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Comments on Some Recent Researches in Thermomechanics 

by 

R.S. Rivlin 

Center for the Application of Mathematics 

Lehigh University, Bethlehem, Pa. 

1. Introduction 

I feel that this paper requires an apology since almost 

the whole of it is, in fact, material which, with virtually 

no change of essential content, might well form part of an 

undergraduate course on thermodynamics. My justification for 

writing it is my concern regarding a phenomenon, which has 

been developing over the past fifteen years or so and which 

has, in my opinion, had the effect of confusing many workers. 

These are rarely, if ever, physicists, or engineers whose main 

area of specialization is thermodynamics. Many of them are 

engineers whose specialty lies rather in mechanics; others 

are workers whose background lies largely in mathematics. 

The root of the confusion, it appears to me, lies in the 

point of view which has been advocated by a number of workers 

in the field of continuum mechanics, that theories in con¬ 

tinuum mechanics and thermodynamics should properly be based 

on a set of axioms, whose relevance to the behavior of real 
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systems is not a major responsibility of the theorist. In 

this connection, I may quote Professor Truesdell [1], who is 

a leading protagonist of this point of view: "As for 

'physical meaning', I claim no physical applicability for any¬ 

thing I ever say. That is, the application of the theory is 

left to the appliers. The theorist attempts to get the theory 

clear and to prove the theorems. Whether a theory applies to 

a given piece of material at a given time is something very 

important, but something the theorist cannot be expected to 

tell, in thermodynamics or any other theory". To a limited ex¬ 

tent, this statement is perhaps valid, in the sense that most 

theories that relate to the behavior of materials are based on 

idealizations. In application to particular real materials, 

deductions from such a theory are significant only to the ex¬ 

tent that the idealizations on which the theory is based are 

valid for the particular material and the particular pheno¬ 

menon with which the physicist is concerned. If the actual 

behavior of a physical system does not conform to that predic¬ 

ted, the theorist can always defend himself by maintaining that 

the axioms of the theory are not satisfied by the physical sys¬ 

tem considered. This, of course, makes it all the more necess¬ 

ary that it be reasonably evident, in formulating a theory, 

for what materials and under what conditions the axioms of the 

theory are likely to be valid. Certainly, if, following Pro¬ 

fessor Truesdell, one makes no claim that a theory has any 

physical applicability, and if indeed it has not, it would seem 

to leave the theory rather barren, unless perhaps it can claim 
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standing as pure mathematics. If the latter is the case, it 

seems rather misleading to use the terminology of physics in 

the formulation of the theory and even more misleading, as has 

been done in certain cases, to claim for it a seminal position 

in some branch of physics. 

In this paper, I shall be mainly concerned with a thermo¬ 

mechanical theory which was advanced by Coleman [2] in 1964. 

Since its publication, many papers have been written which, 

either ostensibly or in reality, stem from it. Furthermore, it 

has given rise to a secondary and even tertiary literature, 

substantial in volume. Most of this development is presented in 

an idiom which makes it opaque to the majority of physical 

scientists and obscures the fact that many of the results of 

the theory are, in fact, well-known results in thermomechanics, 

albeit derived from foundations which are less meaningful than 

those of conventional thermomechanics. In some cases, the 

apparent originality - and even surprising character - of the 

results stems from the use of common terms with an unconventional 

meaning. The fact that these results are usually presented and 

widely advertised as novel results of great depth serves further 

to confuse the issue. 

The point of view on Coleman's thermomechanics advanced 

in the present paper has been briefly touched on previously in 

my review [3] of a book by Truesdell and Noll [4] and in [5]. 

A more general comment on the axiomatic approach advocated by 

Truesdell has been given by Woods [6]. 
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2• The First Law of Thermodynamics 

The First Law of Thermodynamics states that the rate at 

which energy enters a body is equal to the rate at which the 

energy oi the body increases. The energy of the body is the 

sum of its internal energy U and kinetic energy T . The 

rate at which energy enters the body is the sum of the power 

F of the external forces applied to the body and the rate £ 

at which heat enters the body. The First Law can then be 

expressed as 

U + T = P + £ , (2.1) 

where the dot denotes differentiation with respect to time t. 

We consider that the body undergoes a deformation, in 

which a particle with vector position X in some reference 

configuration has vector position x at time t. The defor¬ 

mation is then completely described if the dependence 

x = x(X,t) (2.2) 

is known. 

We assume that, at time t, body forces <p per unit mass 

and surface forces F per unit area, measured in the reference 

configuration, act on the body. Then, the power of these 

forces is given by 

(2.3) 
V A 
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where V is the domain occupied by the body in the reference 

configuration, A is the boundary of this domain and pQ is 

the material density in the reference configuration. 

We assume also that heat enters the body throughout its 

volume at a rate R per unit mass and through its surface at 

a rate Q per unit area, measured in the reference configura¬ 

tion. Then, the rate at which heat enters the body is given by 

(i = j pqR dV + I Q dA . (2.4) 

V A 

In the present paper, we shall assume that the internal 

energy of the body is an extensive quantity, so that we may 

write 

U * I P0U dV , (2.5) 

V 

where U is the specific internal energy. Underlying this 

mathematical assumption is the physical assumption that the 

forces exerted on one part of the body by another are short- 

range forces. 

