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SEPARATION AND REATTACHMENT NEAR SQUARE PROTUBERANCES
IN LOW REYNOLDS NUMBER COUETTE FLOW

ABSTRACT

Numerical solutions of the steady-state Navier-Stokes equations are
obtained which describe flow past a square protuberance immersed in a
plane Couette flow. The numerical solutions are illustrated with velo-
city vector plots, and plots of streamlines and vorticity contours in
the flow field for Reynolds numbers between 1 and 200, based on plate
velocity and protuberance height. A small separation bubble is nredicted
upstream of the protuberance with length and height almost independent
of Reynolds number. The downstream separation bubble has a height
always less than the protuberance height, but a length which increases
almost linearly with Reynolds number reaching more than twenty-five
protuberance heights at Re = 200. The flow perturbations caused by the
protuberance are shown to persist far downstream of the protuberance at
Re = 100 and 200.
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LIST OF SYMBOLS
height of backstep, m
height of protuberance, m
x-component of velocity, m/sec
y-component of velocity, m/sec
axial coordinate, m

poéition of leading edge of protuberance, m

transverse coordinate, m

constant for adjusting mesh stretching in equation (15),
nondimensional

order symbol showing qualitatively the rate at which a limiting
value is approached, nondimensional

pressure, N/m2

Reynolds number based on plate velocity and protuberance height
(Uok/v), nondimensional

local roughness Reynolds number (Ukk/v), nondimensional

Reynolds number based on centerline pipe velocity and step height
(Uch/v), nondimensional

Reynolds number based on freestream velocity and step height
(Ufh/v), nondimensional

velocity at pipe centerline, m/sec
freestream velocity at edge of boundary layer, m/sec

mean velocity that would exist at the protuberance height if the
protuberance were not present

velocity of moving plate in Couette flow, m/sec

distance from leading edge of protuberance measured in protuberance

heights, (x-xk)/k, nondimensional



8 undisturbed boundary layer thickness, m
z vorticity, defined by equation (5), sec'1
A convergence criterion, nondimensional
u absolute viscosity, kg/m-sec
- , ) ) 2,
v kinematic viscosity, m~/sec
0 density, kg/m3
v stream function, defined by equation (4), mz/sec
Ay  incremental length in y-direction, m
Superscript
n iteration level at which quantity is evaluated
Subscripts
0 reference value of stream function or vorticity
p typical point in finite-difference grid
W function evaluated at the wall
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value of function at convex corner D
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[. INTRODUCTION

The qualitative features of the flow field downstream of two-
dimensional roughness elements immersed in a laminar flat nlate boundary
layer are well known. In many wind tunnel experiments, such protuberances
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This reoort describes the flow field near a square two-dimensional
protuberance immersed in a plane Couette flow. Numerical solutions are
based on a finite-difference analog of the incomnressibie Navier-Stokes
equations. The solution technique is an extension of a method develoned

2
by Gosman et al.“ for the solution of the steady state stream function
and vorticity formulation of the Navier-Stokes equations.

The object of this work is to describe the steady flow disturbances
created when a two-dimensional protuberance is immersed in a laminar flat
plate boundary layer. It should be noted that the boundary layer equa-
tions are not valid for describing the flow near the rotuberance but

would most Tikely be applicable far downstream of the reattachment noint.
In this study a nlane Couette flow, an exact solution of the Navier-

Stokes equat1ons, is used to model the undisturbed flow on the flat
piate. We exoect the qua|1tat1ve features of the Séparaiion phenomena
induced by the protuberance in the Couette flow to be similar to those
found in the flat plate boundary layer case.

Figure 1 shows a schematic of the flow field near a square orotu-
berance immersed in a plane Couette flow. The protuberance is mounted
on the stationary bottom plate. The upper plate moves at a constant
speed Uy Far upstream of the protuberance, shown schematically as

position 1, the velocity distribution is prescribed by a linear Couette
flow profile. As the flow nears the protuberance, we expect it to
separate, forming a small unstream recirculation region.

Downstream of the protuberance, at position 2, we expect separated
flow profiles with the height of the reversed flow region no larger than
the protuberance height k. Velocity profiles at this nosition will
exhibit a velocity overshoot near the moving plate (u>U0) due to the
flow constriction caused by the orotuberance. Far downstream of the
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protuberance and the reattachment point, at position 3, the flow still
exhibits a perturbation from the original Couette flow. These perturba-

tions decay and the flow returns to the Couette-tyne d1str1but1on
farther downstream.

— [o}]

The local roughness Reynolds number, Rek = Ukk/v, i

S
the above values; where Ub is the mean velocity that wou

undisturbed flow at the nrnhlhnrnnrn height if the nr

S Vv T VAR G iy viie

otu
present. The numer1ca] resu]ts are 111ustrated w1th CAL

protuberance.

