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 ABST

A small-perturbation stability analysis of a doubly infinite
array of interdigitated, right circular helical vortices has
been formulated. This array corresponds to the vortices
trailed from the tips of the blades of a helicopter rotor or
propeller in static thrust or axial flight condition and at
great distance from the plane of rotation of the blades. The
analysis makes use of the Biot-Savart law of induction and the
Vorticity Transport Theorem. The singularities in the Biot-
Savart integration for self-induction have been eliminated by
substituting appropriate approximate functions. Near-singular
behavior in cther integrals has been minimized by adding and
subtracting functions with similar near-singular behaviur and
which have exact, closed-form integrals. The calculations of
induced perturbation velocities and those required for the
stability analysis have been programmed for digital computer.

Numerical results have been obtained for two-, three-, four-,
five-, six-helix arrays representing the vortices trailing

from the same number of blades. The special case of a single
helix has been run and the results compared with those present-
ly available from studies by Levy and Forsdyke and by Widnall.
A continuum of instability modes has been found associated
with all values of wave numbers; only modes with wave number 0
and 1 are so much as neutrally stable, and only for the case of
a single helix. The most unstable modes involve the most

axial motion of adjacent vortex segments relative to each
other. By '"adjacent segments'" is meant vortex segments above
and below each other (i.e., at the same azimuthal location) on
adjacent coils of the same or neighboring helices. Further-
more, the larger the percentage of the helical arc length
involved in such motion, the more rapidly the distortion will
diverge. Maximum divergence rates in the unstable modes
increase as the helix pitch decreases, increase as the number
of helices increase,and decrease as the number of cycles of
deformations in one turn of the helix (i.e., wave number)
increases. The larger the helix filament core diameter, the
more sensitive the analysis is to the means by which the singu-
larities in the self-induction integrals are eliminated.
Increasing core diameters, however, reduces the maximum diver-
gence rates.
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CHAPTER 1
INTRODUCTION

1.1 IMPORTANCE OF AN ACCURATE KNOWLEDGE OF WAKE GEOMETRY

The geometry of the wake beneath a helicopter rotor is impor-
tant to the accurate prediction of the airloads acting on the
blades. Determination of such airloads is prerequisite to
nearly every area of rotary-wing design including performance,
vibrations, acoustics and structural integrity. An accurate
knowledge of the wake-induced velocity field is also impor-
tant for determining (1) interference effects between rotors,
(2) positioning and effectiveness of auxiliary surfaces,

(3) interference with the fuselage and other non-lifting
bodies, etc.

The impact of wake geometry is felt directly in attempts to
predict wake-induced velocity fields. Inability to do so with
acceptable accuracy has limited the state of the art of heli-
copter rotor designs for perhaps a decade. This is a problem
on which considerable emphasis has been and is still being
placed. Some of the reasons for this emphasis include the
following: (1) The desirability of attaining peak lift system
performance is greater with helicopters than with conventional
aircraft because of generally less favorable payload and power
to gross weight ratios. (2) The distinctive acoustic signature
of a lifting rotor can be troublesome, and this imposes re-
quirements on the induced velocity field that have no counter-
parts in fixed-wing aircraft design. (3) Not only is the
geometry of the rotor's vortex system considerably more compli-
cated than that of a fixed-wing aircraft, but it is of greater
influence, since rotation causes the wake vorticity to remain
longer in the vicinity of the blades. (4) Unsteady effects
must almost always be considered since velocity at the blade
element varies with time even when the helicopter is in steady
flight., (S) Aeroelastic effects are always a factor since
rotor blades are relatively more flexible than conventional
fixed wings.

1,2 CLASSICAL METHODS OF COMPUTING WAKE -INDUCED FIELDS

The simplest hovering theory is the so-called actuator disc
analysis, where the induced velocities are calculated in terms
of momentum and energy changes as the flow crosses an "actuator



disc". See, for example, Glauert [Reference 1], Shapiro [Ref-
erence 2] and Gessow and Meyers [Reference 3]. Refinements

of this approach accounting for nonuniformities around the
azimuth have been made by Mangler [Reference 4] and Loewy and
Joglekar [Reference 5]. The next step taken in developing an
analytical model of the hovering rotor was to consider the
individual blade elements. The rotor disc was divided into
elemental annuli through each of which the momentum change was
equated to the blade element 1ift for a given blade pitch.

This method was first introduced by S. Goldstein [Reference 6].
It has most recently been developed *o account for experimental
airfoil characteristics and labeled nonlinear strip theory"
by Jenny, Olson and Landgrebe [Reference 7].

1.3 VORTEX TUBE REPRESENTATION OF HELICAL WAKE AND
DISTORTED WAKE GEOMETRIES c

Considerable research has been and is being done to develop a
rotary-wing equivalent to the classical lifting-line type of
inflow analysis employed with success for fixed-wing aircraft.
Among advances made in the last decade are methods of wake
analysis which deal with the three-dimensional array of vortic-
ity in the wake "shed and trailed"* from the finite number of
blades in a l1lifting rotor. Such analyses [Miller, Reference 8;
DuWaldt, Reference 9, etc.] have the following classical bases:
(1) Making use of Prandtl's theory of airfoils, the wing is
represented by a "lifting line'" with a circulating flow around
it. This circulating flow in turn gives rise to circulation,
r, which is related to both the aerodynamic forces and the
strength of a vortex called the "bound vortex" which is, :
essentially, the lifting line. (2) The aerodynamic forces are
also related to the induced velocities at the lifting line
through the angle of attack, on which dimensional analysis
shows 1ift to be dependent. (3) A fundamental law of the
mechanics of perfect fluids (Kelvin's theorem or the Helmholt:z
theorem) is involved; namely, that a vortex can not end in the
middle of a fluid, so the bound vortex continues in the fluid
beyond the extent of the blade, as a '"free" vortex trailing
from the wing tips. (4) Experience has shown that when a

sheet of free vortices trails inga distributed manner from some
significant spanwise length of a blade's trailing edge, it
then rolls upinto a pair of vortex tubes of equal strength and
opposite directions and is 'transported" away from the blade
which trailed it by the rotational velocity and the downward

* n"Shed" vorticity arises from time-wise variations in 1lift,
"trajled" vorticity from spanwise variations. Only the
latter kind is considered in this report.



axial induced velocity generated by the rotor. (5) The
velocity induced at the airfoil by both bound and trailing
vorticity is given by the Biot-Savart law of induction,

The classical wake is generally considered in two distinct
parts: near wake and far wake. The near wake is defined as a
set of circular helices of finite length trailing from the
blade tips and near the blade roots, together with the
"lifting line" or bound vortex representation of the rotor
blades. The length of this set of trailing vortices is
usually in terms of some number of rotations below the "lifting
lines'". The far wake, on the other hand, can be treated as
consisting of an array of infinitely long, interdigitated cir-
cular helices as generated by the blade tip only.

The wake-induced field of a hovering rotor, therefore, can be
inferred from proper consideration of trailing vorticity, i.e.,
a set of interdigitated circular vortex helices generated by
the tip of each blade in the rotor. The question is, "How can
this vortex helix representation be used to deal more funda-
mentally with rotor-induced flows?"

Although most of the recent methods of blade airload analysis
represent a considerable improvement in the state of the art,
they still do not permit accurate calculation of blade airloads
and associated bending moments. The fact that wake geometry is
prescribed in advance imposes a fundamental limit to such
methods. Optimum rotor design is not likely to be achieved
until a distorted wake geometry can be accounted for rather
than prescribing a rigid helical geometry. Tarrarine [Refer-
ence 10), Landgrebe [Ref:rence 11] and others have shown,

using flow visualization techniques, that the actual rotor wake
geometry differs significantly from the pure helix. Relatively
recent efforts, therefore, have concentrated on the development
of analytical methods for predicting the distorted helical
geometry of the actual rotor wake. In one approach [Reference
5),the nonuniform velocity fields predicted by momentum theory
have been used to calculate the distortion of a canted, but
otherwise pure, helix. In others [References 12, 13], the
self-induced distortions of a rotor wake represented by numer-
ous discrete vortex elements are computed by application of the
classical Biot-Savart law involving both numerical integration
and iteration techniques.

1.4 MOTIVATION FOR THE PRESINT WORK AND DESCRIPTION OF THE
GENERAL APPROACH ADOPTED

The determinatior and use of a distorted wake geometry, free



from the constraint of conforming with a pure helix, would be
expected to provide a more accurate means for computing the
instantaneous rotor flow field and the associated blade air-
loads, It seems significant to this objective that, in tests
and wake geometry analyses, evidence of apparent instabilities
in the tip vortex patterns was discerned; in experiments, rapid
deviations from the helical geometry were observed [Reference
10], and during numerical integrations,the numbers seemed to
diverge in successive iterations [Reference 11]. In either
case, distorted rotor wakes were obtained. In Reference 11 it
was noted that the portion of the wake in the immediate vicini-
ty of the rotor plane (extremely near wake) did converge in the
calculations, with the degree of convergence improving with in-
creasing proximity to the rotor. This, presumably, is due to
the fact that one end of the wake is tied to a blade whose
position is prescribed. C(Close examination of the computed re-
sults, however, indicated that the wake did become unstable at
moderate distances from the rotor. It therefore appears that
to gain insight as to the completeness needed for acceptable
theoretical rotor blade analysis methods, stability of the wake
should be studied. Further, it seems prudent to examine the
far wake first, both because of its greater simplicity and be-
cause of its apparently greater tendencies toward instability.

Two-dimensional flow fields behind a circular cylinder were
found by Kdrmdn [Reference 14] to be stable only when vortices
were in the staggered formation, which has come to be known as
the '"K€rm€n Vortex Street', A "Kdrmdn Vortex Street" might be
thought of as the cross section of a right circular helical
vortex on a plane through its axis. Such an analogy suggested
that the interdigitated vortex helix system associated with two
or more blades would, by extension of Karman's analysis, be
more unstable than a single helical vortex. A literature sur-
vey revealed no analyses of the stability of an interdigitated
vortex helix array such as might represent the wake of a multi-
bladed rotor. An early stability analysis of a single helical
vortex, however, was carried out by Levy and Forsdyke [Refer-
ence 15]. This work was prompted by flow visualization experi-
ments in the wind tunnel with a stationary, circular disc with
its polar axis parallel to the flow. At high values of Rey-
nolds numbers, it was found that its wake consisted of a ro-
tating helical vortex filament.

The Levy and Forsdyke analysis, while basically like that of
Karman, involved numerical techniques which, without modern
computing, led to some erroneous results., Nevertheless, the
approach adopted here for the stability analysis of interdigi-
tated helical vortex systems follows the same general line. A
system of helical vortices is postulated. Perturbation dis-
placements are assumed, and the self-induced and mutual-induced

\



erturbation velocities at the perturbed vortices are calcu-

ated, Subsequently their growth rate is determined using the
vorticity transport theorem. As was found in an independent
study of the stability of & single helical vortex, published
after the initiation of the research reported here [Widnall,
Reference 16], the vortex system is unstable under most situa-
tions. The results of the analysis reported here, however,
show that stabilitg and growth rate of perturbations depend
very strongly on the number of blades in the multi-bladed case.



CHAPTER 2
THEORETICAL ANALYSIS

2.1 BACKGROUND

Where instabilities exist, iterative techniques will not
converge, and direct numerical integrations with respect to
time will be greatly enhanced by a prior knowledge of the
unstable modes and their rates of divergence. As noted in the
preceding chapter, Levy and Forsdyke [Reference 15] considered
a single, doubly infinite, constant-diameter, helical vortex.
They found it to be unstable for disturbance modes with no
distortion for vortex helix pitch angles less than 0.3 radian.
Their analysis, however, suffered from several shortcomings.
The numerical integration was performed using a planimeter,
which is understandable,considering the early date of their
work (1928), but nevertheless the loss in accuracy contributed
to errors in their results, and the approximations used in
evaluating the singular integrals were quite crude.

Widnall[Reference 16] recently investigated the stability of a
single helical vortex filament with a finite core,using the
method of matched asymptotic expansions. The results of that
work, except for certain differences in evaluating the singular
integrals encountered in the analysis, were obtained as a
special case in the present investigation. In another relative-
ly recent study, S. C. Crow [Reference 17] dealt with the
stability of a pair of linear, parallel infinite vortices of
constant strength, as trailed from the tips of the wings of
fixed-wing aircraft. In theory, such a pair of trailing
vortices could be given as a special case of the family of
interdigitated, helical vortices considered here; specifically,
a set of two interdigitated helical vortices as trailed from
the tips of a two-bladed rotor, but with infinite pitch. In
practice, thc approximations used in performing the numerical
integrations over space precluded such a quantitative comparison,
However, Crow's study did provide insight into ways of looking
into the mutual inductance effects of the two vortices in the
present investigation,

2.2 CAPSULE STATEMENT OF THE WORK DONE

The present work deals with the stability of interdigitated



helical vortices, representing the part of the far wake trailed
from the tips of multibladed helicopter rotors in hovering or
vertical flight. A review of the literature revealed that only
References 15 and 16, which are limited to single helices
contained pertinent work. The analysis in this report involves
the following steps: (1) An n-bladed, hovering rotor is repre-
sented by interdigitated, doubly infinite, right circular
helical vortices of constant diameter. (2) The system of n
vortices is perturbed from its normal helical configuration and
position in radial, circumferential, and axial directions.

(3) Application of the Biot-Savart law and the requirement
that the time rate of perturbation displacements be compatible
with the resulting induced velocities yields a system of
eigenvalue equations for the admissible characteristics of
these perturbations.,

2.3 DEVELOPMENT

2.3.1 Mathematical Definition of Infinite Helical Vortices

Referring to Figure 1, which makes use of a left-handed
Cartesian coordinate system, the parametric equation of a cir-
cular helix of radius r and pitch k is

X=YCoS®O ’ La,srsme , 2= Rvo ; =-00L0&®

To mathematically define n coaxial vortices of radius r and
pitch k, one can define an azimuthal separation angle between
the first helix and successive helices (see Figure 1) as

m-1)., 27T
LA e

5 M= ha,---,m

If 6, represents the parameter for the mth vortex, the para-
metrTc equation for the mth vortex can then be written as

Ym = 1 Sin (6m+ Ya)

%V\’\; hrem



2.3.2 Calculations of the Induced Velocities

The kinematic relation between vorticity and velocity in an
incompressible fluid is given by the well-known Biot-Savart
law, This equation can be applied to the system of n vortices
and results in the expression

n o -
Up = > D] Rwpxdin (1

Me) ‘Rmr\

where U, = induced velocity on p’" vortex.
.= circulation strength of m" vortex.
dl» elemental length vector on m™ vortex.

ﬁ,,,- relative position vector of point on P vortex
relative to points on m™ vortex.

Referring to Figure 1, a vector representing an element of
length along the m™ vortex can be written as

dtm‘ [d";\ ’ dy»: ) c\i,;]
and

- ' ' '
Rm' = [(xm-lp) » LgM-\JP) » (tM— %P)]

Note that the integration in equation (1) must be performed

for all values of m, including the case where m:p, to
account for the fact that the p™ vortex induces velocity on
itself. Primes have, therefore, been used to identify the
general points involved in the sﬁace integration, as contrasted
to :he sgecific point at which the induced velocities are
evaluated.

Rewriting the Cartesian coordinate description for the m'™ and
p™" vortex,

K= YCOS (O +Wm)

Ym = TSin (On+ V)

%m = RT O
and

Xp= T Cos (Op+Wp)
Yp= T Sin (Op+¥p)
ép: RY'QP



Therefore, Al = [~ Sin (Bm +4) , YCOS "M + W) , Rr] dEm

EMP = [{rcos (om+U) - reoscop+ @)} 5 175 (Bm+¥) - v sincog§)
) { Rr (Gn'»\-ep)i l

In determinantal form, ﬁmp X dfm can be written as

o gt . {1 cos (om+ ) {rsincom+Wm) R r(Bm - 6p)
X L = m
i e -y cos (6p+dy) } -rsin(op+ip)}

-1 Sin(om+¥n) Y Cos(Bm+YP,)  Rkr

where ¢_, e., e are unit vectors in the Cartesian x, y and z
directi¥ns, Yresﬁectively.

Therefore, the expressions for the induced velocities are

O,;'lt-b
n
0,83 Fa | et [8imcom*¥,) - Sin (Bp+Wp) = (Op- 0p)Cos (O A’
ma 4T L '_..[zr‘-zr‘c.os (Om=Bp+ ) + h'r"(q,’,‘-g’)’] ~
Ol n &0

U,-iy =Zn_ 2] Rrilcoscop+ip) - CoslOm+Ym) ~Bm=- 8p) SiniOm+H)] |

L 4m 1272 2r3cos (Om=-0p + hn=¥p) + R*r*(0,/4-0p)" ]"" b

O -0
o1 O +©
U',-Q.‘l E _’:»1 t*[ 1-cos (Op:n -Op +UJM-\,D’)J de!
4 ,
war 47 j _E:r}' 17"COS(9M'6P+WM-¢') + K"Y“'(em‘ep)-.']w‘ =
“

The following simple transformation can be used to transform
the Cartesian (x, y, z) velocities into cylindrical-polar
(r, ¢, 2) velocities:

> -
[U,.erlt [U,.é’,..JCas(o,.wa,) + t-JP'z.‘I]s'.ﬂcop"‘Wp)
Uﬂ%]’ —[0;-2,..]5('\(9,4-%) + [Up'-é-‘yJC-o.s op+-th)

The cylindrical-polar (r, ¢, z) velocity components thus can



be written as
i n 9..',-m
[UP.?,J= Z._E_\Tft_r Rr( S (Om - ©p + Yp-Yp) — (9,,’.,-9’) cos (_95«'91:"'4’»\‘ wp)]
mesa|

& : . .
o.’..-[-::r = A oS (Om -G+ W)+ RE Y2 (Bm-08p )12

de,,

> - 7 r a\'ﬂ'.""” ' ¢
[u,.e¢}- __le R (1~ €08 (B~ Op + U Wp ) = (B~ Op) Sint ( B~ Bp + W= ¥p )] ds.
)

o 417 y {2rtay? COSLG-;‘-OP-bWM. WP) + RE TL(GW'\'BP)‘J-S/"
m w00
" Om = +00
\UP.Z§]=2—£"¢. v2[i-Cos COm-6p+ Wm—Vp)] e
e 4T [2Y";:_r"cas(9~',-e?4.q)m-¢')+ erzLe"/‘_eP)z.J's/z G
'B'M--oo
1f, now, we define Xmp & (8 -6

a’nd q)mp 2 U’PM = WP)

and transform the variable of integration, remembering that 6p
is constant, there results

co

— 1 o 2

[Up.'e'.] =Z.!‘. RY*LSin € Xmp +Yop) = Xmp COS (Xmp+Wmp) ) dx"’
£_aT | T2v% 2ar  Cos (Xmp+ Ymp) + RI7 x5y ] 272 ’
gle

> 21 0 [ i

[Up-%]- T | mr*[ 1= Cos (X mp+Wmpd) = Xmp Sin(Xmp+Wpip)] ax
e A, _£zr": ar*cos (Xmp+ Ymp) + Ryt Xmp ]2 i

+

[UP--E;.]'ZR" v*[- CoS(&mn+¢mP)] Oh(

m"‘n.r “FﬁY!-z"'"CoS (XMP"'WMP)"'hLY‘ xv\:’;j:/z P

Self Induction

Induced velocity components on any vortex, f , result from the
sum of the induced velocities due to all n vortices. In each
of the three expressions immediately above there is a term on
the right-hand side corresponding to m=p . This term gives
the self-induced velocity components for the p'™™ vortex. How-

ever, for m=p ,
\}'pp ‘q"p"q’p"'o

and at xmp:0the denominator becomes a zero of higher order than

10



the numerator, resulting in a singularity in the line integral.
The difficulty is fundamental in that the Biot-Savart law

is invalid in a vortex core, i.e., where viscous forces
predominate.

Removal of the Singularity

If we assume that the vortex has a finite core of radius g,
the singularity in the Biot-Savart integral can be removed in
several possible ways developed to a considerable extent in the
literature. S. C. Crow [Reference 17] in his work with fixed
wing trailing vortices eliminated the singularity by cutting
the integral off at some arc length &,on either side of the
point where |Rmpi=0 . He then subsequently determined & by
taking it proportional to the radius £ of the vortex core and
evaluating the constant of proportionality by reference to two
similar problems whose solutions are known by other means, A
similar technique has been used by Hama [References 18 and 19]
for determining the progressive deformation of vortex filaments
with initial curvature without and with, respectively, several
kinds of initial perturbations. More recently, Widnall [Refer-
ence 16} used the method of matched asymptotic expansions to
remove the singularity in the self-induction integrals by re-
lating the problem for helices to that for two-dimensional
circular vortex rings. Yet_another method is to replace the
denominator [ IR,pi1*)" by [IR,*+¢*]" this approach was used
by Levy and Forsdyke [Reference 15} in their early work and
more recently by P. C. Parks [Reference 23].

For this study a procedure similar to that of P, C. Parks was
selected because a comparison with the Widnall results would
provide some insights into the equivalence of different ap-
proaches and because complications are avoided in this approach
when multiple interdigitated helices are considered. Thus,

{ (Rpp1* ¥ will be replaced by [iRppi*+ £*1*™ when self-induced
velocities are calculated and subsequently in the perturbation
equations.

Even with the treatment of singularities described above,
another problem remains in the process of numerical integra-
tion, because the integrals behave almost as though they are
singular so far as numerical evaluation is concerned. The
evaluation and interpretation of integrals are therefore done
by rewriting the integrand, adding and subhtracting functions
which have the same singularities numerically but which can be
more easily treated analytically. This procedure will be dis-
cussed further in chapter 3 in connection with integration of
the perturbation equations.

11



2.4 VORTICITY TRANSPORT THEOREM

In this analysis we have assumed a fluid of uniform density and
zero viscosity and that elements of the vortex line move with
fluid particles. If ¥ denotes the position of points on a
vortex line, the total derivative (Eulerian) of ¥ is equal to
the fluid velocity at that point,

If one is considering only those fluid velocities induced by
the presence of vortices, then, mathematically, the vorticity

transport theorem can be expressed as % )= for
points ¥ on the vortex filaments.