The kinetic energy T of the body is given by 

T = j dv • (2.6) 
V 

From (2.1), with (2.3), (2.4), (2.5) and (2.6), we can, 

by a method given by Green and Rivlin [7], derive the usual 

Piola-Kirchoff point equations of continuum mechanics. 
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Denoting the Piola-Kirchoff stress by Jl and the flux 

vector by Q, we obtain the point equation of motion 

(2.7) 

the expressions for the surface force F and heat flux Q, 

on a surface element with unit area and unit normal N in 

the reference state, 

F = N*n , Q = N«Q , (2.8) 

the symmetry condition 

G'JI = (G*n) + (2.9) 

and the dissipation equation 

PnU * tr G*n + 7»Q + p R . (2.10) 

In these equations, G denotes the deformation gradient 

matrix Vx , 7 is the operator 3/3X and the super¬ 

script t denotes the transpose. 

In a cartesian coordinate system, equations (2.7) - 

(2.10) take the forms, with obvious notation, 
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nAi,A * Vi ' Vi • 

Fi * nAiNA - Q ' qana 

Xi,AI[Aj " xj,AnAi ’ 

°0U ' Xi,A^Ai * Qa,A * »0R - 

(2.11) 

where >A denotes 3/3XA . 

Equations (2.7), (2.8) and (2.10), were derived by Green 

and Rivlin [7] from the First Law by using the consideration 

that the internal energy, applied forces and rate at which heat 

enters the body are unaltered if a rigid translational motion 

with constant velocity is superposed on the assumed deformation 

(2.2). The derivation of (2.9) requires that U, II, Q and R 

be unchanged if a rigid angular velocity is superposed on the 

assumed deformation (2.2). 

The more conventional method for deriving equations 

(2.7) - (2.10) employs, as its starting point, the laws of bal¬ 

ance of linear and angular momentum, as well as the First Law 

of Thermodynamics, but does not employ any considerations of 

invariance. Such considerations are, however, necessary in 

the formulation of constitutive equations. It is therefore 

strange that the protagonists of the axiomatic approach to 

continuum mechanics should adopt, in their expository writings, 

the conventional approach to the derivation of the point 

equations of thermomechanics, rather than the approach of Green 

and Rivlin [7], vhich would involve fewer axioms. 
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The dissipation equation (2.10) may be written, in terms 

of increments of the specific internal energy and deformation 

gradient matrix and the heat entering the body, as 

P0dU » tr dG-n ♦ V«dH ♦ p0dx , (2.12) 

where 

dH 

(2.13) 

In this form it may be applied in the idealized limiting cases 

when the deformation is carried out quasistatically or 

infinitely rapidly. If the dissipation equation is used in 

the form (2.12), we require equation (2.8)2 in the correspond¬ 

ingly different form 

dH * N*dH , (2.14) 

where 

(2.15) 

The dissipation equation (2.10) and the heat flux 

equation (2.8)2 may also be applied in these limiting cases, 

by taking t to be an appropriate time-like parameter, rather 

than real time, and regarding Q and R as rates measured 

with respect to this time-like parameter. 
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3* Empirical temperature 

The concept of empirical temperature is fundamental to 

the discussion of the Second Law of Thermodynamics. It is 

usually introduced in the context of systems in thermo¬ 

mechanical equilibrium. For an elastic material undergoing 

a quasistatic process, the state of the material at any point 

of the process is characterized by values G and Ü , at that 

point, of the deformation gradient matrix and specific internal 

energy. The empirical temperature 0 , at the point of the 

process considered, is then some function of G and U, thus 

0 * 0CÇ,U) , (3.1) 

which depends on the particular material considered and on the 

scale on which the empirical temperature is measured. It has 

the property that, if two bodies having the same values of 9, 

on the same scale, are in thermal contact, no heat flow.s from 

one to the other. If the values of 6 for the two bodies are 

different, then heat flows from the body for which 9 is 

greater to that for which 0 is less. 

It is also necessary to broaden the definition of 

empirical temperature to enable us to use it in discussing 

systems which undergo non-quasistatic processes. 

We consider materials with memory, for which the Piola- 

Kirchoff stress n at any instant t depends on the histories 

G(x) and U(r) of the deformation gradient matrix and speci¬ 

fic internal energy up to time t+ ; i.e. n is a functional of 



10 

G(t) and U(t) with support -» < t £ t+ , thus 
* 

n = n[G(T),u(x)] . (3.2) 

Let 0 be the value at time t of some scalar 

functional of G(x) and U(t) with support -» < x < t 
+ 

e = e[G(x), u(x)] . (3.3) 

Now suppose two bodies, of which the materials are not necess- 
* * 

arily the same and which are undergoing thermomechanical pro¬ 

cesses which may be different, are in thermal contact. If 

there is no heat exchange at time t , whenever 0 is the 

same for the two bodies, then 0 may be regarded as the empiri¬ 

cal temperature of the bodies at time t . 

According to this definition, if at the instant t the 

heat flux vector Q is zero everywhere in the body, the tem¬ 

perature is constant throughout the body. Now suppose we put 

this body in contact with another body, in which the tempera¬ 

ture is also constant. If one or both of the bodies is not in 

thermomechanical equilibrium, it may be that the instantaneous 

* We take the support to be -<»<x£t+, rather than -®<x<t , 
in order to accommodate materials for which II may Fe a 

function of the instantaneous values at time t of the 
velocity gradients, acceleration gradients, etc. 
(see, for example, [8,9]). 

