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0.   Summary 

This report analyses the input-output behavior of feedback systems 

whose open loop map can be modeled by an operator, K, defined on a 

Hilbert space.   In particular, attention is focused on the case where K is 

multipower, bounded, and strictly causal.   The analysis utilizes Hilbert 

resolution space, the causality structure of K and contraction mapping tech- 

niques. 

The main objective is to clarify questions of the following type: 

(1) Given an input, y, is the output, x, well defined ? (Existence, Uniqueness); 

(2) If x is well defined, what can be said about the mapping y - x? (Caus- 

ality, Continuity); (3) Given y how can x be computed?  (Computational 

method).   To illustrate the difficulty associated with questions of this type, 

it is shown that a system input with a finite energy may generate an infinite 

energy, possibly with a finite escape time, feedback system output.   The 

set of inputs for which this does not happen, however, is unbounded, open 

set with interior. Moreover, on this set, the output is a continuous and causal 

function of both the input and the open loop system.   From a practical 

point öf view it follows that the output can always be computed by using 

a number of nonlinear computational algorithms already available. 

Applications are relevant to the area of stability, sensitivity and 

controllability of dynamical systems. 
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1.   Introduction 

In recent months it has become increasingly apparent that the concept 

of the resolution space is a fruitful, and in some cases essential, tool for 

the analysis of causality, stability, and sensitivity problems in dynamical 

systems.   This study is an addendum to the literature on invertibility and 

causality questions of operators on Hubert resolution spaces.   The question 

that we would like to answer is the following.   If K is a summation of 

multipower operators on a Hilbert resolution space:  (1/ when is I + K 

one-to-one?, (2) what is the range of I + K?  and (3) If y = (I + K)x when 

is the map y - x causal? 

Questions of this generality are of course elusive.   However, by re- 

stricting attention to the causality structure of K and how it impinges on 

the three questions posed above some progress can be made.   In parti- 

cular the properties of strict causality and nonmemory play important roles 

in the development. 

The question of invertibility for, I + K, has received considerable 

attention.   In particular Browder [1], Dolph [2] and Minty [3], among 

others, have given sufficient invertibility conditions for the case in which K 

is a monotone operator.   Similar results have boen obtained by Petryshyn 

[4] and Shinbrot [5] who considered operators K with special compactness 

properties. 

In regard to the causality of (I + K)~ , the early work concentrated 

on linear stationary systems, (Foures and Segal [6] and Youla Castriota 

and Carlin [7]), and was based on the Paley and Wiener theorem [8].   More 

^^^^Ml—^tJJ*Mti«i1iHirnil iii-rrn i     i nriiTiH«ir-T i   mfiittni   , 



recently Sandberg [9] considered nonlinear time variant systems and exposed 

a connection between causality and energy concepts.   Damborg [ 10], [11] 

has established a sufficient condition for the causality of (I + K)~   in terms 

of an expression involving "incremental truncated" phase gain and phase 

shift concepts.   Saeks f 12] has considered linei J systems in Hubert space 

and has established the causality of (I + K)~   when K is causal and satisfies 

an inner product type condition.   In a similar context Porter f 13] has shown 

that (1+ K)~   is causal whenever K is causal and dissipative.   Finally 

DeSantis [17] [18] focused attention on those causal systems for which 

the future of the output is determined by the strict past of the input; such 

systems are said to be strictly causal.   This approach leads in a natural 

way to the utilization of the Hilbert resolution space framework proposed 

in [12], [13], and [14] and is the format adopted in the present article. 

The interrelation of strict causality with causal invertibility has pre- 

cedent in the technical literature.   In particular, some results of Gohberg 

and Krein [ 16], on the abstract theory of Volterra operators can be inter- 

preted [ 18J as showing that if K is linear, completely continuous and strictly 

causal then, I + K, is invertible and (I + K)~   is causal.   The scope and 

applicability of these results are seriously hampered however by the rather 

restrictive requirements of linearity and complete continuity.   This article, 

together with [20], may be viewed as efforts to remove these restrictive 

requirements. 
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2.   Mathematical Preliminaries 

In this sec.ion we summarize the main definitions of multilinear 

operators and Hubert Resolution Spaces.   Consider first a Hilbert space, 

H, over the field, F, and its n-th power Cartesian product H , equipped 

with the usual rules for addition and scalar multiplication.     Suppose 

that W is a function with domain H   and range in H.   Using the notations 

(x,,...,x ) € H   and Wfx«... x 1 in the obvious manner we have: i n "•  l       n 

Definition 1.  A function W:H ~H is said to be n-linear  if 

W[x ,... ,x +cry,... ,x ]=W[x ,... ,x,... ,x ]+aWfx,... ,y,... ,xn] 

for every x , y e H, i = 1,..., n and all a e F. * 

In the case n = 2 the terminology bilinear is usAd in lieu of n-linear. 

Similarly the terminology multilinear  is used when n is arbitrary or 

unimportant to the discussion.   By an abuse of terminology we shall refer 

to W as a multilinear operator on H. 

To every n-linear operator W:R"-"H there is associated a function 

W:H-H defined by 

ft(x) =Wfx,...,x],    xcH. (1) 

Definition 2.  A function WH-H is called an n-power operator if there 

exists an n-linear operator W:Hn-R such that eqn.  (1) holds. 

♦Note that a linear operator can be viewed as a special case of a n-linear operator. 
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I 
! Definition 3.  A mapping W:fl-H is multipower  if it is £iven by an algebraic 

sum of n-power operators. 

