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ABSTRACT

Numerical solutions of the steady-state Navier-Stokes equations are
obtained which describe flow past a square protuberance immersed in a
plane Couette flow. The numerical solutions are illustratedwith velo-
city vector plots, and plots of streamlines and vorticity contours in
the flow field for Reynolds numbers between 1 and 200, based on plate
velocity and protuberance height. A small separation bubble is predicted
upstream of the protuberance with length and height almost independent
of Reynolds number. The downstream separation bubble has a height
always less than the protuberance height, but a length which increases
almost linearly with Reynolds number reaching more than twenty-five
protuberance heights at Re = 200. The flow perturbations caused by the
protuberance are shown to persist far downstream of the protuberance at
Re = 100 and 200.
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height of backstep, m

height of protuberance, m

x-component of velocity, m/see

y-component of velocity, m/see

axial coordinate, m
.

position of leading edge of protuberance, m

transverse coordinate, m

constant for adjusting mesh stretching in equation (15),
nondimensional

order symbol showing qualitatively the rate at which a limiting
value is approached, nondimensional

pressure, N/m2

Reynolds number based on plate velocity and protuberance height
(Uok/v), nondimensional

local roughness Reynolds number (Ukk/v), nondimensional

Reynolds number based on centerline pipe velocity and step height
(lJch/V),nondimensional

Reynolds number based on freestream velocity and step height
(lJfh/V),nondimensional

velocity at pipe centerline, m/see

freestream velocity at edge of boundary layer, m/see

mean velocity that would exist at the protuberance height if the
protuberancewere not present

velocity of moving plate in Couette flow, m/see

distance from leading edge of protuberance measured in protuberance
heights, (x-xk)/k, nondimensional
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undisturbed boundary layer thickness, m

vorticity, defined by equation (5), sec-1

convergence criterion, nondimensional

absolute viscosity, kg/m-see

2kinematic viscosity, m /see

density, kg/m3

2stream function, defined by equation (4), m /see

incremental length in y-direction, m

Superscript

n iteration level at which quantity is evaluated

Subscripts

o reference value of stream function or vorticity

P typical point in finite-differencegrid

w function evaluated at the wall

D value of function at convex corner D
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10 INTRODUCTION

The qualitative features of the flow field downstream of two-
dimensional roughness elements immersed in a laminar flat nlate boundary
layer are well known. In many wind tunnel experiments, such protuberances
are employed to promote transition and assure turbulent boundary layer
characteristics on models. At high Reynolds number, the flow at the
base of the protuberance is separated with the influence of the protu-
berance persisting downstream for a hundred protuberance heights or more.

Sedney‘* has described the effects of two- and three-dimensionalprotu-
berances on boundary-layer flows. In the two-dimensionalcase at low
speeds, transition generally occurs downstream of the reattachment point
if the protuberance height k is considerably less than the undisturbed
boundary layer thickness d.

This reoort describes the flow field near a square two-dimensional
protuberance immersed in a plane Couette flow. Numerical solutions are
based on a finite-differenceanalog of the incompressibleNavier-Stokes
equations. The solution technique is an extension of a method develoned

by Gosman et al.2 for the solution of the steady state stream function
and vorticity formulation of the Navier-Stokes equations.

The object of this work is to describe the steady flow disturbances
created when a two-dimensionalprotuberance is immersed in a laminar flat
plate boundary layer. It should be noted that the boundary layer equa-
tions are not valid for describing the flow near the protuberance, but
would most likely be ao~licable far downstream of the reattachment noint.
In this study a nlane Couette flow, an exact solution of the !lavier-
Stokes equations, is used to model the undisturbed flow on the flat
elate. Me exoect the qualitative features of the separation nhenomena
induced by the protuberance in the Couette flow to be similar to those
found in the flat elate boundary layer case.

Figure 1 shows a schematic of the flow field near a square protu-
berance immersed in a plane Couette flow. The protuberance is mounted
on the stationary bottom plate. The upper plate moves at a constant
speed Uo. Far upstream of the protuberance, shown schematically as

position 1, the velocity distribution is prescribed by a linear Couette
flow profile. As the flow nears the protuberance,we expect it to
separate, forming a small unstream recirculation region.

