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FOREWORD

This final report was prepared by Dr, Victor Zakkay, Assistant Director
of the Aerospace Laboratory and Professor of Aeronautics and Astronautics,
and Chi Rong Warz, Research Assistant, New York University Aerospace Laboro-

tory.

The report presents research carried out from November 22, 1971 to
November 22, 1972 under Contract F33615-72-C-1370, "Applications of Active
Cooling to Nose Cones,'" under Project No. 7065. This contract was technically
monitored by Kenneth F. Stetson, Fluid Dynamics Facilities Research Laboratory,
Aerospace Research Laboratories (AFSC), Wright-Patterson AF Base, Ohio.
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ABSTRACT

The use of film cooling for protecting a nose cone in a hypersonic Mach 6
freestream was investigated experimentally. Tests were performed in a Mach 6
wind tunnel with a contoured axisymmetric noz-.le. Downstream and upstream
tangential slot injections were applied to investigate the film cooling efiec-
tiveness on the surface of a nose cone, Multiple tangential downstream slot
injections were used to cool the surface of the blunt nose cone while tangential
upstream slot injections were used for the suiface cooling of a sharp nose cone.
Air at a stagnation temperature of 530°R was used as an injectant. Surface
distributions of the heat transfer rates and static pressures were measured for
different injection mass flow rates. Different tunnel stagnation conditions
were also used to investigate the freestreaiu Reynolds number effect on the film
cooling effectiveness of upstream injection. The local adiabatic wall tempera-
ture was not measured directly., Theories of turbulent boundary layer and wall
jet were used to obtain the adiabatic wall temperature from the heat transfer
measurements, Correlations of the present experimental film cooling effecti-
veness were found. Results from the approximate theoretical analysis were
also compared with those from the experiments. Results of the present down-
stream Injection experiments have shown that a reduction in the effectiveness
due to a decrease in the slot heights was significant when the boundary layer
was thin at the injection slot. A 307 increase in the cooling length was
obtained when multiple slot injection was employed, and an improvement in the
film cooling effectiveness downstream from the injection slot was found, Com-
parison with the existing results of Mach 6 experiments shows that film cooling
is8 more effective in high Mach number flows than in a low Mach number flow.
Approximate theoretical results have shown that the film cooling effectiveness
was predominated by the stagnation properties of the injectant., Experiments
of the upstream slot injection indicated that film cooling was more effective
in a high Reynolds number flow, and an increase in the step size of the forward
facing step increased the effectiveness,
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SECTION 1

INTRODUCTION

Various possible surface heating protection schemes have been proposed to
maintain a surface structure capable of withstanding the large heating loads at
high velocity., <Jne technique which provided » promising utilization is surlace
film cooling. In general, film cooling invol/es the introduction of a coolant
fluid through discrete slots, positioned along the surface to be cooled, to
insulate thermally the surface from the hot stream.

Experimental investigations of the film cooling due to tangential slot
injection, employing low-speed subsonic flow in both primary and secondary
streams, can be found in Refs, 1 to 5, The distribution of adiabatic wall
temperature downstream from a discrete tangential slot was measured, and the film
cooling effectiveness, in terms of dimensionless adiabatic wall temperature,
was computed, Correlations of the film cooling effectiveness were also found,
Existing empirical correlations of film cooling effectiveness due to single
downstream tangential slot injection are reviewed in Ref, 6, Due to the lack
of data of film cooling to a high Mach number flow, results extrapolated from
low Mach number flow data indicate an unfavorable effect, Recently, experi-
ments of film cooling effectiveness to a Mach 6 hypersonic turbulent flow,
using gaseous helium, hydrogen, argon, and air, indicated that a sub-
stantial gain in film cooling effectiveness was obtained, and that extrapola-
tion of low speed data was erroneous. In addition, it indicated that film
cooling resulted in skin friction reduction of up to 40%. By measuring the
local adiabatic wall temperature? experimental results indicated that
the film cooling effectiveness could be correlated in the form of

’ 0.8 -0.39
= (Taw,i' Ton)/(Toj- Tom) = 6.1 (x/s Ai,mg

for single tangential slot injection to a Mach 6 free stream,



The same correlation parameter was used d to correlate ex-
perimental data of downstream slot injection, except for a difference in the
power of decay. These investigations indicatecd a substantial gain over fila
cooling at low speeds. Recently,the effect of adverse pressure gradient on film
cooling due to tangential slot injection was investigated experimentallylo.
Upon comparison with available data of zero pressure gradient, it was concluded
that better effectiveness could be obtained for the same injection mass flow
rate when an adverse pressure gradient was present,

Film cooling due to multiple slot configuration in a two-dimensional case

can be found in Ref. 5. An increase in effectiveness for succeeding slot was
found significant. A model, with three downstream tangential slots, was used to
investigate the film cooling effectiveness to Mach 6 hypersonic turbulent flow,l1
Based on some analogies with jet mixing phenomena, turbulent slot
injection was analyzed, Results from experiments and theory were also compared,
An alternative scheme of film cooling employing upstream slot injection to
a wedge in Mach 6 flow has been performed 12. Coolant was injected
with a two-dimensional tangential injection slot, located at the base of the
wedge with a forward facing step. Boundary layer theory was used to predict
the experiments, Correlation of film cooling effectiveness was obtained from
a limited amount of experimental data,
In the present work experiments of the downstream and upstream injection
film cooling to blunt and sharp nose cones are described, Tests were
performed in a Mach 6 wind tunnel. Film cooling effectiveness of downstream
injection with single and multiple slot injections was determined, Correla-

tions of the film cooling effectiveness were found. Analytical film cooling



effectiveness, obtained from the approximate solution to the boundary layer
energy equation, was compared with experiments. Upstream injection film
cooling effectiveness,due to tangential slot with & forward-facing step,was also
determined from experiments., Their correlations were found. Different slo-s
were used in the tests,

For the downstream slot injection, stagnation temperature and stagnation
pressure of the tunnel were approximately 900°R and 1900 psia. Two different
tunnel stagnation pressures, 1000 psia and 1900 psia, were used for the up-
stream injection experiments. Air at a stagnation temperature of 530°R was
used as injectant for all tests. Distributions of wall heat transfer rates

and of static pressure were measured with various injection mass flow rates, Ex-

perimental film cooling effectiveness, ¢ = (Ta i Tow)/(To - Tom), was de-

W

3

termined from these measurements, The local adiabatic wall temperature was not

b

measured directly. It was inferred from the heat transfer measurements with the
aid of the theories of turbulent boundary layer and wall jet.