An n-linear operator W is said to be bounded if 

IIW| =sup "W[x\...,xn]|| <. 00 
r 

where r = { j|x [ = |x | = ||xn| = l}.   Similarly the n-power operator 

w is bounded if 

The numbers jjwfl and |w|| respectively are called the n-linear and n-power 

norms, clearly |w|[ %  ||wjj.   A multipower operator is bounded  if it 

is a sum of bounded n-power operators. 

Let W be a bilinear operator on H.   The permutation, \,*, and 

the mean, W, of W are defined respectively by 

W*fx,yJ=W[y,x] 

W[x,y] =j{w[x,y]+Wfy,x]} . 

If W = W* = W. the bilinear operator is said to be symmetric. 

More generally we have 

Definition 4.   The n-linear operator W*^ is called a permutation of type p 

of the n-linear operator W if the following relation holds 

W    ix yX j • *• jx j =vyi x   jx   j •.•,x    j 

where p - {yl.y2,... ,yn} is a permutation of the ordered set {1, 2,..., n}; 

iilii Mi 'I—IIMM^I auMJlltillMiiillifiiliiiir in r n ... 



and (x ,x ,..., x ) is any element of Hn. 

Definition 5. Wis said to be the mean of W if 

W[x\x2
;...,x

n] 4! W^[x\x2,...,xn] 
n- j=l 

where {p.: j = 1; n.'} are all distinct permutations of {1,2,..., n} and 

(x ,x x ) e H . 

Definition 6. W is said to be symmetric if 

Wfx1 xn] =W*P[x1 xn] =W[x1 xn] 

holds for any permutation p of {l, 2,..., n} and for arbitrary (x\x ,..., xn)€Hn. 

In dealing with multipower operators it is obvious that W, W*, and 

W all generate the same w. 
2 

Example 1.  Let H consist of the Euclidean space R  equipped with the 

2 2    2 usual inner product.   Consider the operator W:[R ] -R   defined as follows: 

1112222 12 if z ■ (z^Zg)» x   =(xj,x2),x   = (Xj, x2) e R , and z = W[x ,x ], then 

a       123        12fl        l2fl        12 
zl =^1llxlxl+ 'l 12xlx2 + ^121X2X1 + ^122X2X2 

a       12fl       12fl       * 2    *       12 
z2~^211xlxl+ ^212xlx2 + ^221X2X1+ ^222X2X2 ' 

where ß... is a real number.   This operator is bilinear and bounded; it 

is symmetric if ß... = ß.^. for every i, j,k e {1, 2}. 

Example 2.  Let H = L«(A)      be the Hilbert space of square integrable 

scalar functions defined on the interval A * [0,«-]. Consider a scalar valued 



3 
function K (t. s,, s0) defined on A   and such that 

|[K 1 = /// |K(t, sr s2) 12d<. dsx ds2 < oo . 
A3 

1       9 
For any pair x , x   a L„(^)     the following integral 

r r 12 (.) = JJ K(-,srs2)x (8j)x (sgJdSjdSg 
A 

2 
defines a bilinear operator L„ - L«.   This operator is bounded because 

1   2 for each pair x ,x   € L«(A) one has 

IT 13 IWlVlHI*2!. 
It is symmetric if K(t, s«, s«) = K(t, s«, s,). 

Next the structure of Hubert resolution spaces will be presented 

[ 12], [ 14]. [ 20].   Suppose that H is a Hilbert space, and v a linearly 

ordered set with t   and t   respectively minimum and maximum elements. 
0        00 

A family {P } = IR, t € v, of orthogonal projections on H is a Resolution of 

the identity  if it enjoys the following two properties: 

Ri) P °H = 0, P °°H = H, and P1^ P£H whenever k > 1; 

Rii) if {p } is a sequence of orthogonal projections in IR and there 

exists an orthogonal projection P such that {Px} - Px, for every 

x c H, then P £ ER. 

w^friffltmtoiatiMaf**-*- ~^*~---■■*-*«*»><**»*■■■■- '"•**"*'""■ 



Definition 7.  A Hubert space, H, equipped with a Resolution of the identity, 

is called a Hubert resolution space (in short: HiiS) and is denoted by 

the symbol [H,?*]. 
2 

Example 3.   Let H = R   and consider the family of orthoprojectors 

{p*}, t e {0,1,2} defined as follows: 
2 t 

If x, y e R   and y = P x, then 

f(0,0) if t = 0 

y   =   /(xr0)ift = l 

(Xj,x2) if t = 2. 

The family {p } is a resolution of the identity and the pair f R , P ] 

is a Hilbert resolution space. 

Example 4.  Let H = L2(A), and for t € A * [0, j ] define P* as follows: 

if y,x c L2(A)      and y = P x, then y(r) = x(r) for r < t, y(r) = 0 otherwise. 

The family of orthoprojectors {P } is a resolution of the identity and the 

pair   f L2(A), P ]    is a Hilbert resolution space. 

t r For an operator K on [H, P ] the notation JdPKdP will denote a 

derived operator computed in the following way.   First, let ti={tQ, L,..., 

t.,..., t   = t } denote a partition of y, that is t.< t. « all 1.   For con- ] n     oo r J     j +1 

venience, let PJ = P >  and form the incremental projection set A =P^ -P^~ , 

j = 1,..., n.   The set of all such partitions is partially ordered by contain- 

ment, that is ftj £ ft2 if all points of ft2 are in ft.. 

