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SLENDER BODY THEORY FOR THREE~-DIMENSIONAL BOUNDARY LAYER

INDUCLT- POTENTIAL FLOWS-r

3 *
By Stanley G. Rubin*and Frank J. Mummolo
Polytechnic Institute of Brooklyn, Farmingdale, New York

ABSTRACT

The application of slender body theory for the evaluation of
three-dimensional bcundary layer induced surface crossflow and
streamwise velocites is considered. The method is applicable to
sub- and supersonic flows when small perturbation theory applaes,
and when the Reynolds number is large so that the thin boundary
layer approximation is valid. The resulting potential problem is,
in general, reduced to a two-dimensional consideration of the flow
over an expanding cylinder with porous boundary conditions. As

a model problem, the induced surface velocities are determined for

the constant density flow over a body with constant elliptical
cross—-section. The limiting solutions for a flat plate of finite
span and a near circular cross-section are obtained in a simple

analytic form. In the former case, within the limitations of

slender body theory, the results are in exact agr:ement with the

complete three-dimensional solution fcr this geometry.
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i. Introduccion

Three-dimensional boundary layer induced crossflow ana’vses,

TR RIS TR

in particular on surfaces with locally large or even infinite

T 2
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*
transverse curvature, belong to a class of problems for which the

S

current state-of-the-art is still inadequate. Only a limited group

R f

of analyses, for very specific geometries, is presently available.
These include the guarter plate investigations of Stewartson and
Howarth (1960) and Stewartson (1961), and the cruciform studies

of Rubin (1966), Pal and Rubin (1971) and Rubin and Grossman (1971).

One of the difficulties associated with the determination of

T TR PR UL VR PIRTY S SRy ML Sl T

boundary layer interactions of this type is the complexity of the

three-dimensional potential problem that arises when the displacement

SRR &) 2 S

induced flow field is to be evaluated. From this potential flow

solution, boundary layer induced streamwise velocities and cross-

Ay 34 T

flows are determined. With a systematic application of singular
perturbation methodology, the induced velocity distributions along
the surface become the necessary asymptotic matching conditions
for the crossflow boundary layer analysis, as well as for higher
order boundary layer considerations. Special care must be exercised
at points of large transverse curvature such as the edge or cornexr
intersection line, 1In these boundary regions, crossflow diffusion
is important even for the lowest order theory.

Since the crossflow and second-order boundary layer analyses

require, as asymptotic boundary conditions, only the potential

ke, RSO 3 LA SRR e P 36 K SRR TR ML o

velocities evaluated along the surface, tne slender body theory

of Munk, Jones and Ward (M-J-W), for many y=ars a powerful

*

i.e., when the local cross-sectional curvature multiplied by the lccal
boundary layer thickness is O(l) or larger.
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approximatior in ‘nviscid aerodynamic theory, is adapted here for
application to high Reynolds number viscous flows.

whop considering parailel flows over bodies with locally small
longitudinal curvature, the concepts of small perturbation theory
apply (Sears (1960)), The governing equations in terms of a
velocity potential ¢ reduce to the simplified linear Prandtl-

Glauert equation for sub- or supersonic flow;

2

B 0gg T Oyy t 0y, =0 (1)

where s denotes the stream direction, y and z the cross plane

directions (see, figure 1); 82=1-Mgo; M?® is the stream Mach number,

e ]

For iacempressible flow 2°=1 and (l) is exact.

For slender bodies with slowly varying cross-sectional areas,
the M-J-W theory specifies that in the vicinity of the surface, a
first approximation for (1) reduces to

%y+%z=0 (2)

so that the sclution of (1) is of the form

o(s,y,2) = By,z;s) +b_(s) (3)

where
b_(s) =& {8l 45(5_5) 41n _ ‘s %;;)-;s[ (Slax (M_<1) (42)
b (s) = &xisdyn £ S0=sTe) gy s (4b)

S(s) denotes the local cross-sectional area of a body of
length 4, see Ward (1955).

Therefore, the original three-dimensional potential problem
(1) is replaced by a much simpler two~dimensional problem (2) for
the induced flow near the surface. This remarkahle simplification
allows for the solution of a wide variety of aerodynamic problems

for which the general potential solution can only be represented
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by quadratures.

