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ABSTRACT 

This paper examines a longitudinal model of a manpower 
system in which the demands for effective manpower is deter- 
mined by the state of a ! aiite Markov chain, and there are 
delays in training an adequate supply of effective manpower. 
We present an operational method of calculating optimal 
appointment policies.  This calculation can in turn be 
used to find the equilibrium operating rules for the system. 
The model is a useful device for measuring the impact of 
alternate assumptions about continuation rates, manpower 
utilization policies, the demands, and the transition 
probabilities in the demand process. 
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0.  INTRODUCTION 

This paper considers the problem of providing an adequate supply of effec- 

tive manpower when demand for manpower is uncertain and there are time lags in 

the training of effective personnel.  The model described in this paper is 

useful in three specific ways:  (i) it can calculate optimal manpower input 

policy for alternate control objectives, (ii) it can be used to measure the 

effects of alternate training, retention, aiJ utilization policies on system 

performance, and finally (iii) it can measure the sensitivity of optimal poli- 

cies and system performance to various assumptions on the nature of the sto- 

chastic nature of the demand process. 

In Section '\   we present a model for the flow of personnel.  This model 

attempts to capture the essential features of the manpower system in a simple 

framework by utilizing the longitudinal stability of various manpower cohorts. 

The stochastic nature of the demand process is described in Section 2,  At 

time  t , the demand for trained manpower is determined by the state of a 

finite Markov chain.  In Section 3 we present two alternate control objec- 

tives.  The first objective is to minimize the expected, weighted, discounted 

square of the error between the effective supply and demand for manpower.  The 

second objective is to minimize the expected discounted square error between 

the actual manpower stocks and ideal stocks for any demand state.  In Section 4 

we describe the form of the optimal policy and optimal value function.  Numeri- 

cal solutions are presented for the two control objectives.  In Section 5 we 

outline several uses for the model.  The first is the determination of the 

expected manpower stocks when the optimal appointment policy is used.  Calcu- 

latior of the equilibrium stocks can then be used to calculate the expected 

cost of the appointment policy along with some expected measure f-  system 

performance.  These calculations allow us to measure the tradeoff between 

cost and performance for alternate manpower policies.  In Section 5 we alsr 

. ... , „■ ■ .-■..*■..• ,v/.i.i'>■!—(.—^ ,^,:-,..!^,j1>^.-...-:iit --■..[,,-^I:u:;/'J-i'.;»^^v,^;ii.>>V.;^^ 
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consider th" effect of errors in the specification of the stochastic law of 

motion.  We find it is relatively easy to discover the effects of these errors. 

Finally in Section 5 we consider the effect of possible alterations in the 

stock of manpower, either by releasing people from the system or allowing 

personnel inflow that has a past accumulation of experience. 

The appendix is devoted to the theoretical aspect of the model we find 

that the optimization procedure Is a hybrid of the linear-qu idratic optimal 

control problem ([1],[4],[7]) and the Markov decision problem.  We are able 

to show that the optimal decision rules are linear and that the optimal policy 

functions are quadratic.  In addition, under special assumptions on "he prob- 

lem data we can show that the optimal decision rules converge to an equilibrium 

optimal appointment policy. 

The model was motivated by the problem of regulating the supply of naval 

aviators.  We do ,iot pretend to present an operational solution to that real 

problem, however, a numerical example, using the naval aviator problem as a 

setting, is used throughout the paper.  The author is the sole source of the 

data for the numerical example. 

The paper is based on a longitudinal manpower flow model; Oliver and 

Hookins [5],[6], that has been used in a similar context by Grinold, Marshall, 

and Oliver, [2], and Grinold and Oliver, [3]. 
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1.  THE FLOW OF MANPOWER 

This section desci'ibes the basic manpower flow process.  For a more detailed 

description of a related deterministic model see [2] and [3]. 

