most 63 active
transmit and 63 active receive links at any one
time. A link is defined to be active if tne NCP
has issued a HOST-to-IMP regular message (or a
Type 5 regular message for discard) over the link
within a period of about 30 seconds. If the NCP
attempts :.o exceed this limit the IMP will respond
with a Type 6 message whose leader is identical,
with the exception of the MESSAGE TYPE field, to
that of the rejected HOST-to-IHP regular message,

h. Destination IMP or HOST Dead (Message Type 7).

This message is issued by the IMP if the NCP
att mpts to transmit a HOST-to-IMP regular message
(or a Type 5 regular message for discard) to a
HOST or .TKP which is known to be dead. The leader
of the Type 7 messaqe is identical, with the
exception of the MESSAGE TYPE field, to that of
the rejected HOST-to-IMP regular message.

S9

i. Error not. in Leauer (Message Type 8) .

If the IMP receives a HOST-to~IMP message which
has a valid leader but is otherwise in error with
regard to the HOST-to-IMP protocol^ it will
respond with a Typ€ 8 IHP-to-HOST message. This
message has a leader which is identical, with the
exception of the MESSAGE TYPE field, to that of
the rejected HOST-to-IWF regular message. The IMP,
for example, will issue a Type 8 message on
receiving a HOST-to-IMP message cf excessive
length.

j, Incomflete Transmission (rlessage Type 9)

A Type 9 IMP-to-HC5^ message is issued to notify
the NCP that the last HOST-to-IMP message sent
over a particular link failed in transmission for
seme reason. The failure can be attributed to the
unaccounted loss cf some portion cf the message;
the less of the assoeiated HFNM; a message of
excessive length or an excessive time required for
re-assembly at its destination* A Type 9
I?1P-to-H0ST message is always returned in response
a Type 5 HOST-to-IMP message, instead of a PFNM,
Its receipt unblocks the link and its leader is
identical, with the exception of the MESSAGE TYPE
field, to that of the rejected H<jST-to-IMP
message.

*. All other IMP-to-HOST messa.B types are undefined.

60

Appendix D

The HOST-to-f'" r Protocol

All HOST-to-HOSI communicaticns are effected by regular
HOST-to-IMP and IHP-lo-HCST messages. Control messages
are associated with link 0 and interprocess messages
with non-zero links. The format of all HOST-to-HOST
messages is as shown in Fig, 5,

link numbers are assigned as follows:

a. Link 0 - Control Link.

b. Links 2-71 - Inteiprocess Communications*

c. Links 1r 72-190 _ ^served.

d. Link 191 - Network Keasurement.

e. Links 192-255 - Private Fxperimental Use,

Messages sent over the control link have the same format
as other HOST-tc-HOST messages. The connection byte size
is to be 8 bits and the number cl bytes is not to exceed
120. Control mes.oageF are always tc consist of an
integral number of control commands.

CoSiISi Commands:

Each control command begins with an 8-bit •op-code1
r

which drfines the function of the comnjani, Toilowed by a
set, in some cases null, of prracetais which qualifies
the function. A description of each control command
follows:

a. NOP - No Operation.

I I
I NOP |

The MOP Coffisand can be issued at any time and is to
be discarded by the receiving NCP, It is useful for
formatting control .messages and for determining, froa
the IHP-to-HüST reply, whether a foreign NCP is
active or not.

,-n rr "WWfc:

61

rtMl-^t^-^'n^Irtf—- -°- "-^^^^■'

b. RT? - Pequest for action, Receiver to Sender,

II I) I
| RTS | receive socket | send socket | link |

The R1S comm
is sent from
to the HCST
number to be-
to be in t
issuing NCP,
^TS coranand
for an aribi
could be c
(section C.
when either
(section C.3
which roatche

and is used to establish a connection and
the HOST containing the receive socket
containing the send socket. The link
used by the interprocess connection is

he range /.~ 71 and is assigned by the
There is no prescribed lifetime for an

which can be queued by the receiving NCP
trarily long period of time. The command
ancelled by either NCP issuing a CLS
3.d) and the connection is established
the TTS marches a previously issued STR
.c) or when an STP is subsequently issued
E the PT5.

c. STP - Request for Connection, Sender to Receiver.

II I II
| STR I send socket | receive socket j size |

The STP comm
is sent from
the HCST
connection b
is assigned
prescribed 1
queued by th
period of t
either NCP
connection i
a previously
PTS is subse

d. CLS - Close.

and is used to establish a connection and
the MOST containing the send socket to

containing the receive socket. The
yte size is to be in the range 1-255 and

by the issuing NCP. There is no
ifetime for an STR command which can be
e receiving NCP for an arbitrarily long
iffie. The command can be cancelled by
issuing a CIS (section C,3,d) and the
s established when either the ST9 matches

issued PTS (section C,3,b) or when an
quently issued which matches the STR.

I I I
I CLS l my socket | your socket |
I i 1 I

The CLS command is used to terminate a connection or
tc cancel a request for connection. The »my socket»
field contains tht socket local to the issuing NCP
a ^d the »your socket1 fiel»? contains the socket local
tc the receiving NCP, There is nc prescribed
lifetime for a CIS commarid but it is required that an
NCP reply with a watchifig CLS »as quickly as
po^-ihle1 in order that the sockets can b^ released
tfoi further assignments

62

rii -r-^*-^
■ana ._ fctalif

e, AIL - Allocate,

I ALL j link | siessage space | bit space |

The ALL comffland is sent tkcm a receiving NCP to a
sending NCP to increase the allucation counters of
the sending NCP. Allocate coiaands can be issued at
any time nhile a connection is fully established.
Interprocess messages can only be transmitted over a
connection within the specified allocation.

f. GVB - Give Back.

Ill i i
I GVB | link | message fraction | bit fraction |
I 1 ...1 L I

This command i^ lent fror a receiving NCP to a
sending NCF to t juest that the sending NCP return
all or part of its message and bit allocation for the
connection. Ihe fraction fields specify what pcrticn^
in 128ths, of. each allocation is to be returned. The
coamand can only be issued while a connection is
fully established and the recipient NCP is to reply
with a PET command (section C. 3. g) .

"!. FET - Return Allocation.

Ill i i
| RET | link | message space j bit space |
i 1 i L I

This command is sent from a sending NCP to a
receiving NCF either voluntarily or in response to a
GVE command (section C,3.f). The command can only be
issued while a connection is fully established.

h. INF • Interrupt by Feceiver.

I INF | link |

I i I

...^ INF command can be sent from a receiving NCP to a
s-snding NCP when the receiving process wishes to
interrupt th€ sending procesb« The cemmand can only
be issued while a connection is fully established.

63

i, INS - Interrupt ty Sender.

I INS | link |
I J I

The INS commanc can be sent from a sending NCP to a
receiving NCP when the sending process wishes to
interrupt th€ receiving process. The ccmwand can only
be issued whil^ a connection is fully established,

j. ECO - Echo Request,

I ECO | data |

The ECO conipand is used only for test purposes. An
NCP could issue an ECC ccmnand at any time to another
NCP and would expect tc receive an EFP comiaand
(section C.3,k) in reply. The data field can re any
bit pattern convenifrnt to the sending NCP and the
pattern is to be repeated in the data field of the
EEP command.

k . EPP - ^cho Feply.

I i i
I EnP | data j

I 1 I

The £PP command is to be issued by an VCP whenever it
receives an echo request (section C^.i), The data
field of the 2FP command is to be identical to the
data field of the inccaing ECF command,

1. £PR - Error Detected.

I

I
I

..L
data

Ar NCP is permitted tc issue an EFC command whenever
it detectes a HO?T-to-HOST protocol error by another
NXP, The code field specifies th^ tyo« of error and
the data field provides additional information about
the error. The following codes have J-opn defined:

i ünar-iM! i K^ä-Winn .i . - - -^^- wfiiM' rrf^r iTTITTIfTirir"-^

Code 0 - Undefined. An error for which nc code exists
has been detected. The data field is to be
formatted according to the requirements of the
originating NCP.

Code 1 - Illegal Op-code, An illegal op-code has
been detected in a control message. The data field
is to contain a copy of the command in error.

Code 2 - Short Tarameter Space, The end of a control
message ras been encountered before ill the
requited parameters have been found. The data
field is to contain a copy of the command in
error.

Code 3 - Bad Parameters. Incorrect parameters have
been found in a control command. The data field is
to contain a copy of the command in error.

Code U - Request on a Non-Existent Socket, A request,
other than an FTS or STR, has been received
associated with a link or socket for which no
request for connection has been issued in either
direction. The data field is to contain a cocy of
the command in error.

Code 5 - Socket or Link Not Connected,, A request,
other than an FTS or STF, has been received for a
connection rot fully established cr for a link not
yet assigned. The data field is to contain a copy
of the cotrmand in error.

IU FST - Reset.

I FST 1

The RST command is used by one NCP to inform another
that all information concerninu existing connections
between the two should be purged from the tables of
the NCP receiving the RST, the sendino NCP can
expect to receive an PRP commani (section C.3,n) in
reply.

HRP - Reset Feply,

I I
I RRP |

This command is to be issued by an NCP in reply to an
RST command (section C,3,in),

c. All other op-codes are undefined.

65

 .—

Appendix E

CP Support for a Virtual Terminal Device

«edifications to CP have been made to support a
•sottware terminal«, i.e.., one driven by a virtual
machine rather than by a real device such as a 27m, CP
performs, via software, functions usually done by SIC^s
to a real terminal device. The purpose is to provide
terminal-like access to CF for users wishing to log on
to the sy^ :eiT through the APPA network. The LOGGER
virtual machine runs a procram which interfaces between
the network and CP virtual terminals.

Two new multiplexer devices (TYPNCPT and TYPNCPC) have
been defined to support virtual terminals. An NCP
terminal bleck (NCPT) has been added to the chain of
real device blocks (KFDEELCKs) and a user logged on to
such a terminal appears to CF like any ether user except
at the console (PDCCNS and WFTCOMS) level or lower.
PCCONS and W^TCONS detect I/O to NCPTs and create CCW
packages identical to those made up for 1052,s,

Virtual terminal devices (KCFD's) are defined, throuah
the directory, as part of the ICGGEF virtual machine,
I/O instructions from th*1 LOGGER to an NCFD are
interpreted according to a protocol for communicating
with an NCPT, Initially, an addressed NCPD must be
associated with an availabl. NCPT so that a user may log
on. Subsequently, information is transferred between the
NCPD and an NCPT to satisfy CP real and write
eperatiens.

