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SLENDER BODY TIORY FOR TIHREE-DIMENSIONAL BOUNDARY LAYER

INDUCED- POTENTIAL FLOWS

By Stanley G. Rubin and Frank J. Mummolo*
Polytechnic Institute of Brooklyn, Farmingdale, New York

ABSTRACT

The application of slender body theory for the evaluation of

three-dimensional boundary layer induced surface crossflow and

streamwise velocites is considered. The method is applicable to

sub- and supersonic flows when small perturbation theory appl)es,

and when the Reynolds number is large so that the thin boundary

layer approximation is valid. The resulting potential problem is,

in general, reduced to a two-dimensional consideration of the flow

over an expanding cylinder with porous boundary conditions. As

a model problem, the induced surface velocities are determined for

the constant density flow over a body with constant elliptical

cross-section. The limiting solutions for a flat plate of finite

span and a near circular cross-section are obtained in a simple

analytic form. In the former case, within the limitations of

slender body theory, the results are in exact agr-ement with the

complete three-dimensional. solution for this geometry.
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1. Introduction

Three-dimensional boundary layer induced crossflow ana'yses,

in particular on surfaces with locally large or even infinite

transverse curvature, belong to a class of problems for which the

current state-of-the-art is still inadequate. Only a limited qrnup

of analyses, for very specific geometries, is presently available.

These include the quarter plate investigations of Stewartson and

Howarth (1960) and Stewartson (1961), and the cruciform studies

of Rubin (1966), Pal and Rubin (1971) and Rubin and Grossman (1971).

One of the difficulties associated with the determination of

boundary layer interactions of this type is the complexity of the

three-dimensional potential problem that arises when the displacement

induced flow field is to be evaluated. From this potential flow

solution, boundary layer induced streamwise velocities and cross-

flows are determined. With a systematic application of singular

perturbation methodology, the induced velocity distributions along

the surface become the necessary asymptotic matching conditions

for the crossflow boundary layer analysis, as well as for higher

order boundary layer considerations. Special care must be exercised

at points of large transverse curvature such as the edge or corner

intersection line. In these boundary regions, crossflow diffusion

is important even for the lowest order theory.

Since the crossflow and second-order boundary layer analyses

require, as asymptotic boundary conditions, only the potential

velocities evaluated along the surface, the slender body theory

of Munk, Jones and Ward (M-J-W), for many years a powerful

i.e., when the local cross-sEctional curvature multiplied by the iccall
boundary layer thickness is 0(i) or larger.
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approximatior in 4nviscid aerodynamic theory, is adapted here for

application to high Reynolds number viscous flows.

',whor considering paraile'l flows over bodies with locally small

longitudinal curvature, the concepts of small perturbation theory

apply (Sears (1960)), The governing equations in teizms of a

velocity potential cp reduce to the simplified linear Prandtl-

Glauert equation for sub- or supersonic flow;

PSss + yy + Tzz = 0 (1)

where s denotes the stream direction, y and z the cross plane

directions (see, figure 1); R2=l-M2 ; MS is the stream Mach number.

For incompressible flow p =I and (1) is exact.

For slender bodies with slowly varying cross-sectional areas,

the M-J-W theory specifies that in the vicinity of the surface, a

first approximation for (1) reduces to

'Pyy + Ozz 0 (2)

so that the solution of (1) is of the form

CP(s,y,z) =C (y,z;s) +bo (s) (3)

where

( seS B 1 I S x)S (M< ) (4a)
bc(S) =4 in 4s(t-s) 4n I s-x)

o 2 ss 2rTT s-x

S(s) denotes the local cross-sectional area of a body of 4

length t, see Ward (1955).

Therefore, the original three-dimensional potential problem

(1) is replaced by a much simpler two-dimensional problem (2) for

the induced flow near the surface. This remarkable simplification

allows for the solution of a wide variety of aerodynamic problems

for which the general potential solution can only be represented

3



by quadratures.

In view of the fact that' it is precisely the surface velocities

that are required for evaluat'ng the induced cross flow and higher

order boundary layers, the M-J-W procedure lends itself to the

evaluation of the boundary layer induced potential flow. A

complete discussion of this procedure as well as application to an

elliptic cylinder is presented in this paper. Consideration of

specific cross flow boundary layers as well as the general effects

of large transverse curvature in boundary layer theory will be the

subject of future considerations.

