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SUMMARY 

This report describes a two equation turbulence model and an alter- 

nating direction implicit method of solving the mean flow conservation 

equations and turbulence model equations, with emphasis on application to 

the calculation of the supersonic near wake behind a slender body. The 

turbulence model has been shjwn to adequately predict those low and high 

speed turbulent flow experiments against which it has been tested. The 

numerical methods used have demonstrated a particular suitability for the 

near wake problem because the requirement for locally high spatial resol- 

ution does not require a corresponding reduction in temporal step size as 

in the case of explicit difference methods. Hypersonic near wake results 
are presented. 

I 
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1.    INTRODUCTION 

The principal objective of this program Is to develop the capability 

of performing calculations of turtulent near wakes of slender bodies.   Two 
major subtasks are Involved: 

1. Develop turbulence model equations applicable to compressible 
as well as incompressible flows nrc Siuie 

2. Develop finite difference methods for the solution of the 
model equations. 

Work on the first task has been partially supported by the ROPE Project 

funded by ABMDA and ARPA under contract DAHO50-71-C-0049 as well as by 

the present contract.    An Integral part of the development of the turbul- 

ence model equations Is comparison of calculations of simple flows with 

experiment.    Such calculations are necessary to test the validity of the 

proposed modeling over a sufficiently broad range of conditions as to pro- 

vide some confidence In their applicability In the near w?ke of hypersonic 

slender bodies.    These comparisons with experiment can in most cases be 

made using subsets of the complete time-dependent conservation and turbul- 

ence model equations proposed for use in the near wake problem    The par- 

ticular subset which has been used for this purpose is one whici has been 

applied to the laminar steady calculation of interacting flows,(1) and 

contains both the complete inviscid terms (in the supersonic flow) and 

boundary-layer-like viscous terms.    Since the numerical methods required 

for the implementation of the model equations In this fonn had already been 

developed, this task could be persued Independently of and parallel with 

that of developing suitable numerical mechods for solution of the coirplete 

time-dependent equations.    The Semi-Annual Technical  Report(2) contains a 

preliminary description of the model equations and of the tests of the 

modeling which had been completed to that date.    Further tests have now 

been completed under the support of the ROPE project, with a complete des- 

cription presented in Reference 3.    Agreement with experiment is now con- 

siderably better than was shown in Reference 2.    The current version of the 

model equations will be summarized in the present report.    Further testing 
of the modeling will be continuing under ABMDA support. 
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The near wake problem, because of the recirculation region iirmedlately 

behind the body, constitutes a boundary   alue problem.    The proposed com- 

putational approach, here, is to obtain the steady flowfield as the asymp- 

totic limit of the time-dependent solution of the Ndvier-Stokes equations 

with turbulence modeling.    The numerical methods previously applied to 

related problems have major drawbacks when applied to the calculation of 

the near wake flowfield at large Reynolds number, related primarily to the 

fact that the explicit finite difference approximations used required, for 
stability, that the Courant number Kc = (u + c) |i be ;mallf    than a iimit_ 

ing value which Is of the order unity.    (Here, 

u   = local velocity 

c   = local sound speed 

At ■ time increment 

AX = local spatial meshslze.) 

This limitation is not a serious one for many applications, but proves to 

be quite wasteful and inefficient when applied to the particular problem 
of interest, for two related reasons: 

1. there are relatively limited flow regions which require much 
higher spatial resolution than the rest of the domain in order 
to avoid the generation of unacceptably large spatial trunca- 
tion errors in these regions; for example, the boundary layer 
and expansion fan in the neighborhood of the body corner. 
Since the temporal step size is severely limited, via the Courant 
condition, by the small spatial meshsizes required in these 
regions even when the temporal truncation er>or is quite moderate, 
the explicit methods can be extremely inefficient. 