Initial connection is established oy a HIO from the
LOGGER virtual machine to one of its available NCP
devices. This HIO causes CP to search for a free NCP
terminal (in the chain of "PDEBLCKs) and ^o establish a
connection hetween the two. All subsequent I/O
operations concern the transfer o^ data accross this
ccrnection until the link is broken,

A connection once established ?nay be troken in one of
two ways: by th^ user typing •LOGO« cr by th* LOGGER
virtual nachine issuing a TIC to its NCP device. The
second cas« is analogous to a user turning power off on
a 27a1 terminal, and may occur because the LOGGER
crashed ir.d came back up, or because a network link was
closed« The first casf» is detected in the sam*5 way as a
logoff from any other tf rfrir.al device is detected. The
LOGGER is informed of the broken connection by means of
a unit check in his CSV.

A rr-ad-typt? coiffand fro^ th~ virtual machine to its KCP
device is issued to pick up data trom C? writes. The
data in CP's write buffer is moved into the area
begicnina at thr virtual nachine's read address, and the
read commar.'. is tf»r»inated with C£ and DE. NCP support

66

■ i. i. -.- «M —-WifBTga.üi.M.^'- *--'■' "- w^'" ■

follcws the protocol for a 1052 in that a «locked
keyboard1 system is maintained. Thus, the virtual
machine controlling NCP devices should always keep a
read-type command active on these devices.

When CP puts up a read to an NCF terminal, the virtual
machine is signalled to send data by a unit exception
on the NCP device. This sequence is analogous to the
write circle C/read circle D needed to unlock the
keyboard of a 27ai. CP receipt of a unit exception, the
LOGGER virtual machine should respond by issuing a
write-type command to the NCF device.

67

■■ ■■. ■ rri in- niiin-—^ :^— i in -»-iiitr i -iin.i^ii— — iMÜTli 1 l ■

The I/o operations dpfined for an NCP d^vic^, and the
responses to them, arc as follows,

TIO: used as a power off signal when a network connection
has been closed,

CC=0 means a user was on and has been logged off.
CC=1 weans no connection existed.

HIO: used as an attention signal. If no connection between
the addressed NCP device and an NCP terminal exists,
this routine Mill attempt to find an available NCP
terminal and establish a connection. In this case,

CC=1 means a connection was established.
CC=2 means there is no available NCP terminal.

If a connection exists, HIO acts like an attention
interrupt.

CC=C means an ATTN has been simulated and an interrupt
is pendinc.

CC=1 means ATTN has been simulated, but the NCP device
had no active command, so no interrupt will be
recei ved,

SIO: used to transmit and recieve data. Only read and write
are defined.

COO neans OK, I/O started.
CC=1 means C?W stored. ffpaningful bits are busy,

attention (means warning is coming, and a read
should be issued), unit check (means no link to an
NCP^ exists), unit exception (means CP wants to
read, and user should write to his NCFt), and
program check (means a read was issued when a
write was required, or vice versa).

CC'-2 means device busy.

Interrupts received after a successful SIO may be:

CE^DH: succ^-sful termination
CE*CE*UE: occurs only or. a read-tvpe cemmand, and
CF^DE^UF^-S^: means that CP i^ asking "or a userid. It

allows th* LCGGEP to monitor his USP^S logon
synchronously with CP.

ATTN: cccurs asynchronously when CP is waiting for the
LCGGE3 to s^nd data, i.f. when his keyboard is
unlocked. It means a warning-type message wants
to bla.ct throuah.

CE^CE^UC: m^ans user has looge-d off.

68

i iiBiiVTirig-^'^Tiff ' -^ imw* *,.*,*-**;
. iv^ K T»^ .-^^rtr^ri ^gjHejjl .-^^_ __

Appendix F

CP Virtual nachinc Communications Facility

Purj. cs<?:

The VHCOH facility allows the virtual user to send data
to another virtual user logged on to the CP system, or
receive data transmitted from another virtual user.

F crjr a t:

The VHCOM diagnose instruction is defined as follows:

II " ~l
I 83 1 R1 | F2 (CODE I
I i J i

1 15 16 31

where:

PI Pointer to a Control Block
F2 - net used
CODE - (x'C'^O») used to designate the VMCOM request

^SElISi Block:

B^te Mil

C USEPID (8)
8 Request flag (1)
9 Data buffer address (3)

12 Lpncth of data buffer (2)
i/, Number data bytes read (2) 14

5§3JJ£5i Zlä2 description

x'OI* fcrite data to user1.^ stack (wait)
«»(^ Fead data from own data ?tack
x'C^« Purge data from own data stack (all)
x1^* Furge data sent to particular US1RID
x'OS* Test for any data in own data ^tack
x,06» Test for data sent to particular USERID
x'O?» Write data to user^ stack (no wait)

x^C lost messac^ flag

69

^^^^-.^^-^^—^:-^-. ■^^■. -,. . f/ggg jg -, | -.. - -r^T ^-^-Ji.>-<.. „.^ r, -mtiM,mu

The receiver of a data write will receive a device end
interrupt on virtual device x^d» v;»en some data has
been placed on his data stack. The receiver should then
initiate a read request to get the data into his virtual
machine. For the writer of datar there is a limit of one
data transfer between a virtual machine pair. If this
limit is exceeded, a condition code 2 will be reflected
on the data write attempt, and the receiver's control
block will have the request flag byte set to
bll•Ixxxxxxx1 to indicate data lost. Cata writes will
write the whole data buffer out, data r^ads will read up
to the buffer length and then indicate data buffer
overflow. Null writes and null reads are allowed to
communicate interrupts between virtual users. A write
with no wait will be allowed for class *€• users only.

Snd.iliS Conditions:

CiMilicn Code Description

CCO Successful completion
CC1 Unsuccessful completion

Control Block not full word aligned
Control Plcc^ not within virtual cor»
Eata buffer not within virtual core
Invalid request flag specified
Data buffer > a096 bytes
Kot a class »C1 user, request invalid

CC2 Data buffer overflow on read request
Unprocessed data in receiver's data stack

CC3 (Jeer not on system
Unable to reflect interrupt to receiver
No data in stack on read request

70

ra-rrri.i1tfin..rlln*l.Nl ^^ämm^mmmmaBt^tmmtmM^mmm , mn^mnrmi

Appendix G

The NET Routine

Pu££2se:

1c cofflfflunicate with the NCP to issue NCP control
coBirnands or to receive a message which has been buffered
by the NCP

C§iiil]3 Sequence;

The user makes a subroutine call of the form:

LA 1rNETPLIST
L 15f = A (NET)
5ALR 1*4,15
LTR 15,15
BNZ 15,FPP0P

where NETPLIST is of the form:

cm •Control Code»
XL 3 •My ID»
XL1 •^y Tag1

XL1 • For Host'
XL3 1Jor ID«
XL1 •For Tag«
XL1 •Flag»
H • Eit count1

ALU (Euffer Address)
F • Status «erly»
F •Eits Left«
H 'Messages Left•
X • Byte Size»
X • Spare»
ALU (Address of interrupt stack)

and where Control Codes are:

CON Connect
LIS Lis'.en
SNC Send
HCV Receive
CLS Close
STA Request Status of Socket
INT Sent interrupt
NOP returns net status, Tjse^ul after wait,
ENC Enable connect
ENL Enable listen
DIS Disable
PrJR Purge

71

mrr-,i if - ■>,^^^—..

'UäS* '

A send buffer must contain an 80-byte header allowed by
up to 1000 bytes of data. The NET routvae . ill use the
PC-byte header to build an NCP contr'l message.
Similarly, ?. receive buffer must be 1080 bytes long.
The first 80 bytes will be used for the NCP control
message and the rest of the buffer will be used to store
the text of any message which was held by the NCP.

Before any call to NET is made, the interrupt stack
pcinter should te cleared. On return from a call to NET
the interrupt stack pointer should be checked. If it is
zero, no interrupts were received. A non-zerc pointer
indicates that an interrupt was received and the
interrupt stack control block should be analyzed and
then returned to free storage« The Interrupt Stack
Control Block is shown in Fig. G.1 and the Interrupt
Codes are listed in Fiq. G.2.

Errors:

Control is always returned from the NET oackage with a
code in general purpose register 15. The return codes
are as follows:

0 Ccmmand accepted by NCP. Tag status given in reply.
1 Command rejected by NCF. Tag status given in reply
indicates reason for rejection.

2 NETPLIST control code invalid.
Status reply not significant.

3 VKCOM failure.
a Nothing there (NCP Special Case) .
5 Unexpected message received by NET .
6 NCP error.

Reply does net match socket number issued.
6 y«'.Of1 read error.
0 VttCOM send error.

10 Nc more free store for NET.
11 NCP just died.
12 Zero bit count.

^—.^

"|rN73-50-I(G.l)

7
CODE |
 - I

NEXT IN CHAIN

LCCAl OCKET

FHOST T.CKEl

FOR ? SPAPE
SOCKET |

STATDS

Fig. G, 1: Interrupt Stack Control Block

CODE

0

1

MEANING TN73-50-I(G.2)

3

5

7

Interrupt received. Could be SND or PCV socket.
Status must be issued to clear this bit.

His listen issued on our SND socket.
After the connection has been ccmpleted.

Receive buffer now loaded after issuing our
listen (His connect implied).

His CIS received tefore we have issued ours.

Enabled connect matched by his connect.

Enabled listen matched by his connect.

NCP Died.

Foreign NCP Reset (FST received).

Fig. G,2: Interrupt Codes

73

-^j^jf*:—^— Winiiifaa-iiiiir r '— ^^^^-- M

Appendix H

NET User Hacros

General:

A link block must be defined for each link required»
This block contains local and foreign socket numbers
together with status and flag areas. The NETPLIST macro
is a DSECT which specifics the format. Link blocks are
defined by NETSOCK or NETSOCKV macros, and refer either
to send or receive links. The user's network id must be
obtained with the NETID macro which obtains a user
number and places it in the appropriate portion of the
socket number.