Downstream of the protuberance, at position 2, we expect separated
flow profiles with the height of the reversed flow region no larger than
the protuberance height k. Velocity profiles at this position will
exhibit a velocity overshoot near the moving plate (U>UO) due to the

flow constriction caused by the Protuberance. Far downstream of the

‘References are listed on page 38.
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protuberance and the reattachment point, at nosition 3, the flow still
exhibits a perturbation from the original Couette flow. These ~erturba-
tions decay and the flow returns to the Couette-tyne distribution
farther downstream, *

Numerical results are presented which describe the flow near such
protuberances for Re = 1, 10, 25, 50, 100 and 200; with the Reynolds
number Re based on the plate velocity U. and the protuberance height k.

The local roughness Reynolds number, Rek = Ukk/~, is one-half of each of

the above values; where Uk is the mean velocity that would exist in the

undisturbed flow at the protuberance height if the protuberancewas not
present. The numerical results are illustrated with CALCOMP ~lots of
streamlines and vorticity contours in the flow field around the
protuberance.

II. FORMULATION OF THE PROBLEM

The mathematical description of the disturbed flow near the protu-
berance should be based on the Navier-Stokes equations because viscous
separation Phenomena are important. The recirculation region downstream
of the protuberance and the position of flow reattachment along the
stationary plate influence the length of the recovery zone downstream
of the protuberance. In the two-dimensional case, the Navier-Stokes
equations can be expressed in rectangular coordinates by the x-momentum
equation

and the y-momentum equation

22
@+vu=-LE+v(a V+u
ax ay p ay ~ ay2)’

The continuity equation is

aJ+aJ=o
ax ay “

(1)

(2)

(3)

The pressure can be eliminated from the momentum equations by differen-
tiating equation (1) with respect to y, equation (2) with respect to x,
and subtracting the resulting equations. The continuity equation (3)
can be satisfied by defining the stream function v such that

u ~andv=-x.
= ay ax (4)

By introducing the definition of vorticity G, where

13
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(5)

equations (l), (2) and (3) can be combined with (4) and (5) into two
equations: the ellintic vorticity transport equation

-J+#) -J@) -W$+q =0,ax ay 3y ax ax ay

and an elliptic Poisson-type equation

(6)

(7)

Equations (6) and (7) represent the stream function and vorticity
formulation of the Navier-Stokes equations. These equations govern the
flow subject to the prescribed boundary conditions. It should be noted
that only the prescribed boundary conditions and flow parameters make
one numerical solution different from another. The accurate specifica-
tion of boundary conditions is thus very important. Since these
governing equations are elliptic, boundary conditions must be snecified
on all boundaries of the computational region.

III. BOUNDARY CONDITIONS

3Roache discusses many methods for treating boundary conditions for
the stream function and vorticity in numerical solutions of the Navier-
Stokes equations. It should be noted that many of the methods which
have been used in the past to prescribe boundary conditions for the
vorticity were inconsistent and/or unsuccessful. The downstream or out-
flow boundary and the sharp protuberance corners have been particularly
troublesome in many instances. The difficulty at the sharp corners will
be discussed in detail.

Figure 2 shows an outline of the computational area employed in
the numerical calculations and the notation used along boundaries. A
plane Couette flow is specified along the upstream boundary AH so that

u = Uo(y/2k) and v = o; (8)

with

I

Y
$ U (n/2k)dn and c = Uo/2k’00 (9)

The no slip condition (u = v = o) is specified along the stationary
plate, AB and EF, and the protuberance, BC, CD and DE. The stream
function + is specified to be a constant on these boundaries; taken
equal to zero for convenience. The vorticity c on these boundaries can-
not be specified independently of the flow off the surface. Appendix
A shows a derivation of the relationship between the vorticity at the

14
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wall and the flow adjacent to the wall. Two different expressions for
the wall vorticity have been used in obtaining numerical solutions to
examine the influence of the wall vorticity equation on the calculated
results. These expressions are given by equations (A7) and (A8).

Appendix B describes two alternatives for evaluating the vorticity
at the sharp corners, C and D, on the protuberance. The sharp concave
corners B and E are no problem because L = O at these points. In the
present difference procedure, the value of L at B and E doesn’t enter
the iteration formulae for nearby points, but its value is needed for
vorticity contour Olots.

