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INTRODUCTION 

During the last half century, the stability and vibrations of rota- 

I". • • 1 as♦ic disks, beams and shafts, which find engineering application 

!! '10 turt)ines, helicopter blades, am! other types of rotary 

tachinery, have been the subjects of numerous theoretical investigations 

H-'>0|.* In general, the partial differential equations which describe 

It. 

t'.a 

bvformations of the above-mentioned rotating systems are derived by 

techniques rather than some systematic procedure based upon, say, 

iton’s principle, energy considerations, or some conservation law. 

! iis lack in the technical literature of such systematic procedures 

: has provided the impetus for the present investigation, particularly 

in light ot the fact that recently there has been considerable interest 

(see, for example, references [31-33]) in the stability of deformable 

lies loaded by complicated non-conservative forces, ^or conservative, 

rotating systems, one can employ for such purposes Hamilton's principle 

upon Lormulating a suitable expression for the kinetic energy. Further- 

*i’his list of references is by no means complete. 

'into: [1-30] See References pp. 92-95. 
31 

‘ On the role of the adjoint problem in dissipative, 
nonconservative problems of elastic stability. Meccanica. 7. no 165- 
173 (1972). ^ 

32 .,, 
\M>l:RSON, L., Application of a variational method to dissipative, 
non-conservative problems of elastic stability. J. Sound Vib.. 27 
pp. 279-296 (1973). — 

3 V , 
'.dd.ivSON, ^• k., tin the stability of a deep beam subjected to non- 
onservativo and dissipative forces. Watervliet Arsenal Technical 
i port R-WV-T-2-14-73, Watervliet, New York 12189 (1973), 
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more, a similar step can be accomplished even in the case of non- 

conservatively loaded systems, however in order to obtain a functional, 

viz., the Lagrangian function, it is necessary to introduce a set of 

field equations which is adjoint to that which describes the originally 

posed problem. It is of considerable interest and importance to note 

that for non-conservative systems one can avoid the necessity of intro¬ 

ducing the adjoint problem by working with a generalized conservation 

law. Indeed, this technique has been used very effectively by Nemat- 

Nasser et al. [34-35] for non-rotating systems. In this report, the 

procedure suggested in references [34-35] will be extended so as to in¬ 

clude the gyroscopic effect which is present in rotating systems. 

In order to motivate the discussion which appears in subsequent 

sections, it is instructive to begin with an elementary example of a 

non-conservative system. 

Consider the equation of motion of a damped spring-mass system, 

namely, 

X ♦ cx ♦ u»2x - 0, X . dx/dt. a n 

Multiplication of equation (1.1) by x yields 

37 
• " .2 2 . 
X X ♦ cx ♦uxx 0. 

35 

S: md ?AI* P- Effect of warPing rigidity on 
stability of a bar imder eccentric follower force. Int J Solids 
Structures, 5, pp. 271-279 (1969). • * 1 ds 

LIN, K.-H., NEMAT-NASSER, S. and HERRMANN, G., Stability of a bar 
®d.r eccentric follower force. Proc. ASCE. j. Enjng. Mech. Mv 
93, pp. 105-115 (1967). * * * 1V*» 
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■■'lieh, in view of the identities 

X X 
. 1 *2 . 
d( j X )/dt# X X 

can be expressed as 

d( j x2)/dt, 

<111/dt = 0, 
(1.2) 

iherefore, 

H = constant. 

(1.3) 

i.e., the quantity H is conserved throughout the motion. 

Suppose next that these steps are reversed, i.e., equation (1.3) 

is substituted into equation (1.2). The result, obviously, is 

” • 2 . 
(x f cx ♦ II) x)x a n , 

Hut since X 0 for all t, it follows that 

2 
X+CX + CdX a O, 

•mich is iseroly .quation (1.1). rh. point to !>. ».<!. h.re is that the 
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equation of motion (1.1) can be derived from the conservation law in 

equation (1.2). 

The procedure illustrated in the preceding paragraph can, however, 

be fraught with peril when applied to gyroscopic systems. For exanple, 

Ziegler [36], p. 17, has discussed the pair of coupled equations 

2 
m X1 ♦ (Cj - m n )Xj - 2m (ix2 ■ 0 (1.4) 

(1.5) 

which describe the motion of a disk of mass m mounted on a shaft rota¬ 

ting with constant angular velocity n. The constants Cj and c2 denote 

the stiffnesses of the system in the Xj- and x2- directions, respective¬ 

ly. The gyroscopic effect is embodied in the Coriolis terms -2mOx2 

and 2mflx 
1 

If equations (1.4) and (1.5) are multiplied by Xj and x2, respec¬ 

tively, then 

Addition of these equations yields 

36 
ZIEGLER, H., Principles of Structural Stability. Waltham, Massachu¬ 
setts: Blaisdell Publishing Company (1968). 
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dH/dt = O, 

vhf i-re now 

H = 
V 4(VÍ * V2> (,.6, 

('learly, 

H = constant, ^ ^ 

i.e., equation fl.7) is a conservation law. It must be observed here 

iat Ttle Coriolis terms do not appear in equation (1.6). 

It the derivative of equation (1.6) is formed, the result is 

[mxj ♦ (Cj - m n2)x1]i1 ♦ [mx2 ♦ (c2 - m n2)x2]¿2 * 0 

(1.8) 

A comparison of the square brackets in equation (1.8) with equations 

f:.4) and (1.5) reveals that the quantities in the square brackets do 

; r vanish identically. If, however, the identity 2mn(xi . J _ 0 

JS lnserted int0 equation (1.8), then equations (1.4) and (1.5) can be 

reclaimed. Apparently, there exists no general method for selecting the 

appropriate identity in situations of this type; one must simply know 

what it must be. At first glance, this situation would appear to elimi¬ 

nate the conservation law approach of deriving the equations of motion 

of non-conservative, rotating bodies. However, this technique can be 

salvaged, provided that an artifice can be introduced which, at least 

formally, prevents the cancellation of the Coriolis terms. 

8 



Consider the rotating system depicted in Figure X. If e1# e2 

denote the unit basis vectors in the Xj, x2- directions, respectively, 

then the position and velocity vectors are 

r - X1 ♦ x2 —2' £ ” Cij - OXjîSj ♦ (x2 ♦ fi Xj)^. 

Therefore, the kinetic energy T of the mass m is 

•r 1 • • 1 r*2 »2 , . 
T - j m r • r - j mfXj ♦ x2 ♦ 2fi(x1x2 

Since the force vector is 

. 2 2 2 
XjX2) ♦ n (xj ♦ x2)]. 

(1.9) 

- ■ - 

the potential energy is easily shown to be 

1 . 2 . 1 2 
2 1 1 2 2 2 (1.10) 

In view of equations (1.9) and (1.10) suppose that one now make 

the following definitions: 

T.c • 

Tg - 2m fl / [(Dxpij - (Dx2)x1)dt, (1.11) 

9 
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i/ 1 , 2 2 ! 2 2 2 
VT * 2 (C1 X1 + C2 - J™ n (X1 + V* 

where it is understood that D = d/dt. Indeed, T, is identically equal 

to zero, but the form of IG as given in equation (1.11) will be retained. 

Next, it is postulated that 

H 3 Tk * TG * Vt * constant» (1.12) 

and consequently 

dH/dt » 0. (1.13) 

The quantities T^, T^, and VT may be called the kinetic energy, the 

gyroscopic potential, and the potential energy, respectively, of the 

rotating system. 

Substitution of equations (1.11) into equation (1.13) yields 

•• 2 
[mXj ♦ (Cj - miî )x1 - 2m 0 ♦ 

•• 2 • • 
♦ [mx2 ♦ (c2 - m ÍJ )x2 ♦ 2m n XjJx - 0. 

If the quantities in square brackets vanish, then equations (1.4) and 

(1.5) are reclaimed. 

The technique introduced above can easily be extended to the case 

of a discrete system of n-degrees of freedom, for which the equation of 

11 



mot ion is 

m. . X. 
U J * (X. 

ij 
c. /)x. 

1J J 
0, 

Ci»j = 1,2,...,n; sum on j). 

Cl.14) 

Hero, the x 's are generalized coordinates, m.., k and c. are 
ij ij ij 

respectively, the symmetric mass, stiffness, and conservative force 

o’rices, and is the antisymmetric gyroscopic force matrix. The 

- 1 lowing definitions are made: 

=: r m.. x. x., 
K 2 i j i i 

tg = l hj(DxAJi- 

= T Cfc. . - C )x X. 
T 2 ij ij i ] 

Equations (I-12) and Cl-13) are again assumed to be valid. Proceeding 

as in the preceding paragraph, it is found that 

fm.. x. 
i] J RiJ Xj 

(k. 
ij 

- c. ,)x.]x. 
ij J i 

0. 

ff the quantity in square brackets is required to vanish, then equation 

114) is reclaimed. 

iherefore, it has been demonstrated formally that the system of 

12 



differential equations for a gyroscopic system of n-degrees of freedom 

can be derived from the conservation law in equation (1.12). This same 

procedure can be extended to the case of deformable rotating solids. 

These details will be discussed in Section 4. 

2. KINEMATICS OF A ROTATING DEFORMABLE SOLID 

It is generally recognized that it is possible in the study of 

problems of elastic stability to use a simplified version of the equa¬ 

tions of the non-linear theory of elasticity, provided that attention 

is confined to the case of small strains but large displacements. In 

this report the concept of stability shall always refer to the stability 

of a certain form of equilibrium. This will be called the undisturbed 

form of equilibrium, and the associated state of stress will be called 

tíle Sitial state of stress. Of particular interest, however, will be 

the disturbed formsof motion which are close to the undisturbed form 

of equilibrium. In many cases an assessment of the stability of equi¬ 

librium can be made by assuming that the disturbances are sufficiently 

small and by effecting the analysis on the basis of linearized differ¬ 

ential equations. 