The link roust then be activated via a NETOPEN macro.

Transfers are achieved via NETPEAD and NE1SRITE macros
and the link may be closod via the NETCLOSE macro.

Link status may be obtained using NETSTAT and network
interrupts may be sent using NETINT. NETNOP obtains the
current flag state without accessing the NC?.

Macros:

NETSCCK (6A,€B,t'C)

Defines a link block. It requires a label which is
used by all other macros to identify the link. It
has three parameters:

GA - a 1-tyte hex value of the local tag
GB - a 1-byte hex value of the foreign host
SC - a a-byte hex value of the foreign socket

SETSOCKV {&ke€B trfC)

Is an alternative to NETSCCK. It also defines a link
block and requires a label for link identification
purposes. It has three parameters.

&A - a label for the 1~byte local tag
&B - a latel for the 1-byte foreign host
&C - a latel for the U-byte foreign socket

Before using the link specified by NETSOCKV values
must be moved into the locations nawed by GA, &B and
&C. For exanpie:

MVI TAGfXfC1'
nvi FHOST^'OA«
MVC FSOC(U) f =X»C00CC■001,

LINK: NETSOCKV TAG , Fh'CST, FSOC

7ä

UfWTTtnirr, I- iifcmrniir-ilrll-|..iäiMM[«.i^^ -.■■,.,. ^-^^^ .■^■.^.^^^^^i*^^

The following macros require the link block lajel äs the
first parameter (CA):

NETID Obtains user'r network id and places i.t in
the link block

I<rTCPEN Assigns a link and establishes the
connection,

NEIOFENE Used after a »ETENÄ to open a connection

NETREAD Transfers into the specified buffers any
oufcstanivag data in the Jink (max 10CO
bytes)

NEIWRIIE Transfers from specified buffers «"o network.
(max 10C0 bytes)

NElS^Vi Obtains network status of link

NE7 . Issues appropriate network interrupt

NETN JP Obtains current interrupt state

NETCLOSE Closes the C(nnertioi

KETENA Defi ^s a locdl socket for which a foreign
host, can initiate a connoction

NETDTSA Releases a local socket which was enabled

NETPUR3E Causes the entry in the NCP RV table to be
deleted for a closed connection which has
not been closed by the foreign host

The NETREAD and NETWPITE macros have two other
parameters. SB is the address of a full word containing
the buffer address, f.C is the address of a full word
containing the tit count.

ft VETWAI? may te issued to wait for an HC? interrupt.
When the wait completes, a BE*. NOP may be issued and the
current in terr upt (s) iiill be placed in the interrupt
stack.

eturn co^es in npplf are:

0 - Operation ccfRpleted satisfactorily - status field
si^nific?n*

1 - Operation denied by network. Status field
significant

2 - User made logical er-or. Sttus rot sianificant

3 - Systo» Failure. Status n^t significant
75

——

Appendix I

The HICTST Frogram

fqyp9jge:

This prograro is used to issue CCW^ to the ftLC/IWP. The
prograi has a one-character coamand language. It is
useful to issue these cosirands on one line separated by
the logical break character (#) .

Rcguests:

I (INPUT) - To £e* the current I/O device to the IMP'S
input devic<

C (OUTPOT) - To set the current I/O device to the IMP^s
output device.

N (ON) - To turn the IWP on. This request must be issued
on the IHPfs input device.

F (OFF) - To turn the IMP cff. This request must also be
issued on the IMP^ input device.

F (READ) - To issue a read SIO, Tf a read iH already
outstanding, a ~= 2 (busy) results. When the read
completes, the data read will be in an input buffer
which can be displayed or dumped. A read on the
output device causes a CC=1 with tho CSW stored
indicating a progiram check.

W (WRITE) - To issu*: a write SIO. The data written is
set up to be a/ IMP NOP (a u-byte leader only) . A
write on the input device causes a CC=1 with the CS«
stored indicating a program check.

H (HIO) - To issue
device,

T (TIO) - To issue
device

a HIC instr :tion to tHe current

TIO instruction to ^ue cur.vent

X (HOP) - To issue a NOP CCW to the current device.

V (invalid) - To issue an invalid CCW operation code to
the current device.

C (DISPLAY) _ To clump the input buffer which contains the
data last read. cp is used to display the storage
a rea.

P (PAUSE) - To issu« a CMS WAIT on the input device to
waic for an interrupt.

C (QUIT) - To leave th^ MLCTST proqra*.

v.

.—^-.t-* J.l fcrirt^ ..*■-'<,.
IlilirTrffllTililirf ii

Appendix J

Tl*e TRYNET Program

Fur^ose:

To test an NCP using the NET routine,

issuests:

CON Is fh fs fcs

LIS Is fh fs ts

SND Is oessage

RCV Is

INT Is

CIS Is

STA Is

ENC Is

ENL Is

DIS Is

PÜR Is

END

where:

?.£ - is a local socket (8 hex digits)

fh - is a foreign host (Z hex digits)

fs - is a foreign socket f8 hex digits)

bs - is the byte size for the connection (2 hex d^qits)

scssage - is a string of characters to be sent 3?er the
cenjj^ctior

77

 . .

Usacje:

Pequests are issued fro» the terminal tc perfon a basic
NCP function. For each request issued, the PV table
entry is returned if one exists. The second two status
bytes are printed indicating the status of the socket
ccnnection.

Whwr.ever an interrupt is received, a line is printed
giving the type of interrupt. When an PCV is issued, the
message received, if any, is also printed. If an NCP
communications message is lost (VKCOH interrupt lost),
this fact is also printed. The user shculd then issue a
status on each of the cctive sockets to determine the
interrupt which was lost.

:«

-^■^.w ~. . -^ I -„/yp-^.;.-..^- ^ ^^-^.- -.. , r,, r^..»i n^w^^^.ä»*^- rnr«- ' B^^Hirttma^ iiii In iffy:» »»iriMilifir

Appendix K

The TELNET LCGGEP/SERVEF

ICf £21111£CtionT

The THLMBT LOGCEB/SEPVER follows the ICP protocol for
lakinq a pair of connections. The LOGGER is initially
enabled for a connection on socket X'OOOOOOOI1, When an
RFC is received for this socket a pair of sockets will
be chosen for the TELNET connections. If the aiaxiicuin
number of TELNET users which can be served are active,
the initial connection is refused. Current y, three
TELNET users can be served.

UiHI LCGGER:

After the ICP connections have been setup, the LOGGER
expects a TELNET data type code, a string of network
ASCII characters, or a null line (just CR-LF) to
indicate whether its operation should te in ASCII or in
EBCDIC character codes-. ASCII is assumed unless the
first bype received is the TELNET EBCDIC data type code
(X,A2). When something has been received, the message:

Lincoln Laboratory CP/CKS Orline

will be transmitted by the ICGGEF. For example, if
ASCII operation is desired a null line (just CP-LF)
transmitted on the send socket will cause the welcoming
rpssage to be sent in ASCII. The CP login procedure can
then begin. If communications is desired to be carried
on with EBCDIC character codes, the first byte
transmitted shculd be the TEINET data type code for
EECDIC (X,A2,)• Thereafter all coifiminicaticns will be in
the code originally used.

The CP login procedure expects the user to enter:

LOGIN userid

where the userid specifies the desired virtual machine.
C? then replies with:

ENTER PASSWORD:

followed by the EBCDIC code for byp ss (X*2b%) which is
mapped into the TELNET code hide-your-input.

The user should then ente a password. Passwords
entered froin the network may be difterent from those
entered fror a local terminal. The LOGGER maps network
passwords into a corresponding C? password. Thus,
access to an account can unly be made from the network
if a network password, together with a CP password and
userid, is pntered into a file which is read by the
LOGGER. If a userid entered from the network is not in

79

n r-if.'irt.-.i .^—111-^^^-~-^-^=- - - * - - -^-^^--.-^^^^^-.-^v^.^

the LOGGER FILE (or if the nctworlc password does not
match the one included in the file for the specified
userid) the IOGGER passes an invalid userid (or
password) to CP, The CP response for an invalid userid
or password is then sent to the network user.

After a password is received by CP, CP transsiits the
EBCDIC code for restore (XMUM which is mapped into the
TELNET control noecho.

TELNET SERVER:

Since the cp/CflS sys^in operates with EFCDIC codes,
ASCII codes must L-i translated into EBCDIC before being
sent to a virtual machihe. Figure K.1 gives the ASCII
codes and their EBCDIC mapping. When the ASCII sequence
CF-LF is received, it is mapped into the EBCDIC cede NL.
whenever the TELNET control NOP is included in an input
string, it is mapped into an EBCDIC idle (XM?«) and
then removed fr^m the string. Thus, if TELNET NOP codes
are included between a CR and LF, they are removed
before the CP-LP is mapped into the EBCDIC NL.

The 1ELKET control hide-your-input is mapoed into the
EBCDIC code for bypass (X^u«) and the TELNET control
echo is mapped into the EBCDIC control for restore
(XMa»). If the TELNET control echo is received, the
SEPVEH should send the central noechc but this feature
has not yet been implementPd. Instead, the TELNET
control echo is mapped into the EBCDIC code X* 23*, If
the TELNET break is received, it is interpreted as an
attenticn signal and the appropriate action is taken by
CP or CHS.

CP/C«S is a line at a time system and expects all input
to consist of lines ending with a NL code. Characters
received are buffered until the newline code is
received.

Since CF/CM5 is also a half duplex system, characters
are only examined when the system is expecting input.
If the system is not expecting incut, a network
interrupt it required to cause the SEPVER to process
received characters. Or receipt of a network interrupt,
characters received before the TELNET data nark is
received are examined and discarded, except that if a
TELNET break code is found, the appropriate CP/CHS
interrupt action is stimulated.

On output, EFCDIC codes are mapped into network ASCII if
a mipping exists; otherwise, the codes are mapped into
the TELNET control NOP. A NL code is mapped into C^-LF.
The EBCDIC code for ^ypass maps into the TELNET control
hide-your-input and the EBCDIC code for restore maps
Into the TELNET control noechc. Also, the code X923*
•ra fs ir to the TELNET control echo and the code X^SP1

ffajs into the TELNET contiol break.