2. the approach to a steady state occurs in two stages involving 
separate characteristic times.    For arbitrary Mticl conditions, 
the flow rapidly develops the familiar near-wake features, includ- 
ing the lip and wake shocks, expansion fan, and a re:1rculation 
region.    After a time which is of the order of the t ansit time 
of a parti-le across the domain in the outer high spied regions, 
changes become much slower, and are dictated by vhf development 
of the viscous and relatively slow recirculation »eplon.    During 
this final alow approach to a steady state, the ^pl Icit methods 
are still restricted in time step by the stability requirements 
associated with the smallest spatial mes.* in the expansion fan, 
which has long since ceased to change appreciably with time and 
hence should not limit the time step for reasons of tempor-il 
truncation error. 
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For these reasons, an implicit finite difference method has been devel- 

oped which is free of these undesirable stability limitations.    This alter- 

nating-direction Implicit differencing is applied to the conservation form 

of the equations in order to provide a better description of the flow in nie 

neighborhood of shocks and other regions of large gradient.    The general 

properties of these difference approximations applied to the Navier-Stokes 

equations were reported in the semi-annual technical  report.(2) and a des- 

cription of the method   with a number of example applications was presented 

at the AIAA Computational  Fluid Dynamics Conference in Palm Springs (^ 
July 1973. 

These methods have since been applied to the problem of Interest, the 

hypersonic high Reynolds number near wake of a slender body.    The remainder 

of this report is concerned with the description of the application of the 

general methods described previously to this particular prob.3m. along with 

the description of special  techniques which were found to be required under 

these particularly difficult conditions, and a presentation of the results 

of calculations of high Reynolds number .'.ypersonic near wakes.    The calcul- 

ations demonstrate the particular suitability of the method for this type 

of problem (the Courant number Kc for these calculations was as large as 20 

and was never reduced below 5).    The addition of a flux-corrected-transport 

(FCT) stage to the calculation is shown to permit the description of strong 

unresolved shocks without the severe numerical difficulties nomally assoc- 

iated with dispersive effects which typically appear under these conditions 

This Is accomplished without resorting to artificial or numerical diffusion 

which can mask   genuine viscous effects which are of interest, and without 

any increase in the (small) truncation errors associated with the basic 
difference approximations as previously reported. 

: 
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2.    MODEL EQUATIONS FOR A TURBULENT COMPRESSIBLE FLOW 

The model being used to represent the non-homogeneous turbulence field 

in the near wake of a hypersonic body characterizes turbulence properties 

at each point by two independent variables consisting of the turbulent 

kinetic energv, e = (.u'2 + v'2 + w,2)/2 and a lateral scale length of the 

turbulence, a.    To solve for these variables, two partial differential equa- 

tions are written, each which represents a bilance between the production, 

dissipation, diffusion, and convection of turbulent energy and its rate-of- 

dissipation.    Because of the closure problems always encountered in the 

Reynolds description of turbulence, the terms appearing in the governing 

equations are models of the actual processes and are, therefore, approximate. 

However, reasonable success has been obtained by a number of investigators 

in the calculation of boundary layers and mixing layers and, consequently 

optimism exists for the near wake problem.    A more rigorous and detailed 

description of the turbulence which considers its true tensorial character, 

wherein corrections between all  three components of velocity fluctuation 

as well as orthogonal integral  scale lengths obtained from the various spec- 

tra are included, could also be applied in principle.    However, this approach 

also suffers from the uncertainties of the closure assumptions, and the 

additional complexity of many more turbulence variables, constants to be 

determined, and equations to solve makes it too unwieldy for the near wake 

problem.    The lumped or scalar representation of turbulence by two variables 

is the simplest representation which contains sufficient generality to be 

applicable to the problem of interest. 

The mean flow equations are altered to account for turbulent diffusion 
(5) as in Wilcox and Alber 

It      3Z 
3p   ,    3pU   .   1   3     /       v   _  n •■ p-37 (rpv) - 0 continuity 

3pU  JL  3 
Jt+TI 

2 
pu    - ozz + p + r 3r T  (PUV - arz )1 = 0 axial momentum 

._. —_. . ^ 



mmmmw mMmmam wm* 

aP 
ar 

_ee 
r 

radial momentum 

1^ * |j [puH + q2 -  UO^ -  «,„ 

7 IF HPVHM,-«„-«„.)] =o 
total energy 

where 
1       ?    au .  . 