The state of the manpower system is observed at discrete equally spaced 

time points  t = 0,1,2,3, ..., T ; where T is a planning horizon.  The time 

interval  (t - l,t]  after time  t - 1  and up to and including time  t will 

be called period  t . 

At each time t  individuals in the system are classified according to 

their length of service   (LOS),  The length of service is simply the number of 

occasions the individual has been classified.  Thus individuals entering in 

period t will have length of service equal to one at time t > since they 

are in their first period of service at time t .  Individuals entering in 

period t - 1 that are still present at timi  t will be in their second 

period of service.  We assume that m is the maximum number of periods an 

4- 

individual can remain in the system.   It follows that individuals in the 

f-Vi 

system at time t in their m  period of service must leave the system in 

period t + 1 . 

The stock of manpower at time t is described by the length of service 

distribution s(t) ; s(t) is ; vector with m components, where s. (t) is 

the number of individuals at time t with LOS equal to k . 

(1) s(t) = [s.co.s.ct), ..., s (or 
i Z m 

In each period t  a number of new acaessions    f(t)  enter the manpower 

system.  The change in the manpower system from time t  to time t + 1 

depends on three factors:  the stock at time t , the accessions in period 

t + 1 , and the continuation rates  of the stock, of manpower at time t . The 

continuation rate q,  for k = 1,2, ..., m - 1 is defined to be the fraction 

Caution:  In [2] and [2] the length of service is defined to be the number of 
completed periods of service, and is then one less than the measure used here. 

4w*&&ä£ti&&iüä 
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of manpower with LOS equal to k , that remains In the systen an additicrial 

period.  With this definition we have 

(2) 
'k+1 

(f(t + 1)  if k = 0 
(t + 1) = 

q s (t)  if  k = 1,2. , m - 1 

The continuation rates are intended to include several factors that in- 

fluence the flow of manpower:  the organization's retention, promotion, and 

retirement policy, natural forces such as mortality, and the behavior of 

personnel. 
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2.  THE DEMAND AND SUPPLY OF EFFECTIVE MANPOWER 

This section describes the stochastic demand process and the related 

deterministic supply process. 

The demand  Z  for effective manpower is a random variable that can 

take on a finite number of values  z ,z„. The stochastic law of 

motion that governs Che evolution of the process z  is Markovian: 

(1) PrtZt+l = 
zi V^ü 

We assume  r   is Independent of  t , and that the uncertain demand z4 

persists through period  t + 1 . 

The example below is a six state system and the manpower category is 

naval aviators.  State 1 of the Markov chain represents a calm peacetime 

period, while State 2 represents a higher condition of peacetime preparation. 

States 3, 4, 5, and 6 represent various stages of a conflict.  Notice the 

conflict may end, by a return to State 1 or 2, may stay at the same stage or 

it may proceed to a higher stage.  The transition probabilities are shown 

below along with the demand for effective manpower and the equilibrium dis- 

tribution of the Markov chain. 

Let  i(t) be the state of demand at time t:i.e.  Z =z,..  The 

state of the system at time t depends on two factors:  the stock of manpower 

s(t) , and the state of demand,  i(t) . 

We shall now generalize the nation of continuation rates introduced in 

(I;2), by allowing the continuation rates to depend on the state of demand. 

Thus we have continuation rate q ,  and the law of motion for manpower is 

(3) Sk+l
(t + l)  = 

f(t+1)  if  k=0 

(q1ksk(t)  if k = 1,1, . .., m - l) 