80

^ ■,^— -läTira in r— - i-frHii -TiwliiMiilV .rv r Mi.'.r- tt^— ' --^^- *.-^~.^ ^--w^ t ■-, m-iir-rl^^rtT-^^rriff- —rwm niWlSwVnriili^'ii

Since CP/CH
TELNET cent
signal and
were outpu
message cod
a line at
transmitted
end of li
operating i
prompt indi

S is a line at
rol break is t
also as an in
t without a
ef indicates t
a time mode
should be pr

ne sequence,
n a half dupl
cates that the

a time,
ransnitt
put prom
KIr the
o the u
that the
inted w
If the

ex mode,
system

half duplex s
ed as an end o
pt code. If c
break, as a

ser TELNET ope
characters p

ithout waiting
user TELNET

the break as
is ready for i

ystem the
f message
haracters
n end of
rating on
reviously

for the
is also
an input

nput.

If input had been anticipated and sent by a full duplex
user Ti..NEI# the TELNET SEFYEP will have that input
available for immediate processing. Thus, in the case
cf a full duplex user TELNET the break as a prompt
should be ignored.

Though CP/CMS operates in a half duplex mode, it
supports half duplex terminals with the reverse break
feature allowing the system to abort an input mode in
order to transmit a priority output message. In this
situation, the TEINEi SERVEP transmits a TELNET SYNC. A
half duplex user TELNET should interpret this by
aborting the input mode, i.e., revoking a previous
TELNET break which was interpreted as an incut prompt.

Nc codes in the output character stream can cause the
TELNET data mark to be transmitted.

IC5CU1:

When a user logs out from his virtual machine, CP passes
the equivalent of a line disconnect to the LOGGEP. 'Jhe
LOGGER then closes the TELNET send and receive sockets.

A]

,**■■■■-. a ufr^T-nm-irri r Nrti -■--li-fi-i.. -■■. ■ mstaä^i^mfir» mfrif

|TN73-50»I(K.l) I

ASCII ASCII ASCII SYMBCLS EPCDIC EEC
EEC OCT HEX HEX DEC

C C (^0) NÖL (00) 00
1 1 (C1) SOH (01) 01
: 2 (C2) STX (0 2) 02
3 3 (03) ETX (03) 03
tt a (04) EOT (37) 5?
5 5 (C5) ENQ (2D) 45
6 t (06) ACK (2E) 46
7 l (C7) EEL (21?) U7
8 10 rC8) BS (16) 22
C 11 (09) HT (0C) 05

1C 12 (OA) LF (25) 37
11 13 (CB) VT (OB) 11
12 la (CC) FF (OC) 12
»3 15 (CD) CP (OC) 13
ia 16 (OE) SO (OE) 1M

1C 17 (OF) ST (OF) 15
16 2C (10) DIE (10) 16
1*7 21 (11^ DC1 (11) 17
18 22 (12) CC2 (12) IP
19 23 (13) DC 3 (13) 19
20 2u (1ft) DCU (3C) AO
21 25 (15) NAK (3D) 61
22 26 (16) SYN (32) so
21. 27 (17) E?B (2 6) 38
2a •5A (18) CAN (18) 24
2r 31 (19) ER (19) 25
26 32 (IA) SUE (3F) 63
27 ^P (IP) CTL (27) 3o
28 3 a no FS (1C) 29
29 35 (ID) GS (ID) 29
30 36 (1^) FS (11) 30
31 ^7 (IF) ÖS (1F) 31

Fig. K.1: LOGGER ASCII, EBCDIC Cod*? tapping

82

^^^^^^ , -imiiB^i iflBii rir-'iiii-iiTiM 11 n 11 if'i irrTrrrm r ff-r-Biiirrin-*^--^-^-'^ ^■^^-^"""J^ ■ --•

 1

TN73- •50-I(K.l) j

ASCII SYHBOLS EBCDIC ASCII ASCII EBCDIC
DEC OCT HEX HEX DK

32 40 (20) SP (40) 64
33 41 (21) \ (5A) 90
3a 42 (22) « (7F) 127
15 43 123) # (7E) 123
36 44 (24) S (5B) 91
37 45 (25) % (6C) 108
3P 46 (26) f. (50) 80
3Q 47 (27) » (7D) 124
40 50 (28) ((^r.) 77
U1 51 (29)) (5C) 93
U2 52 (2A) * (5C) 92
4 3 53 (2P) -». (^H) 78 ua 54 (2C) r (6C) 109
4 5 55 (2D) - (' 96
46 56 (2E) • {*) 75
47 57 (2F) / (61) 97
48 60 (30) 0 (F0) 240
40 61 (31) 1 (?1) 241
50 62 (32) 2 (F2) 242
51 63 (33) 3 (F3) 24 3
52 64 (34) a (F4) 244
53 65 (35) «5 (F5) 245
54 66 (36) ^ (F6) 246 r^ 67 (37) 7 (F7) 247
56 70 (38) 6 (FS) 248
57 71 (39) Q (F9) 249
56 72 (3A) • HA) 122
59 73 t3B) 9 (51) 94
60 74 (3C) < (4C) 76
61 75 (3D) - (7E) 126
62 76 (3E) > (6E) 110
63 77 (3F) 7 (6F) 111

Fig, K. 1: LOGGEP ASCI I/EBCDIC Code flat cina
(Continued)

83

ri . ■-■■irA° " " "'aiä'JiflilüiTi TU ffili^l lim"!' ■■!
■^^^rnäüä

-■^«.T 1 - -l^il^rtr

TN73- -50-T(K.l)
■

ASCII SYMBOLS EPCDIC ASCII ASCII EPCEI'-
EEC OCT HEX HEX DEC

hti 100 («0) a (7C) 124
6^ 101 (ai) A (C1) 193
06 102 («2) B (C2) 194
6^ 103 (^3) C (C3) 195
68 104 (ua) D (C4) 196
69 105 (45) v (C5) 197
^O 106 (46) F (C6) 19«
71 107 (47) G (C7) 199
72 110 (*8) H (C8) 200
7^ 111 (UQ) I (0°) 201
1U 112 (4A) J (01) 209
75 113 im K (D2) 210
76 HU ((iC) l (03) 211
77 115 («D) n (DU) 212
78 116 i^) N (D5) 213
79 117 (4F) c (D6) 214
8C 120 (c0) P (07) 215
91 121 (51) V (D8) 216
82 122 r52) F (D9) 217
p3 123 »53) S (F2) 226
«^4 124 (5a) T (H3) 2 27
8f 12^ (c5) ü (E4) 228
86 126 (56) v (E5) 229
87 127 (57) N (E6) 2 30
QP 130 (58) e (f7) 231
89 131 (59) Y (Eß) 232
90 132 (5R) 4 (FQ) 233
91 133 (r^) [(AC) 17?
92
9?

134
135

(rC)
(^D)]

(^A)
(Brj

74 (BACK-SUSH)
18*5

9i| 136 (52. (71) 113 (CAPAT)
95 137 (^F) (3D) lOQ

Fig. K.1: LOGGFP ASCII/EBCDIC Code napping
(Continued,

84

■ il^-JrniilMi -----■—■- --^—-- — "-™^i,3a^i^^l^^| " ^ ^ ' -^ ■ ■ ^ -^ - - W ^ -.- -■ ■■ ,.-.-^^^ 11 in mMiUm*■ iri^^'""""iiiirtilfciiimiiliirrrt

TN73- 50-I(K.l) _

YMBCLS EBCDIC EPCI ÄSCII ASCII ASCII S :ic
DIC OCT HEX HEX DEC

96 1UC (60) (79) 121 (GRAVE)
97 1U1 (61) a (31) 129
9P ia2 (62) b (82) 130
99 ia3 (63) c (B3) 131
100 ma (64) a (84) 132
101 1U5 (65) e (85) 133
102 146 (66) f (86) 134
103 147 (67) 9 (87) 135
ioa 150 (68) h (88) 136
105 151 (69) i (89) 137
106 152 (6A) j (91) 145
107 153 (6B) k (02) 146
108 154 (6C) 1 (9 3) 147
109 155 (6D) 01 (94) 148
110 156 (6E) n (95) 149
111 157 (6F) 0 (96) 150
112 160 (70) P (97) 151
113 161 (71) q (98) 152
114 162 (72) r (99) 153
115 163 (73) s (A2) 162
116 164 (74) t (A3) 163
117 165 (75) u (A4) 164
118 166 (76) V (A5) 165
119 167 (77) w (A6) 166
120 170 (78) X (Ä7) 167
121 171 (79) y (A8) 168
122 172 (7A) z (Ä9) 169
123 173 (7B) { (8B) 139
12a 174 (7C) 1 (<**) 79 (BAR/OR)
^25 175 (7D)] (9B) 155
126 176 (7E) -1 (5r 95 (TILDE/NOT)
127 177 (7F) DEL (07 7

ASCIX ASCII ASCII 1 EINET EBCDIC :BCDIC
DEC OCT HEX CONTP015 HEX CEC

128 100 (80) DATA- «AF.K (80) 128
129 101 (81) BREAK (38) 56
130 102 (82) NCF (17) 23 IDLE
131 103 (83) NOECHC (14) 20 PESTORE
132 104 (8 4) ECHO (23) 35
133 105 (85) HIDE- YCUR-INF OT (24) 3b BYPASS

Fiq. K.I: LOGGER ÄSCII/EPCDIC Code «apping
(Continued)

85

:,---—„.^.^-„v^«^^- . tfifiKfiärt^frtUr" iatV I > i I Tl. -^J.s r ^i.-«ff ^^^-^&h^

Appendix L

The User TELNET

EüIJ^e:

To access another terminal-oriented system on the APPA
network.

Fcrffat:

TELNET host <tag> PESUHE EBCDIC HALFLUP
Jl QPIW ASCII FÜLLDUP

host - either the hexadecimal code for a foreign
network service site or a standard mnemonic for a
foreign ^ite. See Figure 1.

tag - the identifier for the local connections to the
network. The tag is used together with the
address of the virtual machine descriptor table
(UTABLE) to form local socket numbers which are
used in the network protocol.

PESÜME - used to reactivate communications with a
foreign site after having previously left the
TELNET command leaving the connections open.