^ rr     Re 

1 

3U       1   3     /     vT — + (rv) 
3Z     r 3r v    'J 

2^-[ll+7lFH 
r|u + i|_(rv)l} 
L3z     r 3r J | < 2u f   + A 

B  U      j  3U. + iV 
'rz '  Re  j 3r     3z 

n       - 1     (V    \^ qz   " ■ ^\W)lz 

Hr Re \"Pr/ 3r 

All quantities are here non-dimensionalized with reference length L, 

velocity u , density p , and laminar viscosity y .    Pressure is normaliztd 

with p u2 and enthalpy with L}..    E is total energy [H - P/p) and H is total 

enthalpy (h ♦ *-+ j-).    Turbulence is included in the stress and heat 

transfer terms through the definitions of the transport properties: 

y = yL + iiT        where yT = pf '2i Re 

MM   -■ Miiüm   - -       ' 
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where a Is normalized by u    and SL by L. 

The governing equations for e and l are the turbulent kinetic energy 

equation vid an equation for the rate-of-dissipatlon, e . = CJ e3/2/i where 
d       d 

Cd is a constant.    The first equation has been used for Incompressible flows In 

various modern Investigations, beginning with Bradshaw^ and Is reasonably 

well understood and accepted.    Less agreement exists with respect to the 

second turbulence modeling equation, and the dissipation rate equation 

based on the work of Harlow and Nakayama^7' and Jones and Launder^ was 

chosen after comparative studies showed that this formulation agrees most 

favorably with compressible and Incompressible boundary layer experiments 
(see References 2 and 3). 

The turbulence model equations in the appropriate coordinates are: 

9pe     3 
at      3z 

L ST ...     y    ae       1  u    aep 1 ,ue-*e 9F- TS"—3z J 

il.rr /DVe . iiie _ si ^ aep 
r 3r L   lpve     Re ar     WptT 

e     peu   3P pev dP_ 
r h ~J ar pa 

turbulence energy 

T/ 1 ^rv      3u\2 . n     AJL e2\ 
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llL + lih-fel|-Rri7?i£fr-] 
Srt      T 

J 

p 

3/2 

3/2 

r 3r [r lpve     Re 3r ' W ^T/I    ar     j 

eu  3P      f    EV 3P 
^2 73 az " ^2 T 3r a a 

dissipation rate 

2 

L 3 
y e 

40 CJ Re 

where .3/2 
e = CD e ' /£ so that y   = p CQ e    Re/e 

S1 = 1.0, S2 = 0.77.    i} =  I.    c2 ■ 2.5, 

CD = .09, C1 = 1.41,    C2 = 1.89,  PrT= 0.9 

a   ■ local sound speed. 

The laminar sublayer dissipation terms in the turbulence equations (des- 

cribed in References 2 and 3   where they are applied in the compressible 

boundary layer calculations used to verify the compressibility modeling 

of the diffusion terms in these equations) have not been included here 

since resolution of  ,ne sublayer on the body base-wall will not be attempted. 

—   „ ■Maii^ . m *** 
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3.    METHOD OF SOLUTION 

The TACIT alternatlng-directlon-Implicit differencing method described 
in detail In References 2 and 4 has been modified slightly to improve Its 

performance at high Reynolds number, when poor resolution In regions of " 

large gradient Introduces an moclatad large spatial truncation error 

Since the method contains no direct numerical or artificial diffusion to 

damp out such truncatlon-error-lnduced oscillatory disturbances, they may 
become large enough to violate the requirement of positive static tempera- 

ture and terminate the calculation.    The most direct way of avoiding these 

problems Is to provide adequate spatial ^solution everywhere.    When mesh 

spacing Is uniform, this is not practical at large Reynolds number since 

the mesh spacing required to resolve the boundary layers and the expansion 

region near the body comer Is so small that the calculation becomes unreason- 

ab y costly In computer storage and time.    A second approach Is to use a vari- 

able mesh spacing, with fine spatial resolution used only wher^ required 

This requires some modification of the differencing presented in References 
2 and 4. 

