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KEY TO SYMBOLS

B Peak-to-peak FM deviation (Hz)

ck Fourier coefficient of v(t)v*(t-T). This is identical to a
secticn of the ambiguity function cut perpendicular to the
frequency axis at the frequency kwm--see(12b)

D Deviation sensitivity of the FM modulator (radian/sec-volt)

m(t) Periodic frequency modulating waveform

r(t) Periodic reference signal used for coherent detectioa

rk Fourier coefficient for the kth harmonic of the periodic
reference signal

Rn(T) Range response obtained by doppler processing
about the nth harmonic of the modulation frequency

v(t) - eJD 0f tm(t)dt Complex envelope of the radiated RF signal

x - 2Bt Normalized round-trip time delay between the radar and the

target

y(tt) Mixer output signal

Ydet(t,T) Processed doppler output signal

Zn(T) Complex envelope of the processed doppler signal obtained by
detection about the nth harmonic of the modulation frequency

ed(t,t) Difference phase between the transmitted and received RF
signals

wc - 2nfc Radian cvrier frequency

d = 2rfd Radian doppler frequency

Wid(t,() - dOd(t,'r) Instantaneous difference frequency (rad/sec) betweendt the transmitted and received RF signals

m = 27rfm - L' Fundameatal modulating frequency (rad/sec)T

wr - nwm Fundamental frequency of the periodic reference signal. This is
the nth harmonic of che modulating signal
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RANGE LAWS FOR FM RADARS WITH HARMONIC

PROCESSING AND ARBITRARY MODULATING WAVESIIAPES

1. TNTRODUCTION

The range response or range laws* for FM radars with arbitrary modulating-
signal waveshapes are examined in this report. The range law depends on the
type of processing that is used as well as the modulating-signal waveshape.

It is assumed that the modulating signal is periodic so that the video out-
put of the radar is periodic with energy concortrated about harmonics of the
modulating frequency. By detecting the signal in these harmonics, range laws
are obtained. The particular range law that is obtained will depend on (1) the
frequency-modulating-signal waveshape, (2) the harmonic number that is detected
and (3) whether the harmonic energy is coherently or incoherently detected. If
coherent processing is used, the range law also depends on the waveshape of the
reference signal (e.g. sinusoidal or square-wave) and on the phase angle of the
reference with respect to the modulating waveform.

Harmonic processing is desirable because the range laws can be made to peak
up at non-zero distances from the target. This eliminates the need for a delay
line. A single antenna may be used for both transmission and reception if the
incidental AM is sufficiently small. Thus, harmonic processing gives a low cost
radar.

Range laws with low sidelobe-levels are desired for good target resolution.
Here it is desired to find the modulating-signal waveshape and harmonic processing
system which in combination will yield the best range laws (i.e. maximum sidelobe
suppression). In choosing the best combination to use, hardware considerations
are important, since there are many waveforms and harmonic processing schemes
which yield equally good range laws, but some are more expensive to implemenL
than others.

A nonlinear modulating waveform which gives 30dB of sidelobe suppression is
well-known [1,2,3]. However, the range law peaks up at zero and consequently is
not useful unless delay lines are used in the radar. The triangular modulating
waveform is often used because of economic consideration but the sidelobe ratio
is less than 14dB for harmonic processing [4,5,6]. Here we propose systems which
are economically competitive with the triangular FM system but which offer much
better sidelobe suppression, up to 30dB.

As indicated above, the response of the harmonic system depends on tl'e type
of processing that is used, such as incoherent, coherent, or single-sid'band.

In this report, the exact range response of these systems is derived in terms of

*The range law of the radar is the envelope (or amplitude) of tile doppler signal

as a function of the round-trip time delay to an ideal point target, neglecting
the space loss.
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Fourier coefficients of the complex envelope of the post-mixer spectrum. These

coefficients are identical to the value of the ambiguicy function at the cor-
responding harmonic frequency and round-trip time delay to the target. Conse-

quently, if the ambiguity function for the modulating signal is known, the

response of these harmonic processers is known via these formulas.