EBCEIC ~ to communicate with EBCDIC codes. The default
i£ network ASCII,

HALFDUP - to operate under a half duplex protocol, i.e.
with a locked keyboard.

The EBCDIC HALFDUP the protocol assumes that the
TELKEl break code (circle C) will be received to
indicate when the keyboard should be locked for
input.

In ASCII HALFDUP the keyboard will lock after a
lin^ of input and will unlock after one cr more
lines have been received for output. An external
interrupt will also unlock a locked keyboard.

Thp default is full duplex where the keyboard is
alwasy unlocked for input. A null line is
required to temporarily lock the keyboard in order
to receive outpuu.

B6

>II i i i mVrtfiTrifiiniii'iiV« i iiiwi i mi T "r VH'I i ii n ■ inniii n ■ II' M n ' i : 'ii mi i '"

üsacje:

A number of h
service, A N
specified so
program which
access any
cconunication
and a serving
system and out
is typed on th

osts on the ÄRPÄ network provide TELNET
etwork Virtual Terminal (NVT) has been
that using sites can write one TELNET
maps a local terminal into the NVT to
serving site on the network. Once
has been established between a using site
site, k?yed input is sent to the serving
put fro i the serving site, when received,
e local terminal,

The NVT protocol requires that the keyboard be capable
of entering all of the 128 ASCII codes together with a
number of other TELNET control codes. To support an
NVT with an IBfl 27U1 terminal, it is necessary to adapt
a ccntiol convention for entering codes which are not
associated with single keys on the keyboard. In
addition, since CP/CflS processes input from a 27U1 on a
line at a time terminated with a newline, a means must
be established for entering a sequence of characters
for transmission which is not terminated with a newline
code.

When TELNET is ' 'ated the message

PtwEP CCKTPCI CHARACT^F

is typed. A non-blank character should then be entered
which defines the character which, in combination with
another character, will be used to enter codes not
associated with single keys. The control character is
al-c used for other special control functions as
described below.

87

„^.^ «^ iÜJ j I "ür itet¥ü^*iinr>fli'1lMm ""iiiTär infiiii-"-^

Cedes:

The NV1 usually requires that characters be transmitted
ir an €iqht-bit ASCII code. Since the TELNET command
is vritten to process EBCDIC codes ASCII cedes received
are translated into EBCDIC and characters to be
transmitted are translated into ASCII before being sent
to a serving site. Figure 2 gives the complete
definition of EBCDIC irdicating the EBCDIC controls and
EBCCIC graphics. Figure 3 gives the codes for the
ASCII controls and graphics. Th« complete mapping
between 9-bit EBCDIC codes and 8-bit network ASCII
codes is shown in Figure 4. The EBCDIC newline code
(NL) is mapped into the ASCII codes foi the pair of
characters CF-IF.

The fcllwcing ASCII/EBCDIC mapping
non-EECDIC graphics:

is used for the

/ ̂ SCII EBCDIC

TILDE (7E) s (A1) NOT
BAP (7C) B (6A) OF

BACK SLASH (^C) S (EC)
CARAT (5F) •r (71)
GRAVE (60) s (79)

LEFT BPACE (7B) s (8B)
PIGHT BRACE (7D) - (9B)

LEFT BPACKET (5B) = (AD)
PIGHT EEACKET (50) - (BD)

The ASCII control DC3 (XMB1) maps to the EBCDIC
control TK (XMS«). The ASCII control NUL (X'OO1) is
sent to the terminal as the EBCDIC code for NULL
(X'CO1) and is not mapped into an IDLE (X1^).

The TELNET control hi
EECCIC code for bypas
control noGchc is ma
restore (print restor
echo is received, a me
into an IDLE. Similia
break is received, a
mapped into an IDLE
HALFDUP mode in whi
indicate that any rece
and the keyboard unloc
an interrupt is receiv
print a message to not

de-your-ii put is map
s (print supsress) an
pped into the EECD
e) . If the TELNET
ssage is printed and
rlyf if the TELNET

message is printe
unxoss operation i

ch case the break
ived characters shou
^ed for input. If a
edf no action is ta
ify the us^r of this

ped into the
d the TELNET
IC code for
control for
it is mapped
control for

d and it is
s in EBCDIC
is used to

Id be printed
data mar.k or

Ken except . to
occuranee '.

88

-"II ■ ttMrarrlrinrr
^^^^^^^^^^.^ .^ Tr^ „^

IrjDut:

When the control charac
character is aapped int
which it is normally
following character is
defined to havo a weanin
character. Figure 5
characters on a 27a1
control character, T
characters do not hav
preceded b y the control

$ # * % C
♦ - =

,
• ^ • »
! | ? ^
SPACE
BACKSPACE
TAB

ter is entere
c a different
mapped into,
a space or

g when preced
gives the

keyboard when
he following
€ a differe
chardcter.

d, the following
code than that

except when the
a character not
ed by the control
mapping of the

preceded by a
27 m keyboard

rt meaning when

When a character is mapped into its control code, the
control character is mapped into the ccd« for IDLE. If
the control character is entered as the last character
before the newline key is entered, the sequence of
characters entered is transmitted without hhe newline
code. That is, the newline code is not transmitted
when it is preceded by the control character.

when
chärac
is loc
charac
duplex
allcw
causp
null
transm
the o
HALFDU
be tra

the 27
ters rec
ked aga
ters can
ot ASCI
receive

the new
line, i
itted, t
nly cha
P a null
nsmi tted

Ul kayboa
eived cann
in. After
then be

I half du
d characte
line code

.e.r just
he control
ract er in
line ent

rd is
ot be t

a line
typed,
plex, a
rs to b
to be t
the

charact
the in

er ed wil

unlocked
yped until

is enter
«hen opera
null lim
e typed
ransmitted
new line
er should
put line.
1 cause a

for
the

ed,
ting
ente
but w
. To
code

be en
In

null

input,
keyboard
received
in full

red will
ill not
ca use a
to be

tered as
EBCDIC

line to

89

Quillt:

ASCII cutput received from the NVT is converted into
EBCDIC with the sequences CF-LF converted into IDLF-NL.
The EBCDIC charöcters are then sent to the terminal.
Note that not all 128 ASCII codes when converted to
EBCDIC will print on a 2741, of the 9^ ASCII graphics
and the 9 ASCII controls which are defined for the NVT
printer, the fcllowing are not visible or audible:

CAPAT
GFAVf
EACK SLASH
LEFT BRACT
RIGHT BRACE
LEFT BRACKET
BIGHT BRACKET
ASCII CONTFOLI EEII (PEL)
A.SCII CONTROL VEPTICAL TAB (HT)
AS'JII CONTROL FOP« F'nED (FF)
ASCII CONTROL CARRIAGE RETURN (CF)

FiguTe 6 shows; how the EBCDIC codes from X* UC" through
X'FF' will appear on a 2741 terminal. Figure 7 shows
how the EBCDIC codes will aopear when printed with a PN
train on the offline printer and Figure 8 shows how
-»■hese codes appear when printed with a TN train.

Con^£0Is:

If the first c
character and
cf the line is
A control co
parameters sep
which permit T
serving site.
to oo to a
cccmands to b
cr TELNET mode
ccmraand with
ccntrols to su
PJS operation.

CCVTRCL x

haracter in an input line is the conttoi.
the next character is 3 space, th^ rest
interpret€d as a TELNET control command,
mmand consists of a control word and
arated by spaces. Controls are defined
ELNET controls to be transmitted to the
allow input to come from a file or output
file, allow CMS functiens cr transient
e issued, redefine the control character
, close connections or leave the TELNET
the connections still ^cen, as well as
pport a reader, punch, and printer with
The controls are described b^low.

Where x is the new control character

90

IPJ „^j i i ! mmn .it i y.i^; ftääa rtT»f-^—

CIOSE

lo close all connections and ^uit

QOIT

lo leave TEIKET

EBCDIC

To go into transpairnt mode, i.e., no translation

ASCII

To translate input and output to network ASCII

BFEAK

To send the TE1NET break code

SVNC

To send the TEINET data aark code and a'.i interrupt

ATT I

To send a TELNET break and a SYNC

HIDE-YOÜP-INPÜT

Tc send the TELNET hide you input code.

NCECHC

Tc send the TELNET noecho code

ECHC

Tc send t^e TELNET echo code.

CPS coBtnand arg 1 . . . arcN

To issue CMS core resident functicn ur transient
ccsBiand.

LNPOT fn ft
* TERMIN
« *

To get input f10m a file If fn is defaulted, input is
reset to cotfie froa the terwinal. If fn is * file input
resumes after the last line read. After an EOF, the
next line read will be the first line of the file.

An external interrupt while input is couincj fron, a file
will cause the line nuiib€r of the next line to be read
fro« the file to be typed and input to be reset to come
from the terminal.

9L

•11 '- -lf^----^^—iff IMTII|-'H ihTfr TTTT -irnr ' '^ " ' M amnrrriTii-irä^ii'iJiinur —

OUTPUT fn OFF TERM INPUT INCUT
* ON NOTEFm NOINPÜT OUTPt'T

Tc write output to the file »fn TERKOUT,. If fn i^
defaulted r output is reset to go to the temlnal« If
fa is *r file OUTPUT is resumed with the saaie options
as «ere last ured.

For Output to the Terminal:

If the last character is a Cl?, a line with just the
control character is typed on the next line (with a Vt)

It the last character is not a NL or a CR, the line is
typed without a NL (i.e., with TYPE),

Fcr Output to a File:

If just a NL is in the line, just the control character
is sent to the file.

If the last CHAP is not NL or CRf the control character
is added after the last character, except if 130
characters must be sent to the file«

If the last CHAH is a CP, it is included in the file.

OFF causes all output to be discarded.

CN is the default, and causes output tc qo to the
terminal«

lEPH causes outpnt to also go to the terminal.

NOTEPM is the default, and causes output to go the the
file but not tc the terminal.

OUTPUT is the default and causes just terminal output
tc be put to the file »FN termout« .

INOUI causes both terminal input and terminal output to
be put to the output file,

INPUT causes terminal input but not output to be put to
the output file.

NOINPU, is defaulted and causes input to not ao to the
file.

