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ABSTRACT

This paper examines a longitudinal model of a manpower
system in which the demards for effective manpower is deter-
mined by the state of a ! .nite Markov chain, and there are
delays in training an adequate supply of effective manpower.
We present an operational method of calculating optimal
appointment policles. This calculation can in turn be
used to find the equilibrium operating rules for the system.
The model is a useful device for measuring the impact of
alternate assumptions about continuation rates, manpower
utilization policies, the demands, and the transition
probabilities in the demand process.
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0. INTRODUCTION

This paper considers the problem of providing an adequate supply of effec-
tive manpower when demand for manpower is uncertain and there are time lags in
the training of effective personnel. The model described in this paper is
useful in three specific ways: (i) it can calculate optimal manpower input
policy for alternate control objectives, (ii) it can be used to measure the
effects of alternate training, retention, aul utilization policies on system
performance, and finally (1ii1) it can measure the sensitivity of optimal poli-
cies and system performance to various assumptions on the nature of the sto-
chastic nature of the demand process.

In Section 1 we present a model for the flow of personnel. This model
attempts to capture the essential features of the manpower system in a simple
framework by utilizing the longitudinal stability of various manpower cohorts.
The stochastic nature of the demand process is described in Section 2. At
time t , the demand for trained manpower is determined by the state of a
finite Markov chain. In Section 3 we present two alternate control objec-
tives. The first objective is to minimize the expected, weighted, discounted
square of the error between the effective supply and demand for manpower. The
second objective is to minimize the expected discounted square error between
the actual manpower stocks and ideal stocks for any demand state. In Section 4
we describe the form of the optimal policy and optimal value function. Numeri-
cal solutions are presented for the two control objectives. 1In Section 5 we
outlire several uses for the model. The first is the determination of the
expected manpower stocks when the optimal appointment policy is used. Calcu-
latior of the equilibrium stocks can then be used to calculate the expected
cost of the appointment policy along with some expected measure . syst:m
performance. These calculations allow us to measure the tradeoff between

cost and performance for alternats manpower policies. In Section 5 we alsc
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consider the effect of ervors in the specification of the stochastic law of
motion. We find it is relatively easy to discover the effects of these errors.
Finally in Section 5 we conslder the effect of possible alterations in the
stock of manpower, either by releasing people from the system or allowing
personnel inflow that has a past accumulation of experience.

The appendix is devoted to the theoretical aspect of the model we find
that the optimization procedure is a hybrid of the linear-quidratic optimal
control problem ({11,[4},[{7]) aud the Markov decision problrm. We are able
to show that the optimal decision rules are linear and that the optimal policy
functions are quadratic. In addition, under special assumptions on the prob-
lem data we can show that the optimal decision rules converge to an equilibrium
optimal appointment policy.

The model was motivated by the problem of regulating the supply of naval
aviators. We do .10t pretend to present an operational solution to that real
problem, however, a numerical example, using the naval aviator problem as a
setting, 1s used throughout the paper. The author 1s the sole source of the
data for the numerical example.

The paper is based on a longitudinal manpower flow model; Oliver and
Honkins [5],[6], that has been used in a similar cormtext by Grinold, Marshall,

and Oliver, [2], and Grinold and Oliver, [3].
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1. THE FLOW OF MANPOWER

This section describes the basic manpower flow process. For a more detailed
description of a related deterministic model see [2] and [3].

The state of the manpower sysiem is observed at discrete equally spaced
time points t =0,1,2,3, ..., T ; where T 1is a planning horizon. The time
interval (t - 1,t] after time ¢t - 1 and up to and including time t will
be called period t

At each time t individuals in the system are classified according to
their length of service (LOS). The length of service is simply the number of
occasions the individual has been classified. Thus individuals entering in
period t will have length of service equal to one at time t , since they
are in their first period of service at time t . Individuals entering in
period t - 1 that are still present at timi t will be in their second
period of service. Ve assume that m 1s the maximum number of periods an
individual can remain in the system.+ It follows that individuzls in the
system at time t 1in their mth period of service must leave the system in
period t + 1 .