c 

The variable mesh capability alone does not completely eliminate the 

problems associated with local inadequate spatial resolution at high Reynolds 
number, since one does not always know in advance where all of the problem 

areas will occur.    For instance, internal shocks such as the lip and wake 

shocks in the near wake cannot be precisely located a priori.    For this 

reason, a differencing technique introduced by Boris .nd Book^ which they 

term Flux-corrected Transport (FCT) has been incorporated into TACIT     This 

technique consists basically of introducing an artificial diffusion into 

the conservation equations which prevents overshoots which would othervise 

be generated by large local truncation errors.    Then, in a subsequent step, 

the effect of this artificial diffusion is removed identically everywhere 
exce£t at those few points where this would create a new extmmum.    At these 

points, the diffusive flux used In removing the effect of the artificial 

diffusion is limited in such a way that the new extremum is not formed. 

MMiwhdMakjtiiiitiaiaaMMIi  1     
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f while still satisfying overall conservation.   The details of the FCT algor- 
ithm Incorporated Into a variable mesh version of TACIT will be described 
In Section 3.2. 

3.1    Variable Spatial Mesh 

The terms whose difference approximations are affected by the use of 
a variable mesh are of the general form |- f and |-   g -^   .    when these 

oX dX dX 
terms are evaluated at meshpolnt 1 (corresponding to the spatial location 
x^) the difference approximations used are: 

if 
9X 

D Vi+ K-D-W. D+f i-1 

where, if f = g ah 
ax 

fi+l  =9i+l j(D- D+)hi+l  -Dh^D^. 

fi-l = 9i.l      -D'hi+1 ^Dh. -(D- D-)hi_1 

• I 

f1    =9i    j D"hH: ► (D+- "■) h, - D+I.,., 

where 

D   = 

xi+l - M 
(x1+l - xi-l)(xi - 

xi+l " x1-l 

xi-l ) 

(xi+l " xl)(xi " x- 

xi "■ xi-l 

,.l) 

(xi+l ■ xi-l)(xi+l - xi) 

»TtlillMII-"1^ ^'- m^imm*^^.. --- — —^.-.-^-^-.-   
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These general expressions replace those which are presented in References 

2 and 4 for the special case of uniform mesh spacing.    With these appro:ima- 

tions, inviscid terms retain their second order accuracy (truncation error 

of order (AX) ) while diffusion terms are functionally second order accurate 

provided AX changes sufficiently slowly from point to point. 

•*■' 

3.2    Flux-corrected Transport (FCf) 

The FCT algorithm improves the behavior of the finite difference solu- 

tion -in regions where gradients are large and changing rapidly.    In these 

regions, the truncation errors of the difference approximations become laroe. 