JMJU.^.^^..»«. in- r iii'tifiilriir""---" - ' "-*■"*""■—■■"-»■— 
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Now if lor every e > 0 there exists ß   and a function, denoted 

by /dPKdP, suchthat 

||/dPKdP-?>KA ||<€ 
1    J     3 

lor all ß z ß   then the series of sums converge and 

fdPKdP = lim£A.KA. 

where the limit is taken over refinement. 

Example 5.  Consider in  [hJA), P ]     the bipower operator induced by 

the bilinear mapping described in Example 2.   For simplicity assume 

|K(t,si, s 2) | £ M < ».   Then for any integer N £.2, choose 

ß   ={$ =  {0,^N, *%*,•• *2}. 

Then obviously t€ 

/// e       K
2 (*. s!» s2>dt dsids2 < ^2N) 3 M2 

-i 
Note that for every {$.} = ß D   ß   one must have 

||  I  AW[A   A] ||2 < N(%N)3M2 

3=1    J        J     J 

It follows then that for the operator under consideration JdPWdP = 0. 

For purposes of familiarity we shall single out three specific properties 

that relate to /dPKdP.   First if K is n-power and bounded, then 

A.KA.x|| £  ||MA.x||n     j € ß, x e H (2) 

MattefiaaMaja^^MMM«^^ ... 
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for some scalar M.   If /dPKdP = 0 then Q can be refined such that M 

can be taken arbitrarily small. 

3.   Causality Concepts 

An n-linear (in particular, linear) operator W on [H, P ] is said to 

be causal, (anticausal) if P*W = PSVP*, ( (I -Pfc)W = (I -Pfc)W(I -P*)). 

W is memory less  if it is simultaneously causal and anticausal.   W is 

? i-1 precausal if there exists a partition Ü c v such that W = ._, A.WP 
  i=l    l 

W is strictly causal if there exists a sequence of precausal operators 

{w.}, such that {w.} ~ W, where the convergence is intended in the uni- 

form n-linear operator norm.   An n-power operator is causal (precausal, 

strictly causal) if it is generated by a causal, (precausal, strictly causal) 

n-linear operator. *   Similarly, a multipower operator is causal (precausal, 

strictly causal) if it is the sum of causal (precausal, strictly causal) 

n-power components. 
2    t 2        2    t Example 1.  Consider the bilinear operator W:[R , P ]   -[R , P ] des- 

cribed in example 2.1.   This operator is: 

causal if ß     =0 j > i or k > i; 

memory less if   ß... /0 only when j = k = i; 

precausal if       /3 .. = 0 whenever j2 i or k S i. 
1JK 

Example 2.    The bilinear ope rator f L,(A), Pfc]2 - [ Lg (A), Pfc] 

described in example 2. 2 is strictly causal if K(t, Sj, s2) = 0 whenever 

either Sj or s2 is bigger than t.   It is precausal if there exists an c > 0 

♦Note that if W is precausal, then it is also strictly causal and causal; 
if W is strictly causal then it is causal but not necessarily precausal! 

iiiiiiiiiiiiiMi^^ ■.■niHiwittii^ 
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such that K(t, A-, AJ = 0 whenever either A. or A2 is bigger than t - e. 

Memoryless properties would requin. that K(t, A-, Aj =0 unless A1 =A„ = t 

in which case a distribution type behavior of the kernal would be necessary 

to rescue the example from trivial result K = 0. 

Note that if W is causal then the relations 

AjWx = AJWAJX 

: : 0) 
AWx =AW[A. + A._1+...+A1]x 

hold for arbitrary x e H and any partition n.   Similarly, if W is memoryless 

then 

A.Wx = A.WA.x 
] ]      ] 

holds for all x e H and arbitrary A.. 

Proposition 1.  If n-power W is causal then for every t ev one has that 

W(I - Pk) = (I - P^Wd - Pfc). 

Proposition 2.   ([12], Coro. 4.11).   W is memoryless if and only if 

W = JdPWdP. 

Proposition 3.    If W is strictly causal then JdPWdP = 0. 

Proposition 4.   Suppose that T and W are respectively linear and multi- 

linear causal bounded operators.   If either T or W is precausal (strictly 

causal), then TW and WT are also precausal (strictly causal). 

9 i-1 Proof.  If T is precausal then one can write T =    A, A.TP     .   From 
  i=l   l 

here, using the causality of W, it follows 

»iMMMUtoM«.*-.«^» »„ ^, «. ,*^ . ,,^W^.^.. ._     -M...^,„„...,. 
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TW = S  ATP1"1^1"1 = I  AjTWP1""1 

i=l i=l 

Thus TW is precausal.   Suppose now that T is strictly causal.   Then there 

exists a sequence of precausal operators {T.} such that {T.W} - TW, 
l i 

where each T.W is precausal. 

Proposition 5.  The class of bounded n-linea: • causal (strictly causal) 

operators is a Banach algebra. 

4.   Multipower Operator Equations. 

Given the Hilbert space, H, and an element y € H, we will consider 

the equation 

x = y + Wx (4) 

where W= X  W , where W   denotes an n-power operator.   We shall need 
n=l   n n 

some causality structure and for this H becomes a Hilbert resolution space 

[H, P ].   For simplicity and without any loss of generality we shall assume 

that our identity resolution has no gaps; that is for every x e H the partition 

ß can be refined such that 

Ax|f</3     alljeß 

holds for every ß > 0. 

The problem of determining the existence and uniqueness of a solution, 

x, for equations of the above kind has been studied, among others, by 

Rail [ 21],    McFarland [ 32], and Prenter [33].   Their results concern 

the case where the operator W and the assigned element y satisfy norm 

- -••■ ■■• ■■-... 
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conditions of the type described in the following specialized version of the 

contraction mapping theorem.* (See Prenter f 33].) 