** The functional dependence of 0 on U(x) and G(x) ex- 

pressed by (3.3) may, accordingly be different for the 
two bodies. 
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rate of exchange of heat between the bodies at time t is 

zero when the contact is made over certain parts of the sur¬ 

faces and non-zero when the contact is made over otner parts. 

If this is the case, the concept of temperature, as a single 

scalar quantity characterizing the ability of the body to ex¬ 

change heat with another body in contact with it. breaks down 

and we cannot assign a single scalar empirical temperature to 

the body. This is likely to occur when the thermomechanical 

processes are rapid on a scale measured by the characteristic 

times associated with molecular motions. Accordingly, the use 

Of the concept of empirical temperature is restricted to 

situations which are slow on this time scale. 

It is implicit in the definition of an ideal, or perfectly 

elastic material that the characteristic times associated with 

molecular motions are zero. Accordingly, for such materials we 

may employ the same relation (3.1) to define the empirical tem¬ 

perature at points of quasistatic and non-quasistatic processes 

equally. 

Finally, we remark that provided the definition of 

empirical temperature given in this section is valid for the 

non-quasistatic processes in materials with memory considered, 

then instead of describing a process by the functions G(t) 

and U(T) and regarding J and 0 as functionals of these, 

as we have done in (3.2) and (3.3), we may describe it by 

G(r) and 0(t). Then n and U are functionals of G(t) 

and 9(t), with support — < i < t+ , thus 
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n - n[g(t), 0(t)] , 

U = U[G(t) , 0 (x) ] . 
m0 

(3.4) 
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^* The Second Law of Thermodynamics for quasistatic 

processes. 

For many materials for which constitutive equations of 

the form (3.4) are valid, the memory implied by the functional 

dependence is of the fading memory type; i.e. the differences 

in n and U, measured at time t, for two deformation- 

temperature histories which differ only up to time t - 7 , 

decreases to zero as 7 increases to infinity. This behavior 

of the material considered can be expressed in mathematical 

terms in a variety of ways by placing appropriate continuity 

restrictions on the functionals in (3.4). Whatever the details 

of the mathematical description of fading memory, it is apparent 

that materials with fading memory behave as elastic materials 

with respect to quasistatic processes, so that, for such pro¬ 

cesses, we may write 

n = n(G,0) , U = U(G,0) , (4.1) 

or, alternatively. 

n = n(G,u) , Q = e(G,u) . (4.2) 

The tensor functions in (4.1)1 and (4.2): are, of course, not 

the same. 

We consider a mass P0 of the material to be taken from 

an equilibrium state 1 to an equilibrium state 2 by a quasi- 
a 

static homothermal process. Let G1, 01 and G2, ©2 be the 

* A homothermal process is a process in which, at each instant 

emPirical temperature is uniform throughout the 
material and consequently the heat flux vector Q is zero. 
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values of G and 0 in states 1 and 2 respectively. Let 

G,e and G * dG,0 + d0 characterize neighboring equilibrium 

states on the path followed by the quasistatic process. Let 

P0dX be the amount of heat introduced into the material in pass 

ing from the first of these states to the second. From 

(2.12), we have 

P0dX = P0JU - tr dG-n . (4.3 

The amount of heat which is introduced into the material 

in taking it from state 1 to state 2 is then given by pQ dx . 

This integral is not independent of the quasistatic process 

(i.e. the path in G,0 space)by which the material is taken 

from state 1 to state 2 . However, it follows from the Second 

Law of Thermodynamics that there exists a monotonie 

function T of the empirical temperature 0 , thus 

T = T(0) * (4.4) 

which is unique apart from an arbitrary multiplying constant, 

such that £dy/T iS independent of the quasistatic process by 

Which the material is taken from the equilibrium state 1 to the 

equilibrium state 2 . T is called the absolute temperature of 

the material. It may, without loss of generality be taken to be 

positive. Since the integral ^dX/T is independent of the 

quasistatic process connecting states 1 and 2, it must be ex¬ 

pressible in the form 



15 

(4.5) 

where S2 = S(G2,62) and S1 = S(G1,61) are determined 

apart from equal constants. S2 is called the specific entropy 

of the material in state 2 and is its specific entropy in 

state 1. We note that we have defined the absolute temperature 

only when the material is in thermomechanical equilibrium and 

Q = 0 . Accordingly, in (4.5), S2 can be regarded as a func¬ 

tion of G2,T2 and can be regarded as a function of 

G^ ,T , where !.. and T are the absolute temperatures corres- 

ponding to empirical temperatures 61 and 02 . 