TABLE 1 

1 

2 

3 

A 

5 

6 

0.90 0.07 0.03 

0.5 O.U 0.1 

0.05 0.5 0.05 0.4 

0.1 0.35 0.2 0.35 

0.1 0.6 0.1 0.3 

0.1 0.7 0.2 

z n 

500 0.783 

900 0.147 

1200 0.040 

1200 0.020 

1200 0.008 

1000 0.002 

TABLE 2 

Length of Service 

1 2 3 4 5 6 7 

1 0.9 0.9 C.95 0.95 0.95 0.1 0.9 

QJ 2 0.9 0.9 0.95 0.95 0.95 0.2 0.9 
IT) 

m 3 0.95 0.95 0.9 0.9 0.8 0.8 0.9 

4 0.95 0.9 0.9 0.9 0.9 0.9 0.9 
<u 

5 0.95 0.8 0.9 0.8 0.8 0.9 0.9 

6 0.95 0.9 0.9 0.9 0.9 0.9 0.9 



This allows for alternate retention, mortality, and behavior assumptions for 

each state of the demand process.  In this paper we shall solve numerical 

examples with n = 6 states and m = 8 maximum years of service.  The con- 

tinuation rates are shown in Table 2. 

We can utilize personnel in alternate ways depending on the demand en- 

vironment.  Let d.,  be the contribution to effectiveness of each individual 

in the system with length of service equal to k when the demand environment 

is  i .  The total effectiveness is then 

m 
(4) 

^ dikSk(t) 
k=l  lk ^ 

and the excess of the supply of effective manpower is given by 

ra 
(5) I    d^^(t) 

k=l ik"k 

We shall allow the d ,  to be nonnegative.  Consider the problem of 

supplying effective naval aviators.  Individuals in the first period of service, 

are being trained to fly; thuu they are not making any contribution to meeting 

the demand for naval aviators.  In addition, it takes trained and qualified 

pilots to teach new recruits.  Suppose one teacher is needed for every two 

pupils in state 1 .  Then d .. = -.5 .  Every two pilot trainees take up the 

services of one instructor who is therefore not eligible to meet the demand 

for operational pilots.  The contributions to effectiveness for the problems 

solved in this paper are seen in Table 3. 
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O 

TABLE 3 

Util iza tion 

^ength of Service 

1 2 3 4 5 6 7 8 
1 "0.5 "0.5 1 1 0.8 0.8 0.2 0.2 

2 "0.5 "0.5 1 x 0.8 0.3 0.2 

3 ~0.5 "0.25 1 1 1 0.8 0.3 

A "0.5 "0.3 1 1 1 0.8 0.8 

5 "0.5 "0.3 1 1 1 0.8 0.8 

6 "0.5 "0.3 1 1 i 0.8 0.8 

iwaatiMaatomiaiaaMsttrSiitiiit^ &4Äö«Ä*«säaiö 
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3.     THE CONTROL OBJECTIVE 

This  section formulates two  quadratic objective functions  for  controlling 

the  flow of  manpower  through the  system.     We selected quadratic  objectives  for 

two  ' ^asons.     First,   they lead  to a model  for which results  can t.e  readily 

calculated.     Second,   the objectives are a reasonable measure of  tne departure 

of  actual  system performance from an ideal performance. 

The  simplest control objective is   to minimize  the expected weighted 

squared  error between  the supply and demand  for effective manpower.     Let 

w.     for    j   = 1,2,   ,..,  n    be positive weights that sum to 1.     If     i(t)  = i  , 

and     s(t)   ,   then the expected error at   time    t + 1   ,  as a function of 

f =  f(t + 1)   ,   is 

(1) Ei[s(t),f(t + 1) ] = ^ rijwAzj -f (t 
m-l i 

Our second control objective is to provide a smooth flow of manpower 

through the system and to come as close as possible to meeting the demand 

for e/i^ctive manpower.  If the manpower system was rlways in state j , 

; hen an ideal distribution would satisfy 

(2) 
m 

I     * 
k=l 

jk0k " ^j ' 

and 

\+l 

j  f   if  k = 0 

|qjksk for k = i»2' •••« s» " 1 J 

Note that (2) can be rewritten as 

(3) k+1 

if  k = 0 

f for  k = 1,2, ..., m - 1 

r iMUtWUMMmilMiUUmimm 



For    k = 2,3,   . • ,,  in    define 

10 

(4) 
k-1 

Pik :=    n    ilik 

and    P.,   =1   . 