*   ...    _?    __l»-l.„   , Proposition!.   If W = 1   W_ and ^   n y |W  [j   < 1, then eqn. (4) 1 _______ ___    ___. n < n 
n=l 

has a well defined solution x.   Moreover on its domain the mapping 

y - x is continuous and can be computed as the limit of the following series: 

x0=y 

Xj = y +WxQ 

  (5) 

x. = y + Wx.j . 

Corollary 1.  If in addition to the hypothesis of Proposition 1 one has that 

W is causal, then the solution of eqn. (4) is a causal function of y. 

The contraction mapping result does not rely on the causality structure. 

When W does not satisfy the norm condition of Proposition 1 then, at this 

writing, the existing literature has nothing further to say about the solution 

properties of eqn. (4).   It is easy to demonstrate, however, that when 

W is precausal then one has the following. 

-      ? Proposition 2.   If W = ^  w    is bounded and precausal, then:   (i) eqn.  (4) 
n=l   n 

defines a continuous and causal mapping y - x; (ii) the mapping y - x can 

be computed using the contraction mapping iterations defined by eqns. (5). 

The above result, together with our definition of a strictly causal 

operator as the uniform limit of a sequence of precausal operators, leads 

to the natural question about whether the precausality condition of Proposition 2 

*We shall let W   denote an n-power operator on H. 

* 
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might be relaxed into a strict causality condition.   To answer this question 

we will suppose that W is strictly causal and will study existence, caus- 

ality and continuity properties of the inverse operator (I + W)~ .   In parti- 

cular, in the following section we will discuss the case where W = T is 

a linear operator (this case was studied in [ 17]).   We will proceed then 

to the case where W = W is bilinear (sections 6 and 7) and we will finally 

extend oar results to the more general multilinear case. 

5.   The Linear Case 

One of the main results in [ 20] was to the effect that if W= T is 

a linear operator, then Proposition 3, 2 can indeed be extended to the strictly 

causal case. 

Proposition 1.   ([ 17], Theorem 4.2).   If T is a linear bounded and strictly 
09 

causal operator then I + T is invertible, the series \,   T   converges in 
n=0 

the uniform operator norm, and 

(I+T)_1 = 2   (-T)n   . 
n=0 

For the study of the multipower operator case it is useful to consider 

the following extension of Proposition 1. 

Proposition 2.   Suppose that T   is a linear operator such that (I -: T )" 

exists and is causal and bounded.   Then for every sequence of strictly causal 

linear operators, {T.}, (I + T   + T.) is invertible and (I + T   + T.)~   is 

causal and bounded.   Moreover if {T.} converges to T, then {(I + T   + T.)~ } 

~ -1 converges to (I + T   + T)   . 

■ 
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Proof.   From the invertibility of (I + T ), one can write 

I + To + T. = [I + T.(I + To)_1] (I + T0). 

To prove the first part of the proposition, it is then sufficient to show that 

[I + T.(I + T )~ ] is invertible and that its inverse is causal and bounded. 

This follows by observing that T.(I + T )~   is strictly causal, (Proposition 

3. 3), and by applying Proposition 1.   To prove the second part of the 

proposition, note that T  is strictly causal (Proposition 3.4).   The re- 

sult is then obvious from the identity 

(I + T  +T.)~1-(I+T-+T)"1 = (I+T   +T.)"1(T - T.)(I + T  +T)"1. 

Corollary 1.  If {T.} is a convergent sequence of strictly causal linear 

operators, {T.}-T , then the sequence  {(1 + T.)~ } is also convergent 

with {(I+T.)"1}-(I + T )"1. 1 i     J o 

Corollary 2.   If W is strictly causal, then for every y e H, the equation 

x =u - W[y,u-x] 

establishes a well defined continuous and causal mapping u - x.   This mapping 

is a continuous causal function of y and W. 

6.   The Bipower Case 

To discuss solution properties of eqn. (4)     in the case where 

W(x) = W[x,x] is bipower and strictly causal, we start by establishing 

existence and uniqueness of the solution of the homogeneous equation. 

kT^Z^****^*,************^ 
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This result is then used first to obtain uniqueness in the nonhomogeneous 

case, (Proposition 2), and then causality of (I + W)" , (Proposition 3). 

Our subsequent results concern continuity properties of (I + W)" , 

(Propositions 4, 5 and 6). 

Proposition 1.    If W is bipower, branded, causal and  JdPwdP = 0. 

then eqn. (4)     has a unique solution for y = 0 namely x = 0. 

Proof.   Suppose x £ H such that 0 = x + W (x).   For any partition Q 

the causality of w implies that 

Axx + A^AjX = 0 

and, using eqn. (2), 

fy* -ii -  II,«»  _„II2 

V" = llAiwVi= l'MAix 

Refining the partition J2 until M < 1 and J|Ajx|j < 1 it is immediate that 

AjX = 0.   Continuing now we have also 

|A2X| = ||A2W[A1 + A2]X| 

A 
= «*2WV 

S  ||MA2xf'2 

which implies A„x = 0.   Repeating the procedure over all partition segments 

produces the x = 0 result. 

Ji»*ua***a»tiMMfea^^ ....,,,.,. 
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A 
Proposition 2.    Let W be bipower, bounded and strictly causal.   Then 

if y = Xj + ^(Xj) = x2 + W(x2) then xx = Xg. 