II. FORMULATION OF THE PROBLEM

The mathematical description of the disturbed flow near the nrotu-
berance should be based on the Navier-Stokes equations because viscous

~wo YGA2tTL L BUN mev: ~eLQWST LIS A SRSV

separation phenomena are important. The rec1rcu1at1on region downstream
of the protuberance and the position of flow reattachment along the
stationary plate influence the length of the recovery zone downstream

of the protuberance. In the two-dimensional case, the Navier-Stokes
equations can be expressed in rectanguiar coordinates by the x-momentum
equation

U, U _ 123P . 3 2u + _zu\ (1)
Yax T Vay b X “‘ /> )
ay
and the y-momentum equation
SV 3V 1 3P azv 5V
U——ax + Vg = - E 3y + \)(—Z + —)- (2)
X 3y
The continuity equation is
U L 3V _ g (3)
ax ay \NTa

The pressure can be eliminated from the momentum equations by differen-
tiating equation (1) with respect to y, equation (2) with resvect to x,
and subtracting the resuTting equations. The continuity equation (3)

PR R L

can be satisfied Dy aenm’ng the stream function 1] such that

- = - %Y
u —%—and v T (4)

By introducing the definition of vorticity ¢, where

13
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equations (1), (2) and (3) can be combined with (4) and (5) into two
equations: the ellintic vorticity transport equation

d, 3y d;._9
oy - ity - (——€+ —£> (6)
X" ay‘
and an ellintic Poisson-tvne equation
AL g VTR ES SHuELivh
2 2
Y Q\I2
vnz ay
Equations (6) and (7) represent the stream function and vorticity
formulation of the Navier-Stokes equations. These equations govern the
€1y ecrthiard +a +ha nuacrmnmihad harmdawy Aandidsdane Td ochnatiTd ha waodad
FTIUW SubjJeELL LU LUie urcosurived vournuaar CUNUi Livrns., 1T sSnouia pe notea
that only the nrescribed boundarv conditions and flow parameterc make
WilbMA W Wil -[ e M LD wl LvLew Vv wiiwagl Wil L W LWl il Iy t.,ul WRING Vel o HIUWLRAT
one numerical solution different from another. The accurate specifica-
tion of boundary conditions is thus very important. Since these

governing equations are elliptic, boundary conditions must be snecified
on all boundaries of the computational region.

k!
Roache™ discusses many methods for treating boundary conditions for

the stream function and vorticity in numerical solutions of the Navier-
Stokes equations. It should be noted that many of the methods which
hawvwua hannm 11ead 1w +ha nactd +aA nuacrvmiha hrainAdawmy rAanAds+sAane FAanm +ha
HHave vUCecTIll UotTu 111 Viie }Jﬂbh vy }chabl VS vuuwiiuar CUIIWG ) LIVIID [V 24 VIIC
vorticity were inconsistent and/or unsuccessful. The downstream or out-
flow boundarv and the sharp protuberance corners have been particularly
troublesome in many instances. The diffic culty at the sharp corners will

be discussed in detail.

Figure 2 shows an outline of the computational area empioyed in
the numerical caiculations and the notation used aiong boundaries. A
mTlama PAtiadkda €1Air 90 cnantfiad aTAanmm +ha 1nceduruaam hAainmdawme AU A +had
pl Ine vLuuec v | I1UW 1> )!J!:L;IIIEU QIUIIS viie Upbbl catil vyurliuat Al OV uila L

u = Uo(y/Zk) and v = 0} (8)
with

- [ (n/2k)dn and ¢ = U_s2k (9)

1% '/v oUl/ )dn g 0 (9)

Tlhn wam a2 amadlaloawm (.. _— e Al 2a AmanlLlad aTmmm bkl cdkadd aimarans

ine no bl1p cConaivion (U = v = 0U) 1> specitied aiorny uvie stativnary
nTat+n AR and EFC and +ha nvrnt+ithavraneca nr rN and NF Tha c¢tvaam
plaLTy NU QGITIU LI g UIIU LIIT PTIVVUVET WITLE 9y Vvy WV QI Uik 1Hiic 9 vi vain
function y is specified to be a constant on these boundaries; taken

equal to zero for convenience. The vorticity ¢z on these boundaries can-
not be specified independently of the flow off the surface. Appendix
A shows a derivation of the relationship between the vorticity at the

14
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wall and the flow adjacent to the wall. Two different expressions for
the wall vorticity have been used in obtaining numerical solutions to
examine the influence of the wall vorticity equat1on on the calculated
results. These expressions are given by equations (A7) and (A8).

