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ABSTRACT 

Present methods for computing the shielding efficiency of 

metallic plates with apertures are based on the analysis of a 

plane wave Incident on an Infinite conducting sheet.   When applied 

to actual enclosures with internal radiation sources, these methods 

lose all validity, and obviously fail to predict the measured 

results.   Semi-empirical formulas are available for special cases, 

but no serious analytic investigation has ever been conducted. 

This dissertation develops the theory of electromagnetic 

radiation from metallic enclosures with apertures, excited by 

an internal source at frequencies below the fundamental resonance 

of the enclosure. 

The enclosure with an aperture is analyzed from two different 

points of view:   as a cavity with a small aperture in a wall; and 

as a waveguide section short-circuited at one end and open at the 

other end. 

Rectangular geometries are used throughout, since these are 

by far the most commonly encountered in practical enclosures and 

cabinets. 

Using the corresponding dyadic Green's functions, the fields 

generated Inside the enclosure by some simple sources are determined. 

In addition to the case of a Hertzian dipole - the building block 

for more complicated sources - a center-fed dipole and a square 

loop antenna are analyzed.   The fields radiated through small aper- 

tures in a cavity are determined using Bethe's theory of diffraction 
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by small holes.   The radiation from an open waveguide Is calculated 

with the help of field equivalence theorems, with assumptions 

applicable to the case of evanescent waves. 

The final step Is to derive expressions for the "Insertion 

Loss" of the shield, defined as the ratio of the field strength 

at a point external to the shield, before and after the insertion 

of the enclosure.    To accomplish this, the effect of the shield 

upon the input impedance of the antenna is analyzed, and expressions 

obtained for the applicable cases. 

The resulting insertion loss expressions are numericall;,' 

evaluated for some representative cases, and graphically compared 

with a series of measurements performed to obtain experimental 

confirmation.    Very good agreement Is obtained In all cases, estab- 

lishing the validity of the analysis. 

Thus, this work provides accurate prediction capabilities 

for the design of shielded enclosures with apertures. In the presence 

of Internal or external noise sources (the latter is a consequence 

of applying the reciprocity theorem).   Hence, It constitutes a useful 

tool in the solution of electromagnetic interference and susceptibility 

problems. 
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Chapter I 

INTRODUCTION 

Of all the topics comprising the broad field of Electromagnetic 

Theory, one of the most relevant but least developed Is that of 

electromagnetic shields.   The most obvious reason for this state of 

affairs Is that very few three-dimensional boundary value problems 

have exact or even approximate mathematical solutions, and those that 

do, are seldom representative of practical, real-world problems.    A less 

obvious, but not less important reason, is that most ennineers and 

physicists working with electromagnetic waves emphasize the optimiza- 

tion of radiation and the generation and transmission of propagating 

waves and in so doing, disregard those effects that are of paramount 

importance in shielding theory. 

An excellent example combining both of the above reasons is 

provided by the theory of waveguides and resonant cavities at fre- 

quencies below their fundamental mode.   The fact that at low frequencies 

the waves in these structures become "evanescent", seems to have 

justified their neglect, except for casual and sometimes misleading 

statements. 

One extremely Important application for such a theory, if it 

were systematically developed, is the prediction of the shielding 

effects of closed shields with apertures.   A typical electronic or 

electromechanical piece of equipment consists of a collection of 

circuits and devices, surrounded by a metallic cabinet or by covers. 

 -    ,i,**mm**m*mmm,^*^^*^a^^a ^mmmmmmmmmm 



This cabinet, besides providing obvious physical protection, acts as a 

double-purpose electromagnetic shield:   it protects the sensitive 

portions of the equipment from the electromagnetic "noise" of the 

environment, and It contains the "noise" generated in Its interior. 

The concern about generating unwanted electromagnetic waves 

("pollution of the spectrum") has been growing rapidly over the past 

few years.   Germany has taken the lead with its "RFI   Law", which 

imposes strict limits to electromagnetic emanations from any electrical 

machine or appliance marketed in that country. 

Other countries, including the United States, will soon follow, 

and manufacturers will need a reliable mean of predicting the degree 

of shielding afforded by metallic enclosures, so that function and 

cost may be optimized. 

In most situations, the leakage of electromagnetic energy from 

a metallic enclosure is dominated not by the physical characteristics 

of the metal, but by the size, shape and location of the apertures 

that are needed for such various reasons as:   input and output 

connections, control panels, dials, ventilation panels, visual access 

windows, etc. 

Moreover, the mere presence of a conducting enclosure around 

a radiating source changes—sometimes dramatically—the radiation 

characteristics of that source.   It does so by affecting its input 

Radio-Frequency Interference 
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impedance and therefore changing its current. 

All these things have to be accounted for in a comprehensive 

theory of shielding applicable to enclosures with apertures. 

No serious attempts have been made to date to develop such a 

theory.   The treatment of electromagnetic leakage through apertures 

has been confined to the case of incident plane waves on an infinite 

screen, and the various formulas available in shielding handbooks 

are derived from that case. 

In the present work, we develop the theory of electromagnetic 

radiation from metallic enclosures with apertures, excited by an 

internal source. 

We have confined our treatment to frequencies below the funda- 

mental mode of the enclosure (i.e., below the cutoff frequency of the 

cavity).    For typical cabinets, the "cutoff" frequency is in the tens 

or hundreds of megahertz, and the radiation spectrum of most noise 

sources seldom shows a significant contribution at these or higher 

frequencies.   Thus, we are covering a very significant portion of the 

RFI spectrum.   Besides, the inclusion of resonance effects would call 

for very different techniques from those used here. 

We have also limited ourselves to rectangular geometries, 

which are by far the most typically encountered In cabinets and 

enclosures.   Nevertheless, the techniques here presented may be easily 

duplicated for other regular geometries. 

The approach taken Is to treat the enclosure as a resonant 

cavity below cutoff.   This allows us to replace It with a perfectly 

.  .      . MMlMBiaMMiaiallMaliaaaaagaaaMIIMaMMMBMallgBllMHHUBaM 



conducting cavity, obviously assuming that the wall losses will be 

snail compared to the energy leaking through the aperture. 

After finding the fields generated In a rectangular cavity by 

typical radiation sources, we apply Bethe's theory of diffraction by 

small holes to determine the fields radiated by the aperture. 

In order to cover the case where a whole wall Is missing in 

the enclosure (representing for Instance, an open door or missing 

cover), we develop the theory of typical antennas inside a waveguide 

section, short-circuited at one end and open at the other end.   Field 

equivalence theorems are then invoked to find the radiation from the 

waveguide's "mouth". 

The effect of the cavity (or waveguide section) upon the 

antenna is treated next, so that we can derive expressions for the 

quantity of Interest in shielding theory:   the "Insertion Loss" of a 

shield, defined as the ratio of the field strength at a point external 

to the shield, before and after the insertion of that shield. 

Our final task is the development of equations for some 

specific cases, and the comparison of theoretically predicted results 

with experimentally measured values. 

Throughout this thesis, we will be forced to make approxima- 

tions and assumptions, some of them justified on purely heuristic 

grounds.   The correlation between predictions arising from the two 

different approaches, and their experimental confirmation, will provide 

the final word on their validity. 

MMIMMH MM« 



Chapter II 

ELECTROMAGNETIC LEAKAGE FROM A CAVITY WITH SMALL APERTURES 

In this chapter we shall find expressions for the electromagnetic 

fields leaking through small apertures in a perfectly conducting 

rectangular cavity excited by a source located in its interior. 

To accomplish this, we shall first make use of the Green's 

functions for a rectangular cavity to determine the interior fields 

produced by simple antennas in the absence of apertures.   As is the 

case throughout this dissertation, we shall only consider frequencies 

lower than the first resonant frequency of the cavity, i.e., the 

cavity is excited below cutoff. 

Then, we shall make use of Bethe's theory on the "polarlza- 

bility" of apertures'-   , which will allow us to find the electromagnetic 

fields radiated through the aperture. 

II.1   Green's Functions for a Rectangular Cavity 

We start by defining the electric scalar potential $ and the 

magnetic vector potential Ä in the usual way 

§ = v x Ä (II.1.1) 

! =-v^ + jj (II.1.2) 

If we now choose to work in the Lorentz gauge by defining 

0 0 (II.1.3) 
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the field equations to be solved are the scalar and vector Helmholtz 

equations 

v2^ + k2* - - ß- 

72Ä + k2Ä ■ -u0 J 

(II.1.^) 

(II.1.5) 

where 

2n ksSaiVvo   sr (II.1.6) 

We are, of course, assuming that the fields are time-harmonic, with a 

time-dependence given by i^ .   The corresponding scalar and dyadic 

[21 
Green's functions are the solutions toL J 

72G(rI?0) + k2G(r|r0) - -6(? - ro) 

v2Gl?|r^o) + k2G(?|f0) = .U6(r-?0) 

(11.1.7) 

(11.1.8) 

where   U   is the "Idemfactor" (unit dyadic). 

On the walls of a perfectly conducting cavity, we know that 

tn x ! = 0      on      S (II.1.9) 