In view of the fact that it is precisely the surface velocities
that are required for evaluating the induced cross flow and higher
order boundary layers, the M-J-W procedure lends itself to the
evaluation of the boundary layer induced potential flow. A
complete discussion of this procedurs as well as application to an
elliptic cylinder is presented inthis paper. Consideration of
specific cross flow boundary layers as well as the general effects
of large transvecse curvature in boundary layer theory will be the

subject of future considerations.
2, Formulation

Consider the uniform flow over a cylindrical body of arbitrary
cross section at zero incidence.” Local body slopes are assumed
to be small so that the uniform flow is only slightly disturbed
by the presence of the body and small perturbation theory as
prescribed by (1) applies. Furthermore, variations in cross-sectional
area are also assumed to be small so that near the surface the
M-J-W theory with (2) and (3) applv for the inviscid potential
problem,

The Reynolds number Ra=Ua/v based on freestream values and
a typical body dimension a is assumed to be large so that a thin
boundary layer develops over the body. Therefore, the boundary
layer induced potential flow is also governed by (l) and in view

»£ the linearity of (1) and the small disturbance boundary conditions,

*The effects of small angies of attack or yaw, while nr % precluded
by the analysis, are not specifically considered in this pzper.
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Sears (1960), the viscous and geometric problems can be treated
independently to first-order in Re—'J~i and T, a characteristic
thickness ratio.

The geometric inviscid problem has been discussed in great
detail, see Ward (1955), so that we shall confine our remarks to
the boundary layer induced flow over cylinders of constant cross-
sectional area, 7=0. For these geometries, provided that the trans-
verse curvature of the cylinder is nowhere large, a Blasius boundary

%

layer with thickness §~s“ forms along the generators of the cylinder,
Cooke (1957). Regions with locally large or infinite transverse
curvature (boundary regions), or the flow near a blunted nose cap
attached to the cylinder, must be treated separately by local
singular perturbation analyses, see Rubin (1966) and Van Dyke (1964).
For the downstream flow considered here, the shape of the nose is
immaterial, see Seban and Bond (1351).

It should be emphasized that the method to be presented herein
requires only that viscous displacement effects are small, i.e., thin
boundary layers. The analysis is applicable to geometries with non-
constant cross-sections provided the longitudinal curvature is small,
+<<l. For these cases it is assumed that the boundary layer solu-
tion is determinable. For slender bodies the inviscid perturbation
streamwise velocity is of order t2®ln;. If we accept an error of
this order for the boundary layer formulation, the lowest-order

solution always reduces to the Blasius function.
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The surface boundary layer perturbs the outer potential flow
in much the same way as streamwise variations in body cross-sectional
area, The viscous displacement induces crossflows and higher order
streamwise velocities. When evaluated at the surface, these
velocities serve as asymptotic matching conditions for the boundary
layer determinaticns. The effective displacement body remains
slender, so that the M-J-W theory with (2-4) should apply near
the surface. S(s) can now be interpreted as the modified body
cross-section, taken to include the displacement boundary layer.

For a general slender body at zero incidence the familiar
inviscid M-J-W slender body formulation reduces to a two-dimensional
problem (2) for the flow over an expanding body. The boundary
condition applied at the surface relates the normal gradient of tle
potential function ¢ to the local streamwise bodv slope. For the
boundary layer induced potential flow, the slender bodv theory 1ilso
leads to a two-dimensional problem (2) for the £low over an
expanding body. The boundary values are obtained by asymptotic
matching to the inner boundary layer. For large Re this condition
is applied at the surface of the cylinder (see footnote on page 8).
In view of vhe linearity of this potential problem, the complete
solution can be obvained by superposition of the geometric and
viscous induced flows,

The details of the analysis ar= presented in the next section
where the incompressible viscous flow over a cylinder with constant

elliptic cross-section is considered. The complete solution 1is

= S A L St edis o, -




described and the axisymmetric and zero t)'ickness limits are
obtained. A particularly simple form of the solution results for
cross—sections that are nearly circular. The zero thickness limit
is compared with the thiee~dimensional solution obtained from
an extension of the quarter-plate analysis of Stewartson and

Howarth (1960).