A description of vorticity transport theorem can be found,

for example, in the fluid dynamics book by G. K. Batchelor
[Reference 21].

2.5 PERTURBATION EQUATIONS

Let the point (%, ,9s..,tm) On the w* vortex helix be perturbed to
the pOSitions xut®8Xm ) Ym+ §ym »2m+it,, HeTE 6xy $y,., and 2,.are
considered to be first-order perturbations; i.e., their products,
squares and higher gowers can be neglected. The functional
relationships for these perturbations can be written as

Btm= BXm(Om,t)
SYm = SY,(Om t)
S}M: Sh..(emrf)

where t is the time variable.

Now writing T Gy Yo o0 )
8nd S?M = (Slm » $9m )S‘M )
the vorticity transport theorem thus gives, for the perturbed
An ot e T (Bt
P vortex, EFc( Yp+2ry) p (Tp+2Tp
- -» & a5 _ . - -
where -Up (p+87p) is the induced velocity at point v, +%7, on

the perturbed p”‘ vortex.-

12



The induced velocity, -J, » 1s obtained by using the Biot-Savart
law at the point ?l.«-'i'?"P due to the system of vortex helices

as modified by the perturbation displacements.

n -» - -» -
GGesthi=> In jampxdtmwmsm
47
me|

IR
= 28 , » ,
where Rmp = Y - Tp + o ~ 318

- ~» e

Alm = Al (P + BFm )

= [htm + d(8Xm) , dYpt A(8Ym), el Bt (82w ]

th and first-order cross products are

The zero

- -» -, b % ’
[Ropxdim] = (Ton =T )% g‘e,’,.(r'" ) dom
* [
[Rwpx dlm ], = ('F,&—?,)x,g., (St ) dOm
Om
+ (ST =STp )X 2, (Fm ) dBpn
6.,
We may now write

- £ ' " a 5 2
| Rmp |~ = LCxm=2p+ 8Xpr - B8%p) "+ CYm-Yp + BYpr- SYp)
' o -3
+(Tm=2p + S%M-Sﬁp)l ] =
Defining the zeroth-order term expression as

- -9 5 P ; =13
lRW‘Plo = [<XM'XP)1+ (UM—‘Jp)-‘-t— (&M-&p)t J /2

-3
2 Jmp

and the first order term expression as

-3 -3/, -1 5 5
'EMP" : Imp [“‘ 2 Jwp i("m‘xp)(sxm—SXP)

’ ’ ¢ ’ -3/1
F (Ym = Yp) (BYUm-BYp) + (2= ¥p) (620 Stp)}]

13



and expanding, retaining only first-order terms, yields
-> -3 -8/
l Rmr' ] B EJMP KMP

where Kmp is defined as

Kmp & (xm = 2p) (8%m = §Xp) + CYm-Yp) ( HYm- 5Yp)
+(2m = 2p) (B - BEp)

The corresponding zero and first-order induced velocity
vectors( denoted by 0 and 1 subscripts) can be written as

9""0”

- - n P -3 ?’ o -, 0
[Up]°~ ZT Jmp [( m=Tp) X ,.?—e':ﬂ(fm)_] dom
ma) :
= :..'.-no

n
r' -3/ . 4 ’ =» , -» -, ’
[UP]‘ =; = J‘M"L(Tr:‘ -TP)X%',“(SY'M)"'(SV'M‘Srp>x§a';‘(rm )] des,
*' Jome-00

n O +00
r -5/ & -, ’
+ MZ'Z?T =3 KmpImp [(?m -Tp)X a'a-e',n(rm )J dem
o':‘-—”

It will be convenient to carry out the calculations in terms
of the helical coordinates, r and©® . Since the parametric
equation for the m™ vortex helix is

xv\:\ = YCos (en;"'qlm)

U= T Sin(Bm+%n)

Q,;.: Rrel‘;\

the first- order displacement perturbation expressions can be
written as

B = BTm C03(Om* Wm ) = T Sin (Om+ ) 5 dy,

SYm = Bl Sin(Om* Paa) + TCOS (Ona +¥m) 5Om

14



SQ..: = B2m

The zeroth and first order terms of the numerator of the inte-
grand in the » ,y and# directions also can be written as

th

Zero  order terms in the x direction

(9.".-9,)3%.,“@.’.» - (e»i—tp)%;‘(sw'. Y= {rSin(Om+W) - T Sin(Bp+dp)}-Rr

= Rr(Om=-Bp) COS (O + bm)

First order terms in the x direction

(5= 6YPp) 2 (2p ) ~ L= 2 75
m p _oe',n m) (stm &P)ég;‘(ym)

Rr[8%m Sn(0m+¥m) - 1) Sin(0p+p) + ¥ 6, Cos (B +m) - 5, Cos(@p+ )]

- (82m=-$52)p).7CoSs (Om + W)

CYm=Up) 2. (62m) — (@Bm-2p) 2, (BYL) =
m¥) . 2m (Zm p)ae',“( Ym )

f%,v.cse...) [Sintom + Wm) - Sin(op+Wp)]- RY (ev;"ep)[%:'(srm) Sin(Om* Ym)

* 6% Ca8 (Oni +Um) + T oS (Om +¥p) 2, (88,,) = T5G, Sin (O + )]
™

th

Zero  order terms in the y direction

(= Tp) 2 (X )= (Hm~ 2 () =
P 3%(x )= (nm xP)aem m)

= REYCOm=0p) SINCOm + W) = RT* {Cos (Om+Wm) = Cos(Op+Wp)

15



First-order terms in the ¥ direction

<se.’..-se,.)_‘a.-&u»") - csx.(.-s:,.)aaé-“,‘cc,',,) -
Y (Btm=52p) SIN(Om*+ V) = RY[ 67 Cos(Om+Wp)~ BYp Cos (Bp+Y5p)

-7 60,5m(8m +Ym) + YEO, Sin(ep+¥p))

' k) b R Ly
(tm-tp) 2o, (BXm) = (Xm "P’é’a;.‘“*"’
RT (Om=-0p) [,?.o, (87m) Cos(om+ ¥, ) = STm Sin(Bm+Y, )= 7B, Cos(omt )
™

=T SinOns ) 2, (58] - 7., (B2 [co8 (Om + ) - CoscOp+ Wp))

Zeroth-order terms in the 3 direction

(X=X p) gb',“w..',) - Luwi-up)g_%cx,;) -

Y 2Cos (8m+¥m) {008 (B + Wa) - CO8 (Bp+ Wp)} = YU Sin (B + ) { Sinto,+ ¥, )- S\'n(nﬂﬂ}

First-order terms in the # direction

csx...-sx,.>aaq,"(y,;.>-(sy.;,- 8Yp) ge.cxm -

TQ’S(%"‘WM)[STM CoS(Om+WYm) - SrPc“(eP*'wP) = Ys@ms“" (Bm+¥)

+Y 8¢P Su‘ﬂ(b,#-ﬂ/,,)] + 75in(Om+¥m) [_STM Sim(Om+Pp)

- BT SIN(Op+ Pp) + TEGM 0SOm+ ) —T50Sin(Bp+¥p) ]

16



(x;-xn’i“(w.;) - (v.:.-wg;&csx&) .

Y{Col(&‘.-b%) - Cos (0p0-%)].[_ %b"n(srm) Sin(Om+Un) + Bra, Cos COm+ W)

-Y5, Sin(Bm+ ¥m) + T Cos (6&&%&%, (6d,)]-r[Sintom+ ¥, - Sintep+¥p))
Lagd

( %,(sr...) Cos (Bp+ W) = 5T m SN (Bt W) — Ys¢mas<e;+wm)-rsm(a;+%%§_£w,g

Jmp = 2r’= 27*Cos (0rm-0p + Yo bp) +R'r* (61 -0p)"

Kmp = T8Tm {1-Co8 Cxtmp + W)} + ¥ 87p { 1-CoS (Xmp+Wmp) §
+ 64, Sin(kmp +Wmp) = ¥ 6&p SN (xmp+ Ump)
+ Rr Xmp B2m = RT Xmp 62

Calculation of Terms on the Left Side of the Vortex Transport
Perturbation Equation

Xp+BXp = T CoS(Op+Wp) + ST CoS(Op+ Yp) - TSN (Op+Yp) 6Pp

S (xpeSxp) = Yp Cos (Op+ Wp) - Y, Sim (Bp+Up) + BT Cos (8p+Yp)
~ 67 ¢’ Sin(op+ Yp) - 'h, 6¢', Sin (0p+Wp)

- Yhp by CoS (opr Wn) — ¥ 6p Bim (Op+Wp)  (2)

Yp+6Yp = T'6M(Op+Wp) + ST S(Bp+Yp) + Y 8Ppcos(op+ Wp)
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;‘_twuss-) = Yp Sin(ep+Pp) + rPLCos(OprWp)+ BTp Sin ©Op+p)

+ 6T P, Cos(Bpap) + Tp8dp Cos(gp+Up)

* Y6hpCas(Op+Wp) = v, 5p Sim(op+ Wp) (3)

‘-:lt (2p+ S2p) = da%P + S«i—p (4)

We now resolve the velocity radially, circumferentially, and
a:;ially (i.e., in v, ¢ and % directions); these components
will be defined as Ep' r[P and 1gprespecti\rely.

Multiplying equation (2) by cos(ep+¥+®4) and equation (3) by

Sm(Gp+Yy+6¢p) and remembering that

Cos(Op+p+ 6dp) = Cos(Op+Wp) - EDp&in(Op+bp)

Sin (Bp+ Yp + SQ)p) = S&in (Bp-ﬁ-le) + S¢p s (Bp + Y )

we obtain the total radial velocity of the perturbed helix at
P; thus:

E . Th+ 87~ TOp 8p “'*¢ps¢P = "p+8Tp

where "r‘,. = zerotP.order radial velocity at P.
8Yp = first-order radial velocity at P,
Similarly, multiplying equation (2) by-s.'n(e,,+ql,+s¢,,) and

equation (3) by Cos(ep+wp+s¢’), we obtain

Np = Tdp - "o 6dp+ 6Tpp + ¥u&bp + r6h,

= ¢, + 81, + ¥ 6,
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th

where r¢, is the zero "-order velocity and the remaining terms

on the right-hand side represent first-order circumferential
velocity.

Finally, ¢P' 2+ S2p
where ép = zerotP-order axial velocity.

$¢, = first-order axial velocity.

Transformation of the Induced Velocities to Polar Form

The zero®M.order velocity in the x , y and 2 directions
which result when the right side .r equation (1) is expanded
will be called Uxp, Uyp and U,p , respectively, and the

corresponding first-order velocity terms will be called SU.p, 23Uy

and sy, Expressing the induced velocities also in terms of
radial, circumferential, and axial components, and equating
the left sides and right sides of equation (1) component by
component yields

.t’s .TP + S;'b = (U"P + BUxp) Cos (Bp+Wp + eby)

+ (Uyp+ SUypp) Sim(op+ bp+ Sbp)

= r&;,,+ Srppp + r6Gp = - (Usp+BUxp) Sin (Op+hp+ &)
4+ (Uyp+BUyp) Cos (op+Yp+odp)

gp‘ ép+ S;P = Ui"" SU"P

Now, separating zeroth-order and first-order terms, the vortex
transport equations are obtained in terms of helical coordi-
nates for unperturbed and first-order perturbed motion, as
follows:

th

Zero ~ -order (unperturbed) transport relations

71., = Uxp Cos (8p+1fp) + Uyp Sm(8p+Yp)
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Ty = = Unp Sin(@pebr) + UspCos (0p+thy)
= Uap

First -order perturbation transport equations

STh= = Uxp Sy Sinlopathy) + Uyp S0p CostOp+¥p)
+ SUxp Cos(@p+p) + BUyp Sin(Op+¥p)
= vd,6¢p + SUxpCos(ep+¥p) + BUyp Sin(Gp+ip)
Srrc.b'-u-fsb, = - Uxp 8)Cos(@ptpp) - Uyp 6¢p Simiep+yp)
~ SUxp Sinop+ Yp) + BUyp Cos (0p+ Yp)

= - Ypodp - SUxp Sin(op+ Yp) + BUyp Cos (p+p)
or

§7p = Y'$p54s8Uxp Cos (9p+ Wp) + BUyp SNCOP+Yp) (5)
"56" = ‘YP% - Tp iy - SUxp Sin(Bp+ Yp) + SUYp Cos (Op+Up) (6)
Sdp = SUgp )

Substituting for induced velocities and time rates of displace-
ment, the unperturbed relations become

n 0

; R ’ -3
Mt Yeo

. N = :
Y¢P=Z %Tjkrt{‘- Cos (Xmp + Ymp) ~ Xmp Sin (XMP'O-WMP)} Jy-nrh d.!mp

L L]

n
é.“Z--En;’- f‘{ \=Cos ("MPO-WMP)}T;,\:/" dxmp
me,

=
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Similarly, the first-order perturbation equations can be

written as

63’, = —ILMP [{ RF Xmp Sin(Xmp + Ump) 35 (STm)
me)

= RY Xmp $7 COS (Xmp+Wmp) + RT 8 Sin(Xmp+ Ympd ]

+ RY" { $4,,C08(Xmp+Wmp) + Xmp SO SN (Xmp+ Wmp)

- Rmyp @‘;csda,,.) Cos(xmp+Wmp) - BOp Costxmpt Ymp) T
+7 {-52mCos(tmp+Ymp) + B2p Cos(Xmp +Pmp)

a%(ﬂ-m) Sin (.X.mf-o- me)}]d’(mp

-QZ % I':P thr‘iﬁn(&mp +¢mp )= Xmp Cot(’(mrﬁ-%P)} km, dln' i

o (8)

r8b,= Z.‘;_;% Top [ RY{ Xoup 2 5 5Tm) @8 Cmap +Uimp) = B Co8 Cmp & Yimp)

_52

mse)

= lmr ¥m Sin (Xmp + Q?mr) + BYp Cos(Xmp+ \Pmp)
+ Xwp 87p Sin (Xmp+ Wmp) T + hr‘{-xm,%éw;) Sin Utmp + i)
= Xmp 34,008 ( Xmps Wmp) + WSM(&W#WMP)-@, Sin(Xmp g

+ Xmp S@p Cos(Xmp+ \P,,.P)} + \’{- BEm SIN(Amp+ bmp)

+ S¥p Sin(mp + Ymp) -a%m,(swcoscumpw.u,)+336'éstm)}_]dx..?

Jkr J.';;/z. KmP[I-CoSUth'P \Pmp —XMP Sin(x MPQ-\""?)]CI)(MP
(9)
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"
. I -¥a ,
bp = 1%__ Tiap [_y- {_.3_9_4(6)’.“) S Otmp+Upp) + 287
ms
—©
— ®TwCos (xMPA-LI/MP) ~ 87p Cas (xmp+ q/mp)}
+ v g_e',fsw + 80, S (mpt+ Youp) —Cosltomp %,)%,:84’..'
= 8¢p Sin (ap + ¥y DT Jdremp
“ w
—‘I
= E %JIM' lr’{ 1= Cos (umP"'%p)} ka d xh\P (10)
Mmey A,

Removal of Singularities

As.explained in Section 2.3.2, the integrand that provides the
self-induced contribution to induced velocity becomes singular
at Xmp = 0. This singularity is eliminated by changing the

2 v/
expression for Jmp from {2r‘- 277Cos (mp+ Bup )+ Ry *xmp 't
l/,‘_
to {2r‘— 25"c 08 (Hmp+ Vmp) + REr ™ mp + ‘c-%}

when m=P |, Here £.,is the vortex core radius and is small
compared to the radius v of the helix. Note, however, that
when m # p, the expression for Jwmp remains unmodified.

2.6 TYPE OF PERTURBATIONS AND EIGENVALUE EQUATIONS

The integro-differential perturbation equations derived in
Section 2,5 adpit solutions of the exponential type, for

perturbations gv,, ; that is,
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- Ak 1 e’
B, = G er r e (11)

or in component form

A a4+ WO,
CTm = Sfe ™

A xbe LBy

’
A xt+ LWy,

"vortex having sr,,

-
where ST, = vector perturbation of the '
8¢, and 62, as its components in the r,d and 2
directions.
o = exponential growth rate factor, complex,
w = wave number*of the perturbation,
In principle, no generality is lost in considering such solu-
tions, since an arbitrary perturbation can be synthesized from
these by Fourier Integration. In practice, the numerical work
will, of course, deal with a limited number of wavelengths.
The exponential form assumed in the solutions of perturbation
equations (8), (9), and (10) allows this set of integro-differ-
ential equations to be written as a set of linear algebraic ,
equations in the amplitudes of the perturbation components §r,,
s&m ,33,“ The spatial derivatives of the solution forms are

given by

2 (sry= 2 Aot +LWBM = twsr
ae’,”( m) ae’,”[STme ] m

* The inverse of the wavelength, i.e., number of waves per
helix turn.
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and

%;,‘“"" n= 1wwSim

Also, the first-order displacement perturbation components
can be rewritten as

A 3 4 A ot 4+ ilWBm- LWOPp +iwe
§Tm _Srmequ- L WO, = 8T, e Om P p

A i :
= £F,, e«t-nwOp e.,ua Xmp

SQM= sgm eﬂt# LweP e\‘r‘OXMP
(5 S%me-“cw» g'e Kip (12)
Substituting equations (12) into the perturbation equations

8), (9) and (10) and defining Yp & Nwmp+ Ymp yields the
ollowing eigenvalue equations:

A L} ”-y
sLsh ZJLP: [ RrFn § 0 Xp SimYomp Sir OXmp
-0

msy
= Xmp Cos Seros WXmp + Sin YmpCos wx.mP} +1i krsﬁn
{-w % mp SinYmpCos @XMp — Xmp COS Ymp Sin W Amp
+ SinYmp SinWAmpt + thsam 1 €08 Ymp Cos O Xmp
4+ Xmp SIN Ymp CoS O Kmp + WO Xmp Cos Ymp Sim LOXmpY
- ikr‘$$M§,°°‘9”r Siv O Xwip + Xvnp S\'-ns..., SN Kep
- 0 XypCos Ym) Cos LxXwmp ¥+ rs'i-..,,i - Cos YmpCos ilmp
=W SN Ymp Sn wx...?} + Lfsgmi = CaS Ymp S/ O Xwmp

A
+ WS INYmp Cos WX mpY + RYEH,{-O8Ymp - XmpSinme}
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Y BSP cos X-mp] deP

-32 SJ T RrM{ SinYpap ~ Xmp COS Ymp § ], {76,

mei

{fl C.osgmp)cas Wamp + 2 (l-cacgw,(,) Smwx.mp}
+ RY S%M { + Xmp COS (OUMmP ¥ LXwmp Si\n wnm’,]

A A
¢ 6% {1 -cos Ymp - v 5, { Sin Smpd— R r8 Tk Jcliep
= (13)
Similarly,

4"'.“ sb JJ'M‘“[hYSrm i wxmrms gMPS\ﬂ (A)X-MP

Mn; -0

= COS Ymp COS PXmp = 2mp SinYmp Cos wx.mp'}

+ LRy 8 Tm {eoxmp CosUmp Cos WOAmMP — CoS Ymp SMwdmp

- XmpSinUmpSin Wxmp J + RTETH (8 Y HanfSonp]
22 hr‘S&miwa SiMYmp Sin R p = Xmap C08 Ypp Cas OXmp
+ SimYmp Cos cOXmp § + Lkzr"saam =@ %mp Sim Y plOS 0 Xomp
~ Xmp €8 Ymp SN ORwmp + S Y p S L xwmp 3

- kr"S&P{ S Ymp — Rwp COSYmp Tav ngﬁ_— S5iNY,, S Dhmp
+ WECOSYmpSim LORmp = O SIM WX wp S +LYS%M
{= SINYmp ©im WORmp = (OGS Y pL 08 LD Hm p+ L0 CoE D Xmp)

+ Y‘S%P Sin Y P J d Awp

4, -
= szn- fIM;C/;Lkrl{ l—Cosng —)(mP Sin gmf}J. Y_YSY'M

wiz, ©

A
{+ - cosYmp) Cas ormp + 1t L-CosYmp) Sin WX mp } +rl's¢m

{+5M\JMPC<:; WXmp + LScngMPSwam F] + hrs%m
{"" KMP Cos o XW\P + CKMP Sin (JJKMFS +U'6?P

{+ I-Cosgmp} +Y15¢P§SM§IMP} —krG;mef] a Xwip — (14)
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-~ ao
‘+TTOLSEP n N . s
_.___{_“_____ = E [Yérmiw&n Yrap SN LOKap + 2 Co8 LOK map — (s UmpCa.st'«JX»«pj

rzy — 0

. A
+ursrmi—w5.'m‘5m‘,c‘>s WXimp + LEMN LOXnap --Co,sgmr,%mwxmg)
A A
- YB)’P Casymp -+ YLS¢M {_— LS )(.mp 4+ S Ynap Cos bO)(mP
[ 4
+ WCOSYmp S COXmp § + (risd { W Cos W Hmp
-+ S\'Y\LJMP S LOHwmp — O COS\JMP CCSLA)KMP }

A -3
5 715¢P {_-—Sl"\f\ \Jmpi } O\XMP -IMP/L

o
n
_BZ J‘M;s/z [yl(l— Cos Ymp )] [ Y &Y % (v~ Cos \:’MF)(OSLUXMP
Moy -00
+‘i(‘- Cas ':’mp) Svn LI X wp 3 -+ Y"Sch..\i
-+ Sf'\ﬂ\JMPCO.SOD)LMP + U S\"V\QMP Sim LW Hmp }
A ~
+RY6&M{KMP COS(»OXMP + L Xmp Sin (.O)LMP?] + YSA’?
A
{1~ o8 Y p 3 - v* 6558 Yup
~ Rr82s Xmp | At =S (15)

2.7 STABILITY ANALYSIS

Eguations (13) through (15) car be written for integer values
of P ranging from 1 ton , where n corresponds to the number of
interdigitated helices. After numerically evaluating the set
of self and mutual induction integrals, a system of 3n eigen-
value equations is obtained. The limits of integration are
from -co to+s, The integrals in the perturbation equations
Y -5 -3 -5
are convergent, since both J'MP and Tmp vary as Xmp and Xmp ,

respectively, in the limit as Xmp approaches infinity,



Nevertheless, these integrals must be calculated numerically
with some care and with prorper treatrment of the singularities.
These techniques are discussed in the next chapter in more
detail.