A large amount of data was obtained from the experiments, For the
downstream slot injection, the effects of the dimension of the injection slot,
the boundary layer thickness at the injection slot, and angle of attack on the
surface film cooling effectiveness were discussed, The effects of single and
multiple slot downstream injections on film cooling effectiveness were compared,
Approximate analytical and experimental results were also compared at zero angle
of attack. From the results of the upstream slot injection experiments, effects
of the free stream Reynolds number, size of the injection slot to the heat
transfer rates, wall static pressure, and the film cooling effectiveness were

investigated,
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SECTION 11

EXPERIMENTS

1. Testing Models

Two stainless steel models were designed for the present experiments. A
blunt nose cone tas used in the downstream f£ilnr rooling tests, while a sharp
nose cone was used in the upstream film cooling experiments.

a, Downstream Injection Model

A schematic drawing of the blunt nose cone is shown in Fig., 1, The cone
half angle was 7,5°, The nose radius was 0,4 inch and base diameter
was approximately 5 inches. Based on the correlation for coocling lengths given
in Ref. 7, three downstream axial symmetric tangential injection slots were
located along the cone surface at x = 1.2 inches, 5.6 inches, and 10,8 inches
respectively, These slots were made separately and threaded onto the main
frame of the conical body. They could be rotated around the centerline of the
blunt nose cone so that different injection slot heights between 0,0 and
0.025 inch could be obtained, Thin steel shimstock was used and special
efforts were taken to smooth out the body surface when any slot was closed.
Coolant air was supplied independently. Injection mass flow rates were
measured with three venturi tubes,

Chromel-alumel thermocouples, attached to the steel shimstock 0.0l inch
in thickness, were located along the plane of symmetry for heat transfer
measurements, Pressure taps, 0.02 inch in diameter, drilled normal to the
surface, were used to measure the wall static pressure.

b, Upstream Injection Model

The model consisted of a sharp nose cone and an axial symmetric upstream
injection slot with a forward facing step, Fig. 2. The outside surfaces near
the base of the cone and the inner surface of the forward facing step were

used to form the axial symmetric upstream injection slot, The nose radius

4



was 0,031 inch with a half angle of 7.5°. The wall thickness was 0,020 inch,
The forward facing step was exchangeable to give different injection slot
heights, Rings could be fitted on the outer surface of the step to increase
the step size,{ . A venturi tube, 0,125 inch in diameter, was used to
measure the injection mass flow rates, Chromel-alumel thermocouples and
pressucre taps, 0,02 inch in diameter, drilled rormal to the surface, were
also uted to measure the distributions of the heat transfer rates and the

wall static pressures,

2, Testing Facility

All tests were performed in the Aerospace Laboratory in the New York
university blowdown type tunnel equipped with a Mach 6 axisymmetric contoured
nozzle, The facility consisted of a 2200 psia air supply, a regenerative type
heater capable of delivering 900°R air with a mass flux of up to 60 lbs/sec,
The test section was 1 feet in diameter with a uniform flow 9 inches in
diameter and 3 feet in length, The tunnel was capable of supplying nominally
constant stagnation temperature flow up to 40 seconds of running time., The
temperature time vecord from the response of the thermocouples and pressure
readings from the pressure taps were recorded with a visicorder, Details
of the equipment can be found in Ref, 13, For the presently described tests,
models were mounted on a moveable support in line with the center of the

contoured nozzle,

3 Testing Conditions

Downstream Injection

The blunt nose cone was used for the experiments of downstream injection,
The stagnation temperature, TOD. and stagnation pressure, P’ of the wind
tunnel were approximately 900°R and 1900 psia, These resulted in a Mach 5,85

freestream with a Reynolds number, Re,, 3.8 x 107 per foot in the test section,



Two different injection slot heights, s = 0,015 inch and 0,025 inch, were used,
Air at a stagnation temperature of 530°R was used as the injectant, Measure-
ments were taken for the following different injection slot arrangements with
the injection mass rates indicated:
(1) Single Slot snjection

(a) First Slot Injection, 0.49 < kl.m <175

(b) Second Slot Injection, 0,22 < >‘2 o< 1.38

(c) Third Slot Injection, 0,16 < X3 oS 1,89

(2) Combinations of Two-Slot Injections
(a) Combinations of lst and 2nd slot injection

0.224 < 12 oS 1.3

100 < (91 <320

(b) Combinations of 1st and 3rd slot injection
0.302 < >‘3,ms 1.07

260 < CPI < 730

(c) Combinations of three slot injection
0.31< 3.3 <1.85
» 0
200 < CPI <580
200 < CPz <590

A major portion of the present tests were concentrated on the case when
the model was at zero angle of attack, Some tests were done to take the

measurements on the windward and leeward sides when the model was at an 8°



angle of attack, Additional tests were performed to measure the distributions

of surface heat transfer and static pressure without slot injection,

Upstream Injection

The sharp nose cone was used for the experinents of surface film cooling
due to upstream slot injection, Tests were also performed in a Mach 5,85
freestream, The injection slot height, s, was 0,03 inch, Two step sizes,
{4 = 0.2 inch, and 0,36 inch were used, Tests were conducted with a freesfream
stagnation temperature, TOw = 900°R, but with two different stagnation
pressures, p = 1900 psia, and 1000 psia, Two corresponding freestream
Reynolds numbers, Rem, 3.8 x 107 per foot, and 1,9 x 107 per foot, were ob-
tained, Air at a stagnation temperature of 530°R was injected tangentially
in the upstream direction. Measurements were taken for the following injectiom

conditions,at zero andle of attack:

(1) s = 0,03 inches, { = 0,36 inches, Poo ™ 1900 psia

0.0 < Xm <1,10

(2) 8 = 0,03 inches,4 = 0,36 inches, Pow = 1000 psia
0.0< A < 0,98
m
(3) s = 0,03 inches,4 = 0,20 inches, Pow = 1900 psia

0.0< A <0,72
m

4, Results of Experiments

The local thin-skin technique7was used to evaluate the heat transfer rate
from the slope of the temperature time record of the thermocouples on the model.
Surface pressure and the injection mass flow rates were measured with the

pressure taps and the venturi tubes, Thermocouples, pressure taps, and venturi



tubes were calibrated before all tests, Experimental results of the downstream
injection at zero angle of attack are presented in Figs, 3 to 23, Results at an
8° angle of attack are shown in Figs. 24 to 30, Results of the upstream slot

injection are shown in Figs. 31 to 36.



SECTION III

FILM COOLING EFFECTIVENESS

In the investigation of surface film cooling, the effectiveness, de-
fined as ¢ = (Taw,i - T, )/(Toj - T, ), was used to estimate the film
cooling efficiercy. In previous investigationsG. the local adiabatic wall
temperature was measured directly, However, in recent 1nvest1gations7’8’12,
the local adiabatic wall temperature was inferred from the transient heat
transfer measurements, and the corresponding film cooling effectiveness was
obtained, This technique has been found satisfactoryg. The same method
was used here to obtain the local adiabatic wall temperature, Reynolds
analogy of the turbulent boundary layer was used for the downstream slot
injection at zero angle of attack, For the case of an 8° angle of attack,
approximate estimations of the film cooling effectiveness were made with
the assumption that the local heat transfer coefficient was the same with and

4,15

without injection., The wall jet theory1 was applied to compute the local

adiabatic wall temperature for the upstream slot injection experiments,

1, Downstream Injection at Zero Angle of Attack

a, Experimental Approach

In order to insure that turbulent boundary layers developed along the body

surface, existing theory16 was used to investigate the experimental measure-
ments for the case of zero injection, Neglecting the effect of entropy
swallowing across the detached shock caused by the bluntness of the blunt
nose cone, a modified Newtonian approximation was used to estimate the edge
conditions of the boundary layer along the nose part, The boundary layer
thickness at the location of the first injection slot was obtained with the

following equation given in Ref, 17,



0.2

¢ = 0.37X R,
X0 y-1_ 2 4
where Re, = Pe Ye x/ s X = ( S‘ Pdx')/P, with P = (Me/(1l+ e Me“)).
o

The corresnonding boundary layer moment:us thickness was estimated by
assuming 8/6 = 0.06518. This momentum thickness, € = 0,0015 inch, was
used as an input of an existing numerical program to compute the theoretical
surface heat transfer rateslb. without the effect of injectant,
Theoretical results were compared with the measurements ijn Figs. 37 and 38,
In the investigation ]9, the flat plate reference enthalpy method was
found to give quite accurate predictions of fully developed turbulent heat

transfer rates. The basic formula for the relation between Nusselt and

Reynolds number of a turbulent flow was given as:

1/3 4/5

N. = 0,030 pr

Nu (N

R
This formula was used to verify the present experiments and the results
are shown in Fig, 39, From the comparisons between these existing theories
and experiments, it could be concluded that turbulent flow was established
along the body surface of the nose cone.
For these tests of downstream slot injection with large injection
mass flow rates it was assumed that an inner turbulent boundary layer,
dominated by the properties of the injectant, originated at the injection
slot. The local skin friction was determined from the development of this

turbulent boundary layer. Tor a cone at zero angle of attack, the surface

)
skin friction factor , Cf, has been found “6, to be

0.571 0.452

-0, 22
Ce = 0. 102 (Mej a_ x/Voj) (Tej/ Tref) (Toj/Tej)

i
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and the Stanton number, St, was also given as

st = 0,051 C, pr-2/3

vhere the reference temperature, Tref' was frund from

T /Te 0.5 (T, /T, +1) +0.22 (Taw,i/Tej'l)

y j

and was a function of the unknown adiabatic wall temperature, Taw g when coc ant
’

ref

was injected,

The effect of the external flow on the film cooling was through the
static pressure which was imposed on the inner layer, It has been found from
these experiments that the wall pressure distribution was independent
of the presence of the injectant. The local Mach number Mej external to the

inner layer, was determined from the wall static pressure, Py and the

stagnation pressure of the injectant, poj’ with the isentropic relations. The

local heat transfer rates. Q , was obtained by

Q= (St) p (T

aw,i )

ej Yes %

Numerically, trial and error was used to obtain the local adiabatic wall
temperature which gave a heat transfer rate within 95% of the experimental
value, This adiabatic wall temperature was used to define the ex-
perimental film cooling effectiveness of the downstream slot injection at
zero angle of attack,

b, Analytical Approach

Experimental and theoretical investigations of multiple slot downstream
film cooling on a cylindrical axialsymmetric body can be found in Ref, 11,

This theoretical analysis was extended to predict present experimental

effectiveness,

11



Consider the boundary layer energy equation, written in terms of the
dimensionless stagnation enthalpy, for constant Cp and unit Prandtl number,
Introducing the Von Mises transformation20 one eimplified the boundary layer
energy equatior to the following form:

d = 9 puu A
4 H FY] C bk, Y3 ] (1)

with H = H/M,

¢ S: o Mo U, T dx

- - pu
] Pg U T Sy(pu)dy'
e e

o

O

e

The dimensionless quantities Be’ Ge' ﬁe and r are defined by

Pe = pe/pw, u, = ue/um, r =r/s, and ie = pe/p°° T
Employing the modified Oseen approximation in the form
pru=k Pref Pref “ref

with k as a proportional constant,

¢ ¢
lee £ = § (&% yac-§ £,
o

Pelee

Equation (1) becomes

M _ 3°H
= 2 (2)
3k )
subjected to the following initial and boundary conditions:
at § = 0, HQY) = ﬁo’ initial
A

at ¥ =0, (W) E, o) =0 3)
at § = ®, H (E,¥) = H .