Tozzi has analyzed harmonic FM systems with linear and sinusoidal modulating

waveforms [5]. For the linear case his analysis included the effect of the "turn

around" time. In this report the Fourier coefficients are derived for a Vkodu-

lating waveshape consisting of an arbitrary number of linear segments, neglecting
the "turn-around" effect. This waveform may be used to approximate an arbitrary
modulating waveshape (linear or nonlinear) by specifying a set of parameters.

Using these Fourier coefficients in the formula for the appropriate processing
system, the approximate range law for a particular processing system and modu-

lating waveshape isobtained. Since the "turn-around" time is neglected in the
piecewise-linear model these results are valid when the round trip time delay

is much smaller than the duration of any of the segments of the piecewise wave-

form.

In summary, the range law is derived for some useful FM harmonic processing

systems in terms of Fourier coefficients which are identical to points on the
ambiguity function. The Fourier coefficients are evaluated for a piecewise-
linear modulation waveform which may be used to approximate an arbitrary modu-

lating wavyshape. Examples of new nonlinear waveforms are given which, when
used with the proper processing, give range responses with 30dB sidelobe sup-
pression.

2. FM RADAR

An FM radar with incoherent harmonic processing is shown in Figure 1. The

transmitted signal is frequency modulated by a periodic waveform. The spectrum
of the mixer output is concentrated about harmonics of the modulating frequency,
wm. The range response, or range law, is the envelope of the detector response

xt(t)

SXr(t )  
Tage

I3-and Pass Filter Envelope
I'dbout awm Detetor

6tte

Mixer Output Detector Output

y(L,t0
Incoherent Harmonic Processing

Figure 1. FM Radar



for a point target where T is the round-trip time delay between the radar and
the target.* It will be denoted by Rn(T). For purely linear modulation the
range law peaks up for a target spacing corresponding to a round-trip time delay
of To - n/2B where B is the peak-to-peak frequency deviation (Hz). Any modula-
tion nonlinearity will shift this to slightly and alter the side-lobe levels.
If there is a doppler present the range law is the envelope of the doppler signal.
The processing is of the matched filter type for n-0, or for any value of n if
the modulation is purely linear.

For periodic modulation the range law is obtained by evaluating the Fourier

coefficient for the mixer output of the radar. Referring to Figure 1, the trans-
mitted signal is represented by

xt(t) = 2 Re {v(t)e JWct1 ()

where wc is the radian carrier frequency and v(t) is the complex envelope (7].
Then the corresponding received signal is

xr(t) - 2 Re (v(t- )e J c(t T ) }  (2)

where T is the round trip time delay.

To the first approximation, the mixer output is given by the cross-product term

y(t,r) - Re {v(t)v*(t-T)e WcT }  (3)

where the output about 2wc has been neglected since it is filtered out.

For a frequency modulated radar

J[D ftm(t)dt]
v(t)-=e 0~

where D is the deviation sensitivity (radians/volt-sec) and m(t) is the periodic
frequency modulating waveform. Then

v(t)v*(t-T) - eJ g d ( t ' T )  (4)

where

t

Od(t,T) - D f m(o)da . (4a)
t-T

Od(t,r) is the mixer output difference phase with T being a parameter.

The instantaneous difference radian frequency associated with the mixer

output is ther

id(t,) d(t) . D[m(t) - m(t-T)] (5)

*The range law of the radar is defined as the radar response (in this radar Rn(T))
as a function of the round-trip time delay to an ideal point target, neglecting
the space loss. This gives the range resolution capability of the radar and, for
the n-0 case, is the magnitude of the autocorrelation function associated with
the transmitted spectrum. In Figure ,. constant closing velocity with respect
to the target will produce a sinusoidal doppler signal at t6% cutuL %j O.e enve-
lope detector. Rn(T) is the amplitude (or envelope) of the doppler signal.



where it is assumed that the variation of T with respect to t is negligible,

i.e. the doppler frequency is much less than the carrier frequency. Thus,

Od(tt) - D ft[m(t) - m(t-T)]dT "(6)

Note that (6) neglects a phase constant that was included in (4a) but which

was lost in (5). If m(t) is periodic, then, Bd(t,T) is periodic with respect

to t. Thus, from (4), vft)v*(t=T) is also periodic and can be expanded in a
Fourier series

v(t)v*(tr) - eJOd(t,T) = k cj emt (7)

where

1T/2 Je~,)-kotT/2 km
T ee dt f v(t)v*(t-T)e- dt (8)
-/2 -T/2

wm is the angular frequency of the modulating waveform and T is the period.
Thus, m = 2v/T.