Combining   (4),   (3),   and   (2) we obtain 

m 
(5) JJk "  ^Vb Vi* 

The   'iscrepancy between actual and  ideal  is measured by 

(6) 
m 

k=l 
(s, (t +1) - b r 

Using the law of motion (II;J) we can rewrite (7) as 

(8)   E ij 
m-1 

[s(t),f(t + i)] = (f(t + i) - s^r +  l   (qiksk(t) - sjk+1)' 

This is a measure of the discrepancy at time t + 1 conditioned on four 

facts; manpower s(t) at time t , demand  i at time t , accessions f(t + 1) 

in period t. + 1 , and demand j at time t + 1 . The function is quadratic, 

strictly convex in f(t + 1) and convex in s(t) .  The expected discrepancy 

is 

(9) 
1 n      -M 

F, [s(t),f(t + 1)] = I    r Ei;,[8(t),f(t + 1)] 
j=l ^ 

-Wr 

is also quadratic convex in f (strictly) and s . 

We note that it is possible to weigh the functions E"[s(t),f(t + 1)] 

in order to place greater or less importance on the expected discrepancy from 

naaüftiaMiBaHM ■^:mJ*^^MitäMmtät&i&iäl^tä&i &#äti^^'^«^^ 
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State j . 

For either objective in a T stage problem, where s(t) , and f(t)  are 

the observed values of the manpower stocks and accessions for t = 1,2, ..., T , 

and i(t)  is the state of demand, the total discounted error is 

(10) 6t: 1Ei(,:)[s(t),f(t)] 
t=l 

where 0 < 6 < 1  is a discount factor.  The objective is to minimize the 

expected value of (10) over all possible appointment sequences. 

■-■■■■■.■■ -■ ^-■- ' - -■' '- ■  ■ -'■ -•-:" --i^ i-i^ c 
^t^j&^ixvi^SMtäJM&ataäuMs^^ ^^■^^UiaimiiäiAk^^^mi^^äa^i' 
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4.  THE OPTIMAL APPOINTMENT POLICY 

This section presents two examples of optimal appointment policies:  one 

for each of the objectives presented in Section 3. 

A theoretical description of the optimization procedure is presented in 

the appendix.  We shall use three important results from the appendix: 

(i)  For any finite planning horizon T , and any demand state i , 

there is an optimal appointment policy that is a linear function 

of the manpower stock s .  For our model 

1,T ■v +J. b 
k=l 

^s 
k Sk 

(ii)  For any finite planning horizon T , and any demand state i , the 

minimum expected error is a convex quadratic function of the man- 

power stocks s : 

s'P 
i,T ^ i,T  L  i,T s + q ' s + r 

(iii)     As  the  planning horizon    T    becomes  large,   the values  of    b 

Di,T i,T i,T ,.       .i       _i i i 
P >   q .       ,   r ,  converge to    b     ,   P     ,   q     ,   r     . 

i,T 

In  the  examples we have solved  to date,   the  convergence has been quite 

rapid.     For  the  first  example below a 1% change was observed between a  20 and 

21 period  horizon.     In  the second  example convergence was nearly perfect  in  5 

periods. 

The  first  solution below uses  the objective   (3:1)  with discount  ffctor 

A  = 0.95 and weights 

w.  = 
j 

(l/18    if     j  -  1,2 j 

4/18    if     j  =  3,4,5,6) 

■-.iM,,-;nn-,if;^n.^iiffafiiiiiifr^ - ijaamBBiiiBMBMBS 
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T.ie optimal appointment policy is shown in Table 1. 

For the second control objective, (3:9), there is a considerable 

i   v  1 simplification in the optimal decision rule;  f = b. +  )  b k , .  In the 
0  k£1   sk 

second case b = 0 for k > 1 .  Thus f = b  independently of the current 

manpower stock s . 