The stock of manpower at time t 1is described by the length of service
distribution s(t) ; s(t) 1s . vector with m components, where s (t) is

k
the number of individuals at time t with LOS equal to k .

1) s(t) = [sl(t),sz(t), cens sm(t)]'

In each period t a number of new accessions f(t) enter the manpower
system. The change in the manpower system from time t to time ¢t + 1
depends on three factors: the stock at time t , the accessions in period
t + 1, and the continuation rates of the stock of manpower at time t . The

continuation rate for k=1,2, ..., m-1 41is defined to be the fraction

.

TCaution: in [2] and [Z] the length of service is defined to be the number of
completed periods of service, and is then one less than the measure used here.
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of manpower with LOS equal to k , that remains in the system an additicnal

period. With this definition we have

i
(e

‘f(t + 1) 1if k

|

(qksk(c) 1f k= 1,2, ...,m—l‘

2 { =
(L-) Sk+l\t + 1)

The continuaticn rates are intended to include several factors that in-
fluence the flow of manpower: the organization's retention, promotion, and
retirement policy, natural forces such as mortality, and the behavior of

personnel.




2. THE DEMAND AND SUPPLY OF EFFECTIVE MANPOWER

This section describes the stochastic demand process and the related
deterministic supply process.

The demand Zt for effective manpower is a random variable that can
take on a finite number of values Z15Zgs ees 2o The stochastic law of

motion that governs the evolution of the process z, is Markovian:

(1) Pr[Z =z, |2 =z)=r,

We assume rij is independent of t , and that the uncertain demand =z,
persists through period t + 1

The example below is a six state system and the manpower category is
naval aviators. State 1 of the Markov chain represents a calm peacetime
period, while State 2 represents a higher condition of neacetime preparation.
States 3, 4, 5, and 6 represent various stages f a conflict. Notice the
conflict may end, by a return to State 1 or 2, may stay at the same stage or
it may proceed to a higher stage. The transition probabilities are shown
below along with the demand for effective manpower and the equilibrium dis-

tribution of the Markov chain.

Let 1i(t) be the state of demand at time ¢t : 1i.e. Zt = zi(t) . The

state of the system at time t depends on two factors: the stock of manpower

s(t) , and the state of demand, 1(t)
We shall now generalize the nation of continuation rates introduced in
(I;2), by allowing the continuation rates to depend on the state of demand.

Thus we have continuation rate qik and the law of motion for manpower is

i ‘f(t+l) if k=0 )

(3) s (t + 1) .
I+ )
lqiksk(t) 1f k=1,0, oo, m- 1|

SR

Lk pot st s

e 5 i 98 e LI N 859 S 0

e D e Sk S

Mok g

5
1




Demand State

TABLE 1

.90

.07

0.03

.05

0.05

0.4

0.3

0.2

0.9

0.9

0.95

0.95

0.95

0.95

0.9

0.9

0.95

0.9

0.8

0.9

TABLE

2

Length of Service

3
C.95

0.95

0.9

0.9

0.9

0.9

4

0.95

0.95

0.

0.

0.

0.

9

9

8

9

0.95

0.95

0.8

0.9

0.8

0.9

0.

0.

0.

0.

.1

.2

8

9

9

9

500

900

1200

1200

1000

0.9

0.9

0.9

0.9

0.9

0.783

0.147

0.040

0.020

0.008

0.002
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This allows for alternate retention, mortality, and behavior assumptions for
each state of the demand process. In this paper we shall solve numerical
examples with n = 6 states and m = 8 maximum years of service. The con-
tinuation rates are shown in Table 2.