3. Solution For an Elliptic Cylinder

Consider the incompressible flow over a cylinder of constant
elliptic cross—section. The generators of the cylinder are taken
parallel to the freestream with {>s >0 (figure 1l). The Reynolds
number based on the semi-major axis is large so that boundary layer
theory applies in the usual manner. It is assumed here that the
cransverse curvature of the crnss-section is small with respect
to the boundary layer thickness, although in a more general
consideration this :vidition may be violated locally*along discrete
generators. This would occur at the ends of a highly eccentric
elliptic cross-section or in a l.miting case at the edges of a
plate of zero thickness. These singular lines diffuse into what
are termed boundary regions and must be treated separately (see
Stewartson (1961) or Rubin (1966)). Tz lowest~order, however, the

viscous boundary regions do not affect the flow behavior in the

aijoining three-dimensional boundary layers or the outer inviscid
potential flow,
As stated previously, to lowest-order the boundary layer on

a constant area cylinder, downstream of a leading edge or nose

R

gL * . .
- In small local regions that are of zero thickness as v-0.

7
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region and away from boundary regions, is identical with the
constant pressure flat plate boundary layer. Transverse curvature
enters only in higher order approximations. This sclution, due

to Biasius, is well-known, Van Dyke (1964). It is sufficient to
note here that the viscous induced displacement velocity v directed
normal to the surface has the following asymptotic behavior for
large values of the boundary layer variable n=§(U/2Vs)%:

lim v(s,n) . 0.860

n—c U R;%

(3)

*
and the displacement thickness » 1is given Ly the “elation

2 = 1.725/Rs% (6)
where Rs=Us/V; U denotes the undisturbed stream and (9,@,s) are
the surface normal, azimuthal and streamwise cooxdinates,
respectively, defined in figure 1.
For large Reynolds numbers, RS>>1, the inviscid outer flow
is only slightly perturbed by the formation of the thin boundary
layer on the surface and therefore the solution for the incompressible
displacement induced potential flow can be determined from (..)

with Mm=0.

A far field velocity decay condition

8 AN AS i it A’iﬁi{’&%‘“ &

700 (7a)

applies at large distances from the body and a smooth match with
the inner boundary layer must be prescribed. This surface matching

condition is specified by

lim n . 7g(s,¥,4)=lim v/U ~ 0.860/Rs% * (7b)
y-0 e

When the largest cross-section dimension is of the ader of t,nc displacemcnt
thlckness, the boundary condition cannot be app?ied at y—O but only
at y—\ This point will be illustrated in a later example.

8
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In most cases the boundary condition (7b) can be imposed
directly on the surface §=0; however, the resulting three-~-dimensional
potential problem is still a formidable one. This is particularly
true with complex bodv cross-sections. To the authors' knowledge,
three-dimensional boundary iayer induced potential flows have been
calculated only in a few cases with simple geometries, e g., the
quarter-plate of Stewartson (196l1) and the cruciform
of Rubin (1966). 1In the former case only integrated surface
conditions were obtained,

In order to generate surface values for application in higher
order boundary iayer theory and to evaluate the induced surface
cross flow, the three-dimensional potential problem can be reduced

to a quasi-two-dimensional form with the M-J-W slender body

approximation. The displacement body prescribed by (6) describes a
sleander body, and the governing equation (2) with (3) and (4)
avuplies. As stated previously, S(s) denotes the cross-sectional

*
area of the body plus displacement thickness,

In general, the solution of (2) satisfying (7) can be
investigated with confcrmal mapping technigues. However, for the

elliptic ‘:ross~section considered here, it is convenient to trans-

form to an elliptic ccordinate frame in which tne general solution

is of the form E:
A , @ -ng
¢==ao(s)5+-co\s)4-2 an(s)e cosni {8)

n=1

*
It should be noted that with s'(s)~sp, the integral in (4a) is
divergent for semi-infinite bodies (4-») with p50; however, the
perturbation velocities depend on bo'(s) and are well-defined for
p>0.