The optimal input as a function of i is shown in Table 2,  In this 

calculation we set  o =0.95 and did not weigh the various terms in the sum 

(3:9). 

mmmmmtm 
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TABLE  1 

i bo bl b3 b4 b5 b6 b7 b8 

1 667 ".95 .17 ".14 .25 .30 0.0 .10 0 

2 604 ".95 ".16 ".12 .27 .31 .03 .16 0 

3 285 ".97 .04 .08 .37 .35 .29 .39 0 

4 105 ".91 .04 .21 .48 .47 .40 .46 0 

5 345 .95 0.00 .06 .36 .36 .28 .32 0 

6 475 ".98 ".08 ".03 .34 .36 .22 .25 0 

TABLE 2 

i bo 

1 304 

2 332 

3 370 

4 374 

5 357 

6 354 

mmäiMmiiäiää&iiäm 
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5.  COST PERFORMANCE. TRADEOFFS 

This section examines the use of the manpower planning model presented 

in earlier sections to measure the tradeoff between cost and system performance. 

We shall consider this tradeoff in the specific contex: of the naval aviation 

problem.  In particular, we shall assume that costs are determineJ by the dis- 

tribution,  s(t) , of manpower stocks. 

When an optimal linear appointment policy has been calculated, then it im- 

possible to express the evolution of the manpower stocks in a linear fashion 

(1) 

if k = 1,2, 

This can  be written in matrix rorm 

(2) s(t + 1) = A^Ct) + h1 

The equilibrium expected values of s as a function of the demand state 

j  can be calculated. 

Let ii        be the probability that the previous demand state was i given 

that the current demand state is j .  These are the inverse transition proba- 

bilities for the Markov c'iain.  When the Markov chain is in equilibrium, a 

simple application of Bay es's Law gives 

(3) 4> 

where T = (T:, , . . . , TT )  is the stationary distribution vector of the Markov 
i       n 

chain. 

J   r Now let    sJ     for    j  =  1,2,   .,.,  n    be the expected manpower stock in demand 

state    i    when an optimal  linear  appointment policy  is  used. 

The    s      must  satisfy 

jaaaMat 
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w ]  = I   ii.A^s1 + h1) 
i=l ji 

for j = 1,2, , , . , n . 

This system of n * m equations with n x m unknowns can he solved for 

the equilibrium expected values of s  .  For the first object-ive (3:1), and 

the appointment policy in Table 1 of Section 4, we obtain the equilibrium ex- 

pected values following in Table 1. 

For the second objective (3:9) the expected equilibrium stock levels are 

shown in Table 2. 

With these figure^, suitable cost data and the vector TT , it is easy to 

calculate the expected cost ner period of operating this manpower system using 

the optimal linear appointment policy. Let  c ,  be the cost of an individual 
X K 

in the k  period of service.  The equilibrium expected cost per period is then 

m 
(5) 

1=1   k=] 
c-:i Si ik k 

We can also construct a measure of system performance.  Suppose we choose 

the expected weighted squared discrepancy between the demand and the steady 

state expected supply l^vel.  This would be 

(6) Xvifi-j/^y 
With a measure of expected system performance and a measure of expected 

cost, we compare alternate manpower policies.  For example, it is possible to 

change the demands z,  and recalculate a new optimal appointment strategy. 

We can also change the continuation rates q , , or the utilization policy 

d  ; note these changes would probably produce a corresponding change in the 

costs c , .  It is also possible to change the objective function by either 

iüägüüii 



TABLE  1 

17 

i 

1 

2 

3 

A 

5 

6 

1 ■ 

J71 332 298 283 
■ -■ ■ - - 

268 
'1 

254 29 30 

350 325 296 279 262 243 73 57 

362 328 297 282 267 251 42 41 

285 329 308 270 251 216 199 66 

376 279 289 276 240 223 195 179 

328 348 241 252 222 194 195 175 

TABLE  2 

307 279 252 241 229 217 25 26 

330 295 262 243 226 209 6? 49 

318 285 257 243 229 215 36 35 

371 312 273 234 217 186 171 57 

373 353 281 246 209 192 168 153 

357 351 289 254 203 171 169 151 

^fffififttiiwi^ 
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using alternate weights  or an entirely different  objective  function.     Using 

our model,,   and  trying alternate manpower policies we  can discover,   and explore 

the  cost-rerfonnance   tradeoffs   that   exist. 