2.8 SYMMETRY CONSIDERATIONS FOR n=2

For two-bladed rotors, it is possible to separate symmetric
and antisymmetric perturbation modes since the resulting
eigenmatrix is symmetric. No such simple reduction in the
order of the problem can be made for rotors with more than
two blades, as the symmetry of the eigenmatrix is lost. The
procedure is as follows: define % and x. as the perturbation
vectors for the first and second helix, respectively;

| 87 | A ‘I
t i '
A A
that is, x = |v6Q| and x2 2| Y84,
I
8%, L Y
L

and 5$‘iL as the perturbation vector of the matrix

equation Arx = Ax. Equations 13, 14, and 15 show
that A2 %_r
The eigenmatrix A can be written in the form

P, = e |

|
»* |

IL _A,a‘ &“-_J

vhere A. and A,, are 3x3 matrices and represent self induction
for the first and second helix, respectively. A, and A, are the
3x3 matrices representing the mutual-inductance effects.
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The eigenvalue equations can be expanded in the form

)!\ = ét\’f‘ + 6”-).(_1

Axa=Anx + A Xe

Consider a class of perturbations in which disturbance motions
in one helix are repeated on another, but not necessarily at
the same time, This kind of disturgfnce can be investigated
by imposing the relationship x,= ¢'®*x,. In these circum-
stances, the above two equations remain compatible, since

Ay = Quand A‘,_-__A‘,, . Three eigenvalues can then be solved

from

AXa= etéézul‘t“' Araxa = (ﬁiéﬁal + Bz ) xa

These eigenvalues will give maximum and minimum amplification
rates for certain values of ¢ . In Figure 2, divergence rates
are plotted against the phase difference © . For % = 0 or 2w,
X = X for§ = 1, X,=~Xa, Thus, these are cases of

special symmetry: in the first case,perturbations in the two
helices are of same magnitude and occur in same direction
simultaneously; in the second case,they are of the same magni-
tude but occur in opposite directions at the same time.

These special cases have been incorporated in the computer pro-
gram for the increased efficiency afforded by that option. The
full eigenmatrix,which does not involve the special symmetry
combinations described above, has also been calculated for the
two helix cases, and the results are identical,
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CHAPTER 3
COMPUTER PROGRAM

3.1 GENERAL DESCRIPTION

The computer program for the stability analysis consists of a
main program and integration and eigenvalue-analysis subrou-
tines. The main program has three significant subparts, which
can be described as follows. The first part deals with treat-
ment of singularities for the self-induction integrals. The
second part deals with integration and with obtaining the per-
turbation equations. The third part is that used for eigen-
value and eigenfunction determination and printout. The three
subparts of the main program and the subroutines will be des-
cribed separately in more detail in subsequent sections.

The program is written in FORTRAN IV language and has been run
on an IBM360/65 computer. Double precision, i.e., operation
with 16 significant digits, has been used in the integration
and in the portion of the program eliminating the singularity,.
The rest of the program and subroutines are in single preci-
sion, i.e., operations in which 8 significant digits are car-
ried. Wherever a "substitute function'" approximation has been
made, numerical checks have been made to insure that a more
complete approximation would not change the eigenvalues to
within the last S significant digits. A block diagram for the
computer program is shown in Figure 3.

3.2 TREATMENT OF SINGULARITIES IN THE SELF-INDUCTION
INTEGRALS

As explained in Section 2.3.2, the singularities in self-induc-
tion integrals have been eliminated by considering that the
vortex cores have a finite size. That is, the term

R ~ 2 -3
\T" & [1" -2Y CoS ( Xpp+ pr) + R'rt X.‘ip ] 1
has been changed to J;p"* = [ar: 27 %0s (dpp+ Ypp) 4R T Xp + €3 ]-’71

Although classical singular behavior of the integral has been
eliminated by this modification, the integral is still quite
sensitive to numerical evaluation. Figures 4 and 5 show some
of the integrands which occur in the perturbation equations.
The former exhibits near singular behavior at X vap =0,

29



As noted earlier, numerical evaluation of the integrals has
been accomplished by adding or subtracting functions which can
eliminate the troublesome near-singular behavior of the inte-
grands and which can themselves be integrated in closed form,
The following are eight such integrals which have been found
useful in dealing with numerical difficulties, together with
their analytically integrated values.

Denote ' &
(\+Rk*)
a2 .t (xu
and r = &“h(aJ

where xV = some upper limit to be chosen.
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In Figure 6, the dashed curve II shows the plot of one of the
singular integrals plotted after subtracting these analytical
runctions in the range 0 tc 27 ., Since xu is an arbitrary
upper limit on the above integrals, it is chosen such that the
addition and subtraction mentioned above will be carried out
oniy in the region where the original integrand is nearly sin-
gular,

It can be seen that, for small values of Xpp, the modified
function Tp¥ [avarC-Eppd+ RY* Xpp * Eo ) N
T LOeRY Y Xpp +ES ] = GreDL rtxpp Egn-.""f')]

Similarly, if in the numerator one makes the approximation

Cos Xpp ¥ | and Sin 2pp= Xpp, the perturbatirn integrals
take the form of one of the integrals I, tol,. Therefore, the
perturbation integr21s behave like integrals I, to Ig in the
neighborhood of zpp= 00, Some idea of the errors involved in
this approximation is gained by the comparison of perturbation
integrand and modified perturbation integrand plotted in
Figure 6,

The analytical integrals used to remove near-singular behavior
labeled T, to Iy and mentioned in the previous section have been
denoted by symbols coc)to Cco¢8) in the computer program. The
integrand of the perturbation integrals is thus modified by
subtracting coc¢» to coc8) from the appropriate integrands. The
upper limit, xy , on the integrals I, toIg has been chosen to
be 2n; beyond this, the perturbation integrals behave suffi-
ciently smoothly to be amenable to standard numerical tech-
niques.

M is the parameter which selects the overall integration
limits on the perturbation integrals; ™M = 1 corresponds to
semi-infinite integration limits, while M = 2 corresponds to
doubly infinite integration limits.

The process of integrating the modified nonsingular expressions
was tested by calculating some sample integrands against
increasing x,,, to determine a reasonable cutoff upper limit
for infinite integrals. This limit is dependent upon the pitch
of the helix, For a pitch of less than 0.2 radian, the inte-
gration has been performed up to 100m = 314 radians. For pitch
values between 0.2 and 0.4 radian, the cutoff upper limit was
set at 707, Finally, the cutoff limit for values of pitch
ranging between 0.4 and 1.0 is 50m. Increasing the cutoff
limit beyond the values specified above does not change eigen-
values to within five digits.

A combination of two numerical integration methods has been



used to balance accuracy and computer time. Since the major
contributions to the integral are made when x.,is small, a
double precision Simpson's rule [see, for example, Hildebrand,
Reference 22] has been used with an interval size limit of 14w,
Between l4n and the appropriate cutoff upper limit, a double
prec.sion quadrature integration has been used. The quadrature
integration technique is much faster, although less accurate.
Parameter Lt of the main program preselects between the two
separate sets of integration subroutines. Also, the parameter
tL1 of the main program stops modifying the singular integrals
beyond an upper limit of xv = 27,

A short note regarding the quadrature integration technique is
perhaps of some value. To compute

bo
J= ‘[ftn)clx
Qo
by Gaussian quadrature formula, an n point expansion in terms

of Legendre polynomials is used. First transforming the range
% = a,tob, into T =- to+! by definfng

g 2X-CAtbe) - % e Be=@en . bara,
(b.'QQ) 2 2
there results
dl
ya becae Jcpma'c with Py f(ele gy Bota “‘)
2 3 Y

=l
Using
\
n (4, wn)
jcbu:)dt-Z [A\.~ ¢(tg )J
= Ra)
n) )
for some given n with coefficients A, and nodes t, (note that
{f’are the roots of Legendre polynomials of degree n ), the
result is the approximation
n n) (n)
Sna (bo'qo)Z iéﬁ -F[(b.-a.)% + EZLQQJ}
ns)

which is exact whenever f(x) is a polynomial up to the degree
in-1.

32



In the present program the subroutine QG9 evaluates the inte-

grals by means of a 12-point Gaussian quadrature formula which

integrates polynomials up to degree 23 exactly. This subrou-

tine is based on DQGl2 taken from IBM publication System/360

Scientific Subroutine Package, Version III, Programmer's Man-
wn) w)

ual. The nodes L, and coefficients Aw used in QG9 are listed

in Krylov [Reference 23]. IBM-supplied Scientific Subroutine
Package DQGl12 has been modified to collaborate with subroutine
INTG, which supplies the integrand functions.

Test programs were run to check the convergence of integrated
values. The upper limit on Simpson's rule, integration, the
range of integration in one step of the Gaussian quadrature
formula, the interval size in Simpson's rule,and the upper cut-
off limits for the infinite integrals were all varied till the
eigenvalues converged to five-digit accuracy for the range of
parameters in the program.

3.3 FORMULATION OF EIGENVALUE EQUATIONS

The perturbation equations of Section 2.6 are a set of eigen-
value equations consisting of the growth rate terms on some

™ vortex. These growth rate terms are dependent upon the
self-induced velocities due to perturbations in the position

of the ﬁ"vortex and the velocities induced by the remaining
(n- 1) vortices. Note that mutual-inductance terms influence

the p"vortex in two ways: first, by affecting the rowth rate
of perturbations on the F?“vortex due to velocity changes in-
duced by deformations of the vortices other than the p'“vortex;

and second, by inducing zeroth-order velocities on the " vor-
tex which affects growth rate terms involving perturbations of

the pVvortex itself,

: 4 X : : ;
The terms associated with the yn vortices and contributing to
the growth rate of the ffhvortex differ from each other through

the constant 44? = ¥a- % ; values of this constant are
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tabulated for each p and m in Table I. Each value of p and
mcorresponds to contributions of the perturbations of the

m"vortex to the growth rate of the p"vortex. This contribu-
tion is accounted for in terms of a 3x3 matrix. It will not,
however, be necessary to obtain, numerically, all nxwn sets of
3x3 matrices.

Since the effect of some M vortex ‘on the p™vortex is depen-
dent only upon the difference Wm-W, = Wyp rather than either

Ymor Y,, the resulting symmetry considerations reduced the

numerical work considerably. All the diagonal elements in
Table I correspond to 4@P- 0; therefore, there is one

such 3x3 matrix, representing self-induction effects in the
three coordinate directions. All the super-diagonal elements
correspond to the mutual inductance terms {[p=l, m=2; p=2,
ma3: . . «; P=m-1, man]) and have Ymp=2T . These also
need only be evaluated once instead of (n-1) times. It follows
that in order to obtain the complete system of eigenvalue
quations. only ( 2n-1) set of separate calculations need be
made.

All of these reductions in the number of additional evaluations
of eigenmatrix elements occur whether semi-infinite or doubly
infinite vortices are considered. Further reductions in the
number of calculations which must be performed are possible for
the doubly infinite case, i.e., whereM= 2, and such simplifi-
cations have been taken advantage of in the present investiga-
tion. Where the integration is from -ooto +o, all odd terms*
drop out. Thus, for theM=2 case,calculations for-¥m, an

result in the same 3x3 matrix. In all the analyses in this
report, therefore, the eigenvalue matrices are psuedosymmetric;
that is, they are symmetric if one considers that the 3x3
submatrices are the eigenvalue matrix elements.

This set of wn calculations is carried out by the computer
program in terms of n values of the parameter K, as shown in
Table II; the value of K corresponds to the number of matrix
elements that must be calculated.

* Here '"odd terms" refer to those which change sign in
crossing zero on the axis of integration,
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TABLE I. VALUES OF \Vmp' Ym -¥, , THE PHASE
DIFFERENCE CONSTANT FOR n-BLADED ROTOR
m=1 m=2 m=3 m=n-1 m=n
p=1 0 2n/n 4n/n 21(n-2)| 27(n-1)
n n
p=2 -27/n 0 2n/n 2n(n-3)| 271(n-2)
n n
p=3 -4n/n -2n/n 0 21(n-4)| 21(n-3)
n n
p=n-1 -27(n-2)|-27(n-3) [-21(n-4) 0 2n/n
n n n
p=n -2n(n-1)|-2n(n-2) |-21(n-3) -2n/n 0
n n n
¢, = iE;fM sm=1¢%ton
Vo = 2lec)) ; p=1ton and Y.,= Y -b
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TABLE II. NO. OF MATRIX ELEMENTS RESULTING FROM EACH CALCULATION K
No. of matrix elements re-
sulting from this set of

K ¢kp p m calculations
1 2T (n-1) 1 n 1
n
2 Jamnas | 1 el :
n 2 n
n-1 an 1 2 n-1
A : ?
nll h
n 0 1 1 n
2 2
t )
) \
n n

3.4 EIGENVALUE ANALYSIS

For a set of n vortex helices, the perturbation equations are a
set of nxn self- and mutual-inductance effects. Each of
these nxn components in turn is a 3x3 matrix involving per-
turbations in the v, and ¢ directions. The resulting per-
turbation equations, therefore, constitute a 3InX 3n eigen-
matrix, which must be solved to conduct the stability analysis.
Each 3x3 matrix has complex elements. As suggested by use of
the term "psuedo-symmetric" in the grevious section, although
the n xn array of matrix elements is symmetric, when the 3x3
matrix elements are inserted, the 3nx 3n stabllity matrix

is not symmetric.

The eigenmatrix equation which expresses the conditions for
solution of admissible perturbation growth rates can be written

as
Ax=Ax

where X = 3nx!| vector corresponding to the 3n perturbation
displacement components.
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A = nonsymmetric 3nx3n matrix with complex elements,

Am eigenvalues of the above matrix equation; a set of
3n complex quantities, related to the dimensional
growth rates and wave velocities of the perturba- ,
tions, i.e., the complex quantity, o« , by > = %%;I.

Solving this perturbation equation is a substantial task even
with the help of a digital computer. A is nonsymmetric, has
complex elements,and has the order 18x18 for a six-bladed
rotor,

Considerable effort was expended in attempts to simplify the
above matrix equation. Section 2.8 describes one such simpli-
fication for a two-bladed rotor. This, however, cannot be gen-
eralized for three-, four-, five-, and six-bladed rotors, since
the structure of the eigenvalue matrix, A , does not permit

a transformation of the type

= %
!P Re Q‘P "

where Y» = a new perturbation vector ( sv,,vsf, 52p) for the
vortex,

Xk = a perturbation vector ( Sry,rSéy,S2x) for the
vortex.

Qp= 8 set of scalars.

The subroutine labled 'ALLMAT' has been used to determine
eigenvalues and eigenvectors. 'ALLMAT' is a FORTRAN IV subpro-
gram that calculates the right eigenvalues® and/or eigenvectors
of arbitrary complex matrices, using the QR algorithm and the
Wielandt inverse power method for vectors.

Some discussion concerning the suitability of this subroutine,
the technique used for calculations, and its numerical stability
seems pertinent. The theoretical background for the QR algo-
rithm may be found in numerical analysis texts, for example,
Ralston [Reference 24 | and Acton [Reference 25]. The function
of the QR algorithm is to decompose an arbitrary, nonsymmetric
complex matrix A into a product gmg, where @ is unitary and
i

U 1is upper triangular. Since this method utilizes unitary

®* IfA is a nonsymmetric complex matrix and A" denotes its Her-
mitian transpose, right eigenvectors x;, and left eigenvec-
tors y; are deiined by relations Axi=rixc and WA =)y¥
respectively. : c
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transformations, as opposed to triangular decomposition, it
tends to be numerically stable. An alternate approach to
treating the complex matrix eigenvalue problem is to reduce the
ﬁroblem to one involving real matrices. This technique,
owever, doubles the order of the matrix, and for large-order
matrices it is generally preferable to treat a complex matrix
directly,

The complex subroutine 'ALLMAT' calculates the full set of
eigenvalues (3n in number), after the eigenmatrix elements
have been evaluated for the specified values of the parameters
R (pitch), «w (wave number of the perturbations) and & (vortex
core size specified as a fraction of helix diameter or radius)
for an n-bladed rotor. These eigenvalues, in general, are
complex. The real part of the eigenvalues determines ‘the decay
or the growth rates of the perturbations, thereby showing
stability or instability, respectively. Positive real eigen-
values are, of course, unstable while negative real eigenvalues
are stable. Eigenvalues with zero real parts are ''neutrally
stable", It is sufficient, therefore, to examine the eigen-
value with maximum real part to determine stability., The
inaginaryfplrts of the eigenvalues define the direction of prop-
agation of thc disturbances. An cigenvalue with a negative
imaginary part corresponds to disturbances propagating in the
positive e direction.

The stability analysis results obtained in this study indicate

that there are in all cases disturbances travelling in several

directions with positive, negative and zero growth rates. Ina

linear stability analysis such as this, the unstable modes with

the largest divergence rates very quickly dominate the distur-

gagie shapes and determine the shape of the resulting distorted
elices.
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CHAPTER ¢4
RESULTS

4.1 GENERAL

This chapter presents three distinct kinds of material. The
first consists of a discussion of the selection of cases and a
physical description of the modal deflections. These are
contained in Sections 4.2 and 4.3, The second

consists of the results for special cases which were selected
to help verify the theory and increase confidence in the
numerical methods used in the present investigation. This
material is containcd in Sections 4.4 through 4.6. The third
kind of material is comprised of results for two-, three-,
four-, five-,and six-bladed rotors for various specific values
of parameters of interest, such as the pitch of the helix,
the wave number of perturbations, and core size. These results
are presented in Sections 4.7 and 4.8 .,

There is very little experimental evidence against which to
check the predictions carried out in the present investigation
of wake stability. However, some qualitative experimental
results have been reported by Landgrebe [Reference 11] using a
rotor model hover test facility. The object of Landgrebe's
experiment was to measure the effect of parameters such as
number of blades, blade linear twist, blade aspect ratio,

rotor tip speed and collective pitch on rotor hover performance
and the associated wake geometry characteristics. Flow visual-
ization data were obtained by injecting smoke, and wake
photographs and high-frame-speed movies were taken. Examination
of the photographic results leads to the qualitative conclusion
that the far-wake region of a hovering rotor is unstable or,

at best, neutrally stable. These conclusions do not, at least,
contradict the results of the present investigation.

4,2 SELECTION OF CASES TO BE RUN

In this section representative values of the pitch of the
helix have been calculated under hovering conditions. Glauert,
for example [Reference 1], and Payne [Reference 26] give the
following equation for the induced velocity at the rotor in
vertical flight.

Wer o), = —':-%l"'

where Ve = climb velocity.
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v = increase in velocity at the actuator disc ( induced
velocity).

. = disc loading.

P = mass density of air = 0,0023 slug/fts (sea level,
std. day).

In hover, V. = 0; therefore, -‘/:_;:-. The downward axial

velocity in a fully developed slipstream Vi is given by

Vo= 20y = /224
Y

Typical helicopter disc loadings vary from 2 to 10 1b/ft2,
and typical tip speeds range from 500 to 700 ft/sec,

Thus, since average axial downwash velocity is given by
Vi= i(__p/'-)
A .
typical values vary from 40 ft/sec to 95 ft/sec,
A period for one rotor revolution is T -j%?, and axial dis-
placement for one turn of the helix is 2 =Rkro = Rr(am),

Therefore ,

j—{" Vg = Rrarw
o k= Y» . axial downwash sgeed
Rv tip speed of rofor

Thus values of pitch of the wake helix corresponding to
typical disc loadings and tip speeds will vary from

7-3-8-‘ 0.05 to .s.g.g.i 0.20



Although, as shown above, the pitch of the vortex helices
corresponding to the normal extremes of hovering rotor opera-
ting conditions lies approximately between 0,05 and 0.20, the
majority of results obtained here are for pitch equal to 0.1
radian, The ratio of vortex core diameter to the helix diam-
eter, labeled in the tables given in this report as " core
size", is, however, considerably more difficult to relate to
reality. A paucity of experimental results or other evidence
exists regarding actual vortex core size of the helices in the
wake of a hovering rotor. The ratio of core radius to helix
radius has been chosen here to be 0.1, following Widnall, and
some cases have also been for this nondimensional core size
equal to 0.33 to investigate the effect of core size on vortex
stability. Perturbation wave numbers have been examined from
0.25 (long wavelengths) to 8.0 (short wavelengths), including
the wave number of 0.0. Perturbation wavelengths which are
very short compared to the helix diameter are likely to occur
if the disturbances are concentrated and would seem to involve
changes of vortex core cross section in the plane perpendicular
to the helical filament centerline, Thomson [Reference 27],
however, has shown that so long as the radius of the cross
section of the core in the plane perpendicular to the filament
centerline is small compared with the radius of curvature

of that centerline, the cross section will remain approxi-
mately circular under the self-influence of the whole vortex.
This same observation has been made by Widnall in her study of
short wave perturbation instability modes of planar circular
vortex rings [Reference 28]; however, a cutoff at rather large
wave numbers was used to limit the extent of the stability
curves in Reference 16. The core diameter ratio of 0.10
satisfies the assumption that the core size is small compared
to helix radius; 0.33 does not. For the highest wave numbers,
i.e., 8.0, even a core which is 0.1 helix diameter is hardly
small compared to a wavelength of 0.393 helix diameter, Thus,
in Figures 14 through 19 a wave number limit of about 8.0 is
arbitrarily shown.

4.3 PHYSICAL DESCRIPTION OF MODAL DEFLECTIONS

A clear picture of modal perturbations will provide increased

insight into instability mechanisms. The type of vector

perturbations introduced in Section 2.6 is represented by
'E;m . %_?*M &t Lwem

This deflection, of course, has components in ¥ ,¢ and z di-
rections. To visualize the deflections associated with certain
wave numbers, consider a deformation of the type &r = §¥cosiwo). €°F
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where ©r = perturbation in r direction.
A
®F = amplitude of the perturbation.
w = the wave number.