9
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where (Z,8) are elliptic coordinates, figure 2, defined by

z=ccoshicos: (9a)
y=csinhZsing (9b)
r?=y® +2% ; u=tan ‘(y/z) (9¢)

3 . a4
$=1n(2) +5ln{le[(1- 57 )" +4(D) *sin?w]?
.2 2 2 1.
+ 17 l-(%g)coszwiﬁ(l— %3)2+4(§g)sinahfz)]%} (9d)
=1
and c®=a®-b?, e=c/a=(cosh§o) , where a and b are the semi-major
and minor axes, respectively, and & is the eccentricity.

The boundary condition (7b) becomes

. L 1 ng L ;
lim [c(cosh®z-cos?q)™?] %%(5,%:5)=(Q860/R12)(a/s)%= %éf
F=Z = (& S
= ao . (lo)
where the surface is denoted by the ellipse §=§O.
The coefficient a, are defined by
= L 28:  a.5)da
%0~ 2 f 3 (Sgr 3is)de (1la)
_=2¢7"% 7 ag, ..
a = nm 4, 3t =(Z s 2:8)cosn-dg (11b)

where %%(go,a,s) is determinecd frem €10).

The coefficient 2rfaO can be shown to represent the derivative of
the "effective" cross-sectional surface area of the ellipse denoted
here as S'(s).+ This result is exact when the boundary condition
(7b) is satisfied at the displacement surface and in cartain
limiting cases where the boundary condition is transferred to the
surface (10), e.g., a circular cross saction or flat plate. 1In

general, when the boundary condition is transferred vo the surface,

+ L, . :
This result can easily he proven by a mass conservation argument.

10
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*
as given by (10), a_ differs from S’(s) by a term of order A 2.
This difference is negligible in the present analysis but would
reappear if higher order solutions for the outer inviscid flow

were considered. Therefore, the surface area terms S’ (s) in (4)

are represented by
2m *

S’(s)=2nao={lim I c(cosha§~cosae)%d6 }gf; (12)
F=~E 0O
i)
or
31 dA*
! -_ a— —
S’(s)=4a E(z,e) i (12a)

where E is a complete elliptic integral of the second kind, defined
in Gradshteyn and Ryzhik (1965), p. 909.
Some limiting cases are

(1) For a circle of cadius a: c¢-0, ccoshgo~a, so that
L3

Ve) = da_
S’ (s)=27a 5 (12b)

*
(2) For a circle of radius a=0(a ): c¢c-0,

*
lim ccoshg=a+s and (12) gives

g8,

(12c)

*
*
S’/ (s)=2T(a+4 ) ds

ds

This case is not physically meaningful, as the ratio a/A*=O(1)
arv; the Blasius solution is no longer appropriate; however, it
provides an interesting limit when a-0 because the body is then
reduced to a paraboloid of revolution. The exact solution for this
problem was given by Van Dvke (1964).

(3) For a flat plate of span 2a: b-0, c-a, go“O and
(12a) gives N
d

T lm) =4 2B
S’ (2) =4a ds (12d)

11
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The coefficient co(s) in (8) is defined so that the expressions
(4) obtained bv wWard (1955) are applicable in that form, see

Kahane and Solarski (1953).

c
co(s) = ao(s) in 3 (12e)

Therefore, with (4), (10-12e),and notina tha* odd coefficients a_

vanish, the solution for © hecomes
ey = 8/(s) ... ¢ -
v(s,&,8) = >n (3+1n 2)+bo(.)+

-21’1(§_Eo) { /2

- ® i
l.7ic % = —-i (coshzgo—cosae)zcos2n€de cos2né (13)
TR_? n=1 n o
s
The induced velocities at the surface of the ellipse §=§o are
w_ _ . _=0.860 a 3/2 _a_ 1) uolp (T
U % T g (9 Uin(geg) (evi-e®)2fr (G o)+
a
Ti/2
-z EQ%%Eﬁ{r V1-2%cos®3 cos2n:dz (] (14a)
n=1
o
%T = =(l-e®cos® %) 2@9 =
% K ﬂ'/2 1,
3‘43;3) o s;“?‘“f L [ (1-e®cos®3) ‘con2nads  (14b)
ﬂRaz n=1 (l-e“cos®6)™ ‘s