where S is the boundary surface. The corresponding boundary conditions 

for Eqs. (II.1.7) and (II.1.8) are 

* = 0 

^ • Ä « 0 

t x A - o n 

on (II.1.10) 

 -   ~~~*~~~~~~*~~*~*~~*-~~~~-~*~~^^ 



7 

The Green's functions thus obtained are then combined with the 

mathematical representation of the actual sources In the cavity to pro- 

duce the field potentials 

*(r) "   /       Gtfig-^d xo (II.1.11) 

"Vol 0 

l{r)-)      ^^0)'^o)dTo {II-1J2J 
Vol 

where   d^ is an element of volume. 

For a perfectly conducting rectangular cavity of sides a, b and 

d, associated with the x, y and z directions, the Green functions are 
[31 found to beL J 

m,p 

mitt onz,, , 

sin"^■, Sin^"   V1n(^" " 

s1n ^Vo) sin K^'M ; if y > yc 

sin (K^) sin [^(b-y^] ; if y < y0       (II.1.13) 

  ——^^ .^^^^^^.^^^^^^^^^^^^ 



?'^o) - i? E ? [V \^\ 
ID|P     np 

fy»\p(?; f     + 
mp 

+ k2mp Ty hp^ \ V{;,) %   + 

+ vx   (r ) ^v   (r) f xinpv o'   xmp       mp 

where 

K mp = k" - [fj * (ij 
k2 

mp = iff * (f 

(II.1.14) 

(II.1J5) 

(II.1.16) 

% " cos T    cos X (II.1.17) 

xmn = sinSM-sinif ^mp (II.1.18) 

1 ^Vo1 s1n[Vb-y)] ;ify>yc 
mP     V^^P^ * I sin(Kmpy)    sint^^b-y^]; if y ■  yo 

(II.1.19) 

cos(Vo),COsCVb"y):i ;ify>yo 

cosC^y) • cosCK^ptb^)] ; 1f y < yo 
v= w^%h)' 

(II.1.20) 

m  and   n   are positive Integers ranging from zero to infinity. 

    u 



em and   e     are Neumann factors, I.e., 

j 1 ; i f m - 0 
em 8 |2 ; otherwise (II.1.21) 

{x0, y0, z0) are the source coordinates and (x,y,z) are the field 

coordinates. 

Equivalent forms for fj(f|r ) and G(rfr ) may be obtained by 

cyclic interchange of x, y and z and their associated parameters. 

II.2   Electromagnetic Fields in a Rectangular Cavity 

In this section we shall make use of the Green functions to 

find the electromagnetic fields inside a rectangular cavity excited by 

simple antennas, namely:    a Hertzian dipole (or current element), an 

electrically short thin dipole, and an electrically small loop. 

Working in the Lorentz gauge, Eq. (II.1.3), we need only to 

solve for the vector potential   Ä   in Eq. (II.1.12), since the electric 

and magnetic fields are then given by 

t'-T-rr Ht't)*ut (11.2.1) 

i^ = —  ^x Ä (II.2.2) 
% 

II.2.1   Excitation by a Hertzian Dipole. 

Consider a current element of length L, defined by (see Fig. 1) 
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Figure 1 
Hertzian dipole in a rectangular cavity 
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J = T2Jz 
T^^U-a') «(x-b') ; d' -^< z < d' +^ 

(II.2.3) 
0 j Iz-d'I >f 

The vector potential t   1s given by Eq. (11.1.12), reproduced below 

Mr) * f       G(r|r0) • M0 J(r0) d T0 (II.2.4) 
Vol. 

Given  "7  in the z-direction, the only components of Green's dyadic 

that may contribute to the answer are 

Gxz     '     Gyz     and     Gz2 

Inspection of Fq.  (II.1.14) results in 

G    = 0 xz (II.2.5) 

G    = 0 
yz 

G sl    V 
zz     a? Lmj   "m"p 

m.p 

miix„ pnzÄ o o 
e_.e> •  Sin -T—   • COS 

a 

(II.2.6) 

sin ^    .   cos 1^.    .  K       .„(u    b)       • 
mp     ' mp 

lsin(Vo)  'Sln[Krn(b.y)];ify>y£ 

(sin(Kmpy) • sinCK^p^)] ; if y < yo (11.2.7) 
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Using Eqs. (II.2.3) and (11.2.7) In (II.2.4) we obtain 

t - TZAZ 

x  .Vo e_c_ • Sin -r- • COS m p    a 
EHZ 

m.p 

2d e<n mna' „ ^AC pnd' . .n pnL sin -g- • cos i^ • sin ^ 

(II.2.8) 

" V^^V1 ' 
slnd^pb^slnC^b-y)] ; if y > b' 

s1n(K|llpy)s1n[K|Tlp(b-b
,)] ; If y < b' 

(II.2.9) 

The electric field Is then found from Eq. (II.2.1), which now 

becomes 

t- 

resulting In 

'      ,-(!i)   tTj„A 

■j^^r Z^ ^-r* sinT•,^ 

(II.2.lo) 

m,p 

e4» mna' . „^ pnd'    c.   pnL . 1  
' sin —    cos if- • sin ^    R^srö^l 

'slnd^pb^slnEK^^-y)] ; If y > b' 

Islnd^^slnL^pM')] ; If y < b' (11.2.11) 

mn i     i ii 11 - -" _^__^_^.^M_^^_M^. 
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tn.p 

e4« nina'    „„. pnd'    r.   pnL .    1 . 
s1n _.. cos i-ü. . sin ^   dnCk  bV  • 

mp 

(-slnCy)') • cos [K^Cb-y)] ; if y > b' 

cosd^py) • sin ^(b-b1) ; if y < b' 

" "j m ITT Z^ cp ' s1n -T * cos ^ ' pn 

(II.2.12) 

m.p 

mna' .   pnd' 
a 

e4n mna'    „„ pnd'      .„ pnL sin —— • cos " j-   • sin Hn M 
V1^^^ 

sinlK,  b'jsinEK   (b-y)] ; if y > b' 

|s1n(V)s1n[K>np(b"b,)] ; ify * ^ (II.2.13) 

The magnetic field is obtained from Eq. (II.2.2), which we can 

now write as 

3A. 

%        % vx ay    y9x / 
(II.2.14) 

The cartesian components of this magnetic field are 

   ^.._,M_^^J«^_a^^^M^_M_^^_h^^^M^l^J^_J_.k^^MMMMa*iiiMMl 
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mila1 

,   „».«    „M pnz    d sin -r- ' cos üj- • ^ mnx 
a 

sin ir'cos T- •s1n T? • sMy) ' 

-sind^pb') • cosC^Cb-y)] ; ify >b, 

cosd^py) • sinE^pCb-b')] ; if y < b' (II.2.15) 

41 
Hy ■ ■ iT 2^   S cos T * cos T" a 

m.P 

pil 
r^ 'Tina' sin a 

1 

cos ßf- • sin ß^ 

K rsin(K   b) 
iiip        rip 

Hz = 0 

sind^pb') • sinCyb-y)] ; if y > b' 

sinewy) • sin^ptb-b')] ; if y < b' 

(11.2.16) 

(11.2.17) 

II.2.2   Excitation by an Electrically Short Dipole Antenna. 

We shall consider the idealized case of a center-driven thin 

dipole antenna, with the driving emf concentrated at its center.   The 

antenna current is assumed to be 

I  nn.aiaiM^i^MMMM««*^!!«!!!! ufmtmtmlimirdM*^^***mammm*m*äm 
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J = TZüZ 

Vo^lntlhr'^^'^y-b^lz-d^h 

; Iz-d'^h 

(II.2.18) 

The overall length of the dlpple is 2h. 

Repeating the process of part II.2.1, we arrive at the following 

field components 

Ex ^ -j ^ s 
4L     nr \-^ 

o      */   0   >      ^ mnx     t   pnz 
InTO" y~C ^    cos T ' s1n T" ' 

m,p 

mn t pn 
a   ' cT .   mna' — • sin -~ • cos 

22 a 

if) k 

• 

f!l.     cos^.cos(kh)] ■ 

V1^^^ 
sinC^pb') • sin^pCb-y)] ; if y > b' 

sinC^y) • sintyb-b')] ; if y < b' 

(II.2.19) 

Ey a -j Jd w V?Zs^-^- 
ni,P 

,(i2,sin^,cos^,[cos^-cos(kh)]' 
1       -^V'1 ,C0SVb"y):i; ^y^' 

(11.2.20) 

  .-..■^—.^^»^^-i^^—^ ^MMMMMMM« 
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■J ad sTnOT K T f-' e« • si nz 

o   m,p 
<« ™x    „. pnz . In — • cos ^ • 

\2        2 
W + k r T 

AV . sin ^f-' cos ^ •   cos ^ - cos(kh)     • 

•y^yr 

2kl. 
Hx = " ad sirUkh)   *-*    p 

sind^pb1) • sinCK^plb-y)] ; if y > b' 

sind^py) ' sinC^b-b')] ; if y < b' 

(II.2.21) 

E.    c-n   mnX «nc   MI  . ep    s1" — * "ST-* 

1 

W 
sin mna cos ß2f • [cos^-cos(kh)] • 

-sin(K   b') • cos[K   (b-y)] ; if y > b 

•^wn coslKy) • sin[K   (b-b')] ; if y < b' 

(II.2.22) 

H ''" o        > . „„„ mnx . ^ pnz 
y = ad s1

,n(kh)  f-f   Ep    cos IT    cos ^ f 
mn 
a 

w- 
, .J„ mna'     _.. — • sin —— • cos 

2 a 

k 

V^V1' 

££31 Ls fi^ - cos(kh)] 

sin(Ktnpb').s1n[Knip(b-y)J ; if y > b' 

sin(Ktnpy) • sln^Cb-b')] ; if y < b' 

(II.2.23) 

i »MMidU I  - . ■.  ■ _   -  -      -•  1  
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Hz « 0 (II.2.24) 

In these expressions, I0 1s the current at the input terminals 

of the antenna. 

II.2.3 Excitation by an Electrically Small Loop Antenna. 

In order to simplify our already cumbersome expressions, and 

without loss of generality, we shall evaluate the fields produced by 

a square loop of sides 2D. 

Since we have previously solved the case of a current element, 

and we are assuming that the loop carries a constant current I, the 

answer Is obtained by a straightforward application of the principle of 

superposition. 

From Fig. 2 and Eqs. (11.2.11) through (II.2.17), it is easy to 

obtain expressions for the fields of a square loop. With the help of 

trigonometric identities and after rearranging terms, we arrive at the 

following equations. 

-J-irirz-f  s •cos-r •sin T 
0 m.P 

a   *„ rona'  „„, pnd'   . mnD 
—r • COS --— • COS ^--r- • Sin -r- • mn     a      da 

sin(y) ' sinDyb-y)] ; if y > b1 

sindCj^y) • sin^Cb-b')] ; if y < b' (II.2.25) 

' I       -^ - --. .-..-_ ^   -   ■-'  " —'   ...-^--^. ^.^^m^^^^^^^ ^^^^^äUt^M 
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Figure 2 
Square loop in a rectangular 

cavity (as seen in the plane y=b'l 

 i.n, ..,   i   ^^mtat^gimmttmmmltmamaammmmlmmm^tmmm^^^^mmailt^^ 
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8k I J "o   / max      n   pnz , 
If — ^j  t    • sin -r- • cos z-r 

'o   m.p 

(II.2.26) 

prf   • cos -y- ■ cos Y- • 5in — 

cin pnD 1  

sin(K   b') • sinEK   (b-y)] ; if y > b' 

sinewy) • sinL^^b-b')] ; if y < b' (II.2.27) 

H   = ^ E   t   • sin ^ . cos ^ • ^ • 

cos mna' mna'     rnc pud1 

-r • cos ^J- nd'      e.    mllD     c. sin —r— • sin 
fiHD 

•^TOT- 

■sin(KIT)pb
,) • cos[Kmp(b-y)] ; if y ^ b' 

cos(Kmpy) • sin^b-b')] ; if y < b' 

(II.2.28) 

■■■■ • ■■■■■--       -.■-.■—. ----:-  -■ m      ■.■......:: -' -^.-.-^ _._-....,    , n^gyy, 
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81 
H,^   ^   cos ^. cose. -^   „.   M7 fc^?-. 

cos mna' 
T' cos^" s1n mnD sin T 

' V'^V 
slnCy) . sinEK^fb-y)] ; If y > b' 

sTnd^py) • sin[Knp(|..b')] ; if y < b' 

(II.2.29) 

öIO y 
m,p 

cos Mi   . sin ^ • i- a dm; 

mna' fiu^l. Sin!M. sine- cos--, cos    d     .,.,   r    ....^ 

i i  -sinO^pb1) • cosCK^pCb-y)] ; if y > b' 

• sinfk b) •; 

(II.2.30) 

II.3   [Icctroinannetic Leakage through Small Apertures in Rectanrjular 

Cavities 

II.3.1   The "Polarizability" of Apertures 

Consider an aperture in a perfectly conducting plane, beincj 

illuminated by an electromagnetic field existing 1n one of the half- 

spaces defined by that plane. 

If the size of the aperture and the wavelength of the field are 

 ■— ■--■ ■-  

'■ - — ■■-'- 
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such that 

l«^ (II.3.1) 

v/herc   a   is any dimension of the aperture, H. A. Be the **^ has shown 

that the field in the vicinity of the hole may be represented 

approximately by the original internal field   t0,   ft    at the location 

of the aperture (i.e., the fields existing at the site of the hole 

before it is cut in the wall), ;ilus the fields of an electric and 

magnetic dipole located at the center of the aperture. 

The field transrntted to the other side of the conducting wall 

may be considered a dipole field and can be calculated from the 

electric and magnetic dipole moments induced by the incident field on 

the complementary disk of infinite permeability1- J. 

An electric dipole moment can be induced only by an electric 

field which is normal to the plane of the disk (aperture), and a 

magnetic dioole moment can only be induced by a magnetic field which 

lies in the plane of the disk. 

The resulting electric and magnetic moments are given by 

?=   Vo^o ' (II-3-2) 

" = -% (II-3'3) 

where 

ae = electric polarizability scalar 

*? .: magnetic polarizability tensor 

 -     I  ^.**^u*uu. 
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Obviously, for a perfectly conducting plane  t    Is nomal to 

the surface and   H     is tangential. 

The values of aperture polarizabilities for different shapes 

and sizes have been determined by C. fi. Montgomery'- -^ and S. B. 

Cohn'- ■', *■ K   Table I shows a selection of their results. 

II.3.2   Application of Bethe's Method to Rectangular Cavities 

with Small Apertures 

Bethe's treatment of the diffraction through holes, coupled 

with the field equations we have developed in Sec. 2 of this chapter, 

provide us with a powerful machinery to evaluate the electromagnetic 

fields leaked through an aperture in a rectangular cavity. 

At frequencies below cutoff, typical cabinet apertures will 

automatically satisfy condition   (III.3.1), making the method 

applicable. 

In the first section of Chapter V we shall make use of these 

results to find expressions for the insertion loss of rectangular 

shielding boxes with apertures. 

ninnir---  - - - "ix       i..».! ■niMiit IIIIII«      '      i  I   nni'liii 
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Table I 

Polarizablllty of Apertures 

Aperture Shape 

Circle of diameter d 

Long narrow ellipse, 
semi-major axis = a 
semi-minor axis = b 

a >> b 

Long slot of width w and 
length i 

Square of side i 

Rectangle of 
length 4 and ~=  0.75 
width w 

Rectangle of 
length £ and 7= 0.5 
width w 

w 

Rectangle of 
length ä and 7-= 0.2 
width w    * 

Rectangle of 
length z and 7= 0.1 
width w 

d3 r 

nab2 

f^ 

0.2274 n3 

0.1462 O 

0.0740 i3 

0.0140 H3 

0.0038 A3 

n 
1 

H parallel to 
long dimension 

1 d3 

.3 2 n a 

tn(-T-)-l 

0.518 ä3 

0.4192 *3 

0.?'50 A3 

0.1812 H3 

0.1290 i2 

'"2 
H normal to 
long dimension 

1 d3 

nab2 

^^w2 

0.518 A3 

, ■     -  - ■ ■  —-^-^.^hiMM«.  -  ^^—*1w ^  
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Chapter III 

ELECTROMAGNETIC LEAKAGE FROM AN OPEN CAVITY 

In the present chapter we shall Investigate the electromagnetic 

fields leaking from an open rectangular cavity (i.e., a perfectly 