There is a second   type of sensitivity analysis.     If  the probabilities  in 

the Markov matrix are  changed,   this  amounts  to an alternate assumption about 

the stochastic nature of  the  demand process.     By recalculating  for  several dif- 

ferent values of  the  transition probabilities we  can measure  the  impact of 

alternate assumptions  concerning the demand process.     A  related question is 

to measure  the impact of an  incorrect  assumption about   the  demand  process. 

This  leads  to an easier  calculation.     Suppose we assume  the  transition proba- 

bilii ies  are    r..   ,  when  they actually are    r,.     with  equilibrium distribution 
ij J ■' i2 ^ 

vector    -n  .     In this  case  the appointment policy will not  change.     However,  the 

calculations   (3)-(6)  would  have  to use the values    f, .     and     TT ,   .     In  this way 
i]       i 

we can measure the effect of incorrectly specifying the probabilities. 

In some cases it is possible to alter the manpower stock in an ad-hoc 

fashion.  In the language of the na^al aviator problem, we can either bring in 

reserves or allow people in the system to leave before their obligated service 

is completed.  If possibilities of this sort exist, then some of the information 

we have calculated can help in designing an alteration of the manpower stock. 

Recall that the minimum expected error starting in demand state i with stnck 

s  is 

(7) sP s + q s + r 

The  increase  in this optimal  expected  error as a  function of an  increase in    s 
t 

is  simply 

m -f 1 
2     ^    SiPik+\ 

j=l     J   jk        ^ 

Maatt gttaa ■- a^^gaaatbggaaaaHiäi^MMyitaMBMBaa^ fnatfMma'v^fiVft^^ 
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This tells how an increase or decrease in sk will effect the minimum expec t ed 

error. 

In addition, if the current demand state is i , then the current ~npower 

stock s should be cont rasted with its equilibrium value 
1 

s It is in the 

interest of system stability to change s closer to its equilibrium value. 

It is even possible to calcul l t e an optimal value for s when the demand 

state is i . The optimum is simply -l/2(Pi)-1 (qi)' , t he s tha~ minimizes 

(7). The optimal ~alues a r e not always realistic, as we indicate below. How

ever, they do indicate a direction in which favorable changes can be made. 

For the objective (3:1) we find the following optimal dis t ributions shown 

in Table 3. Note any value of siS is optimal. 

The distributions for demand states i = 1,2 are unreasonable, probably 

close to the low weight attached tv the objective for those states. The dis

tribution for States 3 and 4 is quite good. It indicates that a large increase 

in the three year group would have a favo·rable impact, as well as a large in

crease in the six year group. 

The optimal distributions for the second objective (3:9) are more r easonable. 

Those values shown in Table 4 should be contrasted with t hose of the equil

ibrium distribution in Table 2. 



»"If 
■. m —WM—MMMMBBB^ttBi        "" ■"- -J""AB'""-''-':"f'' 
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i 

1 

3 

4 

5 

6 

288 32 474 367 ID 7290 LOA 0 

3U "61 481 554 131 2720 47 0 

302 159 514 401 268 437 39 0 

36 3 254 415 350 306 271 150 0 

242 244 583 398 137 369 ~1C2 0 

184 169 682 392 "6 412 ~201 0 

TABLE 4 

1 

1 

2 

3 

4 

303 272 243 228 213 296 27 0 

334 303 274 263 249 256 54 0 

360 332 328 295 280 143 131 0 

379 355 341 299 217 130 143 0 

350 377 323 342 274 91 98 0 

342 330 318 305 266 80 83 

1 '"  
0 

m&iBit^magavmamma&Sämiiiimlsamism ^^j^^t^m^ummmmmmsmmBitiimmmmmiaitMmim. -^ - 
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APPENDIX 

DISCRETE TIME, LINEAR-QUABHATIC, DYNAMIC PROGRAMS WITH MARKOVIAN PARAMETERS 

This appendix presents, in a more p-neral form, the theoretical results 

used in the paper.  We employ a notation close to that of the :ext. 