The real parts of distortion modes in axial and circumferential
directions can similarly be written as

8¢ = 54 (coswo] "

and

62=8% [cosweo] ™t

A A
Once the eigenfunctions 8¢ and 52 are known, the
distorted shapes of the helices in these directions can be
calculated for the corresponding wave number, w .

Dilatational Mode, @ = 0

Forw = 0,

or = 6'?' eut

~ ot
s = 5 €

A «t
82 = Bz €

Since this perturbation is independent of ©, it is uniform
throughout spice. Whereas the 2 and & coordinates simply
change the position of given helix with respect to coordinate
axes, the radial perturbations expand or contract the diameter
of the vortex helix uniformly. The unperturbed helix is

shown in Figure 1, and a dilatational mode disturbance is

shown in Figure 7. Note that to simplify sketches of distor-
ted wake shapes, in all cases, perturbations will be shown in
only one direction in any one sketch. This can be done without
sacrificing generality, so long as the reader keeps in mind
that reference to more than one figure will generally be re-
quired to visualize a given modal deflection. Since this dila-
tational mode distorts the helix from its initial configuration
only by uniform diameter changes, it is a disturbance which,
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in a nondimensional sense, changes the helix pitch angle
without changing the basic helical shape.

Deformation Mode for w= 1

For w = 1, the deformation shape can be pictured by noting that
at A A N
=0 ; sr=s8ve”, s2-%2 s54-85de™t

©=0 ; Sr =0 »y Sz=o0 y B =0
=1 ) Y= -s?e“t, SE-‘-"S%QO(: %¢=_%¢eb(t
9:3;7" 3 SY=0 9 S2=0 y S¢=O

These deformations are sketched in Figures 8 and 9.

As shown in the top and side views, there is some deformation
of the initial circular shape of the helix as a result of
perturbations in y direction, but in the main, it represents
a relatively undistorted translation in a direction normal to
the centerline axis of the helix. In the g direction, however,
these deformations amount to a tilting of the coils relative
to the axis of the helix. This point has been elaborated

in Section 4.4. Deformations in the ¢ or circumferential sense
mainly stretch or compress the helical vortex line, and since
in this analysis the cross section of the vortex core (i.e.,
normal to the helical axis) has been assumed to be constant,
deformations in the circumferential sense can largely be
ignored.

Distortion Mode Values of «w Other Than 0 or 1

Consider, for example, W= 2

at " A
9=0 ; Ssr=sve® ,s5z-82e"" , ¢b- 6 ¥t
. A at 2 o BRE TS
=17, 5 6r=-sre , §2:=-52e , 8b= -89

” % t
8=mT Sr=6vet ) Sz=6ge°‘t y Scb.:scbe“

t

~ A X ~
o= 3y, ; Sr--sve’", a:-52¢€ » 8= -sdpeXt



The plan and side views of the helix distorted by radial and
axial deformations in this mode are shown,respectively, in
Figures 10 and 11, In Figure 10, the helix is shown to be
distorted from circular to elliptic. In Figure 11, the
distortions change the projections of the helical turns from
straight lines to sickle-shaped curves, which are all either
concave upward or concave downward, depending upon the sign of
the deformation in the 2 direction.

Other Possible Disturtion Modes

Distortion forms corresponding to higher integer and noninte-
ger wave numbers can be similarly visualized. For example, the
distorted shapes of two successive coils are quite different
when @ = 1/2, but such distortions are repeated after traver-
sing every two coils of the helix., Similarly, for w= 1,5,
three coils of the helix must be examined before one would ex-
pect to find a complete cycle. On the other hand, for w= 3,
there will be three maximum and three minimum distortion points
in one turn of helix. The w = 1/2 mode for v and 2 pertur-
bations is shown in Figures 12 and 13a.

Extension of Modal Perturbation Modes to Multiple Interdigita-
ted Helices

Each vortex helix in the array trailed by multibladed rotors
can undergo the modal deformations discussed in the previous
sections. In addition, however, the temporal phase relation-
ship among the deformations in different helices provides

three more possibilities of combinations of motions, one for
each coordinate direction, for each additional helix. The
actual phase and magnitude are determined by the eigen-solution.
In the simplest possible example, two interdigitated helices
may be undergoing a dilatational (i.e., w = 0) deformation, but
with opposite sign,so that when one helix is expanding the
other is contracting,and vice versa., Similarly, in a no-
radial-deformation (i.e.,c«w= 1) mode, the modal deformations
for each helix of a two-bladed rotor may have the same sign,

in which case the two helices would translate in the same
direction, and the change in pitch angle would also be occur-
ring in the same direction. In this case there would be no
change in the relative positions of the two helices, one to the
other. By contrast,if, in anw = 1 mode, the modal deforma-
tions of the two helices had opposite signs and equal magni-
tude, then the translation of each helix would be in opposite

44



directions and the effective pitch change of these helices
would also be such as to reduce the axial distance between
corresponding segments of the helices.

4.4 LEVY AND FORSDYKE CASE

The early Levy and Forsdyke analysis [Reference 15] cited ear-
lier in this report concluded that a doubly infinite, constant-
diameter helical vortex is unstable for the wave number = 1 mode
when the helix pitch angle is less than 0,3 radian and is
stable for pitch angles greater than 0.3 radian. Stability
analyses for the same single helix case have also been carried
out in the g?esent study and have shown such a vortex to be
stable in the wave number = 1 perturbation mode for all helix
pitch angles. Some insight is gained by reference to the dis-
tortion shapes in this mode.

The «w =] perturbation comes close to translating the whole
helix to right, left,up,or down without much radial distortion.
Such motion clearly is approximated by a change in the
arbitrary choice of a coordinate axis system, and it cannot
reasonably be expected to influence the tendency of the

helix to distort. Such motion is depicted in Figure 8.
However, deformations in the direction presented in Figure

9 for this mode are shown to be equivalent to tilting the
coils relative to the axis of the helix. In this distortion,
segments at any point on the helix always remain at the same
distance from those segments in preceding or subsequent turns
directly above and below them. With respect to their
separation from vortex segments at different azimuthal stations
on the helix, any given segment gets a bit closer to those

on one '"turn" and that same amount farther away from the
corresponding segment on the next 'turn", Thus, it is
intuitively satisfying to find that such deformation modes are
predicted to be stable.

Secondly, beyond those discrepancies in the Levy and Forsdyke
results associated with the use of a planimeter, referred to
earlier in this report, their evaluation of singular integrals
expanded Cosw and Siaww terms in power series. Terms up to

x® were retained in the numerators and terms up to X were re-
tained in the denominators. Since the upper and lower limits
of integration are 0 to /6 and the integrands are near singu-
lar in their behavior, considerable error is introduced by this
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approximation. Table III lists cases run under the present
investigation which may be compared with the results of Levy
and Forsdyke [Reference 15]. 1In addition, selected integrals
were calculated; most of the integrated values checked out,
b:; errors as high as an order of magnitude were noted in
others,

4.5 WIDNALL CASE OF SINGLE HELIX

The results recently published by Widnall [Reference 16] repre-
sent the stability of a single vortex filament of finite core
for small sinusoidal displacements of its (helical) center-
line. The singularity resulting from the self-induced motion
of the element has been removed in Reference 16 by cutting off
the integration in the region of the singularity and using a
method of matched asymtotic expansions in this region. The
solution in this region has been matched with the solution for
a plane, circular vortex ring of the same radius of curvature.
This mathematically sophisticated approach succesfully dupli-
cated the results of Betchov [Reference 29] for the case of a
vortex filament whose cross -sectional radius is very small
compared to its radius of curvature. Numerical results for
various pitch angles, core sizes and perturbation wave numbers
have been reported by Widnall.

The special case of a single helix in the present study deals
with the same physical situation as the work reported in Ref-
erence 16 but differs significantly in the treatment of
singularities, as has been mentioned in chapter 2,

The results of the single helix cases run under the present
study are plotted in Figure 14 and tabulated in Table IV
along with the corresponding results obtained by Widnall. The
table facilitates a direct comparison of the numerical results
of this analysis with those of Widnall. One observes that the
results are qualitatively similar, but that the numerical
values of maximum divergence rates differ. In a typical case,
for example, pitch = 0.1, wave number = 0.5 and core size =
0.33, Widnall predicts a divergence rate of 24.8 The corres-
ponding value in the present analysis is 7.90, Note, however,
that in the present investigation divergence rate is defined as
22k while in the Widnall study divergence rate is taken to
be t:4r«, Thus, for a comparison, the present value of 7,90
must be compared with (1/2)24.8 = 12.4. Thus, to faci-
litate comparisons on the same nondimensionalized basis, the
divergence rates taken from the Widnall graphs have been divided
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TABLE ITI, LEVY AND FORSDYKE CASE, COMPARISON
WITH THE PRESENT STUDY
Stable or Unstable
Levy/Forsdyke Present
Wave Number | Core Size | Pitch Study Study
1.00 0.10 0.10 Unstable Stable
1.00 0.10 0.20 Unstable Stable
1.00 0.10 0.25 Unstable Stable
Stable or

1,00 0.10 0.30 Unstable Stable
1.00 0.10 0.40 Stable Stable
1.00 0.10 0.60 Stable Stable
1.00 0.10 0.80 Stable Stable
1.00 0.10 1,00 Stable Stable
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TABLE IV, CASE OF SINGLE-BLADE, DIVERGENCE RATES
OBTAINED IN THE PRESENT STUDY
COMPARED WITH THE VALUES OBTAINED
BY WIDNALL (Ref. 16%*)

Core Size = 0.1 Core Size = 0,33
Pitch Max, Diver-[Max. DIver- [Max. Diver-|Max. Diver-
of gence Rates|gence Rates|gence Rates|gence Rates
Helix | Wave |in Present |Reported by|in Present |Reported by
(rad) |Number|Study Widnall Study Widnall
0.1 0.00 ~0,00 0.0 (0.0) 0.0 0.0 (0.0)
0.1 0.25 8.75 19.0 (9.5) 6.35 17.6 (8.8)
0.1 0.50 11.84 25.2 (12,6) 7.90 24.8 (12.4)
0.1 0.75 9.01 18.8 (9.4) 6.56 17.4 (8.7)
0.1 1.00 0.00 0.0 (0.0) 0.00 0.0 (0.0)
0.1 1.25 8.33 18.0 (9.0) 6.17 16.4 (8.2)
0.1 1,50 11,43 24.0 (12.0) 7.66 23.2 (11.6)
0.1 1.75 8.80 16.6 (8.3) 6.50 16.4 (8.2)
0.1 2.00 0.00 0.0 (0.0) 2.74 0.0 (0.0)
0.1 2.50 10.61 21.4 (10.7) 7.26 22.6 (11.3)
0.1 3.00 0.26 0.0 (0.0) 4,15 7.6 (3.8)
0.1 3.50 9.47 0.0 (0.0) 6.78 20.6 (10.3)
0.1 4.00 0.99 0.0 (0.0) 4,93 12.0 (6.0)
0.1 4,50 8.23 0.0 (0.0) 6.27 19.6 (9.8)
0.1 5.00 1.99 0.0 (0.0) 5.17 14,0 (7.0)
0.1 5.50 7.18 0.0 (0.0) 5.70 17.4 (8.7)
0.1 6.00 3.21 0.0 (0.0) 4,98 11.6 (5.8)
0.1 7.00 4.51 0.0 (0.0) 4,40 0.0 (0.0)
0.1 8.00 5.79 0.0 (0.0) 3.42 0.0 (0,0)

* The approximate divergence rates used in the above
parison were taken from the graphs in Ref. 16,

com-
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by a factor of 2 and written within the brackets in the same
columns in Table IV. As pointed out in the previous paragraph,
the results are significantly different for core size 0.33; the
divergence rates compare quite closely, however, for core

size 0.1. It has been noted that estimates of the core size of
vortex helices in the wake of a hovering rotor are not known
with any confidence, but a core diameter ratio of 0.1 would
seem closer to reality than 0.33. Note that Landgrebe [Refer-
ence 11] assumed the core radius of 0.005, while Crimi [Refer-
ence 12] has used a value of 0.05 to 0,08 .,

Some estimates of core size are, however, available for the
vortices trailed by fixed-wing aircraft. Spreiter and Sacks
[Reference 30) estimated the core diameter of vortices trailed
behind elliptically loaded aircraft wings as 0.197 times the
separation between the trailing vortices. The effect of curva-
ture probably modifies the core size, but this estimate of core
size falls somewhat closer to the 0.1 value used for helical
vortices in the present study than it does to 0.33. For the
smaller, more realistic core sizes, the present study

with its different approach toward treatment of singularities
in the Biot-Savart integration, appears to predict divergence
rates quite comparable to the method used in the Widnall study.

4.6 S. C. CROW'S CASE (TRAILING VORTICES FROM FIXED-WING
ATRCRAFT WINGS)

S. C. Crow éReference 17] presents an analysis of the stability
of a pair of straight, paraliel vortices as trailed from a fixed-
wing aircraft, This analysis also gives rise to an eigenvalue
problem for the growth rate of sinusoidal perturbations.

If the pitch is allowed to approach infinity in the present stu-
dy for the case of a two-bladed rotor, the wake should correspond
to two straight, parallel infinite vortices. It is shown in
Appendix I that the perturbation equations used here, taken to
this limit, yield the same expressions as S. C. Crow's case, ex-
cept for the differences associated with the cutoff technique

to remove singularities. Incidentally, P. C. Parks [Reference
20] has duplicated S. C. Crow's results by modifying the self-
induction integrals in lieu of '"cutting off'. Parks' integra-
tion to eliminate the effects of singular integrals yields the
same expressions obtained in the present study, after the proper
limits are taken, and has confirmed the essential features of
Crow's theory with small numerical changes. Since the singular-
ities in the self-induction integral have been removed in the
present study by an approach similar to that used by P. C.
Parks, it is reassuring that limiting expressions which are
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approaching the case of trailing fixed-wing vortices do, in
fact, duplicate those used by Parks,

It is a more difficult matter to attempt to duplicate S. C.
Crow's quantitative results using the computer program devel-
oped in the present study, since the integration techniques
used here are tailored for low values of pitch, In limiting
cases where pitch is taken to be very large, the sine and
cosine terms in the perturbation equations oscillate very
rapidly,and the integrated values using the current numerical
techniques are inappropriate for obtaining accurate results.
Two cases, however, have been run,and the results are tabulated
in Table V.

4.7 DISCUSSION OF RESULTS

Single Helix

The single-blade case was run primarily to check the present
work against the results of Levy and Forsdyke [Reference 15]
and Widnall [Reference 16]., The comparisons have

been discussed in the preceding sections. Further considera-
tion of the single helix case will be limited here to a
discussion of the perturbation deflection shapes and their
influence on helix stability. As shown in Figure 14, the
single helix has no instabilities for wave numbers w= 0 and
w= 1, Figures 7, 8, 9 and 13d show that radial and axial
deflections for these two deformation modes have

two characteristics in common: first, the circular cross
section seen in the plan views is largely preserved, and
second, axial separation between vortex segments at correspon-
ding circumferential positions is preserved in the deformations.
In terms of the Biot-Savart law of induction, it is clear that
changes of the helix diameter, so long as they are uniform
around the circumference,will cause uniform changes of induced
effects. Further, if such deformations are repeated without
change on every helix coil, then induced effects associated
with changes in helix diameter will not distort the helix, but
will simply cause the entire helix to translate axially. Since
the choice of coordinate axes and their velocities in inertial
space is completely arbitrary, it is not surprising that
neither translation of the entire helix, such as exists in the
plan view for « = 1, nor uniform change of the helix radius, as
shown in the plan view of Figure 7 for «w= 0, has any in-
fluence on the stability, Changes in the relative axial posi-
tion of helix segments, however, will influence induced effects
in the radial direction. For these two modes, however, there
is no such change in relative position, at least among the

50



TABLE V.

RESULTS OF THIS ANALYSIS FOR S. C. CROW'S CASE

Point 1 Point 2
Eigenmatrix Eigenmatrix
0 Pp.92263 0 }0.91889] o0 p.85992 0 |-0.85935
-3.5407] 0 F1.6991 0 |}3.4780 0 |-1.7587 o
0 p0.91889{ 0 0.92263] 0 P.85935 0 {-0.85992
+1.6991 0 (3.5407 0 |}1.7587 0 |+3.4780 0

V7
ot 3 [(-0.92263 + 0.91459)(3.5¢07 - 1.69q1)] *

2
«g=[(-0.85992+0.95935)(3.4380 -1.758%)]9

s (-vel’s Stable. 0 Neutrally Stable.

b,
s =[(-0.Q2261-0. Q1894 )(3-5¢07 1629 11| = [(-0.86992-0.85935)(5:¢780 +1:7583)) 2

el Stable. =Cue)’? Stable.
Point 1: Parameters in S. C. Crow's paper: @ =2, 9@=0.1
Point 2: Parameters: @ =0.5, 8@ =0.1
corresponding parameters in present study
Point 1: Pitch = 1000, wave number = 1000, € = 0,311
Point 2: Pitch = 1000, wave number = 250, & = 0.311
Remarks:

Numerical comgarison of divergence rates with Crow's
results for these points has not been shown here
since the current program is not designred for such
large values of pitch and wave numbers; as a result,
the calculated values are not expected to be
accurate. The purpose of the above run is to demon-
strate the limiting behavior in the present study,
which has otherwise been shown theoretically.
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vortex segments closest to one another, that is, in the same
circumferential position from one coil to the next. For

@ = 1/2,0n the other hand, as shown in the side view of

Figure 12, the relative axial displacements of vortex segments
at the same circumferential position do, in fact, approach
each other or separate from one another. Induced effects of
some impurtance do, therefore, exist, and any initial tendency
for adjacent segments to come together will be amplified still
more by the increased proximity, One would certainly expect
such modes to be unstable, and they are, as shown in Figure 14,

For the @2 = 2 mode,the plan view changes as shown in Figure 10
from circle to ellipse. Such changes induce axial velocities
which are not uniform around the circumference. Furthermore,
they will be such as to cause roughly the same displacement
changes as seen in the side view of modal perturbations shown
in Figure 10. These are not very strong effects, however,
since for every pair of opposite segments which come together
in the sense seen in the plan view (and thereby increase their
mutually induced effects), there are two other segments which
are farther apart,not just from each other, but from the first
pair. Since the induced effects of the latter pair on the
first pair are reduced, there are tendencies toward compensa-
tion., The separation distance is in the denominator of the
Biot-Savart law, however, so that such effects are not linear.
This possibly explains why the divergence rate in thew = 2
mode is less stable for the single helix whose vortex core
diameter ratio is .33 than it is for the case where this
parameter is .1, as shown in Figure 14,

Finally, Figure 1ll1shows that the modal perturbation forw = 2

preserves the axial separation between points at corresponding
circumferential locations on the single helix.

Multiple-Bladed Rotors

It is important to note that the solution method for multiple-
bladed rotors is identical to that for a single helix; namely,
a wave number,u , is selected, and the eigenmatrix is solved
numerically for the values of A which determine the divergence
rates corresponding to the perturbation modes associated with
that value of «o. There is, of course, an eigen deformation
mode associated with each eigenvalue, M. Components of the
eigen mode for the single helix are the complex values of &v ,
5 and 52 . Since the multibladed rotor introduces addition-
al degrees of freedom, for the case of a rotor with n blades
there are n sets of eigenvectors, 8ris» ,8p;x and Sz., , where
t=1,2,...n, for every eigenvalue, » . The phase
relationship between motions of the blades i = 1 and i = 2 is
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A
embodied in the complex values, say,of &%, and §2,,; this
phase relationship will determine whether the helix trailed
from the number 1 blade will move toward or away from the
helix trailed from the number 2 blade in the deformation eigen-
mode corresponding to A . This phase relationship, between
motions in the same coordinate direction at corresponding
points on two different helices, cannot be known prior to solv-
ing the eigenvalue matrix., This contrasts with the case of a
single helix, for which phase relations among segments at
corresponding positions are known as soon as a value of w is
chosen,

Numerical results for multiple-bladed rotors are tabulated in
Tables VI through X and are plotted in Figures 15 through
19, Most of these results are obtained with pitch = 0.1 and
core size = 0,1, A few cases were run for gitch = 0.15 and
core size = 0,33; these are also shown in the figures, although
the curves vs wave number are largely extrapolated, using the
curves for pitch = 0.1 and core size = 0.1 as guides.

For the case of a two-bladed rotor, the divergence rate, » , is
plotted vs wave number, <o , in Figure 15. It is noted that

the maxima of the continuum of the divergence rate points de-
crease rather smoothly as wave number increases. Similarly the
minima of the curves increase slightly and then decrease rather
smoothly. For larger integer wave numbers, i.e., short wave-
length perturbations, the difference between minimum and
maximum divergence rates decreases as wave number increases.
Figures 20 and 21 suggest that maximum divergence rates occur
at integer wave numbers, because at these wave numbers the
segments adjacent to each other on the two helices approach
each other to the maximum extent. Minimum relative motion of
this sort seems to occur with half-integer wave numbers.
Imagining a helix from a second blade in Figure 13a with the
most favorable phase angle possible shows how little of the
vortices approach each other in such motion.

Figures 16 through 19, for three-, four-, five-, and six-bladed
rotors, respectively, exhibit similar divergence rate - wave
number relationships; i.e., the maximum and minimum divergence
rates occur at wave numbers equal to 1/2 times even-integer
multiples and 1/4 times odd-integer multiples, respectively,
times the number of blades. For example, a five-bladed rotor
exhibits maximum divergence rates at the wave numbers 2.5, 5.0
and 7.5, etc., which are 1/2, 1, and 3/2 times 5. Similarly,
minimum divergence rates for a five-bladed rotor occur at

wave numbers 1.25, 3.75 and 6.25, etc., which is 1/4, 3/4

and 5/4 times the number of blades in the rotor,namely, 5.