conducting cavity having one wall missing) when it is excited below 

cutoff by an internal source. 

First, we must find a suitable description of the problem.   This 

is done by considering the open cavity as a section of a rectangular 

waveguide, short-circuited at one end and open at the other end. 

We shall begin by writing the Green function for a semi- 

infinite rectangular waveguide, and then using it to find expressions 

for the fields inside the waveguide, generated by simple antennas. 

Up to this point, we have paralleled the work done in 

Chapter II with the closed cavity.   But now we must cut open the semi- 

infinite waveguide and explore the consequences of this truncation. 

This will lead to an assumed field distribution at the "mouth" of the 

waveguide. 

Then, with the help of the induction and field equivalence 

theorems, the radiated fields will be determined in an approximation 

suitable for our purposes. 

III.l   Dyadic Green's Function for a Semi-Infinite Rectangular Wave- 

guide 

As was seen in Chapter II, when working in the Lorentz gauge 

(Eq. II.1.3), we need only the dyadic Green's function to determine the 

    ....^-■„■■.-   ,..   |  .._^Mi^jm^^^^l^^^^^^i^,^mMtilimiiiUMiiiäiimtam 
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field potentials, and from them, the electric and magnetic fields. 

Consider a perfectly conducting, semi-Infinite rectangular 

waveguide of dimensions a and b associated with the x and y directions, 

short-circuited at the plane z » 0 and extending towards 2 ■ +». 

Its dyadic Green's function corresponding to the boundary 

conditions {II.1.10) can be easily obtained, by using image theory, 

from a knowledge of the dyadic Green's function for an Infinite 

waveguide1   .   We have, then, for our semi-infinite waveguide 

n,n   k2 

m n 

mn 

t'z x WJ ^z x \n<^ + 

+
 k2mn Tz *m^ Tz hn^ + 

+ ^x   (r ) ^v   (r) xmnv 0'   xmnv ' 

j     . I e '     o1 mn   le        0 ^nj 

mil        •• 

(III.1.1) 

where the + sign is for longitudinal (z-directed) sources, and the 

sign for transverse sources. 

The symbols used are defined as follows: 

9 

mn ■ [(f)2 + (r): (III.1.2) 

■            ^^^^^^mj^^m^^ml^mjmmtmt^^mm^ml*mmmm 
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^n ■ (f)2 *   {f)2 

^-cosÄ.co^ 

^»sln^-slnllf 

(111.1.3) 

(111.1.4) 

(111.1.5) 

e^   and   Gn   are Neumann factors, defined In (11.1.21). 

To remind ourselves that we are dealing with non-propagating 

modes, we shall find it convenient to define 

nm (?)2 + $ 2 -k2 

W^, mn 

(III.1.6) 

(III.1.7) 

The dyadic Green's function (III.1.1) can now be written as 

m n 

m,n      mn 

[Tzx K^o^z«KM 

* k2m Tz x„,(f0) T2 xj?) * 

+ ?^'?o' '^(?) mn 

TmnZ  /Slnh\ 
e       iC0ShArmn^) Mf z > 2o 

'Wo/s1nh\ 
6 Uh/(^^.nz,   ;1fz^zo (III.1.8) 

 -^—. -   - -^.  - ■■ - ...^J 
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where the slnh function Is to be used for transverse sources, and the 

cosh for longitudinal sources. 

III.2   Electromagnetic Fields In a Semi-Infinite Rectangular Waveguide 

Just as we did In Chapter II for the rectangular cavity, we 

shall find the fields Inside a semi-Infinite rectangular waveguide 

excited by three different sources:   a Hertzian dlpole, an electrically 

short thin dipole, and an electrically small loop. 

In the present case we must distinguish between transverse 

and longitudinal sources, which will add up to our already impressive 

collection of oversize equations,   lie must ask the reader to bear with 

this situation, since every one of these expressions will be needed 

in Chapters IV and V for the determination of the antenna impedance 

and the insertion loss equations. 

III.2.1   Excitation by a Hertzian Dipole. 

(A) Transverse Source 

Consider a current element of length   L, defined by (see 

Fig. 3) 

x x 

[txI06(y-b')6{z-d'); a'4< x < a' + Jj- 

|0 ; |x - a'h ^ (III.2.1) 

Putting expressions (III.1.8) and (III.2.1) into Eq. (II.2.4) 

repeated below 

tit)"]      G*(r|r0) • ^(r0) d T0 (III.2.2) 
Vol. 

 ■    IIMB^M|M|MiaimM|—„^■^^„^„^..^....■■_..—IMIglllillMallMBMM|j|t||MMg|ggMMM| 
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i X 

a 

/ 
a' ~       S i 

\ / 
• Source            / \ 

1     "'    ) j    ', 
y i    s      ( y   ' v '- u / 

Figure 3 
Source in a semi-infinite rectangular waveguide 
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results in 

x   ab    ^   mn a T 

Thus, from 

li.cos-Äl    slnüf-     stnf tnn 

'm   ' e"rm|d' s1nh(r   7) ; tf 2 < <!• 
inn (III.2.3) 

v(v • t) + jjt (111.2.4) 

and 

po (III.2.5) 

we obtain 

füHl)2. k2 
V«/    K     rne Mil. . 

tnn 
a 

-r •sin I? * 

rmn 

e  ^   slnhir^d') ; If z > d' 

*rmnd' 
B s1nh(rrnnz) ; tf z < d« (III.2.6) 
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Ey- ■im -^E ^T-»^- nn 

m,n 

cos HSIfl • sin HH^ . sin ^ . 

1 
e   mnZs1nh (r^d1) ; If z > d' 

e slnh (r^z)    ; if z < d' (III.2.7) 

8In 
EZ = "JHF #Esin^.S1„^ 

m,n 

• cos 22f . sin ^ • sin % 

-e   ^slnhCr^d') ; if z ^ d' 

-r   d1 

•e   mn    coshtr^z) ; if z < d' (III.2.8) 

Hx = 0 (III.2.9) 
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in,n 

. cos =!2f • sin UJ^ . sin 52L • 

-r_nz 
-e  mn   sinhCr^d') ; if z > d' 

e   mn   coshCr^z) ;   if z < d' (III.2.10) 

41 

m,n 

. jjl. cos 2!f . sin 2!*: . sin 21. 

-r   z 
e   mn   sinhCr^d1) ; if z > d' 

mn 
'Tmd' sinh(rmnz) ; If z < d' (111.2.11) 

For a y-directed source, we can use the same expressions inter- 

changing x, a, a* and m with y, b, b' and n, respectively. 

(B) Longitudinal Source 

If our source is assumed to be a z-directed current element 

J - i2oz » 
Voöfr-a*) «(y-b') ; d'-^z < d' +^ 

;M'i 4 (III.2.12) 
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the electric and magnetic fields are found to be 

E - 1 8l0 if^ T Ex   J M1 r Zu   COS -r- o       a m,n 
e. nny mn 

c4„ mna' „^ nnb'  1  . „^ /. l\ 
s1n "r •s1n -r' r-   s1nh (rnin ^ " mn 

-rmnZ 

•e  m   coshCr^d«) ; If z > d' 

e 

81. 

mn s1nh(rmnz) ; If z < d' 

Ey = j M #E mnx 
a 

nny . nn 
sin —7— •  COS -r*- • r- • 

m,n 

(III.2.13) 

nnb' . J_ 
r mn * sin -T * sin -T    TT ' s1nh {rmn 7) 

■e  n,n   coshdyT) ; 1f z > d' 

-r  d' 
e  m    s1nh(r   z) ; If z < d' 

mn 
(III.2.14) 

E2 = J 
^Zsln^-sln^.sm^l. 

m,n 

.    kV + (MV 
nnb' »»»—^ • 

r  2 

"r z 

e  mn   coshCr^d«) j If z > d1 

-r  d1 

e  m    cosh(rmnz) ; 1f z < d' (III.2.15) 
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81 
Hx' ^r2^ •sin -r cos T1 * T • 

m.n 

p"»"»1 WHVHH '■' ' ' 

• sin —- • sin -r- • —- • sinh(r    7) . 
a      """    b 2     ' x mn F' 

mn 

e   mn   coshCr   d') ; if z > d' mn 

-r   d' 
e  m    coshCr^z) ; if z < d' (III.2.16) 

"y" 
^Z cosS.^^.Sl. 

m.n 

cin 
lllIla,    c<„ "nb1       l sin —r- • sin —r- • —— 

a D        r   2 
nin 

' sin^r
mn ? ) ' 

e   ^   cosh(rmnd') ; if z > d' 

r  d1 

a   mn    cosh(r   z) ; if z < d' 
e x mn (III.2.17) 

Hz = 0 (III.2.18) 

111.2.2   Excitation by an Electrically Short Dipole 

Antenna 

(A) Transverse Source 

Assume a dipole antenna current defined by 
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J - V, 
VoSMn(lür'ln^-bl'8"-dl''l'-''l<h 

0 ;  Ix-a'^h 

(III.2.19) 

The fields generated by this current In the semi-Infinite 

waveguide are found to be 

21. 
Ex = -J ab Sln{kh) '  V^   •   2]   cn, cos T1 ' sin T ' 

m,n 

(if k2 

. cos ÜÜl^ . sin nnb' 
a LzVf-- cos(kh)l 

mn 

e  m   sinhlr^d') ; if z > d' 

-r  d' 
e  mn    s1nhCrmnz) ; if z < d' (III.2.20) 

i       o        4/ Mo   V"*    .   tnnx    rne nny . 
■J ab sin(kh) if T  2^  sin — • cos -^ • 

m,n 

mn    nn 

W- k 

COS —r 
2 3 

- sin -g-     ^ cos^-cos(kh)] 

. J. 
r. mn 

•rmnz 

e  m   sinhd^d') ; If z > d' 

-r   d' 
e  mn   slnh (r^z) ; if z < d' (III.2.21) 



I  ll^w^v» 

35 

E
2 •-j AtKT VE E ^ ¥ • «^ T • 

ni,n 

nn 
a 

(f) 

 -.cos ^  . 8lnnnb' 
22 a cos^-cosCkh) • 

9 

i-e   mn   sinhCr^d') ; if z > d' 

-r   d' 
e   m    cosh(rmnz) ; if z < d' (III.2.22) 

Hx = 0 (III.2.23) 

?k I 

sraroZs-^ -««r 
m.n 

(f)' 
. . cos 2S|1 • sin nIIb, 

2 a 
k 

cosüf-cos(kh) 

-rz 
•e   mn   sinh^d') ; if z > d' 

e   mn    cosh(rmnz) ; if z < d' (III.2.24) 
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H 
2k I 

= o 
z " ab s1n(kh) L  en mux 

a •   COS =ii~ •   COS ^P- 

m.n 

nn 

(r)2- 
• cos —-— ■ sin —c— • cos 2211-cos(kh) 

a 

• mmm       • 

mn 

e   m   slnhd^d') ; if z > d' 

-f   d' 
e   mn    sinh(rrnnz) ; if z - d' (III.2.25) 

For a y-directed source, wc should use these equations inter- 

charming x, a, a' and m with y, b, b' and n, respectively. 

(B)   Longitudinal Source 
< 

In this case, we define the antenna current by 

0 ; Iz-d'^h 

j = V2 

(III.2.26) 

and the resultant electric and magnetic fields are 



«■HHM^naarMK^wiw- 

37 

. < o        tPo    Y^ rnc nnx .    .   nny . 

inn 
a 

/mn\2 Vnny 

ni,n 

s1n!!!n|:.s1nnnb' 
9 

IcoshCr^h) - cos{kh) 

-rmnZ 

e   m   coshfr^d') ; if z > d' 

e   m     5inh(r|nnz) ; if z < d' 

(III.2.27) 

81, 
K s J y " J ab sTnTO #I> mnx     /.rt. nliy . 

cos f 
m.n 

nn 

(fNsf 
sin ——- • sin —r— a D 

cosh(rnnh) - cos{kh) 

e   m   cosh(rmnd') ; if z > d' 

e   mn     sinh(rmn2) ; if z < d' 

(HI.2.28) 
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4  8Io   J^o V ei-n ""^ . -i- nny . ■j ab sin(kh) V r u sin — sin -r 
m,n 

,   ^ -k2 

'""   (f1)2^) 

cosh(rmnh) - cos(kh) 

sin2Hfl. sin 2^ 

-rmnZ 

e mn coshlr^d') ; if z > d' 

-1  _ mn cosh(rmnz) ; if z < d' 

(111.2.29) 

H 
8k I _     o 

x " ab sln(kh) 
^ sin ÜE • cos nn^ . 1 • 

m.n    J     '       m 

nn 
b^^ . sin nMl . sin nnbl . 

'mn\2 . / nin2 

coshCr^h) - cos(kh) 

e   mn   coshd^d') ; if z > d' 

i       • 

-I        -r   d' 
e   mn     cosh(rmnz) ; if z < d' 

(111.2.30) 
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8k I _ _ 
Hy    ■ ab sinOch)  2^  C0S T" ' s1n X ' FT 

rjn 
a . • stn ÜSfl • sin ^^ • 

fey ♦ fa 2 

cosh(r   h) - cos(kh) 

-rmnz 
e   m   cosh(r   d') ; if z > d' mn   ' 

-r   d' 
e   mn     coshfr^z) ; if z - d' 

(III.2.31) 

Hz » 0 (III.2.32) 

III.2.3   Excitation by an Electrically Small Loop Antenna. 

Paralleling the work done in Chapter II, we shall take up the 

case of a square loop of sides 2D and current I .    Figures 4 and 5 show 

the loop configuration for the transverse and longitudinal cases, 

respectively. 

(A)   Transverse Loop (Fig. 4) 

Using the expressions for the fields generated by a current 

element, worked out in part (III.2.1) of this section, and applying the 

superposition principle, we obtain 

_^^^KaaiaMM ^-^■■MM» MUH 
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Figure 4 
Transverse square loop in semi-infinite 

rectangular waveguide (as seen in the plane z=d') 
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-•2D*- 

^ 

♦ 
2D 

I 

d' 

Figure 5 
Longitudinal square loop in semi-infinite 

rectangular waveguide (as seen in the plane y=b') 
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v^VlEv^-^- 
m,n 

• ä-« cos Mal. cos n*: . s1n «»£ . s1n nnD 

-r   2 
e   mn   sinhCr^d') ; if z > d' 

1 

mn       /   -r   d' 
e   mn     sinh(rmnz) ; if z < d' 

(111.2.33) 

8k I 
E   = - J -TT^ V^E   S^^-cos^' 

m.n 

k-• cos Sf • cos Si|l. s,„ Ä . s1n nnD . 

-r   z 
e   ^   sinhd^d') ; if z > d' 

rmn -r   d' 
e   mn     sinhCr^z) ; if z < d' 

(III.2.34) 

EzB0 (III.2.35) 
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"x'-^E^sl^-cos^.b. 

m,n 

cosDÜ^L. cosHSfl. slnM-sln^. 

1       -rmnZ 

-e   ,"M   s1nh(r   d') ; If z > d' 

-r   d' 
e  m    cosh{rmn2) j If z < d' mn (III.2.36) 

8L V^ 
Hy-lX F ^  cm cos T * s1n -T   if ' 

111,11 

rnc   MÜl  •    rAC   nnb' ein   mIlD   .    ,<«   ""0 COS —T"      COS    -r    •   Sin -r— '   Sin -^r- 

-e lmn   stnh(r   d») ; If z > d' mn 

-rmnd' 
e  mn    coshtr^z) ; if z < d' (III.2.37) 
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IF 2w cos T cos x K r - En —J' 
in,n \   a B" / 

. cos SSfl. cos ^1 • sinSf .s1n*f 

1 
e   m   slnhCr^d') ; if z > d' 

e   m   sinh(rmnz)   ; 1f z < d' (III.2.38) 

(B)   Longitudinal Loop (F1g. 5) 

In this case, the generated fields are found to be 

8kl 
ExsJ     a ^E^-^-^-fe- 

m,n 

• m  mm      • cos M|l. s1n nnbl. sin USD . J. 
mn 

sinh{lmnD) 

-e   mn   cosh(^mnd,) ; If z > d' 

r^d' mn e   ,,",    sinh(r   z) ; If z < d' mn 
(III.2.39) 

Ey-0 Cm.2.40) 
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h-^^H^ir-^T- 
0   IM 

a b a      r   2 r 

s1nh(r  D) mn 

e   mn   coshCr^d') ; if z > d' 

e   mn     cosh(r   z) ; If z < d' 
inn 

(III.2.41) 

m.n 

mna' . .,.. nnb' . .^ mnD . _[ 
r. . cos JSiS- . sin i^ • sin ^- • 

aba mn 

sinh(rmnD) 

-rmn2 

e mn coshtr^d') ; if z > d' 

e mn coshtr^z) ; if z < d' 

(III.2.42) 
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" IF 2^ eincos T"' s1n X M k2 

m.n 
mn 
a 