9:'

n-nrwifn hiir-1-i^.-Ti--- ■ ■ Hiiirrt'-^'5»^-'-^'mi ftfliTf VII' '"'II'TI I"- II i TT'T 'Til

PURGE

To purge all output currently received by the NCP,
This control is not currently iiplemented.

FEACEF fn ft
♦ PEADEP

To send a job to the RJS system at OCLÄ's CCN.

If fn and ft are defaulted^ input will come from the
cara reader.

TFINTEF fn ft
* PBIN1EP

1o receive printer output from the PJS system at UCLA^
CCN.

To receive punch output from the FJS sys-.em at UCLA's
CCN.

If fn and ft are defaulted, output goes to the printer.

PUNCH fn ft
* FUNCh

If fn and ft ..e defaulted, output goes to the punch.

n

l^^^^*^%t,i- ,r \iim- t'ttririiitiiifi ami ■Bifirrl
'T,'"" "^'"■miMiWitingi

^ritrr 11 w T if i °rrif. J

[TN73- •50-I(L.l)|

MACHINE SYSTEM HOST NUM KOST SITE PEP
DEC OCT HEX

HMC UCLA SIGNA-7 SEX 1 1 01 ARC SRI PDP-10 NIC 2 2 02
OCSE ÜCSE 360/75 OS/MVT 3 3 03
UTAH UTAH PDP-1C TENEX a a 04
MÜLTIC: 3 «IT H-6a5 MÜLTICS 6 6 06 SDC sec 370/155 ADEPT p 10 06
HAHV HAPVAPD PDP-1C US'7-. 9 11 ng
LL LL 360/67 CP/CM? 10 12 OA
CASE CASE PDP-10 10/50 13 15 CD CSU c«o FDP-10 TOPS-10 1« 16 OE
ILLIAC AMES B-6^00 7 15 17 OF >nis AMES 360/67 TSS/360 16 18 10 CCN ÖCLA 360/O1 OS/MVT 65 101 m SRI SRI-AI prp-^o TENEX 66 102 a2
E-ENA BEN PDP-10 TENEX 60 105 as
D«CG MIT PDP-1C ITS 70 106 Ub
FAND RAND-FCC PDP-10 TENEX 71 107 U7
TX2 LI TX-2 APEX 7 a 112 a A
EENE BEN PDP-1C TENEX 133 205 R1:-
BITAI MIT PDP-10 ITS 13U 206 86

Fig, ".. 1: Serving Hosts on the APPA Network

T.

"TTN73-50-IO..2)]

00000000011111111
1000C1111C0001111
20011001100110^11
3 0 10 10 10 10 10 10 10 1

4567 ♦ ♦ ♦ 4- ♦■ ♦ ♦ ♦ + -.--♦ 4 ♦ ♦ ♦ ♦ ♦ ♦
C00C INULIDLHES | |SP | G | - | | } I - I 0 I I I I 0 |

♦ ♦ .». —- 4 ♦ + 4 4, 4. 4 4 4 4 4 4 «».-4 *

C001 |S0H|DC1|S0S| I I 1/1 I a I j I 0 I 1 I A I J (i 1 !
4 4 4 4, 4. 4—-* 4- 4----<f 4----f + ♦ ♦ ♦ ♦ ♦

1010 jSTX|DC2|FS ISYNI | | | |b|klsj2|B|K|S|2|
4 4 4 4 4. 4. 4. 4. 4 4 4. 4. 4.--« ♦«••4 ♦ ♦

0011 IFTXITM | (| | j | |c|l|t|3fc|L|T|3|
4 4 4 4 4, 4 4 4. 4 4. 4 4 4 ♦ ♦ ♦ ♦

010C |?F |FES|EYP|PN | | | | |d|l|!l|*|D|ll|0)<li
4 4 4. 4. 4, 4 4 4 4 4. 4 4 4. 4 * -f -f

C101 |PT |NL |LF IPS I { | j ', e | n | v | s j E | N | V | 5 |
4 ...4 ...4 4 ...4.«...- + 4........ 4. ••4.« 4.. »4... 4.--.- 4.~.4....4....4

cur lie IBS jETBioc i i i i | f I o i v i * I r I 0 I W | 6 |
4-«-4 4 4 4 4 4 4. 4 4 4 4 ♦ 4 ♦ ♦---♦

C111 IDELjTI |ESC|EOT| I | | |q|p|xl7jGjp(X|7!
4 4 4 4 4. 4. 4 4. 4 4. ^ 4 4 4 4 4....4

1000 IGE I CAN I | | | I | I h | q | y | • | H | 0 I Y I 8 |
4 4 4 v 4 4 4. 4 4 4. 4, 4 ♦ ♦ ♦ 4- 4

1001 I FLFI EM I I I I I I ji|r|2}9|ijR|2|9f
4 4 4 4 4 4--- 4- ♦ ♦ + f ♦ ♦ 4 4- 4- ♦

1010 I SH«|CC |Sf1 I I ^ I ! I I : I I I I I I I I I
4 4 4 4 4 4 4 >4. 4 4. 4 4 4 4 4- ♦ ♦

1011 |VT |COl|CU2|Cn3| . I $ I , I # I { I) I •- I ^ I I I I f
4 ♦ 4 4 4 4 4 4. 4-^» ^^«-4. 4 4. 4. 4-~~4> f

1100 IFF IIFSI IDCUl < j * j % I 3 j < I n I r I -, I | | j |
4 4 4 4 4 4—--.4.«--4.^ 4 -.»4 4. 4 4 ~... 4. 4- 4.--.4

1101 |CB |IGS|ENVINAKI (I) I . I • I < I > I [I] I I I I I
4 4 4 ---4 ♦ -4 4- ♦ ♦ 4- ♦---4- 4- 4 ♦ 4- ♦

1110 ISO IIPFIACKI l+l;l>i=l*l±l>l»fcl I I I I
4 4 4 4. 4. 4 4 4. 4 4. -.4- ♦ 4- ♦ ♦ 4- 4

1111 |SI IIOSI PELISÜBI ||^j?|"l4|«|«|-| I I ! I
4 4 4 4. 4 4 4—-.4 4-—4. 4. 4 4 ♦ > ♦ ♦

4 4 4 4 4 4 + 4 ♦

|0|1|2|3|*|5|6|7|
4. 4. 4 4---* ♦ ♦ ♦ 4-

Codp Structure

Fig. T.2: Th€ EBCDIC Code

95

 .——^—■ ■—~—

 mifiMiiiiiiw aiiiifin i"

TN73"50-I(L.3)

800C0000C
7 0 0 C 0 1 1 1 1
6 0 0 110 0 11
5 0 10 10 10 1

0Ö00 !NüL|rLE|?P | 0 | c7) j P j | P |

0 001 |SOFjDC1| ! I 1 I A I Q I a I q I
4 4 4 4 4 4 4 4 4

0010 |STX|DC2| "|2|B)P|fc(r!
4 4...4 4... 4. 4..-4«..4 4

0011 |ETX|DC3| # I 3) C I S I C I s j

0100
4 4 ^ .4 4 4

|FOT|DCa| S|4|D|T|d|t|
4 4 4 4 4 4 4 4- . -4

01'M jEWCINAKI % j S I 5 j Ü I e j u I
4 .4 4 4 4 4 4 4 ♦

I AC FIS Y N | r. j 6 j F I V 1 f 1 v 1 0110
4---4 4- .4 4

0111 IBEIIETEI •|7|G|W|q|w|

100 r\
4 4 4 4 4 ♦ 4 4 4

IPS (CÄNI (|8|H|X|hlx|
4. 4 4 4 4 4 4 4 4

1001 |HT |Ef! I) I 9 I I I Y I i I y I
4 4 4. 4 4 4 4 4 •*•

101^ |LF !SÜP| »|:|J|Z|j|Z|
4 — .4 4 4 4 4 4 ♦ ♦

1011 |VT IESC1 ♦ I ; j K I [I k I { I
4 4 4 4 4 4 4...4 4

1100 IFF I FS I , f < I L I I 1 I I I
♦ ♦ 4 4 4

1101 |CR »PS I - f * I H I 1 I » () j
4 4 4 .4 4 4

1110 |SO IPS | . | > | N | In«-!
4 ♦ 4 4—-4 4. 4 4 4

1111 |SI fUS I / I ? | 0 j ^ I 0 IDEM
4«--4 4- ♦ ♦ ♦ + ♦ ♦

4 4 4. 4 <r 4_-*4_--4 4

M|7|6|5|U|3|2|1|
♦ ♦ ♦ ♦~--^

Code Structure
4 4. T ^ 4. 4.-«-4 4 4

Fig. L.~: Tise OSASCII Code

96

TN73- -50-r(L.M

SYMBOLS EBCDIC ÄS CII ASCII ASCII EBCDIC
DEC OCT HEX HEX DEC

0 0 (CO) MJI (00) 0^
1 1 (01) SOH (01) 01
2 2 (02) STX (0 2) 02
3 3 (03) FTX (0 3) *3
a a (Oa) EOT (37) 55
5 5 (05) FNC (2D) U5
6 6 (C6) ACK (2E) ae
7 7 (07) EEL (2F) a7
9 10 (08) ES (16) 22
9 11 (09) HT (05) 05

10 12 (CA) LF (25) 37
11 13 (OB) VT (OB) 11
12 ia (OC) FF (OC) 12
13 iri (CD) CR (OD) 13
id 16 (OE) c0 (OE) la
15 17 (CF) il (CF) 15
16 20 (10) DLE (10) 16
17 21 (11) DC1 (11) 17
18 22 (12) EC2 (12) 18
IQ 23 (13) DC 3 (13) 19
20 2U (1*0 DCU (3C) 60
21 25 (15) NAK (3D) 61
22 26 (16) SYN (32) c0
23 27 (17) ETE (26) 38
2a 30 (IP) CAN (18) 2a
25 31 (19) EH (19) 25
26 32 (IA) SOB (3F) 63
27 33 (1P) CTI (27) 39
29 3a (1C) FS (1C) 28
29 35 (10) GS (ID) 29
3C 36 (1E) FS (IE) 30
3 1 37 (IF) ur (1F) 31

Pig, I.a: TELNET ASCII/EECIDC Code Mapping

97

TN73. .50-I(L.4)