For three-, four-, five- and six-bladed rotors, the excursion from
thebmean divergence rate also decreases with increasing wave
numbers.
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TABLE VI. MAXIMUM DIVERGENCE RATES FOR TWO-BLADED ROTOR

Pitch of Wave Core

Helix (rad) Number Size Max Divergence Rate
0.10 0.25 0.10 46.65
0.10 0.50 0.10 37.05
0.10 0.75 0.10 46,26
0.10 1.00 0.10 49,80
0.10 1,25 0.10 46.57
0.10 1.50 0.10 37.16
0.10 1.75 0.10 45.42
0.10 2,00 0.10 49.06
0.10 2,50 0.10 36.95
0.10 3.00 0.10 47,93
0.10 3.50 0.10 36.56
0.10 4,00 0.10 46,52
0.10 4,50 0.10 36.12
0.10 5.00 0.10 44,94
0.10 5.50 0.10 35.74
0.10 6.00 0.10 43,48
0.10 7.00 0.10 41.86
0.10 8.00 0.10 40.47
0.15 0.50 0.10 16.70
0.15 1.00 0.10 22.10
0.15 1.50 0.10 16,83
0.15 2,00 0,10 21.40
0.15 3.00 0.10 20,36
0.15 4,00 0.10 19.14
0.10 0.50 0.33 33.23
0.10 1.00 0.33 49,34
0.10 1,50 0.33 33,50
0.10 2.00 0.33 48.30
0.10 3.00 0.33 46,73
0.10 4,00 0.33 44,87
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TABLE VII. MAXIMUM DIVERGENCE RATES FOR THREE-BLADED ROTOR

Pitch of Wave Core
Helix (rad) Number Size Max Divergence Rate
0.10 0.25 0.10 113,97
0.10 0.50 0.10 100.98
0.10 0.75 0.10 78.83
0.10 1.00 0.10 94,00
0.10 1.25 0.10 115.57
0.10 1.50 0.10 123,71
0.10 1.7% c.10 116,57
0.10 2,00 0.10 96.52
0.10 2,25 0.10 79.65
0.10 2.50 0.10 96.85
0.10 3.00 0.10 115,37
0.10 3.50 0.10 99.41
0.10 5.78 0.10 79.28
0.10 4.00 0.10 90,88
0.10 4,50 0.10 114,81
0.10 5.00 0.10 95.85
0.10 5.25 0.10 79.47
0.10 5.50 0.10 89.97
0.10 6.00 0.10 108.00
0.15 0.50 0.10 45,38
0.15 1.00 0.10 41.62
0.15 1.50 0.10 54,67
0.15 2,00 0.10 43,79
0.15 3.00 0.10 50,17
0.15 4,00 0.10 38.36
0.10 0.50 0.33 97.19
0.10 1.00 0.33 93,55
0.10 1.50 0.33 120,01
0.10 2,00 0.33 95.78
0.10 3.00 0.33 114,16
0.10 4.00 0.33 89.40
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TABLE VIII. MAXIMUM DIVERGENCE RATES FOR FOUR-BLADED ROTOR

Pitch of Wave Core
Helix (rad) Number Size Max Divergence Rate
0.1 0.25 0.1 209.37
0.1 0.50 0.1 194,22
0.1 0.75 0.1 168.98
0.1 1.00 0.1 135.16
0.1 1.2§ 0.1 . 165.99
0.1 1.50 0.1 191.69
0.1 1.75 0.1 207,28
0.1 2,00 0.1 212.87
0.1 2,50 0.1 193.32
0.1 3.00 0.1 138.17
0.1 3.50 0.1 , 186.24
0.1 4.00 0.1 208.16
0.1 4.50 0.1 190,05
0.1 5.00 0.1 139.94
0.1 5.50 0.1 179,51
0.1 6.00 0.1 201.23
0.1 7.00 0.1 141.21
0.1 8.00 0.1 193,23
0.15 0.50 0.1 87.25
0.15 1.00 0.1 61.20
0.15 1.50 0.1 84,72
0.15 2,00 0.1 94.52
0.15 3.00 0.1 63.58
0.15 4,00 0.1 90.31
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TABLE IX. MAXIMUM DIVERGENCE RATES FOR FIVE-BLADED ROTOR

Pitch of Wave Core
Helix (rad) Number Size Max Divergence Rate
0.10 0.25 0.10 332.56
0.10 0.50 0.10 315.78
0.10 0.75 0.10 288.09
0.10 1.00 0.10 250.72
0.10 1.25 0.10 219.68
0.10 1.50 0.10 252.93
0.10 1.75 0.10 282.58
0.10 2.00 0.10 307.43
0.10 2.50 0.10 340.74
0.10 3.00 0.10 311.15
0.10 3.50 0.10 256.42
0.10 3.75 0.10 220,27
0.10 4,00 0.10 242.70
0.10 4.50 0.10 302.72
0.10 5.00 0.10 327.21
0.10 5.50 0.10 307.83
0.10 6.00 0.10 253.02
0.10 6.25 0.10 220.94
0.10 7.00 0.10 290.84
0.10 7.50 0.10 316.34
0.10 8.00 0.10 298.76
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TABLE X. MAXIMUM DIVERGENCE RATES FOR SIX-BLADED ROTOR

Pitch of Wave Core
Helix (rad) Number Size Max Divergence Rate
0.10 0.25 0.10 483.43
0.10 0.50 0.10 465.33
0.10 0.75 0.10 435.62
0.10 1.00 0.10 395.08
0.10 1,25 0.10 358,51
0.10 1.50 0.10 318.15
0.10 1.75 0.10 353.64
0.10 2,00 0.10 390.09
0.10 2,50 0.10 459,22
0.10 3.00 0.10 485.01
0.10 3.50 0.10 462.12
0.10 4.00 0.10 396.97
0.10 4,50 0.10 318.72
0.10 5.00 0.10 381.72
0.10 5.50 0.10 445,94
0.10 6.00 0.10 472.46
0.10 7.00 0.10 394.10
0.10 8.00 0.10 370.54
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In short, peak values of divergence rate occur at wave numbers,

w, equal to integer multiples times one-half the number of
blades, and in all cases the magnitude of the peak divergence
rate decreases with wave number.

Enveloping curves can be drawn through maximum and minimum di-
vergence rate points in all cases. There is some absolute max-
imum divergence rate which occurs at the maximum of the envel-
oping curve through the maximum divergence rate points. For
two-, four- and six-bladed rotors this absolute maximum rate
occurs at wave number 0,0, i.e., for the dilatational mode.

For three- and five-bladed rotors the dilatational mode is
still highly unstable, but the absolute maximum divergence rate
occurs at wave numbers 1.5 and 2.5 respectively, i.e., where
the wave number is one-half the number of blades ( w =n/2),

To assess the effect of helix pitch angle, some variations in
this parameter were run for two-, three-,and four-bladed ro-
tors. For the higher pitch angles the divergence rate drops
considerably, even though the characteristic variations with
wave number remain, For example, an increase in pitch of helix
from 0,10 to 0.15 reduces the divergence rate by a factor of
almost 2. Note that the curves for pitch = 0.15 must be read
on the right scales,as also pointed out in Figures 15 through 17
Physically, this behavior can be explained in terms of inter-
action between the neighboring coils of the helices. For high-
er pitch angles the neighboring helix coils are farther apart,
and distortions that tena to cause neiﬁhboring coils to ap-
proach each other therefore result in lesser interactions. Ab-
solute maximum divergence rates for different rotcrs are plotted
against pitch in Figure 22 and are tabulated in Table XI.

The nondimensional divergence rate of multiple-bladed rotors
would seem to increase with the number of blades for the same
sort of reason that it increases with decreasing pitch; namely,
there is a decreased separation between successive lines of
vorticity. Figure 22 shows that for a helix pitch angle of
.05, for example, a two-bladed rotor has a maximum divergence
rate of 200 and a four-bladed rotor has a maximum divergence
rate of 850, It must be noted that these rates are nondimen-
sionalized by total vortex strength " , as shown in the equa-
tion for )\ on pages 27 and 37, If the sum of the blades in
each rotor produced the same 1lift (which is the case in compar-
ing alternate designs for the same aircraft), the vortex
strength, " , in the two-bladed case would be twice that of the
four-bladed case, so that the dimensional rates would then
compare as 400 to 850. Thus, in terms of the stability of the
vortices in the far wake for rotors of equal 1lifting capacity,
the fewer blades the better,

The effect of core size on stability is not so noticeable for
multiple rotors. When the core size was increased from 0.1 to
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TABLE XI. ABSOLUTE MAXIMUM DIVERGENCE RATES FOR

MULTIBLADED ROTORS OF VARYING PITCH

Pitch of Number of Wave Absolute Maximum

Helix (rad)| Blades Nuniter Divergence Rates
0. 05 199,89
0.10 50.05
0.15 2 0.0 22,34
0.20 12.65
0.05 492,11
0.10 123,71
0.15 3 1.5 54,67
0.20 30.47
0.05 853.90
0.10 214,57
0.15 4 0.0 96.17
0.20 54.70
0.05 1363.00
0.10 340.74
0.15 3 2.5 150,64
0.20 84.26
0.05 1940.50
0.10 489.65
0.15 6 0.0 219.78

=

0.20 125,26
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0.33, the amplification rate dropped only about 2% for the wave
numbers with highest divergence rates in all cases where n= 1,
Core size does appear to be an important influence on stability
of a single helix, i.e., where n = 1, &s shown in Figure 14,.
Its reduced effect on the stability of multiple-bladed rotors
does not seem unreasonable, since the mutual inductance between
different helices is a relatively important influence on the
stability of interdigitated vortex systems, whereas variations
in core size are felt most in self-induction effects.

4,8 COMMENTS ON ABSOLUTE MAXIMUM WAKE DIVERGENCE RATES FO
MU 5 - EVE =R ¢ ;

This section deals with a qualitative physical explanation of
absolute maximum divergence rates for multibladed rotors.
First, as seen in Fiﬁures 15 through 19, these absolute maxima
are associated with the <= 0 and <« = n/2 modes for rotors
with even and odd numbers of blades respectively. Comments in
most cases will be restricted to axial perturbation displace-
ments since the effect on induced velocities of such motions
is one order of magnitude higher than either radial or circum-
ferential perturbation displacements insofar as the mutual
inductance between neighboring coils is concerned. This can
be explained more explicitly as follows:

The Biot-Savart law reveals that the maximum interaction occurs
between those vortex elements which are nearest to each other.
For helix pitch angles less than 0.20, the parallel elements
which are closest to each other are on two neighboring coils

at the same circumferential position, i.e,, located on the same
line parallel to the axial direction. This axial distance
shall be denoted byd. A radial perturbation of in the radial
direction will replace d by Jd*+e*, and the integrand in the
Biot-Savart law will be modified from d® tod 3 (i+r3€/g+- ],

contributing a second-order term to the perturbation integrand.
However,an axial perturbation of € will modify the minimum
interaction distance d to (d-¢), contributing (cl-¢¥* in the
perturbation integrand. This corresponds to a change from

d3 todliedeys.. J and is a first-order contribution.
Therefore, the axial perturbation is the dominant factor in the
interactions between the nearest parallel vortex elements. It
follows that the divergence rate of a given deformation mode
will be greater than another, if the normalized axial displace-
ments which reduce the separation between vortex elements adja-
cent to their counterparts on neighboring coils take place

over more of the arc lengths of the helix than the other defor-
mation mode,
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For the purpose of evaluating this intuitive notion pertaining
to the absolute maximum wake instability of multibladed hover-
ing rotors, an average distortion factor will be defined.

This "average relative distortion" will be calculated for two-
and three-bladed rotors for axial perturbations at the wave
numbers where maximum instabilities occur. Subsequently, it
will be used to explain why absolute maximum instability
occurs at wave numbers 0.0 for rotors with an even number of
blades, and at wave numbers 1.5 and 2.5 for rotors with an odd
number of blades, i.e., three- and five-bladed rotors,
respectively.

For the case of the three-bladed rotor, maximum instabilities
occur at wave numbers 0.0 and 1.5. Eigenfunctions for the
most unstable eigenvalues at these wave numbers are tabulated
in Table XII,and the elevation views of the perturbed vortex
;ysteg g:r only axial perturbations are sketched in Figures

3 an .

For a wave number of 0.0, eigenfunctions for helices 1, 2 and
418 §2, = + 1 ; Bta= O 3 $3e-t

The "average relative distortion" is defined as a line integral
of the reduction in the axial displacement between vortex
elements at the same circumferential position on neighboring
coils evaluated around the azimuth.

1st 3rd

Thus, the average relative distortion between the and

helices for period T is * (Z'
)

e + s 21

Jo
The average relative disto;tion between the Srd and an helices
for period T is T

Lde=‘"
and finally, the average relative distortion between the Z“d

st §
and 1°"helices for period T is J-de =1
(o]

The total average relative distortion factor, therefore, is
4T = 12,57,

For a wave number of 1.5, eigenfunctions for helices 1, 2 and

A ,
T S;.=+1 5 S%ta=-0.25 5 623 = +1
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TABLE XII. EIGENFUNCTIONS FOR THE MOST UNSTABLE EIGENVALUES
OF A THREE-BLAPED RCTOR AT WAVE NUMBERS 0.0
AND 1.5, PITCH = 0.1 AND CORE SIZE = 0.1

Eigenfunction for Eigenfunction for
Wave Number 0.0 Wave Number 1.5
Label Real Imaginary Label Real Imaginary
67, -1.000 0.000 3 -0.981 | -0.005
red | -0.076 0.000 s, | -0.073 | -0.012
€2, | +0.996 0.000 53, +0.996 | +0.004
&V 0.000 0.000 ev, +0.,210 0.000
ved | 0.000 0.000 ved, | +0.016 | +0.002
62, 0.000 0.000 6%, | -0.248 | +0.000
8% 1.000 0.000 &% | -0.981 | -0.005
re0, | 0.076 |  0.000 veh, | -0.073 | -0.012
88, | -0.996 0.000 §s | +0.996 | +0.004
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Referring to Figure 24, the following distortion factors can
be calculated.

The average relative distortion between 15% and 3"1 helices
for period 7 is
s 7"/‘
J [ 1Sin(150) | + [ Cos +30) | JdkO 4-5-J [ 1Cos (50} + L Sinuse)l Jde
[}
o

™ N/
+J[|Cot userl - |s-nu.se>l]de"ijtlws("'e)'" 18in(160)]]48
0 [
LY s
+J‘Clc“u-tse)l +1sincseN]od i |LicostsoN+ISinise)l Tdo
o [}
= 4+4i

Similarly, the average relative distortion between 3"d and 2nd
helices for period r is

179 N/s .
ftlco.s (-50)1 +0.2518in (150} Jdle + i XC leos (160)1 +0.251 Sincrven)de
0 o

ﬂ‘/, LIZN

+ { iSin G50)) - 0.25 jcos (1.50) Jdo+ L usanu.sm-o.:.smsuso)ﬂdo
o (]

Ny

; 1477
*j[lco.su-sem.o.zslsmu.sen]ole + LJC!mu-;en +0.25 |sinu.sefds
(] (-]

=328 + B3ast q
Finally, the average relative distortion between 2"% and

15t helices for period T is
"/; Il'/;
jr.o.zswcnu-smw Isnusel]de + & fto.as 15inC1-80)1 +1 Sincso JHO
o ]

4

s
* f[lmcl-so)l + 0.6 Cos(-50)1]de + ij[lcos(lvse)\+°°25“°“"5°)‘]d‘°
3
(/]

/s

s
. J'[o.zs-us.'no-sen»«l5M<'-59>']°‘°*i [0.2515in01-50)1 +isin1s@)l]de
(+]
(4

s 3.75+ 3351
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Thus, the total average relative distortion factor is 11 + 114,
and lts magnitude is approximately 15.5.

Consider the case of a two-bladed rotor; maximum instabilities
occur at wave numbers 0.0 and 1.0, Eigenfunctions for the
?os§ gr;st;lla%; eigenvalues at these wave numbers are tabulated
n Table o

For a wave number of 0.0, the axial distortion amplitudes for
helices 1 and 2 are

83, ¥ - 1.00 ; 5%, ¥ +1.00
The average relative distortion factor over a period w is

m T

jd.a +* Jd.e s 2W 2 6.28
(-] (]

For a wave number of 1.0, the axial distortion amplitudes for

helices 1 and 2 are

68, ¥ 0812 5 Si,= 0.812

Referring to Figure 21, the average relative distortion factor
over a period W is *
*

M
2(o812) Jncoumd.o + 2¢0.312)|1 coscorlde
-] ()

L w
+ i[zmtlz)‘[ll‘f‘n(”ldl + 1(0-9|2{[ls‘iv‘(0)id0]
[ [

= 3.25 +3.281

Thus the magnitude of the average relative distortion factor
is approximately 4.60.

Results of the above calculations are tabulated in Table XIV.
This shows that the relative axial displacements do, in fact,
determine the stability and that those modes which have

the highest average reduction of axial separation between
adjacent coils around the circumference of the helix will be the
most highly divergent.
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TABLE X111, EIGENFUNCTIONS FOR THE MOST UNSTABLE EIGENVALUES
OF A TWO-BLADED ROTOR AT WAVE MUMBERS 0.0
AND 1.0, PITCH = 0.1 AND CORE SIZE = 0.1

Eigenfunction for Eigenfunction for
Wave Number 0.0 Wave Number 1.0
Label Real Imaginary Label Real Imaginary
37 +0.998 0.002 57 -0,784 -0.215
v$$ | +0.065 0.000 vsd, 0,043 -0.034
8%, -0,998 | -0.002 %, 40,783 | +0.212
$f. | -0.998 | -0.002 8%, -0.784 -0.215
r6d, | -0.065 | -0.000 ved, | -0.043 | -0.034

A
€2, | +0.998 | +0.002 62, +0.783 +0.212
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TABLE X1v, COMPARISON OF MAXIMUM INSTABILITY FOR
TWO- AND THREE-BLADED ROTORS

Number Amplitude of Max Di-
of Wave Average Dis- vergence
Blades Numbers tortion Factor Rate Conclusion
Perturbations
0.0 6.28 50.05 for the wave
number 0.0 are
2 more unstable
1.0 4.60 49.80
Perturbations
0.0 12.57 118.42 for the wave
number 1.5 are
3 more unstable
16'S 15.50 123.71
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CHAPTER 5
CONCLUSIONS

1. The small-perturbation stability analysis of a doubly infi-
nite array of interdigitated right circular helical vortices
formulated here shows reasonable agreement with the recent
work of Widnall [Reference 16] where vortex core to helix
diameter ratios are 0.1 or less and when the number of blades
is set equal to unity, The larger differences which appear in
a comparison with the Reference 16 results at larger core
ratios (e.g., 0.33) are attributed to differences in the
methods for eliminating the self-induction singularity., While
the method works best for small pitch angles, it has been
shown to be the equivalent of the formulations developed by
S.C. Crow and Parks [References 17 and 20] dealing with the
infinite straight vortices such as trail from the tips of
fixed-wing aircraft, when the pitch angle is made to approach
infinity for a two-bladed rotor.

2. A continuum of instability modes has been found associated
with all values of wave numbers; only modes with wave numbers

0 and 1 are so much as neutrally stable, and only for the case
of a single helix., The most unstable modes involve the most
axial motion of adjacent vortex segments relative to each other.
By "adjacent segments" is meant vortex segments above and below
each other (i.e., at the same azimuthal location) on adjacent
coils of the same or neighboring helices. Furthermore, the
larger the percentage of the helical arc length involved in
such motion, the more rapidly the distortion will diverge.
Maximum divergence rates in the unstable modes increase as the
helix pitch decreases, increase as the number of helices
increases, and decrease as the number of cycles of deformations
in one turn of the helix (i.e., wave number) increases.

3. The effect of increasing helix filament core diameter is to
make the analysis more sensitive to the means by which the sing-
ularity is eliminated. Increasing the number of blades appears
to make the core diameter less influencial in determining the
rates of divergence. Although it has not been demonstrated
here, one would expect that reduced pitch would slso reduce the
dependence of the calculation on the vortex core size, Finally,
a larger core diameter ratio also appears to reduce the
difference between peak and minimum divergence rates as a
function of wave number.
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CHAPTER 6
RECOMMENDATIONS

In view of the instability of helical vortex arrays observed
(a) in tests and (b) in iterative distorted wake geometry
calculations and which now have been confirmed in this study,
it is recommended that the stability of a semi-infinite vortex
array, together with the bound vortices which generate it, be
studied in a manner similar to the analyses reported here.
The purpose of such a stud{ would be twofold: first, to
examine the effect of the bound vortex on helical vortex
stability and the associted unstable divergence rates, and .
second, to develop analytical and realistic perturbation
quantities to be used as forcing functions for the unstable
modes of the semi-infinite vortex array typical of 1lifting
rotors. In such a'forced'" calculation, one would expect

to predict the actual distorted geometry of the wake beneath
liftins rotors which must be known to perform more accurate
sirloads analyses, for all purposes.
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Figure 7. Radial Perturbations in Wave Number = ¢ Mode
(Dilatational).
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Figure 20. Real Component of Axial Perturbations for a
Two-Bladed Rotor at Wave Number 0.0.
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Figure 21. Real Component of Axial Perturbations for a
Two-Bladed Rotor at Wave Number 1.0.
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Figure 23. Real Component of Axial Perturbations for a
Three-Bladed Rotor at Wave Number 0.0,
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Figure 24. Real Component of Axial Perturbations for a
Three-Bladed Rotor at Wave Number 1.5.
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APPENDIX I
LIMITS FOR S. C. CROW'S CASE

The equivalence of the special case of the present work with
that of Crow and Parks can be seen by noting that the direc-
tion z in the present study corresponds to the axial direction
of the aircraft trailing vortex, and that the directions r and
+ of the present study in the limit will correspond to the v
and 3 directions, respectively, in S. C. Crow's theory. All the
nondimensional parameters in Crow's work must be defined in
terms of the parameters of the present study to demonstrate the
correspondence., The v perturbation equation in the present
study with above-mentioned restrictions can be written as

n. Y &
““,‘.’ ,z r! J;:" [RrE¥an § 0 Xmp Sint (hap + Yerp) Simed Xemp

™My T
= Xep Cos(Mmpt Yanp) Cos W Amp + Sim (Rmp s Yep YCos wWwrwpy
+ iMTET (= WO Mmp SINCrap s Wonp ) CO8OKmp = HompCos (Honp -ty I5in g
+ Sin (Rep ¢ Yoap ) BN O Xmp § + p,v'z&_. {m ( Rwp+ Pmp )COS(O Xwp)
+ Xpp Sin (%mp + Yep )Cob WO Nwnp
+ @ Rmp €08 Hup & Piap )G OXwp F + (RYT 63”
{4 Cos (Aep & Wap ) SINCO Remp + Rowmp SN <x...,uv:p Si'w O X emp
- W Ry Conl Rwmp + WmpICon W Rmp T & RYEQy {—Co% LRmp + W)

- Xwp sinan’o Wwp ) 3]&&”)

©°
= SE%JJ;:" [Rv* {Sincimp e bmp) - 2y Cos Cpt Wop} Ko

me) ~®

where J'p and K.p are defined in Section 2.6.