. cos 2!I!|: . sin ^ • sin 1222 • JL. 
a     ^^    a  r 2 

mn 

S1nh(rmnD) 

-rmnZ 

e m   cosh{Tmdl)  ; If z > d' 

e mn coshCr^z) ; if z < d' 

81 

"z---iE^«?'cosT^- 
m.n 

nn .   mna'  ., nnb' „ .. mnD . 1 . r . cos ^ . Sin ^g- • sin ^ 

mn 

(III.2.43) 

Sinh(rmnD) 

-rmnZ 

-e m   coshtr^d') ; if z > d' 

-r d' 
e m    s1nh(r z) ; If z < d' mn 

(Iir.2.44) 

For a loop In the Cyz) plane, we use the same expressions Inter- 

changing x, a, a' and m, with y, b, b' and n, respectively. 

— ■- - — -_. .        ——' —- 



47 

III.3 Radiation from an Open-Ended Havegulde Excited Below Cutoff 

We must now use the tools developed In the first two sections 

of this chapter, to set up expressions for the radiated fields from an 

ooen waveguide excited below cutoff. 

First, we shall find a suitable approximation for the fields 

at the plane of the aperture (I.e., at the "mouth" of the waveguide). 

After a review of the Induction and field-equivalence theorems, we shall 

make pf\ysically reasonable assumptions that will allow us to find the 

radiated fields under some restrictions. 

This section is the least accura.s portion of this thesis, but 

the reader will find ample justifications for the approach taken, not 

only through reasonable heuristic arguments, but also through experi- 

mental confirmation. To put it in another way: since this particular 

problem cannot be solved exactly, we shall take what we feel Is the 

best possible course under the given circumstances, and rely on the 

correlation between theory and experiment to pronounce the final 

verdict. 

III.3.1 Electromagnetic Fields at the Open End of a 

Rectangular Waveguide Excited Below Cutoff. 

In Section III.2 of this chapter, we have found expressions 

for the electromagnetic fields generated inside a semi-infinite 

waveguide by some simple antennas. The question now arising is: 

what happens to these fields when the waveguide is cut open at the 

 —~-        - --■      1 1 ^„^^^^„.^ 
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plane z ■ d? Specifically: what are the new field values at the 

plane z ■ d? 

We should always keep in mind that we are dealing exclusively 

with non-propagating modes that decay exponentially as we move away 

from the source. The usual treatment of waveguide radiators, from the 

pioneering works of Barrow and Greene'- ^ and Chu'- ^ to the textbook 

treatments of Jones'- -' and Coll in and Zucker'- ■', assume that the 

source is sufficiently distant from the aperture, so that any non- 

propagating modes have decayed to negligible amplitudes and we are 

left only with the desired propagating mode. 

This clearly shows the dichotomy existing In the treatment of 

radiators, when looked at from the antenna viewpoint or from the 

point of view of shielding theory. The presence of evanescent waves 

is ignored in the former and is essential In the latter. 

From the above considerations. It is clear that the antenna- 

aperture distance is the most critical parameter in our case, and 

since we shall apply our results to typical rectangular cabinets and 

enclosures, that distance will normally be a fraction of a typical 

cabinet dimension. 

A look at the equations in Section III.2 of this chapter shows 

that the field generated by a longitudinal dipole consists of TM modes 

only. As a reasonable approximation, we can assume that the aperture 

produces a complete reflection of the transverse (x and y in F1g. 3) 

components of the fields, resulting In the doubling of the transverse 

magnetic field and the cancellation of the transverse electric field. 

 „  ■■HIIIIKII ■iiiMlinlimi ■■■imi...    ■   in t.lltm^^ällim^^mm^mlltltimimtäJämmtmtallllllä 
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Similarly, in the case of a transverse loop, only TE modes are 

present.   This leads to the assumption that the transverse electric 

field is doubled and the transverse magnetic field cancelled by reflec- 

tion at the aperture. 

For a transverse dipole and a longitudinal loop we have neither 

Ti; or TM modes in the z-direction.    In these cases, the safest course 

is to take the fields at the aperture as being identical to those that 

would exist at the same place in a semi «infinite waveguide. 

The next step is to find an answer to the question:   how is the 

antenna affected by the aperture?   In order to do this, we must obtain 

some measure of the decay rate of the fields as we move away from the 

antenna, and then of the reflected fields as we move from the aperture 

towards the source. 

In Appendix A we show that for a rectangular waveguide of square 

cross-section, and for physically reasonable sources (thin antennas), 

the reflected field is at least four orders of magnitude smaller than 

the incident field (both calculated at the surface of the antenna), 

when the antenna-aperture distance is greater than 0.1a (where a is a 

typical dimension of the enclosure). This fact allows us to disregard 

the effect of the aperture upon the antenna in all cases of interest, 

(There is no point in shielding a source if we are going to place the 

source at, or very close to, an aperture in the shield). 

We have then determined that the fields at the open end of a 

rectangular waveguide exctted below cutoff are given in terms of the 

 i.   .   i i     umtmmmmiimmtltlmmiimimmmaimmmmi^t^a^mmmimamiimtlttlt 
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fields that would exist at the same place In a semi-infinite waveguide, 

modified according to the assumptions on aperture reflection pertaining 

to each specific case. 

HI.3.2   Induction and Field Equivalence Theorems. 

As mentioned earlier, the problem of an open rectangular wave- 

guide radiating into space cannot be solved exactly.   The assumptions 

required to obtain an approximate solution can be better understood 

after a review of the induction and field equivalence theorems, 

magistrally stated by S. A. Schelkunoff^13^ ^, ^, ^16] 

(A) Induction Theorem (see Fig. 6) 

Consider an infinitely long waveguide with a known electromagnetic 

field in its interior, and let us call this the "incident field"   V 

and ft1. 

If we now cut the waveguide to a finite length, the internal 

field will change to the "actual field" t and fi. 

Let us now Imagine a surface S over the waveguide aperture, 

separating the "inside" of the waveguide (region 1) from its "outside" 

(region 2).   The surface S can be chosen to be any convenient boundary. 

We shall call the field in region 2 the "transmitted field" 

t1 and fit. 

Turning back our attention to region 1, let us call "reflected 

field" tr and i!?r   , the difference between the actual field and the 

incident field. 

Hence, we have: 

       ■.■.■—  i I.«  i wttiaammmmmtmmimttammmjimmm~^ 
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Region 1 
Region 2 

Figure 6 
Fields in an open waveguide 
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Region 1 
ä- it1 + r 

Region 2 

(III.3.1) 

(III.3.2) 

If we assume no sources on S, the continuity of the fields t 

and ft Is assured, and their tangential components at the surface S 

must satisfy: 

^.un ' "o.tan + "o.tan l"1-3^ 

Maxwell's equations ensure the continuity of the normal 

components. 

We now define a "scattered field" fs, ffs made up of the reflected 

field in region 1 and the transmitted field in region 2 

ts = ir + t
1 (111.3.5) 

ff5 »lTr +^ (III.3.6) 

This scattered field satisfies Maxwell's equations under the boundary 

conditions imposed by the waveguide, but it is discontinuous across S by 

the amounts 

^.tan ^S.tan s ^,tan (III.3.7) 

Äo,tan - ^.tan 8 ^J.tan (I11-3'8) 
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These discontinuities may be thought of as arising from the 

following sources on S: 

1} A magnetic current sheet (due to the discontinuity 

1n ^o.tan^ of density 

Z'tl  tan xTn= ^^n (111.3.9) m  o,tan  n  o  n 

2) An electric current sheet (due to the discontinuity 

in ^o.tan1 of density 

^ " ^ X K tan  = I, X ^ (III.3.10) n      o,tan      no ' 

The Induction Theorem can then be stated as follows: 

"The reflected and transmitted fields may be generated by an appropriate 

distribution of electric and magnetic currents distributed over the 

"surface of reflection".   The linear densities of these currents are given 

by the tangential components of the incident field." 

When using these currents to determine the fields, the environment 

must be left unchanged, i.e., the waveguide must be left in its place. 

(B) Field Equivalence Theorem 

When we are Interested in calculating only the transmitted field, 

we may resort to a corollary that follows obviously from the induction 

theorem:   The transmitted field can be obtained by postulatlna a zero 

fteli Inside a closed surface S comprised of the surface of the 

aperture and the outer surface of the waveguide, and a field t , ft 

outside S.   These fields are produced by electric and magnetic 
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current sheets over S given by expressions (III.3.11) and (111.3.12), 

but now, In carrying out the calculations, the waveguide nust be 

Ignored and the response Is obtained by using the "free-space" 

retarded potentials. 

^»tjxt (111.3.11) m     o      n 

Jl « tn x I^J (III.3.12) 

III.3.3 Radiation Fields from an Open-Ended Rectangular 

Waveguide Excited Below Cutoff 

The determination of the radiation fields from open-ended 

parallel-plate waveguides and circular waveguides Is essentially a two- 

dimensional problem, and can be solved exactly by using Wiener-Hopf 

techniques.  ■' 

On the other hand, the radiation from an open rectangular wave- 

guide (or horn) poses a much more difficult problem, due to the effect 

of currents on the outside walls of the waveguide, which are now 

distributed on a three-dimensional boundary. 

[121 
The standard procedure1 J is to neglect these currents, which 

amounts to assuming the existence of a perfectly conducting flange 

coplanar with the aperture and solving. In essence, the radiation from 

a rectangular aperture In a perfectly conducting plane. 

This approximation worsens at low frequencies, especially If 

we are interested In the fields at large angles from the axis of the 

waveguide (I.e., the fields near the imaginary flange). But for points 

itnimm-  ---  ^^^^^^^^^^^j^^^tu^^i^^^^^miMM^^^/m 
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on, or near the axis, the approximation Is acceptable, as borne out by 

experiments (see Chapter VI). 

In the design of electromagnetic shields, the quantity of 

Interest Is the worst-case Insertion loss (or the worst-case shielding 

effectiveness). Thus, when we study the "leakage" from an open 

waveguide, our major concern Is with the field Intensities along the 

axis of the waveguide, and the "Infinite flange approximation" becomes 

acceptable. 

We are then led to the use of the field equivalence theorem with 

the closed surface S being now composed of the surface of the 

aperture, the co-planar infinitely conducting flange and the hemisphere 

at Infinity that does not contain the waveguide. 

The radiation field will be that produced by the current sheets 

(III.3.11) and (III.3.12), repeated below 

m  o  n (III.3.13) 

J* » T x HJ n  o (III.3.14) 

where E:j and IT are the assumed aperture fields, whose tangential 

components are taken to be zero elsewhere on the aperture plane, • ^   ^ 
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Chapter IV 

INPUT IMPEDANCE OF A DIPOLE ANTENNA INSIDE A CAVITY WITH APERTURES 

In Chapter V we will need to know the Input impedance of a 

dipole antenna inside a cavity with apertures, in order to evaluate 

the insertion loss of a shielding box when its internal source is fed 

by a voltage generator. 

In most practical circumstances, an electrically short linear 

antenna is fed by a htgh-impedance source, whereas a small loop is fed 

by a low-impedance source.   Since the radiated fields from both types 

of antennas are proportional to their current, it becomes necessary 

to know the input impedance of the linear antenna if we are to describe 

the insertion loss of the shielding box in terms of the quantity being 

kept constant, i.e., the input voltage. 

The input impedance of a small loop not only is of little 

practical interest, but cannot be deduced from our treatment. 

Obviously, the input impedance of a resistanceless loop enclosed in a 

perfectly conducting cavity is zero to a first approximation (low- 

frequency, or quasi-static case). 

The antenna impedances are developed in this chapter using the 

"induced-emf" method'-   -', i.e., the input impedance of the antenna is 

given by 

 - ..-„■t^^^a^Mldiiliailli^^ 