Consider a deformable body of volume t which is bounded by a finite 

closed surface S. Let displacements v^ be prescribed on the portion 

Su s an(* tractions p^ be prescribed on the remaining portion Sa, 

13 



Kh'vo s - S + S . According to reference [31], the equation of motion 

i 1 bouruiary conditions are 

., u.,") +X. = pa. ini, 
,lk i,k ,j i i 

(2.1) 

(a. . + cr 
il 

p. on S , 
i a 

(2.2) 

u V 
i 

on S . 
u 

(2.3) 

( re the summation convention is employed. Here o denotes the 

ij 

:ress tensor, x the cartesian coordinates, u the components of the 
i i 

displacement vector, X the body force vector per unit volume, p the 
i 

mass density, a. the acceleration vector, and n. the unit exterior 
i i 

normal vector to S. 

If the body is not rotating relative to an observer's fixed frame 

o': reference, then a. = IT., as is well known. However, if the body is 

rotating about some axis relative to an inertial frame of reference, 

then the expression for a^ becomes somewhat more complicated. Let the 

acceleration vector be denoted by 

(2.4) r 

ANDLRSON, G. L., On the role of the adjoint problem in dissipative, 

nonconservative problems of elastic stability. Meccanica, 7, pp. 

165-173 (1972). 
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where the e^'s form an orthogonal set of basis vectors moving with the 

body. Suppose that the body rotates at a uniform angular velocity Í2 

about some axis, and write 

£ = n. e^, (2.5) 

it being understood that 

3^/at = 0. 

In general, it may be assumed that the axis of rotation lies out¬ 

side the body x. Let the origin 0' of an inertial coordinate frame 

(xyz-coordinates in Figure 2), lie at some point on the axis of rota¬ 

tion, and let the moving coordinate frame, (x , x , x ), be established 
X fc «3 

at some convenient point in or near the moving solid, as shown in 

Figure 2. If 

£ = c^ e^, |c| = constant 

is the position vector from 0* to &, then the position vector r from 
t 

0 to a generic point P in the body may be expressed as 

r * c + x ♦ u 

= (c. + X. ♦ u )e.. 
i i i —i 

IS 



ÂÏÏ2T. 

1igure 2. Coordinate systems for a rotating deformable solid. 



Recalling from elementary mechanics that 

fixe. 

e... n. ijk j 2k* (2.6) 

where is the third order alternating tensor, it follows that the 

velocity vector can be expressed as 

£ * “t St ♦ («i ♦ *1 ♦ 

" *i + ekji nj(ck 4 ^ + (“i * 3V3t)* í2,7) 

If the identity 

Ekji etmi " 6jm 6kl * 6km 6jl (2-8î 

is used, then it is easily shown that 

£•£ ■ “i “i ♦2‘«i Vic *-k * V“!- 

• nj aktck * \ * * *j * “j) ♦ 

* “j nj(ck *‘k * \ 

17 



"herefore, the kinetic energy of a rotating deformable body is 

, 1 ~ 
1 * ¡ 7o!ui ui *2 Ekji “j(ck * xk * ^)ul ■ 

- nj ak(ck * xk * v(cj4 xj4 V4 

4 "j yck * ^ * “kX'k4 xk * “k1!'*'- <2-9) 

rrentiating equation (2.7) one finds 

- “ i",4 2 Ekji flj \ 4 !1i “kt'k4 "k4 “k' - 

n. ft. (c. ♦ X. ♦ u. ) ]e., 
J J i i i^-i 

(2.10) 

Hence, in view of equations (2.4) and (2.10), it is evident that the 

c Tinnnents of the acceleration vector are 

a> ■ 4 2 Ekji “j ^ 4 ai \tck 4 »k 4 “ic1 

- 0j fljiCj . x4 ♦ ut). (2.11) 

Therefore, substitution of equation (2.11) into equation (2.1) 

yields the equation of motion in the following form: 

18 



(2.12) 

°.. . + (0^. u, , ) ♦ X = phi. + 2 E fi u ♦ 
ij,j 1 jk i,kJ »j Ai ^lui kji j k 

+ "i \(Ck + Xk + ■ "j + Xi + Ui)]- 

Suppose that for the state of undisturbed equilibrium (x) 

denotes the state of initial stress, v^(x) the corresponding displace- 

* * 
ments, the body force field, and p the surface tractions applied on 

S . Next, the body is caused to assume certain small deviations from 
ö 

the position of undisturbed equilibrium. Let the components of the 

characteristics of the disturbed motion be designated by T_(x,t), 

ui(x,t), and p^ such that 

^ij (x*t) * oij(x) + Tij(x,t), ^(x.t) « vi(x) + ^(x.t), 

Xi ■ Xi^V "i ■ w (2.13) 

Substitution of equation (2.13) into equation (2.12) yields 

"ij.j * Tij,j * '"jk vi.k * “jk “i.k * Tjk vi.k * Tjk “i.khj * 

* Xi * ■ PiSj * 2 ekjl Oj ^ . 

* ni ak(ck * xk * vk * “k1 ’ ai nj(ci * xi * vt * V1- 

(2.14) 

19 



! " t on that the disturbances are small enables one to discard 

• k’ '\k Vi,k’ and Tjk ui k from ecIuation since 

< A of tlu second order of smallness. Consequently, equation 

ecomes 

o. . . 
’J > J 

f Í . . .+ u- J jk i,k ,j 
+ X ♦ X. = 

i i 

P[u. + 2 e, .. 51. n + SI Í2 (c, + X ♦ 
1 k]i J k i k \ V +0-) 

k V 

- ki (C. + X. + V. + u.)]. 
J J 1 1 1 1 J (2.15) 

i I’ow required that 

o i j * xi ■ 0[lli ßk(ck * xk * V ■ ai fli(ci * xi * V1- 

(2.16) 

ion (2.15) reduces to 

i¡ i + (°ik ui • + Xi = pfü. + 2 e .. n. Ú + 1J • i i i kjijk 

+ Í1 u, - Í2 il u 1 
i. k k j j i (2.17) 

t no o.- initial stress is described by equation (2.16), whereas 

■1 f runts of the disturbed motion must satisfy equation (2.17). 

'^eednq: in an analogous fashion with the boundary conditions in 

• i (2.2) - (2.3), one can show that 

20 



(2.18) °ij nj = ?! on So* V. * V on S 
1 i « 

and 

(Tij + 0jkui,k)nj = Pi on Sa* ui = 0 on Su (2.19) 

are the boundary conditions for the initial stress problem and the 

disturbed motion problem, respectively. 

Therefore, in summary, the initial stress problem 

0., . + X. 
i 

. n. 
il 3 

P. 
i 

P^i iyck + xk ♦ vk) - ^ ^(Ci ♦ xA + vj] in T, 

(2.20) 

on So, y. = V. on (2.21) 

must be solved first for , so that the distnibed motion problem 

13.3 (o jk i,k ij + X. s + 2 e 
kji nj ^ * 

+ ni \ “k ' uil in T» (2*22) 

+ o. 
jk )n. 

3 pi on So* ui 0 on S , 
u 

(2.23) 

can subsequently be analyzed. 
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3. CONSTITUTIVE RELATIONS 

i'ie cr ■ ri s t it ut i V6 equations for a Kelvin-Voigt viscoelastic solid 

e assumed to be 

t . . = C E + rl r 
1.1 ijki. kc ijkfc kü* (3.1) 

ere the strains t. . 
ij 

are given by 

U 
1 , 
~ (u . + u. .) 
2 i.j (3.2) 

t ie constam s d.^ are the elastic and viscous moduli, 

respectively. 

Suppose that the body force field may be expressed as 

Xi = fiW + ajj(x^ uj * bjjW ûj (3.S) 

aj ; ~~ a1i> This form of the body force permits the inclusion in 

■ present "emulation of certain displacement or velocity dependent 

ly forces. 

4. A CONSERVATION LAW 

lotating deformable bodies subjected to conservative and non- 

22 



conservative loads, it is possible, as indicated in Section 1, to 

postulate a conservation law that can be exploited for the purpose of 

deriving in a systematic fashion beam, plate, and shell theories. 

It is now hypothesized that for the class of boundary value problems 

described by equations (2.22) - (2.23) and (3.1) - (3.3) there exists 

a quantity H such that 

H s constant, (4.1) 

where 

H * T+ T + V ♦ D ♦ W, 
K G 

(4.2) 

rK • j » új ¿i J'. (4.3) 

tg * / /T 2p €kji y*t V“idT dí» (3t * 3/3t)i 

V ' !,l2 Cijkl £ij Ekt * 2 0 “j “k “k V 

(4.4) 

2 P nj "J “k \ldt' 
(4.5) 

I ¡T (dijkt £ij £kt ♦ \j »i vdT di> (4.6) 

N / [ “ o u u. - f, u. - 7 a.. u u Idt - 
T 2 jk i,k i,j i i 2 ij i y 

t 
-/ [r, u, + / ° q- 4 u, dt]dS. 

S0 1 1 o 3 i.J i 

23 
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lor the purpose of writing equation (4.7), it has been assumed that the 

truction p. appearing in equation (2.23) can be decomposed as follows: 

P. \ = ^(x) + a(x) q. u 
J 1.1 

o.. n,, 
il i' (4.8) 

where r.(x) denotes the conservative portion of the surface traction 

and u.^ the portion of the surface traction due to non-conservative 

1 orces. For a = 0, the loading is purely conservative, whereas for 

1 the tractions are of the follower type. If a 0,1, the tractions 

i te called sub-tangential or super-tangential forces, depending upon 

the value of a (see, for example, [37-41]). 

Ihc derivative with respect to time of equation (4.1) is obviously 

dH/dt = 0. (4.9) 

Substituting equations (4.2) - (4.7) into equation (4.9), one can show, 

37 
NKMAT-NASSER, S. and HERRMANN, G., On the stability of equilibrium of 
continuous systems. Ingen.-Arch., 3£, pp. 17-24 (1966). 

S8 
NEMAT-NASSER, S. On the stability of equilibrium of nonconservative 
continuous systems with slight damping. J. Appl. Mech., 34, pp. 344- 
'48 (1967). “ 

-NEM\T-NASSER, S. On local stability of a finitely deformed solid 
subjected to follow type loads. Quart. Appl. Math., 26, pp. 119- 
129 (1968). — 

40 
KORDAS, Z. and ZYCZKOWSKI, M. On the loss of stability of a rod 
under a super-tangential force. Arch. Mech. Stos., ¿5, pp. 8-31 (1963). 