We now consider a non-quasistatic homothermal process in 

which the material is taken from equilibrium state 1 to equili¬ 

brium state 2. Let p0dx be the amount of heat introduced into 

the material in passing from values G and 0 of the defor¬ 

mation gradient matrix and empirical temperature to values 

G + dG and 0 + d0 , in this non-quasistatic process. Then, 

it follows from the Second Law of Thermodynamics that 

(4.6) 

where the integration is carried out over the path followed 

by the non-quasistatic process connecting equilibrium states 1 

and 2, T is the same function of 0 as obtains when the 

material is subjected to a quasistatic process and S2- is 

defined by (4.5). The integrals in (4.5) and (4.6) are the 

Clausius integrals for the quasistatic and non-quasistatic 
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processes respectively. Otherwise expressed, the relation 

(4.6), with (4.5), tells us that the Clausius integral, for 

a non-quasistatic homothermal process connecting two quili- 

brium states is less than that for a quasistatic homothermal 

process connecting the same two states. Combining the rela¬ 

tions (4.6) and (4.5), we have, for any homothermal process 

connecting the two equilibrium states 1 and 2 , 

(4.7) 

where the equality sign applies for quasistatic processes, 

and p,dy denotes the amount of heat introduced into the body 
0 

in an elementary step of the process. The relation (4.7) is 

usually called the Claudius inequality, or the Clausius- 

Planck inequality. 

For an elastic material, the constitutive equations 

(3.4) take the form (4.1), whether or not the process consid¬ 

ered is quasistatic. We consider quasistatic and non¬ 

quasistatic homothermal processes, which follow the same path 

in G, 0 space and connect points where the deformation 

gradient matrix and empirical temperature take the values 

Gi» 01 and G^, 02 respectively. Then, it follows from 

(4.2) and (4.3), that the amounts of heat p0dx and p0dx fed 

into the material in these processes, in the step between 

G,0 and G + dG, 0 + d0 , are equal. Consequently, for 

an elastic material, in which Q = 0 , the equality sign in 

(4.7) applies, whether or not the process considered is quasi¬ 

static and whether or not the material is in equilibrium at the 

end-points of the process considered. 
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Instantaneous elasticity 

For materials with memory, the basic constitutive assump¬ 

tions are usually made in the forms (3.4). We now envisage 

processes for which G(t) and 6(t) change relatively slowly, 

except in a neighborhood (t-e,t] of t , where they may 

change very rapidly. For a material which exhibits instantane¬ 

ous elasticity, the response to these rapid changes is similar 

to that for an elastic material. Consequently, provided that 

the histories G(t) and e(t) remain unchanged for r<t-c, 

the stress n and internal energy u at time t are substan¬ 

tially independent of the manner in which the process is con¬ 

tinued in the interval (t-e,t] and depends only on G(t) and 

e(t). We idealize this behavior in constitutive assumptions of 

the form (cf.[10]) 

0 = n[G(T), 0(T) . g,0] , 

U = U [G (t) , 0 (t) ; G ,0 ] , 

(5.1) 

where G(t) and 0(T) are considered to be continuous 

functions of time t , with support -® < t < t , and 

G and 0 are the instantaneous values of the deformation 

gradient matrix and empirical temperature at time t. n is 

a tensor-valued functional of G(t) and 0(T) and a tensor 

valued function of G and 0 . Analogously, u is a scalar 

functional of G(T) and 0(x) and an ordinary function of 

G and 0 . 
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Now, we consider processes for which G(t) and 6(1) 

in (5.1) are specified functions of t , for -a> < T < t and 

G and 9 may take any values. The constitutive equations 

(5.1) are then relations between n , U and G, 6 . We now 

suppose that these constitutive equations describe the behavior 

of some fictitious material, G and 9 being the values at 

time t of the deformation gradient matrix and empirical tem¬ 

perature for an arbitrary process, with zero temperature grad¬ 

ient. Such a material would, of course, be an elastic material 

precisely of the type already discussed at the end of §4. 

Accordingly, for it we can define the absolute temperature T 

and specific entropy change dS in an infinitesimal process, 

whether quasistatic or not, by the formula 

dS = dx/T , (5.2) 

whore dx is the amount of heat fed into the material per 

unit mass in the infinitesimal process. The end-points of 

the infinitesimal process are characterized by values G,6 

J * Jl.:- : * ll the deformation gradient matrix and 

empirical temperature. Since dx and T are independent of 

the rate at which rh~ process is carried out, the formula 

(5.2) is applicable to processes carried out instantaneously 

at time t in a material having instantaneous elasticity, for 

which the constitutive equations (5.1) are valid and the 

process prior to time t is fixed. This is the case, 
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notwithstanding the fact that G and 0 cannot be varied 

quasistatically, while keeping the histories G(t) and 0(t) 

fixed,as they could be in the hypothetical elastic material 

considered. 

In (5.2), S is, of course, a function of the instantaneous 

values G and 9 (or T) of the deformation gradient matrix and 

temperature, the actual form of this function depending on the 

fixed historiei-; and 0(x) (or T(t)) prior to time t . 

We may accordingly write S in the form 

s = S[G(t), 0(t) ; G,0J , (5.3) 

or in the form 

S = S[G(x), I(t) ; G,T] . (S.4) 

However, in writing S in these forms, we must bear in mind 

that they can only be used in the discussion of processes car- 

ried out at fixed histories G(t) and 0(t) (equivalently of 

T(t)) . We note also, that the absolute temperature may be 

used as an independent variable in the expressions for II and 

U , instead of the empirical temperature, thus 

n = n[G(t), T(t) ; G,T] , U = U[G(t), T(t); G,T] . 