Proof.   Suppose x« / x« in the proposition, then 

xx - x2 = W(xt) - &(x2) 

= W[xrXl] -W[x2,x2] 

where W is symmetric.   Using this symmetry 

xl "x2 = Wfxl "x2'xl'x2^ -2wfxi _x2»xl3 • 

Using the notation z = x, - x,, we have 

(I + 2W[«,x1])z = W[z,z]. 

However the linear operator 2W[,,xJ is strictly causal and hence from 

Proposition 5.1, I + 2W[*, xJ has a bounded causal inverse. Moreover 

applying Proposition 3.3 it follows that 

W(.)=(I+2W[.,x1))"1^(.) 

satisfies the conditions of Proposition 1.   Using the results of that 

lemma we have z = 0 = x. -x«. 

Proposition 3.    If W is a bounded strictly causal operator, then on its 

domain the map (I + w)"1 is causal. 

Proof.   Suppose that y^x^y^x,, c H exist such that 

A 
x^y. +W(xt). 

_^___ 
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For t e v suppose P y« = P y„.   Then from the above equations we must 

have that 

A 
and from the causality of W 

Pfcx2 -P4
Xl = P^(Pfx2) - P^CPScj). 

Invoking Proposition 2 it is easy to se^ that this latter equality can be veri- 

fied if and only if P^Cg = P*xr   This implies Pfc(I + W)"1 = P^I + Wj'V. 

Proposition 4,    If bipower w is bounded and strictly causal then the domain 

of (I + w)      is an open unbounded set. Moreover, (I + w) "   on its domain 

is continuous. 

Proof.   Since W is homogeneous of order 2, the range of I + W is obviously 

unbounded. To prove that (I + W) "   is continuous, and that its domain is 

open, it is sufficient to show that U u and x are such that 

x=u + W[x,x] (6) 

then there exists an e> 0 and an M > 0, such that given any Au e H, 

Aull < e, one can find a Ax € H,  IIAxil £ MIUUIL such that 

x + Ax = u + Au + W[x + Ax, x + Ax]. (7) 

Using the bilinearity of W and equation (6) we have 

Ax = Au + 2W[ Ax, x] + W[ Ax, Ax]. (8) 

This we rewrite in the form 

ittfcM^MIalblaMnBSsa«^*»^,.^.  „»^^.^.„T^,^..^...,,^, ,.     —~t^  
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Ax = (I - 2W[•, xj )_IAu + & - 2W[•, x] )_1W[ Ax, Ax] 

where, by Proposition 5.1, (I - 2W[«,x])~ is a bounded causal linear 

mapping, and, by Proposition 3. 3, (I-2W[»,x])" W[*,»], is strictly 

causal. 

Applying Proposition 4.1, it follows that if Au is such that 

(I-2W[.,x])"1AuI.||(I-2W[.,x])-1Wf-,')ll *J 

then eqn. (7) does indeed have a unique solution.   This implies that if 

4||Au||s  {I|(I-2W[.,x])"1||.[|(I-2Wf.,x])'1W[.,'j||}    =4c 

then Ax satisfies eqn. (?) and §Ax| t M||AU[[, where 

-1 
M = 2||(I-2W[.,x]) 

Proposition 5.    If bilinear W is bounded and strictly causal and the pair 
2 

u,x e H   is such that 

x = u + W[x,x], 

t hen there exists an e > 0 such that for all bounded and strictly causal 

bilinear W satisfying ]w - w[| < e, the equation 

x' =u +W[x',x'] 

has a unique causal solution.   Moreover this solution is a continuous 

function of W and u. 

—-^" --« 
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Proof.   Letting AW = W - W and Ax = x' - x, we start by proving that there 

exists an c > 0 such that if |[AW|| < e, then the equation 

x+Ax=u +(W+AW)[x+Ax,x+Ax] (9) 

has a unique solution Ax.   To do this, note that equation (9) is equivalent 

to 

Ax = 2W[Ax,x] +W[AX,AX] +2AW[Ax,x]+AW[Ax,Ax] +AW[x,x] 

that is 

Ax = (I -2(W + AW)[•, x])-1AW[x, x] + (I - 2(W + AW)[ •, x])"Vw+Wjf Ax, Ax] 

(10) 

where the inverses exist by virtue of Proposition 5.1.   From Proposition 

4.1, we have then that eqn. (10) has a solution if 

[|(I-2(W+AW)[.,x])'1AW[x,x]|.||(I-2(W+AW)[.,x])"1(W4AW)[-,«] 

4- 
This implies that eqn.(10) has a solution if AW satisfies the following 

inequality 

lAW[x,x] || 5 * rri  
4   "'I-2(W+AW)[«,x]) X-IW+AWf«,-] 

But, from Proposition 5.2, we can certainly find an e > 0 such that for 

AW I < e the above inequality is indeed satisfied. 

■-•■-■■   - - ....... 
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The continuity of Ax with respect to both u and AW follows from Prop- 

osition 1  which implies ||AX|| < *■ [AW[X,X] (| and Proposition 4 which 

says that x is a continuous function of u. 

Proposition 6.    Suppose that {w.} is a sequence of strictly causal bilinear 

operators such that (I + W.)" u exists for some u e H.   If {w.} - W , and 

{(I + W.)" u} - x . then (I + WJ" u also exists and is equal to x . loo o 

Proof.   Denote {(I - W.)" u} = {x,} and observe that 

Ixo -u -wotVxo^ II = ixo "xi+ witxrXJ "w0lV
xo] II 

= K-xJI + lw.fx^x.] -Wt[x0,xj|+||W0ExofxJ -Wi[xofxo]|. 

