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STATISTICAL TESTS OF SOME WIDELY USED 
AND RECENTLY PROPOSED 

UNIFORM RANDOM NUMBER GENERATORS 

G. P. Learmonth and P.  A. W.  Lewis 
Naval Postgraduate School 

Monterey, California 

Abstract 

Several widely used uniform random number generators have been extensively subjected 
to three commonly used statistical tests of uniformity and randomness. The object 
was i) to examine the power of these statistical tests to discriminate between 
"good" and "bad" random number generators, ii) to correlate these results with 
recently proposed mathematical characterizations of random number generators which 
might also be useful in such a discrimination, and ill) to examine the effect of 
shuffling on the random number generators. 

Briefly the results show that the commonly used runs test has virtually no power 
to discriminate between "good" and "bad" generators, while serial tests perform 
better. Also shuffling does help, although much more needs to be done in this 
area. And finally, there is some utility to the mathematical characterizations, 
but many unanswered questions. 

1.  INTRODUCTION 

The generation of pseudo-random numbers has been 
the subject of literally hundreds of papers in the 
computing and simulation literature (see the bibli- 
ography by Nance and Overstreet [13]). By far the 
most popular method of pseudo-random number gener- 
ation has been the Lehmer congruential method: 

n+l = A'X + C 
n 

(mod P). (1) 

The theory underlying the implementation and use 
of the congruence (1) is well described, see e.g. 
Knuth [5]. 

Recent attention has been given to alternatives to 
the Lehmer congruential method. Most notable are 
the feedback shift register generators [10, 15, 18], 
These generators are based on irreducible polyno- 
mials over GF(2) and are capable of producing 
extremely long sequences relative to the word size 
of the computer. 

The generation of pseudo-random numbers is Itself 
a simulation, that is, we are attempting to simu- 
late a random sequence of numbers. As in any 
simulation experiment, we apply some sort of test 
procedure to verify how well our simulation 
achieved the desired goal. Typically runs tests. 

serial tests, and various chi-square tests for 
independence are applied to relatively short sec- 
tions of the pseudo-random sequence. Many of these 
tests have been outlined by Gorenstein [4] and 
Knuth [5]. Recent results have indicated that the 
power of these classical tests to detect "poor" 
generators is suspect. 

We now have mathematical characterizations of pseudo- 
random sequences which should help one to discrim- 
inate between generators. Chief amongst these 
characterizations are the spectral structure de- 
scribed by Coveyou and MacPherson [1] and the lat- 
tice structure test advanced by Marsaglia [11] and 
Smith [17] for congruential generators. There are 
also presumably better statistical tests based on 
the properties of the periodogram, as outlined in 
Lewis, Goodman, and Miller [9]. All of these tests 
are more sensitive to subtle departures from random- 
aiiHB  than some of the older tests, both mathematical 
and statistical, particularly with respect to the 
higher dimensional properties of the pseudo-random 
sequences. However, their interrelationship is not 
well understood. For example, Marsaglia [11] de- 
rides the utility of the Coveyou-MacPherson work. 
Moreover, in a real sense the proof of the pudding 
(here a pseudo-random number generator) is in the 
using and it is not clear how well the mathematical 
tests predict the results of the statistical tests. 

Support for part of this work under NSF Grant AG A76 Is gratefully acknowledged. 
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I.e. the ability of the sequences to simulate 
independent uniform random numbers. 

In this paper we propose to examine the perform- 
ance of six pseudo-random number generators on the 
runs test and serial tost for pairs and triples. 
Among these six generators are two known to be 
poor. Testing these serves to demonstrate the 
lack of discriminatory power of some of the statis- 
tical tests. In the case of one of them (RANDU) 
the mathematical characterizations clearly predict 
poor performance. The idea of shuffling the pseu- 
do-random sequence will also be explored as a 
means of improving the statistical performance of 
a generator. This is a relatively new and untested 
method. 