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hs']- n• td* (iv.i) 

where di 1s a length element along a thin antenna of total length L, and 

I 1s the current at the antenna Input terminals. 

The evaluation of (IV.1) for an Infinitely thin antenna leads, 

In general, to an Infinite value of reactance. To obtain a useful 

result, the finite radius of the wire must be taken Into account. This 

requires that the electric field t In (IV.1) be evaluated at a distance 

p (the wire radius) from the axis of the antenna. 

IV. 1 Dipole Antenna Inside a Cavity with Small Apertures 

To the same degree of approximation that we have used in the 

treatment of the radiation from a cavity with small apertures, we can say 

that the presence of small apertures will not disturb the fields near 

the antenna. 

Obviously, the most significant error will be introduced in the 

input resistance of the antenna, whereas the input reactance will be 

hardly affected. Since we will be dealing with electrically short 

antennas, for whom the imaginary part of their input impedance is 

several orders of magnitude greater than the rea1 oart, our assumption 

turns out to be an excellent approximation. In tact, given that our 

expressions for the fields were derived for the case of infinitely 

conducting boundaries, we are totally neglecting the input resistance. 

Consider a thin dipole antenna oriented in the x«d1rect1on, and 

with a current given by 
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txl/

1n^jija,l^6(y-b'h(z-d') ; |x-a'|<h 
J.TXJX 

" 0 ;  Ix-a'^h 

(IV.1.1) 

The electric field component Ex Is obtained from Eq. (II.2.21) 

after the appropriate coordinate transformation. 

Taking 

y - b' (IV.1.2) 

z « d' + p (IV.1.3) 

we have 

lo    ' a'-h 

a 

k/. Zl"-~ Extx)Ix(x)dx 

.     2       J^o y       fff ^ k* 
J absin2(kh)1I7 Z^   eni.

V-äi  
0  m,n    "'   (mn\2     2 

r« "ilia'    e4-2 nnb1 
cos    ■    • sm^     L [cosEf .cos(kh)] 

slnhCr^') • sinhjrjd^d'.+ p)]} 

rmn ' 5lnhCrmnd) mn mn 

a'+h 
mux • f   s,n' --  IkCh-lx-aM)] • cos^. dx (IV.1.4) 

a'-h 
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Zi--J 
4k 

ab s1n2(kh) 

•— M 4 

m.n 

k2 

if)2 k2 

COS' ESfl • sin2 nnbl .   I" cos(kh) - cos 2211 
8 

2 

s1nhCrmnd') • sihh rmn[d-Cd' +PJ], 

rmn . s1nh(r   d) mn um (IV.1.5) 

IV.2   Dipole Antenna Inside an Open Cavity 

The approximation used in this case consists in considering that 

the cavity extends to infinity in the direction of the aperture.   As was 

seen in Chapter III, this is a perfectly acceptable assumption as long as 

the antenna Is located at some small but reasonable distance behind the 

missing wall. 

Thus, we can use the equations developed in Section 2 of Chapter 

III for a semi-infinite rectangular waveguide. 

IV.2.1   Transverse Source 

Putting expressions (111.2.19) and (III.2.20) into Eq. (IV.1) 

we obtain, for an x-directed dipole, 
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z< --j 
4k 

ab s1n2(kh)   1 co 

. coS2 US: . sin2 aübl. rcos(kh). cos E^h]2 . 

1     -rfd- + p) 
•   e mn 

mn 
sinh(r   d') (IV.2.1) 

IV.2.2   Longitudinal Source 

For a z-directed dipole, we use Eqs. (III.2.26) and (III.2.29) 

to obtain 

V-j 
s1i\2(kh) * 'o   t-1 

'    .     mn 
ab s1n2(kh)   f co   —    mn 

ni,n WTW2 

sin2 -Al • sin HuibM . sin nnb: 
"y 

cosh(rinrih) - cos(kh) )   • rmn sln(kh) + 

+ k 
i / -2rmnh      -2r  d' W e    tnn   + e    mn 

-2r
mnd^ 

1+e    mn      cosCkh) (IV.2.2) 
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Chapter    V 

INSERTION LOSS OF RECTANGULAR SHIELDING BOXES WITH APERTURES 

In the present chapter we shall use all of the tods developed 

In the previous chapters to find general expressions for the Insertion 

IOSJ of rectangular enclosures with apertures. 

As mentioned in Chapter I, we define the "Insertion Loss" of a 

shield as the ratio of the field strength at a point external to the 

shield, before and after the insertion of the shield, with the "noise 

source" driving force maintained constant. 

In the light of our present work, the "noise source" is a 

simple antenna Internal to the shield, excited at frequencies below 

the lowest cutoff mode of the enclosure, and being driven either by a 

voltage generator or a current generator. 

Thus, for the dipole antenna, we shall find two "Insertion 

Loss" expressions, one for constant current and one for constant voltage 

at the antenna terminals. 

For the loop antenna, the constant-current insertion loss is the 

only meaningful quantity, as was discussed at the beginning of 

Chapter IV. 

The presence of a conducting plane complicates the situation, 

since it not only changes the radiation patterns of the antennas and the 

apertures, but also affects the antenna input impedance.   Nevertheless, 

in many practical applications we cannot disregard the existence of 

metallic floors or of highly conducting ground.   For this purpose, we 
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are Including the necessary equations to deal with this situation. 

V.l Cavity with Small Apertures 

V.l.l Dipole Antenna 

(A) Constant Current Insertion Loss 

In order to develop Insertion loss expressions for the case of 

a dlpole antenna Inside a cavity with small apertures, the following 

steps are necessary: 

- Knowledge of the fields inside the cavity, obtained from 

Eqs. (II.2.19) through (II.2.24). 

- Use of Eqs. (II.3.2) and Cll.3.3) together with Table I, 

to find the equivalent aperture source. 

- Determine the fields generated by the equivalent aperture 

source and compare them with the fields produced by the 

dlpole antenna in the absence of the cavity. 

We have, by now, all the necessary equations to develop a complete set 

of insertion loss expressions. Such a task, however, would be not only 

cumbersome but also pointless. In this and in the following sections, 

we shall only show some typical examples. 

Let us begin by considering a short, thin dlpole oriented in 

the x-dlrection and centered at the point (a1, b1, d'). This antenna 

is enclosed by a perfectly conducting rectangular cavity of sides a, 

b, and d (see Fig, 1 in Chapter II), haying a small aperture on the wall 

defined by z = 0, 

--     - ■   - 
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The electric field at the surface of the wall z » 0 is found 

from Chapter II to be: 

EI     - -j .4!0.,. ■    W!o   F s1n Hi . 
z«0 in,n 

;1nT 
nily .      a 

wn  m   m m m,m        • 

iff- 
r«c "ina' . „.   nnb' cos   ■ '■   • sin -—r- 

cos ?1. CoS(kh) 
a 

si"h[rmn(d-d,)l 
sWl^T— 

(V.l.l) 

The magnetic field at that wall is 

2 = 0 
{V.l.2) 

2kl 

V|zs0
s'aranm Z- em  C0S "T   S1n "T * 

m,n 

(f) 
_   • cos 22|: ■ sir, '""', 

2       2 a 
k 

[cos Ä . C0S(kh)j 
sinhCr^^d^d')] 

sinhfrj) 

(V.l.3) 
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Expressions (V.l.l) and (V.l.3) were not obtained directly from 

Eqs. (11.2.19} and (II.2.23), but from equivalent expressions obtained 

from Eq. (II.1.14) after an appropriate cyclic Interchange of the 

variables. 

For computattonal purposes, It Is always advisable to write the 

equations so that the most critical parameter (In this case the distance 

d-d') appears In the exponential or hyperbolic functions. It is always 

possible to do so by using the proper form of Green's function. 

Throughout this thesis, the Green's functions are expressed as double 

summations; this provides considerable computational advantage at the 

cost of lack of symmetry In the equations. However, cyclic Interchange 

of the variables and their associated parameters In the pertinent dyadic 

Green's function allows us to write any one field expression in three 

different forms which have, in general, different convergence proper- 

ties. 

Equations (V.l.l) and (V.l.3) provide us with the field 

intensities at the point (x.y.O), taken to be the center of the small 

aperture. 

The electric and magnetic dipole moments induced on the 

aperture are given by Eqs. (II.3.2) and (II.3.3). 

Pz = «e Eo Ez (V.l.4) 

"y % "y (V.l.5) 
z B 0 

where the appropriate electric and magnetic polarlzabilities are to be 

used. 
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If we neglect the lateral displacement between the antenna and 

the aperture, I.e., If we set 

a' ■ x 

b' B y 

CV.1.6) 

(V.1.7) 

and .with the help of Appendices B and D, compute the fields with and 

without the shield at a point directly In front of the aperture, we 

obtain the following constant current Insertion loss expressions for 

the transverse components of the fields (Fig. 7): 

Electric field: 

(■■'•),. 

o , 
4nr' 

k 
ffir 

k* 

Magnetic field: 

1 co \       r1    jkr'  / 
■   ) " v ■ "  

i**lr*    1 

(L.| . r      jkr' 
r'/       jk + l  !   ~' 

LU       .    ÜK \      r. /  1 ,l° W^W^ 

k|*i 

Jk + ^ 

r    jkr2 

(V.l.8) 

(V.1.9) 

 i  lllMM—t*—1—1— ----- MUMM^MNMMrfi^^MIMMiHHM 



66 

Dipole antenna 

Shield- 

A . Aperture 

r ^— 
Field point. 

P 

Figure 7 
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where 

r' - r + d' (V.l.10) 

and |Ä| 1s given by Eq. (V.l.5). Only the absolute value of (I.L.) 1s 

of Interest. 

(B) Constant Voltage Insertion Loss 

In Chapter IV and Appendix C we have expressions for the input 

Impedance of a short dlpole Inside a cavity and In free space, respec- 

tively. Thus, we can write the constant voltage Insertion loss in terms 

of the constant current insertion loss and of the impedance ratio: 

(I.L.) -yf (I.L.)T (V.l.11) 
V0 

rl    lo 

where 

Z.j   s input Impedance of the antenna Inside the cavity 

Z1. = Input Impedance of the antenna In free space 

V.l.2   Loop Antenna 

The procedure to be followed is obviously the same as in the 

previous case. 

Consider, as before, a cavity with a small aperture on the 

wall located at z = 0.   We shall find the insertion loss expressions 

for the case of a small scuare loop whose plane is parallel to the (x,z) 

plane, centered at the point (a1, b1, d') Internal to the cavity (see 

Fig. 2 In Chapter II). 

.   >.- gMMju^y  ...,-- 
 ^—^ ^.^u^^^ -—- - .....^^^.„MMyM^^M^^^^^ 
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We shall use expressions equivalent to (11.2.27), (11.2.28), 

and (II.2.29), but more convenient from a computational point of view, 

to describe the fields on the surface z = 0. 

16kr 
E. ■■J-aF     , z « 0 o 

{^■^  slnÄ.sm^. cos mna' 

m,n 

c^n n^'  •  ein mnD .  ^^        1 sin —r- * sin -r- •  • •=—: 
s1nh(r   d)       mn 

mn 

cosh [^n^')] (V.1.12) 

z = 0 

161 

Z-. sin IT • cos T^ r' 
m,n 

cos mna1 
. ei« nnb' .    .   mnD .     1 • sin   ■ !■■    sin -—-    -s—ir • ~r a      r mn 

slnh (r   D) 
 2^—   • cosh|rmn(d-d')| 
slnh (r   d) l m [tm^'i 

mn 
(V.l.13) 

-'■- I    I    ■-■■    -        ■■■        ■■-■■:■- I     —^-.-    ...    - —  —- ' -  - I    I    1^ 
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z - 0 

o   Y"1     „. mnx . ,,, nny . 
ir Z- E

m 
cos T s1n -r 

m,n 

JTJ I k2 . rn ■itina' . nnb' . c< 

ä 

1       sinhCrnin[)) 

r«n2        Slnh(rmnd) 

mnD 

• cosh lvd-d')] (V.l.14) 

The use of (II.3.2) and (II.3.3) results In 

p
z ■ Vo E

2 

■4 Vx 

z - 0 

z = o   yy ,..) 

(V.l.15) 

(V.l.16) 

and the corresponding constant current insertion loss expressions may be 

found with the help of Appendices B and D. 

V.2 Open Cavity 

V.2.1 Dipole Antenna 

(A) Constant Current Insertion Loss 

We are now dealing with a cavity, in which the aperture is a 

missing wall. As we have seen, this case is best treated as a semi- 

infinite rectangular waveguide truncated (open) at the plane 

z » d > d' (see F1g. 3 in Chapter III). 

The steps to follow are similar to those used in the first 

section of this chapter, with the main difference that the fields needed 

 — ■,;,.,., M.^fi,,,..,., ,,■ i :Mmm,^aa^ttiaimi»tM iutt .vmäl^^mlll^mtämimitmmtltmm 
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to describe the aperture are the tangential components of t and H,  I.e., 

the components lying In the plane of the aperture. 

With reference to Fig. 3 (Chapter III), let us consider an 

x-directed dlpole antenna of length 2h, centered at the point (a1, b', 

d') Inside a waveguide section short-circuited at the plane z = 0 and 

open at z = d > d1. 

At the plane of the aperture (z B d), the tangential fields are 

given by Eqs. (III.2.20), (III.2.21), (III.2.23) and (III.2.24). 

E. 
z=d " -j ab sln(kh) If r ^ S * cos T * 

ra,n 

\ a/      K       _. mna' i"T 
(f)2- 

z=d 

[■ 
,^ nnb'      LAC mnh    „„.n^ sin —c~ '   I cos -r- - cos(Kn) 

-r   d 
^r—   ' sinh(r   d') 

mn 
;v.2.i) 

i       o        .W yo    V^   e.M mnx . .„ nny 
-J ab sln(kh)   IT   L    sin T    cos T1 • 

m,n 

mn    nn 

(f )2 ■ ^ 
^r  d 

a  mn 
. fi-   . s1nh(r   d') r^ mn mn 