If {x.} - x , and W. - W , then the second member of the inequality is 

as small as desired and we can then conclude that 

xn =u + Wjx .x ] 
O 0L   0     0J 

The results contained in Propositions 1-6, can be summarized by the 

following two theorems. 

Theorem 1. Let bipower w be a bounded and strictly causal operator. 

Then:  (i) I + w is one-to-one; (ii) the domain of (I + W)    is an unbounded 

open set; (iii) (I + w)~   is on its domain causal and continuous. 

Theorem 2.   Let {w.} be a sequence of precausal bipower operators such 

that {Wjj-W and {(I + fy)   y} - xQ.   Then:  (i) (I + W)_1y is a well defined 

element in H and (I + W)~ y = x ; the element (I + W)" y is a continuous 
A 

function of both y and W. 

""""""lümi    Niiiiiiiimiiii 
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Corollary 1.     K W is strictly causal, then a necessary and sufficient 

condition for the equation 

A 
x =u +Wx 

to have a solution x   is that for every € > 0 there exists a partition Q 

such that for every refinement Q > ß   one has 

||(I+S,^Pi-1r1u-xoI<e. 
i=l 

Corollary 2.     If W is strictly causal, then the equation 

A 
x = u + Wx 

has a solution, x , if and only if there exists a convergent sequence of 

precausal approximants {w.}-w   such that {(I +W.)~ u} -x . 

Corollary 3.  Let v  be strictly causal and suppose that {u.} is a sequence 

of elements in H such that (I + W)~ u. exists for each i.   If {u.} -u , and 
A _i 

(I + W)   u   also exists, then 

(I + W)"V =lim(I + W)"1u. . 
o       . 1 

l 

7.   Results on the Range 

We consider the range of the mapping defined by eqn. (4) in the 

special case where W is bipower and strictly causal.   To begin with we 

start by showing that contrary to what might be expected from Proposition 4. 2, 

the operator I + W is not necessarily onto.   This is accomplished by the 

following (counter) example. 

mmmtämmmtmmä^ä 
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Example 1.   Consider the following equation,   A « [0,y] 

/■* 2 x(t)=y(t) + [/ x(8)ds]^,  t€ A (11) 
0 

where   y   is an assigned scalar valued function in L„(A) and x 

is the unknown of the equation.   Note that the bipower term is generated 

by a bilinear strictly causal operator of the type described in Example 3. 2. 
2 

Observe also that for y(t) = -k  the solution x is absolutely continuous and 

the related differential equation that models our example is the Riccati 

equation 

g(t) = k2 + g2(t),     g(0) = 0. 

For this equation there exists a unique solution, namely g(t) - k tan(kt). 

2        2 It follows that the unique solution to eqn. (11) is given by x(t) = g(t) =k /cos (kt). 

^ote that for K * 1 this solution does not belong to L. (A) and therefore 

y(t) « -1 is not in the range of I + W. 

Our attention turns now to necessary and sufficient conditions to guar- 

antee the onto property. 

Proposition 1.    Suppose th?.t w is strictly causal.   If y € H is not in the 

range of I + w ,   then there oxists an element t e v such that for s < t 

P y belongs to the range of P (I + W) and lim |[x  ||= oo, where 
ft      s 

xs=!ps(I+ft)lpsyl|. 

Proof.   Let t   = sup{s: PSy is in the range of PS(I + W)}.   Clearly, from 

Proposition 4.1, we have t   / 0.   Suppose now that lim   ||x  || < x. 
s '« 0 

i 

WUß^Mmmumm\MmväummMi^mmM\\\ \m     imüttiiiMiiiir««  
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Observing that for every s„ > s« one has 

s2    sl x   -x   =(P Z-P l)x 
s2    sl s2 

there would then exist a well defined element, P  x c H, such that 

lim x   = P °x.   Moreover, P °x would have the property that 
o 8 

pSc-pSi+ftrVv 
t t A 

This latter equation would imply that P °y is in the range of P °(I + w). 
t. 

This implication, however, cannot hold becuase if P °y were in the range 

of P °(I+W), then applying Proposition 6.4 we would have that, for some 

t > t , P y also is in the range of P (I + w).   A contradiction to the sup 

property of t   would then be obtained. 

Proposition 2.    If w is a strictly causal bipower operator and there exists 

a sequence of precausal operators {wJ-W   such that, for every y c H, 

the sequence {(I+W.)" y} is bounded, then I+wis onto. 
A 

Proof.   Suppose that y is not in the range of I4W.   Then by Proposition 1 

there would exist a t   6 v   such that for s < t  the element PS(I +W)~ PSy =x 

is well defined and Urn ||x || = 00.   Denoting x.   = PS(I + Wj)" Psy, by 

Proposition 6. 5, it would follow that 

lim ||x.  || = 00. 
t-00     lB 

^0 
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One  would then obtain a contradiction to the hypothesis that the sequence 

{(I +W.)~ y} is bounded. 

Proposition 3.    If W is strictly causal, then the equation x = y + wx has 

a solution x e H if and only if there exists a sequence of precausal operators 

{& } - W such that {(I + fof y} is bounded. 

The above results can be summarized in the following theorem. 

Theorem 3.    If w is a bounded and strictly causal bipower operator, then 

a necessary and sufficient condition for existence, causality and continuity 

of (I + W)     is that there exists a convergent sequence of precausal operators, 

{w.} -W, such that, for every y e H the sequence {(I + W.)   y} is bounded. 