12



Approximate and exact solutions to the governing equation (Eq. (2)), with the
initial and boundary conditions of Eq. (3) are described in Ref, 11, However,
approximate solutions predicted satisfactorily the two-dimensional experimental
results, and will be used in the present work.

In terms of the Von Mises coordinate, we define the edge of the slot. where

y = 8 as *n = wjn‘ Then the equivalent initial profile can be described by

H =H ., < <

¥ o=l for O Wn an

H <y <

Ho av,n-1 for an *n wav,n-l + wjn
H <

Hoe kot wav,n-l + *jn vn

where we have subscripted the independent variable ¥ so that the correspondence

to the particular slot is apparent, In any new setup, wav n-1 is defined
»

/H_ = 0.99 and ﬁo is defined by

as the value of ¥ _, where B L oke av,n-1

- vav,n-l -
Hoav,n-l= (I/Wav,n-1>.L Ho dwn-l

when the integral is taken at & = gn for the (n-1) slot. The solution to the

governing equation (Eq (2)) can be found in Ref, 12, The results are:

(Hon- Hom)/(ﬂoj - HOQ) = (Ton- Ton)/ (Toj' Tow)

T .- T = ¥V +* v - ¢
= 1/2 (T°j ~ ;av,n 1 ) [E:f (_E.___JE_) - Erf oll___lﬂ) ]
o] o 2 d@i 2 JE'

T -T + -4
+ /2 (-28um-l om, [Erf (_W,, #“) - Ecf ( o - ¥ ]

n
. el
T T 2\/2- 2J§_

o] o

%)
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with vn - 'an + vav,n-l'

The film cooling effectiveness, L for € 2 gn, can be obtained by

setting § = 0 ia Eq, 4),

cn - (Taw,n B Tom)/(Toj ) TOm)
T, -T ] T -T
o} o,av,n=1 n oav,n-1 "o
- =2 ) Erf (—dB ) 4+ 22Nals )
oj oo 2/8 o} oo
| P
Erf ( 'in av, n-1 ) (5)

2Je

For the present case of thin boundary layer thickness, the effect of wav

,n-l
wag neglected, and the film cooling effectiveness was found to be
Vin
€ = Erf (—=) (6)

n
2fe
The reference properties were the main stream fluid properties evaluated at the

reference temperature defined by

Tref = 0.5 (Tw-+ Te) + 0,22 (T°°° - Te)

The temperature, T,, of the freestream was obtained by neglecting the effect of
the entropy swallowing across the detached shock wave, Total pressure was
assumed constant at the edge of the boundary layer.

In the evaluation of the Von Mises coordinate, wjn’ at the edge of the
injection slot, assumption of the profiles of the coolant properties should be
made, Details in this respect can be found in Ref, 11, In the present in-

vestigations, a linear variation of pj uj at the slot exit was assumed, {i.e,,

14



u n = y/s., The injectant properties and u, at y = s, were
evaluated from the injectant stagnation conditions with the assumption that the

coolant air was injected at sonic velocity, {.e. Mj = 1.0.

2. Downstream Injection at An Angle of Attack

In these tests, the blunt nose cone was set at an 8° angle
of attack. An appropriate estimation of the effectiveness of the surface film
cooling along the plane of symmetry on the windward side and leeward side was
considered. The following assumptions werc made:

A. Due to the existence of the cross flow, the effect of the film coolant
on the local heat transfer coefficient, h, was insignificant, The local heat

transfer rate was related to the local adiabatic wall temperature by

Qo LS (Taw,o B Tw)’ xi,m =0 ™
Qi =h (Taw,i B Tw)’ >‘1,m >0 ®)
B. The local adiabatic wall temperature with zero injection, Taw,o’ was
given by
Taw:Te(1+Z£l Me2 x 0.9 )

’
where a recovery factor, 0.9, was assumed.
C. The effect of entropy swallowing across the detached shock was neglected.
Isentropic relations were valid for the estimation of the free stream conditions
with constant stagnation pressure after a normal shock in M= 5.85 freestream,
From Eq. 7, the local heat transfer coefficient can be found with the aid
of the heat transfer measurements with zero injection effect. Using this local

heat transfer coefficient, we computed the local adiabatic wall temperature with

15



injection, T . ,, from the corresponding measured heat transfer rate according
’
to Eq (8). This adiabatic wall temperature was used to evaluate the local

film cooling effectiveness at an angle of attack,

3. Upstream Injection

Experimental and theoretical investigatiuns of single upstream slot in-
jection film cooling on the surface of the wedge in a Mach 6 freestream can
be found in Ref. 12. It was concluded that the turbulent boundary layer was
separated due to the presence of the forward facing step. A dead air region
was created near the forward facing step, However, turbulent boundary layer
analysis was assumed valid and Reynolds analogy was used to determine the local
adiabatic wall temperature from the heat transfer measurements at various in-
jection mass flow rates. Corresponding film cooling effectiveness due to the
upstream slot injection was computed. Limited data were used to define a
correlation of the film cooling effectiveness.

A different approach was used to estimate the local adiabatic wall tempera-
ture from the heat transfer rate in the present studies. It was assumed that
the boundary layer along the conical surface was separated due to the presence
of the forward facing step. A dead air region was created around most part of
the conical body. A flowfield similar to the wall jet existed when the coolant
air was injected.

For the case of cylindrical wall jets, heat transfer rates and velocity
profile survey were presented in Ref, 14. Experimental results were also
correlated. Velocity and temperature profiles in plane wall jets, can be
found in Ref. 15. Colburn analogy was used to relate the local heat transfer

rate and skin friction coefficient. The following relation 1is also given in

16



Ref, 15,
-0.25

u.s
h/;nj ¢, = 0.184 x/s) ~0+80 ¢ -\‘,- ) (9

with h = Q/(Taw’l - T,)
It has been found14 that under similar conditions the Stanton
number values for a cylindrical wall jet are as much as 1,7 times that of a

plane wall jet. Therefore, for a cylindrical wall jet, Eq. (9) becomes

] -0.25

u
h/puy C = 0.313 (x/s) g0 ) (10)

Equations (9) and (@, were used to evaluate the coefficient of heat transfer
h, for the present upstream injection exveriments, With the aid of the measured
heat transfer rate, the local adiabatic wall temperature, Taw 1’ at different
?
upstream injection mass flow rates, was computed. The corresponding
experimental film cooling effectiveness, defined as ¢ = (Taw,i - Tbm)/(Toj.Tom)’

was found.