We can utilize personnel in alternate ways depending on the demand en-
vironment. Let dik be the contribution to effectiveness of each individual
in the system with length of service equal to k when the demand environment

is 1 . The total effectiveness is then

()

m
(4) ) d, s,

k=1

and the excess of the supply of effective manpower is given by

m
(5) ) dyp s, (6) =z,

k=1

We shall allow the dik to be nonnegative. Consider the problem of
supplying effective naval aviators. Individuals in the first period of service,
are being trained to fly; thu. they are not making any contribution to meeting
the demand for naval aviators. In addition, 1t takes trained and qualified
pilots to teach new recruits. Suppose one teacher is needed for every two
pupils in state 1 . Then dil = -,5 . Every two pilot trainees take up the
services of one instructor who 1is therefore not eligible to meet the demand
for operational pilots. The contributions to effectiveness for the problems

solved in this paper are seen in Table 3.
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TABLE 3

Utilization

Length of Service %
1 2 3 4 5 6 7 8 :
1 0.5 0.5 1 1 0.8 0.8 0.2 0.2
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3. THE CONTROL OBJECTIVE

This section formulates two quadratlc objective functions for controlliung
the flow of manpower through the system. We selected quadratic objectives for
two ~“~asons. First, they lead to a model for which results can le readily
calculated. Second, the objectives are a reasonable measure of tne departure
of actual system performance from an ideal performance.

The simplest control objective is to minimize the expected weighted
squared error between the supply and demand for effective manpower. Let
w, for j =1,2, ..., n be positive weights that sum to 1. If i(t) =1 ,
and s(t) , then the expected error at time t + 1 , as a function of

f=f(t+ 1), is

m-1 2

rijwj zj - f(t +1) - kzl qiksk(t)

~13

i
(1) E"[s(t),f(t +1)] =
j=1
Our second control objective is to provide a smooth flow of manpower
through the system and to come as close as possipnle to meeting the demand
for e’L-ctive manpower. 1If the manpower system was clways in state j ,

chien an ideal distribution would satisfy

m
(2) z d,,s, =z, ,
k=1 Ik

. =‘f if k=0 I

k+1 ) B ‘
(qjksk for k=1,2, ..., m - l‘

Note that (2) can be rewritien as
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For k= 4,3, ..., m define

k-1
(4) P = I q,
jk 9=1 jk
and le =1 .
Combining (4), (3), and (2) we obtain
m
5 s = (z,P, )/ P..d,
(5) ik ( i ik kzl jk ik
The ‘'iscrepancy between actual and ideal is measured by
m
(6) I (s (c+1) - bjk)z
k=1 ’
Using the law of motion (II;.) we can rewrite (7) as
m-1
@)  E[s(o),f(t+1)] = (E+1) = 5,07+ T (q..s (t) -5, .2
0 i1 oMKk jk+1

This is a measure of the discrepancy at time t + 1 conditioned on four
facts; manpower s(t) at time t , demand 1 at time t , accessions f(t + 1)
in period t + 1, and demand j at time t + 1 . The function is quadratic,

strictly convex in f(t + 1) and convex in s(t) . The expected discrepancy

is
1 L 14
(9) Fls(t),f(t + 1)1 = § r, EJ[s(t),f(t + 1)]
=1 1

is also quadratic convex in f (strictly) and s

We note that it is possible to weigh the functions Ew[s(t),f(t + 1)]

in order to place greater or less importance on the expected discrepancy from

™
&

AT
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state i .

-

For either objective in a T stage problem, where s(t) , and f(t) are

the observed values of the manpower stocks and accessions for t =1,2, ..., T , 4

and i(t) i3s the state of demand, the total discounted error is ;

c—lEi(t) :

(10) [s(t),f(t)] E

)

I t~3m3

t

where 0 < 6 <1 is a discount factor. The objective is to minimize the

expected value of (10) over all possible appointment sequences.