2. Formulation

Consider the uniform flow over a cylindrical body of arbitrary

cross section at zero incidence. Local body slopes are assumed

to be small so that the uniform flow is only slightly disturbed

by the presence of the body and small perturbation theory as

prescribed by (1) applies. Furthermore, variations in cross-sectional

area are also assumed to be small so that near the surfa%;e the

M-J-W theory with (2) and (3) apply for the inviscid potential

problem.

The Reynolds number R =Ua/v based on freestream values anda

a typical body dimension a is assumed to be large so that a thin

boundary layer develops over the body. Therefore, the boundary

layer induced potential flow is also governed by (I) and in view

,f the linearity of (1) and the small disturbance boundary conditions,

The effects of small angles of attack or yaw, while n t precluded
by the analysis, are not specifically considered in this ppper.
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Sears (1960), the viscous and geometric problems can be treated

independently to first-order in Re and T, a characteristic

thickness ratio.

The geometric inviscid problem has been discussed in great

detail, see Ward (1955), so that we shall confine our remarks to

the boundary layer induced flow over cylinders of constant cross-

sectional area, T=0. For these geometries, provided that the trans-
verse curvature of the cylinder is nowhere large, a Blasius boundary

layer with thickness 6-s forms along the generators of the cylinder,

Cooke (1957). Regions with locally large or infinite transverse

curvature (boundary regions), or the flow near a blunted nose cap

attached to the cylinder, must be treated separately by local

singular perturbation analyses, see Rubin (1966) and Van Dyke (1964).

For the downstream flow considered here, the shape of the nose is

immaterial, see Seban and Bond (1951).

-* It should be emphasized that the method to be presented herein

requires only that viscous displacement effects are small, i.e., thin

boundary layers. The analysis is applicable to geometries with non-

constant cross-sections provided the longitudinal curvature is small,

T<<l. For these cases it is assumed that the boundary layer solu-

tion is determinable. For slender bodies the inviscid perturbation

streamwise velocity is of order T
2 inT. If we accept an error of

this order for the boundary layer formulation, the lowest-order

solution always reduces to the Blasius function.
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The surface boundary layer perturbs the outer potential flow

in much the same way as streamwise variations in body cross-sectional

area, The viscous displacement induces crossflows and higher order

streamwise velocities. When evaluated at the surface, these

velocities serve as asymptotic matching conditions for the boundary

layer determinations. The effective displacement body remains

slender, so that the M-J-W theory with (2-4) should apply near

the surface. S(s) can now be interpreted as the modified body

cross-section, taken to include the displacement boundary layer.

For a general slender body at zero incidence the familiar

inviscid M-J-W slender body formulation reduces to a two-dimensional

problem (2) for the flow over an expanding body. The boundary

condition applied at the surface relates the normal gradient of t-

potential function cp to the local streamwise body slope. For the

boundary layer induced potential flow, the slender body theory 1iso

leads to a two-dimensional problem (2) for the flDw over an

expanding body. The boundary values are obtained by asymptotic

matching to the inner boundary layer. For large Re this condition

is applied at the surface of the cylinder (see footnote on page 8).

In view of xhe linearity of this potential problem, the complete

solution can be obtained by superposition of the geometric and

viscous induced flows.

The details of the analysis ai presented in the next section

where the incompressible viscous flow over a cylinder 'ith constant

elliptic cross-section is considered. The complete solution is

6



described and the axisymmetric and zero t1.ickness liv.its are

obtained. A particularly simple form of the solution results for

cross-sections that are nearly circular. The zero thickness limit

is compared with the th3.ee-dimensional solution obtained from

an extension of the quarter-plate analysis of Stewartson and

-Howarth (1960).

3. Solution For An Elliptic Cylinder

Consider the incompressible flow over a cylinder of constant

elliptic cross-section. The generators of the cylinder are taken

parallel to the freestream with t,>s >0 (figure 1). The Reynolds

number based on the semi-major axis is large so that boundary layer

theory applies in the usual manner. It is assumed here that the

cransverse curvature of the crnss-section is small with respect

to the boundary layer thicKness, although in a more gene:al

consideration this :r,;,dition may be violated loc7uly along discrete

generators. Thij would occur at the ends of a highly eccentric

elliptic cross-section or in a limiting case at the edges of a

plate of zero thickness. These singular lines diffuse into what j
are termed boundary regions and must be treated separately (see

Stewartson (1961) or Rubin (1966)). -2i lowest-order, however, the

viscous boundary regions do not affect the flow behavior in the

ajoining three-dimensional boundary layers or the outer inviscid

potential flow.