Appendix B describes two alternatives for evaluating the vorticity
at the sharp corners, C and D, on the protuberance. The sharp concave
corners B and E are no problem because ¢ = 0 at these pocints. In the
present difference procedure, the value of ¢ at B and E doesn't enter
the iteration formulae for nearby points, but its value is needed for

vorticity contour plots.
Along the downstream or outflow boundary, FG, the conditions

3E: -a—c—._.
o - 0 and 5 =0 (10)
are specified. The Couette flow solution is one member of the family
of profiles that satisfies these boundary conditions. A computational
experiment is needed to determine the extent of upstream influence of
the errors caused by specifying equations (10) at a fixed position
downstream of the orotuberance. Results from such tests will be

The upper plate, GH, moves at a constant velocity UO. The no slip
Amm A e mas [ = M) — N qien cmaad S ad aTmmm Lomieadaa, LI TLim o din s
conateions \(u = UO, V = U) are DPE(. iea ai1ong bou laary un. Ine stctream
function y is thus specified by

v = U k (11)

0
and the vorticity ¢ is determined by using either equation (A7) or (A8).

IV. NUMERICAL PROCEDURE

Gosman et a].Z describe the comnlete set of finite-difference equa-
tions which were used in this numerical study. The finite-difference
representations of equations (6) and (7) are based on the "tank and tube"
method. The flow field is divided into an array of cells called tanks
which are connected to adjacent cells by tubes Mass 1is convected from
one cell to another along the tubes. The difference equauun: are not
restricted to evenly spaced nodes and an uneven mesh spacing between grid
points can be easily specified by prescribing the x- and y-coordinate of

each grid pa;ni“v An aﬁﬁ;nd a;f¥eren5év§cheme is used for tﬁévéonv;££1ve
terms in the governing equations with information advected into a cell

only from cells upwind of it. The finite-difference formulation should

therefore be classified as first-order accurate. Gosman4 has analyzed
the difference equations and has concluded that convergence is likely
in all circumstances with constant prooerty flow. Divergence of the

16



iteration procedure h
The iteration process used in this study is the Gauss-Seidel proce-
dure. The complete grid is scanned node by node, and the values of y
and ¢ at a particular node are calculated using neiqhboring values from
the prev1ous iteration. Calculations in the first iteration are based

on initial quesses for y and ¢ at all grid po1nts. The scannlng process
is contiﬁued until the grid is completely scanned. Special formulae are
necessary on the boundaries. This oprocedure is then repeated, with each
complete scan equal to one cycle of iteration, until the criterion for
convergence is satisfied or the calculation is otherwise terminated. If
convergence is achieved, the velocity distribution, skin friction coeffi-
cient, etc. are calculated and a plot routine is executed.

Convergence is tested by the calculation of the fractional changes
o _ o n-1
- v

Yy
p <

o~~~
o—
Ny

~—

»
-

Maximum in field

[ o]

n

n
P P < A3 (13)

Maximum in field

=h
>
=

WL
M ~—0
<
m O
—e T3 QW
Q. -—t U

-de
= (D »n

o~
-3
< (D

o+ o=t -

w

b ]

O oo
(=

the absolute value of the fract1ona1 chanqe s less
than A at every point, convergence is examined in more detail. Care
must be taken to examine the convergence of each case because, with the
fractional change criteria, a slowly converging process may be mistaken

for one that is fully convefged. Calculated values of ¢ and ¢ at
calamndad nAatnde 9n +han £3ATA ava avaminad Avuawm a nanviand AFf annwAavima+aly
STiltLiLtU puUlriLo 1 L 1TiciId arc TAdillniicu vvor a ptl 1UJl Ul apui vAtlinailciy
ten iterations to insure that convergence has been achieved if equations
(12) and (13) are satisfied. Convergence was not achieved in the
calculations for cases with Re > 300.
V. DESCRIPTION OF NUMERICAL CALCULATIONS

Numerical solutions have been obtained for Re = 1, 10, 25, 50, 100
and 200 which describe the flow around a square protuberance immersed in
a plane Couette flow, The iteration procedure used in this study did
not converge for cases which were attempted at Re = 300, 500 and 1000.
Computa ational results will be illustrated with selected velocity vector
plots, vorticity contours and streamlines 1n the flow field drawn on an

—
~



off- 1ine CALCOMP plotter. A contour plotting subroutine developed by

Hartw1g was used for 1nterpolat1on and contour plotting control. Calcu-
lations were performed in double precision on the BRLESC I and II
computers at the Ballistic Research Laboratories.