Furthermore, the mixer output, as described by (3) is periodic so that

y(t,T) I ye J kwmt  (9)
k=-oo

where

1 T/2 -Jkwmt1k f y(t,T)e - k t  (10)

-- -T/2

Equation (10) can be related to (8) by

m Yk = 2i emC Ck + -Y e-Jc C k .(I

This explicitly shows the variation of Yk with the doppler since WcT Wdt + f0

where wd is the radian doppler frequency. *0 is the phase angle of the dop-
pler at t-0 and we will assume that *0-0 for mathematical simplicity.

It is interesting to note that the (ck) are related directly to the ambi-

guity function. If Helstrom's definition of the ambiguity function [1] is
used, the relationship is [6]

kwmT

ck(T) - e 2 (-r,kw m ) . (12a)
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Using Woodward's definition [11], the relationship is

!Ck () Xf X(-,r, kwm) • (12b)

For either of these definitions

1ck( T)l IA1Tkom)I (13)

Thus [8]

Ick(TIl :S Ic0(O)i (14)

3. INCOHERENT HARMONIC PROCESSING

Referring to Figure 1, the formula for the range law Rn(r) will be obtained
for incoherent detection of the nth harmonic component of the mixer output.

Using (9) the output of the ideal band-pass filter is

Yout(t,t) M yde J nwm t + Y-ne - nht (15)

Since y(t,T) is a real function y-, - y* and (15) becomes

Yout(t,T) - 2 Re {ynen( mt) . (16)

The output of the envelope detector is the magnitude of the complex envelope
of (16):

Ydet(t,T) - 21YnI - Rn(t)

Rn(T) - Icne J ct + c*neJWCTI . (17)

This equation cannot be reduced further unless some simplifying assumptions
are made or unless (ckl are evaluated for a particular modulating waveshape.
For example, if the instantaneous difference frequency has half-wave odd
symmetry, that is if

wid(t,T) - -wid(t +1 , ) (18)

then Ck c-k [6]. Then, (17) becomes, for n 0,

Ydet(t,T) - 21cnI1cOs[wd(t-tO) + Acn]I , n + 0 (19)

11



where wd is the radian doppler frequency and to is the value of t at the first
turn-around time of the modulation [6]. For n 0 0, Ydet(t,T) is a full-wave
rectified sine-wave and its envelope varies with T to give the range response.
For n = 0, the band-pass filter becomes a low-pass filter and the envelope
detector would not be needed. Thus,

Yout(t,T) Icol cos[rwd(t-to) + ] , n - 0 . (20)

Thus, for modulating waveforms such that the difference frequency has half-
wave odd symmetry, incoherent detection produces the range laws

ICO(T)I , n -01
Rr (T) =

21cn(T)I , n - 1,2 .. (21)

This shows that if the difference frequenzy has half-wav odd symmetry, the

range response of the FM radar with incoherent harmonic processing is the magni-
cude of the ambiguity function along the T axis where ti.e slice is taken at

w - nwm [see (13).]

4. COHERENT HARMONIC PROCESSING WITH A PERIODIC REFERENCE SIGNAL

4.1 General Periodic Reference Signal

Referring to Figure 2, the range law will now be calculated for the case of
coherent detection where any periodic reference signal, r(t is used. Usitig
these results, we will later obtain specific results for a sinusoidal reference
and a square-wave reference.