If the regions are thin (such as in a shock or thin shear layer) and the 

difference approximations are conservative, so that overall conservation 

across the thin region is maintained, these local truncation errors may not be 

of great concern.    They become important, however, if the errors propagate 

away from their region of origin in the form of wave-like disturbances and, 

from a practical standpoint, these errors may cause the calculation to fail 

if they produce oscillations of amplitude large enough to violate a physical 

limit to the range of a variable (i.e., T < 0 or P < 0).    The FCT algorithm 

adds a large artificial diffusive terms to the conservation equations to 

ensure that oscillatory overshoots of this type do not occur.    The effect 

of this diffusive term is then removed in a second calculation step.    In the 

absence of any "corrections", the net effect of these two steps is identical 

to that of a one step calculation in which the artificial diffusion term 

is omitted.    A "correction"  is introduced during the step which removes the 

diffusive term, but only if the effect of this operation is to introduce a 

new extremum in the diffused quantity.    If a correction is required, it is 

imposed in conservation form (that is, if the diffusive flux leaving a volume 

element is reduced as a result of the correction, the corresponding flux 

entering the adjacent element is correspondingly reduced to maintain overall 

conservation).    "Corrections" are required only in those local regions of 

very large spatial truncation error where Jie magnitude of the truncation 

error is not of great concern since one only expects correct overall conser- 

vation across such spatially unresolved regions.    The truncation errors 

associated with the corrections are therefore irrelevant as long as overall 

conservation is maintained.    Within this general framework describing the 

10 
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FCT algorithm, there are many alternative detailed formulations, of which 
the following has been Implemented In the TACIT code. 

3A  .   8uA . 

where 

(zwzi-i) r(rJ+'"rJ-') 

♦w/2 = 5H(Vl -z1.l)(A
it,  - V 

i 

01-l/2=2?t(2i+l - Zi.l)(Ai - A,,!) 

Vl/2 = St(rj+1 "^-IXA^ -A.) 

♦j-^-OT^l-^KAj-A^j 

The artificial diffusion terms on the right are differenced explicitly or 

implicitly, consistent with the other spatial difference approximations 

being used.    The artificial diffusion terms can be considered as approxima- 

tion of terms of the form ^ /D,  ^M+ ii- /rD   M\       Th* MA**    •   •*•      n 

and D2 are functions of position and are defined in such a way as to make 

the final difference approximation as simple as possible.    The diffusion 
terms are removed by means of the following step: 

A = A - ( Vl /2 •1/2 )At 

(21+1   -   Zi-1) 

( P.i+1/2 ~ *i-l/2 ) At 

(Vi ■ ^--i) 

where J is the value obtained when the diffusion tern was Included in the 

conservation equation.    Flux terms « are evaluated at time levels such that 

the terms are Identically removed in the absence of flux corrections.    The 
corrected flux terms * are evaluated as follows: 

n 

■>>,.■..-.„..■...—■.. -   — — ~'~~ 
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^1+1/2 s sgn *i+i/2 "^{o, mln (zHTz1-l)/n       Ä     v 
m—ri - Ai-ijs^ ♦1+1/2. 

U         I    vZi-H I Zi-l)   /, .     \ 
'♦1+1/21, 2Ät    (A1-+2 " Ai+l) s9n * i+1/2 

*1-l/2 s S9n *i-l/2 niax |0, m1n (Z1+l - z1-l) 
TÄt iVl - Ai.2Js9n vi_1/2. 

U I    vZH1 " Z1-l) /n A  \ '♦i-v2i«      2Zt—lAi+i - Ai)sgn * i-l «]) 
Vl/2 " ^^ Vl/2 max j0' min[2fr (^l - ^.^(Aj - A.^j sgn Vl/2. 

'♦d*i/2'' m (rj+i - rj.i)(A
j+2 - Vi) w ^1/2] | 

*J-l/2 :s S9n *j.l/2 ^ J0.min^(r. 
j+1 " rj-l)(AM " Aj.2)s9n *j. 1/2' 

'♦j-V2l» dkOj+l - rM)(A
j+l " Ajjsgn ♦j.,/^! 

where sgn * denotes "the sign of *".    These tests constrain the change in A 
due to the removal of the diffusion term In such a way that A can at most 
be made to equal the values at adjacent meshpolnts. but cannot overshoot 
these values.    Except In very local regions, these tests do not result in 
corrections, so that almost everywhere, ? ■ ♦. 