Twn A1 ffavant AniAd mac AAan€a o ira adbsAanme atan 1o mad i blea anaT A T adl o

AU Uiticicne yrida mcon uunllgul LIUIID WEre ud>ced 11 uie calcuiacions
The grid for Re < 50 consisted of a 6 x 11 cell protuberance immersed in
a 51 x 21 cell fwa field. The mesh aspect ratio B = ax/ay varied from

2.0 near the protuberance to 12.0 at the downstream boundary. Calcula-
tions for Re > 100 were performed using a 6 x 11 cell protuberance
immersed in a 81 x 21 cell flow field with 8 vary1ng from 2.0 near the
protuberance to 42.6 at the downstream boundary. The infiow boundary,
AH in Figure 2, was located at approximately X = -8.0, where

(x-x,)/k (14)

refers to distances measured from the position of the protuberance
leading edge, Xy s in terms of the protuberance height k.
The outflow boundary, FG, was located at apnroximately X = 9.5 1in

the 51 x 21 grid and at approximately X = 93.5 in the 81 x 21 grid. The
mesh spacing in the y-direction was fixed at ay = k/10. The mesh

spacing in the x-direction varied from ax = k/5 near the orotuberance to
ax = (1.2)k at the outflow boundary 1n the 51 x 21 grid and to ax = (4.3)k
at the outflow boundary in the 81 x 21 grid. The mesh spacing downstream
of the protuberance was stretched according to
X... = X, + ky5 + [tan(iA10)| (15)

1+1 2 tan(A)
where A 1.0 and i = 1,2,°°10 in the 51 x 21 grid, and A = 0.05 and
i=1,2,""40 in the 81 x 21 grid.

Cimimmma 2 chrtie o valanidy vunndbamnm nlad AF +hha £VAt: ammiimAd dlia siamd..

FIYUure o JMUWDS a veluLli vy veulLlur pluLl vt Liie 1T 1UW atrournia vne prLU'
berance at Re = 1. The location of grid points in the 51 x 21 grid can
be visualized in this figure--a grid point is located at the tail of each
velocity vector. The magnitude of the plate velocity U0 is shown by the
length of the vectors above the moving plate. A1l vectors are scaled
with respect to Uo’ This plot shows that at very low Re the flow
Adcditmmhamanes Aariena A ki $hhan muwadkitharaman ama mamfimnd A o sama 103 dbadm o
Ulid turuariLes causeu by Liie pruiluperarnce are Lumniingeu LU a Zurie wiliin a
few protuberance heights on either side of the protuberance. The flow
returns to an exact Couette flow distribution by X = 9.0; thus flow
disturbances are confined to a zone very near the protuberance at Re = 1.

Figure 4 shows vorticity contours and streamlines in the protu-
berance flow field for Re = 1. The flow conditigns are the same in

Figures 3 and 4. The arrows shown above the moving piate in the stream-
Tima and unrtinity ~andniim nlate ana nnt nlnt+ad +~ +ha cama crala ac
1iNeé ana vorti ClLlYy LUNILUUT piIVULY aic vl pliviicu LV Lo sankc >vailc as Ill
the velocity vector plots. The numerical treatment of the boundary
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conditions for each case is indicated below the contour plots. Figure 4
represents results obtained using a second-order formulation for the wall
vorticity given by equation (A8), treating the vorticity at the sharp
convex corners using the double-valued method described in Appendix B.

Figure 4 shows that at Re = 1, the flow field is nearly symmetric
about the mid-plane of the protuberance, X = 0.5. We expect flow field
symmetry in the Stokes flow 1imit as Re»0. Eleven streamlines are

plotted in the non-recirculating flow region in all cases which will be
discussed. It should be remembered that the upper plate is one stream-
line and the lower plate and protuberance is another. The difference in
stream function between two adjacent streamlines is specified so that

) -
Ay = upper plate]0 lower plate . (16)

where Ay is proportional to the mass flow rate per unit area between two
ad1acent stream11nes. Figure 4 shows that the mass flow rate between
the bottom plate and the adjacent streamline is much lower than between
any other two adjacent streamlines, as a consequence of the low flow

velocities near the stationary plate.

mlines in the separation bubbles ups wnst
the protub ance have negative values of ¢, with |w| very small. A
different Ay spacing is used in these regions, denending on the strength
of the rec1rcu1at1on Either one or as many as four streamlines are

plotted in the separation bubbles depending on the magnitude of y.

+wn
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For the case shown in F1gure 4, the downstream separation bubble
consisted of three grid points with negative values of stream function.
The plotting routine denoted this with a single closed contour as
indicated in the figure. The upstream separat ion bubb]e, on the other

w. Slnce the apparent size of the separation bubble depends on the
p-contour plotted, the location of separat1on and reattachment should
be determined from the vorticity contours for ¢ = O.