SYUBCLC EBCDIC ASCII ASCII ASCII EBCDIC
DEC OCT HEX HEX DEC

32 ao (20) SP ("0) 64
33 ai (21) ; C5A) 90
^u U2 (22) ii (7F) 127
35 113 (23) 1 (7B) 123
36 U4 (24) 1 (SB) 91
3 7 HS (25) <* (6C) 1C8
38 46 (26) 8 (50) Sr
39 U7 (27) « (7D) 124
ur ^0 (28) ((ftD) 77
Ui 51 (29)) (SD) Q3
tt2 52 (2A) * (5C) Q2
a3 S3 (2B) ♦ C^E) 78
uu 5a (2C) f (6D) 109
US 55 (2D) - (60) 96
U6 c-6 (2E) • (ÜB) 75
'41 57 (2F) / (61) 97
i' 1 60 (30) C (FO) 240
«49 61 (31) 1 (F1) 241
c0 62 (32) 2 (F2) 242
c.1 63 (33) 3 (F3) 243
52 64 (34) u (F4) 2 i4
53 65 (35) c (F5) 7'v5 cu 66 (36) e (F6) 246
55 67 (37) 7 (P7) 247
56 70 (3H; e (FP) 248
57 71 (39) 9 (FQ) 249
58 7? (?A) i (7A) 122
59 7 i (3B) » (CF) 94
60 7 4 nc) < (f*^) 76
61 75 (3D) s (7F) 126
62 76 (3B) > (6E) 1 10
63 77 (3F) 7 (6F) 1 11

Fig. L.tt: TEINET ASCII/EBCIDC Code »lapping
(Cent inued)

9o

1 TN73 -50-I(L.4)

ASCII ASCII ASCII SYHBOLS EBCDIC EBCDIC
DEC OCT HEX HEX DEC

eu 100 (aO) 2 (7C) 124
65 101 (ai) Ä (C1) 193
66 102 (42) E (C2) 194
67 103 (U3) C (C3) 195
68 ioa (««*) ü (C4) 196
69 10b (45) E (C5) 197
70 106 (46) F (C6) 198
71 107 (47) G (C7) 199
72 110 (^8) H (C8) 200
73 111 (49) I (C9) 201
^U 112 (4Ä) J (DI) 209
75 113 (^B) F (D2) 210
76 114 (4C) . I (D3) 2 n
77 115 (4D) B (04) 212
78 116 (^E) N (D5) 213
79 117 (4F) 0 (D6) 214
80 120 (50) P (D7) 215
81 121 (51) C (D8) 216
82 122 (52) R (D9) 217
83 123 (53) S (E2) 226
8a 12a (54) 1 (E3) 2 27
8^ 125 (55) ü (EU) 228
86 126 (56) V (E5) 2 29
87 127 (57) w (E6) 2 30
88 130 (58) 8 (E7) 231
89 131 (59) Y (EP) 232
O0 132 (5A) Z (EQ) 233
91 133 (5B) [(AD) 173
«2 13a (rC) <? (UA) 74 (BACK-£LAS>
93 135 (5D) 1 (3D) 189
9a 136 (SE) (71) 113 (CARAT)
cc> 137 (5F) _ (6D) 109

Fig. L.4: TELNET ÄSCII/EBCIDC Code Marping
(Continued)

99

 _. ■^-yiffgnSfrli iiiJM—irmfirri f

jJTNTB-SO-ia/O

ASCII ASCII ASCII S IH30LS I'.BCDIC EBCDIC
DEC orv HEX HEX DEC

«6 1U0 (^0) (79) 121 (GFAVE)
Q7 iai (61) a (81) 129
98 1U2 (^2) fc (82) 130
99 itn (63) c (83) 131

100 ma (64) a (84) 132
101 ia5 (65) 9 (P5) 133
1C2 146 (66) f (86) 134
103 la? (67) 9 (87) 135
1CU 150 <^8) h (BP) 136
105 151 (69^ i (89) 137
106 152 (6A) 1 (Q1) 145
1C7 153 (6B) k (92) 14f
108 154 (6C) 1 (0 3) 147
109 155 (6D) ■ (94) 148
110 156 (6!?) n (05, 149
111 157 f6F) 0 (96) 150
112 160 (70) F (97) 151
113 161 CD q (98) 152
na 162 02) r (99) 153
115 163 (73) e (A2) 162
116 164 (74) t (A?) 163
117 165 (75) u (A4) 164
11B 166 (76* V (A5) 165
119 167 (77) w (A6) 166
120 170 (78) X (A7) 167
121 171 (79) y (Ä8) 168
122 172 (7A) z (A«) 169
123 173 (7P) { (8P) 13^
12a 174 (7C) 1 (4F) 79 (^/»VOF*
12t) 175 (7D) } (QB) 155
126 176 (7E) -» (5F) 95 (TfLDE/NOT)
127 177 (7F) DEI (07) 7

ASCII ASCII ASCII T ELNET EBCDIC EPCDIC
tEC OCT HEX CO RTPOLS HEX DEC

128 100 (80) DATA- BARF (80) 128
129 101 (81) Bt^FAK (38) 56
13r 102 (8 2) NOP (17) 2 3 IDLE
131 103 (8 3* NO EC HO (Iff) 20 RESTORE
132 104 (8 4) ECHO (2^ ?c

133 105 (8 5) HIDF- YOUF-IN'PUT (24) 36 BYPASS

Fig. 1.4: TEINF^, ASCTI/EBC IDC Code Happing
(Con* inutd)

100

ttä&m*^. * ^BSMfirtr^rriiBr^ 1 H'^i'MMriffMIll jftfTTnrMnriiiaciTM m .^^-^^^^TT wr-wr ■IBB ■ .jfiiiaiririMfr^lfiiMTr.

TN73-50-I(L.5)

EBCD^ EBCDIC ASCII

CINT (UA) - ESC (27) dß)

r.TL < (UC) = LEFT PFACKET
CTL > (6E) = RIGHT BRACKET (BD)
CTL ((40) = 1EFT EFÄCE
CTL) (?D) = RIGHT EPÄCE
CTL / (61) = BACK SLASH
CTL " (7F) = CAPAT
C'rl • (7D) = GRAVE

CTL 6 (F6) = FS
CTL 7 (F7) = GS
CTL 8 (r8) « RS
CTL 9 {F9) = öS
CTL _ (6D) s US

CTL - (5F) = DEL

CTL d (7C) = NUI
CTL A rci) = son
CI1 B (C2) = STX
CTI C (C3) --- ETX
CTL C (CU) - EOT
CIL E (C5) = ENQ
CTL P (C6) = ACK
CTL G (C7) = BEL
CTI K (CB) = BS
CTL I (C9) = KT
CTL J (D1) = LF
CTL K (D2) = VT
CTL L (D.l) = fF
CTL H (C4; = CP
CTL N (D5) = SO
CTL 0 (D6} = SI

CTL P (D7) = DIE
CTL Q fVjQ) = i;C1
CTL P (D9) = DC2
CTL S (E2) r DC3
CTL T (E3) = DC«
CTL Q (EU) = NAK
CTL V (E5) = SYN
CTL H (S6) = ETE
CTL X (E7) = CAN
CTL Y (E8) = E«
CTL Z (£9) = SUB

Fig. L.5: 27ai Keytoard Control Character Mapping?

101

°^~°*~^ -^tf^a V rfrJTTVMMir 11 in i MnfTtirhlrai ^i Wrm

(AD) (5B)
(BD) (5D)
(8B) (7B)
(9B) '7D)
(UA) •C)
(71) l5E)
(79) (60)

(1C) (1C)
(ID) (1D)
(1E) (1E)
HF) (IF)
OF) (1F)

(07) (7F)

(00) iOj)
(01) (01)
(02) (02)
(0 3) (03)
(37) 'OU)
{2 m (05)
(2£) (ÜC)
(2F) (07)
(iß) (03)
(05) (09i
(25) (CA)
(0b) (OB)
(0C) (OC)
(CD) (OD)
OE) (OS)

(OF) (OF)

MO) (10)
01) (11)
(12) (12)
(13) (13)
(3C) (U)
(3D) (15)
(32) (16)
(26) (17)
(18) (18)
(19) (19)
(3F) (U)

|TN73 50-1 (LTS)]

EECDIC EBCDIC ASCII

CTL 1 iF1)
CTL (F2)
CTL 3 (F3)
CTI u (F4}
CTL 5 (F5)

EFEAK (38)
NOP (17)
NO ECHO (1ü)
ECHO (23)
HIDE yOU INPUT(2ü)

(81) - - CIRCLE C
(82) ■ - IDLE
(93) ■ - RESTOHE
(84)
(35) • • BYPASS

DATA MARK (80) CANNOT BE ENTFRED FROM THE KEYBOARD

THE FOLLOWING 27^1 KEYSOARD CHARACTERS DO NOT
HAVE A MEANING AS A CONTFOL:

S f * % G

SPACE
BACKSPACE
TAB

Fig. L,5: 27/41 Keyboard Control Charact^
(Continued)

r Mappings

102

mmsk ^ifniitiiiiri m iii' fTrra^frri ■"iliB^ iliffTi'iTTnili liT" ti'llMil

TN73-50-I(L.6)

►y 012 3 4 5 6789ABCDEF

u
5
6
7

i

-./.
#.^,

8 • . a . b . c, d . o, f . 9. h. i . • , • •
9 • • j.k,l«B.n,o«p.q.r. • • • •
A . • .s.t.u .7.v.x.y.z
B
C . .Ä.B.C.D.E.P.G.H.I
C • •J»K*L*n«N«OaP«Q*n* • • • •
E . . .S.T.H.f.H.X.T.Z
F .0.1.2.3.a.5.6.7.8.9

Hex Code X^y1 for Characters

••Y
xx

C6
07

OB
09
10
11
12
13
la
15
16
17
16
19
20
21
22
2?
2ü
; ^

0123456789

<. (.♦.!

.!.$•♦.)•;.-«. ./• . •
 r.%. .
.>.? ".
. . .:.».a.«.=.". .a.
• b. c.d. e.f•g.h•1 • • •
 j.k.l« oi.n.
•o.p.g.r
. . .s.t.u.v.v.x.y.z.