17



SECTION 1V
CORREIATIONS OF EXPERIMENTAL FILM COOLING EFFECTIVENESS

Studies of the film cooling effectiveness correlation have been a major
consideration in the single slot film cooling investigations, For donwstream injection
theoretical correlations derived from different boundary layer models of svcface
film cooling have been reviewed in Ref, 6. Film cooling effectiveness of a
single downstream tangential slot injection to a Mach 6 high speed mainstream
is presented in Refs, 7 and 8, Simple correlation of the effectiveness,
in terms of the geometric parameter x/s, and the injection mass flow rate,
kme = pj “j/pe u,, vas obtained. The same correlation parameters were also
used in Ref. 9. Satisfactory correlations were obtained. For upstream slot in-
jection film coolinglz, limited amounts of experimental data were used to
obtain a correlation for surface film cooling in a two-dimensional hypersonic
flow.

In the present work, the parameter, x/s, and the injection mass flow rates
xi,me’ and km were used to correlate the film cooling effectiveness of the downstream
and upstream slot injection. Results were summed up as follows:

1. Downstream Injection at Zero Angle of Attack
a. Single Slot Injection

Experimental film cooling effectiveness due to single slot downstream in-
Jection are plotted in terms of the correlation parameters in Figs. 40 to 42,
Correlation of the film cooling effectiveness was obtained for each case and
they are given as follows:

(1) First Slot Injection (Fig, 40)

0.8 -0.384
¢ =4.01 (x/sl Mome)® for s, = 0.015 in.

-0.364

008
¢ =3.90 (x/s1 *1,me) , for s; = 0,025 in,

18



(2) Second Slot Injection (Fig, 41)

. 008 -0c37" =
¢ =4.62 (x/s2 Az,me) , for 8, 0.015 in
0.8 ,-0.370
€ =4.25 (x/s2 kz,me) , for s, = 0.025 in

(3) Third Slot Injection (Fig, 42)
8 -0.222

ol
¢ =2.12 (x/s3 x3,me) , for 85 0.015 in
) 0.8 | -0.279 )
¢ =2.68 (x/s3 k3,me) , for 8, 0.025 in

b, Combination of Two Slot Injection

The film cooling effectiveness, at a distance x downstream from the 2nd

injection slot, was correlated in terms of the dimensionless distance para-

meter, x/si’and the injection mass flow rate, 11 me’ of the 2nd slot. A
t4

0.8

e , was used to represent the injection of the preced-
’

parameter, ¢ ,* xl/s1 A
ing slot.

(1) Simultaneous Injection of the First and Secont Slots

From the results of experiments, Fig. 43, two correlations were obtained
for two different ranges of the injection mass flow rates of the preceding

injection slot. These correlations are:

~ 0.8 , -0.277 ~
¢ = 3.15 (x/s2 xZ,me) » 89 0.015 in and &, > 200
~ 0.8 . =0.277 )
€ = 3.15 (x/sy Ay"p ) , 8§y = 0,015 in , g, < 200
and x/s2 10'8 < 150
2,me
0.8 , -0.45 ~
¢ =7.50 (x/s2 l2,me) » 8y =0.015in, @, < 200

0.8
and x/s2 lz,me > 150
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(2) Simultaneous Injection of the First and Third Slots

In this case, one correlation was obtained from the present experiments,

Fig. 44, The correlation was

e 3 = 0.015 in, and 9, > 250

¢c. Three Slot Injection

Simple correlation was obtained for the film cooling effectiveness down-
stream from the third injection slot, Fig. 45. Two parameters, 9y = xl/s1
0.8 0.
hl,me and ¢ = xz/s2 KZ,ze , were used to represent the injection of the two

preceding slots. Correlations were found to be

] 0.8 . -0.242 L
¢ = 2.45 (x/s3 x3,me) , for 8 =8, =8, = 0.015 in,
with ©, >200  and @, > 100, and
~ 0.8 | -0.282 o
¢ =2.93 (x/s3 13’me) , for §) =8y =8, = 0.025 in
with ¥ > 268, and v, > 140

2, Downstream Injection at an Angle of Attack

The film cooling effectiveness of the blunt nosed cone at an 8°
angle of attack, obtained from the method described in Section 111-2, was
correlated in a form similar to that of the results of the cone at zero angle
of attack., Correlations of the film cooling effectiveness in the plane of
s:mmetry on both the windward side and leeward side, with an injection slot
height of s = 0.(15 in., are shown in Figs. 47 to 52 and are given in the

following way.
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a, Effectiveness Correlations on the Windward Side

1. Single Slot Injection, Fig. 47,

Effectiveness correlation due to single first slot injection was

given here only

0.8, -0.933 L
¢ = 38.2 (x/s1 kl,me) , fors, = 0.015 in,

2, Combinations of Two Slot Injection

Film cooling effectiveness was correlated in the way similar to

that of the cone at zero angle of attack, with parameters, 0= xl/s1 xg'ze .
’

9, x2/s2 kg'ge to represent the injection of the preceeding injection slots:
]

(a) Simultaneous Injection of the First and Second Slots, Fig. 48

0.8 , -0.536 o
€ = 6.4 (x/s2 k2,me) , for 8, =8, = 0.015 in,

and 160 < ®; < 230.

(b) Simultaneous Injection of the First and Third Slots, Fig. 49

0.8 . -0.8 )
¢ = 21.4 (x/s3 k3,me) , fors =8, = 0.015 in

and 370 < 0y < 700

3. Three Slot Injection, Fig. 50

0.8 -0.637

3 k3,me) , for s, =8, =8, = 0,015 in.