Vorticity contours in the flow field for Re = 1 are also shown in
Figure 4. Negative values of vorticity are plotted with
z . . .
max. negative value in field
Ag = g 7 (17)

between adjacent vorticity contours. The closely spaced contours near
the protuberance convex corners indicate large vorticity gradients at
these points. Positive values of vorticity, indicating counter-
clockwise rotation of fluid elements, are found adJacent to the moving
plate. Four vorticity contours are piotted in this region with

Cmax. positive
max. positive

-

/alue in field

AL = (18)

I <
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and protuberance surface correspond to points of fiow separat1on and
reattachment. The sharp concave corners at the nrotuberance-plate
intersection are also points with vorticity equa} zero. The situation

on the moving plate is different. Points along the moving plate with
vorticity zero do not indicate the position of separation or reattachment
as can be shown from equation (A7). A contour for ¢ = 0 is plotted near

>

the moving plate, separating the contours for ¢ positive from those for
;, negative. Contours connecting points of zero vorticity are plotted in
rwgure 4 and can be used to locate points of separat1on and reattachment
by com iparing these contours with the separated Tlow streaml1nes. The

nuaAds abad Tamnadsanm A camamadd Al am sammddomoabia o A
predicted location of separation and reattachment depends on the method
used to treat the vorticity boundary conditions.

Calculations for Re = 10 illustrate the influence of the vorticity
boundary conditions on the numerical solution. Figure 5 shows stream-
lines and vorticity contours for Re = 10 using the second-order formula-
tion for wall vorticity (A8) and the double-valued treatment at the

convex corners. The uostream separation bubbie is seen to be shghtly

~m @ - " lha datiamdianace o ccmmaadd o Py .
smaller than at Re = 1, with the downstream separation bubbie much
larger. Reattachment of the downstream separation bubble occurs at
approximately X = 3.0,

The numerical solution depicted in Figure 5 shows an inconsistency
near the separat1on point on the downstream protuberance face. If
separatlon is defined to occur where ¢ = 0, then separatxon occurs less

than one cell below the downstream corner. If separatlon is defined by
extrapolating the dividing streamiine back to the downstream protuberance
face, then separation occurs approximately one and one-half cells below
the corner. This inconsistency is not present in the cases for higher
Reynolds numbers and at Re = 10 it occurs only when the double-valued

vort1c1ty method is used at the sharp convex corners. .It thus appears
that for the case shown in Figure 5 we can infer only an approximate
position of separation, namely about (0.1)k below the downstream corner.

Figure 6 shows that the results for Re = 10 are practically
unchanged if the first-order formulation for wall vorticity (A7) is
employed instead of the second-order formulation used in Figure 5. The
inconsistency in the senaration point location is still present with
separation approximately (0.1)k below the downstream corner.

The positions of separation and reattachment are shifted slightly
for Re = 10 if the singTe va1ued method for corner vorticity is used
The singie-valued method biases

..... -~ —~r - rm mmm e dd i A ~n ~hharam Asaas e Clmisean T ~rbhacis L~
the results toward :eparatwl a.t the sharp corner. Figure 7 shows that
separation occurs within the first cell below the corner, with no
inconsistency using ¢ and ¢z to locate separation. Reattachment now
occurs farther downstream at X = 3.2.
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igure 8 shows that the position of downstream senaration changes
y if the first-order formulation for wall vorticity (A7) is used

And-nvrdavr favmiilat+inan chn
Wit Ui uxQ L m ) ViVl ANV
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remains at X Comn

a the"pred1ct1on of the uﬁstrea& éeparat1on bubb]e is affected slightly
he order of accuracy used in calculating the wall vorticity.
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It is interesting to note that in snite of the small changes caused

by the four different boundary conditions, the general features of the
predicted flow fields are similar. The upstream senaration bubble is
very small--less than (0.5)k in height and length. The downstream
separation bubble has a height no greater than the protuberance height
and a length equal to approx1mate1y two protuberance heights at Re = 10.
As has been shown, the locations of separation and reattachment cannot
be resolved precisely because of the uncertainty about the boundary
conditions.

Figure 9 shows streamlines and vorticity contours in the flow field
for Re = 25 based on the second-order formulation for wall vorticity and

the double-valued technique at the corners. The upstream separation
bubble is very small--apnroximately (0.3)k high based on the ¢z = 0
contour. The downstream separation bubble is almost (4.15)k long at this
Reynolds number. It appears that as the Reynolds number increases, the
predicted location of downstream separation is not as sensitive to the

vnwmdEi At b hAatmmdawmys Aands +4Ane a4+ DA = 1N Thawa 1(‘ nA Tn~An
vur vici vy wvuuniuary \'Ullul LiIVIID 03 at Nng tU. Hicrc 19 1iuvu  riLuIl

in locating the position of downstream separation at Re = 25. Se
occurs less than one cell below the downstream corner. Calculations

were performed for Re = 25 using other wall vorticity boundary conditions
but the results differ only slightly from those shown in Figure 9.