Th3 state of the system with T + 1 periods remaining is  (s.i) .  Given 

action f , the state of the syscen with i  periods remaining will be 

(D (s,f),j) with probability r.. , where, for each 1 , D' (s,f)  is a 

linear function of  s  and  f . 

The error associated with choosing f in state  (s,i)  is E (s,f) , 

where for each i  E (s,f)  is quadratic and convex in s and strictly convex 

in f .  Future errors are discounted at rate ("i . 

For  i = 1,2, ..., n define V (s,i)  to be the minimum expected discounted 

error for a T period problem that starts with manpower stocks s , and demand 

state  i . 

For any choice of f , we have 

(1) VT+1(s,i) < E (s,f) + 6 I    r V^D^.f),:)) 
j=l 

T+l 

By the usual principal of optimality arguments we can establish that the func- 

tions V  (s,i) must satisfy the following functional equation. 

(2) V   (s,i) = Min 
f 

E^s.f) + 6 I     r,.V (D^s^.j) 

where V (s,i) = 0  for each s and  i . 
o 

Now assume, that V (s,i) is a convex quadratic function of  s for each 

Thus we can write VT(s,i) = s,P±'Ts + qi,Ts + r1,1 i  T where    P   '       is 

positive  semi-definite,   and  symmetric.     It  is  easy  to show that    V   (D   (s,f),j) 

is a convex quadratic  function of     (s,f)   ,  and  therefore  that 

-^ja«ay&j«ui.fc^ii^i4»w»1ittüiU^^i>ivAi—.^vavrif-iiw«^^ 
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(3) E^s.f)  + 6    I    r,,VT(D1(s,f),.j) 

Is  ciuadratlc,   convex in    s  ,  and  strictly convex in    f  . 

When the quadratic  function   (3)  is differentiated with respect  to     f   , 

then a linear  equation results,   and the unique    f    that minimizes   (3)  as  a 

function of     s     is  in the form 

(M :T+1 (s,i)  =  B 
i.i+1 

(s) 

IT -j   T IT 
Let    V   (s,i)  = s'P   '  s + q   '   s + r   '       be the optimal value  function starting 

1 T+l 
where  for each     i    and    T + 1   ,   B   '       (s)     ic  linear in    s   .     When the optimal 

policy  (4)   is  substituted  into   (3)  we obtain a convex quadratic  expression for 

VT+1(s.i)   • 

Thus  for any  finire horizon     T    the optimal value and  policy functions 

are,   respectively,   linear and  quadratic.     We now turn to  the que.scion of  con- 

vergence of  policies as  the planning horizon  increases. 

q 

in state 1 for an i    period problem. 

When the discount factor 6  is strictly less than 1, then the sequence 

T 
V (s,i) will remain bounded if there exists a policy f(s,i)  such that this 

policy leads to a bounded sequence s(t)  for any initial s(o)  and any evolu- 

tion of the demand sequence i(t) .  In the model described in this paper, the 

policy f(s,i) = 0 will insure s(t) =0 for t > m . The general question 

T T 
of convergence of V (s,i) and  B (s,i)  is difficult, and is currently the 

object of further investigation by the author. 

i.*mA-,i,t.:,*t t«^Jv^.vT:^..t>^jkii^:^^^\^Lri^;.^ii\.iriiA.J*siJt*.4iaiw Ä^A^Öiiiaü^MJU^nfctoiW&Ä 