Along the downstream or outflow boundary, FG, the conditions

(lo)

are specified. The Couette flow solution is one member of the family
of profiles that satisfies these boundary conditions. A computational
experiment is needed to determine the extent of upstream influence of
the errors caused by specifying equations (10) at a fixed position
downstream of the Protuberance. Results from such tests will be
discussed.

The upper plate, GH, moves at a constant velocity Uo. The no slip

conditions (u = Uo, v = O) are specified along boundary GH. The stream

function Y is thus specified by

v = Uok (11)

and the vorticity c is determined by using either equation (A7) or (A8).

IV. NUMERICAL PROCEDURE

Gosman et al.2 describe the complete set of finite-differenceequa-——
tions which were used in this numerical study. The finite-difference
representationsof equations (6) and (7) are based on the “tank and tube”
method. The flow field is divided into an array of cells called tanks
which are connected to adjacent cells by tubes. Mass is convected from
one cell to another along the tubes. The difference equations are not
restricted to evenly spaced nodes and an uneven mesh spacing between grid
points can be easily specified by prescribing the x- and y-coordinate of
each grid point. An upwind difference scheme is used for the convective
terms in the governing equations with information advected into a cell
only from cells upwind of it. The finite-differenceformulation should

therefore be classified as first-order accurate. 4Gosman has analyzed
the difference equations and has concluded that convergence is likely
in all circumstanceswith constant prooerty flow. Divergence of the

16



iteration procedure has occurred, however, under certain circumstances.4

The iteration Drocess used in this study is the Gauss-Seidel proce-
dure. The complete grid is scanned node by node, and the values of v
and c at a particular node are calculated using neighboring values from
the previous iteration. Calculations in the first iteration are based
on initial guesses for $ and C.at all grid points. The scanning process
is continued until the grid is completely scanned. Special formulae are
necessary on the boundaries. This procedure is then repeated, with each
complete scan equal to one cycle of iteration, until the criterion for
convergence is satisfied or the calculation is otherwise terminated. If
convergence is achieved, the velocity distribution, skin friction coeffi-.
cient, etc. are calculated and a plot routine is executed.

Convergence is tested by the calculation of the fractional changes

I $0
I Maximum in field

and

rl
G -c

T-l-l

PP ~ A;
Lo

Maximum in field

(12)

(13)

where V. and Co are selected reference values of v and C, typically 0.5

and 1.0, respectively. The value of ~ was set at 0.0001 for all calcu-
lations. Equations (12) and (13) are applied by calculating the
fractional change of o and L at every grid point in the field for each
iteration. When the absolute value of the fractional change is less
than ~ at every point, convergence is examined in more detail. Care
must be taken to examine the convergence of each case because, with the
fractional change criteria, a slowly converging process may be mistaken
for one that is fully converged. Calculated values of$ and c at
selected points in the field are examined over a period of approximately
ten iterations to insure that convergence has been achieved if equations
(12) and (13) are satisfied. Convergence was not achieved in the
calculations for cases with Re ~ 300.

v. DESCRIPTION OF NUMERICAL CALCULATIONS

Numerical solutions have been obtained for Re = 1, 10, 25, 50, 100
and 200 which describe the flow around a square protuberance immersed in
a plane Couette flow. The iteration procedure used in this study did
not converge for cases which were attempted at Re = 300, 500 and 1000.
Computational results will be illustrated with selected velocity vector
plots, vorticity contours and streamlines in the flow field drawn on an
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off-line CALCOMP plotter. A contour plotting subroutine developed by
5Hartwig was used for interpolation and contour plotting control. Calcu-

lations were performed in double precision on the BRLESC I and II
computers at the Ballistic Research Laboratories.

Two different grid mesh configurationswere used in the calculations.
The grid for Re < 50 consisted of a 6 x 11 cell protuberance immersed in
a 51 x 21 cell f~ow field. The mesh aspect ratio 6 = Ax/Ay varied from
2.0 near the protuberance to 12.0 at the downstream boundary. Calcula-
tions for Re ~ 100 were performed using a 6 x 11 cell protuberance
immersed in a 81 x 21 cell flow field with B varying from 2.0 near the
protuberance to 42.6 at the downstream boundary. The inflow boundary,
AH in Figure 2, was located at approximately X = -8.0, where

X = (x-xk)/k (14)

refers to distances measured from the position of the protuberance
leading edge, xk~ in terms of the protuberance height k.