2.  THE GENERATORS 

The six generators used in this report were all 
designed for use on the 32-bit word IBM System/360. 
Table 1 summarizes the pertinent information about 
each of the six generators. 

LLRANDOM is a version of the generator reported in 
Lewis, Goodman and Miller [9] (see Learmonth and 
Lewis [7] for details of LLRANDOM). Other versions 
of the Lewis, Goodman and Miller generator are used 
in the new IBM SL/MATH package and In the IBM ver- 
sion of the APL language. RANDU it? the uniform 
random number generator provided with the IBM 
Scientific Subroutine Package [16] which, despite 
disclaimers of support from IBM, is still unfor- 
tunately widely used. TAUS is a feedback shift 
register generator proposed by Tausworthe. The 
present implementation was patterned after Payne 
[15]. 

GFSR is a FORTRAN implementation of a "generalized" 
feedback shift register generator by Lewis and 
Payne [10]. The algorithm employed in GFSR sim- 
plifies the coding of the feedback shift register 
and generalizes the implementation to virtually 
any word-size machine. 

TRINOMIAL 
or 

NAME TYPE MULTIPLIER 

LLRANDUM 

RANDU 

TAUS 

LEHMER CONGRUENTIAL 

LEHMER CONGRUENTIAL 

FEEDBACK SHIFT 
REGISTER 

The last two generators listed in Table 1 were 
taken from the package "Super-Duper" by G. Marsaglia. 
The novelty of "Super-Duper" lies in the fact that 
it consists of combining (exclusive OR'ing) the 
results of both a Lehmer congruential generator and 
a feedback shift register generator. For one case 
(Super-Duper) we use this combination method. For 
the last generator we used only the congruential 
part of the Super-Duper package. 

2.1 SHUFFLING. 

The sequences produced by pseudo-random number gen- 
erators are deterministic. In order to disguise 
this pattern, several techniques have been proposed 
to reorder, or shuffle, the sequence emanating from 
a generator. Marsaglia and Bray [13] have proposed 
maintaining a table of pseudo-random numbers within 
the generator. Two independent pseudo-random num- 
bers are generated at each call. The first number, 
appropriately scaled, is used as a random index 
into the table. The tabled value is then returned 
with the number from the second sequence replacing 
it in the table. 

Another procedure mentioned by Tukey [19] is to 
generate blocks of, say 1024, pseudo-random numbers 
and then shuffle them according to some random per- 
mutation. After all or some of these numbers have 
been used, generate another block and shuffle them 
according to the same permutation. 

Marsaglia's [11] method of exclusive OR'ing the out- 
put of a Lehmer congruential generator and a feed- 
back shift register generator is also aimed at 
breaking-up the basic deterministic pattern of the 
Lehmer generator. It produces a perfect (in the 
sense of unit cell volume) lattice structure. 

For the purposes of the testing described here, the 
Marsaglia and Bray method was used with five of the 
six generators, the exception being GFSR. A table 
size of 128 was chosen and two sequences of the 
same generator were used, each with a different 

MODULUS PERIOD LANGUAGE 

V  - 16807 

216 + 3 - 65539 

31   13 
XJ + X1J + 1 

231-1 
,32 

J31 

,29 

,31 - 1 

SYSTEM/360 ASSEMBLER 

FORTRAN IV 

FORTRAN IV 

GFSR 

SUPER-DUPER 

GENERALIZED FEEDBACK 
SHIFT REGISTER 

LEHMER CONGRUENTIAL 
WITH FSR 

SUPER-DUPER 
(CONGRUENTIAL  LEHMER CONGRUENTIAL 

ONLY) 

X1" + X
37 + 1 

69069 

X17 + X15 + 1 

69069 

,32 

,32 

2124 - 1   FORTRAN IV 

246 - 229  SYSTEM/360 ASSEMBLER 

,29 SYSTEM/360 ASSEMBLER 

TABLE 1.  SUMMARY OF THE SIX GENERATORS TESTED 



starting value. To be consistent, this shuffling 
scheme was used In LLRANDOM even though LLRANDOM 
has the capability of shuffling directly Incorpor- 
ated Into the generator. The shuffling scheme In 
LLRANDOM requires only one pseudo-random number 
since seven bits of that number are used to Index 
the table of 128 (27-128). These seven bits are 
quite random due to our choice of modulus (see 
Knuth [5] page 12). Results of the statistical 
testing of the actual shuffled sequence produced 
In the LLRANDOM package are given In Appendix A. 