Expressions (lia) and (14b) represent the boundary layer induced
velocities evaluated at the surface of a bodw having a constant
elliptic cross-section. The crossflow poundary layer and first
order correction to the streamwise Blasius profile require these
values as outer matching cornditions. Previous boundary layer
analyses of transverse curvature effects on cylinders of circular

and more general cross-section have erronecusly neglected these

12
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displacement induced boundary conditions, e..y., Cooke (1957),

ek orgh,

Seban and Bond (1951). A distussion of the errors arising from

the neglect of these displacement effects for the case vf a circular

DAL WG I AR g L Mo

cylinder was given by Van Dyke (197.), The complete boundary

layer analysis is currently under investigation. For the remainder
of the present paper, the solutions (14) for the induced velocities

will be discussed for different eccentricities; the limiting circular

YR T D R LA K ¢

and flat plate results will be obtained for comparison with known

exact solutions. This will establish the validity of the M-J-W

rd M G e P b

theory to boundary layer problems and serve as a model for examinations

2854

A

of more complex cross-sections wnere exact three--dimensior.-~1l solu-
tions are not presently available.

4. Flat Plate of Finite Span

A Sk e £ 2l

The flat plate represents the simplest geometry for which

displacement induced crossflows appear. With the formulation

SNV AR

presented herein, the surface velocities can be evaluated from the
general solution of section 3 by a direct limiting process §O~0,
c~a. The solution for this geometry is also ¢asily obtainable by
the appropriate application of Green's functions: two-dimensional
for the slender 5ody theory discussed here and three-dim- :s.onal for

the classical formulation. This latter approach has been considered

Wy

by Stewartson and Howarth (1960) for a quarter--infinite flat plate

and is readily extended to the f:nite-span case.
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A. Three-bDimensional Solution

Consider a plate of span 2a as shown in figure 3. Away
from the side edos r~undary regions, a Blasius boundary layer forms
on the plate and the three-dimensional displacement induced

potential problem kecomes

S vy 4
: Py, 2\
with vp~0 as (y"+z®)7 - oo
-
and (cpy)y=o=0.86OURs sgny; |zi<a, s0
and (coy)y=0 = 0 elsewhere.

Following Stewartson and Howarth (1960), the solution is given

by
o) a
0. [ [ c
~2mp(s,y,2z) = ——§§§9 I gﬁ J ds T
5. o X? ea [(5-2)%+y®+(r-s)?7?
it follows that
@ a
o= 20.860 jv f dX T (§-z)dg
j 2 “ o o
v m U o X? '-a ’(?—z)-+y3+(x—s)°]3/2
__ oo a
u _ -0.860 JT (X=s)dX J dg
U 27 U s X -a F(i-z)?+y2+(x—s)2"3/2

On the plate y=0, with a/s<<l, the crossflow velocity takes the form

A _ -0.860 a-z
@y=0 = =% o9 [553) (15a)

U5

Along the plate centerline, y=0, 2=0 and with a/s<<l, the streamwise
perturbation becomes
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~0.8
& oey = —ﬁ;{ﬂe(log 24 1)) (15b)

while at the plate edge we obtain

(g)y=0 = ‘ﬁgggg(g 3/2 [Log(—*) + 1] (15¢)
z=a a

B. Flat Plate as the Limit of the Elliptic Cylinder with
M-J-W Theory

This limit can be obtained from (14) by setting Eo=0
and noting that from (12d) that

»*
2a
i

F

_8'(s

a,(s) = s 21

Q.

The streamwise perturbation velocity (14a), on the plate centerline

8=1/2 becomes

1 _ 82,y et ,
(U)y=0=z— 2.[ln 2 :z& n(4n°—1)] * Byl (s)
_ -2.860
= S% = )[1 og = + 1] (16)

and at the edge (l5c¢) is recovered., See Gradshteyn and Ryzhik (1965),
p. 46.
The crossflow on the plate is given by

sin2nb

— -S'
( ) 4n2-1

U'y=0 ~ Ta|sin®|

3
I, os

*Here bé(s) denotes the derivative of (4a) in the iimit 4-00.