The outflow boundary, FG, was located at approximately X = 9.5 in
the 51 x 21 grid and at approximately X = 93.5 in the 81 x 21 grid. The
mesh spacing in the y-direction was fixed at Ay = k/10. The mesh
spacing in the x-direction varied from AX= k/5 near the protuberance to
AX = (1.2)k at the outflow boundary in the 51 x 21 grid and to AX= (4.3)k
at the outflow boundary in the 81 x 21 grid. The mesh spacing downstream
of the protuberance was stretched according to

x.1+1
=)(i+k/!j+

w’
(15)

where A = 1.0 and i = 1,2,‘“1O in the 51 x 21 grid, and A = 0.05 and
i = 1,2,0”40 in the 81 x 21 grid.

Figure 3 shows a velocity vector plot of the flow around the protu-
berance at Re = 1. The location of grid Doints in the 51 x 21 grid can
be visualized in this figure--a grid point is located at the tail of each
velocity vector. The magnitude of the plate velocity U. is shown by the

length of the vectors above the moving plate. All vectors are scaled
with respect to Uo. This plot shows that at very low Re the flow

disturbances caused by the protuberance are confined to a zone within a
few protuberance heights on either side of the protuberance. The flow
returns to an exact Couette flow distribution by X = 9.0; thus flow
disturbances are confined to a zone very near the protuberance at Re = 1.

Figure 4 shows vorticity contours and streamlines in the ~rotu-
berance flow field for Re = 1. The flow conditions are the same in
Figures 3 and 4. The arrows shown above the moving plate in the stream-
line and vorticity contour plots are not plotted to the same scale as in
the velocity vector plots. The numerical treatment of the boundary

18
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conditions for each case is indicated below the contour plots. Figure 4
represents results obtained using a second-order formulation for the wall
vorticity given by equation (A8), treating the vorticity at the sharp
convex corners using the double-valued method described in Appendix B.

Figure 4 shows that at Re = 1, the flow field is nearly symmetric
about the mid-plane of the protuberance, X =0.5. Weexpect flow field
symmetry in the Stokes flow limit as Re+O. Eleven streamlines are
plotted in the non-recirculatingflow region in all cases which will be
discussed. It should be remembered that the upper plate is one stream-
line and the lower plate and protuberance is another. The difference in
stream function between two adjacent streamlines is specified so that

- +lowerplate .
A+ = ‘upper plate

10 9 (16)

where A$ is proportional to the mass flow rate per unit area between two
adjacent streamlines. Figure 4 shows that the mass flow rate between
the bottom plate and the adjacent streamline is much lower than between
any other two adjacent streamlines, as a consequence of the low flow
velocities near the stationary plate.

Streamlines in the separation bubbles upstream and downstream of
the protuberance have negative values of +, with Iv! very small. A
different AI/J spacing is used in these regions, depending on the strength
of the recirculation. Either one or as many as four streamlines are
plotted in the separation bubbles depending on the magnitude of V.

For the case shown in Figure 4, the downstream separation bubble
consisted of three grid points with negative values of stream function.
The plotting routine denoted this with a single closed contour as
indicated in the figure. The upstream separation bubble, on the other
hand, was much smaller--consistingof a single grid point with negative
4* Since the apparent size of the separation bubble depends on the
$-contour plotted, the location of separation and reattachment should
be determined from the vorticity contours for c = O.

Vorticity contours in the flow field for Re = 1 are also shown in
Figure 4. Negative values of vorticity are plotted with

AL =
‘max. negative value in field

7
(17)

between adjacent vorticity contours. The closely spaced contours near
the protuberance convex corners indicate large vorticity gradients at
these points. Positive values of vorticity, indicating counter-
clockwise rotation of fluid elements, are found adjacent to the moving
plate. Four vorticity contours are plotted in this region with

‘max. positive value in field
3

(18)
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between adjacent contours.