The next result illustrates a different type of sufficient condition for 
A r      . I + W to be onto.   In the following T   = I - 2W[x, • J for every x e H is a 

bounded linear operator on H.   The adjoint of T   is denoted in the conven- 

tional style T*. 

Theorem 4.     There exists a sequence {x } such that 

(1) ||x   - w(x ) - y || is monotone decreasing 

(2) T*   (x„ - &(xj - y) - 0 x      n n n 

<3>K+i-*J-°- 
Corollary. If T£    is uniformily bounded below on a set {x: ||x - W(x) -y ||< a} 

n 
where inf[a - ||x   - W (x ) -y ||] > 0    then the map x-x - W (x) is onto. 

rtM-*'~-a*a^'—•-—-'—— ■ ■■■■ —     ; , „_^_    
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Remark.   If W is strictly causal then from lemma 5 it follows that for 

every x 6 H, T   is 1:1, onto, and is bounded below.   These properties 
A 

are inherited by T*.   However, it is not to the authors' knowledge true 
A 

that a parameterized family of such operators is necessarily uniformily 

bounded below. 

To prove the theorem consider the functional on H determined by 

f(x)=[[x-W(x)-y||2. 

Expanding via the inner product it is rather straight forward but tedious 

to determine the first Frechet and second Gateau derivatives of F, namely 

FX(x;h) =2<x -&(x) -y, (I-2W[x,-])h> 

and 

\F = (I-2W[x,«])*(x-W(x) -y) = T*a(x) 

FU(x;k,h) = 2<T k,T h> -4<a(x),W[k,h]> 
A A 

A 
where a(x) = x - W (x) - y.   The theorem follows immediately then from 

Goldstein [22], page 125. 

8.   Extension to the Multipower Case. 

The discussion about the solution properties of the multipower equation 

has thus far been confined to the special case where the operator w is 

bipower.   It is to be noted, however, that most of our proofs have been based 

on Propositions 4.1 and 4. 2 which are valid when W is given by the sum of 

n -power operators.   It is then natural to ask whether our results might 

ir^-"  . .        . ■>   
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not hold in this latter, more general context.   By way of illustration that 

this is indeed the case, we reformulate the statements of Theorems 1,2 

and 3 as follows. 

Theorem 1'.   Let W be a bounded and strictly causal multipower operator. 

Then:  (i) I + W is one to one; (ii) the domain of (I + w)~   is an unbounded 

open set; (iii) (I + W)~   is, on its domain, causal and continuous. 

Theorem 2\     If {w.} is a sequence of precausal multipower operators 

such that {W.} - W    and {(I + W.)~ y} - XQ, then (I + WQ)" y  is a well 

defined element in H and is equal to x . o 

Theorem 3'.     If W is a bounded and strictly  causal multipower operator, 

then a necessary and sufficient condition for existence, causality, and con- 
AV_I 

tinuity of (I - W)      is that there exists a convergent sequence of precausal 
r A   i        A f A     -1   i 

operators, {W.} -W, such that for every y e H, the sequence {(I + Wj   y} 

is bounded. 

A somewhat more delicate generalization of our results is also avail- 

able.   To see this, suppose that F and G are mappings on [H, P ] such that 

mlAj^-XjJlTs  ||A.FA.(Xl -X2)|| (12) 

and 

llA.GA.Cx^x^UgMllA^x^Xg)!!11 (13) 

hold for any pair x.,x2 e H and every suitably refined partition n. 

aaaaifrMiiii!*^^ ,,.  ,..,,.,_ ,......, 
•■"^*-*1»  
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Theorem 4.     Let F be memoryless and satisfy eqn.(12) and let G be causal 

and satisfy eqn.(l3). Ifn>aorn = a and M < m, then the operator 

F + G is one to one and on its domain (F + G)"   is causal. 

Proof.   The proof of causality is identical to that given in connection with 

Proposition 3.   The one-to-one property of F + G is based on the following 

two propositions. 

Proposition 1.    If F is memoryless and satisfies eqn. (12) and G is causal 

and satisfies eqn.(13) and if n > a or n = a and M < m, then 

0 = F(x) - G(x) 

has the unique solution x = 0. 

In the proof of Proposition 2 we shall use a result which is easily 

verified and is contained in the 

Proposition 2.    If f, g are functions on R satisfying (mr)    i f(r), and 

g(r) § (Mrr for m, M, a, ß > 0 and 0 i r € R.   If f(r) = g(r) for some 

O^r: 

i) if ß > a then r = 0or rl TQ 

ii) if ß = a and M< m then r = 0 
1 

where rQ = (maMV'a • 

Proof. (Proposition 1) If F(x) « G(x) then using the causality properties 

of F, G we have 

AJFAJX = A.GA-x 

mnu*mm»tiäitmmimfm\tmtikmirtimämt<ii\\ * . ...^.■-■.,^.,„ 
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and invoking eqn.(12) and eqn. (13) 

Now since {p } has no gaps we refine ft until [JAjxJI < r« the scalar of 

Proposition 1.   Using that proposition then we have A.x = 0.   it remains 

only to note that 

A2FA2X = A2GCA1+A2^ 

= *2GV 

and hence the above argument again applies and continuing over ti we 

arrive at x = 0. 