. xt(t)

xr (t)FM
Radar

FM Mixer
Mod Output
Output Y(tT

[ 'i y(t'T) I Ydet(t,T)
i T.^ Lwpass

I Filter __

I ync In unto

--Cohere t Harmonic Processing

Figure 2. FM Radar with Coherent Harmonic Processing
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The periodic reference is represented by th. Fourier series:
CO

r(t) I rkeJkwr(t-to)
km-w

or

r(t) rk eJ(kurt + ko) (22)
k=_nk

where wr = nwm. That is, the fundamental frequency of the reference waveform is
some harmonic of the fundamental of the modulation frequency. e0 a -Wrto is
the reference phase angle, and to corresponds to any time shift of the reference
waveform with respect to the t - 0 point on the modulating-signal waveform.
Note that the itdex k is chosen with respect tc the reference frequency (not
the modulating frequency).

Using (9) and (22), the multiplier output is

yj(t,1) y(t,T)r(t)

y Hej E rkeir + k(0)]

and uaing u'r - nwm

Yj(tT) D r(nk+i)wt + k6o1 (23)
En=-w ka-w

The output of the low-pass filter is then

YdeL(tT) = Y y-nkrke jkO0  (24)

Using (11), (24) can be reduced to the form where the doppler signal is
seen explicitly. Thus

C_ [c (OCT + C * e-jwclj reJk6O
Ydet(t, ) L 2 [nke _nk rke

C
k= 1 nkrke

jo + c r -JkOr] }e-jcl (25)
+ "- {c~r0 + L [cnkrkek-1 -nk -k



Since r(t) is a real function rk =r and since 2Refa+Jb} n [a+jb] + [a+jb]*,

then

Ydet(tT) = Re coro + k [c .nkrkeiko + Cnkr-ke-Jko])ej WcT (26)

Define

Coro + k-i Lc.nkk nk-k

00 k--ik=-itCoro + I C_nk rke Jk0° + I C_nkr k eJkg° (27)

k-l ka-00

Thus,

Ydet(tT) n jZnj cos {(cT + Izn) (28)

Zn(T) - I c(-nk)(T)rkeJko (29)•
kmw

where Iznj denotes the magnitude of zn(T)

/zn denotes the angle of zn(r)

{rkj are the Fourier Loefficients of the periodic reference waveform

(cQ} are the Fourier coefficients of v(t)v*(t-r) where v(t) is the
complex envelope of the FM signal [see (8) and (51)] and I - -nk

and 00 is the phase ang-e of the fundamental of the periodic reference signal
with respect to the t - 0 point of thn modulating signal. The {cl} are also
directly related to a section of the .abiguity function taken along the
axis at the frequency w - iW,,. That ;, referring to (12b)

cjt(,) -x(-.[, tw ) (3C)

Equation (28) explicitly shows the doppler signal phase since wci - wdt where
wd is the radian doppler frequency.

The range law for coherent harmonic processing is given by the envelope of.
the doppler signal, which is

Rn(l) - IZn(T)I (31)

where the n denotes that this particular range response is obtained when the
fundamental frequency of the reference signal is the nth harmonic of the moda-
lation frequency, wr - nwm. From (29), (30) and (31), it is evident that the
range response is obtained by the superposition of sections of the ambiguity

14



function with appropriate complex-%eighting factors.

4.2 Sinusoidal Reference Signal

To coherently process the doppler signal about the nth harmonic of the
mixer output, the reference signal is

r(t) = cos [nwt- + e] = cos [wrt + 0) (32)

or

r i1 eJrt + 01+ e-J[wrt + (3
2 2

where wr - nwm. Thus, the Fourier coefficients in (22) become

for I kI I1

r k 0 for IkI n (34

Using (29) and (31), the range law for coherent detection about the nth harmonic
of the modulation frequency (i.e. sinusoidal reference) is

Rn(r) -Izn(T)I (35)

where

zn(T) [C()eJe + Cn(6)e ] (36)

4.3 Square Wave (Gating) Reference Signal

A square wave (gating) reference signal with a period of T/n is shown
below.

r(t)

T f
2n

S T

15



The Fourier coefficients are,

1 sin (kn/2)
rk 2 kir/2 (37)

Using (29) and (31), the range law for coherent detection using a square wave

reference is

Rn(T) =zn(T)I (38)

where

O

Zn(() 1 . C sin (k7/2) eJkO0 (39a)
- _nk 2 1k.T/2

or

Zn(T) , ... - -n (T) +-- C n(T)e-J0 0 COT ) + 1

3r c 3 n (-r)e ... (39b)

5. SINGLE-SIDEBAND PROCESSING FOR DIRECTIONAL DOPPLER DETECTION

The range law will be calculated for single-sideband (SSB) processing of
the mixer output signal as shown in Figure 3. By using the appropriate
modulating waveform, range laws can be obtained which peak up either for
approaching or receding targets.