Figure 10 shows velocity vectors in the fiow field for Re = 50. As
discussed oreviously, a velocity overshoot occurs adjacent to the moving
plate due to the flow constriction. U-components as large as (1 44)U0
are present in the flow field at Re = 50. Figure 10 shows that anore-
ciable flow disturbances exist at the downstream boundary located at
vV = 0 & T+ 43¢ avnartad +hat+ +ha vowica dAarayv nf +hoco AdAictiivhanecnc
A TeJdo 1L 15 CApECLLEU LilabL Uil ATSwWiocT UciLay Ul LIITOT Ui Jduvur vaiivco
could be predicted if the grid points were continued beyond the present

downstream boundary. The recovery zone may extend, however, for several
hundred protuberance heights.

Figure 11 shows streamlines and vorticity contours in the flow

for Re = 50 These p]ots are based on a numer1ca1 solution using
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A computational test was performed to determine the influence of the
downstream boundary position on the results shown in Figure 11. The
downstream boundary in Figure 11 is at X = 9.5. This boundary was moved
farther downstream to approximately X = 14.0 and the calculation for
Re = 50 was repeated. There was no change in the results to the scale
of the contour plots shown in Figure 11.

A computational test was also performed to determine the influence
of the inflow boundary position on the results shown in orevious figures.
The inflow boundary was placed at X = -4.0 and calculations for Re = 10,
25 and 50 were repeated. The results near the protuberance only changed
slightly, but it was evident that perturbations caused by the presence
of the protuberance were affecting the calculations for grid points
adjacent to the inflow boundary; i.e. grid points next to the inflow
boundary no-tonger showed an exact Couette flow behavior. With the
inflow boundary at X = -8.0 the exact Couette flow solution is predicted
for the entire region between the inflow boundary and X = -4.0 for
Re = 50.

Calculations for Re>50 were performed using the larger 81 x 21 grid
to accommodate the large separated flow region exnected at higher
Reynolds numbers. The downstream boundary was located at X = 93.5.
Figure 12 shows streamlines and vorticity contours in part of the flow
field for Re = 100. Separation occurs less than one cell below the
downstream corner with reattachment at X = 14.2. The calculations bnre-
dict that the flow disturbances introduced by the protuberance have not
fully decayed at X = 93.5. Perturbations of the x-comoonent of local
velocity as large as 0.44% of the Couette flow value at the same position
above the stationary plate are present at X = 93.5. The largest
perturbations are found adjacent to the stationary olate--one cell height
off the plate.

Figure 13 shows streamlines and vorticity contours in part of the
flow field for Re = 200. Separation occurs less than one cell below
the downstream corner with reattachment at X = 26.0. At Re = 200 the
flow disturbances introduced by the protuberance decay more slowly than
at Re = 100. At Re = 200 perturbations of the x-component of local
velocity as large as 8.1% of the Couette flow value at the same y-position
are present at X = 93.5. The calculation for Re = 200 required 382
iterations, using crude initial guesses, to satisfy the fractional change
criteria given by equations (12) and (13). This required approximately
31 minutes of computer time on BRLESC. Cases for lower Reynolds
numbers required less computer time and fewer iterations for convergence
using the same initial guesses.

Cases for Re = 300, 500 and 1000 were run, but convergence was not
achieved for any of these cases in 500 iterations. In these cases the
predicted values of stream function and vorticity at a given point in
the flow began to fluctuate, with no apparent pattern toward convergence,
after approximately 400 iterations. Each case was run for 500 iterations
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and then terminated for non- convergence. The reasons for non- -convergence
could not be determ1ned It is 1nterest1ng to recall the experiences of

Macagno and Hung and Mueller and 0' Leary in related problems.

Macagno and Hung studied the flow of a liquid through an axisym-
metrlc conduit exoans1on by numer1ca1 calculations and used experimental

results to verlly their caiculations. Their compucat1onal simulation

was based on two different approaches. The first involved an iterative
numerical scheme for the steady flow equations, similar to the approach
used in the oresent study. Their second approach was based on the
equations for unsteady flow, retaining the local acceleration terms.
Their results show the steady-state iterative nrocedure becomes
_unstable" as the Reynolds number is increased. We discuss their results
in terms of a Reynolids number, Rec, based on the step height and the
centerline velocity in the smaller upstream pipe. They succeeded in
using the iterative steady flow approach for Rec<100 and the results were

in agreement with results based on the unsteady equations. Their results
for Re_ = 100 and 200 are based on the unsteady aporoach because ".

for the same mesh size, the steady approach would have been

£k UG 2:CCYY

unstable."