cos Ä • sin ^ • [cos 2f - cos(kh) 

(V.2.2) 

.      .....:   ..■^.,      1 ■.^.■^■..^^.■.■. — -k. •- - -^-—■.-.. ■ .^-^--.^ umimy^ 
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z-d 
■ Ü (V.2.3) 

z-d 

2"o 
ab sfn(kh) 2]  tm cos 2Si • sin S^ 

m,n 

in 
cos mna' 

■rmnd 

mn   s1nh(r   d') mn 

sin nnb' cos 2211. cos(kh) 
9 

(V.2.4) 

We have transverse components of both t and fl.   Following 

reference [12, p.71 ff], it is convenient to calculate the fields 

radiated by the aperture in terms of the assumed transverse electric 

field.   This results in a magnetic current sheet J*   with the aperture 

plane replaced by a perfect electric conductor, with the consequence 

that the effective source has a value 20*.   Since we are assuming that 

the aperture dimensions are small compared to the wavelength, we can 

integrateEqs. (V.2.1) and (V.2.2) over x and y and divide them by the 

area of the aperture to obtain their average values over the opening. 

Thus, we obtain 

 M    nn   MM maa^ääm  " —i——— MAMMMMM _^ 
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z-d 

j ab slh(kh) \ 17 ' 

■ L 
n"l,3,5,... 

w ■ ""nnb' 1 - cos(kh) 

:^ 

2    i 
k 

-^ J 
•  slnhfd'J^)2 -k2 j (V.2.5) 

av 
= 0 (V.2.6) 

z=d 

According to Eq. (III.3.13), we have then a magnetic current 

sheet 

2J* = 2E my   x av 
(V.2.7) 

z-d 

which produces a magnetic dipole of moment 

M - 2 ab  p 
My ;= Ex 

jk 
y0  av 

(V.2.8) 

z=d 

The use of Appendices B and D leads to constant current 

insertion loss expressions identical to (V.l.8) and (V.l.9), where 

now \t\ is given by (V.2,8) and   r' = r + (d-d1) . 

— 'in ■■■I .i.iirlini     um im .„I.I-I...I|.' I t^<M,a^M^^tMMtM||,iM,iM||>,ii|||MM<|M-i 
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(B) Constant Voltage Insertion Loss 

Just as in Section 1 of this chapter, the constant voltage 

insertion loss is given by 

(I.L.)V   -   ^(I.L.lj (V.2.9) 
o       1 o 

This expression is identical to (V.l.ll), but Z. is now the input 

Impedance of a dipole Inside a semi-infinite waveguide, given in 

Chapter IV. 

V.2.2 Loop Antenna 

Let us consider a longitudinal loop such as the one depicted in 

Fig. 5 (Chapter III), where the waveguide has been cut open at the 

plane z a d > d' + D. 

The tangential aperture fields are obtained from Eqs. (III.2.39), 

(III.2.40), (III.2.42) and (III.2.43). As in the previous case, we 

shall work only with the tangential electric field and double the 

resulting magnetic moment. 

The tangential electric field at the aperture is 

8kl. 
Ex z-d  J ^ {¥oL^™™'^r 

._. cos —• sin^-. sin-j- T mn 
rnmd mn 

' sinK(pmnD) " e   ' cos(rmnd,)       (V.2.10) 

Averaging over the aperture results in 

■  -  ■■■ '  ,*~J~***i****M*~***m**i***~*J~*^*^~~~l*~.,  -....., (<|rg 
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av z-d 

8kLD 
i      0 

^^ 
^•sin 

nnb' 

n"l,3,51... 

- m - 

■I 

k2 

• slnh ID w^}- 
cosh Ns€ffl     - k2 (v.2.n) 

Thus, we take our source to be a magnetic current sheet 

2 J ' 2ab E my    x av 
(V.2.12) 

z=d 

which produces a magnetic dipole of moment 

2 ab 

"& 

av 
(V.2J3) 

z=d 

With the help of Appendices B and D we may write the constant 

current Insertion loss expressions. For the electric field (E ): 

 -: —■—■      - —.^mmmmmul^timm _^ 
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4I
n

D2k    f^   /        1 

0        k Jvo   A..^ 

Tnr7" 

W\^ l^^^y 

ir- • H- —7 (V-2J4) 

For the magnetic field (H ): 

(I.L.) 

41 D2k o 

lo k    L, . 1 .     1 

\        r      jkr' 

w^V—^y 

41 D2     /     \ Jk + -r +  - 

1 r 
Jk + r+.kr2 (V.2.15) 

where, once again 

r' = r + (d-d') (V.2.16) 

V.3 Effect of a Conducting Ground Plane. 

The presence of a conducting plane affects only the last step of 

our procedure, i.e., the insertion loss expressions. The free-space 

radiation fields and antenna impedances must be replaced with the half- 

space fields and impedances. 

---■■   ■■   - ■ -■ tm 1 MÜi 1 — I ^^^^^vUH^—^vmmu*** 
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All the necessary equations have been provided in Appendices 

6, C and D. Their use should be obvious by now, and nothing could be 

gained by working out examples. 

■ - - ■■-■'—-^ ^MMMMMMMMIH«i 
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Chapter VI 

APPROXIMATIONS, NUMERICAL RESULTS 

AND CORRELATION WITH EXPERIMENTS 

In this chapter we shall take the cases of a transverse dipole 

and a longitudinal loop, whose equations we developed in Chapter V, and 

we shall evaluate the expressions for a source centered on a transverse 

cross-section and an aperture centered on a wall of the cavity.    (For an 

open box, the "aperture" is already "centered" in its corresponding wall). 

This results not only in a high degree of symmetry in the 

equations, allowing their dramatic simplification, but it also consti- 

tutes a good approximation for many practical cases of interest. 

In the last section, the predicted results are compared with 

experimentally obtained values to show the usefulness of the present 

work. 

VI.1   Cavity with Small Apertures. 

VI. 1.1   Dipole Antenna 

Let us take the case of a transverse dipole antenna, worked 

out in Section 1 of Chapter V, and set 

a' »|        ;        b' =| (VI.1.1) 

x   =f       ;       y  "I (VI.1.2) 

Me are now Interested in evaluating the electric field insertion 

 - ■ -- ' -         ———- —-■,..,.. I.^I.I.„...i., .,.,,, 
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loss for the above configuration,   Equation (V.l.3) becomes 

z=0 ab mm      Ll       ein 
nio0,2,4... 
0=1,3,5... 

■^w-»^—  

cos Ä - cos(kh) 
0 

slnh W^'l 
ilnh (r   d) \ ran ' 

which may be written as 

2kl, 

(VI.1.3) 

H. 
^z-O ab sMkh) 

slnh 

2^        - "4 f1 " cos(kh)] 
n-1,3,5...       k 

# 
sinh I dtll^l2   - k2 

+ E 
"1=2,4,6...    (f) 
n=l,3,5... 

2 2 
■ k 

. Ls Mil. Cos(kh)|  ' 

slnh LH 
s1nh(r   d) mn 

(VI.1.4) 

At frequencies significantly below cutoff we have 

k ^ r • F (VI.1.5) 

i ^a^ttatmmtmmamm^mtämmm^t^^^mu^mmmmmmmnmmamtmmmmmmtmmaä 
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and certainly 

kh « 1 (VI.1.6) 

Therefore, Eq. (VI.1.4) becomes 

z=0 

2lo 
aBF E 

n=l,3,5... 

h2 

r * 
sinh [f (d-d') 
si ^W) 

+ E -   2W [ ,4,6...      \   /    L ma2 

n=l,3,5... 

cos 2^  - cos(kh) 

sinh IvH 
sinh (r   d) mn 

(VI.1.7) 

Assuming that   d = b   as it should be in a typical cabinet or 

rectangular shielding box,/we can approximate (VI.1.7) by 

H. 
z=0 SEIT     Z-i      "r •e 

M" I |vyDy» « • 

t E 2 a 
m=2,4,6... 
n=l,3,5... 

cos^  .cos(kh) 
■r   d" 

mn 

(VI.1.8) 

Evaluating the first suranation 
[22] 
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h2 
4 slnh W* 

•r  d' rnn 

ni«2,4,6... 
nsl»3,5,.. 

(VI.1.9) 

If we further make the very reasonable assumption that d', the 

distance between the antenna and the aperture, Is not too small 
h 

(say, d' > yj), we need only keep the first term (m B 2, n « 1) of the 

remaining summation. 

Thus, we arrive at 

I 
H. 

z=0 

nd '-f w 
(VI.1.10) 

Using Eq. (V.l.5) and inserting the resulting expression in 

(V.l.8) gives us the desired constant current insertion loss expression. 

To determine the constant voltage insertion loss, we must first 

evaluate the input impedance of the antenna inside the cavity. 

To the same degree of approximation used above, Eq. (IV.1.5) 

becomes 

  I     iiMamlUMi—Mj—MMi—i—|—— - ■    -      ■-■ _^__M_ 
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Z,.-J ^K   .?, 
2k     -Tf'^' 

Üji-.l   .sinhüü^t 

E 2 •     % 

ni-2,4,6... 

n-1,3,5... 

cos(kh) - cos* 
3 

■rmn(d'+p) 

mn 
s1nh(rmnd') l       (VI.1.11) 

Evaluating the first summation 

E nn 
(d'+p) 

n=1,3,5,... nn r 
sinhHHf  = 

2 b > 1 

ns1,3,5,... 

:$ -f(2d'+p) 

b 
2n 

b 
FT" 

tanh ^) .. /.- r 

1    m ! + e 
*•  x.n — 

■^ 

2n 

I - e 

', iJJ- 

-% 

tanh 

- tanh 

f (2d'+p) 

(2d'+p) 

j  An I -sr-1 - tanh' 
- {jtfd'+p) 

in ik - 0.45 
p 

tanh' 

r -1 (2d'tpj 

(VI.1.12) 

If  Ü —   - ^-^-^ >^ ^ 
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where we have used reference [22, p. 164] and the fact that np << b. 

Putting this result In (VI.1.11) and evaluating the second 

summation over the Index n (see Appendix E), we arrive at 

Zr-J 
i 

abkh2 

2 4 
khb H )  - 0.45 

- 2 tanh I e 
/  2nd' \1 

+ 2a!b V   J (l-cos^V. 
n3 rrr.    m2 \ a/ 

m-t,«t,o... 

*ni 
P 

1.84 + 1 

V i +7(|)"2 
in (i^wcl)2) 

(VI. 1.13) 

This expression, inserted in Eq. (V.l.11), gives us the constant voltage 

insertion loss. 

For frequencies near cutoff, the second summation in (VI.1.11) 

should be evaluated by computer. 

VI.1.2 Loop Antenna 

If in Eqs. (V.l.12) through (V.l.14), corresponding to a 

"longitudinal" square loop inside a cavity, we set 

"4 
v . a x-7 

M - b 

"I 

(VI.1.14) 

(VI.1.15) 

■ - -- -■'— - ■■ -• -- ■ ü -   mi m ■■ ii 
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The only non-zero field component at the site of the aperture Is 

H , which now becomes 

z-0 ^ z   fci-..,.?. 
m-0,2,4... 
n=l,3,5... 

i      slnhCr^D) r 1 
.    i   .      ,   ltin    . cosh r^Cd-d') 

rmn      s1nh(rnind) Lmn        . 

Separating the m » 0 term and assuming, as before 

{VI.1.16) 

i    n 
^<r.F (»I.1.1/) 

o 

d = b 

we obtain 

z=0 
8Io. E _n^d, 

D e "^ • sinh 
0=1,3,5... 

(¥) 

{VI.1.18) 

V 

E/nn\2 -rmnd' 

46 W-^r-'-^r-^w 
,4,0...   —r mn m=2,4,6...   ^ 

n-1,3,5...     a 

{VI.1.19) 

The first sunmation can be easily evaluated if we write it as 

ii MKIHIH ai i.>iiii«.iii.i i.riT..i.n.ii.niiiii. 11 [ a- «..I«, i i    I  limn—MaaaalM^iMMIuiM 
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slnh af - 
n-1,3,5... 

■f E [(e-^in-(.-^d,+Dr] 
n-1,3,5... 

■f csch fed'-D)!    . csch F^d' + D j 

(VI.1.20) 

where we have used reference [22]. 

In the last summation, If we again assume that (d'-D) is not too 

small, we may keep only the first term (m = 2, n = 1), so that 

(VI.1.19) becomes 

H. 
z=0 

8Io 
W i\ :h[[(d'.D)] - 

sch[jL(d' +0)1 + 

+ ~3r-- sinh 

I + 4 (|)
2 

hv FT 1 + 4 (J) 

(VI.1.21) 

Knowledge of the magnetic polarizability of the aperture will 

allow us to determine the equivalent magnetic dipole moment Ä and the 

corresponding Insertion loss expression, 



v^^MM^^^W 

85 

VI.2 Open Cavity 

VI.2.1 Dipole Antenna 

Let us set b' ■ y In Eq. (V.2.5), corresponding to the case of 

a transverse dlpole antenna Inside an open cavity. 

Assuming 

k « {j- (VI.2.1) 

and 

av z=d 
n2a ^eo n-lls...   n2 

kh « 1 (VI.2.2) 

we obtain 

j 
n2a  f '■o .JTT -     n2 

(VI.2.3) 

This series, although deceptively simple-looking, does not have 

a closed form [22,  p.184]. Fortunately, It Is very rapidly convergent 

and may be truncated after the first few terms. How many terms we must 

keep depends on the ratio -TJ- , where (d-d1) Is the distance between 

the antenna and the aperture. 

Inserting Eq. (VI.2.3) In (V.2.8) results In the magnetic dlpole 

moment M , and then the constant current Insertion loss may be 

immediately found. To obtain the constant voltage insertion loss, we 

need the input Impedance of the antenna Inside the cavity. Setting 

a' = J- , b' = jr and assuming 

k«7»F (VI.2.4) 

kh « 1 (VI.2.5) 
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in Eq. (IV.2.1) results In expression (VI.l.ll), I.e., the Input 

impedance of a transverse dipole antenna inside a cavity, at 

frequencies below cutoff, 1s Independent (to a first approximation) of 

whether the cavity 1s open or closed. 

Hence, expression (VI.1.13) Is also valid for our dipole 

antenna 1n an open cavity. 

VI.2.2 Loop Antenna 

Consider the longitudinal loop treated 1n Chapter V and set 

b' »£ (VI.2.6) 

in Eq. (V.2.11). Assuming 

k « {j- (VI.2.7) 

we have 

E 
xav ■»-/H     n2a   » eo „-i ■» c  n2 z-d n^i.o,»,.. 

• slnh 

nnd 

(nnoj . cosh (nndl) (vi.2.8) 

Once again, we meet the Impossibility of finding a closed form 

for the series. However, It Is rapidly convergent and in most 

practical cases the first few terms will suffice. Inserting (VI.2.8) in 

Eq. (V.2.13) results in the magnetic dipole moment M , and 

expressions (V.2.14) and (V.2.15) give us the desired insertion loss. 

YI.3 Correlatton wtth Experiments 

To verify, to some degree, the validity of the assumptions made 

ii mitmh .iri'n    - 1   ■■- --  -i.... .. i... .,, .  ■—i—^——, i... .... ..........IM 
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throughout this work, a series of measurements was performed on some 

simple physical configurations.   A cubical shielding box of sides 

a ■ b ■ d was used, having a square aperture centered 1n the correspond^ 

Ing wall.   The antennas were;   a dlpole of length 2h ■ a/5, and a 

square loop of sides 2D ■ a/5.   During the measurements, the antennas 