L 
]2 
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3.3   Calculation Sequence 

For purposes of Illustration, we define the following sequence of time 

steps: 

At, At, 

I      I     I      I      I 
,   Hn   ,    h/z   t tl l2 l3 

•»• 

Att 

t.    ^^t. •K+l 

At the start of the calculation, we assume thit initial conditions in P, U, 

V, and H are specified at t a t,.    Initial values of the turbulence properties T 
e and e are assumed known at t t,,«.    The calculation procedes as follows: 

1.    The mean flow equations are solved over the interval t, ■♦ t« 

using "odd-step" differencing (z derivatives differenced implic- 

itly at t«, r derivatives differenced explicitly   at t,, except 

for e and e which are evaluated at t-.J 

2. The turbulence equations are solved over the interval  ty,. * t,.^ 

using "odd-step" differencing (z derivatives differenced implicitly 

at tg.p. f derivatives differenced explicitly at t.,«, except for 

mean flow properties P, U, V, H which are evaluated at t2) 

3. The mean flow equations are solved over the interval tp ■»■ t* 

using "even-step" differencing (z derivatives differenced explicitly 

at t2, r derivatives differenced Implicitly at t,, except for e 

and e which are evaluated at t5y2 

4. The turbulence equations are solved over the Interval t5,2 * t7,2 

using "even-step" differencing (z derivatives differenced explicitly 

at t3/2, r derivatives differenced implicitly at t-.g, except for 

mean flow properties which ire evaluated at t-. 

The calculation continues, using steps 1-2 if K is odd, 3-4 if K is even. 

The generation, dissipation and pressure gradient terms in the turbulence 

equations, which do not Involve gradients of the turbulence variables, are 

13 
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eva ua ed as average values over the time interval (half Implicit, half 

explicit).    For At constant, the entire calculation sequence maintains 

second order accuracy In both spatial and ternuoral  increments.    The split 

t me interval for mean flc* and turbulence variables is used for comput- 

ational efficiency, since it permits the sequential solution of (1) the 

coupled mean flow equation, and then    (2) the coupled turbulence equations 

rather than requiring the simultaneous solution of all six coupled equations 

T e sequential solution Involves the soluti,., of large nu^ers of coupled 

algebraic equations of diagonal band form with a band width for step (1) of 

5 elements and a width for step (2) of 7 elements.    The simultaneous solu- 

tion of all equations requires a band width of 22 elements.    Since the 

Gauss-Ian elimination method used to solve the equations requires computing 

time proportional to m2 + 3m (where m Is the number of elements to the left 

or right of the diagonal, whichever is smaller), the sequential  solution 

requires only 25% more computing time than a laminar calculation, while the 
simultaneous solution would require 85% more. 

An additional advantage of the sequential method of solution arises in 

flow situations where the turbulence equations are dominated by generation 

dissipation and/or pressure gradient terms.    Under those conditions, the 

mean flow equations require very few iterations before the solution of the 

linearized equations converges to that of the non-linear finite difference 

equations.    The turbulence equations may require many more iterations, but 

In the sequential method, each iteration of the turbulence equations takes 

only 25% of the time of an iteration of the mean flow equations.    The net 
savings are very substantial. 

It should be noted, here, that the above situation (in which generation, 

dissipation and/or pressure gradient terms dominate) is analogous to chemi- 

cally reacting flow calculations in which a local equilibrium is being 

approached. I.e., the equations become stiff and hence unstable when solved 

using explicit difference methods unless extremely small time Increments are 

used.    The implicit method used here has no difficulr.ies under those condi- 

tlons. and. in fact, can obtain an exact "equilibrium" solution (in which 

convection and diffusion terms, including the time derivative term, are 

identically zero) if reasonably accurate initial estimate- are provided 
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4     HYPERSONIC NEAR WAKE CALCULATIONS 

The turbulence modeling and structure of the TAC!T code, as describee 

in Sections 2 and 3.3, combine to uncouple the caVulation of the turbulence 

properties from the calculation of the mean flow variables.    That is, the 

mean flow calculation for a turbulent    flow differs from that for a laminar 

flow only in the viscosity law and Prandtl number, and the turbulence con- 

tribution to total viscosity is constant over any given mean flow calcula- 

tion time interval.    This permits the turbulent mean flow calculation pro- 

cedure to be completely checked out independently of the turbulence model 

equations by simply specifying a laminar viscosity law. 