As will be seen, the redouts of shuffling are en- 
couraging when measured by statistical tests, even 
for poorly constructed generators. However, It 
is not entirely clear how shuffling changes 
the lattice structure of the sequence, and this 
raises important questions. 

A chl square statistic is computed for the sample 
generated as 

N, EtNd]2 

ElNd] 
(5) 

This statistic is only approximately distributed as 
a chl square variate with 7 degrees of freedom 
since the expected values in each cell are not 
equal, the last two cells both having expected 
values less than 5. additionally, there Is a cer- 
tain lack of Independence since a long run is usu- 
ally followed by a short run. 

The test procedure was to perform this runs test for 
samples of size N - 65,536. One hundred replica- 
tions were then performed using different starting 
values (seeds). 

3. THE RUNS TEST 3.2 RESULTS OF THE TESTS 

Pseudo-random number generators produce sequences 
which are inherently periodic although when P Is 
prime and A is a positive primitive root of P, 
as in LLRANDOM, the numbers do not repeat until P 
have been generated and It is felt that this helps 
reduce local cyclic effects. The runs-up-and-down 
test is frequently applied to pseudo-random sequen- 
ces to investigate the possibility of local (less 
than full period) cycles or stationary dependence. 

Under the null hypotheses that a sequence is ran- 
dom the expected value and variance of the number 
of runs of given lengths in a sequence of length 
N are easily derived. Levene and Wolfowitz [8] 
have shown that for the observed number of runs of 
length d, N., the statistic V 

N, E[Nd] 

{Var[NdJ} 
172 (2) 

is asymptotically normally distributed with mean 
0 and variance 1 as the sample size, n, tends 
to infinity. 

The literature on the power of the runs test is 
rather sparse, even though It is widely recommended 
as a test. The only significant result is due to 
F. N. David [2] which shows that the runs test has, 
asymptotically, the greatest power of any test of 
randomness against the alternative of first-order 
Markov dependence in a binary sequence. 

3.1 TEST FORMULATION. 

The runs-up-and-down test used here is patterned 
after Kendall and Stuart and was used and described 
fully by Lewis, Goodman and Miller [9]. Samples 
of size N - 65,536 were generated and runs counted 
for lengths d - 1,2,...,7, with a last cell d - 8 
collecting observed runs of length 8 or more. 
The expected number of runs Is given by 

m  2(n-d-2)(d^3d-H) 
ElNdJ       (d+3)l        a 

^V1 2n 2- S N,. 

1,2 7 (3) 

(H) 

d-1 

Samples of one hundred chl square statistics (5) 
were obtained from each of the six generators. An 
additional sample of one hundred was taken for each 
of the generators, except GFSR, with shuffling 
implemented. Each set of one hundred was considered 
to be a sample from the distribution of this runs 
test statistic (5). 

A preliminary analysis of the sample data showed 
that for some starting values, all six of the gen- 
erators would fail the runs test at a 5% level based 
on a chl square distribution with 7 degrees of 
freedom. Even when shuffled, each generator pro- 
duced values of the test statistic which were either 
too high or too low for acceptance. The question is, 
however, are the numbers of rejections consistent 
with the chl-square distribution theory, and if not, 
can we simulate the true (null) distribution with 
our results. The answer to the first question is 
that no generator produced results which were grossly 
different from that predicted by the chl-square 
distribution theory. 