First the variables of the present theory will be transformed
into corresponding variables used in S. C. Crow's analysis,
and then the limit will be taken as helix pitch tends to

infinity, All of S, C. Crow's parameters will carry the
subscript 's' to avoid confusion.

From the definition of axial coordinate, RYX= X
LW R
The perturbations in the present study are of the type e'“ ’
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and if the wave number in S. C. Crow's theory is expressed as
”y = :_ » the form of the perturbations is transformed to

e Re st and the nondimensional wave number becomes
ﬁ,: kszf = h‘b .

Applying the transformation described above, the self-induc-
tion term Can be written as

ok j"7""'8f[ (- g sinl) cos(§5) - B2 Con(82)S(33)

- %2 cos(%2)Sin(2%s) & Sin(X1)Sin (L )Ud'ﬁ

4
'bz_r:_", J;"V., kvr“s. LCOSQ%)COS(':’%?)Q» )ég S\n(%)(‘o&(‘%%_&)

v L2 con (1) Sin (23] 4

““f 1 el [- cosffa) - o sin ()] ¥

-5/2

w4

e « o » plus terms involving J11
Now, ‘Ee « % @ >0 88 helix pitch —»c0 , and one can approxi-

nate

Cos (R8) —»

sn (3

Neglecting (X2)* torls and noting that & £ R, it
follows that e [ar avicos(Xs )+ r* x.‘_ et ] =[x o&.]

- cos g X3)+ B Snn(k xed =V Ndn
and d"‘.-%]r‘&[ e (;‘:e‘);“j s Ns Jdns,
Similarly, :utual-inductance terms can be written as

-u?..zi:'js;;"‘ [nrs?; i- «_;z_;'—_*s Sin( B +m)cod s
o

o0 S o) Sim(42Es) - Lk Cos (B} em)Sn(@2)3 ] dxs

o8



® A
& ;r'}j,';h Rr ¢, [Cos(Zenm)CostRsds) + X3 Sm(Xs 4 ) Cos(Ryns)
(-]

+ RgXg COS(-"%- 4-11) Sin lsls] "—‘.l?

1j? ”.N; h AR [ xs S Ry ]i“
» 2_!!|: Ta v 8 —Cos(é"-' Q-TF) - & Sin (hr * 'ﬂ') RY
o

-3/4
Ja = (artavicos (2 .w) RIrxs* 35
T4 Rt re

o g q . -3/ L T + tJ.J/I.
Taking the limits again yields J3 = [%s'e+ar*) = [xieb

0O A

< 4 Nlred dxts
A A We s Sinkeg Hs Yl ¢ 120

B CoS las s + R X ] 3"[ )Y
and «6v, » - 03 S:»‘[ s S )

PS N ~ A A
Writing sﬁ.y.‘ . "&,r e §fx ¥4,, and v&p,=2,,, and remem-

bering that ST is positive outward, while G, and 9. are paral-
i

lel (thereby changing sign of either the self- or mutua
inductance terms),

ey
Q;as L % i" cosh‘:(s+ l:\t;su'nhptg-l dxs
A (Xg ¢ Eo )V
[ (-]

Blre 3 |3, Cos(memad + Ry g SintMgXs)
b oa's(_-—‘13+b‘) dag + o fdas Cxde A dx,

This is the same equation that results when Parks' modification
is applied to Crow's theory. The one remaining equation

relating 2.4 with J. and %:s can be obtained by following the
same process for 15& perturbation equation.
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FORTRAN IV _SOURCE LISTING

Main Program . . . . .
Subroutine ALLMAT . . .
Subroutine QG9 . . . .
Subroutine INTG . . . .
Function Subprogram DSIMP.

APPENDIX I1I

100



€EOONI VYN
ZEO0ONI VA
TE0ON]I VYN
OEO00ON1IVA
6200N1I VN
SZ200NI v
L420CNIYW
9200N1VH
SZO0NIVN
»290N1IVA
€200NIva
2209n1VH
TZOONIVYH
0Z0ONIvVA
6T00NIVA
Q100NIVA
LT100N]I VA
9100NIVH
STO00N] W
9TOONIVA
CIOONI YN
Z100NIVA
TTOONI VM
ol00NIVYN
600N VK
S009N1VW
200051V
9009N1vw
S000KL]IVW
Y00INI VA
€00CNI VW
ZO00NIVA
100IN1%M

(NveNye L)z avy
1ded3°2snNX
J32¢6L685€67265191°%°C=14d
$2°2%2°21xVdad=iltl )Y
ZN*tIal J%1 D)
ZN*1=] vt ]
19=1r
NeEs2ZN
032° 1 s A=y
931 01 J2(0°3°33°43) 41
CE°J10°NIT°€°310°K2%C ¥ Avarll
Sd3°1°N01IE1°5)IVIY
3Z1S 380D IV  %3d4WN IAYES4I11d 10441
339 Ji 3 13°33°v¥ i1
(E1%:1)1v4dd)4
AN (IL1°S) ¢y
SIUVIE 30 ¥IlaVe L19V]
TIV%91340°171%4 NI44D)
SE3°NVY*e NI44D)
CISIDLMT9I2%(a0DD%¢15%19)33 NIISNIALD
CLZIBSLIIIVAS(LIIA NIISVI4LD
(810334Y]  36%30d4))
CE*ENITIV seXI V44D
(EIAIIAVIUL)IVIUAYTY deX3Vd4))
(E°CDLUIADI*LLESL I VYOI 3sX3Vd9D)
AVAI*(21%1)VY dexnI V44D
V1V30°€0°24°%°14°%€d*2d%1d Yelvin
T AL2)d) Yelp ¥
% Y81V
(2-0°10-v) Jd01738 1111 V44l

® &6 6060068060088 8902

49¥94d NIV4 ®

® 068666869908 3

oyl

ngtl
h T4

M1
N

(SASAS

101



99CON]I VA
S90INIVA
900N vy
C€900NI VA
Z990NIvA
1900NIVA
0930NIvVA
6SOONIVA
9SOONIVA
L4SOON1IVA
9SOONIwVNW
SSOCNIVA
»G00NIYA
€SO0ONIVA
ZSOONIVA
T1SOONIY A
CSOONIVA

33
L%1=

030

=171
d°3=l1)a
1 28t 13
*U=s¢liva

033°3=t1)2
032°2=t1)A

irei=
Nntis
N=N (2

(En2%5°213)10°x
(8e1=1%41132)1091
035

39

01

oSt 32 2D ¢

1 041 33
» 0y )
*J1%4) 31
1=NeZ2W
S)avdavdl
*3)311uy
*3=12))
*I=({6) )
*C=1¢) I3
*3h°4) 4]
¢

GP0ONIVAINVY ) 1UISTeNVYNYVI/Z(IT°C/C1ZANVIOl 2 nVaeIZ-NVL) =124V ~-8¢)=¢6)D)

9Y00NIVW
L9CoNIvA
950001V
SY00N1vVA
»500MIvaA
€v00M1lva
Z90CN1VA
1500N1VA
0900NIVA
6E00NIVNH
SE0ONIN Y
LE0ONIVA
9EO0ONIVA
SEOONI VW
Y€0ONIVA

(AVVe vV /L LINID

1349383

*N3I)sCI*C)/71Sa365dANINITILYISA/CU L= 1Sd3¢°3°€0/703°¢))=ELDD)
(INVE) L1BISTeNYVESdI1eSd300T°C )/ LI 2NRVLIe] Z70.VinlZHNYL)=(9)))
(NYVeCI°E) /1L IINIOILYISAENIDN/N0°T)=L1SdTeSdIe5d3)/50°1))=(5)0))
(00 %) oWV )2 (D3°C/ (1 7ANVISTZANCE 124NV =1724N0 ) =(0) )

(ENTVYILYISUe NN D /(B2 4\Vi-]

2)¥=¢¢£)22

WU/ LLINIOILuISU/ZTI°LD=15d3/7I0°1))=¢2)D)

CINVYIIuDSTeSdIeSu3 N/ L LAN

vis(1))

STVUIIAING NI11va¥NL¥Id NILLIININT 213S e VMDN]S

40 NJILVIIIITI4 ¥l STIVEOILNG

NUONY ATTINDBLATTNY 4D NJI
Sd3eSaieNxsNx

L12)ntNes

0005 °)e21d0°10di0l2)022

19INd%¢)
edV¥=NID
I=l 24NV
)9311=12
e /nu=22

(%9 L¥I53/5dzsvy

1
1

N
1A |

102



6603NIVN
S60NIVA
LO6CHIVA
96J0NI VA
S600NI VA
S60CNIVYW
S600ONIVA
Z600NT VW
T1600N1I VA
06JCKIVN
6800NIVYH
8800NIVA
4800NIvA
9800N]I VA
S8OONIVA
YB800ON]IVA
€B8OONI YA
CO0ONIYS
1800N1IYA
0B80ONIYHW
6400N1VHW
GLO0ONIVYA
LLO0INIVA

tYASAX*IX)S3D Ty)

ldeibl~-F)=
Jdel52-F)=1«

1é 30 TWvAE31IN] Ny 17
11417 443 1N ¥3ddN L 4V 14351 INIA39 IVNVEIVAD INISY 3RWLIILNI

Z=11

I6Z Ol JIIZy°*31°F) 4l

(39°E/1d) st 1-F)=x

2rev=r 52z 13

Ide%l 40 LIA41D ¥3ddN Ns UL dN dalSJ INISN 31s5¥231v]

: 23Z=¢r

€2 J1

021s=2r

CEZ 1 DD

is=2r

€¢ 21 N

oe=Zr

2€2 21

3ys2f

IS8T UL J9 (01 1 °wn) 41
D32 U1 I9 (%°2°1Vv°Ad) 4l
312 32 J9 (2°0°31%Ne) 41
322 31 JUHE1°S°31°43) 30

FL00NIVAHILID NIEN TNIGNIA3IA STVEITINT ILINISIND NO 114170 340 1D p2ddD L3S

S200N1V 4
SL00NIVA
€LOINIY A
ZL00N]1VA
T1200M1VA
OL00MN] VS
6900N1V A
S900NT VW
4900NI VA

tNI/03-33°1)8182300°¢=V1341

N=N]

N=NZ

1Sd3=5d311°33°N) 41

0J9°I=SdIIN" 3NN I

Sdi=154d3

STWUOIANT NIBLINGUL WNLN4 NI Ju3Z 23S SI Sd3 wUlIVI 2215 I3udD
€s1TUNDI°N) 41

STV¥O3IAINT NOJLIAINE 313S ¥4 2=117 13S

de2
322
ol
32

751

103



ZEIONIVA
T€IONIYA
OEIONI VYN
6ZICNIVYW
SZI0NIvVA
LZTONI VYW
9ZICNIVA
SZIONIVW
SZ1IONIVH
€2ICNINA
2Z10NIvH
T1ZIONIVW
0ZICNIvA
6TICNIVH
STICNIVW
LT10NI VYN
9TICNIVA
STIONIVYW
SLIONIVA
CIIONI VA
ZTIONIVNW
TTTIONI VN
OTIONIVH
60lONIVA
SOTIONIVNW
40T0N1IVN
9010NIVA
SOICNIV.
S010NIVA
COTONI VN
ZOIONI VN
101081VA
OCOTONIWH

(21220001)2=421)2
121020(6)7=(6)2
(1022048021312
(Z)0e(LD250L)2
(1)02043)2=19)2
(€)020¢C)Z=¢5)7
(21020491 2=0¥)2
121220461 254€) 2
(100 (2022421
(101D 7=(1)2

STVNIILANT NIILIIIND

3138

33141004 3IHL 31 SINTIVA WNO3IINE C32VYNIVA3S ATIVII LA LY 1Y
QEE JL 09(2Z°anv"13V) 3]
3nni 1N J22
(1dAeCIZ=(1)2 D¢
irétst 21c )
AINNIINDD 0J¢
(I°1S°1*HIdAISOs{SNIA
(1°Sxn)30=(1)) Is2
1s%1s] 262 JI

Iret=s» i

23

3INk1 ANDD I
(UN)VA=L %8N I J22
Iret=un 282 23

(va®x121IN]

1),

Weti-3)0e Tu=yx
1S°t=1 032 I3 292
J3°261/71d=14

231 9°19°r) il

I=17 262

02¢ 22 )
CANDVASLI AN 2= 202 I92
Iret=1n 292 13

104



66092NIVH
S60NIVA
L69CHIVYA
96J0NI VW
S600NI VN
60CNIVYW
ceoonliva
C600NI YW
1600N1 VS
0600CK]I VA
6800NIVH
8800NI VA
4800NI VA
9800N]IVA
S8O0ONIVA
9800NIVA
€BOONIVA
200N VA
1900N1IYH
OSOONIWY W
6200NIVW
SLOONIVA
LL0IANIVA

tvAsnx*IX)s3d 1y)

ldsibe=-T)=0

IPLIR Y g ERTY

1d 30 TWvAB3LN] Ny 17
2IA1T 340 1N uIddN It @) 1451 INIA3d IXNMVEIVAD INISY 3gwrdiLvl

Z=11

362 04 I3129°1¥°F) 31

(3% /71d)sl =)=

Zreist 52z 1)

1de91 40 11417 ¥3ddN N§ UL dD dalSJ INISN sisE231NI

)2ser

I€Z 1 )

0d1=2r

CEZ N1 N

i=2r

€¢ 21

96=2f

€2 21 )

Jvs2f

35T J1 I (0°1°17°and 4l
032 0L 29 (%°2°1V°4d) 41
312 I1 JD 12°2°3T1%Ne) 41
322 31 D153V a83) 38

LOONIVAHILId NIAN TNIQNIAIQ STVEDILINT ILINIANT N0 L1IALY 340 40D 82ddD 43S

SL00K1V A
9400NEVA
€LOINIVA
2L00N1VA
1400MI VA
QL00NIV Y
6900N1V4
SS900NT VKW
4900NI VA

NI/ 23-23°1081d300°¢2¥134)

N=N)

b L3 o

1Sd3=5d4311°33°V) 4l

0392°J3sSdIIN®3IN*N) 3L

Sd3=154d3

STIVUI3INT NIILINGU] WWNLN4 NI Ju37 23S SI Sd3 WLV 2215 I¥D)
EslVUN"DI°N) I

STV¥93INT NOBLIIONINE 373S u¥3d Z=177 43S

de2
322
]
32
Yol

103



SOTONIVH
910Nl YW
€910NI VW
Z91INI V4
T9I0NIVY 4
O9%I0ONI VN
6SIONIvVA
SSIONI YN
L2SIONI VA
9GIONIVA
SSTONIVH
SSIONI VN
€SICNIVA
ZST1ANIv A
ISIONIvH
OSICNIVA
6YICNIVA
9%10NI VA
491CNIVA
9IONIVA
SYIONIVA
99TONI VW
C€YI0NIVS
ZYIONIVA
1910NI VA
0v10NIVA
6ETONI VYW
SEIONIVA
LE€TIONIV Y
9EINNIVA
SEIONI VA
EIONIVA
C€EICNIYN

(2)JD¢(9%)2=(>y)2
293+ (EY)2=0EY)2
(90301293 22129)2
Ca)DIetIvdi=t1n)2
(203204290 7=129)2
(9)0det6c ) 2=(5€ENL
1L)ddet8cd2=tac)2
(9302e¢2sd2=822)02
(S)detvedE=tE)2
L)IIetSe ) T=l5eE)2
1903009V e=¢ve )2
(S)JdelEc ) I=tEEN2
920t 2c )20 2€)2
190001 ) 2=t1E)2
C9)JIe i V22422
tL) DI (623 2=152)2
(3)Jdet3222=t32)2
(L3I0 L2V 22202
19)0de(92)2=42)2
16332182V 72=162)12
(9121920 2=(y2)2
1S)0%e1€2)2=1€E2)2
t9)IJ)ei22Ve=122)2
19)22et 12020122
(S)D201320¥2=132)2
€$000(51)2=¢51)2
t932)e(3102=¢231)2
1$93Jet2VD2=¢21)2
(9)De(91)2=131)2
CENIIetvLNZ=(V1)2
(€)DIetEld2=siEN)N2
129201210 2=421)2
(S LIRRSRETRRR N

105



86ICNIYW
L6T0MIVA
96 1ONI VA
SOIONIVY
6 ICHIVA
€O1ONI VY
S610N1VA
T6ICNIVA
O6ICNIVYA
6810N1 VA
981CNIVH
L9TONI YN
99ICONIVYN
SeICNIVY
Y9IONIYW
CEOTIONITHW
COICON]I VYA
18TI0NIV~
OPIONIVHW
6LTONIVA
SLIONIVA
LLIONIVYA
9210NIVW
SLICNIVA
YLI0NIVA
€LI0NIVYN
ZLICNIVM
TL10N]IYA
OLION]I VYN
6910NIVA
991ICNIV4
L91CNI VYN
99TI0NIV S

t41J%)Ae 1
(EEDACISSIA-(DGIASTI=(LYIAD 0%¥sTD=((STIA=(OIA-(LIIASY)aNuv=(3)d
(2 dAellEdA T
SLESIA=(AYIAS2I=(IYIA)eNVeII=L (V1 DA-(BDA-(L1)AL=)aNv=(L)u
(LISIA=1SS)IAIeNVENYEII=16IA-{0L)AS=()
((OSIA=(E3SDADENVINN$IDI~(WIA-(TIT)AS"=-=(5)]
CLOSIA=(SLIADENVEII-((STIACIEIAC(LIAsN-lonvaiv)d
TULEDA-(2EIA e NY20D-LI9TDAGIUIACLET DA )eNY=(E)G
(COEDACIOSIA=IYEIA=CTISIA)eAVATI=(LETIA=CLLDACIOT D ASN-)oNy=(2)d
CUIENASLTEIA=(ZSIA=I59IA) NV DI-(LZIDA=CILDAL(SLIACM) oNV=(1)d
XIWAVA NITIININE WIALAE 8D T3S 2£30dal) Cet 391 4¥II
3@3°Z=3)
333°¢=])
1Sd3=S43
(CYZ=ir)A
Iré1=r %z 13
$9022¢(13)i=11))2
(60320409132 =129)2
(01030 (64)2=165)7
CL)DJetasd2=tas)2
CLY0D0 029V =252
(303201991 2219602
(L)J2Jet55)2=153)2
(900201950 2=195)2
€303J)+1E5)2=(€E3)2
($)2Je(2502=t25)2
(912700150 2=t16)7
16302018260V 4=¢35)2
$9030¢16%)1=16%)2
(9022e(0%)Ista39)2
($)032¢(29)2slLY)2
(902200390 2=(39)?2
19303201 59)2=(59)2

Ive
jod 4 1

106



1€2ONIVA
CEZONIvVA
6220N1vN
8ZZCNIVA
L22ON1VA

N=¢l A

N=TeN=lIlA

n=Zr]

1=s1r]

d6C I1 I N*19°N) 5]

9ZZONIVASNIIEVYEITISNDID AULTIANMAS T4L INIST AG INY S3ITuivd NILLIJNIND WO W

$2CZ0NIV Y
9220N1VNW
€220N1vi
Z220NIvA
12ZCN1VA
CZ2Z0ONIVA
6120NIvA
B8IZ0NMIV S
4T120N1 VW
QI2ONIVA
STZCNIVY
$IZCNIVA
CTI2INIVS
2120NIvYA
T1ZCNIYH
0120NIVA
6020M1VaA
8020MIY 4
402CNIv S
902NNIvVA
SOZONIVA
9020M1IVN
€020NIvn
2020N1 VA
T020NIv A
0020NL%W
66ICNIVA

INY 3735 3HL TV ONELVINIIVD d314v YIulVanN3Oi3 313VddDD 341 AU )4

TANA0ON V117D

$U6°213°%0u350)5%a2)1044)3

CL2°51a14(1)04) (33c®*9)3LIxNn

(BI*DI=1%1104) (J9c®*?7)321 0

(6°T=1¢L1) (CHE®I)ILun
(2°S3%0=He%7YS%c1°X5%/77/°%5)10AU)4

AVl (Jle®9)Zhlun

CLEDA=(2IA) oAV LLLIA-LEZIA-LIOTIA) 3A93]D=(E2)A
(ESIAGIZIADONV LU IZIAGILZ2IASETILCIA=I31)A:4D-191DA)AV2II-=122)1]
CUSIAG(2IA)3 M\ -L(2IA-(92)A) > YedD=l )
CEIZIA-LL L IAI®IVEID=t22) 4

(EIA-L(R2)A=(51)A)3DD=t192)3
C2IA=CL22VA0(RTIR31I-1D21)A)DSII-=(62)3
(EIASLIS2IA=CZIA=(LLIA) 547NV ID=(N2)d
(2IACL(HLIA-CTI2ZIA) T2 HVEID=(12)0
CUIZIA-LEZIA-LSCIAC IO IANSNY3TD=-=(61D T

(L3 )A-(1IAN Y3 4D-=(31)2

(E2SIA=1DI)A) Ve ]D-=(LT)3
(C9EIA-(TI3)AIeD=Ctc A A-(I)AsUe(IL)A=(II)3
CCTIEIA-15S%)A)TD-(5IA2Me 2 )A:1-(J1)A=(51)3
CLEEIACICHIATIDI=LYIA)UD=( L DASN=(5DA-(L)As3D=I91)d
(EIEDAC(99)A3TD=(99)A)30D=(T11DAm4e(s)A-(IIAsiD=(tT)d

(8)AsM~-(FDAS I (SSIA=(9S)IA-LIDIAISNVENYSID-(I1)A-=(21)C
(6)AOMOLLIASM=LILSIA-(2G)A~(IIDA D3NV AVeUI-(01)A-3L11)]3
(LTI9)A=(9E)A-(TISIADNVOID=LUELDA-(TLDAG(YIdAs~-)onv={21)J