(5.5) 

For a process taking place at time t , between points 

characterized by the values 0i and G0, 02 of G, 0, 

we see from (5.2) that the change in the specific entropy is 

given, as it is for an elastic material, or for quasistatic 
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processes in a material with fading memory, by 

V Si =j> ^ (5.6) 
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6* Application of the Clausius inequality to a body 

We consider the body described in §2 to undergo a thermo- 

mechanical process in which the deformation is described by 

(2.1) and the absolute temperature T is also a function of 

position and time, thus: 

X = x(X,t) and I - T(x,t) . (6.!) 

The body is considered to consist of a material with fading 

memory for which constitutive equations of the type (3.4) are 

valid. Using the fact, which follows from the Second Law of 

Thermodynamics, that entropy is an additive quantity, the Clausius 

inequality (4.7) can be written for the body as 

52 " = I po(s2‘ si)dv 
V 

Î [ ^ dV * I <f> y dA . (6.2) 
V A 

S2 and Sx are the entropies of the body in the states 2 and 1. 

Using (2.14) and the divergence theorem, we can rewrite (6.2) 

as 

I p0(S2‘Sl)dV > Í ft (P0dX+V* H) - -L dH• VT*]dV . (6.3) 
V y J L T ~ ^ J 

This result may be applied to any infinitesimal element of the 

body, since such an element may itself be regarded as a body. 
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We accordingly obtain 

(6.4) 

With (2.12), this relation yields 

(6.5) 

Parenthetically, we note that if the process considered 

is isothermal, homothermal and cyclic, so that T is constant 

throughout the process, 7T = 0 , 2nd the equilibrium states 

1 and 2 are the same, and we assume that the temperature grad¬ 

ient is zero, we obtain from (ò.S), 

(6.6) 

i.e. the stress work round a closed isothermal, homothermal 

path is non-negative. This well-known classical result appears 

in the book by Truesdell and Noll [4 §96b] as "Coleman’s 

theorem on isothermal cyclic processes’’] 

Returning to equation (6.5), we see that, for an infinitesi¬ 

mal process connecting equilibrium states (i.e. for a process 

connecting equilibrium states for which the state variables are 

infinitesimally different), we have 

p0(dU-TdS) < tr dG*n + ^ dH»71 . 

The equality sign will, of course, apply if the process is 

(6.7) 
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quasistatic and VT « o or dH = 0 . 

We now consider the material of the body to be elastic. 

We define the specific Helmholtz free energy w by 

w * u - IS . 

Then, (6.7) may be written as 

(6.8) 

Pq(dW+SdT) < tr dG*n + ^ dH«VT . (6#9 

Since U and S are functions of G and T only, so also is 

W. Thus , 

dw . trfdG. (f|V dT ( $) (6.10 

Introducing (6.10) into (6.9), and bearing in mind that the 

relation obtained is valid for arbitrary values of dG and dT 

we obtain 

! = (lf)T . S ■ -(¾ and dH.VT > 0 . (6.11) 

We note, in deriving these results, that dH may be varied 

In cartesian notation 3W/3G may be written as 3W/3x. ^ 

The superscript t denotes the transpose of this quantity 
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independently of dG and dT and that 5 and S are indepen¬ 

dent of these quantities. The relations (6.11) are called the 

Gibbs relations. 

From (6.10) and (6.11), it follows that if VT * o i.e. 

if there is no temperature gradient in the material, the equality 

sign in (6.9) necessarily applies. Alternatively, if dH « 0 

the equality sign in (6.9) applies. This means that the equality 

sign may apply in a perfect thermal insulator, even if there is a 

temperature gradient in the material. If VT»dH + 0 , then the 

inequality sign must apply. Physically, this implies that if a 

temperature gradient exists in a thermally conducting elastic 

material, the inequality in (6.9) must apply. 

For processes carried out instantaneously at time t in a 

material possessing instantaneous elasticity, n , U and S 

have the forms (5.4) and (5.5). Accordingly W also has the form 

W = W[G(t) , T(x) ; G, T] . (6.12) 

By considering arbitrary processes at time t , at fixed histor¬ 

ies G(t), T(t), it is seen that the Gibbs relations (6.11) are 

still valid, where the differentiations are carried out at fixed 

G(t) and T(t), as well as at fixed T in the first relation 

and at fixed G in the second relation. 

For a process carried out in the interval -«> < x < t 

for whlch there is no discontinuity at time t , we may calculate 

the values of n and S at time t from the expression for the 
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specific Helmholtz free energy W by using the Gibbs relations 

in the manner just described and taking G = G(t) and T = T(t) 

in the expressions obtained. 
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7. The Clausius-Duhem inequality 

We have seen that the specific entropy S of an element 

of material which has fading memory, in a specified state, is 

defined by considering a quasistatic homothermal process in 

which the element is taken to that state from some base state. 

For an arbitrary process connecting two equilibrium states 1 

and 2, the Clausius integral is not greater than the difference 

in the specific entropies for the two states. Thus, 

(cf. equation (4.7)) 

(7.1) 

where T is the absolute temperature of the element and it is 

assumed that no temperature gradient exists in the element. The 

equality sign applies for a quasistatic process connecting the 

states. For an elastic material the equality sign applies for all 

homothermal processes, and whether or not the material is in 

equilibrium at the end-points of the process. We may call such 

processes reversible processes. For them, we can differentiate 

the equation (7.1) with respect to time to obtain the result 

S = X/T , (7.2) 

at each point of the reversible process. 