41 . 
H. Die Knickkraft beim einseitig eingespannten Stab unter 

nirrt-richtungstreuer Kraftwirkung. Der Stahlbau, 29, pp. 150-154 
(i960). “ 
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upon integration by parts, that the conservation law leads to 

Vpiii *2p ekH "j ^ ° ni aj uj -p Qj nj “i • rij.j * 

+ / K'i * o 
s 
u 

- ^ « qj «¿ jlUi ds - o, 

which is entirely consistent with equations (2.22) and (2.23). 

In later sections, the conservation law in equation (4.1) will 

provide the theoretical basis £or the derivation of the equations of 

motion for several problems involving rotating beams and conservative 

and non-conservative forces. 

5. THE INITIAL STRESS PROBLEM 

stress tensor appear in equation (4.7). Consequently, before proceeding 

with the application of the conservation law in equation (4.1) to pro¬ 

blems of rotating bars and shafts, it is worthwhile to devote some dis¬ 

cussion at this point to certain types of initial stress fields which 

are very often encountered in the contemporary technical literature. 

In this section, therefore, attention will be focused upon the bar of 
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rectangular cross section depicted in Figure 3. The beam has length 1 

'iml cross sectional area A. The coordinate axes have been selected so 

as to coincide with the centroidal axes as well as the principal axes 

of inertia of the cross section. In subsequent paragraphs, the integrals 

A - / dA = bh, J X X dA - 0, / x dA = 0, s = 2,3, 
A A ^ 0 A 5 

I = / xj dA = Ab2/12, I « / X2 dA * Ah2/12 
¿¿ A ¿ 33 A 3 

(5.1) 

inu the definitions 

NUJ = / a dA, M (X ) = / X o dA, 
1 A 11 s 1 A s 11 

Q (X ) = / o dA, s = 2,3, (5.2) 
si A is 

will be useful. The quantities N, M , and Qe, s * 2,3, well known from 

beam theory, will be called the longitudinal force, the bending moments, 

and the shear forces, respectively. 

For the initial stress problem embodied in equations (2.20) - (2.21), 

the equations of equilibrium may be expressed as 

. . + G. = 0 in T, (5.3) 

where 
★ 

Gi = Xi " P fii fik(ck + xk + V + p Vci + Xi + (5,4) 
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1,_ 
h A - 

T K— b —*1 

Figure 3. Coordinate system for a bar of rectangular cross section. 
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For the class of problems to be considered in this report, the initial 

stresses o 11’ °1>’ °i3’ and °->3 may be assum®d t0 be of the form 

11 

N(x ) X X 
+-+ - M (xj, o._ = 0, 

A 2 r 
22 

3 1 23 
33 

12 
Q2(Xi) 2 2 QsCV 2 

[(b/2)2 - X ], o = -— [(h/2j 

^22 2 

(5.5) 

"s1* 

From the forms assumed for o^, s = 2,3, it is evident that the surface 

tractions c^ on x^ = ± h/2 and o^ on x^ = ± b/2 must vanish, whereas 

formulas for the stresses and will be derived below. 

Substitution of equation (5.5) into equation (5.3) with i * 1 

yields 

I 
A 

0. 

This equation is now multiplied by x^, where m = 0,1 and s = 2,3, and 

the integral over the cross sectional area A of the result is 

m 
x 
s 

dA + 
m 

/ X X dA - 
A 3 s 

xm dA - 
s 

(5.6) 
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If the definitions 

gl(xi) = / Gj dA, g^Cx^ - / xs Gj dA, s-2,3, 
A A 

(5.7) 

are made, then one obtains from equation (5.6) 

N»1 + gi = °» 0 < Xj < £, 

M2,l ' S + gl2 C °’ 0 < Xj < 

\ 1 • Q3 + *13 = °* 0 < x! < 

(5.8) 

(5.9) 

(5.10) 

for m - 0, m i and s - 2 and m « 1 and s - 3, respectively. 

Next, inserting equations (5.5) into equation (5.3) with i ■ 2 and 

i - 3, one finds 

2-^~ [Cb/2)2 - xî] ♦ *G, - 0. 
2 I 22 

22,2 

(5.11) 

[0>/2)2 - X2J ♦ 0,. - + G - 0. 
21 3 33,3 j 

33 

If the integral over the area A is taken of equation (5.11), the result 

is found to be 

+ R- ♦ g s 6s 
0, s = 2,3, (5.12) 
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where 

h/2 x0 = b/2 
/ [o] " dx , 
-h/2 x2 = -b/2 3 

b/2 X, = h/2 
/ K,1 dx 
-b/2 33 X- = -h/2 

(5.13) 

gs = / G dA 
A s 

'o lind expressions for and one writes equations (5.11) as 

O') O 
4-,4- = - G. Q2 i 2 2 

- ((b/2)2 - xi. 
2 I 22 

a33 
^3 1 2 2 

-G ^L-[(h/2) - xl, 
2 I 

33 

and performs the indicated integrations over the intervals (-b/2, x2) 

and (-h/2, , respectively. 

o 
24 1 

22 

+ 3b2 x2 - 

x2 
/ G2(x., y, x,) dy + » 
-b/2 21 3 22 x2 = -b/2 

(5.14) 
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- / 3 Mv V ♦ O I 
-h/2 * 1 ¿ 33 Xj = -h/2 

(5.15) 

In sununary, then, to determine the initial stress field, one must 

first solve the ordinary differential equations 

(5.16) 

(5.17) 

(5.18) 

for s * 2,3, on the interval 0 < Xj < i, subject to the appropriate 

boundary conditions. Finally, the initial stresses may be determined 

from equations (5.5), (5.14) - (5.15). 

6. EXAMPLES OF INITIAL STRESS PROBLEMS 

Beam in a Gravity Field 

Consider a beam inclined at an angle a relative to the horizontal 

with the axis of the beam lying along the inclined x^-axis as shown 

in Figure 4. The force of gravity acts vertically downward, i.e., in 

the negative y-direction. In this case the components of the body 
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Figure 4. Coordinate system for an inclined bar. 
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force vector per unit volume are 

Gj = - pg sin ß, G2 « 0 Gj ■ - pg cos S, (6.1) 

for a non-rotating beam (i^ * 0). In this case, it may be assumed that 

M2 a Q2 “ 0’ 80 that (5.16) - (5.18) become 

Because the end of the beam Xj ■ 1 is asrumed to be traction free in 

the initial stress state, the boundary conditions associated with equa¬ 

tion (6.2) must be 

N(*) = M3(ä) - Q3(i) . o. (6.3) 

The solutions of equations (6.2) - (6.3) are easily verified to be 

N(Xj) » - pgA(i - Xj) sin B, 

Q3(xl) b - PgA(£ - Xj) cos B, 

(6.4) 

MjC^l) ■ J PgA(A - Xj)2 cos B. 

Therefore, one has 

(6.5) 
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whereas the cresses au, o^, and may be obtained from equations 

(S.S; and (5.15). 

■\n F.ceentric Follower Force 

consider a beam of length I loaded by a compressive force of magni¬ 

tude r as shown in Figure 5. The force P is applied at a distance e 

irom the centroid of the cross section at Xj = * and on the x2-axis. 

Such a beam is said to be loaded eccentrically, and the stability of a 

cantilever under the action of an eccentric follower force has been 

'.iscussed in references [34-35]. 

¡•or the geometry and loading condition shown in Figure 5, it may 

be assumed that 

M3 = Q3 " ai3 = °33 = 0 and °22 ' 0 ™ *2 s ± b/2. 

once, in the absence of body forces and for = 0, equations (5.16) - 

(5.18) reduce to 

N,1 = Q2,l r °* M2,l - Q2 = °* 0 < Xj < t. (6.6) 

NEMAT-NASSER, S. and TSAI, P. F. Effect of warping rigidity on 
stabicity of a bar under eccentric follower force. Int. J. Solids 
Structures, 5, pp. 271-279 (1969). 

’UN.. K.-H., NEMAT-NASSER, S. and HERRMANN, G. Stability of a bar 
under eccentric follower force. Proc. ASCE, J. Engng. Mech. Div., 
93, pp. 105-115 (1967). 
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On tlie face x, = ¿ of the beam, the force 

Üj ^ - p 6(x2 - e) 6 

(...) denotes the Dirac delta function, is acting, and the 

'osit ion vector ^ from the centroid of this face to the point of appli¬ 

cation of F, is 

II = eI2- 

;.us, the longitudinal force and bending moment, NfXj) and M^Xj), 

: spectively, acting over the end of the beam are given by 

N (£)e 
“I 

/ F dA = 

A 1 
- P 1 , / «(X. 

1 A 
e) 6 (xs)dA 

pv 

—0 r, X F. dA = 
A 

Pee, 
~3 

so that 

NU) = - P, M2(£) = p e. (6.7) 

Because no shear forces are applied on - l, one concludes that 

CL(*) = 0. (6.8) 

Consequent1/, the solutions of equations (6.6) subject to the 
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boundary conditions in equations (6.7) - (6.8) are easily shown to be 

NCXj) - -P, Q^Xj) - 0, M2(Xl) - Pe. (6.9) 

Therefore, by virtue of equations (5.5) and (5.14), the initial stresses 

are 

P Pe 

°11 " " 7 * x2 7“ » °12 " °22 ■ °* (6*10) A l22 

If a second concentrated force of magnitude P is applied at the 

point x2 • -e, x3 • 0 on the face Xj • £, then, in analogy with and 

Fj, the position and force vectors 

la ■ fa - - p «(*2 ♦ #)6¾)¾. 

respectively, may be introduced. Following the steps outlined in the 

previous paragraph, it can be shown for the case of a symmetric pair 

of eccentric forces that 

NiXj) - - 2P, (yxj) - m2(Xi) - 0. 