Thus, to further assess the ability of the runs test 
to discriminate "bad" generators from "good" gener- 
ators, it was decided to compare sample distribu- 
tions of the runs test statistic (5). A two-sample 
Kolmogorov-Smlrnov test was performed on all pairs 
of samples (of size 100). The two-sample K-S test 
is distribution-free and we avoided the problem of 
having to specify an exact null distribution for 
the statistic (5). A two-sample K-S test subrou- 
tine was programmed using the algorithm presented 
by Kim and Jennrlch [6]. 

Table 2 summarizes the results of these tests with 
the generators not shuffled. The pair of values 
given correspond to the sample K-S criterion, 
c/(m'n), and the Pr{D(m,n) > c/(m'n)}, respectively. 
The results indicate that RANDU produces runs test 
statistics which are not distrlbutionally commen- 
surate with the other five generators. This was to 
be expected since RANDU is one of the two "poor" 
generators among the six, but the indications are 
not strong. The somewhat surprising result Is that 
TAUS appears, except for the case of RANDU, to be 
similarly distributed with the remaining four 

X 



generators. TAUS 1B the other suspect generator 
referred to above. This Is because the results of 
Toothill, Robinson and Adams [18] Indicate that a 
feedback shift register generator with the primi- 
tive trinomial used In TAUS could not comply with 
the moment and marginal results of Levene and Wolf- 
owitz [8]. 

Table 3 presents results of a similar test using 
the shuffled samples (with the exception of GFSR 
which was not shuffled). With the type 1 error at 
5%, all generators appear to be dlstrlbutlonslly 
commensurate. This result Is encouraging since It 
was hoped that shuffling would Improve the perform- 
ance of relatively poor generators such as RANDU. 

varlate with seven degrees of freedom are x5 
7(0.93 

- 14.07 and xf 099 ■ 18.48 respectively. 

Although the runs test has been used frequently In 
the testing of pseudo-random number generators, we 
feel now that the test Is of very doubtful use. 
The lack of distributional theory concerning the 
runs test statistic (5), combined with Its empiri- 
cal lack of ability to discriminate TAUS leads us 
to conclude that the runs test should not be em- 
ployed In testing pseudo-random number generators. 
We hope we have laid It to rest forever. It Is 
Interesting to note that as late as 1971 Smith [17], 
In an excellent paper, recommended a generator on 

RANDU TAUSWORTHE 
MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) GFSR 

LLRANDOM .23  .0062* .13 .2820 .17  .0783 .17 .0783 .09 .7021 

RANDU ~ .21 .0156* .19 .0364* .18 .0539 .24 .0038' 

TAUSWORTHE — ~ .09 .7021 .08 .8154 .13 .2820 

MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) — 

—— —— .12 .3682 .16 

.15 

.1112 

.1549 

TABLE 2.  KOLM0GOROV-SMIRN0V TWO SAMPLE TEST ON RUNS TEST STATISTICS. 

RANDU TAUSWORTHE 
MARSAGLIA 
(MIXt,;> 

MARSAGLIA 
(CONGRUENTIAL) 

.14  .2112 

GF SR 

LLRANDOM .12 .3682 .07 .9084 .09  .7021 .2820 

RANDU ~ .09 .7021 .12 .3682 .18 .0539 .17 .0783 

TAUSWORTHE ~ ~ .08 .8154 .14 .2112 • xo .1112 

MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) 

— — — .13 .2820 

• XX 

.4695 

.4695 

TABLE 3.  KOLM0GOROV-SMIRNOV TWO SAMPLE TEST ON RUNS TEST STATISTICS. 
SAMPLE SIZE - 100. ALL GENERATORS EXCEPT GFSR ARE SHUFFLED. 