4.1    Laminar hypersonic Near Wake 

The test case used for preliminary calculations (using the uniform 

spatial mesh version of the code) was an 8 degree sharp cone with a shoulder 

rounded to a radius r/Dbase = 1/12, M, - 21,  Re^ = 2.5 x 105, with a cold 

wall  (^/H^ = .02).    The viscosity law used was u/vm = T/T^, with Pr = 1. 

The flow around the corner, from an initial 8 degree wall inclination to 

the point where the wall inclination is -29 degrees, was calculated using 

the steady state code of Reference 1. 

r 

This calculation could not be made to reach a steady state without 

encountering a state in which T < 0 in a local region associated with the 

wake of the outer edge of the boundary layer.    The problem is associated 

with the large spatial truncation errors generated in this region of large 

and poorly resolved gradients.    The initial boundary layer profiles at the 

body corner were then rescaled to make the boundary layer thicker by a 

factor of five to provide a less severe test case.    When problems still 

persisted, the program was rewritten to provide a variable spatial mesh. 

Using the mesh shown in Figure 1, behavior was considerably improved, but 

again T <   0 was eventually encountered in the wake of the outer edge of 

the boundary layer as it passes through the corner expansion fan.    The 

incorporation of the FCT algorithm finally eliminated this problem and 

a smooth approach to steady state was obtained. 
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The boundary conditions for this calculation were: 

a) left-hand boundary 

1) on base wall: u = v = 0, H = H, P from continuity 

2) above comer: u, v, H, \ specified 

b) upper boundary: outflow (u, v, H, P extrapolated) 

c) right-hand boundary; outflow 

d) lower (axis) boundary:    M . |t - |ä - Q, y - o. dr      dr     dr 

A map of the computed static pressure is presented in Figure 2.    At 

the outer (large r/D) edge of the domain, the expansion fan can be seen to 

have an anomalous structure.    This is due to an approximation used in spec- 

ifying the inflow boundary conditions above the body shoulder; i.e., the 

inviscid flow outside the boundary layer was taken to be a uniform flow 

corresponding to wall conditions for a Taylor-Maccoll  inviscid cone flow- 

field.    Since the Mach angle is smaller than the flow inclination angle 

in this high Mach number flow region, the disturbance is carried upward 

and actually leaves the domain through the upper boundary.    Unless the 

calculation Is carried much further downstream, where the outer streamlines 

are turned inwards by the expansion fan and the influence of Uns outer 

region finally becomes felt near the axis, the discrepancies in the outer 
region are of no consequence. 

With the thick initial boundary layer used in this test case, the lip 

shock does not appear ei a separately identifiable structure.    The lip-wake 

shock has its origin in the pressure gradients generated in the reclrcula- 

tlcn region, and is further strengthened by the increasing pressure in the 

near wake, to a point about 0.5 X/D downstream of the base wall.    At this 

point of maximum pressure, P/P«, « 3 at the centerline.    The favorable pres- 

sure gradient downstre?rn of this point rapidly weakens the wake shock. 

The corresponding static temperature map is shown in Figure 3.    Since 

the body wall  Is cold, the boundary layer temperature has a maximum value 

at a point well removed from the wall.    The decrease in temperature of the 

wake of this part of the boundary layer as It passes through the corner 
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expansion fan 1s evident in the figure.    The region of peak temperature 

reappears after crossing tne wake shock, but the peak is slowly eroded by 

diffusion to cooler surrounding gas at the same time the flow nearer the 

axis is being heated by dissipation.    At the downstream end of the domain, 

the static temperature has become almost uniform below the shock. 

A corresponding map of flow speed q/u^ is shown in Figure 4.    Separation 

occurs on the base wall slightly below the "corner".    Remembtring that a 

steady code was used to compute the flow around the rounded body shoulder 

to a point where the wall  inclination is -29 degrees (the estimated sei    a- 

tion point), this indicates that this esti    .ed Inclination angle was Loo 

small by several degrees.    The velocities in the recirculation region are 

quite small, due to the combination of large Re and thick boundary layer. 