L
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4. THE OPTIMAL APPOINTMENT POLICY

VTR YO T EIRAR,

b e

of the manpower stock s

0

plsT 1,T 4,1

» 4 , converge

]

periods.

4 = 0.95 and weights

‘1/18 1f
o o

3 lans 1 3

] (i) For any finite planning horizon

m
f = bi’T + Z bi’TS

k=

to

for each of the objectives presented in Section 3.

T , and any demand state

For our model

1

pi , Pi

K

i

b

r

the appendix. We shall use three important results from the appendix:

i

This section presents two examples of optimal appointment policies:

i,

In the exanples we have solved to date, the convergence has been quite

The first solution below uses the objective (3:1) with discount fector

12

one

A theoretical description of the optimization procedure is presented in

1 there 1s an vptimal appointment policy that is a linear function

(ii) For any finite planning herizon T , and any demand state i , the
3
g minimum expected error is a convex quadratic function of the man-
;A.
: power stocks s :
s'Pi’Ts + qi’rs + rl’T
(i1i) As the planning horizon T becomes large, the values of bl’T .

rapid. For the first example below a 1% change was observed between a 20 and

21 period horizon. In the second example convergence was nearly perfect in 5
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Tae optimal appointment policy is shown i1n Table 1.

For the second control objective, (3:3), there is a considerable

m

simplification in the optimal decision rule: f = bé + Z blksk . In the
k=1

second case bi =0 for k >1. Thus f = b; independently of the current

manpower stock s .

The optimal input as a function of 1 is shown in Table 2. 1In this

calculation we set ¢ = 0.95 and didnot weigh the various terms in the sum

(3:9).

13
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TABLE 1

1 by 1 ) 3 b, 5 bg 7
1| 667 .95 17 a4 | .25 | .30 | 0.0 .10
2 | 604 .95 16 a2 | .27 | .m 03 | .16
1| 285 | .97 .04 08 | .37 | .35 29 | .39
4 | 105 .91 04 21 | .48 | .47 40 | .46
5 | s .95 .00 06 | .36 | .36 28 | .32
6 | 475 .98 .08 03 | .3 | .36 22 | .25

TABLE 2

®

304

332

370

374

357

354
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5. COST PERFORMANCE TRADEOFFS

This section examines the use of the manpower planning model presented
in earlier sections to measure the tradeoff between cost and system performance.
We shall consider this tradeoff in the specific contex: of the naval aviation
problem. In particular, we shall assume that costs are determined by the dis-
tribution, s(t) , of manpower stocks.

When an optimal linear appointment policy has been calculated, then it is

possible to express the evolution of the manpower stocks in a linear fashion

m
b, + J b - -
io ji} ijslil} If &k 0

(1) 5k+l{t +1) =

qiksktt’ if k=1,2, ..., m~-1
This can be written in matrix rorm
. i i
(2) s(t + 1) = A's(t) + h

The equilibrium expected values of s as a function of the demand state
j can be calculated.

Let wji be the probability that the previous demand state was 1 given
that the current demand state is j . These are the inverse transition proba-

bilities for the Markov ciain. When the Markov chain is in equilibrium, a

simple application of Bayes's Law gives

(3) e o

where =« = (wl, ey nn) is the stationary distribution vector of the Markov

chain.

Now let s3 for j=1,2, ..., n be the expected manpower stock in demand

state 1 when an optimal linear appointment policy is used.

The &7 must satisfy

i

AT R R i

e

QU o R
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(4) s3 = 7 oy, atst+ b

for j =1,2,

, This system of n X m equations with n x m unknowns canr he scolved for
b

the equilibrium expected values of sj . For the first objective (3:1), and

the appointment policy in Table 1 of Section 4, we obtain the equilibrium ex-

pected values following in Table 1.

For the second objective (3:9) the expected equilibrium stock levels are

B i

shown in Table 2.