9.   Application. 

Consider the operator K: LjO, ») - LjO,oo) which is defined according 

to the following rule: if u, x e L«[ 0, oo) and u = Kx, then 

N     t      t 
u(t) =  Z    /•••/K(t,s1,...,sjx(s1) x(s„)ds1...ds„    (14) 

n=l  0     0 n      i n     i n 

where 

oo     oo 2 

f.../K (t,8j sn)dtdsr..dsn<oo,   n=l,2 N.       (15) 

This operator has been proposed as a mathematical model to analyze the 

behavior of physical systems such as nuclear reactors [27], magnetic 

levitation [28], communication channels [29], biological systems, 

[ 24], [30], etc.   The potential for representing such a variety of systems 

is that an operator of this form provides a good approximation for much 

»»^^.■»^.^«■ajt^ai. -. -■■..^.,.  ■'■•■MMto-"- -    ■"■•f^"- 
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more general nonlinear operators. 

This fact is in part summarized in the following lemma. 

Lemma [ 33].   Let C[ E] be the set of continuous and causal operators 01: 

L«[ 0, T] restricted to a compact set E of L„[ 0, T] and let the topology in 

C[E] be determined by the uniform operator norm.   Then the family of 

operators defined by eqns.(H) and (15) is dense in C[E]. 

Motivated in part by the above results, the properties of the operator 

K have recently been studied in connection with problems of synthesis [ 24], 

identification [ 25], [ 26] and Optimal Control [ 27]. A system configuration 

of great importance in all these problems is represented in Figure 1, and 

a first order of business is to analyze the input-output behavior of this type 

of feedback system. This is equivalent to studying the solution properties 

of the following equation 

x(t)=y(t)+u(t) (16) 

where u(t) is fjiven by eqn. (14). 

Observing that the operator K is bounded multipower and strictly 

causal, the results of the present development can be readily utilized for 

the better purpose.   In particular, Theorem 1' tells us that if eqn. (16) 

has a solution, x, then this solution is unique and it is a causal function 

of y.   This, of course, does not imply that for every finite energy input, 

y, the corresponding solution x has necessarily a finite energy nor a finite 

i _____ ilkMiaMiiilffiriiii^ •■    ■ • •-^■■>*M—<■»■ ■> •-■■ i 
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I 

x(t) K 
! 

u(t) 

Figure 1.   A basic feedback system 
with multipower open loop chain. 

escape time (see counter-example 7.1).   What it is possible to say, however, 

is that the domain of y for which these properties hold is an unbounded 

open set in L«[0, oo).   Moreover, if y is in this domain, the solution x is 

a continuous function of both y and K (theorem 2'). 

These considerations are relevant not only tc our qualitative under- 

standing of the input-output properties of the feedback system, but they do 

also have practical implications in terms of computational methods for 

solving eqn. (16). 

To illustrate the last assertion let us specifically consider the context 

developed through examples 2 and 5 of section 2   and example 2 of section 

3.   We might start by choosing a sequence of positive real numbers 

{£.} - 0 and computing the sequence  {x.} of solutions to the equation 

t-4.        t-L 
x(t)=y(t)-f      "•[       K(t,Sj, ...,sn)x(s1)...x(sn)ds1...dsn 

Observing that the multipower operator in this equation is bounded and 

precausal, this step can be carried by using the contraction mapping iterations 

%?»ii»l«Wrf*WBM 
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considered in Proposition 4.1.   At this point either one OL the following 

two possibilities can occur.   The sequence {x.} may turn out to be unbounded: 

in this case one can conclude that eqn. (1Q does not have a finite energy 

solution.   Alternatively, {x.} is bounded:  in this case it must also be con- 

vergent with its limit providing the desired solution of eqn.(16) .(Theorem 3'). 

The following example illustrates a large class of practical feedback 

control systems for which all of the above considerations are applicable. 

Example 1.     Suppose that in the scalar feedback system represented in 

Figure 2, the systems T., i = 1, 2, can be modeled as follows: if x.,z. 

e L„[ 0, oo) and z. = T.x., then 
A 111 

t 
Zi(t)=  f K,ft, 8^,(8)08 

where K.(t, s) are such that 

YV'S"*T 

00 00 2 

// |K.(t,s)|   dsdt   <«,      i = 1,2. 
0 0     l 

Let N be a memoryless polynomial type nonlinearity, that is a noniinearity 

such that if z = Nx, then 

z(t) = ajxft) +... + aRx (t) 

The open loop chain of this feedback system is a bounded, multipower and 

strictly causal operator. 

JMliiiiiliiiliiiiii i MW^^^^*^<^^^'>*^^^^~' '--■ ■■-■■-•■   
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 1 
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Figure 2.   A practical multipower servo system. 

10.   Conclusions. 

In this article we have investigated a number of connections between 

some special causality properties of a system, K, and questions related 

to the existence and causality of (I + K)" .   This has been done by assuming 

that K is given by the sum of a finite number of multipower operators 

defined on a Hilbert resolution space.   In analogy with a previous develop- 

ment, [20], which was addressed to the case where K is weakly additive, 

an important role has been played by the concept of strict causality. 

Our results can be briefly summarized as follows.   If K is bounded 

and strictly causal, then I + K is one-to-one and its inverse, when it exists, 

is causal and continuous (Theorems 1 and 2).   Thia is in line with 

Theorems 4.1 - 2 in [20],   In contrast to the main conclusion of that study, 

however, when K is multipower the strict causality assumption is no longer 

sufficient to insure invertibility of I +K; in particular, as illustrated in 

Example 1, I + K may fail to be onto.   To further investigate the structure 

of the range of I + K it is then natural to look for some appropriate additional 
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conditions on K. In this regard, Theorem 3 gives a bounded above type 

necessary and sufficient conditions. Theorem 4 gives a bounded below 

type sufficient conditions. 
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