• . • «A.B.C.D.E.F.G.
.H.I J.
.K.L.H.M.OeP.Q.R. . .
 S.T.ü.V.
.w.x.y.z
.0.1.2.3.4.5. i 7.8.9.

Decicial Code D'xxy» for Characters

Horizontal Tab
Lower Case
Print Restore
New line
Back Space
Idle
Print Bypass
Line Feed
Opper Case

Hex Code X'xy* and Decimal Code D'xxy1 Control Codes

HT X«G5« = D»005«
LC X'06« - D«006'
RES XM4« = D'O/^»
NL XMS« s D«C1 '
ES X» 16» - D»02.
1L X«17« ■ J'023»
BYP X»24« = D'oae»
IF X^S» = D«037»
UC X»36f s D,054•

Fig. 1.6: 2741 Character and Control Codes

103

im-rirtir- i^aaS^Bmrn, . . .

[TN73-50»I(L>7)|

»y ö123a56789ABCDEF

0 • .A.B.C.D.E.F.G.H.I,
1 .S^J.K.L.M.N.O.P.Q.P.
2 .-./.5.T.Ü.V.W.X.Y.Z.
3 .0.1.2.3.4.5.6,7,8.9.
i* . .A.B.C.D.E.F.G.H.J.
5 .o.u.K.L«M.N.O«r'iQ. P.
6 .-./.S.T.U.V^W.X.Y.Z.
7 .0.1.2.J.4.5.6.7.8.9.
8 . .A.B.C.D.E.F.G.H.l.
9 .&.J.K.L.M.H.O.P.Q.R.
n, • ""•/.S.T.u.V.W» X.Y. Z.
B .0.1.2,3.4.5.6.7.8,9.
C . .A.B.C.D.E.F.G.H.l.
D .ß.J.K.L.M.N.O.P.Q.P.
" .-./.S.l.U. V. 11. X.Y. 2*
F .0.1.2.3.4.5.6.7,8.9.

...<.(, ■♦•, i-
,$.*.). ♦ •

-^,
. f . * . • >

N

• ,.<. (. ♦ , 1.
.$.♦.) •» , -i ,

.> .? ,
tl

... <• (• ♦ , 1.

.$.♦.) • ♦ » ", «

.i.a.».
,> i ?.

) 11 #

...<.(, ♦ •1 •

.I**.) » » , —» #

>. 7#

— y
XX

Hex Code X'xy«

0123456769

00 . .A,B,C.D.£.F.G.H.I.
01<. (.♦. | .G.J. K.I.
02 .H.N.O.P.Q.R. ,$.*.).
03 . ;.-.-./,S.T.O.V.W.X.
04 .Y.2. .,.*._.>,?.0.1.
05 .2,3,^.5.6.7. 6.9.: .#.
06 .5.«.=.". .A.E.C.D.E.
07 ,F,G.H.I. .,,<,(,♦. | .
03 .6,J.K.L.M.N,0.P.Q,--{.
09 . .i.*.).;.-.-./.S.V.
10 ,Ü.V.W,X.Y.7. ., %. .
11 ,>.?.C. 1. 2.3.4.5.6.7.
12 .e,9.:,#.d. •, = .". .A.
13 .B,C.D.E,F,G,H.I, ...
14 .<.(,♦.!.G.J.K.L.M.N.
15 .CP.Q.F. .$.*.) . ;.-».
16 .-./.S.T.'J.V. W.X. Y.Z.
17 . .,.%._,>. ?.0. 1. 2. 3.
18 .4.5.6.7.8.9. :.#.<«. «.
19 , = .»». .A.B.C.D.E.E.G.
20 .H.I , ,.,<,(.♦.! .S. J.
21 .K.L,H.N.O.P.Q.R, .$.
22 .♦.) ,;.-..-./.S.T.Ü.V.
tC * .H.X.l.«!. • 0 • m * • s • f »

24 .0. 1.2. 3.4.5. €.7.6.9.
25 ,:.#.a.».=.".

Decimal Code D'xxy1

Fig. L.^: Code for Characters on a PN Print Train

104

-nwr afllrltfTniii rr-f-nriii TrTfMiitfiiii •

TN73-50-I(L.8)]

•y
x
C123456789ÄBCDEF

0
1 . ,
2 ...
3 , . .
4 e. ..<.(.♦. j .
5 .6 \.Z,*,.) .; .^.
6 •-./ ,.*. .>•?.
7 :•♦.*.T. = .".
6 . .a. b.c.d.e. f. q. h. i. . {.< •c • + .-|-.
9 . .j.y. .l.m.n.o.p.q.r. .].a.>.±,»,
A .-.0.s.t.u.v,w.x.y.2. .«*•<-.[.>.•,
E .O.l.2.3.*.5.6. 7,8.9. .J0.].#.-.
C . .A.B.C.D.E.F.G.H.I« . . • • . .
D . .J.K.L.H.N.O.P.Q P. . •
£ . . .S.T.Ü.V.W.X.l.Z
f .0.1.2.3.4.5.6.7.8.9

Hex Code X'xy«

••y
XX

0123456789

00 ...
01
02
03
04
35 .
06
07 /...<.,(.♦.!.
08 .6
A9 .!.$.*.).;.-.-./. . .
10 , #.%. .
11 .>.? *.
12 . . .t.i.d.».=.". ta.
13 .t.c.d e.f.g.h.i. .{.
14 .<.<•♦•+• .j.k.l.B.n.
15 .c.p.q.r. .].u*} , t,•,
16 .-.0.s.t.u.v.w.x.y.2.
17 . . t, r,[.>.*,0,1.2# 3.
18 .♦.5,6,7.8.9. ,-»,,.].
19 .#.-. .A.B.C.D.E.i.G.
20 .H.I J.
21 .K.L.M.N.O.P.C. F. . •
22 S.T.H.V.
23 .W.X.Y.Z
24 .0 1.2.3.4.j.6.7.6.9.
25

Deciaal Code D'xxy1

Fig. L.B: Code for Characters on a PN Print Train

103

 ummimämäämi i^rnrimi

Pefererc^r

1. POLT, BERANEK € NEWMAN Inc. Report Numfcer 176^r January
1969r AD-6e2 905.

3.

14 .

P

1^.

^. BOLl, BERANPK C NEWMAN Inc. Interface Message
Processor, Specifications for the In*.ercornection of a
HOST and an IMP. Report Number 1 <22, February 1971 Revision•

3PYÄN, P.?. I^P Interface Specification. Private
Ccramunication, December 1970.

rkT.T*, r,, CFJCKEH, j. R CERF, V. HOST-HOST
C .aitnunicat icr. v^n+n^zl ... *-UQ APPA VPtwork. AFIPS
Conference Proucsdingr, 1970 Sprina Joint. Computer
Conference, Atlar-i- City N.J., 5f.«-c07.

5. COLE, G,D. Ferformance Heasur» ents on the A?FA
Network. IE£r Transactions on Copirunications, Vol
COn-2^f No 3, June 1972, 63C-636.

6. CRGCKEF, S. C. HOST/HOST Protocol fo; the Ah?^ Network.
Occument Number 1, 1071 Revision.

7. CROCKER, S., HEAFNER, J., «ETCALFE, P. G POSTEL, J.
Function Oriented Protocols for the AFPA Network.
AFIPS Conference Proceedings, 1972 Spring Joint
Computer Conference, 271-280.

HEART, F., KAHN, R. , ORNSTEIN, S., CPOWTHSR, W. &
WALDEN, [, The Interface Messaae Processor for the
AR^A Computer Network. A^IPS Conference Proceedings,
1970 Spring Jcint Computer Conference, Atlantic City N.J., 551-567.

IZfi CP-67/C.1S User's Guide. Cambridge Scientific
Centre, IBM Data Processing Division, 32^-2015, July
1969 Revision.

KIRSTIIN, ?.T. Cn the Status of the AFPA Network,
hummer 1Q72. IND^A Note 27c, University of London
[nstitute of Computer Science, November 19^2,

IcKSNZIS, A. Proposed Change in IMF-to-HOST Protocol,
letwork Working Hrour , Request for Comment 312, NIC
>3U2, 22 larch 1^72.

12.
-« t w,r v.rwwrnr.«- w.. rncrTT n ...

6
► f
[2

ln6

 i i i tfriMHgBn^^^^irnj^fiT»i".WiVftTM. t^i ^■^■-~>-~-..■ ■* ** , ^^.^^l.^^^-.TB£c^t^m

■ t/'i,'.,^fiTfr» ^■■iM...^-..^«.««««!' iiiiii—MÜM^l

13. ORNSTtilN, S. f HEART, ?,, CROWTMKP, W. , PT':TN^# H. ,
RÜSSEL, 5, r. HICHEl, A. The Terminal IMP for th* AFF^
CoBfuter Network. API PS Conferinc«» Procp^riinqn, 1fy72
rprinq Joint Ccmput*u Conff?r€ncft# 2ai-2c>'4.

ia. ()• SULLIVAN, 7.C. TELNET Protocol. H^twor^ Working
Group, Roqiifr^t for ConiBPnt 1rflr »IC 676R, 19 May 1071.

1r. FOSTEL, J. A Proferr^i Official Conn^rticn Ptotorol.
Network Workinq Group, R^quf?r>t for Comn^nt 16% NIC
^779, 25 May 1971.

1^. ROBERTS, L.G. A Forward look. Journal of th*> Arm^d
Forces Comniurica* ions and Electronics Arnocia tion , Vol
XXV, Ho 12, Aus-t I^M, 77-??1.

17. FOFERTS, L.G. 6 WFh.TlER, B.D. Cor.put^r Nftwori:
Developaent to Achieve Pesourc«? "Iharin*. Al i'n^
Conference Proceedinqs, 197^ Sprinq Joiit '.»"•puter
Ccnferencf, cu^sa^.

If. SPOONBH, C.P, M Software Architecture for the 70« s:
Part 1 - Tie General Approach« oftwar^ Practice ana
Experience, Vol 1, 1971, t-17.

1^. HILDEN, D.C. A System for Interprocesn Communication
in a Resource Sharinq Network. Communication5- of the
ACM, Vol 15, Mc U, April 1972, 221-230.

20. WHITE, J, E. An NCP tor the ARPA V^twnrk, Computer.
Research Laboratory, UCSE, California, 21 December 7C.

107