Using (7) in (3), the mixer output is

y(t,T) Re{cke k +Wd)t }

where cT--wdt. wd is the doppler frequency. It is positive for receding
targets and negative for approaching targets. The output of the sideband fil-
ter is

Re[cneiJ(-nm+wd)t] , wd > 0

y1 (t,T)

Re[LneJ(nwm+wd)t ]  ' wd < 0

where the upper set of signs is used if the filter passes upper SSB signals
and the lower set of signs is used if the filter passes lower SSB signals.

16



xt (t)

JH(f) IUSSE
MxrIH(fIssBRadar , l j

-nfm IH(f) I S
Mixer
Output
,y (t, -0

- - _nfm nfm f +

S i S ngle- ( rosJ ,JSideband Yl,,'

hltp Filter, pui

y2 (f,) y 1 t2~(t T dt~,[

ync)In Reference

Uigteiny v 2 a ezz}+ e~~ 2  hnv e .Ositr1 n 2 -R{

L ' s l a t o r - r (t ) -c o s (n m t + 0)
L -"- S'B Proce-ssing _j

Figure 3. FM Radar With SSB Harmonic Processing*

The multiplier output is

Y2(t, T) - yl(t,T)r(t)

y! (t T)Re~e j (nwmt+8)}

Using the identity v1v 2 - hRe{ZlZ*} + Re{ZlZ 2 } when vI = Re(.,)} and V2 _ARe(22)
and assuming that n 0, 0 the detector output is

SJ(tn"m+wd) t ej (nwmt+O)i-Re{c CeJ , wd O

Ydet(t,T)

1Re{c eJ(+ +d)t e j(nkt+e)

L 2 +n dt8)

prcso Re { c--ne } :J.Od1 R e (c t: (. )e J~ w t e } , d  > 0

Re(cn(r)e dtO)} wd < 0

*The SSB processor shown here is the filter type. Assuming ideal filters,
the same result is obtained if the phasing type--also known as Kalmus fil-

ter [5,12,13]-- is used. 17



Thus, the detector (doppler) output is

2 Ic n(T)l cos [wdtTe+ ,±n(T)] wd > 0

Ydet(t,T) (40)

IC~n(T)I cos [Wdt±O+ /c:(t)] , < 0

The range law for the SSB detector is

11C+n (T)l , wd > 0

Rn(T) - (41)

1IC2n(,)I , < 0

where the upper signs give the response if an USSB filter is used in the pro-
cessor and the lower signs give the response for an LSSB filter.

For detection of directional doppler we require a modulating waveshape such
that the Ic+n(T)I is appreciably different from the lc_n(T)I for the range of x
that is of interest (usually T > 0). If an USSB filter is used in the processor,
IC+n(T)I is obtained for positive doppler frequencies (receding targets) and
Ic.n(T)l for approaching targets. Conversely, an LSSB doppler filter would be
used to obtain tC+n(T)t for approaching targets and Ic_n(T)I for receding tar-
gets. For example, if a positiv3-slope sawtooth modulating waveform is used,
Figure 10 showb that IC+n(T)1 peaks up at x - 2BT-n and lc-n(T)l peaks up at
x - -2BT=-n and it is approximately zero for positive T.

6. FOURIER COEFFICIENTS FOR A PIECEWISE LINEAR MODULATINO WAVEFORM

As seen from the above, the complex Fourier coefficients {ck) must be known
in order to determine the range law. These coefficients are difficult to ob-
tain for frequency modulation by a complicated waveshape but, by approximating
the modulating voltage with a series of straight lines, a general formula for
the {ck) may be obtained.