Consequently, the initial stress state must be given by 

2P 

°11 * "7» °12 B 022 " 0* (6.11) 
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Hie torsional stability of a cantilever subjected at its free end 

0 * ' ':i 01 symmetrically applied compressive follower forces was des¬ 

cribed in reference [42], 

y 1r nsverse Follower Force 

.or the beam loaded as shown in Figure 6, it may again be assumed 

that 

0 o 
33 13 

but now 

-pCxj, x3) on x2 - b/2, 

0 on x2 ■ -b/2 

so that !>y equation (.2,13), 

h/2 
SU,) * - / p(x ,z)dz 

-h/2 1 
(6.12) 

* 

In addition, it is assumed that X£ ^ ^ * 0* In this case, equations 

(5.10)-(5.18) simplify to 

(6.13) 

NHMAT-NASSER, S. and HERRMANN, G. Torsional instability of canti 
levered bars subjected to nonconservative loading. J. Appl, Mech., 
33. pp. 102-104 (I960). 
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Figure 6. A transversely loaded bar. 
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uncu fie cm! x1 = ; of the beam is traction free, the boundary condi¬ 

tions Must be 

■U) = fM£) = M2(£) = 0. (6.14) 

e solutions of equations (6.13) subject to the boundary condi¬ 

tions in equation (6.14) are easily shown to be 

;(xl) = = / ^(yjdy. 

Mjixi) = - / (y-xp^fyjdy. 
X, 

(6.15) 
1 

icnce, acconiinr, to equations (5.5) and (5.14), the initial 

connonents are 

stress 

x2 
‘11 “ (xi) » 3 

I “ 
l22 

12 
Qo(xl) o 2 

“ * [(b/2)^ - x"], 
2 I 22 

*2(X1} 3 2 

24 I. 
(b + 3b x0 - 4x^), (6.16) 

In the special case that 

P^V x3^ = 5(xi - c)«(x3), 

it follows from equation (6.12) that 
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R2(Xj) - - P «(Xj - c). (6.17) 

and as a result equation (6.15) yields 

Q2(xi) * “ P / «Hy-cjdy 
f.p Ifx, <c 

L 0 if C < Xj 
(6.18) 

and 

1 ( P(c-x.) if X, < c 
m2(xi) “ p/ (y - X, )5(/-0)0/ •< 1 1 

xj Lo if c < Xj, 

(6.19) 

Centrifugal Force 

Consider a beam of length l, the axis of which lies along the Xj- 

axis in the coordinate system shown in Figure 7, The /j y2 y3-coordinate 

system is fixed in spacef and the Xj x2 x3-coordinate frame rotates at 

uniform angular velocity n about the vertical y3-axis. The x^axis 

makes a constant angle ß, called the coning angle, with the /j y2-plane. 

The components of £ relative to the moving coordinate frame are 

iij « n sin ß, n2 ■ o, n3 - n cos ß. (6.20) 

In the absence of body forces 

ting beam are due to the so-called 

ments v^ are neglected in equation 

the initial stresses in the rota- 

centrifugal forces. If the displace- 

(5.4), one has 
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■ÏÏLÜ5!111 

\‘ , 
' .*) 

Figure 7. A rotating bar inclined at an angle ß. 
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- 0 ai nk(ck . V ♦ p «jt'i ‘ >,). (6.21) fi 
i 

If it is supposed further that the root of the beam is offset from the 

axis of rotation, as in Figure 2, by a distance Cj (sometimes called 

the hub radius) measured along the X-axis, i.e., Cj > 0, c2 ■ c3 ■ 0, 

then from equations (6.20) - (6.21) the components of the effective 

body force vector are found to be 

"i " fntci * xi> * f13 x3* s2 ■ P n2 *2. 

S " f13Ícl * «P * f33 x3 (6.22) 

where 

. 2 2 
fjj ■ p n cos 6, f 

13 - P fi sin 8 cos 8, 

* p n2 sin26. (6.23) 

According to equations (5.7) and (5.13), it follows from equation 

(6.22) that 

g 

R 

1 

2 

fll A<cl ♦ V» 

R3 " °» «12 

*2 ■ 

- o, 

°» *3 " f13A(cl + xP» 

g1T ■ f., I--. 
13 13 33 
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in view of these equations, equations (5.16) - (5.18) become 

A(Cl > Xj) = 0, M2(1 - Q2 - 0, 

'S.1 " + f13 = °* ^2,1 “ °» 

Q3,l + f13 A(ci + xj) * 0. 

¡he boumiary conditions are 

MrO = Qs(£) = Ms(i) = o, s » 2,3. 

Ihe integrals of equations (6.24) - (6.25) „re 

N(xi> = fn ♦ I (£2 . x2)]i 

Q2(xi) = M2(Xl) = 0, 

Q3(X1} = f13 Af^C^-Xj) ♦ J (£2 - X2)], 

^VXl3 = f13[I33 “ A£(Cl + ^/2)] (£-Xj) ♦ 

+ Jf13 AfCj (£ 2 - X2) ♦ ¿ (Ä3 . Xj)]. 

(6.24) 

(6.25) 

(6.26) 
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Consequently, the stresses are 

°11 

°13 

a33 

N(Xj) 

A M3(xP» 

Q3(xl) 2 
- [(W2) 

2 *33 

[2(fl3/h JXjCCj 
+ Xi) 

°12 3 °23 “ °. 

1 2 2 
CT22 " T p n i^/2) 

* ij3/2H0l/2)2 - X2]. 

- xj), (6.27) 

For ß = 0, equations (6.26) reduce to 

NCXj) » P a2 AlCjft-Xj) ♦ J (t2 - xj)), (6i28 

Qs(xl) « Ms(x1) » 0, s ■ 2,3. (6,29 

A second example, of considerable importance, of the flexural- 

torsional deformation of a rotating beam is that of a beam for which 

the angle 8, as described above, is zero but whose cross section is in¬ 

clined at an angle y, called the angle of attack, relative to the hori¬ 

zontal plane (i.e., the /j y2-plane in Figure 8). If the beam rotates 

with constant angular velocity fi about the vertical y3-axis. then the 

components of n relative to the moving Xj x2 x3-frame of reference are 

» o, fi2 - Í1 sin Y, n3 - O cos Y. (6.30) 
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Figure 8. An inclined rotating cross section. 
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With c2 = c3 = 0, equations (6.30) and (6.21) provide 

G1 a D n2(cl + xl)» 

G2 * p f22 cos y(x2 cos y - x3 sin y). (6.31) 

^ 2 
3 a P ^ sm y(x3 sin Y - x2 cos y). 

Thus, from equations (5.7) and (5.13), it immediately follows that 

g! * P A a2♦ xp, gls “ gs - Rs - 0, 

S “ 2,3‘ (6.32) 

The result of substituting equation (6.32) into equations (5.16) . (5.18) 

is 

N.l * *1 - 0. «S.1 •% • 0. Q.,! ■ 0. (6.33) 

The solutions of equation (6.33) subject to the boundary conditions in 

equation (6.25) are 

N(Xj) « p A n2[c1(t-x1) ♦ j (t2 - X2)], 

(6.34) 
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Finally, from equations (6.31), (6.34), (5.5), and (5.14) - (5.15), 

the initial state of stress is found to be 

= -Ux^/A, a12 = o13 « o23 ■ 0, 

2 12 2 
'22 = ” p ^ cos Y t J - b /4) cos y - 

- x3(x2 ♦ b/2) sin Yl, (6.35) 

2 
“js ■ 0 1 sin Y t*2(»j * h/2) cos Y . ¿ (X^ . h2/4)sin y]. 

7. T!li: TIMÜSHÜNKO ill!AM UNDER GRAVITY 

As a first example of the applicability of the conservation law 

' rated in ef1uation C4.1), suppose that a non-rotating beam is inclined 

at an anßle ß relative to the horizontal and is subjected to the force 

of nravity as depicted in Figure 4. In addition, it will be assumed 

that a follower force of magnitude P is applied at the centroid of the 

face of the beam at Xj « ¢,. Thus, for 

i “ fi " aij “ ri a °» “(x) ■ 1, bj2 ■ b2l » 0, 

equations (4.3) - (4.7) become 
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r 1 
\ 2 CijkÄ. eij ekÄ dT» 

(7.1) 

rajk ui,k ui,j dT 

t 

/ / u 
i “iJ Uj dS dt. 

According to equations (6.4) and (6.3). with . . 0. i.a., v.„i,hi„8 

eccentricity, the expressions for N, Q3, and M3 are 

n(Aj) -- o g A(i-Xj) sin 6. QjÍXj) . . ogAd-Xj) COS 6, 

M3^xP * g A(i-Xj)2 cos 6, 

and 

N(Xj) . . P, Q2(Xj) . 0, M2(Xj) . 0 

for the cas. of gravity and th. cas. of th. axially appll.d compressive 

force P. respectively. But by th. principle of superposition, th. eff.c 

uve longitudinal and shear forces and bending moment tust be 

^Xj) ■ - [P ♦ P g ACt-Xj) Sin 3], 

Q3(*i) “ - 0 g A(l-Xj) cos 3, 

M3^xP "JPg Aft-Xj)2 cos 8. 
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'ron equations (5.15) - (5.16), the initial stresses are 

N(x.) 

11 

13 

33 

♦ — m3(xi). 
33 

Q3(xl) 2 2 

2 *33 

-p g A 

6 I 
X. [(h/2)2 - xl] cos 8. 

33 

(7.3) 

A Timoshenko type theory for an isotropic solid will be obtained 

for the beam geometry shown in Figure 3. The beam is assumed to be 

clamped at the end = 0 and free at the end * l. The displacements 

are assumed to be approximated by 

U1 " x3 w(xl» t>» u2 " °» u3 * *(*!» *)• (7.4) 

Thus, by virtue of equations (7.4) and (3.2), the strains e and e 
A A X «3 

are 

ell s x3 *'1' e13 " * ♦ «.j)* (7.5) 

Tne strains c72 and however, are not computed in this manner; 

instead one assumes that ^ * T33^ " where for an isotropic 

material 

2 y X e 
kk 
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u and A being the Laaé constants. Thus, 

t22(,) . (2u . ») .22 ♦ i(.u ♦ .3J) . 0. 