As can be shown, points of zero vorticity along the stationary plate
and protuberance surface correspond to points of flow separation and
reattachment. The sharp concave corners at the protuberance-plate
intersection are also points with vorticity equal zero. The situation
on the moving plate is different. Points along the moving plate with
vorticity zero do not indicate the position of separation or reattachment
as can be shown from equation (A7). A contour for L = O is plotted near
the moving plate, separating the contours for L positive from those for
L negative. Contours connecting points of zero vorticity are plotted in
Figure 4 and can be used to locate points of separation and reattachment
by comparing these contours with the separated flow streamlines. The
predicted location of separation and reattachment depends on the method
used to treat the vorticity boundary conditions.

Calculations for Re = 10 illustrate the influence of the vorticity
boundary conditions on the numerical solution. Figure 5 shows stream-
lines and vorticity contours for Re = 10 using the second-order formula-
tion for wall vorticity (A8) and the double-valued treatment at the
convex corners. The upstream separation bubble is seen to be slightly
smaller than at Re = 1, with the downstream separation bubble much
larger. Reattachment of the downstream separation bubble occurs at
approximately X = 3.0.

The numerical solution depicted in Figure 5 shows an inconsistency
near the separation point on the downstream protuberance face. If
separation is defined to occur where G = O, then separation occurs less
than one cell below the downstream corner. If separation is defined by
extrapolating the dividing streamline back to the downstream protuberance
face, then separation occurs approximately one and one-half cells below
the corner. This inconsistency is not present in the cases for higher
Reynolds numbers and at Re = 10 it occurs only when the double-valued
vorticity method is used at the sharp convex corners. It thus appears
that for the case shown in Figure 5 we can infer only an approximate
position of separation, namely about (0.l)k below the downstream corner.

Figure 6 shows that the results for Re = 10 are practically
unchanged if the first-order formulation for wall vorticity (A7) is
employed instead of the second-order formulation used in Figure 5. The
inconsistency in the separation point location is still present with
separation approximately (0.l)k below the downstream corner.

The positions of separation and reattachment are shifted slightly
for Re = 10 if the single-valued method for corner vorticity is used
instead of the double-valued method. The single-valuedmethod biases
the results toward separation at the sharp corner. Figure 7 shows that
separation occurs within the first cell below the corner, with no
inconsistency using v and c to locate separation. Reattachment now
occurs farther downstream at X = 3.2.

22
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Figure 8 shows that the position of downstream separation changes
slightly if the first-order formulation for wall vorticity (A7) is used
instead of second-order formulation shown in Figure 7. The position of
reattachment remains at X = 3.2, Comparison of Figures 7 and 8 shows
that the prediction of the upstream separation bubble is affected slightly
by the order of accuracy used in calculating the wall vorticity.

It is interesting to note that in snite of the small changes caused
by the four different boundary conditions, the general features of the
predicted flow fields are similar. The upstream separation bubble is
very small--less than (0.5)k in height and length. The downstream
separation bubble has a height no greater than the protuberance height
and a length equal to approximately two protuberance heights at Re = 10.
As has been shown, the locations of separation and reattachment cannot
be resolved precisely because of the uncertainty about the boundary
conditions.

Figure 9 shows streamlines and vorticity contours in the flow field
for Re = 25 based on the second-order formulation for wall vorticity and
the double-valued technique at the corners. The upstream separation
bubble is very small--ap~roximately (0.3)k high based on the L = O
contour. The downstream separation bubble is almost (4.15)k long at this
Reynolds number. It appears that as the Reynolds number increases, the
predicted location of downstream separation is not as sensitive to the
vorticity boundary conditions as at Re = 10. There is no inconsistency
in locating the position of downstream separation at Re = 25. Separation
occurs less than one cell below the downstream corner. Calculations
were performed for Re = 25 using other wall vorticity boundary conditions
but the results differ only slightly from those shown in Figure 9.

Figure 10 shows velocity vectors in the flow field for Re = 50. AS
discussed Deviously, a velocity overshoot occurs adjacent to the moving
plate due to the flow constriction. U-components as large as (1.44)U0

are present in the flow field at Re = 50. Figure 10 shows that appre-
ciable flow disturbances exist at the downstream boundary located at
x= 9.5. It is expected that the x-wise decay of these disturbances
could be predicted if the grid points were continued beyond the present
downstream boundary. The recovery zone may extend, however, for several
hundred protuberance heights.