As a last test, the samples of shuffled data from 
five of the six generators (the exception, again, 
was GFSR) were pooled to form a sample of 500 from 
the distribution of the runs test statistic. A 
K-S test was then performed matching the Individ- 
ual samples of 100 (not shuffled) against this com- 
posite. The results showed only RANDU to be dls- 
trlbutlonslly different, again demonstrating the 
poor power of the runs test. Another result Is 
that we have a simulation of size 500 of the dis- 
tribution of the statistic (5) under (hopefully) 
the null Independence hypothesis. For reference 
the order statistic estimate of the 0.95 quantlle 
Is 15.82; that for 0.99 Is 22.05. For refer- 
ence the corresponding quantlles for a chx-square 

the basis of Its lattice structure and then said 
"To check It, we carried out what Is generally 
recognized as a sensitive test of uniformity and 
Independence of a sequence, namely the runs test." 

4. THE SERIAL TEST 

In testing pseudo-random sequences, It Is useful to 
test the uniformity of successive but not necessari- 
ly contiguous numbers taken as k-tuples for k - 
2,3,... A standard test employed Is the serial 
test. 

Taking the sequence (U.) of uniform (0.0,1.0) 
deviates from a generator one divides the k 



dimensional unit hypercube Into r  smaller equl- 
slzed hypercubes. For binary computers r Is usu- 
ally taken to be a power of 2 and determines the 
number of (leading) bits from each number which 
will be tested. The k-tuples themselves may be 
taken as overlapping or nonoverlapping, e.g. the 
sequence of Z-tuples {UjU^.d^.U.jMU^} or 

the sequence of 2-tuple8  (U^MU-jU^Mu^U^, 

...  In a sample of size n,  the expected number 
In each of the small hypercubes Is n/r'1 under the 
null hypothesis of multidimensional uniformity. 
The following chl-square test statistic may then 
be computed; 

n V1 I    (f -n/rk) 
-1   v J1,J2 3k    ' 

(6) 

where f 
Ji»J2'' ••J, 

Is the observed number of k- 

tuples In each small hypercube.  For the case of 
nonoverlapplng k-tuples, S.  is distributed asymp- 
totically as chi square with r^ - 1 degrees of 
freedom. For overlapping k-tuples, a correction, 
due to Good [3], Involving a chi square test for 
uniformity must be included for S.  to be approx- 
imately chi square. 

The desirability for k-dimenslonal uniformity 
stems from the fact that in many stochastic varlate 
generation algorithms, k-tuples of uniforms are 
used together to form the desired varlate. For 
such an application, nonoverlapplng k-tuples would 
be tested. The case for using overlapping inter- 
vals in a serial test is somewhat less clear. 
Aside from the distributional problems with the 
test statistic, it is hard to imagine a simulation 
which would require overlapping k-tuples, implying 
that some uniform deviate would be used more than 
once. The serial test when applied to overlapping 
intervals, however, can be considered as a test for 
serial Independence in a pseudo-random sequence. 
Like the product form of the serial correlation 
(autocorrelation) statistic, this form of the ser- 
ial test should be sensitive to lagged serial 
dependence in the pseudo-random sequence. 

4.1 TEST FORMULATION 

For samples of size N ■ 65,541, one hundred 
samples of the test statistic (6) were computed for 
each of the six generators. The tests were repeated 
for five generators with shuffling Implemented. 
Two forms of the test were employed: the first set 
Involved examining pairs of successive overlapped 
numbers and the second form Involved overlapped 
triples. In both cases the first four bits were 
used. 

The successive deviates were also lagged for j « 
1,2,...,6, so that,for example, for pairs we took 
contiguous numbers, numbers one apart, ... , num- 
bers five apart (lag 6). 

4.2 TEST RESULTS 

Since the use of overlapped Intervals invalidates  c 

comparing moments fcoro the sample statistics (6) 
with expectatlor  from a chi square distribution, 
we went directl  J the two sample Kolmogorov-Srair- 
nov test for distributions. Table 4 summarizes the 
results for the serial test for pairs on the six 
generators without shuffling. Only the first lag 
is shown here for brevity. 