It is tempting to consider the possibility that at each 

point of an arbitrary process, in an elastic material or in a 

material with fading memory, the relation 
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S > X/T , (7.3) 

is satisfied. This relation is called the Clausius-Duhem 

inequality. However, before the relation (7.3) can be given 

meaning, it is necessary to give a definition of S at an 

arbitrary point of an irreversible process. Most thermo- 

dynamicists do this by means of the so-called local state 

assumption. If the path in the G, T space, which is followed 

in the irreversible process, can also be followed by a rever¬ 

sible quasistatic process*, then we can, of course, define the 

specific entropy S at each point for the latter process. 

According to the local state assumption this is the meaning to 

be attached to S in the Clausius-Duhem inequality (7.3). 

The essential physical difference between the Clausius- 

Duhem and Clausius inequalities is particularly evident if we 

consider a material with fading memory to be taken from an 

equilibrium state 1 to an equilibrium state 2 by irreversible 

and quasistatic reversible processes following the same paths 

in G,0 (or G,T) space. The Clausius inequality states 

that less heat is fed into the system for the irreversible 

process than for the quasistatic reversible process. The 

* Such a reversible quasistatic process can certainly take 

place in a material with fading memory. 
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Clausius-Duhem inequaUty. on the other hand, asserts that the 

amount of heat fed into the system, in each infinitesimal step 

of the irreversible process, is no greater than that for the 

corresponding step of the quasistatic process. 

With the iocal state interpretation, the Clausius-Duhem 

inequality cannot be valid for all materials and all processes. 

This is evidently true for the plastic deformation of a metal, 

say, for which a corresponding reversible quasistatic process’ 

cannot generally be defined. Even where this objection is 

not valid, it is doubtful that the relation (7.3) is always 

satisfied. In the opinion of some thermodynamicists, its 

validity is restricted to irreversible processes for which the 

departure from reversible conditions is not too great. 

Coleman [2) has proposed a different approach to the 

interpretation of the Clausius-Duhem inequality for materials 

with fading memory. He calls S in (7.3). the rate of change 

of specific entropy for the irreversible process and assumes 

that it is a functional of the histories G(t) and T(t) of 

the deformation gradient matrix and absolute temperature. No 

prescription is, however, given for determining the actual 

form of this functional dependence, either by experiment or 

by calculation from a physical model. Coleman and his follow¬ 

ers prefer to regard it as a primitive quantity. For example. 

Truesde11 [11, p.324) states "What is entropy? Heads have 

split for a century trying to define entropy in terms of 

other things. I tell you, entropy, like force, is an un¬ 

defined onject..." or, again, [1, p.374] "As I have said for 
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many years, disregarding the scoffs of those endowed with 

physical intuition, temperature and entropy join mass and 

place and time as primitive, undefined variables, described 

only by such properties as are laid down for them in mathe¬ 

matical terms". 

Now, despite the eloquent confidence of these statements, 

the point of view adopted by Coleman and his followers, with 

regard to the definition of entropy at a point of an 

irreversible process, leaves us in a very different situation 

from that which obtains in the definition of mass, length and 

time. This would not, of course, be the case if Professor 

Truesdell had deposited in Paris, or elsewhere, a standard of 

entropy and had provided us with a prescription by means of 

which we could compare with it the entropy of a system under¬ 

going an arbitrary irreversible process. 

These comments do not, of course, imply that a relation 

of the form (7.3) may not, in fact, be valid, with an approp- 

riate definition of the quantity S , other than that implied 

by the local state assumption. Only, that in the absence of 

such a definition, the statement (7.3) is devoid of physical 

meaning. 

We note, however, that by integrating (7.3) along a path 

connecting the equilibrium states 1 and 2, we can arrive at 

the Clausius inequality (7.1). It is, therefore, not 

surprising that meaningful results can be obtained from the 
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Coleman version version of the Clausius-Duhem inequality. 

However, these are, in effect, obtained either by way of the 

Clausius inequality, or they are results for processes for 

which the material behaves essentially elastically. 
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8. Coleman's thermodynamics of materials with memory 

In 1964, Coleman [2] formulated a thermomechanical theory 

for materials with fading memory. The class of materials with 

which he was concerned in this theory were essentially materials 

for which the constitutive equations of the form (5.5) are valid, 

with the instantaneous value of the temperature gradient VT 

added as an independent variable. Also, the argument function 

G(t) is replaced by 0(1)0-1 , i.e. by the deformation gradient 

matrix at time x , measured with respect to the configuration 

* 
at time t as reference configuration . In addition to consti¬ 

tutive equations for the stress and specific internal energy, 

Coleman adopts constitutive equations for the specific entropy 

S and the heat flux vector Q , in which they depend on the 

same variables. Thus, 

n = 1110(1)0-1 , T(x) 

U = 0(0(1)0-1 , T(t) 

S * S[G(T)G-1 , T(t) 

Q * Q[G(x)G-1 , T(T) 

G.T.VT] , 

G,T,VT] , 

G,T,VT] , 

G,T,VT] . 