TJJ(I) * (¾ ♦ ») Cjj ♦ ACjj . ,2J) . o, 

whence one finds 

• X 

C22 

Therefore, the 

V ■ 

33 2(w*A) 

expression for V in equation (7.1) becomes 

/, 2 1B ‘n * “ ‘Jj]«*’. (7.6) 

where E denotes Young's,modulus. It is customary to introduce a shear 

correction factor K, where K2 - w2/12, by replacing by K cir Thus 

equation (7.6) becomes 

v ' / : IE'îi ♦ ^ (7.7) 

Analogously, the expression for D in equation (7.1) can be shown to be 

rv ft r—* *2 2 * .2 o 
d*//[Ec *Kuc ]dx dt, 

O T 11 13 
(7.8) 

* * 
where E , u are the moduli of viscosity. 
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lherefore, in view of equations (5.1) and (7.3) - (7.5), equations 

f/.l), (7.7), and (7.3) become 

»2 • ? 
K = / ^ ♦ A w¿]dx , 

Tr. = 

I 

o 2 

t l 

2 2 
7 iE *»1 * K w A(w.l - ^)2]dXi 

r r r * *2 2# . .2 
^ ^ [E ^3 '‘'.I * K v A(w,l * ’i') ♦ o o 

* bll *33 *2 * b22 A *Jldxl d‘* 

/ } IdjjM).'« ♦ N w^ldXj . 

* I ^ ♦ A wml w)| dt. 
Xj«Jl 

lhe time derivatives of these quantities are, after integration by parts. 

dl K/dt = / (p I ¡j; ¿ ♦ o A ii w)dx , dT./dt ■ 0. 
o 1 (j 9 

a 
dV/dt = / [-E I33 ^ - K y Aíw^j . i|()Ji - 

- K y A(wtll - ^,1)w]dxl ♦ 

..xl*4 
+ [E ^3 ^ K ^ A(w - ^)w] 

Xj-0 
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dD/dt - / <-[E* IJ3 J#11 ♦ I* u" A(w#1 - *) - bn I33 W 

-[Km ACw^j - i(1) - t>22 AwJwîdXj ♦ 

* • • 2 * • • 
♦ [E I-, «i» . ^ ♦ K u A(w - ÿ)w] 1 , 33 

Xj«0 

dW/dt ■ / [-CI33/A)(N ^ - (Nw(1)#1 w]dXj ♦ 

+ [Cïjj/A)? !> ♦ P w] ♦ 

• Va * [d33/A)N *♦ N w] (7.9) 
Xj»0 

Therefore, substitution of equation (7.9) into equations (4,2) and 

(4.9) yields 

1 ” 

I i[p ^3 ^ * bll ^3 * ’ E ^3 *.11 * E#I33 Î.11 " K uA(w.l * ^ 

K u A(w#1 -^)- (I33/A) (N ^),^ ♦ [pAw ♦ b22Aw 

- K uAfw^j - i^#i) - K2u A(wj1i - ¡tl) - (Nw^^jJwJdXj ♦ 

* • 
* [EIjj *,! ♦ E Ijj *,! . (Ijj/AjN ♦_! . 

Pajj/AJ^lil^ - [E I33 *tl . E* IJ3 i,! . 
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♦ (I /A)N i> .]i| ♦ [K2uA(w . -<!>)♦ K2u A(w , - J) 
" Xj-0 1 

♦ CN*P)wfl];| - [K yA(w - ¢) ♦ K w A(w . - J) ♦ 

♦ Nw(1]w| ■ 0, 
Xj^O 

(7.10) 

,>iow from equation (7,10) one obtains the equations of motion 

C ‘33 '.11 * *.11 * k2"A<".1 * « * AV . *) . 

- tljjMHM *,,),! . P IJ3 * « bu Ijj *, (7.11) 

2 2 • 

K WA(W#11 - j) ♦ K uA(w#n - i.j) ♦ (Nw#1)#1 

« pAw ♦ b22 Aw, (7.12) 

and the boundary conditions 

w * ^ » 0 at X. ■ 0, (7.13) 

* • 
L ‘33 **1 * C *33 *.l * * ,’)*.l * 0‘ 

K-uA(w#1 - ^) ♦ K2y A(w,j - i|>) ♦ (N ♦ PJw^ ■ 0, 

at X. • t. (7.14) 
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To obtain from equations (7.11) - (7.14) the Euler-Bemoulli 

counterpart, one disregards all tens in equation (7.11) except 

EI33 *.11 * E I33 *in ♦ - H;) ♦ -4.)-0, 

whence 

2 .2 * K liACw.j - 4.) ♦ K\ A(w#1 - }) - - BI33 4»,n - e"I33 J.jj. 

(7.15) 

Substitution of equation (7.15) into equation (7.12) yields 

EI33 ^»lll* E ^3 *»111 " ^ w»l^»i * pAw * b22Aw " 0, 

(7.16) 

But setting 4» ■ w.j, which implies that *13 - 0, equation (7.16) assumes 

the form 

EI33 W»llll * E W#llll " (N w.lî.l ♦ PA»» ♦ *>22*" * 0* 

(7.17) 

Similarly, the boundary conditions are found to be 

w ■ w • 0 at X ■ 0, (7.18) 

EI33 ’*•11 * E *33 ;.ll - °* 

EI33 W.U1 * B ‘33 ".111 ' 

l, (7.19) 
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McGill [43] invMtiftUd equation (7.17) for a ■ w/2 and E* ■ b - 
22 

0, and Nemat-Nasser [44] studied equations (7.11) - (7.14) in the ab¬ 

sence of the gravity field, i.e., 8 • 0. The case of 8 - o corresponds 

to the well known non-conservative stability problem of Beck (see, for 

example, reference [32]). 

8. STABILITY OF A ROTATING SHAFT 

Formulation 

Shieh [23] discussed the stability of a rotating shaft subjected to 

conservative loads. In this section, the usefulness of the conservation 

law in equation (4.1) for the purpose of deriving the equations of 

motion of a rotating shaft subjected to non-conservative loads will be 

demonstrated. The effect of internal damping upon the value of the 

critical load will also be considered. 

Consider a shaft of length l rotating about its own axis with a 

23 
SHIEH, R. C. Energy and variational principles for generalized 
(gyroscopic) conservative problems. Int. J. Non-Linear Mech.. 5. 
pp. 49S-509 (1971). * 

32 
ANDERSON, G. L. Application of a variational method to dissipative, 
non-conservative problems of elastic stability. J. Sound Vib.. 27 
pp. 279-296 (1973). * —* 

43 
McGILL, D. J. Column instability under weight and follower loads. 
Proc, ASCE, J. Engng. Mech. Div., 97, pp, 629-635 (1971), 

44 
NEMAT-NASSER, S. Instability of a cantilever under a follower force 
according to Timoshenko beam theory. J. Appl. Mech., 34, pp. 484- 
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constant angular velocity n, where 

£ “ fil1* ■ n» ft2 " n3 " °» 

and loaded by a compressive follower force of magnitude P at the end 

Xj = £ as shown in Figure 9. 

As in Section 7 (neglecting the effect of gravity), the initial 

stress field is 

°11 “ N’(x1)/A» «’’ij * 0 for i 1 and j i 1, (8.1) 

where 

N(*j) ■ -p* (8.2) 

In addition, if one assumes that the displacements of the beam may be 

approximated by 

U1 ■ -*2 “l.l - *3 “a,!- u2 • wl. “3 * “2. 

then, upon neglecting the effect of rotatory inertia, one can derive 

from equations (8.1), (8.2), and (4.3) - (4.7) 

t £ 
TG * / / 2pftA[-(3t w^ > (3t w^w^dXj dt. 
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where an Euler-Bemoulli type of theory is being formulated. The quan¬ 

tities w^ and w2 are the transverse displacements of the axis of the 

beam in the x2- and x^-directions, respectively. Because no offset is 

assumed, ^ * 0. Just as in the preceding section, equation (8,3) may 

now be inserted into equations (4,2) and (4.9), Omitting the details 

of the algebraic manipulations, the resulting equations of motion are 

found to be 

* bll W1 * 2pilAw2 « 0 (S.4) 

and 

♦ b22 w2 - 2pftAWj * 0 (8.b) 
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whereas the boundary conditions are 

either w$ill . E*!^ ;$iU - 0 or . 0 

(s - 1,2) 
(8.6) 

either EI__ w ...+01 w ...+Pw 
lss s,!!! " K ss Ws,lll + Pws,l - 0 or w$ - 0, 

at X * 0 and 
1 

either El w ♦ E I w ■ 
ss s,n * t ‘ss w,,u * 0 or ",.1 • °» 

* • 

either El w ,,, ♦ E I w ss “ 

(8.7) 

s,lll 4 U ss wSini ♦ ■ 0 or . 0, 

at Xj ■ t. It should bo noted that equations (8.4) and (8,5) are 

coupled through the Coriolis terms 2píJA¿2 and ^pQAWj. 

If w2 is replaced by -w2 in equation (8.5), then the resulting 

equation and equation (8.4) coincide with the equations discussed by 

Shieh [23], provided, of course, that the damping terms are neglected 

here. 