Figure 11 shows streamlines and vorticity contours in the flow
field for Re = 50. These plots are based on a numerical solution using
the second-order formulation for the wall vorticity and the double-
valued vorticity technique at the convex corners. A very small
separation bubble is predicted upstream of the protuberance. The flow
separates less than one cell below the downstream corner and reattaches
at X = 8.2.
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A computational test was performed to determine the influence of the
downstream boundary position on the results shown in Figure 11. The
downstream boundary in Figure 11 is at X = 9.5. This boundary was moved
farther downstream to approximately X = 14.0 and the calculation for
Re = 50 was repeated. There was no change in the results to the scale
of the contour-plots shown in Figure 11.

A computational test was also performed to determine the influence
of the inflow boundary position on the results shown in orevious figures.
The inflow boundary was placed at X = -4.0 and calculations for Re = 10,
25 and 50 were repeated. The results near the protuberance only changed
slightly, but it was evident that perturbations caused by the ~resence
of the protuberance were affecting the calculations for grid points
adjacent to the inflow boundary; i.e. grid points next to the inflow
boundary no-longer showed an exact Couette flow behavior. With the
inflow boundary at X = -8.0 the exact Couette flow solution is medicted
for the entire region between the inflow boundary and X = -4.0 for
Re = 50.

Calculations for Re>50 were performed using the larger 81 x 21 grid
to accommodate the large separated flow region expected at higher
Reynolds numbers. The downstream boundary was located at X = 93.5.
Figure 12 shows streamlines and vorticity contours in part of the flow
field for Re = 100. Separation occurs less than one cell below the
downstream corner with reattachment at X = 14.2. The calculations pre-
dict that the flow disturbances introduced by the protuberance have not
fully decayed at X = 93.5. Perturbations of the x-component of local
velocity as large as 0.44% of the Couette flow value at the same position
above the stationary plate are present at X = 93.5. The largest
perturbations are found adjacent to the stationary plate--one cell height
off the plate.

Figure 13 shows streamlines and vorticity contours in part of the
flow field for Re = 200. Separation occurs less than one cell below
the downstream corner with reattachment at X = 26.0. At Re = 200 the
flow disturbances introduced by the protuberance decay more slowly than
at Re = 100, At Re = 200 perturbations of the x-component of local
velocity as large as 8.1% of the Couette flow value at the same y-position
are present at X = 93.5. The calculation for Re = 200 required 382
iterations, using crude initial guesses, to satisfy the fractional change
criteria given by equations (12) and (13). This required approximately
31 minutes of computer time on BRLESC. Cases for lower Reynolds
numbers required less computer time and fewer iterations for convergence
using the same initial guesses.

Cases for Re = 300, 500 and 1000 were run, but convergence was not
achieved for any of these cases in 500 iterations. In these cases the
predicted values of stream function and vorticity at a given point in
the flow began to fluctuate, with no apparent pattern toward convergence,
after approximately 400 iterations. Each case was run for 500 iterations
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and then terminated for non-convergence. The reasons for non-convergence
could not be determined. It is interesting to recall the experiences of

7-Macagno and Hung6 and Mueller and O’Leary in related problems.

6Macagno and Hung studied the flow of a liquid through an axisym-
metric conduit expansion by numerical calculations and used experimental
results to verify their calculations. Their computational simulation
was based on two different approaches. The first involved an iterative
numerical scheme for the steady flow equations, similar to the approach
used in the nresent study. Their second approach was based on the
equations for unsteady flow, retaining the local acceleration terms.
Their results show the steady-state iterative nrocedure becomes
“unstable” as the Reynolds number is increased. Me discuss their results
in terms of a Reynolds number, Rec~ based on the step height and the

centerline velocity in the smaller upstream pipe. They succeeded in
using the iterative steady flow approach for Rec<lOO and the results were

in agreement with results based on the unsteady equations. Their results
for Rec = 100 and 200 are based on the unsteady aporoach because “. . .

for the same mesh size, the steady approach would have been unstable.”

Calculations of laminar flow over a two-dimensionalbackstep by
7Mueller and O’Leary were performed using an explicit finite-difference

form of the unsteady equations. Their Reynolds number Ref is based on

the freestream velocity and step height. They comnare their numerical
results with experimental data for Ref~lOO and nresent numerical results

for Reynolds numbers as large as Ref = 200. They exr)erienceno computa-

tional instabilities in these cases. Their experimental work, however,
shows that for Ref>lOO, “. . . three-dimensionaleffects appear just

before reattachment in the form of helical motion. The recirculation
center then appears to become increasingly unstable and eventually
appears to break up into several small center eddies. The flow,
possibly because of three-dimensionaleffects and/orwith the onset of
vortex shedding, is increasingly unstable as the Reynolds number is
raised.”