RTLRTRITS

With these figures, =uitable cost data and the vector = , 1t is easy to

calculate the expected cost ner period of operating this manpower system using

the optimal linear appointment policy. Let ik be the cost of an individual b

in the kth period of service.

1
N S AT

The equilibrium expected cost per period is then

3
R
4
n m i 4
; (5) z "l Z Ciksk . 3
1 i=1 k=] 3
:
We can also construct a measure of system performance. Suppose we choose k.
the expected weighted squared discrepancy between the demand and the steady %
: state expected supply level. This would be 2
) D ogel)
(6) T.W (z - d..s *> &

: 1=1 174V k=1 ik 'k

With a measure of expected system performance and a measur¢ of expected \

R T IRy e

cost, we compare alternate manpower policies. For example, it is possible to

change the demands =z

j and recalculate a new optimal appointment strategy.

We can also change the continuation rates A » OF the utilization policy £

d

g note these changes would probably produce a corresponding change in the

costs Cik It is also possible to change the objective function by either
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TABLE 1
1 2 3 4 5 6 7 8
371 332 298 283 268 254 29 30
350 325 296 279 262 243 73 57
362 328 297 282 267 251 42 41
285 329 308 270 251 216 199 66
376 279 289 276 240 223 195 179
323 348 241 252 222 194 195 175
TABLE 2
1 2 3 4 5 6 7 8
307 279 252 241 229 217 25 26
330 295 262 243 226 209 62 49
318 285 257 243 229 215 36 35
371 312 273 234 217 186 171 57
373 353 281 246 209 192 168 153
357 351 289 254 203 171 169 151
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using alternate weights or an entirely different objective function. Using

our model, and trying alternate manpower policies we can discover, and explore
the cost-rerfurmance tradeoffs that exist.

There is a second type of sensitivity analysis., If the probabilities in
the Markov matrix are changed, this amounts to an alternate assumption about
the stochastic nature of the demand process. By recalculating for several dif-
ferent values of the transition probabilities we can measure the impact of
alternate assumptions concerning the demand process. A related question is
to measure the impact of an incorrect assumption about the demand process.

This leads to an easier calculation. Suppose we assume the transition proba-

bilities are rij , when they actually are r,, with equilibrium distribution

1]
vector 7 . In this case the appointment policy will not change. However, the
calculations (3)-(6) would have to use the values ;ij and %i . In this way

we can measure the effect of incorrectly specifying the probabilities.

In some cases it 1s possible to alter the manpover stock in an ad-hoc
fashion. In the language of the naval aviator problem, we can either bring in
reserves or allow people in the system to leave before their obligated service
is completed. If possibilities of this sort exist, then some of the information

we have calculated can help in designing an alteration of the manpower stock.

Recall that the minimum expected error starting in demand state 1 with stock

s 1s

) sPis + qis + ri

The increase in this optimal expected error as a function of an increase in

Sk

is simply
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This tells how an increase or decrease in Sk will effect the minimum expected
error.

In addition, if the current demand state is 1 , then the current manpower
stock s should be contrasted with its equilibrium value si . It is in the
interest of system stability to change s closer to its equilibrium value.

It is even possible to calculite an optimal value for < when the demand
state is i . The optimum is simply —1/2(Pi)—1(q1)' , the s that minimizes
(7). The optimal values are not always realistic, as we indicate below. How-
ever, they do indicate a direction in which favorable changes can be made.

For the objective (3:1) we find the following optimal distributions shown
in Table 3. Note any value of Sig is optimal.

The distributions for demand states i = 1,2 are unreasonable, probably
close to the low weight attached tu the objective for those states. The dis-
tribution for States 3 and 4 is quite good. It indicates that a large increase
in the three year group would have a faverable impact, as well as a large in-
crease in the six year group.

The optimal distributions for the second objective (3:9) are more reasonable.