were   kept centered In the box, to allow the use of the equations 

developed in the first two sections of this chapter. 

The resulting Insertion loss expressions are: 

VI.3.1    Cavity with a Square Aperture of Side i. 

(A) Transverse Dlpole Antenna 

For the electric field (Ex), we have 

-v^l-^fe^ (VI.3.1) 

and 

(I.L.)V   = F2 •  (I.L.) 
o I (VI.3.2) 

where 

F1 = 10.36 n in) i 
20 slnhlf 

a 

+ LiL. e   a 

n2 
(VI.3.3) 
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n2 
—T 
10 (f) • |<' - 

- 0.45 - 2 tanK     le -(.•-)l. 

•'(*)..£..> ^w--säti 
n=l»3,5... 

a 
. e 

^/m2 + n5 4tf)2 

V m2  +  n2   .  4(^2 

(B) Longitudinal Loop Antenna 

For the magnetic field (H ), the insertion loss is 

(VI.3.4) 

(I •LVH-) jkrl2 

Jk 7m 
r     jkr2 

(VI.3.5) 

where 

V12 
■«($ ■ 

1 
csch |n(f.o.,)| 

- csch   n (f--')| 
nd"  i-r 

+ 0-358 . 0" ~ / 5 

n 

vr.3.2   Open Cavity 

(A) Transverse Dipole Antenna 

(VI.3.6) 
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For the electric field (E ): 

Jk + ir+     1 

1      /r\ r      Jkrt2 

(I.L.)T    "f-MTrr          r    ■• jkTI (VI.3.7) 

(r.L.)v   « F2 •  (I.L.lj (VI.3.8) 
o       ~ o 

where 
m 

8/a\       V 1      /T^'J 
4 ' i[Tl     L*I       17 W   f Z-/ V   «     a (VI.3.9) 

n-1,3,5,...    " 

and F2    Is given by Eq.  {VI.3.4) 

(B) Longitudinal Loop Antenna 

For the magnetic field (H ) 

jk + ir +        ä 

^'K'-h'i^)'     r f''2 (VI-3-10) 
jk 

r     jkr2 

where 

nnd 

c    - 80 
5 " n2 ,?   ^--(^--H 

(VI.3.11) 

Figures 8 through 10 show plottlngs of the above Insertion 

loss expressions In decibels (i.e., 20 log (I.I.)), together with some 

experimentally obtained values, 

■ ■■- - - >  ■ -             - ——--  
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It 1s Interesting to note that the results for a longitudinal 

loop antenna are Independent of \ and r (except for the snail effect of 

the difference between r and r').    On the other hand, the insertion 

loss of the shield for a transverse dipole antenna follows a A'1 

behavior in the radiation field ("far-field") and a r"1 behavior in the 

Induction field ("near-field"). 

Also, we note that the Input impedance of the dipole antenna 

is only slightly affected by the presence of the shield.    This was to be 

expected for a relatively small dipole such as the one here used. 

The curves in Figs. 8 throuqh 10 were calculated by hand from 

Eqs.  (VI.3.1) through (VI.3.11), which are themselves first-order 

approximations of the more exact expressions given in Chapter V.    For 

more accurate   results, it is advisable to use the latter ?nd evaluate 

them with the help of a computer, extending the region of applicability 

up to frequencies slightly below the first resonance. 

til 2 
The curves corresponding to values of - = TK-, r» and r   were 

obtained using Bethe's method for small apertures.    Those labeled 4 = 1 
a 

were calculated using the waveguide methods. 

It should be noted that the experimental values were obtained 

using the upper half of the physical configurations shown in the 

figures, resting on a conducting plane which provided the other half by 

image theory.    In this way, "free-space" results were simu'ated. 

Due to equipment limitations, the measurements were restricted 

to Insertion losses smaller than 50 dB. 

Figure 11 shows schematically how the unshielded and shielded 

measurements were carried out. 

■ --—mm—^-"^—^->—■^->         ^^^^^a,^,.^^ 
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Unshielded (half-space) measurements 

Ground plane X ^am^^x^m^^ww^ 
(measured from the antenna) 
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Figure 11 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

The comparison between theory and experiment presented 1n 

the last chapter shows very good agreement. The differences are 

well within the range expected due to experimental errors and 

the approximations necessary to allow hand computation of the 

equations. 

All the significant features of the analysis have been 

verified. A disagreement of a few dB's is normally considered 

negligible In shielding theory, where discrepancies of 50 to 100 

dB's in predicted values are not uncommon'- ■'. 

We have thus provideu a method for predicting, with consid- 

erable accuracy, the insertion loss or "attenuation" of a rectangu- 

lar shielded enclosure with apertures, containing an internal 

radiating element, at frequencies below the first, resonance of the 

enclosure. Although trie detailed analysis was carried out for 

particularly simple sources - a dipole antenna and a square loop - 

the inclusion of the solutions for a current element (Hertzian 

dipole) allows us to solve the problem for an arbitrary current 

distribution. 

Moreover, the results obtained for the chosen examples 

(selected because of their "worst-case" characteristics) constitute 

a very reliable Indicator of the leakages to be expected from 

apertures in shields containing "high impedance" or "low impedance" 

sources (i.e., electric field sources such as dipole antennas, 

• ■' ■— ■ -' —        - - -  -- i ■ ■ ■ - ■-■-— 
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or magnetic field sources such as current loops, where the electric 

or magnetic nature of the source is given by the type of field 

that predominates in the induction region).    The insertion loss 

of shields containing high impedance sources behaves  as 1A and 

is independent of distance in the radiation region, and shows a 

1/r behavior in the induction region (where it is independent of 

the wavelength).    For low impedance sources, the insertion loss 

of the shield is essentially independent of wavelength and distance. 

Sources having geometries different from the straight 

center-fed dipole and the square loop here analyzed may be safely 

approximated by the equations of Chapter V if their dipole moments 

are known.    A dipole, or square loop having the same dipole moment 

as the given source, and comparable linear dimensions and orienta- 

tion, should provide a fairly accurate substitute for the real case. 

Furthermore, we can expect that enclosures of somewhat 

different shape   but of equal volumes   will provide very similar 

shielding effects, as long as their three dimensions are of com- 

parable magnitude (i.e., if no one dimension is too large or too 

small compared with the other two).    Thus, our results for rectan- 

gular enclosures can be applied to other comparable slopes to 

obtain approximate values for their insertion loss.    The critical 

parameter to be maintained constant is the source-aperture distance. 

Although the present work has been developed in terms of sources 

internal to the shield, the theorem of reciprocity*-    '^      "    ■' 

allows our results to be used for external source., as well.    If the 

external noise source is located at more than a few wavelengths 

  M M     ■—'  ■ M —■- -—'■  ''      ■ ■iiMiiniimililwrmrnirrMiniiiailiiii* ■. 
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from the shield, the field incident on the enclosure will have 

essentially the configuration of a plane wave. Our insertion 

loss rojations provide us with a measure of the effect of the 

shield upon the "noise pick-up" by sensitive circuits (having 

high or low impedance, as the case may be) located in its Interior, 

when there are apertures present in the enclosure. 

The applicability of the theorem of reciprocity to the 

insertion loss of shielded enclosures is theoretically and experi- 

[271 
mentally well established1  . However, it should be stressed 

that only the roles of receiving and transmitting equipment 

should be Interchanged for the successful application of the 

theorem. 

A study of the Insertion loss equations here developed 

should provide enough information to achieve optimum shielding 

performance for a given piece of equipment and its metallic enclo- 

sure.    The location of "noisy" (or sensitive) circuits with respect 

to the shield apertures, the physical layout of those circuits, 

the choice of currents and impedances, the size, shape and loca- 

tion of the required apertures, etc., can all be optimized by 

analyzing their influence on the insertion loss expressions. 

Our analysis may be easily paralleled for geometries other 

than rectangular, and it should be a straightforward procedure 

In the case of those regular geometries for which the Green 

functions are already available. 

All of the above considerations indicate that the present 

  ^*^*a**a^^m*mi*ä*****i***~****la~mm*i*^~^-~ä*m^llaätmiti 
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work will represent a valuable tool for EMC* engineers and to 

all others interested in electromagnetic shields.   The accurate 

prediction of Insertion loss (or shield attenuation) for equipment 

enclosures should be very useful for the electronic industry. 

Much theoretical and experimental work can be done to 

complement this research.    Some suggestions that readily come to 

mind are: 

- Effect of low-conductivity material covering the 

apertures (e.g. conducting glass). 

- Analysis of seam apertures formed by doors and covers. 

- Description (possibly statistical) of the general 

electromagnetic field inside a metallic enclosure containing a 

Urge number of radiating sources (subsystems, cables, etc.). 

- Development of nomograms to solve our expressions In 

iome typical circumstances. 

- Include the effect of the finite conductivity of the 

enclosure material to ascertain the conditions under which the 

leakage through the aperture ceases to be dominant. 

- Critical review of current techniques for shielding 

effectiveness measurements. In the light of the present work. 

* 
Electromagnetic compatibility 

■ —^-i- ■MMMMMMMMMMMMMMaaMMMlMMi 
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Appendix A 

BEHAVIOR OF THE FIELDS IN A SEMI-INFINITE WAVEGUIDE 

From the treatment of semi-infinite waveguides excited by 

internal sources at frequencies below cutoff (Chapter III, Section 2), 

we see that the fields decay, in the z-direction, at least as fast as 

n,n 

e" m   sinh(r d') mn (A.l) 

for z > d' (z^d* is the plane of the source). Let z = d be the plane 

at which we will cut open the waveguide (i.e., z = d will be the 

plane of the aperture). 

The ratio of the field at z = d to that at z = d' + p is then 

^e'^sinh^d«) mn 
m,n 

Z-rmn(d' + P) 
sinh(rnd') 

m.n 

^re'Wd"d').e"r™'(d+d')l 
m.n *• 

X;[e-,™p.e-r-,2d'to)] 
m,n L 

(A.2) 

Thus, It is necessary to evaluate a double summation of the 

form 

  ^^^^m^^mm^m^mm^mmmmm amtlmmtmm 
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E    ."# t W 
ni»0,l,2... 
n-0,1,2... 

{A.3) 

where we have assumed 

k«?«. n 
?• F 

and m and n are not both zero simultaneously. 

For computational ease, let us set 

a = b 

Hence, 

Ze-^P^ S   =^8 

m.n 

(A.4) 

(A.5) 

(A.6) 

This double summation, although convergent, cannot be evaluated In 

closed form.    Nevertheless, an approximation can be found by consider- 

ing the m,n space of Fig. A.l.    Each one of the grid crossings is at a 

distance 

^/m?- + n2 (A.7) 

from the origin. 

For m and n sufficiently large, the total number of crossings 

(modes) up to a radius R is given to a good degree of approximation by 

---  ^~*t* 
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q . 1 n R2 , J / 2 + n2 

Thus, in our summation (A.6), we can re 

where q = 0,1,2,... 

place / m? + 

S 5 - 7 e 
-2/T ~ /T a 

(A.8) 

(A.9) 

To evaluate this series, we shall use a graphical comparison 

between the summation and the integral of the function, i.e.. 

9=0 
(A.10) 

and 

e   M dq (A.ll) 

From Fig. A.2 we see that the difference between the summation 

and the integral is the solid shaded area. The approximate value of 

this area A may be obtained from 

A = }[f(o)-f(l)] +|[f(l)-f(2)] + ... 

... + [f(q)-f(q+l)J + ... 

= |f(o) +^[f(l)-f(l)] + } [f(2).f{2)] 

... + } [f(q)-f(q)] + ... (A.12) 

and since 

|^HhMMJ»MiMiiaM«.l if 11 IM ■! I I M   
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f(q) » e"K ^ —^ 0 as q-^» (A..3) 

we have 

A»lf(o) (A.14) 

This can also be seen from Fig. A.3, where the area representing 

the summation has been shifted to the left by a half unit. F.xcept for 

the solid shaded portion, the area overshoots and undershoots approximately 

cancel each other. The solid shaded area is clearly given by Eq. (A.14). 

Therefore 

■2 /r f /-q /."■    -2 /r f  /r 
e dq 

-<: /n     - / q /• 

q=0 

7 wz' 
') 

1   l  -äi + i | (A.i5) 

and we can write 

7 

Let us now evaluate 

—+1I 
nz2     / 

S-if-äL+l) (A.16) 

E-r    (d-d') 
e   m (A.17) 

mtn 

for (d-d') = a, 2. and ^   I.e.,   2 - a, J  and fa in Eq.  (A.16) 