The convergence problems which were experienced in the present
study for Re>200 are probably related to the stability problems dis-

6cussed by Macagno and Hung . The grid spacing AX in our 81 x 21 grid
becomes very large downstream of the protuberancewith Ax/k as large
as 4.26 at X = 93.5. It is also oossible, however, that our convergence
problems are related to a physical flow unsteadiness of the type

described by Mueller and 0’Leary7 in their experiments for RefzlOO.

This intriguing question cannot be resolved in the present numerical
study.
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VI. DISCUSSION AND CONCLUSIONS

The flow around a square protuberance immersed on a nlane Couette
flow has been studied by computational simulation for Reynolds numbers
up to 200. The numerical solutions predict a very small separated flow
region upstream of the protuberance with length and height practically
independent of Re. The downstream separation bubble, on the other hand,
has a height of order k and a length which increases almost linearly
with Reynolds number.

Figure 14 shows that the position of reattachment of the downstream
separation bubble varies almost linearly with Reynolds number according
to the numerical calculations. Two sets of experimental data for
backstep-type flows are shown for comparison. Measurements by Macagno

and Hung6 for an axisyrmnetricconduit expansion are plotted against
Ret, based on the centerline velocity and sten height. Measurements by

Mueller and O’Leary7for flow over a two-dimensionalback.stepare olotted
in terms of Ref, based on the freestream velocity and ste~ height.

Klebanoff and Tidstrom8 (not shown in Figure 14) found reattachment at X
between 30 and 40 fdr a cylindrical rod in a flat plate boundary layer.
Their experimental results are for Reynolds numbers between 550 and 916
based on protuberance height and freestream velocity. Unfortunately, it
is not possible to compare our numerical results in a quantitative sense
with any of these experimental measurements because of the difference in
geometries. It does aopear, however, that the se~arated flow region
downstream of a square protuberance may be significantly longer than that
found in the backste~ ty~e geometry at comparable Reynolds numbers.

The present results predict that the flow disturbances introduced
by the protuberance decay more slowly as the Reynolds number increases.
Significant velocity perturbations are found at X = 93.5 in our calcula-
tions for Re = 200. These perturbations tend to decrease the skin
friction along the plate downstream of the protuberance from the value
that would exist in the undisturbed flow.

The difficulties in treating the boundary conditions for vorticity
at the sharp protuberance corners have been discussed. Results for Re =
10 have shown that it is not ~ossible to resolve the exact location of
separation on the downstream protuberance face. Numerical results for
Rez25 predict separation to occur less than one cell below the down-
st~eam corner. Calculations for a two-dimensional backstep geometry by

Mueller and O’Leary’ also predicted separation below the corner so they
investigated the location of separation in their experiments; they
remark, “. . . although suggested in some photographs, separation below
the corner could not clearly be seen.” It thus seems appropriate to
interpret our numerical prediction of separation less than one cell
below the corner for Rez25 as separation at the corner itself within the
accuracy of the finite-differencecalculation.
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APPENDIX A

The proper boundary conditions for viscous flow along a moving or
fixed wall are the “no slip” conditions. If vorticity is used as a
dependent variable in a numerical solution, then relations between the
vorticity at points along the wall and the flow adjacent to the wall
must be used in the calculation which are consistent with the “no slip”
conditions. More than one equation for the wall vorticity can be
derived depending on the truncation error that can be tolerated.

● ●W+2 ●

Y ●w+l ● k
L,,,,,,,,, Ay

w

x

uo
I

Figure A-1 Grid Notation for Vorticity Boundary Conditions
at Mall

Consider a wall moving at constant speed U. shown in Figure A-1.