(8.1) 

* In cartesion notation, [Ç(t)]ía = gíACt) = 3x^(t)/3Xa , 

0 = 3xi/3XA and (G-1)Aj = 3Xa/3Xj , so that 

(G(T)G-1)ij = Sx^xJ/SXj . 
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Coleman also makes certain continuity assumptions regarding 

the manner in which n , U, S and Q depend on the argument 

—i * 
functions G(t)G and T(x) . These assumptions imply that 

the material has fading memory, in the sense described in §4. 

While the constitutive equations (8.1), together with the con¬ 

tinuity assumptions made by Coleman, imply that the material, 

whose behavior they describe, has fading memory in the usual 

sense, they also imply that the material possesses instan- 

** , 
taneous elasticity . While this point appears to have been 

appreciated by Coleman [12] and, in fine print, by Truesdell 

and Noll [4, §96b] , it does not appear to have been appreciated 

that this invalidates msny of the extravagant claims that have 

been made on helalf of Coleman's theory. For example, Truesdell 

and Noll state [4, §96b] "While this treatise was in press, Cole¬ 

man constructed the thermodynamics of irreversible deformation 

processes at a level of generality of the simple material obeying 

*** j • . 
the principle of fading memory". An incautious reader might 

* It may be mentioned that the continuity assumptions made by 
Coleman are only marginally different from those made earl¬ 
ier by Green and Rivlin [10] in a purely mechanical theory 
for materials which possess instantaneous elasticity. The 
continuity assumptions of Green and Rivlin [10] also imply 
that the material considered has fading memory [9], as do 
most of the possible continuity assumptions which readily 
come to mind. The continuity assumptions of Coleman, in 
fact, restrict the applicability of his constitutive equations 
to a narrower class of materials than do those of Green and 
Rivlin. 

** This was pointed out in the review by Rivlin [3] of the book 
by Truesdell and Noll [4] and in [5]. 

*** Here we note the device often employed by Truesdell and cer¬ 
tain of his protégés of lending dignity to assumptions by 
calling them principles. 
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be led to believe that the theory applies to such materials as 

Newtonian fluids or Kelvin solids, which would nornally be con¬ 

sidered to be pre-eminent.examples of materials with fading mem¬ 

ory. Again, in [4. S96b] we read, after a presentation of the 

Gibbs relations (6.11) as a deduction from Coleman’s theory, 

"This capital (Sic.) result generalizes the classical stress rela 

tion and temperature relation of thermo-elasticity to simple 

materials with memory", of course, it does nothing of the kind. 

It is merely the well-known result that the Gibbs relations are 

valid for an elastic material, whether or not it is in mechanical 

equilibrium. 

In developing the implications of the constitutive assump¬ 

tions (8.1), Coleman omits the dependence of ; , U and S on 

VT . His original inclusion of VT as an argument in the con¬ 

stitutive equations for n , u and S was motivated by an appeal 

to the Principle of Equipresence, which was advanced by Truesdell 

and Toupin [12) and has been criticized by Rivlin [5,14). A 

justification for the omission was given by Coleman [2). We 

shall not here discuss the validity of Coleman’s argument, beyond 

noting that it is based on the Clausius-Duhem inequality, as 

interpreted by Coleman. We note, however, that the omission of 

VT as an argument in the first three equations (8.1) brings 

Coleman's expressions for n and U into line with those given 

in (5.5) for a material with memory possessing instantaneous 

elasticity. Although it formally brings Coleman’s expression 

for the specific entropy into line with that given by (5.4), 

the interpretation of the expressions is quite different. While 
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equation (S.4) is interpreted as being valid only for fixed 

histories and arbitrary instantaneous changes, at time t , 

of the deformation gradient matrix and absolute temperature, 

Coleman's expression (8.1)3 , with 7T = 0 , is allegedly 

valid for arbitrary histories and arbitrary instantaneous 

changes, at time t , of these. 
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9. Waves in materials possessing instantaneous elasticity 

In §8 attention has been drawn to the confusion that has 

arisen from the presentation of well-known results in thermo¬ 

dynamics as highly significant new results obtained from the 

Clausius-Duhem inequality, unconventionally and inexplicitly 

interpreted, and from the largely irrelevant assumption of 

fading memory. Further evidence of this confusion is provided 

by claims which have been made with respect to a considerable 

body of work on the propagation of surfaces of discontinuity, 

which - at any rate formally - stems from it. 

In 1965, Coleman, Curtin and Herrera [15] showed that 

surfaces of second-order discontinuity can propagate in mater¬ 

ials governed by constitutive equations of the type considered 

by Coleman. They further showed that such discontinuities can 

develop into shock waves, which can then propagate in the 

material. 

Similar conclusions to those of Coleman, Curtin and Herrera 

* 
were reached independently by Varley [16] . In many respects 

the paper by Varley, while far simpler than that of Coleman, Cur¬ 

tin and Herrera, goes far beyond it. While the paper of Coleman, 

* Both the papers of Coleman, Curtin and Herrera and of Varley 
were published in the Archive for Rational Mechanics and 
Analysis, the published dates of submission being October 22, 
1964, and January 28, 1965 respectively. From the standpoint 
of essential content, both papers were anticipated by Whitham 
[17], who, in a magnetohydrodynamic context, discussed the 
propagation of surfaces of discontinuity in a system in which 
instantaneous elastic response is followed by dissipative 
after-effects. 
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Gurtin and Herrera considers only the propagation of plane 

singular surfaces, that of Varley considers singular surfaces of 

arbitrary shape. 