As stated previously, to lowest-order the boundary layer on

a constant area cylinder, downstream of a leading edge or nose

In small local recions that are of zero thickness as v'0 .
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region and away from boundary regions, is identical with the

constant pressure flat plate boundary layer. Transverse curvature

enters only in higher order approximations. This solution, due

to Blasius, is well-known, Van Dyke (1964). it is sufficient to

note here that the viscous induced displacement velocity v directed

normal to the surface has the following asymptotic behavior for

large values of the boundary layer variable -='A(U/2;s) :

lim v(s,-) 0.860 (5)'n-C U R s

and the displacement thickness p, is given 'iy the -,elation

= l.72s/R 2 (6)s

where Rs=Us/v; U denotes the undisturbed stream and (A',L,s) are

the surface normal, azimuthal and streamwise coordinates,

respectively, defined in figure 1.

For large Reynolds numbers, R >>l, the inviscid outer flow
5

is only slightly perturbed by the formation of the thin boundary

layer on the surface and therefore the solution for the incompressible

displacement induced potential flow can be determined from (?.)

with M =0.CO

A far field velocity decay condition

7Z.0 (7a)

applies at large distances from the body and a smooth match with

the inner boundary layer must be prescribed. This surface matching

condition is specified by

lim n .V-CC(s,§ i)=lim v/U 0.860/R *(7b)
S -0

When the largest cross-section dimension is of the cader of the displacemcnt-
thickness, the boundary condition cannot be applied at ' =O, but only
at =. This point will be illustrated in a later example.

8



NXM

In most cases the boundary condition (7b) can be imposed

Adirectly on the surface y=O; however, the resulting three-dimensional

potential problem is still a formidable one. This is particularly

true with complex body cross-sections. To the authors' knowledge,

three-dimensional boundary layer induced potential flows have been

calculated only in a few cases with simple geometries, e g., the

quarter-plate of Stewartson (1961) an the cruciform

of Rubin (1966). In the former case only integrated surface

conditions were obtained.

In order to generate surface values for application in higher

order boundary iayel theory and to evaluate the induced surface

cross flow, the three-dimensional potential problem can be reduced

to a quasi-two-dimensional form with the M-J-W slender body

approximation. The displacement body prescribed by (6) describes a

sleiader body, and the governing equation (2) with (3) and (4)

Applies. As stated previously, S(s) denotes the cross-sectional•*

area of the body plus displacement thickness.

In general, the solution of (2) satisfying (7) can be

investigated with confcrmal mapping techniques. However, for the

elliptic "ross-section considered here, it is convenient to trans-

form to an elliptic ccordinate frame in which tne general solution

is of the form

C= a (S) F + c s) + Z a (s)e-cosn (8)

It should be noted that with S'(s)-s p , the integral in (4a) is
divergent for semi-infinite bodies (t-) with p>O; however, the
perturbation velocities depend on b '(s) and are well-defined for
p>0.o

9
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where ( ,e) are elliptic coordinates, figure 2, defined by

z=ccosh 7cos,; (9a)

y=csinh =sin 9 (9b)

r 2 =y 2 +z 2  ; u=tan (y/z) (9c)

=In~r + n 1nl+ (l-r--2 +4 ()Isinl,.

l(r)c2 +{(l- )+ 4 (--sin2 ) 9(d)
rA r r

and ca=al-bl , e=c/a=(cosh o) , where a and b are the semi-major
0

and minor axes, respectively, and e is the eccentricity.

The boundary condition (7b) becomes

lim [c(cosh'=-cos') (,9; s)=(0.860/Ra ) (a/s) - dA*

0 (10)
where the surface is denoted by the ellipse

The coefficient a are defined by

a2= (Co' ; s ) d  (Ila)
o 2 -

-2Pe
a 2n-n J F( : ; s)cosn 1 d@ (llb)an= n- J o

where aM(o 9,s) is determined fzin (10).
:

The coefficient 2ra can be shown to represent the derivative of
o

the "effective" cross-sectional surface area of the ellipse denoted

here as S'(s). + This result is exact when the boundary condition

(7b) is satisfied at the displacement surface and in certain

limiting cases where the boundary condition is transferred to the

surface (10), e.g., a circular cross section or flat plate. In

general, when the boundary condition is transferred to the surface,

This result can easily be proven by a mass conservation argument.