Referring to Figure 4, any periodic modulating waveform may be specified
as precisely as desired by using a sufficient number of piecewise-linear segments.
fi(t) is the instantaneous frequency of the FM radar with respect to the carrier
frequency and B is the peak-to-peak frequency deviation. {*) and {pk) are the
parameters that specify the fractional frequency excursion and fractional time
duration of the Ith linear segment.

18i



x - 2BT

T = round-trip time
delay

B = p-p frequency
deviation 4B

P1+P2+P3+04 1
where pt = "duty-
cycle" during ith

interval

- frequency devi- D2B - 2
ation over the
Xth interval iB

Note k may be nega- _ W
tive.

-1T.- -  o2T P 3T-- - P4T---

Figure 4. Piecewise Linear Modulating Waveform for L-4 Segments

6.1 General Case

Referring to (8) the Fourier coefficients are given by

T/21 eJed(t,T) km
Ck f T e eJk utdt (42a)

-T/2

where
t

ed(t,T) - 2% f fi(t)dt (42b)
t-T

Referring to Figure 5, the instantaneous frequency during the Ith interval ts

fi ( t ) = (t-tt) + ft Ith interval (43)

fi(t)

_T f

u xt

Figure 5. Piecewise-Linear Segment



Substituting (43) into (42b)the difference phase during the Xth interval, where
T is assumed to be small with respect to pIT so that the exact behavior of 8d(t)
during the turn-around time can be neglected, is

Od(t,T) = [Wit + ej] , Ith interval (44)

where w k - x = difference frequency during the Ith interval (45)
Pk T

el [a z - - x phase constant during the Ith interval (46)
A

x = 2Br (47)
I Z-1

= [1 - 2 ( I pj) - pi] (48)

J=l

l - [1 - 2 ( 'j) - (49)
J l

Substituting (44) into (41), it becomes

IL jkw,.d
k = 1 f e it + 6-t] e td (50)T i Lkth interval t 1

where L is the number of segments that are used over a period of the modulation
waveform. Equation (50), when evaluated, becomes

L[~ ~ ~± ea[ '- t "c(x-[l-2 (I Pj)-pt] -'9, x-k)}

Ck(r) - 11[p Pk- J.Xr- jul

sin [2(*itx-2oik)]l

i(*tx-2Q ik)

Using (48) and (49) this can be reduced to

Ck(T) L +Jo(x) sin (I-2ptk)] (51)

ck'r pie~i ~~ si
Lu=1Ii( 4 Zx-2p jk)

where

+(x) + {[1-2( 1 pj)-pi]2k - [1-2( * 4 j) - *t]x) (52)
2-i J-i
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L is the total number of pieewise-linear segments

pi is the proportional part of the period that is used by the Ith
linear segment

Z is the proportional part of the peak-to-peak frequency deviation
used by the Xth linear segment

xw2BT is the normalized round-trip time delay to the target where T is

the actual time delay and B is the peak-to-peak frequency deviation.

In using this equation, note that pj 0 for I - 1.

The {ck } of (51) can be evaluated by use of a digital computer. The {Ck}
approximate the {ck } of any modulating signal waveshape since the piecewise
linear waveform can approximate any modulating waveshape as accurately as desired
by taking enough segments.

The range response corresponding to any modulation waveshape
can then be evaluated for incoherent processing by use of
(51) in (21); or for coherent harmonic processing with a
periodic reference by using (51) in (29) and (31).

In summary, once (51), (21), (29) and (31) are programed on a digital
computer, the range response of any FM radar witha harmonic processing can be
obtained by simply specifying the parameters o& the piecewise-linear modulating
waveform. Equation (51) can also be used 's obtain simplified solutions when
L is not too large.

The accuracy of the range law obtained from the piecewise-linear approxi-

mation is shown in Appendix I.

6.2 Example 1--Non-Symmetrical Triangular FM

The Fourier coefficients {ck} will now be evaluated for a non-symmetrical

triangular waveform as shown in Figure 6.