The thin boundary layer on the base wall  is evident from the .01 velocity 
contour. 

S 

Figure 5 shows contours of total enthalpy. Again, the total enthalpy 

in the recirculation re ion remains quite small because of the combination 

of slow diffusion (large Re) and small gradients (thick boundary layer). 

The convergence of total enthalpy contours to the axis downstream of the 

wake stagnation point is due to a combination of the necking down or the 

streamlines due to the rapidly increasing axial mass flux near the axis, 
and the effects of diffusion and dissipation. 

4.2   Turbulent Near Wake 

A calculation has been initiated under turbulent flow conditions, cor- 

respording to an experimental investigation by Gran^10^.    The body is a 

sharp three degree half angle adiabatic cone with a rounded shoulder 
(r/Dcone = 1/12^ Mco = 7'56' RecoD = 1-"/ x lo6-    Tha inflow boundary conditions 
are obtained, as in the preceding laminar case, by performing a steady flow 

calculation expanding the boundary layer around the comer to a wall  inclin- 

ation of -28°.    The initial conditions for this calculation are obtained by 

starting with estimated profiles approximately two base diameters upstream 

of the shoulder and computing tha development of mean flow and turbulence 

properties along the body.    Comparison W1*H the measured velocity profile 
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T at the comer shows   acceptable agreement.    The initial values of the 

deoendent variables are specified arbitrarily, with the objective of main- 

taining co;?Dat1bnny with the boundary conditions throughout the calcul- 

ation, i.e., the flow must never reverse and come in through an outflow 

boundary and should preferably remain always supersonic with respect to 

this boundary.    Initial turbulence properties are specified to make the 

turbulence energy and the turbulent viscosity small (e ^ 10"6, u /y   «v. 0.5). 

The calculation has not yet been completed, but has proceeded far enough 

(^»/D % 0A) t0 observe ^ start of the recirculation region as a separa- 
tion bubble on the base wall just below the shoulder.    The wake of the 

boundary layer extends, at this point In the calculation, about 0.4 diameters 
downstream of the shoulder. 

The numerical methods outlined in this report perfonn well, with 

three ite ..s taken to Insure convergence and the results demonstrating 

good convergence of the rapidly changing turbulence variables after two 
iterations. 
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5.    CONaUSIONS 

The objective of this program has been to develop the methodology for 

performing calculations of the near wake behind a slender body in super- 

sonic flow.    The major technical problems are the development of turbulence 

model equations which adequately describe a supersonic turbulent flow, and 

the development of numerical methods for solving these equations.    A two 

equation model  of turbulence has been developed* which has been demonstrated 

to adequately predict those low and high speed turbulent flow experiments 

against which it has been tested.    Further testing of the model is continu- 
ing as part of a separate program. 

The calculation of the two-dimensional flowfield described by these 

two turbulence model equations and the four mean flow conservation equa- 

tions has been posed, in the present study, as a time-dependent problem. 

The alternating-direction implicit methods developed have been demonstrated 

on a variety of problems of varying complexity ranging from one-dimensional 

shocks to the final problem of interest.    The method has been shown to be 

especially suited to this problem because the temporal step size is not 

limited by the Courant criterion of explicit methods.    Specifically, this 
permits fine spatial resolution locally without a correspondingly small 

time step being required.    The implicit nature of the calculation also 

permits the description of a local equilibrium state of the turbulence 

properties, which can become difficult and time consuming when done explic- 

itly because the equations can then display an instability similar to that 

of the stiff condition encountered in chemically reacting flows. 

Results have been presented for a hypersonic laminar near wake and a 

turbulent calculation is well under way.    The detailed results of this 

final calculation will be presented in an addendum to this report, to be 
distributed at a later time. 

♦this work has been partially supported by ABMDA^ 
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