15
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It is easily shown that .

4 ® sin2nf _ a-2
i n- a+z

vvhere from (9b) z=acosg. Therefore

W - =0.860 a-z 1 ;
(5)y=0 % log (333) (17) 3

S 2

These results (16) ana (17) are in exact agreement with b

)

three-dimensional solutions (15).

C. M~J-W Theory for the Flat Plate. Direct Formulation

AT W15 W o s

The slender body solution for the induced velocities on

a flat plate can also be determined by direct application of a
two~-dimensional 3reen's function., With the governing eguation

A
for o(y,2:s)
A A _
Yyt $p2” O
and the boundary conditicns

98 ~ 0 as '(y?’-&zz)l‘i -

A 0.860

(Blymo = % sy lz] <a
S

(@y)y=0 = 0 lz] > a

2md = S22 [ log([(X-2) “+y? Jox
R_* “~-a

Therefore,

~-0.860 -z) 24y 2
% =T 109[12'291;3Qr-] (18)

(a+2) “+y

16
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and

-0.860 a -] 3 -1 a
= (2) [Log(a?+y?) 21~ § tan ;] + b/ (s) (19)

S .
On the surface y=0 the solutions (15) are recovered for u/U and

w/U respectively.

5. Quasi-axisymmetric Flow |
For geometries where the cross-sections are close to circular
(e<<l), the leading terms in an expansion of (l14) for small e take

a particularly simple form. We¢ find that

-0. 430 3/2

5 ‘mumm.;w,.wg;nm;ﬂ:.:mmamnﬂ.wmm;pmﬁm‘w:m&éw;ﬁf

(E)g § R % [(1’ (l———)ln(——)+2 +Erc0529]+0(e4) (18a)
and
(ﬁ) = _Q_g%é(a) e®sin26 + 0(e*) (18b)

where from (12)

1.72ma,, e° ;
’ = = y—— 4 3
s’ (s) » (1-) + o(e*) 4
s 3
The re].at:xorvlr/2 0 for m<n
2m Inx dx = L ( m ) for m>n e
f; cos X cosan - 2+l Tmen oF M2 {

WRENIN LT 7 a0

has been required in obtaining (18) and is useful if additional

terms in the expansion are desired. The series in (14) reduce to

n terms for the e2n coefficient. The expressions (18) are presented
here as limiting velocities, as e-0, for the general solutions with
elliptic cross-section to be discussed in the following section.

The axisymmetric solutions (e=0) have previously been obtained by

Van Dyke (1970), who also discussed the second order boundary layer

and corrected an earlier paper by Seban and Bond (1951).
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Finally, the special limiting case of a needle a-0, e-.0 leads

to the flow over a slender péraboloid of revolution., While the
Blasius boundary layer is incorrect in this limit, (see Glauert

and Lighthill (1955)), the exact solution for a paraboloid is

known and provides an additional check on the theory, Van Dyke (1964).
With the cylindrical radius defined by

R (s) = (2e:"S)li

vVan Dyke has shown that

€2
¢ = =5 log(x?/2¢%s)
and
G = -e/is (19)

Fron (4) and (l14a), with (12b), we obtain

-1

u -— = -
G = Ba(s) = -(0.560) 2R_ (20)

With the cylindrical radius set equal to the effective body radius
or displacement thickness A* from (6), we find that (19) and (20)

are identical.

6. Elliptic Cylinder

The‘flow properties at the surface of a cylinder of elliptic
cross-section with arbitrary eccentricity e have been determined
by numerical evaluation of an appropriate number of terms in the
series solutions (14). The integrals in (14) <an be expressed hy
means of recursion relations in terms of elliptic integrais of the
first and second kind, see Gradshteyn and Ryzhik (1965). It was
more convenient to evaluate the integrals directly by numerical inte-

gration. A three -point Simpson's rule having a nominal error of order h*

18
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was used;h represents the grid apacing. As n increases, the integrand
exhibits rapid oscillations and an increased number of mesh points
are required, 1In order to maintain a fixed error, twelve intervals
were always located between the zeros of cos2n§ so that 24N+l points
result for n=N,