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S(a) = 0.659 (A.18) 

S(f) - 2.07 (A.19) 

S(^) - 16.4 (A.20) 

On the other hand, the radius of the antenna (wire radius) is of 

the order of yaw- or less, so that the relative magnitude of the field 

next to the antenna is approximately 

5(^ = 1590 (A.21) 

What this means is that if the semi-infinite waveguide is cut 

(terminated into space) at a distance (d-d1) = ▼*■   from the source, 

the magnitude of the fields at the plane of the cut is down by 

approximately two orders of magnitude from that next to the antenna. 

Any reflections from the open end will be further attenuated 

by another factor of 100 before reaching the antenna. 

Hence, we can say that the antenna "does not see" the aperture. 

         - -      -        —"—»—~- 
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Appendix B 

RADIATION FROM SMALL ANTENNAS 

A.l    Antennas 1n Free Space 

A.1.1    Dipole Antenna (See   Fin. B.l) 

A short, thin, center-fed dipole antenna of length 

2h << x 

and having a current I    at its terminals, has essentially a triangular 

current distribution, and may be represented by a Hertzian dipole 

(current element) of the same length and constant current L/2. 

Thus the phasor expressions for the fields from such an 

antenna are given,  in spherical  coordinates, by [18, pp. 322-323] 

I h o 

Ioh 

\ Eo   ^ r     Jkr 
cos e • e -jkr 

jkr2 
sin e r Jkr 

(B.l) 

(B.2) 

H, V w (" • i. sin o ■jkr (B.3) 

where e is the angle between the direction of the dipole and the radius 

vector to the field point (r,o,(j)). The dipole antenna is at the center 

of the coordinate system. 

A.1.2   Loop Antenna (See Fig. B.2) 

Consider a loop antenna, whose dimensions are small compared 

MJgMMjJM     II    lillliin I > IMMMBftdHtotf 
..   .      ■: ^^■■■.  y^^gm^migugg^ 
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Figure B.l 
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Figure B.2 
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no 

to the wavelencth, having a constant current I   and enclosing an 

area A.    The radiated field Is given by [12, p.37] 

VJ^(F+t)  C0se*e"jkr (B.4) 

I Ak 

o     J    4iir r     jkr2 

-Ikr nn 0 * e JNr (B.5) 

•^vK^* e'Jkr 
(B.6) 

3.2    Antennas Ovor a Perfectly Conducting Plane 

The electromagnetic fields from small dipoles and loops located 

over a perfectly conducting plane can best be obtained by describing 

the radiation in terms of the Hertz vectors.    Using Coll in and 

ri9l Zucker's1-    J treatment and letting the conductivity of the ground plane 

approach infinity, we obtain the following field expressions  (see Fig. 

B.3) where cylindrical coordinates are used for convenience. 

B.2.1    Vertical  (z-directed) Electric Dipole 

E    = 
p 

Iohp 

4n 

(f+Zfil 
R'3 

(~o> 

R3 

( 

jk + ^- + —=- 
R'      M'2 

jk + 3+JL.)  e-ikR 

•jkR' (B.7) 

MM —'■■- I   — —,   ^^^^L^^m^k^, MMMriMMMMMMMMIMHi 
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Figure B.3 
Elementary dipole over a 

perfectly conducting plane (the x,y plane) 
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411    \co 

i. (2-v': 
■i* R3 

( 
K    JkR2 

1        ,     ^0^ 

V R13 
Jk+^+     ! 

R'      jkR'2 
e^^'      {B.8) 

.   o I> 
>      4n 

1 

R2   » R 

+ l-\0-JkR, + -^  I jk + — I e 
R'2   \ R' 

(R.9) 

E    = H    = H   = 0 ^       P       z 

B.2.2   Horizontal (x-directed) Electric Dipole 

I h cos* o 
ZTT" ft [i{' K     jkR2 

K     JkR2 

.-jkR 

R'2 \        R'      JkR'2 

- (jk + 
R«     jkR'2/ 

-jkR' 

R' 
(B.IO) 
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V ^Vl [("I-sr) 
•jkR 

R'     R'2 

I0h p cos *   ^fV0 

•jkR' 

IF 

(B.n) 

^(jk.3,^.1   e-jkR 
R3     \ R     jkR2, 

(z+O o'   /..,.. 3    .      3      \ .-JkR' 
ii 3 

I h sin $ 

jk + ~ + 
R'     jkR,: 

lif 

(2+0 
n2 

R2 
jk^ le^kR 

|jk + — 
R' 
]_ \ o-M* 

(B.12) 

{B.13) 

H* = - 

I h cos $ 

4 II ^ (^+1,' e-jkR 

'^o1   /jk + J_ 1 e-JW 

H
2 = 

R" 

I hk p sin ♦ o 
IF 

ljk+i-+    1 

'jk + **i) 
■jkR' 

R'     jkR'2/       R' 

-jkR 

(B.14) 

(B.15) 
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B.2.3   Vertical (z-dlrected) Magnetic Dipole 

I0Ak p 

R3       \ R     JkR2/ 

ii^o)    /Jkt^t_A_^   e-W 
R'3      \ R'     JkR'5' 

(B.16) 

H, = J 
I Ak 
o 1 + i^o)2 

(JK^ + _L    e-JkR 

JkR2 

1    ,  '^o>2 

R' R'S (jk + r .—L-le-^' 
JkR • 2 

{B.17) 

E    = - J 
I0Akp 

4n 
ft M^^)^ 

jk.l-      e-W 
R''     \ R' 

(B.18) 

H    = E    = E    = 0 *       P       z 

B.2.4   Horizontal (x-dlrected) Magnetic Dipole 

■ ■ J--' -■■  '—■    »Ml—' ——^—^^.„^^.^j,^^—g^-^^j-^-gjgg 
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f~   (Jk^3^     3 

R2 
+ ^ + 

jkP? 

(Jk^ + ^) 

■JkR 

nr + 

ü—(jk + i-t 
,1? p.'    jkn,;' 

jk + ^- + -1 
K       JkR i? 

-.IkR' 

7' 
(B.19) 

I0 Ak sin .'. 
j Jli  

1 1 

^        '     .ikR? 

jk f — + 
R'      jkR,;>/ R' 

-M 

(R.20J 

Hz  = j 
I    Ak P cos $ 

4ll R3     \ K     jkR^/ 

.i^l^^.J •jkR' 

R « 3 jkR >?. 
(B.21) 
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'•( 
jk » ^    e-JkR . 

(^F)^'. (ß.22) 

Ki " J 

I    Ak COG 

tt   *   r, -JkR o J     + 

(Z+2J 

v-     \      r) (B.23) 

I    Ak-'p  sin 

 ffi  

jk  + — + 

JkP^ 

R'      jkR,: 

JkR' 

R' 

it-P 

(B.24) 

In the above equations, we are assuming that the electric 

dipole consists of a current element of lenqth 2h and current I /2. 
o 

an. the nagnetic dipole is a small loop of area A and current I . 
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Appendix C 

SELF-IMPEDANCE OF SMALL ANTENNAS 

C.I Antennas In Free Space 

C.1.1 Dipole Antenna 

The self-impedance of a small dipole of length 

2h << \ 

and of wire mdius p is approximately given by'- -' 

?A) 
in 

n (t) -1 

(?) -°' 81 
k'tf  -j 120 .n H 

p 
- 1 ohms (C.l) 

C.1.2 Loop Antenna 

The leading terms in the driving-point impedance of a snail 

120] loop of area A and wire radius p are1 

Zl = 20 k^A2 + j MO /Ü k /K ohms (C.2) 

In expressions (C.l) and (c.2), the resistance of the wiro has heen 

neglected. 

C.2   Antennas Over a Perfectly Conducting Plane 

rig    n    29?  ff 1 
Using the procedure indicated by Coll in and Zucker    * ^ ,J, 

we have obtained the self-impedance of elementary dipoles over a 

conducting plane.    The electric dipole is taken as a current element of 

length 2h, and the magnetic dipole as a small  loop enclosing an area A. 

i ■- ■■■ --  -■•'--      ■' ■•■■- 
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In both cases, the raillus of the wire is p. 

In the following equations, 

a » 2 Z^ (C.3) 

where z0 is the height of the dipole over the conducting plane (Fig. 

B.3, Appendix B). 

C.2.1    Vertical Electric Dipole 

l\ - 40(kh)? -j|| \2inIW h3 

2  - i- 1  + 
ka 

oh";s 

(C.4) 

C.2.2 Horizontal Electric Dipole 

Z', =4 (kh)?(ka)? -jff kF 2 v "(?) 2 - 
2a' L 

1 - 
2 • ohms 

(C.5)) 

C.2.3   Vertical Magnetic Dipole 

Z'. = 2(kA)2(ka)2+ j 120 /T k /T     m (^) 

1 1 

2 /if 
1 + J^'l)     ohms (C.6) 
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C.2.rt   Horizontal Magnetic Dipole 

Z^ = 40 k^A2 + j  120 /if k A 

1 
7 
 I 
2/n (4)' 

p,n   ^   - 
p 

ohns (C.7) 

The resistance of the wire has been nefilected in all  of the above 

expressions. 

-         ■■■. ^ ..J—». MMMMHBilillHMMMiMMMi 
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Appendix D 

RADIATION FROM DIPOLE MOMENTS 

The electromagnetic field produced by an electric dipole moment 

f has component-.     ■' 

Er = J ?nM f + ~) !pl ^ '- '■■^ (D-,) 

ür    ^ r     Jkr?/ 
l. - iwrr[ik + ? + ~^P! sln' ' e"Jkr        (D°?) 

Jkt 

H^ = j ^   (jk + ij   [1*1 sin o • e"jkr (0.3) 

and that produced by a magnetic dipole moment ^ is'-    » P'^^'J 

Hr = j W (^-A)   1^1 cos 0 * e'Jkr (D-4) jkr^ 

H0 = j ^r f jk + 1 + —L-j \M sin o. e-jkr (0.5) 

All of the above are phasor expressions.    The time-dependence has been 

taken, in the usual engineering fashion, as e      . 

The angle o is that between the direction of the dipole moment 

and the radius vector to the field point. 

For dipole moments over a perfectly conducting plane, we can 

use Eqs. (B.7) through (B.24) of Appendix B If we write 

--.i  i I..  i,,.-. -. .   1—i—^g——-__^g-^m 
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for electric dipoles, and 
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(D.7) 

I0A  1^1 (D.8) 

for nagnetic dipoles 

--    ^MHMaMMBHHu^MHMMa. 
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Appendix E 

EVALUATION OF A SERIES 

In Eq. (VI.1.11) for the Input impedance of a dipole in a cavity, 

the last sumation Is 

E  ^r 
ni=2,4,6... 
n=l ,3,5... 

cos(kh) - cos Ä 

•r (d'+p) mnv   ' 

mn 
stnh(imnd') (E.l) 

If d' is not too small, e.g. 

f .0.1 

and 

k « ü , " 
a * D 

Eq. (E.l) becomes 

S = 

i'i=2,4,6... 
n=l,3,5... 

cos(kh) - COS ^ 

I Jn*  + m^H 
(E.2) 

We wish to evaluate the summation over n, which although 

convergent, decreases very slowly with n due to the fact that 

■ IM    -       M   I I I ll»IMtM—Mi—M<— 
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Let 

^ E 
^^   ynatc,2 

n=l ,3,5.. ^ ^n2 + «2 

where v/e have put 

,.■ (t) =.' 

(E.3) 

(L.4) 

Invostinatinq the function of n and itn derivatives, we determine 

that Euler's sumnation fonnula1 ■'J is applicable and that v/e may keep 

only the first two terms 

i     e 
2 ' 

Up J}   +   a2 

1   +   ^ I V _ na4/{2x+l)^ + n2 

Evaluating the integral 

I  - [ 
(2x+l)y   +  a'" 

1 
/; 

J(2x+1)2 + 7' 

' b      Ju2  + a2 

e 

^w2  + a2 

V 
dx 

(2X+1)2   +  n2 

(F-5) 

dx - 

—MM1M| ■^M^BM^i i^MteMM 
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ü£ ^777' 
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dw 

V^ u)2 + n2 

-/ 

- jk^o)2  + a2 

^lO2   +   a2 

da) 

-j h + 'z] (E.6) 

[241 
The first integral  isL   J 

■/ 

jk ^2  + a2 

dw B  K, 

4 'U)2    +   «2 
(f.) (E.7) 

i/here K (x) is the modified Bessel function of the third kind and order o 

zero.    For small arguments [25] 

K0(x) - - in x (E.8) 

For large arguments 

KM ~{i -x 

[25, p.378] 

1  8x 2!(8x): 
(E.9) 

In the second integral of {E.6), {j^ is very small. But the 

-■'--- ■■ ^.-UL..^^ MMMMMMMk 
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2 

m" factor in Eq. (E.2), plus the effects of a2 = in2(|-) in the 

exponent and in the denominator of I«, will make the contribution from 

this Integral very small for m >> 1. We may then approximate 

?  /      , dui  n£_     / 

•^ o V ^2 + a2 ■'o 

(E.10) 

Hence, 

0n "^TT 
V r V1 * m?(j'; 

i 1 + m2 (|)2 

+ Kol f ' 

r-- (f^+v 1 + (f)^ • 1- 
b m2 

(E.ll) 

Essentially for the same reasons given above, we can safely 

assume that the significant contribution from on in expression (E.2) 

will happen for values of m such that we still have 

^-m «1 
a 

and the use of (E.8) is justified. 

With kh << 1, so that 

cos(kh) = 1 

we finally have 

I   ■hk.Mb,,^ ■.■■>.■■ ii    -ii Mini mi in r i    n-M  i^iyMÜlMattMÜiailiMMMiimi   i i, 
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S = 
a'-b 

?, i (■■•■•=?)■• 2113     m-2,4.6...   '" 

tn 2-- 1.84 - t. •.n(i^^rr^') 

i 

v i + ^ & 
{r.i2) 

 >— —.  .... —ngn—J-,.-..^....  ,    ,    ^~^^.—^n^^y-gy^m—. m 
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List of Symbols 

A Magnetic vector potential 

B Magnetic flux density 

D One-half the side of a square loop 

E Electric field intensity 

G(r/r0) Scalar Green's function 

^r/r0) Dyadic Green's function 
-> 
H Magnetic field intensity 

'o Electric current at antenna input terminal s 

(I.L.)Io Constant-current Insertion Loss 

(I.L.)Vo Constant-voltage Insertion Loss 

J Electric current density 

? Electric current sheet density 

Magnetic current sheet density 

L Length of Herzian dipole 

M Magnetic dipole moment 
->• 
P Electric dipole moment 

TE Transverse-electric, or H-mode 

TM Transverse-magnetic, or E-mode 

Zi Antenna input impedance 

a,b,d Enclosure dimensions 

a'.b'.d' Source position 

h Half-length of dipole antenna 

« 
J /=T 

k Wave number = 211/A 

i Aperture dimension 

-—^"—-  uttm 
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m,n,p Mode integers 

r Field-point position 

r Source-field point distance 

r Source position 

r.o,* Spherical coordinates 

U Idemfactor    (unit dyadic) 

x,y,z Rectangular coordinates 

1„ Normal unit vector n 
->    »    > 
1   ,1   ,1 Rectangular unit vectors 

m Electric polarizability scalar 

VJ" Magnetic polarizability tensor 

L Free-space permittivity 

t„ Neumann factor (r ^1; t   . =2) m m-o mfo 

x Wavelength 

u Free-space permeability 

p Wire radius.    Electric charge density 

p,z,4) Cylindrical coordinates 

T Volume 

u) Angular frequency 

v Del (nabla) operator 

v ? Laplacian operator 

    -v^—~*M 
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