Stability 

Introducing the dimensionless variables 

X1 ■ Äx» t ■ CT, 

23,, 
SHIEH, R. C. Energy and variational principles for generalized 

írÂ â”íritiv* tM’j- Non-u,,,*r «"=»•. i 
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one can express equations (8,4) and (8.5) as 

••'I , It M II 2 *• • . 
Wj ♦ n Wj ♦ Q Vfj - w w1 ♦ Wj ♦ 8J Wj ♦ 2u w2 - 0, (8.8) 

1111 ,1111 it 2 .. • » 

1*2 ♦ r^2 ♦ “ w2 ♦ w2 ♦ ß2 w2 - 2u wx » 0, (8.9) 

where (...) « 9(...)/3x and (.*.) ■ 3(...)/31. For abeam that is 

simply supported at both ends, the boundary conditions become 

it , 
w ■ w ♦ n w ■ 0 at X ■ 0,1 (s - 1,2). (8.10) 

^ s 

In writing equations (8.8) and (8.9) the following definitions have been 

made: 

c2 ■ pAt4/EI22, n • E*/cE, Q ■ Pt2/EI22, 

ai2 - pAnV/EI22, ßj - bn t /cEI22, ß2 • b22l4/cEI22, 

r " I33^I22* 

By virtue of the form of the boundary conditions in equation (8.10), 

the solutions of equations (8.8) and (8.9) may be assumed in the form 

w (x,r) » C sin kirx eAT, k ■ 1,2,3,..., s ■ 1,2. (8.11) 
s * 
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Therefore, upon substitution of equation (8,11) into equations (8.8) 

antl (8,9)» the following system of algebraic equations is obtained: 

iX + f2l + n(kn) ^ * (k") » (kn)2Q - w2}Cl ♦ 2uX - 0, 

, (8.12) 
-2WA C1 * (X ♦ (ß2 ♦ rodar)4]* ♦ r(kt)4 - (kir)2Q - . 0. 

But if this system is to have a non-trivial solution, then the determi. 

nant of the coefficient matrix associated with equation (8.12) must 

vanish. Upon expansion of this determinant, one obtains 

*4 * ai *3 ♦ V 2 ♦ a3 A ♦ a4 - 0, (8.13) 

where 

al * ßj ♦ S2 ♦ n(l ♦ r)(kir). 

i2 = (l*r)(kw)4 - 2(kïï) Q ♦ 2u2 ♦ ßj ß2 ♦ n(rßi , S2)(kff)4 + 

♦ rn2(kir)8, (8.14) 

a [3j ♦ n(kii)"] [r(kïï)"' - (ku)^ - u2] + 

♦ [S2 ♦ rn(kir)4][(km)4 - (kir)ZQ - u2], 2n ..2, 

4 " ^klT^ ’ (î " w2][r(kiT)4 - (kw)2q - U2], 
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The loss of stability by divergence can be investigated by setting 

1 ■ 0 in equation (8.13). This leads to a4 » 0, or 

i2 ■ r(kit)4 - (kw)2Q. (8.15) 
2 ■ (kw) - (kw)2Q and w‘ h> 

To consider the possibility of loss of stability due to flutter, 

one may employ the Routh-Hurwitz criterion: 

ai > 0, i » 1,2,3,4 (8.16) 

as applied in reference [31], 

A complete and exhaustive study of equation (8.16) is left for 

future study. The objective of the remainder of this section is to 

demonstrate that the effect of internal danping tends to destabilize 

the motion in much the same manner as that described in references [31- 

33]. In the discussion that follows, it will be assumed that Sj « 80 « 0, 

i.e., there is no external damping present. Under these circumstances, 

equations (8.14) simplify to 

ANDERSON, G. L. On the role of the adjoint problem in dissipative, 
nonconservative problems of elastic stability. Meccanica, 7, pp. 165- 
173 (1972) 

32 
ANDERSON, G. L. Application of a variational method to dissipative 
non-conservative problems of elastic stability, J. Sound Vib., 27, 
pp. 279-296 (1973). 

^ANDERSON, G. L. On the stability of a deep beam subjected to non¬ 
conservative and diasipative forces. Watervliet Arsenal Technical 
Report R-WV-T-2-14-73, Watervliet, New York 12189 (1973). 
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a, ■ ClTjnCkir) , «J ■ ClTjfk»)4 . 2(k*)2Q . . rr,2(k»)8, 

»3 • ->(k»)4[:r(k.)4 . Cl.rjik.)2« . (l.r)»2), (,.l7) 

% • ÍOcM - (kn) Q - u2J (r(kw) . (kw)2q . u2j. 

Substitution of these quantities into 

al a2 a.^ * a3 4 a4 ai 

yields 

(Nr)[(l4r)(kïï) - 2(kw) Q ♦ 2u>2 ♦ m2(kit)8] [2r(kir)4 . (l*r)(kir)2Q - 

- (l^r)u)2] . [2r(kit)4 - (l*r)(kir)2Q - (l^r)«2]2 ♦ 

2 4 2 
» Or) I (kit) . (kir) q . u ][r(ki)4 . (k«)2q . u2). (g.u) 

In th. limit of vanishing internat damping. ,.,.. „ . 0. (8-li) 

reduces to 

r(Ur)(kit)4Q . (kir)2[(i*r)3(kit)4 - (l+r)(Wr)(kw)4 ♦ 4(ltr)2w2]Q ♦ 

♦ 8r(lT)(kir)V . 4(l*r)V - 8r2(k*)8 ♦ r(Ur)2(kt)8 - 0. 

(8.19) 
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On th* othtr hand, if it is assunad at tha outaat of tha analysis 

that no danping is prasant, than n - Bj - B2 • 0, so that «j ■ a3 . o, 

and aquation (8.13) raducas to 

X4 ♦ a2 X2 ♦ 0. (8.20) 

whara now 

a2 ■ (l*r)(kt)4 - 2(k»)2Q ♦ 2w2, 

(8.21) 

•4 ■ [(k*)4 - (k*)2Q - w2][r(k*)4 - (kir)2Q - w2]. 

In this casa, tha condition for tha onsat of instability in that aqua¬ 

tion (8.20) hava múltipla root*, i.a., tha discrininant must vanish: 

2 
*2 * 4% " 0* (8.22) 

Substitution of aquation (8.21) into aquation (8,22) yialds 

(kw) Q - (kw)2[(l4r)(kt)4 ♦ 6«2]Q ♦ J (l**2)^»)8 ♦ 

4 2 4 
♦ 3(l^r) (kw) w ♦ (J » 0. (8,23) 

Nota that aquations (8.19) and (8.23) ara quita diffarant. It is 

evident that internal damping can hava a vary pronounced affect upon 
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the critical flutter load. It is of considerable interest to complete 

the stability analysis begun here and, in addition, to investigate the 

corresponding problem ( the cantilevered rotating shaft. 

9» DYNAMICS OF A WHIRLING BAR 

Some attention [25], [27] and [45] has been devoted to the longitu¬ 

dinal vibrations and stability of a uniform bar of length l rotating at 

constant angular velocity n about an axis perpendicular to the axis of 

the bar (see Figure 10). it was stated in these references that the 

equation of motion of such a bar is 

E u •11 
2 

P « (x, U) 0 u. (9.1) 

where E is Young’s modulus and u is the longitudinal displacement of the 

bar. It is of interest to reconsider this problem, formulating the 

equation of motion by means of the general theory outlined in Section 4. 

It will be shown that a term that has the same order of magnitude as the 

term pfi2(x1 ♦ u) has not been included in equation (9.1) due to the fact 

25 

27 

45 

b“d lut °f r0ml"* 

0973)fly“h**1: * MCOnd l00k- J- ***"«• ««• 

BHUTA, p. r, and JONES, J. p. On axial vibrations of a whirling bar. 
J. Acoust. Soc. Amer., 35, pp. 217-221 (1963). 
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Figure 10, A whirling ber. 
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that the initial stresses in the bar were ignored. 

According to equations (6.27), the initial stresses in the rotating 

bar «ire, for 0 = 0, 

11 NÍXjÍ/A, o 13 33 0. (9.2) 

where 

N'(Xl) * <■ 02 . ¿ (i2 . X2)]. (9.3, 

iie angular velocity vector has the components 

Q1 s ’ °» = 
*■ 3 

Finally, the displacements are approximated by 

U! * u(xl* t)» U2 “ U3 “ °* (9.4) 

If equations (9.2)-(9,4) are substituted into equations (4.3)-(4,7), 

one obtains 

I 1 .-, 
/ 7 0 A u" dXj, TG » 0, D = 0, 

2 1 
/ [ ”* E A(u, ) -—p A u^Jdx., 
o 2 1 2 1* 
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for o(x) » 0 and in the absence of internal and external damping. 

Application of the conservation law in equation (4.9) leads to the equa¬ 

tion of motion 

(9.5) 

which replaces equation (9.1), whereas the boundary conditions are 

either (EA ♦ N)u#1 • 0 or u ■ 0 at Xj ■ 0,£. (9.6) 

The question now arises naturally as to whether the term (N u.j),! 

can justifiably be neglected. This question can be settled through a 

consideration of the order of magnitude of each term in the partial 

differential equation in equation (9.5). 

If it assumed that 

diu.j) * U/t, 

then 

öte u,n) * E U/l2, (9.7) 

Qf [(N u.^.j/A] -x* p n2 U, (9.8) 
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<ÿ [p u] ^ p U. 
(9.9) 

It was assumed in references [25], [27] and [45] that the terms appear- 

ing in equations (9.7) and (9.9) were of the same order of magnitude. 

Hut the term in equation (9.8) is of the same order of magnitude as 

that in equation (9.9). Hence, the term (N must be retained in 

equation (9.5), and equation (9.1) must be regarded as incomplete. 

Finally, it should be pointed out that equation (9.5) is a special case 

of an equation derived by Tomar [20] for the longitudinal vibration of 

a pre-twisted slender bar in a centrifugal force field. 

For a fixed-free bar, the boundary conditions are, in view of 

equation (9.6), 

u(c,t) * u,j(£, t) = 0. (9.10) 

If 

u(x1# t) = /(x^ cos U) t 

20 
TOMAR, J. S. Coupled torsional and longitudinal vibrations of a 
pretwisted slender beam in a centrifugal force field. Proc. Nat 
Inst. Sei. India, 35A, pp. 779-787 (1969). 

25 
BRIJNIiLLL, E. J. Stress redistribution and instability of rotating 
beans and disks. AIAA J., £, pp. 758-759 (1971). 

BRUNELLE, E. J. The super flywheel: a second look. J. Engng. Mat. 
Tech., 9^, pp. 63-65 (1973). 