T T
2

Figure 6. Non-Symmetrical Triangular Modulation

Comparing Figure 6 with Figures 4 and 5 it is seen that

L 2
P1 * P * p2 = l-P

1, P 2 -2
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Using these parameters in ,51), the Fourier coefficients for v(t)*v(t-T)
corresponding to a non-syr.ietrical triangular modulating waveform are then

sin [2(x-2pk)]
ck  : pe j r ( l - p ) k

T(x-2pk)

sin [-!(x+2(l-P)k)]
+ (l-p)e - j ~rp k  -- (53)

+(x+2(l-p)k)

where p is the "duty cycle" of the up-sweep of the non-symmetrical triangle

waveform.

6.3 Example 2--Symmetrical Triangular FM

When the triangle modulation is symmetric, 1 Id (53) reduces to the
well-known coefficientq [5,6,9]: 

2

ck A [x kjx)sin -(x-k) +sin -I(x+k)]()

6.4 Example 3--Stepped Triangle M

A stepped-triangle FM waveform is shown in Figure 7 below. Using (51) with

________-I

B5 -t T

t--t

6B

Figure 7. Stepped-Triangle FM

L-4, the Fourier coefficients are

1J.I(6x+k) sin 't(1-6)x-kJ .Ji(6r+k) sin a (1-6)x+k)ck " e 2 e (55ckj[(1-6)x-k] 2 ,[(1-6)x+k
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Using coherent detection with a sinusoidal reference, r(t) * cos[nwmt + 9), the

resulting range response is, from (35) and (36)

Rn('0 - Iznl (56)

where

Z- 2i e Losx) in-6~)) + (1)cos2 4e) 2]
2, :(1-6)x-n]

(57)

The graph of this range response will be discussed below. Ttese examples show
how the complexity of (51) can be reduced for some particular waveshapes. How-
ever, (51) is the general equation for the {ck } to be used in (28) and (29).

7. COMPUTED RANGE LAWS

7.1 Linear Modulation and Coherent Detection with a Sinusoidal Reference

As an example of the synthesis of a range law by using (51) to obtain the
Cn to be used in (35) and (36), we will choose the fourth harmonic law (n-4)
and a sine-wave reference (at a phase angle Or) so that the relative range law
is determined from

IZ4(T)I - Ic_(4)e JOr + c 4 (T)e-Jerl (58)

The modulating waveform and the reference voltage are then related as
shown below

f
B.iP 1-. 4 I P20.6 '

T -"*2
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The results of computing the values of c±4 are given on Figure 8, where
the amplitude and phase of each c are shown. Since the detection angle is 00,
c4 and c-4 are added vectorially to obtain the range law r4 and its associated
doppler phase /z4.

As was pointed out by (12), the two c's involved are the values of the (com-
plex) ambiguity function evaluated along the ±4wm axes. By single-sideband de-
tection techniques, either c4 or c-4 can be detected separately or they may be
combined according to (58) by detecting with a coherent sine-wave reference at
an angle of Or . The result of changing the reference phase from 0 to 0.47 is
shown on Figure 9. The range response is now a more acceptable single-lobe
response of larger amplitude and lower side-lobe level.

Figures 10, 11, and 12 show examples of standard linear sweep FM. The saw-
tooth sweeps of Figures 10 and 11 exhibit unsyrmetrical sideband responses
whereat -he triangular sweep of Figure 12 exhibits symmetrical sideband responses.

7.2 Non-Linear Modulation--N-0 Range Law

A simple example of non-linear FM modulation is obtained by the addition of
a square wave to linear sweep. Figure 13 shows an example of the n-0 range law
for this type of modulation. In this example the normal sin U/U range law is
modified to, using (57) in (35) and (36)

sin [j(l-6)x]
R0 (x) - cos [i 6x] , x - 2Bt (59)

[.(1-6)x)

The first null of the cosine term can be positioned to cancel the peak of the
first range sidelobe to produce a lower side-lobe level.

Adding a second square wave to the triangular FM can further reduce the
side-lobes as shown on Figure 14. The range law is now given by:

sin [j(1-t1-6 2)X 1x ] cos j 2x] (60)
R0(T) 2 COS I 61x] COS .L6X](0

[j-(l-61-62)X]

The maximum side-lobe ratio is now reduced to -27dB at the expense of
widening the main lobe width from x-2 to x a 3.1 (a natural consequence of the
law of conservation of volume under the ambiguity function). The extra nulls
in the first two side-lobes are indicated by arrows and occur at x, - 1/61 and
X2 - 1/62.