The results appear inconclusive.  LLRANDOM has been 
rejected in spite of published results ([9] and [11]) 
indicating good two-space properties for this gen- 
erator.  In [9] LLRANDOM was tested by comparing 
the test results to the x2  (40 degrees of freedom) 
distribution, since no true distribution was known. 
It may be that what is showing up here is the rela- 
tively poor 2-lattice structure of the LLKANUOM 
generator, as shown in Table 8a, indicating corre- 
lation between the predictions of the statistical 
and mathematical tests. 

Shuffling was then applied with little discernible 
improvement.  Pairs of generators are still rejected, 
as shown in Table 5, but the shuffled LLKA.NUO:i is 
not singled out.  We return to this later. 

In triples, Table 6 summarizes the results for tiie 
generators without shuffling. Only the first lag 
is shown.  For the triples this means taking three 
successive and contiguous pseudo-random numbers, 
i.e.  {U1U2II3},{U2U3U4},{U3UAU5},... The only sig- 

nificant result here is that RANUU falls completely, 
and the departures, as predicted by the lattice 
structure and wave number tests, are gross.  Al- 
though the distribution of the test statistic (6) 
is not chi square due to the overlapping intervals, 
the expected value of (6) is still r'' - 1 or 
4095. While the test statistics for the other five 
generators were within two standard deviations of 
this expectation, RANDU's sample average test sta- 
tistic was 28,787!  We expected RANDU to perform 
badly here since RANDU is known to be poor in three- 
space . 

With shuffling implemented, the results in Table 7 
indicate that all of the generators. Including 
RANDU are dlstributlonally commensurate.  Thus there 
is a very substantial improvement in this property 
of the sequences induced by shuffling. 

5.  CONCLUSIONS AND RECOMMENDATIONS 

Many of today's statistical questions are bein^ 
answered through large-scale Simulation. The gen- 
eration of good pseudo-random deviates for simula- 
tion and Monte Carlo experiments is of prime impor- 
tance.  Unfortunately many generators are being used 
whose statistical properties make them a hindrance 
rather than an aid in such experiments. Through 
personal communication, we have heard from several 
researchers who have had their experiments stymied 
due to poor pseudo-random number generators.  The 
typical computer center will offer several genera- 
tors of either unknown progeny or ones whose test- 
ing is rather weak.  RANDU, which is one of the 
most widely used generators, is typical of this 
situation.  It is supplied by IBM as part of the 
Scientific Subroutine Package and is therefore 
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RANDU TAUSWORTHE MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRU£NTIAL) GFSR 

LLRANDOM 

RANDU 

TAUSWORTHE 

MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) 

.34  .0001 .38 .0000 

.11 .4695 

.33 .0001 

.08 .8154 

.13 .2820 

.30 .0002 

.15 .1549 

.16 .1112 

.12 .3682 

.38 .0000 

.13 .2820 

.07 .9084 

.17 .0783 

.21 .0156 

TABLE 4.    KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR PAIRS. 
SAMPLE SIZE - 100. NOT SHUFFLED. 

RANDU TAUSWORTHE 
MARSAGLIA 

(MIXED) 
MARSAGLIA 

(CONGRUENTIAL) 
GFSR 

LLRANDOM 

RANDU 

TAUSWORTHE 

MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) 

.17  .0783 .20  .0241 

.10 .5830 

.10 .5830 

.11 .4695 

.14 .2112 

.08 .8154 

.19 .0364* 

.25 .0023 

.14 .2112 

.20 .0241 

.11 .4695 

.10 .5830 

.13 .2820 

.21 .0156* 

TABLE 5.    KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR PAIRS. 
SAMPLE SIZE - 100.    ALL GENERATORS EXCEPT GFSR ARE SHUFFLED. 