The relations which will be derived are also valid for a fixed wall
when U. is set equal to zero. We expand the stream function o to VW+,

by a Taylor series expansion out from the wall value I$Wsuch that

The terms in equation (Al) can be rewritten bY usin9 the “no Sli!f’
conditions

Uw = U. and Vw = O,

the definition of stream function

(AZ)

(A3)
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and the definition of vorticity

(A4)

The vorticity at the wall can be expressed as the second derivative

(A5)

by combining equations (A2), (A3) and (A4). Equation (Al) can be
rewritten as

‘+’/+l QYL2=Yw+ (Ay)uo - z cw- (A;)yw+l - ~w
Ay ] +~(Ay4). (A6)

Equation (A6) yields different equations for the wall vorticity
deoending on the order of truncation of the Taylor series. The lowest-
order accurate equation results from retaining terms up to order

(Ay)2 in equation (A6) and solving for Cw

<w=- - (Ay)Uo]+o(Ay).~2 [Vw+l - +W
(Ay)

(A7)

Equation (A7) represents the first-order formulation for the wall
vorticity. The second-order formulation

cw=- + [Vw+l- $W- (Ay)uo] -~ + ~(Ay2)

(Ay)
(A8)

is obtained by retaining terms up to order (Ay)3 in equation (A6).

Expressions for the wall vorticity Gw can be derived in a similar

manner having higher-order accuracy. Since the finite-difference
equations used for interior points are only first-order accurate,
equation (A8) should be of sufficient accuracy. It should be noted
that when cw+l+~w equations (A7) and (A8) give two different approxima-

tions to the wall vorticity. If (Ay) is used to represent the grid
spacing normal to the wall, then equations (A7) and (A8) remain the same
regardless of the wall orientation or the value of v on the wall.
Computational results will be used to illustrate the effects of using
these two different expressions for wall vorticity.

40



I

APPENDIX B

The description of the wall vorticity at the concave protuberance
corners, B and E in Figure B-1, presents no difficulty because c = O
at these points. The specification of vorticity boundary conditions at
the sharp convex protuberance corners, C and D, poses a difficult comw-
tational dilemma. A certain type of non-uniqueness occurs at these two
corners because there are several alternatives available for evaluating
the wall vorticity at these points.

C
-L

0

AA

T

Figure B-1 Notation and Geometry for Vorticity at Sharp
Corners

Points C and D can both be described in the same manner, so for sake
of clarity let us confine our attention to the downstream corner D. If
point D is considered part of the vertical wall DE, the first-order
formulation for wall vorticity given by equation (A7) becomes

2<D=- (Bl). —~ [$~~ “ @
(A13)

If point D is considered to lie on the horizontal wall CD, the first-
order equation for wall vorticity becomes

2~D=- ‘2 [VAA - $DIc
(AA)

(B2)

Obviously, only in special cases would these two equations be equivalent.
A similar set of equations results by using equation (A8) re~resenting



—

the second-order formulation for wall vorticity;

and

(B3)

(B4)

3Roache suggests that both equations be used. If the first-order
formulation for wall vorticity is being used, (Bl) and (B2) would be
employed in the following manner. When the grid scanning procedure
reaches point AA just above point D, then CD given by equation (B2) is

used in the difference equations for AA. When LD is required in the

difference equations for point BB, equation (Bl) is used. This technique
for calculating the corner vorticity treats c as a double-valued function
at the geometric singularity D. This is one of two techniques that have
been employed in the present calculations. Werefer to this as the
double-valued technique. A similar procedure is employed with equations
(B3) and (B4) if the second-order formulation is being used to calculate
wall vorticity.

There are many other possibilities for treating the vorticity at the

sharp convex corners. 9Roache and Mueller have investigatedseven
different methods for treating the vorticity at the corner in a backstep-
type geometry. Their conclusion is that at higher Reynolds numbers the
calculated results are not very sensitive to the method used.

A second method was tested in our calculations in an attempt to
force separation to occur at the sharp downstream corner D. This approach
treats CD as a single-valued ‘function,assuming that the flow along wall

CD determines the value of the vorticity at the corner. CD is calculated

using either equation (B2) or (B4), consistent with the procedure being
used for the other wall points. This method will be referred to as the
single-valued technique. Point C was treated as though it were on the
downstream wall CD whenever the single-valued technique was used.

Our experience with these two methods showed that the results are
sensitive to the technique used at low Reynolds numbers. The single-
valued technique was not successful at forcing separation to occur at
the downstream corner although the point of separation is very close to
the corner--less than one cell below the corner.
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