Calculations of laminar flow over a two-dimensional backstep by

Mueller and O'Iparv7 were performed uclnn an nyn11r1+ finite-difference

Sl WV =TaT Liol S P P 4

form of the unsteady equat1ons. Their Reyno]ds number Ref is based on

the freestream velocity and step height. They comnare their numerical
results with experimental data for ReF<100 and nresent numerical results

for Reynolds numbers as large as Ref = 200. They experience no comnuta-

tional instabilities in these cases. Their experimental work, however,
shows that for Ref>100, . . . three-dimensional effects appear just

before reattachment in the form of helical motion. The recirculation
center then appears to become increasingly unstable and eventually
appears to break up into several small center eddies. The flow,
possibTy because of three-dimensionai effects and/or with the onset of

n:o\m‘- - PPN - ] it dabhl A as Elha DA....A'I

tex >neuuung, is in TE&Siugly unstable as the Reynolds number is

The convergence problems which were exnerienced in the present
study for Re>200 are probably related to the stability problems dis-

cussed by Macagno and Huna6 The grid spacing Ax in our 81 x 21 grid
becomes very large downstream of the protuberance with Ax/k as large
as 4.26 at X = 93.5. It is also oossible, however, that our convergence

problems are related to a physical flow unsteadiness of the type
described by Mueller and O'Learv7 in their experiments for Re,>100.

Th1s 1ntr1gu1ng question cannot be resolved in the present numer1ca1
c+n
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The flow around a square protuberance immersed on a nlane Couette
flow has been studied by computational simulation for Reynolds numbers
up to 200. The numerical solutions predict a very small separated flow
region upstream of the protuberance with length and height nractically
independent of Re. The downstream separation bubble, on the other hand,
has a height of order k and a length which increases almost Tinearly

+h Davinnld
with Reynolds numbe

Figure 14 shows that the position of reattachment of the downstream
separation bubble varies almost linearly with Reynolds number according
to the numerical calculations. Two sets of experimental data for
backstep-type flows are shown for comparison. Measurements by Macagno

and Hung6 for an axisymmetric conduit expansion are plotted against
Re e based on the centerline velocity and sten height. Measurements by

Muu]]er and 0'lLeary 7Fnr flow over a two-dimensional backstep are bplotted
in terms of Re €cs based on the freestream velocity and sten he1qht
Kiebanoff and Tids tﬁ"u8 (not shown in Figure 14) found reattachment at X
between 30 and 40 for a cylindrical rod in a flat plate boundary layer.

Their experimental results are for Reynolds numbers between 550 and 916
based on protuberance height and freestream veloc1ty Unfortunately, it
is not possible to compare our numerical results in a quantitative sense
with any of these experimental measurements because of the difference in
geometries. It does aopear, however, that the separated flow region

i R PN ~ i -.- PN AvIA M AN
downs tream uf a square protuberance may be significantly longer than that
found in the backstep type geometry at comparable Reynolds numbers

The present results predict that the flow disturbances introduced
by the protuberance decay more slowly as the Reynolds number increases.
Significant velocity perturbat1ons are found at X = 93.5 in our calcula-
tions for Re = 200. These perturbations tend to decrease the skin
friction along the plate downstream of the protuberance from the value

+ha s 1A +h
that would exist in the undi

g
-3
o

The difficulties in treating the boundary conditions for vorticity
at the sharp protuberance corners have been discussed. Results for Re =
10 have shown that it is not possible to resolve the exact location of
separat1on on the downstream protuberance face. Numerical resuits for

Re>25 predict separation to occur iess than one cell below the down-
stream corner. Calculations for a two-dimensional backstep geometry by
Mueller and O'Leary7 also predicted separation below the corner so they
investigated the Tocation of separation in their experiments; they
remark, ". . . although suggested in some photograohs, separation below
the corner could not clearly be seen." It thus seems appropriate to
interpret our numerical prediction of separat1on less than one cell

below the corner for Re>25 as separation at the corner itself within the
accuracy of the finite-difference calculation.
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APPENDIX A
The proper boundary conditions for viscous flow along a moving or
fixed wall are the “"no slip" conditions. If vorticity is used as a
dependent variable in a numerical solution, then relations between the
vorticity at po1nts along the wall and the flow adjacent to the wall

L

must be used in the calculation which are consistent with the "no siin”

conditions. More than one equation for the wall vorticity can be
derived depending on the truncation error that can be tolerated
° oW+2 o
1
Y e W+) o L
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Figure A-1 Grid Notation for Vorticity Boundary Conditions
at Wall