LLRANDOM 

RANDU 

TAUSWORTHE 

MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) 

RANDU 

1.0    .0000 

TAUSWORTHE 
MARSAGLIA 
(MIXED) 

MARSAGLIA 
(CONGRUENTIAL) 

GFSR 

.19  .0364 

.0  .0000 

.15 .1549 

1.0  .0000* 

.12  .3682 

1.0  .0000 

.12  .3682 

1.0  .0000 

— .15 .1549 .14 .2112 .13  .2820 

__ __ .12  .3682 .09  .7021 

.12    .3682 

TABLE 6.    KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR TRIPLES. 
SAMPLE SIZE - 100. NOT SHUFFLED. 

LLRANDOM 

RANDU 

TAUSWORTHE 

MARSAGLIA 
(MIXED) 

RANDU 

.12    .3682 

TAUSWORTHE 
MARSAGLIA 

(MIXED) 
MARSAGLIA 

(CONGRUENTIAL) 

.16  .1112 

.07  .9084 

.18 .0539 

.15 .1549 

.11 .4695 

.18 .0539 

.13 .2820 

.12 .3682 

.17 .0783 

GFSR 

MARSAGLIA 
(CONGRUENTIAL) 

TABLE 7.    KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR TRIPLES. 
SAMPLE SIZE - 100.    ALL GENERATORS EXCEPT GFSR ARE SHUFFLED. 

.16 .1112 

.12 .3682 

.12 .3682 

.12 .3682 

.10 .5830 



convenient to use. Several reports are around 
which cite results of tests for uniformity, runs 
tests, and serial tests all confirming RANDU's 
adequacy. Users of other computers are In even 
worse shape since their random number generators 
are rarely documented and no one seems to know from 
whence they came! 

The random number generators which have appeared In 
the literature rarely specify what tests, if any, 
have been performed. In the IMSL Library, for 
instance, not only are there no test results cited, 
but the user is given the option to use his own 
multiplier. Those algorithms which do acknowledge 
testing usually cite the runs tests and serial 
tests Investigated here (cf. Smith [17] cited above), 
It was our aim in this paper to show whether these 
tests are sensitive to the type of departures from 
randomness which would be crucial to serious simu- 
lation efforts. 

The most distinct conclusion one can draw from the 
results given in this paper is that the runs test 
has no utility as a test for randomness in pseudo- 
random number generators. 

The serial test is somewhat more sensitive than the 
runs test and interesting conclusions can be drawn 
from the results obtained here, as follows: 

Using pairs (Tables 4 and 5) a subtle departure In 
LLRANDOM was evidenced, but nothing startling 
showed up about RANDU. Shuffling did not clear up 
the situation completely. This will probably be 
used as the basis for further Investigations to 
discriminate among shuffled generators. Using 
triples, gross departures in RANDU appear (of the 
hundred samples, all were rejected at a 5% level 
using the x2 approximation for the distribution 
of the statistic) and after shuffling, all genera- 
tors (Including RANDU) are statistically commen- 
surate. The interesting point here is that It is 
not clear how much the shuffling we have used 
changes the lattice structure of RANDU. so that we 
may have a generator which passes the statistical 
tests but has "poor" structural characteristics. 
Thus there is evidence that Marsaglla's work has 
by no means provided the final answer on congru- 
entlal and other generators. Also more needs to be 
known about the effect of various shuffling schemes 
on the mathematical characterizations. 

A word about the inherent drawbacks of the serial 
test Is In order here: 
(1) A problem with any serial test Is the need 

for a great deal of storage.  In the tests 
reported here we were limited to looking at 
only the first four bits.  (This takes 4096 
memory cells; five bits takes 8 times as 
many.)  If one takes only the first four bits 
one can hardly have a sensitive test for the 
whole pseudo-random word. Also, the lattice 
structure of the truncated sequence is dif- 
ferent from that of the whole word, though 
the structures probably mimic each other to 
some degree. 

(11)  There is a great problem of deciding what 
lags to take in serial tests. In the tests 

described above RANDU failed miserably on 
contiguous (1,1)  triples, but not on other 
triples. Thus, if one looked at six lags, as 
we have done, it might be that departures 
would show up at other lags. 