BHUFA, P. G, and JONES, J, p. On axial vibrations of a whirling 
bar, J. Acoust. Soc, Amer., 35^, pp. 217-221 (1963). 
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is inserted into equations (9.5) and (9.10), one obtains 

E y,u ♦ p ^{[Cjíl-Xj) ♦ j (l2 - ♦ p(n2 ♦ u»2)y ■ 0, 

(9.11) 

/(o) ■ /»jW ■ 0. (9.12) 

If the dimensionless parameters 

* ■ Xj/t, y » Cj/l, X2 ■ (Ql)*/(E/p)# ;2 - (u»l)2/(E/p), 

are introduced, then equations (9.11)-(9.12) can be expressed as 

• • 2. 1 2 i » 
y ♦ * {(Y(l-x) ♦ - (l-x ))y ) ♦ (*2 * c2)y ■ o, (9.13) 

y(o) ■ y'(l) ■ 0, (9.14) 

I 
where y (x) ■ dy/dx. 

Rayleigh's quotient for the boundary value problem embodied in 

equations (9.13) and (9.14) may in the familiar fashion be shown to be 

i 

I Ur')2 ♦ *2[y(1-x) ♦ T C1-*2)]c/) - X2 y2)dx 

I1 y2 dx 
0 

(9. IS) 

Equation (9.15) will now be used to compute an approximate value for 

the lowest natural frequency of free longitudinal oscillations of a 

rotating bar. 
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The coordinate function y^x) » sin(irx/2) satisfies both boundary 

conditions in equation (9.14). Then because 

•2 2 fl 2 
/ (Xj)" dx * »"/8, / y dx ■ 1/2 
o o 

0 o 

equation (9.15) leads to 

2 
9)] (9.16) 

and for y = 0, i.e., zero hub radius 

(9.17) 
4 12 

The simple formulas in equations (9.16)-(9,17) indicate that the natural 

frequency parameter tj increases as the rotational velocity of the bar 

is increased. On the other hand, if one had started with equation (9.1), 

in which the initial stress in the bar due to the centrifugal effect 

has been neglected, the (exact) counterpart of equation (9,17) would be 

found to be 

(9.18) 

But, according to equation (9.18), the natural frequency of oscillation 
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will vanish whan X ■ «/2. This condition corresponds to an instability 

of the divergence type, which was the principal conclusion reported in 

reference [27], In contrast to this, however, according to equation 

(9.17), the value of tj cannot vanish. Therefore, at least on the basis 

of a one term approximation, instability due to longitudinal divergence 

appears to be impossible. 

10. FLEXURAL-TORSIONAL VIBRATIONS OF A ROTATING BEAM 

In this section the rotating beam depicted in Figure 7 will be con¬ 

sidered. It is assumed that body forces other than those due to the 

rotation of the system can be neglected. Under the supposition that the 

rotating beam undergoes flexural deformations in the x¿ Xj- and x^ Xj- 

planes and torsional deformation about its axis, the displacement field 

is approximated as follows: 

Uj ■ -Xj O - Xj v,j(Xj,t) ♦ 9(Xj# • 

u2 " V^X1* ^ " x3 * ^Xl* t^* UO.l) 

Uj ■ W(Xj, t) ♦ x2 ♦ (Xj, t), 

where v and w designate the transverse deflections of the beam in the 

x2- and Xj- directions, respectively, and t the angle of rotation of the 

beam about the x^-axis. The quantity 6(x2, Xj) is known as the warping 

27BRUNELLE, E. J. The super flywheel: a second look. J. Engng. Mat. 
Tech., 95, pp. 63-65 (1973). 
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function. It is understood that the effects of rotatory inertia and 

transverse shear deformation will be neglected in the subsequent formu¬ 

lation. 

I he components of the angular velocity vector í¿ are 

ki = n sin e» n2 » o, a « n cos 3, (10.2) 

while the initial stress field is given in equation (6.27). 

Therefore, substitution of equations (10.1), (10.2), and (6.27) into 

equations (4.3)-(4.7) leads to 

i 1 
= / J o[A V2 * A w2 * l23 }2]dxlt 

t £, 
/ / 2oAn [-(3 v)w ♦ (3 w)v]dx, dt, 
0 0 1 z * 1 

l 1 2 EI33(“-ll’2 * 2 EI22<v*11)2 * TEr(*>n)2 * 

1 -- .2 1 ~2 . . 20 2 1 2 2 
-jon A sin¿8 w4 - — p 0 A 

7° ü (*22 sin2ß * l33^2Jdx1> 

v - 

(10.3) 

t z 

/ / [e\3t.n)2 . B V0.n)2 . E* (;,u)2 . 

4 u C(î,1)2]dx1 dt, 
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w » / [ jNCv.j)2 ♦ JN(W#1)2 - Mj V#1 - Q3 v#1 * ♦ 

*2* n2(I22 * sin2e)^2 ♦ I (l23/A)N(*»p2ldxi» 

where I23 - ln ♦ and 

r - / e2 dA, c - / [(0,2)2 ♦ (0,3)2 ♦ X2 ♦ x2]dA, 
A A 

with N, Mj, and Q3 being given in equation (6.26), In the development 

of equations (10.3), equation (5.1) as well as 

/A *3 S " ' *2 6>3 " ' X3 " - ^A X2 X3 " ' 

■ / X2 Xj dA ■ 0 
A 

have been used. 

Therefore, based upon equations (4,2), (4.9), and (10.3) the equa¬ 

tions of motion are found to be 

* • 2 2** 
EI33 w,jjjj ♦ E I33 w,jj|j - (N w,j),^ - pAfi w sin 6 ♦ pAw - 

• 2pAflv sin 0 ■ 0, (10.4) 

2 • 

EI22 V*llll * E 122 ^»1111 " v»l^»l - PA« V ♦ pAv ♦ 2pAOw sin ß ♦ 
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(lO.S) ♦ (Mj *)»!! ♦ p I33 «2 sin2 ß - 0, 

Er ^1111 + E r ^»1111 " 11 C *»!! - U*C ♦»!! - (I23/A)(N ♦.jJ.j ♦ 

* P “2(I22 “ cos2 8 * P I23 ♦ ♦ M3 V,n - 

’ p V»l Sin2 ß " °» (10.6) 

with the boundary conditions 

either 

either 

either 

either 

either 

either 

EI33 “•111 * E '33 "»111 * N “il * 0 or w • 

EI22 V*ll * ^22 '*11 * 0 or '*j ' 

EI22 V*lll * E*I22 '•111 - N '.1 * (Mj ♦)•! ♦ 

2 2 • 
♦ P 133 0 41 sin ß ■ 0 or V ■ 0, 

♦ * # 
Hr $#11 ♦ E r 4>,11 » 0 or 4)#1 - 0, 

HP ^in ♦ E*r ¡,ln - U c ♦.J - u*c J.j ♦ m3 

" (I23/A)N ■ 0 or ¢-0, 

0 
» 

(10.7) 

(10.8) 

(10.9) 
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where the identities 

(M3 ♦»l5*! * W3 " (M3 ^»n * p Ij3 °2 ♦•j #in2 S» 

(M3 V'l)*1 - Q3 V»1 * M3 V*ll • p fl2 V»1 #in2 ß» 

M3 ^*1 * ^3 * " (^3 ♦ P Ijj 02 ♦ *in2 8, 

derived with the aid of equations (6,24) have been used. 

For the rotating bean depicted in Figure 8, the components of the 

angular velocity vector are given in equation (6,30) and the correspon¬ 

ding initial state of stress is given in equation (6.35), Again for the 

displacements appearing in equation (10,1), the expressions in equations 

(4.3)-(4,7) assume the following forms: 

T* • / jot* i2 ♦ * . i23 ftdxj. 

Tc ■ 0. 

v ‘ l ( 2 EI33<",U)2 * T El22<»Ml>2 * Î Er«.„’2 * 

1,21 222 1 222 
♦ j u C(4#1) - j p A fl v cos y - * p A n w sin y ♦ 

2 X 2 2 2 
♦ p A n w v sin y cos y ■ 2* P ß ^33 co* Y ♦ I22 sin2Y)4 ]dx1# 
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t I 

0 m l l |E*,M(i'n,i • E*I22l*,n)i ♦ E*r(**n) * 

♦ “*C(i,,)i]dx1 dt, 

£ 

w * / 7 [N(v#1)2 ♦ NCw.j)2 ♦ (I23/A)N(|,l)2 ♦ 0 n2d22 CO»2 Y ♦ 

2 2 
♦ I33 »in y)* JdXj. 

Proceeding as in the previous examples, the equations of motion 

and the boundary conditions are found to be 

EI33 w*1111 * E *33 w»lin " • P A fl2 »in y[w »in y - 

- V cos y] ♦ o A w ■ 0, (10.10) 

LI22 v»1111 4 E *22 V*llll * (N V»P*1 ♦ P A n «o* YÍ*» »in y - 

-V cos y] ♦ P A V » 0, (10.11) 

Er ♦•mi * E*r Sm - “ c *•!! * “*c ♦•n • <,2j/A)(N ♦ 

P n (I22 ’ I33)* C0S 2y 4 p *23 ^ * °» (10.12) 

and 
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either EI33 ♦ E*!^ i,u - 0 or w#1 ■ 0, 

either EI33 w,in ♦ E#I33 w,m - N w.j - 0 or 

either EI^ v,u ♦ E*I22 v#11 • 0 or v.j - 0, 

either EI22 v,nl ♦ E*I22 v,nl - N v#1 ■ 0 or 

either EF ♦.jj ♦ E*r ■ 0 or ♦»j ■ 0t •\ 

(10.13) 

(10.14) 

(10.15) 
• • 

either EF itin ♦ E F ♦,ni - w C ♦.j - w C ♦.j - ► 

- (I23/A)N ♦.j ■ 0 or ♦ ■ 0. J 

These equations are consistent with those derived by Santini [14] by 

another method. 

For zero coning angle and zero angle of attack, equations (10.4)- 

(10.6) and (10,10)-(10,12), respectively, reduce to 

ei33 "»HU ♦ E^ïjj Mill - (N w,i),! ♦ p A w ■ 0, (10.16) 

ei22 v*im ♦ e,i22 "muí • <N - » A “2v ♦ » * ï • 0. 