10 I



as given by (10), a differs from S'(s) by a term of order A* 2 .

This difference is negligible in the present analysis but would

reappear if higher ord er solutions for the outer inviscid flow

were considered. Therefore, the surface area terms S'(s) in (4)

are represented by
2 *

S'(s)=2rra =lin c(cosh2 -cos e) do 1- (12)
0 fJd0

or

TT dA
S'(s)=4a E(, e) d- (12a)

2 ds

where E is a complete elliptic integral of the second kind, defined

in Gradshteyn and Ryzhik (1965), p. 909.

Some limiting cases are

(1) For a circle of cadius a: c-0, ccosh -a, so that
* 0

S'(s)=2ra dA (12b)
ds

(2) For a circle of radius a=O(A ): c-0,

lim ccosh.-a+, and (12) gives

0*
~* __

S'(s)=2r(a+4 ) (12c)
ds

This case is not physically meaningful, as the ratio a/A =0(1)

an, the Blasius solution is no longer appropriate; however, it

provides an interesting limit when a-O because the body is then

reduced to a paraboloid of revolution. The exact solution for this

problem was aiven by Van Dvke (1964).

(3) For a flat plate of span 2a: b-0, c-a, o-0 and

(12a) gives *

S'(s) =4a d(12d)
is

11



The coefficient c (s) in (8) is defined so that the expressions0

(4) obtained by Ward (1955) are applicable in that form, see

Kahane and Solarski (1953).

c (s) = a (s) in (12e)
o o 2

Therefore, with (4), (10-12e),and noting that odd coefficients a
n

vanish, the solution for o becomes

Cp(s' ,e) = S'(s) (, +ln !'~ ~ I ,T 2) 0b s

-1.72c ce 2 no(e0-o) /2
h9-n f (COSlI 2  -cos 2 6)- cos2nEdG cos2nG (13)2 n=l 0

s

The induced velocities at the surface of the ellipse F=o are
0

u -0.860 (a)3/2 2

U ' 52 S [ In os l,/ - ). 2 (!, )
a

-C ccs2n9 /2C/l-eacos e cos2n-d23 (14a)
n=l n 0

w (l1e2cos2 e) 8-
U a e

2 7/2
3.44 a sin2n (1-ecos3) cor2n~d (14b)

R n=1 (l-eecos2O) o

Expressions (14a) and (14b) represent the boundary layer induced

velocities evaluated at the surface of a body having a constant

elliptic cross-section. The crossflow boundary layer and first

order correction to the streamwise Blasius profile require these

values as outer matching conditions. Previous boundary layer

analyses of transverse curvature effects on cylinders of circular

and more general cross-section have erroneously neglected these

12



displacement induced boundary conditions, e.q., Cooke (1957),

Seban and Bond (195].). A discussion of the errors arising from

the neglect of these displacement effects for the case of a circular

cylinder was given by Van Dyke (197.). The complete boundary

layer analysis is currently under investigation. For the remainder

of the present paper, the solutions (14) for the induced velocities

will be discussed for different eccentricities; the limiting circular

and flat plate results will be obtained for comparison with known

exact solutions. This will establish the validity of the M-J-W

theory to boundary layer problems and serve as a model for examinations

of more complex cross-sections where exact three.-dimensior.l solu-

tions are not presently available.

4. Flat Plate of Finite Span

The flat plate represents the simplest geometry for which

displacement induced crossflows appear. With the formulation

presented herein, the surface velocities can be evaluated from the

general so.ution of section 3 by a direct limiting process -0,
0

c-a. The solution for this geometry is also easily obtainable by

the appropriate application of Green's functins: two-dimensional

*for the slender body theory discussed here and three-dimo,,s onal for

the classical formulation. This latter approach has been considered

by Stewartson and Howarth (1960) for a quarter-infinite flat plate

-k and is readily extended to the f:nite-span case.

13
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A. Three-Dimensional Solution

Consider a plate of span 2a as shown in figure 3. Away

from the side edao L--,undary regions, a Blasius boundary layer forms

on the plate and the three-dimensional displacement induced

potential problem becomes

Ss+  yy zz

with vcP-0 as (y'+z2 ) 2 c

and (CPy)y= 0=0.860UR 
2 sgny; IzI<a, s>0

and (qy)y=0 = 0 elsewhere.