(ISEDA-(TIEIA=(SYIAINYTI-LI2TDA-(IT DA (3L )AS)oaV=(5)2

Jae

107



9920N]Iv S
€92ZCNIVA
Z2920NIVH
192CNIVvA
09ZONI VKN
6S2ZONIVA
0S20NIvn
4S2Z0NI VA
9S20NI YN
SSZONIVYH
9S2ZONIVYH
€S2ZONIVYH
2S20NIVA
1SZONIVA
0SZONIVA
69%20NIvH
8%ZONI VKW
LY2CONIVA
9%20NIVA
SYZONIVA
99Z0ONI VYW
€YZCNIVA
Z92ZONIVNH
192Z0ONIVY
O%20N]I VA
G6EZONIYA
9€20NIVA
LEZONIVW
9CcZONIVYH
CEZONI VA
SYEZONIVA
€EC2oNIYN
2EZONI v

(1=24%1-210¥¢ (IGL1)DD%19)ADIXIdI=(1-24%1-21)"
(2-24%1=21)9e((B8)UD(LIUDIXNVAAD2(2~CA4%L1~-2]1)Y
$24°2-210v¢ ((9)42%1S)udIRVIAD=CA%2-21)0¢

(1=24%2=-210V¢ (%) ID%(EDIDIXN VS8 1=24%2~-21)¥
(2=2A4%2-2119+012)¥2° L1 DD IXVd4D=12-¢A%C=2]1 )Y

) (1=-TFaell)eE224

(I=-Illerl)sE=2]
(S°213%e2v17304°XG6°6°2T14%¥5%6°214%%5%6°¢T13%a3) VU4
VL133%€d*2d%1d (359°9)311uN
ldsldsldetusr®y- 1

298204298 °%-C A€ s A-(EU2TsIN) 2"l is1d32As18 2t =v]113)
Ed-=Ed

EFfZd=-=27

Efld=14d
(€E1)8J6(51092(S)uUD-1BT1)3De (218> (L IdI-C(RALINI=> T HaInlZDilD |}
=(910183+(L)AI8(SHIUDSLZTIUISIETINISCEI DI DAY TInlNuT=ES
CETDINDe (S DID-1L)EDIelEDNLD- 1
(PT)02e(Z2)8I=-(0T03De(2)3I=(01 2D (21)UI={91 ) IeiZ1 )3 I=Zd
(310320001 MINI+120AI=]4d

9 J1 0911*19*N04]
nrisi=rl vay 313
tlda=t1)ad
Leti=1 DE¥Y 12
(ZVa+iNda=11)4d
SleZ/11+) =21

2%et*l=T1 31y 13

¢y G1 02 (IFfW*4N"1ITT )41

tellf1=2r1="r1

W=MNeZ=nZld

I=1r4

N=ZIr]

I*h=-A=1r]

JO¥ 21 1)

I
pL1

%%

Jey
e
Sle

0%

0%¢

108



e

LO6ZONIVA
9620N1VA
S6ZONIV A
20NV
€620N1 VA
Z6ZONIVA
16ZONIYH
0620N1I VA
68Z0N1V 4
S8ZONI VW
48ZONIVNW
982CNI VKW
SSZONIVY
9Q2Z0NIVN
€020N1 VYN
ZO2CONIVA
182051V 4
082Z0NIVA
6L20NIVH
QL2Z0NIVA
L4420N1VA
9LZONIVA
SLZONIV 4
YL220MIVA
€LZCNIVA
2L2Z0NIVH
1420N1VA
0LZONI VA
692CNIV~
892Z0NI VW
49Z0NIvVS
99ZChl v 4
€920N1VYn

ONY J1¥1INAAS 40 SNIILYNIUAIDD ANL344AS 3T31SS0d TV1II3I4S INIAYXI
INNEANDD 93¢
INNTINDD 25
(PoE=Tdlec’lot-1alesciisiloc~-lnlest®loE-Talesl)y
C€i=F 269 I
€*1=] J69% J)
N2dl=lal 0I5 1]
1014l =24}
Ndl®I=1al 235 I
1=N=41
36€S 1 II1¢°3INANII
€S 04 0911°33°v) 11
INNILINDD 58%
INNTANDD 2Ly
(POIDIIVOITeE-2As L e -2ZRIVS(leE-24%0E-24d)Y
ALY UL IIZ°IN AN 4]
CCeI)QIVeIrec-21%00E-21DVs(loec-2]%10C-2])VY
€°i=f 0Ly 2
€%1=1 1Y 2]
€3°2%¢ 20D 0XVd4dD=(L %)UY
$3°2%¢32)D X VdAI= 2% DY
12°0%192)d))X1dad=st1%C) 1Y
12°2%192)3))x1d4D=(L*2)1)7
(3°0%(e2)ildIX1dAI=12%2) 21
€0°3°%122)13))x1d422(1%2)117
€3°J%¢ 1)l IxVdAd=1€41) v
€°3°%¢22)32)xT1dAd=12%1) 2"
$C°J%(61)dDIX1dAI= 11410209
93% U1 JUI (24°33°21) 31
C24°2107¢ CL1A1)D0D°C2T)09D I Vdad=t2A%2I DY
G1=24%210Ve LU1UDAI*(SLNAIIRNEAI=(1-2A%21 )Y
€2-24°21)09+0(21030%1i1)dDINVNdAI= (22421 )Y
(2A°T=2109et (21D NIDNIINNdAI=tcA®L=-21)Y

2

109



OCEONIVA
62ECNIVA
QZEONIvVA
dZECNIN A
QZEINIYW
GZEONIVA
92CON]IV S
C2EONIVS
ZZECON] vV
T2EONIVA
02€¢0Nnlv
6T1EANIVAI
QIECNIVA
LIEONIVN
9IEONINVA
STIECNIVA
ST1EONIVA
eIfCNIva
CIECNIYA
T1€EONIVA
OIEONIVA
60€INIVH
S0EONIVN
LOEINIY A
Q0€ONIVW
SOECONIvVA
S0EONIVA
cOCoONIvVA
20€O0N1IN A
T10€ONI VW
O0CONIvVA
662CNIVH
962NV

eN®1=] 3273 )1
CoANUNION 1o N TT %o IV ide®X6T%//7%eSIVIVANIDE36%X5°%77% 50 004¢)3
SANVVANIIET 3D Sidvc AYUNIIVAL DXV Y934 L) ANINg
(219720441484
CeI%(r®1)y (233%2)311un
ZN*1=f 339 J)
ZNC1=1 229 )
$2/7°%eSEIBLIINDINIDL XSG LVAND S
(000°3)311d4
(026%9) 3111
€IIANCIVINC UL *2NCUNIVIS VI AVAYIY 1Y)
AVAIIY ONITVIVI Ad 34803834 SISATIINY 3NIVANIIII
1=233A%
(EI NS EI*XNG*G 21 2%05°%G°¢cT 3%xG)LVAEDY
CLIIC IOV (285°3)3s02H
2N%1=F 205 13
ZN*1=] OLs )
$27%oNJILVSTIUNDOYTID  3¥D333 XINiIVA®aS)adends
(399%2)311 94
(3234303114
C7/7°%€1°%e230%26°C1%42530VT5 4D YINAW*XS*//7%K5% 1)

$ox321S 3F¥IDe®XNGE DTN mUIIANN IAVILCAG E d4%e=4DL1de*XGDAVANIS

WONSSAI* AL AVIDNSe® ) Ll

(/7777)2v40]3

(32%%3)311 0~

NI LINDD

(CEofLIV=(rel)vsil*]1)dd«l)
(Eor*ldvell I lv=(r*))vadd)

€*1=C J1% JI

€4tsl 016 I3

0€S 31 DM IN°VI 4]

W3LIY¥ J3GvIC JN1 ¥V 40 ISV 341 ads SV
FINIJVIANA °NI4 ONY °Nvd 0L 3S1¥ ONIALD 330U4 JI¥LINAAS-1LNY

299

110



LYCEON]IYV A IN3
9%€0NIV .Y dJ18
SYEON]IVY S a2zt 31 )
Y9ECONIVY .Y (E1XG%G 213°XG°%G 213 NI1%6°215%K6%6°2 13X 1) d44)4
CYCONI VN T80T IUIUAY I IV Dua? 10D 2903031 19
CYEONIV €¢t=1 362 1]
1 E AR $7/7°eAUINTIIVAL o XTT%oIVILo® NPT oAVl VAl e®XxT®

OYEONIVA o TVIBe*XLT4/7/7%0SINTIVANIOLZ44X5%/7 /7% 00% e 3OVIOn3ALU *4vA ud 251n

GEECNIVH ONIATD SNITIUNEAADD Adh IedAl FTLISTL¢ WIDIISe*45%/7/7%%5) 10483
SCEON]I VA (0%2%2) 3814
LEECHIV $IIANCINOINEC AV I®dunIdNIVATIIV NIY)
9EEONIV Y EDIANCTIPINCL*EoVvInaAv 18T 440D LVAYIY 193
SEEONIY ¥ Y438 J33vYy Iv)
SEECNIYAI0 ISVYD IHL B3I SINTVANIDLT DIV¥LIAAAS =125V INV DIBLINAAS 47D ANl 24
€EECNIVA LD IL I €NV 3l
ZEENNIV Y 19°213%»3%5°213%%x3%Ci%as)vadly

TEEONEIV A G104Vt (JE9%2)310un

1

43
ey
73
Js?

p LD

e
dz3

111



€€001ATY

v

43 S4TIIY Sv IEN¥IAZH

S¥JILI4ANIIL 3

ZE€00AWIWISINYIHLD *J34vINITIVI S¥ILIIANIIIT OV QO = DIAN Sve¥I0ILNI
NeNi3IN NOdN 331VINITIVI SINIVANIDLS 40 ¥2Jd4IWN *%ed3D3UNI

V XINAVA 3D NIJISNIATY 40t 24L *9843931N1
¥ XI¥iva 30 u3UI*ysu3IILNI
NUNL3Y NIAN Vv X1¥1V4 4D SINTVANIOII 3D AVYEI®IeX3IVdHID

T1€00L4 Y
CE€001NTWV
62001iW TV
9200Lw WY
42004V
92021m YV
€20C4in TV
9200147V
€2021WTY
220014V
12091u1V
020014V
61001W TV
810034V
L1008NW Y
910%1uw Y
S10014TV
91004W Y
€100141Y
21004V
11021WY
01C0LA Y
600014V
800014V
4002 1wV
900014V
S$00014V
000 4n VY
€0001n Y
20021nW TV
100011V

33453NJ3x

41 *SNANTIND Sv XIwivi TUNIOIND 341 33 SuILI3AN3IOII

X3Wd423 3IHL SNIVINID NUILIYW ND

JUVHS IHL IJ1 J3511437S Iy

SENI4DYUY 4D NIILdINIIII)

“xX1¥iv4d ANdNI*3643VdeID

(IIANCTIVINCVI*W®VIUAVI®Y D AVATIY 1Y)

23A%
WIN
vi

d
VY3349

¢ IN3A3LVLS 3H1 A9 J3ITWI S1 AvV¥IINEINS 341

J39¢39 31 v X1¥iv4d 30 ¥3ITJu) «4N4iXvd 341

ABVYYALY ATY¥IINd JWvHS I4)
d0¥d Lv4av U0 AVYIIud Al NVELYID4 3632 3M1 4Iud I31430v SI Av4ITY

*(1VAY ¥0) AGvERIT 4VE9Iud

3C31Y NVD 4V ¥317441D J6IL dl

341 ¥04 T3Z2N3W °F IV DI TMIANTS *3°8 Ad w3ILAINY Svw V4TS
*S¥I1I3A ¥IIF DIHL13IA %39Id I5u3FAN] RINVISIN UNV 441180070 ¥)

IHL 33 3ISN AV SID18AVA XTI VdAID ArvELidav 3D SUILD2ANIIII

83/73NY SINTVANIOLI LtHOIY 341 3AVINIIVI 01 INBLNIYINS Al Nvdiuds ¢

*826°2°d1¢

SON 203 ¥31334309 40 ALISu3AIND

(DIRATIVINO VI *wly3U4v 1%V AVLTIY INEANONENS
$ 60660686690 808880008

L947T¢ 3N110%ENS

L

e & & 660 8¢ & s s

VUUY WUUUUUVULUUULOUUUULUULVLUUUURLULWLLY

112



k1

izt

N

99304w VY Z=NsZ AN
90014V

900147V 804 9¥3IYN3SS3IT UL v xlyive 3123
€90%21W Y

Z9021n Y oLy 31 )
1900143V (i
0900ANTIVIHS (T ) LATHS=(AIVIGNVIIZELZoTDVS(T 2Iu=(T1°T)VslL®2)V)=stI-d)vD94YT
6S001W Y (103 91ASeddIL=(4IVIIdVT
850044V oty 21 )
45001w ¥ CTILAINSHIZ%2IVell®T)v=(Tl-Ad)VIddr)
9001wV C1DASIHS=(4)vI40]
$S001MNTY 021 31 ODU°I°IN®1dAILINEALT NI 33N (dala) WIND I]
960020V *Z/LLLIZ TNVl ZIV=tTl%l)veiZ®ZIV)e*D]
€S004NTY =200 (2°2)V+1T1%1)¥DDALISIe(2%2)Ve(TlLDVIadalL DT
2$001n Y D€l D41 D0I12®INNIII
1S0CAIN WY (°0¢°JistedL 143
0S00in Y $°0%°J)s(2)L Il 45
6%001M Y (°0%°dstldidl4s
850014 54NN
2%001n Y 9 I I
9%001W IV *1=(1°t)¢
S%001K 1Y (T°T)v=(LI)vIa4v
990010V 01 0L J91t1°3nNI 4l
€9008wIV N=I0IN
290014V 4=y
1900240 24¥°148°%u* (29D IN] 43D31NI
0%0014WY 3194402304030 WIAIIN
6€0084 Y 9rNJII* LYIS) x3V44D)
8€0014Y 243°1d3 91ea3Vd4))
4€0914Y 1408 I1sX37d4I)
9€001W Y 24A3L°1dAL°SII%NUS*dAIL IEILSINS (oYL TAL
6€0014VWY $C09VI1IDIACIVIIVTIIAVICIOI®TYII VA 1I9%39 I (vIV]IIv X3VdaD)
9€0214V

d
J
d

113



66004K TV
960C14Y
L609%14TY
96004V
$600iaTY
960044
€60014
260034
160014
060014V
68CCINWY
98021k IY
L90C iKWY
980014 Y
SRCCLA4TY
98004V
€80014TV
280C14 WYV
180C1inY
080014V
620014dWY
84C01w YV
41004WIY
9L0014WIYV
$10G14%
910CinIY
€LCA1aA WY
240014V
14G01n VY
020C1a Y
69001mw WV
2909214
490014V

Né2dus] 22 I3
L1anSettdncl ) =llcHl)d
2418140044051 45

()L WVaa2d)

(ret)e=14)

Ne2dusl 261 I3

J°J0=14NS

Tdu®i=1 232 1)

(102 N4=t¥*] )y
Culdudv/ztalde = (10N
Ne2du=l 231 J)
diilsiaIiNi®lNVY
(u3iNi*iivatlde®l )y
(Tdu®ldv=ddllL

N*lI=] 231 M)
CYEIE IR RV R ]
(1%831N1 v ) %1du)y
t1%1di)v=d43}

Ne3=l 261 J]

Ol D4 ILEdN* I3 3ivNY ) 31
3%2 02 09 €26=-3°1°171°(D149)337) 41
(¥)iNI=83LN]

INNI LN

JsSdvs=llav

1=¢u) NI

<%t J1 UDMD16¥°371°95Sdv) 41
ool (U1 IVIOVAIVEZe3((LeL)Y) I¥IE=DS35AY
Neldi=]l 291 D)

T1d¥si¥) LN]

*3=913y

Zoys=2dy

Tousi ¥

ZdNS Isd 392 )

3¢
pLA

41

Nl
p R

-

114



ZETCLu Y
| {9 LN T 1Y
OC1CinTY
621CLaly
82104n Y
421048V
921044V
S2154A YV
92104V
€210am Y
2210wV
12104aTYV
021044V
61104w VY
() @ Lo T I
LT11CInNTY
QTICAa IV
ST104m Y
ST1CINTV
€T11014 Y
CliCLa Y
1110141V
Ol1CLA Y
601Cin Y
80IZ1inYV
2401CLA Y
9010141V
S010AnW IV
0101417
€OICLInTY
201048V
101Ciad WV
001C1LIn Y

(°0°INCLINSNIVIOUATY B LN LN NIV ) IV DD) 41

LoN=azINA

QUL 1 DJI1¢*2I°N) il

It 21 )

(IRl ASelL )=t ddwididne)
€ 1 I L1°aN"N) I
(Feldvstirely«

NeIsf 242 3)

NTs) 242 )J]
Cl=23°1a25d3(°0°J)3°Sd1141
ZT=3°12Sd3({v)LUDVIDAL32323
4132333(543°12° 450 41
(IF°1)V)ISuvIenNS=40S
NeTdl=sl 222 J)

I1-1=141

®I=4Ns

N*¢2s] 22 )
CL1°T)VISuTINSdI35d3
NeLs] D62 I

*3=343

NIVISd43 vV W)

FAINILRNDD
(CeidudvatldaNvs=tretse=trelde
Ne2diafr 82 I3

Ne2d4sl Jdeeg )]

(ldu®tldudvetl LN =ladsetlidoidvaticn®lly

CdJsldleLalS=14%
(F1a V424
iréliestal
NeZdnsl 12 3]
J°5=14Y§

p )
b 14

Lz
J9¢

pLY4
pi4

Y44
2

(S A= N

115



SOL0IN Y
99104nTWY
€91014W TV
291CLu Y
I91CIKTV
09101iR Y
6ST0INIY
8SICLAWY
4ST0LKTY
96104 Y
SS1Ci4 W
951014V
€S104W Y
Z2S1CLINTY
1ST101447TY
0S101W Y
65TICLINTY
SY10INW
491CLINTWY
99108 WV
S%101M Y
99104iW Y
€Y1C1inTY
ZY121K W
191014V
oyY101u Y
6E10LNY
S8C€10LNTY
LEICAINTY
9CIiINTY
SET0AN Y
SEICLWNTIV
CEICINTY

T% J1 JOMI1°373°4NN221) 41
S3AVNILL ¥D *5MIIBVIOY SN3IALD 4¥IINIY
(XIINDDR4IHS-(I%LDU=(l%])Y

N‘t=] JJ 3]
(X3INIDAAIASO(TDLIIANSalL)L 4l S

352 1 J)
Z2-N=\
0=1N7)1

CUILIIMSOCEDNLINAS=(ToINAIVIdAYT
CUILILHSOEZIAILIAS={INAIVIHAY)
J6€ I1 JIMSd3°II°UIZ-N*T1-NIvISavI) il

Z=x32N1
Jet 31
£=X33v1

CLE D1 JOCLINSNIV=LEDLITHSISHVICLTITEINSNIV=({2Z)L4145)SHYII 41
(Z)2AIHS/LLN T =NIVe L T=N*NIV=(T=N*T=NIVOIN*NIV)=(L D)) II4S

I 1 I

INCNDVOIT-N*T~-N)Y=(E)L L 45

0SE€ 31 I90°2°IN(I2ILII4SIOVAIVUU® I"IN((2)1414S) Mv3a) 41
CZICLLINCT-NI Tl T-NAIU=(1=-V*T=N)VeIN®wIV)e®o=- [
ZeeCINONIVA(TI=NCT-NIV)ILUISIENNIVOLTI-NOTI=-NIVI={ZDLIT45 DoE

14148 3IN1A48313)

e N N
1-N=N
I=4N1II1

b b 1)
58

J4€
LE

CTILILHS oINS NI us( INADVIIAYY Uk

3%€ 04 09€Sd3I°3°U(LTI-N*NIVIOVARYISHVELLLL-N*NIV) TVaNISdVI 41 D2€
02&%Jkc%dic 2
(E=3°T-CCINNIVZLT=N*NIVICUAIVISEVOLLINHIV/ZIL-N*NIV) TYINISGUdIl I

(SX =)

VI

116



S61C1LwTY
261010 Y
%1010 Y
S610LM Y
61034V
€61014d Y
26101V
16101WIY
061C1s Y
681014V
081C14 Y
48104N WY
9810iK Y
t{ A JCRLJ
90101 Y
€81CINTY
281C1NTY
I18T1CANTV
09104M Y
621014n 1Y
SLICLINY
441014V
941010 WY
S$21CinTY
$21C4n Y
€LI0LM Y
2410184
TLTICANTY
OLT101N Y
691018V
99103u VY
491CLW Y
991Cin Y

S¥OL1I3A 31VvINIIVI

) {3 J W b

Te4NNI21=1%1I1

IWNIANDD

(14U dve(SIDIILNDIa( el )Y
11d¥*l )veNIS=(Ye] )Y

X3INI*Tdu=l 6 I

IN*2o¥) dNTN=XTIINI

dd3ii=(d*l)vy

(AU IDVetSIDIOCNGI Y1) Ve (NISIONFNDI-=(Tdu’l)y?
(14U )VeNOS* (4 [IVeSIIndall
¥et=] J%y I

(lou2ey)v=2d43L

JEY J1 JIIN"L19°2¢4) 31

, (1d¥°1dedu=ldAilL

ddilsil%d)y
(1°T4¥IVeSIdot]%udVeNDS-a(ltdY) Y
(1°TdUIVeINISIDONINGISLIu)V=(S1D)OrNII=dAIL
Nex3INI=1 22 1))
C1°T=-4)IxVvA=x3IIN]

J44/2da3l=NIds

OHu/id«31=S1)

399 01 JI1*3°33°J4¥8) 41
(2eelids3L09¢dlveleell2dala)TIviv
0280 (1d431)19V41%028s(1dAIL) WINILLIS=I4Y
Teysl ¥

tdNel=¥ 59% 2

(142)usZd43L

(T°1)v=14d43L

1=N=I 4V

oLy 31 )

N-d=sI¥YIN

29%
3%

vy

JEY

ney

Ny

117



1€2CiINTY
0€Z04n TV
622014
922C1aY
42221m %
922014V
S22CL4Y
9220160V
€22048Y
22201W Y
122CanTV
02204V
612014V
Q12CL4 %
L1201WY
91201W YV
S1201A41Y
1201WTV
€1234n WY
2120146V
112CiWIY
01201w IV
602044V
00201w Y
402CLAN
90201nY
$0201m IV
902014V
€0201W WY
20201iKV
102014V
002010V
661010

NeTal 366 I3

INNILNDI

I R IR R IR AP Y T E S R EE I A K E R K]

NeLdI=sf J:¢S D)

(1810472054101 )V 4-2(]) 118

006 00 39€°0°33°C¢141)T4)DvalvoI%Nv 3330 (1%1)74)193¥) 31
da3i=(r°1) V4

(re1)Ha(ro1eld 14

(CeleldN4=deil

N1sf 016 )

*Inui =141\l

02S 21 I9CCLI4IDTIHISOYI*IT LI T+1)14)SAVI) 4]

lelsldl

*3SWa=11) 41N
*I=t1L 4

Tavéi=l 296 I3
CNVIAVI=-LI*I ) T4s(] 1) V4
(redua(f®1d 4

Neisr 38y )

N‘lsl 03 I

IYINCT=T 299
(2°Z)u=12%2)4
t1e2)v=112)4
t2%trv=g2°1104
ttethvs=tien4
Z1-3°1=3431°2°33°Sd3) 41
8=-3°T16(1(2)0304vTISAVICELTIIVIANW NISAVI) LAV IV2SY)
Ja% JL 23NV 4L

t=-Nsldy
AsN

049 32 .0910°33°J3A4) 4]
349 A2 0912°23° WIN) 9!