€ = 11.1 (x/s 1 2 3

and @, > 450, ¥, > 340

b, Effectiveness Correlations on the Leeward Side

A limited amount of present work was done toward the measurements of the

heat transfer rates on the leeward side where the blunt nose cone was set at an
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8" angle of attack, Correlations of the film cooling effectiveness of the
present experiments are shown in Fig. 51-52 and given in the following:
(1) single Slot Injection Due to the First Injection Slot

¢ = 750 (x/s, A‘l’:ge) “1-% | for s, = 0.015 in. and x/s; A

0.8 -

/,
1,me 54

(2) Simultaneous Injection of Two Injection Slots
From the present experimental results, the film cooling effectiveness due
to simultaneous injection of the first and second slots and the film cooling
effectiveness due to simultaneous injection of the first and third slots were

found to be correlated in a single correlation given by

0.8 -0.855
¢ =21.4 (xilsi ki,me) , with i =2, and 3

For g8, =

, 0.8 ]
155 = 0.015", and xi/si li,me >36, 1 = 1,2

®3

3. Upstream Injection
Experimental film cooling effectiveness of the present upstream film

cooling is shown in Figs. 53 to 56. Correlations obtained from different

testing conditions are presented in the following:

a, Based on the plane wall jet, Eq. (9), Figs. 53 and 54

(1) for s = 0.03 in, ¢4 = 0.36 in,, Re = 1.9 x 107 per foot,
€ =5.9 (x/s Am)-o'521
(2) for s =0.03 in. 4 = 0.36 in., ard Re = 3.8 x 107 per foot

¢ =4.45 (x/s xm) =0.420
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¢) for s = 0.03 in., 4 = 0.20 in., and Re_= 3.8 x 10’ per foot

¢ = 3.21 (x/sxm)-0'36

b, Based on the cylindrical wall jet, Eq. 10, Figs. 55 and 56,

a) For s = 0.03 in., ¢ = 0.36 in., and Re = 1.9 x 107 per foot
¢ = 2.81 (x/skm)-o'Bls

b) For s = 0.03 in., 4 = 0.36 in., and Re = 3.8 x 107 per foot
€ = 2.78 (x/sp ) 028°

c) For s = 0,03 in., 4 = 0.20 in., and Re = 3.8 x 107 per foot

€ =2.35 (x/sxm)'o'268
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SECTION V

DISCUSSIONS AND CONCLUSIONS

The measurements of the present tests, the assumptions made in the analysis
of the experimental data, and the results obtained are discussed in the follow-
ing paragraphs,

l. Downstream Injection at Zero Angle of Atteck

a, Measurements of the local heat transfer rates, without the effect of slot
injection, were compared with the results of the existing turbulent boundary
layer theory 16. As can be seen in Fig, 39, smaller values were
obtained in the experiments, However, the pertinent parameter of the
theoretical results {s the initial boundary layer momentum thickness at the
first injection slot, The difference may be due to its effect and the
assumptions of the existing theory, The local Stanton number and Reyrolds
number were also computed from these measurements, They were compared
with the results of the Flat Plate Reference Enthalpy Method 19, In
Fig. 39. Present experimental results indicate that turbulent flow existed
along the surface of the blunt nose cone,

b, Measurements of the wall static pressure with different arrangements of
the slot injection have shown that the difference in the wall static pressure be-
tween the cases, with and without injection, was insignificant within the accuracy
of the measurements, Similar resu’'ts have been found in the previous investiga-
tion of the film cooling to a Mach 6 hypersonic turbulent flow 7-10.

The change in heat transfer due to the static pressure variation was small,

¢. The injection mass flow rate, ki,me= piuj/peue, used to correlate the

film cooling effectiveness, was based on the free stream properties, Per Ugs

external to the boundary layer at the location of the specific injection slot.

The effect of the entropy swallowing was neglected, and the total pressure across
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the normal shock at M = 5.85 was used to determine the free stream conditions
with the aid of the measured wall static pressure. From the numerical solution
of the turbulent boundary layer, the mass flow rate in the boundary layer at a
location, x = 15 inches, was computed according to the theoretical momentum
thickness obtained, ~Cree stream, M, = 5.85, in a stream tube of a cross-
sectional area of 0.14 inch in radius contained the equivalent mass flow rate,
The shock shape, constructed according to the shape equation given in Ref. 23,
was found predominated by the normal shock in a region of 0,14 in, in radius, This
indicated that the entropy swallowing effect could be neglected in the determina-
tion of the free stream conditions at the edge of the boundary layer. The
stagnation pressure across a normal shock in a Mach 5.85 free stream could be
used to determine local free stream conditions,

d In the determination of the local adiabatic wall temperature with slot
injection, Reynolds analogy between skin friction and heat transfer rates was
used, It has been assumed that an inner turbulent boundary layer, dominated by
the stagnation properties of the injectant, originated at the injection slot,

The local skin friction factor, Cf, was obtained by using the existing theory
Ref, 16, for flow along a conical body surface. It has been found that large

injection mass flow rates, A » were used in these tests. Film cooling

i, me
to the stagnation reg on of a blunt body has been analyzed for the

laminar case.21 This theoretical analysis concluded that, at high
injection mass flow rates, the boundary layer can be divided into two layers,

a thick inner layer of constant shear, constant temperature, and

constant composition fluid and a thin outer layer in which the fluid properties

adjust themselves rapidly to the external flow values, The present assumption

is congistent with this theory, Similar techniques, used in the previous
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investigation Z with the assumption that the skin friction can be

determined from a turbulent boundary layer originating at the tip of the nose
were also used to evaluate the local skin friction factor for the experiments
The corresponding local adiabatic wall temperature was computed. A

difference of 57 in the adiabatic wall temperature was found, Its effect on
the cooling effectiveness was insignificant, However, the previous investiga-
tions were for the case of surface film cooling to a thick turbulent boundary
layer with smaller injection mass flow rates. The injectant thickened the
turbulent boundary layer and decreased the local skin friction,

e) The experimental film cooling effectiveness was found capable
of being correlated in a way similar to that of film cooling to a cylindrical
body in a Mach 6 hypersonic main stream7. However, a different rate of
decay of the correlation was obtained. This was due to the three-dimensional
effect, From the comparisons of the correlations of the single slot
injection with that of the two-dimensional case8, the single slot injection
due to the third slot injection is seen to show strong similarity to the two-
dimensional case, Fig, 42, An approximate Mach 3 free stream external to
the present conical body was obtained. Smaller effectiveness was obtained from
the present experiments, This indicated that surface film cooling was more
effective in a high Mach number main stream than in a low Mach number flow.