In both of the papers, the materials considered are mater¬ 

ials with fading memory, in the sense of Coleman, i.e., in the 

usual terminology, they possess instantaneous elasticity. In 

this respect, the propaganda by Truesdell on behalf of the paper 

by Coleman, Gurtin and Herrera has been highly misleading. In 

[4, §96t] Truesdell remarks "In 1901 the kinds of singular sur¬ 

faces that may exist and propagate in a linearly viscous fluid 

were proved by Duhem to be extremely limited. Acceleration 

waves are altogether impossible and shock waves can occur only 

in pecular combinations of circumstances connected with the 

presence or absence of heat conduction of suitable kind and 

amount". In the next paragraph, Truesdell states "In a monu¬ 

mental study now going to press, Coleman and Gurtin, partly in 

collaboration with Herrera, have constructed a general theory of 

wave propagation in materials with memory. Not only mechanical 

but also thermal effects are included,in the full generality of 

Coleman's thermodynamics of simple materials". An incautious 

reader might be led to conclude that, contrary to current 

opinion, singular surfaces can be propagated in viscous materials 

This is, of course, not the case. The confusion disappears when 

we realize that the simple materials considered in Coleman's 

thermodynamics possess instantaneous elasticity. Plainly, in 

such materials, singular surfaces, both of first and second order 
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may propagate. The dissipative character of the material tends 

to weaken the singularity, while the non-linearity of the instan¬ 

taneous elastic response tends to reinforce it. Notwithstanding 

that the possibility of propagating surfaces of discontinuity in 

materials of the type considered is in no way surprising, the 

actual working out of the conditions under which they propagate, 

under which second-order discontinuities can develop into shocks, 

and so on, represents an interesting advance. This advance, 

however, has extremely little thermodynamic content and what 

little it has, is, as far as I can tell, based in conventional 

thermodynamics. Rather, the theory of the propagation of singu¬ 

lar surfaces in materials possessing instantaneous elasticity 

forms an integral part of an extensive development on non-linear 

wave propagation, which has taken place in the last several years. 

In this development, Gurtin and his collaborators and Varley and 

his collaborators have played significant roles . It seems to 

me that relative to the Varley contribution, that of Gurtin suf¬ 

fers substantially from his adoption of the so-called axiomatic 

style which surrounds relatively simple matters in the idiom of 

modern pure mathematics and obscures their physical content. 

The work of Varley, on the other hand, is in a much more tradit¬ 

ional vein and is much closer to physics. 

* I may remark that the early work of Gurtin in this area, as 
well as that of his students, was supported by an Office of 
Naval Research contract on which I was Senior Investigator. 
Likewise, much of the more recent work of Varley and his 
students and collaborators has been supported by government 
contracts and grants on vrhich I was Senior Investigator, 
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He is, therefore, able to handle problems of much greater 

complexity which bear much more directly on physical 

phenomena. 

m J 
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10. Coda 

In this paper, I have pointed out that the thermo¬ 

mechanical theory advanced by Coleman in 1964 is, in the main, 

devoid of physical meaning. I have further pointed out that 

certain of the results, which have been widely propagandized as 

being triumphs of the theory, are, in fact, well-known results 

in classical thermodynamics. Similar comments could be made 

about many other results which have allegedly been derived by 

Coleman and his followers from the theory, but it would be 

tedious to do so. 

Despite the extensive propaganda, it appears that there is 

some doubt in the minds of even the most dedicated protagonists 

of the Coleman point of view, as to the validity of his theory. 

For example, Truesdell [18, p. 58], while berating those who do 

not join in his adulation of Coleman's theory, and while attri¬ 

buting to them unworthy motives, remarks "Obviously, a mathe¬ 

matical thermodynamics of irreversible processes is possible. 

We have only to find it, and already we are far along the road 

to it. Equally obviously, the Clausius-Duhem inequality may not 

be the final basis, and those who are capable of using it 

may be capable also of modifying it or replacing it". Now, it 

may, in fact, be that a theory relating to strongly irrever¬ 

sible processes, which may reasonably be called thermodynamics, 

is possible, but I fail to see why this is so obvious. It may 

be that a satisfactory theory of strongly irreversible processes 

can only be constructed in terms of kinetic theory, or in terms 
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of statistical mechanics, or indeed in a form not so far 

envisaged. Or, again, it may, if and when it arrives, involve 

a combination of these characteristics as well as those of a 

continuum thermodynamics. As we have seen, in my present 

remarks, and indeed in the quotation from Truesdell as well, 

the Clausius-Duhem inequality, which is a central feature of 

Coleman's formulation of thermodynamics, is open to serious 

question, with respect to its interpretation, its validity, 

and the significance of the results derived from it. With 

regard to the last statement in my quotation from Truesdell, I 

feel that it is rash to predict who - if anyone - will 

formulate a satisfactory and fruitful theory of the thermo¬ 

dynamics of strongly irreversible processes and when - if ever 

this will be done. 
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