Fortunately, theoretical results obtained by Pro- 
fessor Murray Rosenblatt (personal communication) 
indicate that it is primarily the tests for contig- 
uous pairs which will show up departures in congru- 
ential generators.  His results also provide some 
theoretical basis for shuffling. Another possibility 
Is to go to tests for randomness based on the empir- 
ical spectrum (Lewis, Goodman and Miller [9]).  This 
test combines the serial tests of all lags. 

For comparative purposes, Table 8a below shows the 
relative lengths of sides of unit cells for the 
three Lehmer congruentlal generators in this paper. 
These numbers were computed by Marsaglia [11].  Note 
that the one dimension of the 2-lattice for LLRANDOM 
is relatively large.  Also, one dimension of the 
three-lattice of RANDU is very large. 

Generator  2-lattice 3-lattice 

LLRANDOM    1,7.6 
RANDU       1,1. 
SUPER-DUPER  1,1.06 
(CONGRUENTIAL ONLY) 

1,1.6,3.9 
1,1.1,1819 
1,1.14,1.29 

TABLE Ba. 

4-lattice 

1,1.09,1.69,2.07 
1,7.3,1856,1872 
1,1.14,1.16,1.30 

Table 8b below lists the Coveyou-MacPherson wave 
numbers for LLRANDOM and RANDU. These numbers were 
computed and kindly supplied to us by Dr. L. 
Richard Turner of the NASA Lewis Research Center. 
As Smith [17] points out, there is a direct rela- 
tionship between the 2-lattice and the 2 dimensional 
wave number.  Small wave numbers correspond to poor 
n-space properties. 

Dimension 

2 
3 
4 
5 
6 
7 

LLRANDOM 

16807 
638.9 
147.25 
67.21 
29.92 
16.55 

TABLE 8b. 

RANDU 

23172 
10.86 
10.77 
10.77 

Since congruentlal generators have inherent flaws 
(see Marsaglia [12]), the Idea of shuffling the 
sequence as It leaves the generator seems to be a 
reprieve for these popular generators. Shuffling 
showed improvements in the tests performed here, 
particularly for RANDU in the serial test on triples. 
The effect of the various types of shuffling which 
have been proposed will be investigated in exten- 
sions of future work. 

The case for feedback shift register generators is 
encouraging, but still unclear. After an Initial 
flurry of activity in this field, the careful work 
of Toothlll, Robinson, and Adams [18] showed that 
these types of pseudo-random number generators also 
had their flaws. Without a careful choice of prim- 
itive trlmonlal, a feedback shift register generator 



could be shown analytically to have bad statistical 
properties (generally runs properties, and these 
may be Irrelevant). The generator, GFSR, has been 
constructed more carefully than TAUS but Is rather 
costly In both Initialization time and computer 
storage, making Its utility doubtful. Until more 
extensive Investigation on feedback shift regis- 
ters Is forthcoming, we cannot conclude that they 
are preferable to the shuffled congruentlal gener- 
ators 
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GENERATOR RUNS SERIAL   (PAIRS) SERIAL (TRIPLES) 

LLRANOOM 
(MARSAGLIA-BRAY SCHEME) .10 .5830 .16 .1112 .10 .5830 

RÄNDU .11 .4695 .08 .8154 .07 .9084 

TAUS .08 .8154 .11 .4695 .09 .7021 

MARSAGLIA 
(MIXED) .09 .7021 .10 .5830 .10 .5830 

MARSAGLIA 
(CONGRUENTIAL) .13 .2820 .19 .0364* .13 .2820 

GFSR .15    .1549 .08     .8154 .12.   .3682 

TABLE A.    KOLMOGOROV-SMIRNOV TWO SAMPLE TEST COMPARING LLRANDOM (SELF-SHUFFLING) 
WITH SIX OTHER SHUFFLED GENERATORS. 