f) In order to investigate the effect of the boundary layer thickness at
the injection slot on the surface film cooling effectiveness, results of the
experiments of ringle slot injection with the same injection mass flow rate
A =~ 0,50 and different slot heights, s = 0.015", 0,025", are shown in

i,m
Fig. 57, A large reduction in the film cooling effectiveness of the first
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slot injection due to a decrease in the slot height is shown, However, there
was no significant reduction in the effectiveness due to reduction of the slot
height for single slot injection due to the second slot or the third slot,
Thus, it has beer concluded that a reduction in the effectiveness due to a
decrease in the slot height was significant only when the system was operated
with a thinner boundary layer at the location of the injection slot. The
effect of the boundary layer thickness on the film cooling effectiveness in

a low Mach number flow can be found in Ref. 22, It is concluded that when
the system was operated with thick boundary layer at the injection slot and
with a 0,25 inch slot, there was but a minor reduction in the effectiveness
at large distance downstream, A greater reduction existed with a 0,125 inch
slot and with the 0,063 inch slot, The present results of single slot in-
jection were found in agreement with their statement,

g) Correlations of the film cooling effectiveness due to single slot in-
jection have shown that the cooling length, the distance downstream fram the in-
jection slot in which ¢ = 1.0, was similar when the boundary layer was thin at
the injection slot, The effect of the boundary layer thickness on the cooling
length was insignificant when a large injection slot was used. These results
can be seen in Fig, 58.

h) From the comparisons of the effectiveness downstream of ithe injection
slot between single and multiple slot injections, as shown in Fig, 46, a 23%
increase in the cooling length was obtained for the case of two s'ot injection
while a 37/ increase in the cooling length was found in the case of three slot
injection.

i) With the same injection mass flow rates, comparisons of the experi-

mental film cooling effectiveness between single and multiple slot injection are
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shown in Figs. 59 to 61. Multiple slot injection improved the effectiveness
far downstream from the nose region with significant decreasing in the
effectiveness near the nose part,

J) For the case of simultaneous first aul second slot downstream in-

jection at zero angle of attack, two different correlations were found when

0.8

xlls1 Al was less than 200, Fig, 43, An increase in the effectiveness

due to the preceding slot was significant when the mass flow rate of the

second slot, A, , was less than 0,50, When the injection mass flow of the

2,m
second slot was greater than 0,50, correlation of film cooling effectiveness
similar to that of the single second slot injection was obtained, This
indicates that when a large mass flow was injection through the second slot,
effect of the surface film cooling was predominated by this slot and the
effect of the preceding slot injection was insignificant., Similar results

of film cooling with multiple slots in a two-dimensional case can be found

in Ref, 5.

k) Approximate analytical results of the film cooling effectiveness were
compared with those of the experiments in Figs, 62 to 67, Two values of the
proportional constant, k = 1,0 and 2.0, were used in the modified Oseen appro-
ximation, Most parts of the analvtical results indicated that higher film
cooling effectiveness was obtained., This was due to the fact that the
analytical results of the film cooling were dominated by the properties of
the injectant.20
2. Downstream Injection at an Angle of Attack

In the evaluation of the film cooling effectiveness from the measurements

for the blunt nose cone at an 8° angle of attack, the effect of the coolant
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injection to the local heat transfer coefficient, h, was assumed insignificant,
Though the effect of angle of attack has not been thoroughly investigated,
significant results were found., Results on the windward and leeward side were
discussed separately and compared with the resvlts of zero angle of attack,

8) Film cooling Effectiveness on the Windwerd Side

1) The correlation parameter used in the case of zero angle of attack,
was found capable of correlating the present experimental film cooling effective-
ness at eight degree angle of attack. Simple correlations were also obtained
from the present experimental data,

2) A comparison of film cooling effectiveness between the cases with
and without angle of attack has been made for thc first slot injection and is
shown in Fig.51 . Here, the adiabatic wall temperature at zero angle of attack
was obtained in the same way as that with angle of attack.

For same injection mass flow rates, Al,m’ higher film cooling effectiveness was
obtained at zero angle of attack., The cross flow effect on the reduction in the
effectiveness was significant far downstream from the injectant slot. The film
cooling effectiveness at zero angle of attack with kl,m = 1,08, obtained from
the method of Section III-1,is also shown, Higher film cooling effectiveness
was obtained from that method.

3 Comparisons of the film cooling effectiveness due to multiple slot in-
jection between the cases with angle of attack and without angle of attack are
shown in Figs. 48 - 50. Large reduction in the effectiveness was found at an
angle of attack.

b) Film Cooling Effectiveness on the Leeward Side
1) Single correlation of the film cooling effectiveness, presented in

Section IV-3, was found inadequate to correlate the present experimental data
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near the injection slot, Figs., 51 - 52, Separate correlations, as is discussed in
Ref. 5, must be used. It is also indicated in Ref, 5 that the film cooling
effectiveness due to multiple slot injection can be correlated into a single
curve. The prescul results of multiple slot injection, Fig. 47, have shown t.e
similar tendency. The effect of the distance between the injection slot on the
cooling effectiveness downstream from the last injection slot has not been found.
2) The wall static pressure distribution on the lecward side was very
small compared with that on the windward side or with the results
at the zero angle of attack. With the same mass flow rate of the injectant, a
large value of the injection mass flow rate, xi,me’ was obtained on the leeward
side. This might contribute to the particular results of the correlation of the
film cooling effectiveness. However, a comparison of the film cooling effective-
ness among the cases of downstream injection with and without angle of attack,
with the same injection mass flow rate, Ai,m’w 1.10, 1is shown in Fig.68

Significant increase in the effectiveness near the injection slot was found along

the leeward side.