Following Stewartson and Howarth (1960), the solution is given

by
co a

0.860U r dX I' d_
-2Tfcp(s,y,z) =X -R. o O -a .('_z)-+y2+ (",-s)P -"

it follows that
00 a

-0.860 V, dX f (-z)dE

oa _,2 ]3/2

O.O.-a0V ( __-z ___+y_+_(_-s_

4 (X-s)dX f ad
U 2TT 0 X -a r (-z) +y2+(X-s)2 3/ 2

On the plate y=O, with a/s<<l, the crossflow velocity takes the form

,w -0.860 l -Z

plog a (15a)
s

Along the plate centerline, y=0, z=0 and with a/s<<l, the streamwise

perturbation becomes

14
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086 lo 4 + 1)' (1 5b)

while at the plate edge we obtain

_=-0.860 a3/2 []Log a ]( c

z=a nRa

B. Flat Plat%-e as the Limnit of the Elliptic Cylinder withI M-J-W Theory
This limit can be obtained from (14) by setting F, 0

-0

and noting that from (12d) that

a (s) = _ s'(s
0 rr ds 2TT

The streamwije perturbation velocity (14a), on the plate centerline

G=TT/2 becomes

U a (1- +z + b '(s)*
~U y=0=z 2-r~l 2 n=1n(4n3 -l) 0

-3.860 a2 lg I (16)

S 8

and at the edge (15c) is recovered. See Gradshteyn and Ryzhik (1965),

p. 46.

The crossflow on the plate is given by

()-S (S) COsin2ne
U y=0 Talsinl 0 4ng-l

Here b'(s) denotes the der-ivative of (4a) in the iimit t&.c.
0

15



It is easily shown that

4 sin2nO log a-z
Isinel n=1 4n 2 -1

w;here from k9b) z=acosq. Therefore

= -0.860 log (a-z) (17)
s

These results (16) ana (17) are in exact agreement with

three-dimensional solutions (15). V

C. M,-J-W Theory for the Flat Plate. Direct Formulation

The slender body solution for the induced velocities on

a flat plate can also be determined by direct application of a

two-dimensional 'reen's function. With the governing equation

A
for cp(y,z;s)

iPyy+ pz 0

and the boundary conditions

A 2
V7CP -0 as (y2+z2) 0o

it follows that A 0.860 "a

: 2 = --- log[(X-z) e+y 2 ]dX

R -a
There fore,

S- -0.860 (18)

ThereT

" 2-,R lOg (a+z)'+y (18)

16



and

.6= 0 (A) [log(a2+y2) 21- X tan- I a + b'(s) (19)s z=0 R s a a o

On the surface y=O the solutions (15) are recovered for u/U and

w/U respectively.

5. Quasi-Axisymmetric Flow

For geometries where the cross-sections are close to circular

(e<<l), the leading terms in an expansion of (14) for small e take

a particularly simple form. We find that

(u)go -0.430(a)3/2 e [e
URaR 2 (i) (l-- -)ln(-s)+2 +-cos28]+O(e4) (18a)

and
w =-0.215 a 2  4)~b

) -(-) e sin28 + O(e 4 ) (1)
0 Ra

where from (12)

1.72T a.. e2

S'(s) - + o(e4 )
12 4

s
The relation

0/2 2m for m<n
f j2m+l fm o _~ ~~~COS X cos2nx dx=2m+ (mn fomn

0 o2

has been required in obtaining (18) and is useful if additional

terms in the expansion are desired. The series in (14) reduce to

2nn terms for the e coefficient. The expressions (18) are presented

here as limiting velociti.es, as e-0, for the general solutions with

elliptic cross-section to be discussed in the following section.

The axisymmetric solutions (e=0) have.previously been obtained by

Van Dyke (1970), who also discussed the second order boundary layer

and corrected an earlier paper by Seban and Bond (1951).

17



Finally, the special limiting case of a needle a-0, e.0 leads

to the flow over a slender paraboloid of revolution. While the

Blasius boundary layer is incorrect in this limit, (see Glauert

and Lighthill (1955)), the exact solution for a paraboloid is

known and provides an additional check on the theory, Van Dyke (1964).

With the cylindrical radius defined by

R (s) = (2E s)

Van Dyke has shown that

cp = - log(r /2ces)

and

u = -e /2s (19)

Fro. (4) and (14a), with (12b), we obtain

u b'(s) = -(0.860) 2 R (20)

With the cylindrical radius set equal to the effective body radius

or displacement thickness A* from (6), we find that (19) and (20)

are identical.