Consider a wall moving at constant speed U, shown in Figure A-1.
The relations which will be derived are aiso valid for a fixed wall
when U is set equal to zero. We expand the stream function ¢ to y .4
by a Taylor series expansion out from the wall value ¥,y Such that
n 2 ~ ”
LS B IS L A L € ,=j%% \ay ) \Al)
w oy W oY w
The terms in equation (A1) can be rewritten by using the “no slip“
conditions
u,=U_ and v, =0, (A2)
the definition of stream function
)
u:a_w a|dvzii’ (A3)

3y X



and the definition of vorticity

3V au f aan
3 "3y (Ad)
The vorticity at the wall can be expressed as the second derivative
2
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by combining equations (A2), (A3) and (A4). Equation (A1) can be
rewritten as
;s (Av\2 (Av\3rcw+1 T Sy 4, L
LTS B R e Ay + 04y ) {AD)
Equation (AS) yields different equations for the wall vorticity
deoend1ng on the order of truncation of the Tay]or series. The lowest-
order accurate equation results from retaining terms up to order '
2
(ay)“ in equation (A6) and solving for S
. - v -
W oy = by - (a¥)U T + 0(ay). (A7)

Equation (A7) represents the first-order formulation for the wall
vorticity. The second-order formuiation
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is obtained by retaining terms up to order (ay)~ in equation (A6).

Expressions for the wall vorticity g, can be derived in a similar

manner having higher-order accuracy. Since the finite-difference
equations used for interior points are only first-order accurate,
equat1on (A8) should be of suff1c1ent accuracy. It shouid be noted

that when Cw+1*§ equations (A7) and (A8) give two different approxima-
tions to the wall vorticity. If (ay) is used to represent the grid

£ o2 =

spac1ng normal to the wa]], then equat1ons (A7) and (A8) remain the same

regardless ot the wall or1entat1on or tne value of w on the wall.
Computational results will be used to illustrate the effects of using

these two different expressions for wall vorticity.
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APPENDIX B

The descr1pt1on of the wall vorticity at the concave protuberance
corners, B and E in Figure B-1, presents no difficulty because ¢ = 0
at these points. The spec1f1cat10n of vorticity boundary conditions at
the sharp convex protuberance corners, C and D, poses a difficult compu-
1!5

tational dilemma. A certain type of non- un1oueness occurs at these two
corners because there are several alternat1ves available for evaluating
the wall vorticity at these points.

Figure B-1 Notation and Geometry for Vorticity at Sharp
Corners

Points C and D can both be described in the same manner, so for sake

+

of c]ar1ty let us confine our attention to the downstream corner D. If
point D is considered part of the vertical wall DE, the first-order
formulation for wall vorticity given by equation (A7) becomes
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If point D is considered to lie on the horizontal wa all CD, the first-
order equat1on for wall vorticity becomes
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0bv1ous]y. only in spec1a| cases would these two equations be equivalent
A similar set of equations results by using equation (A8) representing

a1



ety
D7 a2 B T YD T 2

and
3 “AA
07 w2 Tl (B4)

2
~ Roache™ suggests that both equations be used. If the first-order
formulation for wall vorticity is being used, (B1) and (B2) would be
employed in the following manner. When the grid scanning procedure
reaches point AA just above point D, then Zp given by equation (B2) is
used in the difference equations for AA. When z 1s required in the

difference equations for point BB, equation (B1) is used. This technique
for calculating the corner vorticity treats ¢ as a double-valued function
at the geometric singularity D. This is one of two techniques that have
been empioyed in the present calculations. We refer to this as the
double-valued technique. A similar procedure is employed with equations
(B3) and (B4) if the second-order formulation is being used to calculate
wall vorticity.

There are many other possibilities for treating the vorticity at the

sharp convex corners. Roache and Mue]ler9 have investigated seven
different methods for treating the vorticity at the corner in a backstep-

type geometry. Their conclusion is that at higher Reynolds numbers the
calculated results are not very sensitive to the method used.

A second method was tested in our calculations in an attempt to
force separation to occur at the sharp downstream corner D. This approach
treats gy as a single-valued function, assuming that the flow along wall

CD determines the value of the vorticity at the corner. Ty is calculated

using either equation (B2) or (B4), consistent with the procedure being
used for the other wall points. This method will be referred to as the
single-valued technique. Point C was treated as though it were on the
downstream wall CD whenever the single-valued technique was used.
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valued techn1que was not successful at forc1ng separat1on to occur at
the downstream corner although the point of senaration is very close to
the corner--less than one cell below the corner.
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