3. Upstream Injection

General review of the flow field produced by a jet issuing into a counter
mainstream has been described in Ref. 12. The mainstream has to overcome the
obstacle presented by the jet and the forward-facing step. Its boundary layer
separate because of the adverse pressure gradient. The large separated region
of the mainstream exchanges momentum by mixing with the injection flow, which

is also separated near the stagnation point. 1n the present work, results of
wall jet theory, (Eqs (9) and (10) of Refs. 14 and 15), were used to compute the

local adiabatic wall temperature when the coolant was injected. The local skin
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friction coefficient was determined from the velocity profiles by a semi-
logarithmic representation of the value near the wall, Verification of the
validity of using these equations to determine the heat transfer coefficient,
h, for these tect.: required further investigati-ns of the velocity profile
measurements near the injection slot, However, the following results were
found,

a) The wall static pressure measurements, at zero injection mass flow
rate, indicate that the value of the static pressure increased gradually from
that at a conical surface at the tip to more than twice that value, at the
location of the forward facing step, When the upstream injection was applied,
oscillating pressure distributions were found with a step size, { = 0,36 inch,
But gradual increasing in the static pressure was found when the upstream in-
jection was applied with a step size,{ = 0,20 inch, A variation in the in-
Jection mass tlow rate also changed the distribution of the wall static
pressure,

b) Without upstream injection, higher heat transfer rates were obtained
when a larger forward facing step was used., Heat transfer rates increased with
an increasing in the free stream Reynolds number, A large decrease in the heat
transfer rate was found when coolant was injected, An increase in the heat
transfer rate near the tip region was also found, especially when the smaller
forward facing step, { = 0,20 inch, was used, Higher penetration of the injec-
tant could be obtained with a large forward facing step.

c) From the correlations of the film cooling effectiveness obtained in
the present studies, the following results were obtained.

1) With the same geometry of the upstream injectant slot, film cooling
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was more effective in a high Reynolds number flow than in a low Reynolds number
flow, Figs., 54 and 56.

2) An increase in the dimensionless quantity, { /s, resulted in an increase
of film cooling offectiveness, Fig. 53.

3) Compariscns between the correlations, obtained from the plane wall jet
and cylindrical jet theory, are shown in Fig, 69, Higher film cooling effecti-

veness was obtained from the cylindrical jet theory,
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SECTION VI

SUMMARY

Experimental investigation of the turbulent slot film cooling to the
surface of a nose cone has been performed, Two models were designed and used for
the experiments in a Mach 6 axial-symmetric wind tunnel, Multiple tangenti:l
downstream slot injection was used to iInvestigate the film cooling effectivuness
to the surface downstream of the shoulder of a blunt nose cone. Upstream in-
jection from a tangential injection slot, located at the base of a sharp nose
cone, was used to investigate the upstream film cooling to the surface of a
sharp nose cone,

Tests of the downstream slot injection were conducted with a tunnel
stagnation condition of 1900 psia, and 900°R. A high free stream Reynolds number
3.8 «x 107 per foot, was obtzined to insure turbulent conditions. Air at a
stagnation temperature of 530°R was used as injectant, For the upstream slot
injection, tests were performed with two different tunnel stagnation pressures,
1000 psia and 1900 psia, Air at a stagnation temperature of 530°R was also used
a8 an injectant,

Pressure taps and the transient thin wall technique were used to measure
the wall static pressure and heat transfer rates with different injection mass
flow rates. A large amount of data was obtained to analyze the surface film
cooling effectiveness., The local adiabatic wall temperature was not directly

measured but was inferved from the heat transfer measurements, Film cooling

effectiveness, ¢ = (T

aw,i” Tom)/(T

OJ-TOQ),was found from this local adiabatic
wall temperature, Correlations of the film ccoling effectiveness due to single
and multiple slot injection were obtained. The effects of the slot height and
the boundary layer thickness at the injection slot on the downstream film cooling

effectiveness were also investigated. A minor amount of the present work has been
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done at an 8° angle of attack.

These experiments indicated that downstream film cooling was more
effective in high Mach numbers than in a low Mach number flow. A reduction in
the effectiveness due to a decrease in the slict heights was significant whena
thinner boundary layer existed at the injection slot; a 307 increase in the
cooling length was obtained when multiple slot injection was employed; improve-
ment in the film cooling effectiveness downstream from the injection slot was
also found. Large reduction in the effectiveness on the windward side was
found with the same injection mass flow rate as that for an angle of
attack, The cross flow effect on the film cooling effectiveness was significant,

Approximate theoretical analysis, to predict the downstream film cooling

effectiveness, has shown that higher effectiveness was obtained from the theory

than from the experiments, The analytical film cooling effectiveness was
dominated by the stagnation properties of the injectant,

In the upstream injection, the main flow separated from the surface of the
sharp nose cone due to the existence of the forward facing step. Coolant was
injected upstream into the dead air near the injection slot. In contrast to
the results of the experimental measurements of the downstream injection,
distribution of the surface pressure was found to be a function of the injection
mass flow rate, The coefficient of heat transfer rate, obtained from existing
theory of wall jet, was used to compute the local adiabatic wall temperature
from the heat transfer measurement, Film cooling effectiveness was also found.
Results indicate t¢hat upstream film cooling was more effective in a high
Reynolds number flow than it was in a low Reynolds number flow. An increase in
the size of the forward facing step increased the film cooling effectiveness.

However, the validity of employing the wall jet thecry to estimate the local
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adiabatic wall temperature required detailed experimental investigation of the

velocity profiles of the flow field,
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Fig. 40 Correlations of the experimental film cooling effectiveness due to lst slot
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Fig. 53 Correlation of the experimental film cooling effectiveness, upstream injection,

plane wall jet theory 38
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