2%
Il

3%
0%y

33y

ALy

118



992034V
€9201n WYV
292C1AY
19201inY
092014y
652014V
862014V
46208 W Y
9620LA Y
€S2CLinY
9G208W TV
€6204K1VY
282CiATY
162Z2C ANV
CSZ201inWTV
6920141
89204a TV
492610
9%2C 14V
$%2C1iny
992214V
€92010nW WV
2920141V
19271417
092014V
6€201nY
8¢E2Cin Y
L4€201W TV
9€2Z01in Y
S€E2%1AW
9€2C1inV
€€Z201W WV
2€2CLAd WY

CTINIANI=XIIN]

ICILDIA T TNIADIASILITN )4l )LD I
NeLINaP 2E9 D)

Tel-NsI N

I=-1=-N=11N

2dd%1=] D932 I

2=-N=224¢

69 L IWL®II°H) 4

9% I3 )

*INug°=3d12

(3DADTAt LNt L eI DLDIA=Te]DLD5A
ddILsileldl)iA

(1e3)0133A11)123A

(1)123As¢dq2)

19 20 02 LIDAUNLI®LIIN®D I

1d4N°t=1 219 13

3Z3 L I3 4]

1701043 (101213

NeT=] 209 )]

ANS=9141313°13°425) 31
CCUIBLIIAIOVNEIVISAV (L ESD2D3A) I SUVSiNS
Nel=] 26% J)

*Jadla

ENOND)TAZUNILIZA=INILIIA

SAI= (NI TIHEA*DITICUNAH) VAIIVAT Y I wu® %2 ( L % %) V4) Te ) 91
(ToC) 1AL %A T=(4ILIIASENDLI3IA
TaN® 3=l L5 J)

f=Ns)

taN®is] J3s )

(L LASAEVAVS FORTVEISI NS LY
SAI=INONITIHE®0°IILINSN) IHIOVRIV IRV 93 L INSN) 14D Yvda) 41
*3SWi°s3Iv1

*1s611123A

29

19

I3
055

33
AHS

39s
Jss

119



1220wV
0L2CLwTV
69201w IV
892GINTY
L9204RWIV
99204n IV
S9204n Y

N3

NN Y

(1)1023Aa( 1)y

N°1=i S99 23
du3L=(23INLD1I3A
(XIONTDILDIA=ITOUINILIIA
(T1+1INILDIA=I4IL

i
099
9%9
2v9

120



€£€00690
2€00690
1€00697
0€0069°
6200699
8200690
1200693
920069"
$20069)
%200690
€200699
220065
120069
0200690
6100695
9100699
L10069)
9100695
$100695
100699
€£100699
2100690
1100699
010069)
6000690
9200690
1000699
900269
$002690
9000657
€00069°
2000699
1002699

CLIDAZSIIIVZ)IT-02265IL56ZI959%ES5 011 DAS(])A D1

(rel1sl 21t 22
(42°3-v)5151 1I¢)
(vZ*deviygvl MNygd
8edIVLEZSRTIBZINGIZEY" =)
G200l IVRIel-D1655CE6TR9LUGE2 =LA
irets) 231 J)
(4242-v194%1 VIV)
(VZ¢ev19191 Niy)
BedISER2ILILVALI6Y® =)

M-N%=23
(IXenNx)eIIG =V
19l
CI9DUZo(TIIVZ(T190A NIISVIAE)D

$2-2°4-Y) 3¢1I¢3¥ 1171%41

tACNX®IXISIID Inllnowing

NX ONY WX SATHEY IHL NIITLIP SINTVA I3AvuSIINI 3D AVENY® e IvIusA
IYNOIANT 341 NI L1141 u3ddN’eIvIv=Ng
TYNIIINT 3rid NI L214ET ¥3NDTV°8e WWINSIX
39349

(AKX IXD690 T1TIV)

SANIA3LVLS 3HL A JITWWD ST 3INILWUAINS 348

332v¥d31 41

39 31 SNJITLINTG GNVAHO3LANT 341 $3TVddNS CANI INILAJ¥INS® 19¥ NIV
INBANJYINS ITININIIIS OFC/AILSAS NILAVIIVANG 441 JIVIAT® 4aMDAD AN
AQYI NINVL 3¥Y SANIIII 343)D INVY SIAIN I41°C 10603 JuNLIVaEIvad 357D
INI0d-2T v 30 S4v34 AR STIVE9IINI 241 S21vITIVAI 599 Inlinduans

® 6680666589846 9885
. $9) anl1VJsdns .
® 6600606688580 s90 s

N

VWUUUWUWOUWUWUUVOUIVIY

121



$502699
9600699
€500692
2500690
1500639
05C069D
6500670
8900699
4900697
99C0690
$%00690
$%00690
€%2C690
2900699
1%006°H
0903690
6€0069)
8€C262H
4€0969D
9€00690
$€00690
$€0069)

INg

N¥NL3d
CCLIDOZoCI)VZ)Ie00%129086226EL5%21°¢(1)A)30=(])A
ire1=1 ost I3

(¥242-9191\1 179D

(VZ°Jev)SLNl Vv

Qel-0I99E455292191929%=)
CCI032¢CIDV2DdU028189233299L9T1°¢())A=(])A
1411 591 J3

(92¢3-v)91%1 My)

(¥Z42ev 19101 VWV)

A633106255959L 516EA1°3)
C010320CI)VZ)COVEFSIFEETLESGIGI ot dASLTI)A
Iret=1 26t 23

(92%3-v191%1 M)

(v2%Jev)iLing 1Y)

QedILBIEEPTLLS6SIEB2 =)

(0103200 1)IVWZ)e1-0TC29TL29IUSESIB s (1 DAn(])A
Ift1=1 321 23

192%2=-v)915) 1Y)

tuze)evw)SLINTI 1Y)

wedIE2STILS0LEi 16593€°=)

oyl

net

221

122



€€0021N1
2€0291x51
1€0094N1
OENNDIN]
62009iM1
8209%91N1
42N091M1
920C91N1
©20091M1]
920091nM1
€20091™M1
2207911
126094M1
02039141
610591N1
81C091N\1}
41639101
910992141
S10929111
910291N1
€1C094NT
21909101
1100921\
010Co1N1
60029141
800991}
402091M)
9C0CO1LN!

€90 INILININENS J1 W) 4vdIsud NIva 343 O3

Avslvsy=(%)2
wyeslv=ic)d?
dvsly=42)7

49=01)?

$336°2~)ssly=dy

€336°1~dsalv=4y
S@3eSd3eXeXeNVeNVOIVEIII°2-302° 230V
(Xen)N1S =y

(Xen)SUI=iw

(viinlendnlsSi=2v

(vL341ex15303=17

8J3°3=1f)2

19%1=f 331 N

=]

TVI%WL34L4T %4 MDN4D)
SdI* NV NI4Ad))

NIISN2IALD

NJISANIA4TD)
(2-0%4-y) 3sW3iu 11211441

(2%2)3181 3100)¥90S
Ng VW3 NI4D

X 49 INIVA NIALO ¥4 SNIILINDS AQvvadiin] 4) Avdav dsWWIns?
NOLLIvUD2INT 40 IV4vivva

TR ELES]
INI 4

€2°%334N1 Vied
¢ SI INJ4I1VLS INITIED 341

$3441) tN34INDaY 341 4D

GO0009LMI3NIZA NIALD ¥ ¥4 SNOULINTS INVEDILNT 34) SZ1Vddils 4vaO0uanS Si4i

0009141
€00091M1
206359101
100391N]

¢ ¢ 5 86 0 68 8 e 3
481 INILVINIAS
e & 6 8 0 66 ¢ &t s 38 ¢ s

91

VWWUWUWUVUIWIDOLVLDLOW

123



9900911
$90091N]
900914N1]
€90991%1
2900911
19C091M1
09009101
65029141
95009IN]
26009)M]
960091N1
$S009IN1
9S0CO4INI
€S2091N]
2%90091N1
1$0091IN1]
0S0COINI
6%0091N1
89009\
2%0091N1
99C091M1
$%0091IN]
$50291n1
€%009:1n1]
2%009111
19009i4N1
0%02391N1
6€00910.1
9€0091N1
L€0091N1
9€009IN1
S€0091N]
9€0091IN1T

(1€ )dens=tacd?
(dcrzex=¢3c)?
(92) 4925802
(€2)2+5ValvE)?
(22V2e¥u=tcc)?
(92)2sc9=(2c)2
(E2)2eovvys(lcE)?
(22)2eEv=(2E)2
(12)2en=(52)2
(2)2eu4s=132)2
192)de¥=i2)2
(€E2)2ex=192)2
(220 2epmi5202
(61)207wvens2)?
(31 2e2u2tc2)2
(3t ietu=i2202
(61)4ex=i12)2
18TV 4ex=(J2)2
dvs2¥={61)2
dvelVs=i{al )2
d%x={L1)2
dv={y1)?2
(110 cex=(51)2
(CT)Lsx=iol)2
(6)lex=lET)?
() dexs=t 22
(L)2s2v=q11)2
193)2e2v=(21)2
(L)dely=(%)2
wVstvaly={3)¢
Wuevys=iLi2
dvecvy=({3)¢?
WV¥elVsXs(S)?2

124



660091N1 (03$°1-dselvany

960091M1 Sd3eSdAexsXellonvanvislye
460091N1 1T J4 29(¢°A3°1) 31
96009I1N1 Q3131374 3#d4 N 3¥T SILDILME MIILDNIND 333 341
S60021INIHIEIHY Y3 L4Y 1deZ INIA3IA LIALT NIIAVED3LNL B4 2 24 WWIAD3 14S SI 11
96009401 1T 31 Ve sN*T1TI N4l
€60091\) NIIAVNO3INT IvITYININ D3 J3141004 39 J1 2¥v STVEoaNE INY
Z60294N1 YYINONIS SIN0II0 WEIILNT NIIiIvuaNIYId 248 NIILvALES SI4) Vi
1600941 ¢ IVHIIINT Q3IINANT 37335 9 NIILVINDIYI ¥0D4 2 0L w193 138 SI 11
060C91NI (L%) 240132
68C0931N 1] t9%)2en=(2712
800291N1 16S)2eN=(56)2

480093M1 (%C)2ex=(as)h?
98CI211%:1 (ESYdexnstL3)?
$90091n] (2S)2ex=(33)2
98009141 (1S)Lex=(53)2
€80091n1 $96)dex=to3)2
ZR0091M1 159V lens=t€3)7
180091M1 (0%)lexs=s(23)7
080291M] 1L9)2e2v=(13)2
640091M] 1L9)2elu={I3)2
82009141 (99)Z2e2v=(5%)2
42009101 (99 ) Z7elv=(3%)2
92009iN! dve%vs(lY) 2
$200211:1 dvetvztIv)?
92G091M1 $62)de9v=186Y)2
€400} (32)2e%v215%)7
22009401 (52V2eEV21iv)2
12009111 (32)2ekvaiZy)?
02099101 (GE)2ex=(1¥)2

690091x1 (YEd)2ex=(I¥)2
890091\1 (€c)2eX=(6E)?2

49009411

(ZE€)2ex=l el

[SF ¢ ]

(S X= NS

125



CET0911
1€1091%1
CGEICO1N]
621591,!
8217911
221091N1
9217911
1 TADLYTN
921979141
€zicovl
221Ca1n]
1 ¥4 CLYUY
0219941
6110911
SI1C91NE
LTT1094N1
911094N]
STTIC921N]
ST1094N1
€11C2INI
FAR LU
111091M1
OT1CoINI
60109401
8010921N:!
40109101
901C9INI?
SCT09iN1
®010%1N1
€0T1CaIN]
201CO1N]
10109101
001C09iN1

($)32-(S2)e=152)7
19)33-(%2)7=192)2
(632)-tec¢di=te2)?
t9))d-t1¢2¢daxt )2
(3)22=-41Ve=t12)2
(S022-10¢2V¢=1322)2
19032=-t6l)&=(61)2
(¥)J0-(3l)2=tel) ¢
($)2)=tLt3s=qe1?
(9)32=-(I1)2=191)2
1€))=11)2st91)2
(EVII=-tCELdL=tEL)2
2022=-121)¥2=¢21)2
(ENII-tT1IZ2=C11)7?
(PALPEIDISPEIRIE N
(2)DI=15)72=(6)2
(102)=¢3d2=13)¢
(2)10J-tL) 202
(1)22-1(9)48s17)2
(€103-1S)2=13)2
€2)2)-t¥)2=t¥%)2
(2)2)-te12=(€)?
t100d=12)2=(2)¢
1IV=-t1IZ=t1)2
(L)DDex¥=2(R)Y)
(9)3dex=123))
($)J3Dsx=(32) )
(9)N)ex=(S5)))
Ju={s) )
(Z2)3Dsx=¢(€E) I
(110Jex=(2)D)
NY=(1)])
€336°¢~=)eslys=)y

126



S9TIC401
591091%1
€91C91M1
2910911
1910941
0910941}
6651Co1N]
851091M1
19159401
9610911
SSICOLIM!T
9610911
€S1Ca ]
2S1094AM1
{4 (DT
061091\ 1]
691521N1
8%1991%1)
L91091N1
9910931 ]
SHY1591%1
910211
€21C91N1
291C91° 1
1 £ L VRN |
0%1N91 41
6€10911
9€£10921M1
LE€T109,1:1]
9¢ 1094\ 1
SEN1091N]
9€1COIN]
€E1COI]

(L)DI-(usV2=(R3)?
LY=LV 23013V?
(9)J)=-19904=195)12
1L¥0I-165)7=(65)2
19003=(%3)2=(%5)7
€9)0I~-(e5destEs)/
(6)33=t2s0d=*126)¢
€3)JI-tledi=t153)2
$3)0)-024) 258052

15022=169)2=1b%)7
(9)0)-tuv)i=tuv):
tS)II=(iv)2=ta»)2
€Y0J2=(9%)22(92%)2

(3)22=-1(S9)2=15%)1
(2)32-1%3)2219%)7
(L)DI=icdi=tin)l
€3002-12%)e=12%)2
t3)02=-(19)22(15)2
CLIUI-(TYI2=129)?
19209-1%e di=15%E)7
(YR IR IS FEITIN I
$9)2)-tLaVd=t2a )l
$9)02=( V=362
1L)2)-1se VL2158 )2
€310)=-t%ecde=tL% )2
€6)Dd)~-leedi=tEc)2
$2))I)=-t2ede=t2€)2
19022=t1ad2=t12)2
(¥3)J)-(0EdVd=t52)2
12)J3)-t6edi=t062)2
t93)0d-ta2)7=ta2)?

CLVDI-tLch stV
(L ANMEIL A VEIE YA N

127



96109an1
461091N1
9% 17 9IN]
s61004%1
$61091\1
€61CDIN]
26109111
161691n1
061091K1
691091N1
981C91N])
481094N1
981091%1
S81091A1
9910911
€8109101
281CoM]
181P94X])
081091M1
621091N]
921091N1
4210911
9L1COIN]
SLICOIN]
$L1CI1NI
€L1094N1
Z41091M])
14109N1
0L1091M1
691091n1
991091N1
49109101
991091M)0

01)°2=163)2
03)°0=(25)2
032°2=(2612
033°2=a(6%)2
333°0=iLv)?
032°0s=toy)2
90°5=leEv)?2
032°J)=(J9)2
932°J=¢ 32
322°2=¢3¢E)2
002°2={si)d?
03%°J)sisi)2
333°=t1e?
302°J2={52)7
J00°0=422)
033°J=(52)2
03)°o=tg2?
I12°I={02)7
0ud°0=tel N
002°5=t2112
003°3=(s1)72
309°2=t21)2
339°0=¢o11)7
032°7=(5)2
033°0=lL)2
33)°0=(9)2
£30°9=(€)?
LI

021 UL 09 (<°23°4) 31

ALBVIdvaS 3dve ¥V 2DI 2 O WII3 Sv OvSe SI W
(9033=-119) 224192

(6022-10214s(2302

(30021651 2=165)2

ozt
ot

128



€02c9an1
20209151
102291N1)
00Z091N1
661091N1

33

nuni 3y
382°2=(C2)?
032°9=18507
302°I=42%)7

129



€ECOmISH
2E0NALS)
T€COAIST
0€00v1¢S1
62054157
9200418
42004180
92004]1S)
$20041S)
9Z200N1ISD
€Z0CAIST
22CCA1ST
120041573
02004151
6100KWES)
91004189
11004182
9ICCWIST
STOONWIS)
$T100WIS)
€1004192
21004182
T100W1SU
01094189
60004153
80004182
400204150
9000wWiIS3
S00oWiIsS
9002041852
€002418"1
200041851
10004159

WABILNT IN)

(T LTET]
033°5=d415)
TVAYILNT IN= AN1IDd IND AN
ZTSITLL*NNI¢~-11) 4]
T1eSi-31=11
333°3=11

LI21IINNS NIISNIMLID
(2=-2°14-v)delvin 11217441
CINNI*I1*S1°H)dAIST NIILINNS
*NIIAVEOIILING OIulIS3II ING 3D I9NVE 341
EIAD 4 40 STIVANILND 1V TJIAVITIVAI *03aVEDILNL 38 J1 vOL1DvN3d
3L 4D S3INTIVA 3L ONINIVINDD AVEUY TUYNDISNIAII=34D *d3N1¥3U=INYS
*INTSCAYREY IHE 40 INTIVA LSVT 3M)

33 1d13IS8NS 341 9VIAINII345°313vidv2s ¥D LINVLSNID *9ed393ivls

*MASCAVLYY 342 4D INTIVA 1SYL3 341

43 1414ISANS 341 IVIAA1I3dS ¢ 3VIVIYeA ¥D INVASLII*Ysd3Dilils=

s

NO11v¥d3iNT 40 Sinviud
N339129 TAYIINT 341 INIAVN LAVISNDD ¥D IWWVIYYA*AelviNs 4

9340

TINN3°31°S1°A41dA1SI=?
SANIWNILVILS INIYITIT04 3HL A8 03IV SE 101D 241

332vdS AIN3A3 30 2S¢

SAINIOd 341 4 IVSSIISAV 341° 300 ¥O N3AI 3IJ4 AvA NITAvuO3IAND 43
JONVY 3IH1 YIAD SAINIDE 4) ¥3IN4IV WIIL 341°3IN SEHO13I-33641 342
ANV 3778 SeSNISHIS ONIST 3 EN1IDd 341 J1 ¥ INIDE 341 dd¥d WvAu3L vl
NV H3AD (X)d 40 IvEO3INT 4L SILVVTIVAI dalSO 4VuOJ¥dONS NIILINNG

NI

VWU ULV UUUUWUUUUOWUUVUWVIODIY

130



990C41S)
$90041S7
9900W1S 1
€90041%3
290041S2
19C04159
09024151
6S0041IST
85CCWIST
15004152
96004151
$S0%4151
9500415
€S00K ST
26004181
15024150
0SCCWIST
6%0041S9)
9%0241%1
45004151
9%CC41ST
SH»J0WIS )
99004181
€%0741%1
Z9C041$7
1%00W1S')
09004150
6€9041¢9
8E0CWIST
2€09418)
9€02WIS)
SE0NA1ISN
9004153

431=441%)

J%1 34 I9 (2°3V°A34d1) 32
484 332°:7232%1)+821=1I1
ANSe3I°¢esd1=1I1

(I )ININSeANT=ANNS
Z2%0xntwau=] 332 33
332°J3=4N%
ANS$030°%e17121)1
CIDINNIeANS =408

Z%u7% 1I=1 ISt 1)

332°3=4NS

1=3Vsdn

Tev sy

1=-11=89

1eSl=v)

€NV (510D..na=1D)
31=71

STIVARILNI 30 °O0% NIAI

W@ 1 M

€-31=11

2T UL 09 (0°49°43ul) 4]
Zs(&/11)-1124341

STIVAUIAINT 3] ¥I44N D)

N¥L3Y
(431IINNAe(T-31DINNY

*M2°€E412-31IINNI25TI°ES(E-FLIINVID$HI2(ITS°3/049°C )¢ LIL=dAlS)
STIVAMILING 33441 1SvT xUS WARIINT 33841 AIND

LU RIEL)

CE31)INNI LTS TIINNISIDI 9o (ST IINIIIe0II % /112dAIS)

IvAuIINT I}
51491 °0citv-112)4]

%Y1 Y
0SS eHstLITDINNIISLIINNS)=ddl ST

(4} ¥4

P14

NN
ant
I
st
| ¢

vt
Jel
114}
311

131



89%00wIS)
49004150

33
LI DTE]]

132