The number of terms N required to achieve a specified degree
of accuracy increases sharply as e-l. The summation was terminated
when percentage differences in the sum S and S+5 terms were less
than 10—10. The singular behavior in the flat plate limit and
in particular near the side edge is not unexpected. For e=1 a
logarithmic singularity in the crossflow velocity (14b) uppears
at the edge, while for e<l, w-0. Also, the asymptotic form of the
integrals in (14) shows that e=1 is a singular limit, since

/2 - .
’523 <l
lim j -e®cos?y cos2nfdf ~ ofpn " for any finite M>0 (e<l)

o U ~(4n%-1)-1 for e=1
The asymptotic form for e=1 is also obvious from the exact
solution (15a).

The numerical solutions for the c.ossflow velocity are

kg

depicted in figure 4 and confirm the asymptotic prediccions. Note

the large increase in the maximum number of terms N required for

u@;‘-w',%"»f"”"ﬁ‘ o
S ,

the series solution as e-l. For e=0.999, the solution closely
follows the flat plate logarithmic behavior before falling rapidly
near the edge. The solution exhibits boundary layer behavior near
the edge, with the peak crossflow veilority approaching the edge

as e-l. The maximum number of terms required for the series

summation generally occurs at a location corresponding to the peak

e R T U 7.~
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w value. A boundary region forms near the edge and the three-
dimensional viscous flow must-be reevaluated.

Similar behavior for the streamwise velocity perturbation
is shown in figure 5. While the streamwise velocity distribution
is continuous as e~l, the velocity gradient alsc exhibits a
logarithmic singularity. Also depicted on the figures 4 and 5 are
solutions for several values of e between zero and one. The
simple quasi-axisymmetric expansions for e<<l are given by (18a)
and (18b) .nd are shown in figures ¢ and 7. The one term expansions

agree quite well with the numerical solutions for e<0.25.
7. Summary

When one attempts to analyze the perturbation velocities, and
in particular the cross flows, induced by thin boundary layers on
thiee-dimensional ¢eoometries, a difficult potential problem results.
To date, there are only a minimum number of such exact solutions
available. When considering the flow over thin bodies, it ‘' as
keen shown herein that slender body theory, for many years a
rowerful tcol of classical aerodynamics, can be adapted for the
determination of boundary layer induced flows. In essence, the
potential problem is reduced to the consideration of a two-dimensional
flow over an expanding body with porous boundary conditions. This
results in a considerable simplification.

The solutions are valid ncar the bhody surface and provide
insight into the types of crossflows generated by three-dimensional

20



R e S RS R R IR A S Ten U A B BT S0 fisls St e

S SRA VRS R A R N T s SN G A I IR A B AT RRAI N T g anee L TR L v

e e S 3 MR sy ceae o e e -

configurations, as well as supplying asymptotic matching conditions
for higher-order boundary layer theory. These displar~ement
induced velocily boundary conditions have generally been neglected
in previous perturbation analyses dealing with tiransverse curvature
effects on boundary layer behavior.

The constant density flow over a cylinder of
constant elliptical cross—section has been considered. Complete
solutions have been obtained in the form of a Fourier ser-es.
For the limiting cases of a finite span flat plate or near circular
geometry, simplified analytic forms have been obtained. Tbhe
surface solutions for the plate are in perfect agreemeni with the
exact three-dimensional result obtained by a simple extension of

the method of Stewzrtson and Howarth (1960).

4
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<
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In the general case, a peak cross flow velocity is predicted.

The location of this maximum moves toward the side region of the

T Ty

15

ellipse as the eccentricity e-l. 1In this limit, the crossflow

exhibits a logarithmic behavior, corresponding to the flat plate
solutions, up to the peak location and then falls rapidly to zero

at the symmetry line. For e-l, the application of a Blasius
boundary condition near the edge is incorrect. as transverse
curvatvre is quite large there. Further study will have to consider

the side edge flow more exactly in order to determine the pr:cise

T TN BITRPU PRV R B F ol NERL LRSS, e i RN 2 i M PR LI

N

nature of the developing bourdary region where curvature and cross-

diffusion effects become important.
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