Those values shown in Table 4 should be contrasted with those of the equil-

ibrium distribution in Table 2.
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TABLE 3
i 1 2 3 4 5 6 7 8 1
1 288 32 474 367 1o 7290 L0 0 3
2 131 61 481 554 131 2720 47 0
3 302 159 514 401 268 437 39 0
4 363 254 415 350 306 271 150 0 1
5 242 244 583 398 137 369 | T1C2 0 i
6 186 | 169 | 682 392 "6 412 | T201 0
TABLE 4 4
i 1 2 3 4 5 6 7 8 1
" 1 303 | 272 | 243 | 228 | 213 | 296 | 27 | o0 i
‘ 2 336 | 303 | 274 | 263 | 249 | 256 | 54 | o0 E
: 3 360 332 328 295 280 143 | 131 0
: 4 379 355 341 299 217 130 | 143 0
5 b
' 5 350 377 323 342 274 91 | 98 0 ;
t 6 | 32 330 318 305 266 80 | 83 0 ;
§ RREIN T i f 2 e et e Sy [ da
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APPENDIX

DISCRETE TIME, LINEAR~QUADLRATIC, DYNAMIC PROGRAMS WITH MARKOVIAN PARAMETERS

This appendix presents, in a more gzneral form, the theoretical results
used in the paper. We employ a notation close to that c¢f the text.

Thz state of the system with T + 1 yerlods remaining is (s.1) . Given
action f , the state of the sysces with . periods remaining will be
(Di(s,f),j) with probability rij , where, for each 1 , Dj'(s,f) is a
linear function of s and f .

The error associated with choosing f 1in state (s,i) 1is Ei(s,f) ,
where for each 1 Ei(s,f) is quadratic and convex in s and strictly convex
in f . Future errors are discounted at rate @

For 1 =1,2, ..., n define VT(s,i) to be the minimunm expected discounted
error for a T period problem that starts with manpower stocks s , and demand
state i
For any choice of f , we have

n

(s,3) <E(s,6) +68 ) 1
j=1

S S
(1) 107 5, 6),5)

VT+1 ij

By the usual principal of optimality arguments we can establish that the func-

tions VT+1(5,1) must satisfy the following functional equation.
1 G i
=M . j
(2) Vipp (s01) Pén E“(s,f) + & jzl rijVT(D (s,f),3)

where Vo(s,i) = (0 for each s and 1

Now sssume, that VT(s,i) is a convex quadratic function of s for each

1,1, BT 4 LT i,T

i . Thus we can write VT(s,i) = s'P + q + where P is

positive semi-definite, and symmetric. It is easy to show that VT(Dl(s,f),j)

is a convex quadratic function of (s,f) , and therefore that
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n
. i '
(3) E'(s,f) +6 | r,,V. (D (s,£),])
i5'T
j=1
is quadratic, convex in s , and strictly convex in f .
When the quadratic function (3) is differentiated with respect to f ,
then a linear equation results, and the unique f that minimizes (3) as a
function of s 1is in the form

1.741

(4) fr41(s,i) = B (s)

where for each 1 and T+ 1 , Bi’T+l

{s) 45 linear in s . When the optimal
policy (4) is substituted into (3) we ogtain a convex quadratic expression for
Vpgp (551

Thus for any finire horizon T the optimal value and policy functions
are, respectively, linear and quadratic. We now turn to the quescion of con-
vergence of policies as the planaing horizon increases.

1T be the optimal value function starting

Let VT(s,i) = s'Pi’Ts + qi’Ts +r
in state i for an 2 period problem.

When the discount factor & 1is strictly less than 1, then the sequence
VT(s,i) will remain bounded if there exists a policy f(s,i) such that this
policy leads to a bounded sequence s(t) for any initial s(o) and any evolu-
tion of the demand sequence 1(t) . In the model described in this paper, the
policy f(s,i) = 0 will insure s(t) =0 for t > m . The general question

of convergence of VT(s,i) and BT(s,i) is difficult, and is currently the

object of further investigation by the author.
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