The cosine modifiers shown in (60) apply not only to linear FM but also

to any periodic modulation waveform when the square-waves are properly added

to the waveform. For instance, for sine-wave FM, (60) is valid if the function

sin is replaced by J0[ ].
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A non-linear modulating waveform, such as one Taylor weighted (2] for a
reduced side-lobe ratio, is approximated by seven straight line segments as
showr on Figure 15. The computed range law shows a side-lobe ratio of -28dB,
and a main lobe increased in width from x - 2 to x - 3.4. This result is more
easily achieved by the addition of two square waves as was shown on Figure 14.

7.3 Non-Linear Modulation--Detection with a Sinusoidal Reference

Sidelobe reduction can also be accomplished on harmonic reference systems,
As shown on Figures 16 and 17, the third harmonic range laws for frequency
modulation by either a triangular or sawtoozh waveform when combined with a
synchronized square wave are identical. This response is obtained with a co-
herent sine wave reference given by cos (3wmt + w/2). It is interesting to
note that extra ange law nulls do not exist in either the upper or lower
sideband of Figute 15 whereas, on Figure 16, they exist in both sidebands.

7.4 Non-Linear Modulation--Detection with a Square-Wave Reference

An example of a computed fourth-harmonic range law using a square-wave
reference voltage is shown on Figure 18. Here, we not only reduce the side-
lobes with the addition of a square-wave to the linear modulation, but also
eliminate the twelveth harmonic range law by phasing the reference voltage to
600. Another example of a range law obtained by using a square-wave reference
voltage is shown on Figure 19. The side-lobes here are even further reduced
by adding two square-waves to the triangular modulation voltage.

The advantage of using square-waves added to the modulation and also for
the reference of the coherent detector is that they are simply obtained in
digital circuitry.

8. EXPERIMENTAL RANGE LAWS

Examples of experimentally measured range laws are shown on Figures 20, 21,
and 2^. These curves illustrate that improved aidelobe levels can be obtained
in practice and are in general agreement with the computed responses previously
shown.

9. CONCLUSIONS

A general formula (51) for obtaining the complex Fourier coefficients to be
used in determining Lhe range law for a piecewise linear periodic frequency
modulation waveform has been shown to be of great value in computing the range
response for a complicated modulation. The approximate range response corre-
sponding to any periodic modulating waveshape can be obtained by simply speci-
fying the piecewise-linear parameters for that waveehape. The amplitude and
phase of the complex Fc'irier coefficients provide the range response and dop-
pler phase for single-sideband detection of the n'th harmonic. The vector addi-
tion of these appropriate coefficients with proper complex weighting gives the
doppler output for double sideband (coherent or incoherent) detection.

Suppression of range side-lobes by using synchronized square-waves properly
added to the periodic modulation was demonstrated to be realized with simple
digital circuitry. This method was shown to be just as effective as the use of
a more complicated non-linear Taylor-weighted modulation waveform.
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APPENDIX I

Accuracy of Piecewise-Linear Approximation

In order to show that the range law for a continuous frequency modulation
function approaches that of a piecewise linear approximation of the modulation
function, a cosine modulation waveform was approximated by straight line seg-
ments and the resulting range law compared to the known nth harmonic range lav[2)
given by Jn(iiBr).

The appropriate values of ' and pi to be used in (51) were determined
as shown below.

Piecewise Linear Approximation of Cosine Wave
(L Must be an Even Integer a 6)

pt 1 IlL

,l. 0.5 (com [2r - cos [2m!)) L - 1, 2 s.. L

The cosine waveform was divided into both 10 and 14 equal time segments
and the resulting ptewmolev linoor waveform was then used to compute the range
laws shown on Figureu 21 to 2S, Although the higher harmonic range laws re-
quire a larger nombor of sa.t inns for the some degree of accuracy, it is
obvious that as tie iii$mhi of isections are increased the computed response
more nearly appropilsi ,a I.,

Precedling page blank
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Approximation to Sine Wave Modulation
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