6. Elliptic Cylinder

The flow properties at the surface of a cylinder of elliptic

cross-section with arbitrary eccentricity e have been determined

by numerical evaluation of an appropriate number of terms in the

series solutions (14). The integrals in (14) can be expressed by

means of recursion relations in terms of elliptic integrals of the

first and second kind, see Gradshteyn and Ryzhik (1965). It was

more convenient to evaluate the integrals directly by nunerical inte-

gration. A three-point Simpson's rule having a nominal eir.ror of order h)
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was used;h represents the grid apacing. As n increases, the integrand

exhibits rapid oscillations and an increased number of mesh points

are required. In order to maintain a fixed error, twelve intervals

were always located between the zeros of cos2nG so that 24N+l points

result for n=N.

The number of terms N required to achieve a specified degree

of accuracy increases sharply as e-l. The summation was terminated

when percentage diffexences in the sum S and S+5 terms were less
-10

than 10 . The singular behavior in the flat plate limit and

in particular near the side edge is not unexpected. For e=l a

logarithmic singularity in the crossflow velocity (14b) appears

at the edge, while for e<l, w-0. Also, the asymptotic form of the

integrals in (14) shows that e=l is a singular limit, since

lim 2 - o(-(- o o° )n -M for any finite M>O (e<l)

n-o o 4n 2-i) for el

The asymptotic form for e=l is also obvious from the exact

solution (15a).

The numerical solutions for the czossflow velocity are

depicted in figure 4 and confirm the asymptotic prediccions. Note

the large increase in the maximum number of terms N required for

the series solution as e-l. For e=0.999, the solution closely

follows the flat plate logarithmic behavior before falling rapidly

near the edge. The solution exhibits boundary layer behavior near

the edge, with the peak crossflow velocity approaching the edge

as e-l. The maximum number of terms required for the series

4 summation generally occurs at a location corresponding to the peak
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w value. A boundary region forms near the edge and the three-

dimensional viscous flow must.be reevaluated.

Similar behavior for the streamwise velocity perturbation

is shown in figure 5. While the streamwise velocity distribution

is continuous as e-1, the velocity gradient also exhibits a

logarithmic singularity. Also depicted on the figures 4 and 5 are

solutions for several values of e between zero and one. The t

simple quasi-axisymnietric expansions for e<<l are given by (18a)

and (18b) .,nd are shown in figures C and 7. The one term expansions

agree quite well with the numerical solutions for e<0.25.

7. Summary

When ona attempts to analyze the perturbation velocities, and

in particular the cross flows, induced by thin boundary layers on

three-dimensional geometries, a difficult potential problem results.

To date, there are only a minimum number of such exact solutions

available. When considering the flow over thin bodies, it 'as

been shown herein that slender body theory, for many years a

powerful tc¢l of classical aerodynamics, can be adapted for the

determination of boundary layer induced flows. In essence, the

potential problem is reduced to the consideration of a two-dimensional

flow over an expanding body with porous boundary conditions. This

results in a considerable simplification.

The bulLions are valid ncar the hody surface And orovide

insight into the types of crossflows generated by three-dimensional
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configurations, as well as supplying asymptotic matching conditions

for higher-order boundary layer theory. These displa-ement

induced velocity boundary conditions have generally been neglected

in previous perturbation analyses dealing with tiansverse curvature

effects on boundary layer behavior. V
The constant density flow over a cylinder of

constant elliptical cross-section has been considered. Complete

solutions have been obtained in the form of a Fourier seriLes.

For the limiting cases of a finite span flat plate or near circular

geometry, simplified analytic forms have been obtained. The

surface solutions for the plate are in perfect agreement with the

exact three-dimensional result obtained by a simple extension of

the method of St=:artson and Howarth (1960).

In the general case, a peak cross flow velocity is predicted.

The location of this maximum moves toward the side region of the

ellipse as the eccentricity e-l. In this limit, the crossflow

exhibits a logarithmic behavior, corresponding to the flat plate

solutions, up to the peak location and then falls rapidly to zero

at the symmetry line. For e-l, the application of a Blasius

boundary condition near the edge is incorrect, as transverse

curvature is quite large there. Further study will have to consider

the side edge flow more exactly in order to determine the pr'?cise

nature of the developing boundary region where curvature and cross-

diffusion effects become important.
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