(10.J7) 

14 SANTINI, P. Problem! dinamici de! rotori. L*Aerotécnica, 5_, pp. 
199-215 (1963). 
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Er ♦•nu * E*r ♦•mi * " c ♦•„ - c *.11 • ♦ 

“ (I22 ' 'jj' ♦ * ,' *23 ♦ ■ °* (10.18) 

whereas the boundary conditions in equations (10.7)-(10.9) and (10.13)- 

(10.15) become 

eith.r EIJ3 w>u . E Í>n 0 or w#1 ■ 0, 

(10.19) 
* • 

either EIJS « E I w.lu . N » . 0 w . 0. 

either El v. ♦ E*I v. 
22 »11 22 *11 

either EI22 ..ul » E*I22 

0 or v.j • 0, 

- N v,. ■ 0 or v ■ 0, 

(10.20) 

either EF ♦ E*F ♦,u • 0 or i.j ■ 0, 

(10.21) 
* • * • 

either EF ^,111 ♦ E F ♦,in - w C ♦.j - y C ♦ 

- (IjjM) N ♦»! * 0 or ♦ ■ °* 



11. THE ROTATING TIMOSHENKO BEAM 

For tho Timoshenko besm theory, the displacements are again those 

assumed in equation (7.4). Furthermore, it is assumed here that the 

coning angle and the angle of attack are zero, i.e., ß ■ y ■ o, and that 

the bar rotates about the vertical y3-axis. Thus 

■ Qj ■ 0, ■ Q. 

The initial state of stress is given by 

rH * N(*l)/A. °12 * °23 * °13 " °33 * °» 

(11.1) 

»22 - yp n2l(b/2)2 - x^], 

where N(x1) is found in equation (6.28), 

In the absence of damping and other external loads, equations (4.3)- 

(4.7) assume the following forms: 

TK " f 7^33 *2 * A^ldxl» Tg - D - 0, 

I 2 lEI33(S)2 + 1(2 “ A(W»1 • • P ^3 °2 *2]dxi» 

/ J [(I33M) N (H-.^2 ♦ NCw.^dXj, 

(11.2) 
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2 2 
where K « ïï /12 is the transverse shear correction factor introduced 

in Section 7. The result of applying the conservation law of Section 4 

in conjunction with equation (11.2) may be shown to lead to the follow¬ 

ing equations of motion 

K2 y A(w,n - p ♦ (N w#1)(1 ■ p A w, (H.3) 

EI33 Nl + 1(2 M A(w»i * ^ ♦ Osj/AMN ♦ 

♦ P n2 Í33 * - p IJ3 ¢. (H.4) 

Simultaneously, the boundary conditions are found to be 

either (E ♦ N/A) I ■ 0 or ¢-0, 
Où * 

2 
either K w A(w,j - ♦ N w,j ■ 0 or w ■ 0, 

(11.5) 

at Xj » 0, Ä. 

Equations (11.3)-(11,5) are the Timoshenko counterparts of equa¬ 

tions (10.16) and (10.19). 
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12. AN ECCENTRIC FOLLOWER FORCE 

According to equation (6.10), the initial stress field for an 

eccentrically applied compressive follower force of magnitude P is 

o 
11 

(1) 
t 

0, (12.1) 

N (1) P. P e, 

whereas that for a centrifugal force with 0 ■ n ■ 0, fl- ■ n, and 
12 3 

ß ■ Y ■ 0 (see Section 10) is, according to equation (6.27), 

.utJ) . N(2)/A. o22(2) . y » n2[(b/2)2 . X2], 

W . „ (2) (2) (2) Om ■ o.. «o- *cjv/«0f 
33 

(12.2) 

'12 - °13 • °23 

where, by equation (6.28), 

,(2) 
N'-' - p A 0 (Cjit-Xj) ♦ — (t2 • Xj)J, (12.3) 

Because the theory being applied here is linear, the principle of super¬ 

position can be used, so that in view of equations (12.1)-(12.3) the 
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initial state of stress due to the combined effects of the eccentrically 

applied load and the centrifugal force lead to the following initial 

state of stress: 

o. . 
11 

♦ 0. (12.4) 

ï e C e f 

all s - ♦ - M 
A *22 

22 
12 2 2 
JP«[(b/2) -x2], 

(12.S) 

012 “ °13 °23 “ °33 0, 

where 

N « N(1) ♦ NC2) - .P ♦ p n2 A[Cj(t (A2 - X2)], 

M2 = * p ®* 

If the displacement field is assumed to be 

U1 = - x3 w.jCXj, t) ♦ 0(x2, x3) ♦,1(x1, t), 

U2 “ ’ X3 ^(X1» t)* (12.6) 

u3 ■ “(x^ t) ♦ x2 (Kxj, t), 
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and if the effect of rotatory inertia is ignored, then, by virtue of 

equations (12.5) and (12.6), it can be shown that 

Tif “ / 7 P [A w2 ♦ l23 4¾ dx 
K ó 2 

tg “ °» 

I < * rBrw*u>2 * 2 “ cw-i)2 - 

-i.fl213J »v,. 

/ / ♦ E*r(;,n)2 ♦ u*c(;,1)2]dx1 dt, 

£ 

/ t ♦ i (Ijj/AJNW.j)2 ♦ Mj ..j . 

* 2 “ *22 “2 ♦2,dXl ' I N * 

♦ M2 wtlH ♦ IN w.j ♦ M2 ♦.jlw) dt. 

Applying the conservation law of Section 4, one finds 

EI33 W*llll * E I33 W»llll ’ (N W»l)»l + P A * * m2 ♦•u * °* 

(12.7) 
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tr *-111! * E*r ;'im - " c »'ll - C tN ♦•Pm * 

* i ^^22 - y* * » ‘23 * - M2 "-n ■ 

and the associated boundary conditions 

• • • • 

w = w.j * <• « «(».j ■ 0 at Xj ■ 0 (12.9) 

(12.10) 

Er ^*11 * E#r ^*11 “ °» 

Er ^111 + E r ^*111 ’ w ^ »J “ w C ♦»! 

at xx = £ for a rotating cantilever If n ■ 0 in equations (12.7)-(12.8), 

then the resulting differential equations are identical to those in 

reference [34], 

Finally, if one considers a pair of symmetrically applied follower 

forces on the end * £ of the beam - see equation (6.11), then 

34 
NEMAT-NASSER, S. and TSAI, P. F. Effect of wa’-ping rigidity on 
stability of a bar under eccentric follower fo*w3, Int. J. Solids 
Structures, 5j pp. 271-279 (1969), 

and 

EI33 W,ll * E ^3 W»ll * °» 

EI33 W»lll * E ^3 W»lll “ °» 
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2P 

so that 

N - - 2P ♦ p A - Xj) ♦ J (t2 - Xj)], M2 • 0 

Repeating the procedure outlined above, one finda that equations (12.7)- 

(12.8) become replaced by 

(N w»j)». ♦ P A w • 0, (12.12) 

(12.13) 

with the boundary conditions still being those in equations (12,9)- 

(12.11). It should be noted that equations (12,12) and (12,13) are un 

coupled. Furthermore, in the special case of il » 0, these equations 

have been studied in references [32] and [42], respectively. 

32 
ANDERSON, G. L. Application of a variational method to dissipative, 
non-conservative problems of elastic stability. J. Sound Vib. 27 
pp. 279-296 (1973). ^ 

NEMAT-NASSER, S, and HERRMANN, G. Torsional instability of canti¬ 
levered bars subjected to nonconservative loading. J. Appl, Mech.. 
33, pp. 102-104 (1966), 
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13. A TRANSVERSE FOLLOWER FORCE APPLIED 

TO A ROTATING CANTILEVER 

Consider a beam of length i rotating at a uniform rate, ■ n e , 
—3 

in a horizontal plane. Suppose, in addition, that the beam is loaded 

in a transverse sense along its length as shown in Figure 6. In view of 

equation (6.16), the state of initial stress is given by 

'11 ll) = »12(1) ■ Ä 10/2)2 - xV 
I 1 ** o T 2 2 I22 

CD 3 2 
-2—L- (b3 ♦ 3b X 
24 I22 2 

4X2), (13.1) 

(1) (1) (1) 
13 23 33 0. 

Hie initial state of stress due to the centrifugal force is that given 

m equations (12.2)-(12,3), Then using equation (12,4) with equations 

(12.2)-(12.3) and (13,1), one obtains 

11 

N 

A 
1 . 

M2‘ 
22 

2 2 
f12 * - [ (b/2) - xj, 

2 1 * 
4 *22 

(13.2) 

22 
24 

f~ (b3 ♦ 3b2x2 - 4x2) ♦ip il2[(b/2)2 - x2]. 

22 

13 0, 
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where N is given in equation (12.3), 

For the displacement field assumed in equation (12.6) and for the 

initial stress field given in equation (13.2), it follows from equations 

(4.3)-(4.7) that 

T-. 0, 

N 

I y («ssO'.ij)2 ♦ Er(*,ur ♦ u ctt.j)2 - o ij5 ti ♦ ]dxr 

/' f tE*ijj(¿.u)2 * B*r(;,u)2 ♦ u'cw.^idx, dt. 

O 

t t 
f / 

O 0 

t 
Í 
0 
/ t 7N(w,j) ♦ 7 (Ijj/A) H («.j) ♦ Mj ».J ♦ Q2 ♦ ».J ♦ 

♦ ibR2*2»io Ij2 nVldXj. 

t 1 , 1 . 
- / / R(«>w*jb^ ^dXj dt, 

O 0 

Consequently, the equations of motion are found to be 

w. ♦ 
*1111 E W*11H 

(N w.j)^ ♦ p A iî - (M2 ♦),ll - 

- R A ■ 0, 
2 

(13.3) 
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Lr **1111 * E‘r **1111 - “ C ♦•u - ** c* - (‘„/AJtN « 

0 !! (I22 ‘ ‘js1* * A *23 * * M2 "*11 ■ °* 

subject to the boundary conditions 

• • 
W = W.J * * * 0 at X, « 0, 

and 

!;153 W,l] + L W,ll = ° 

* • 
LI33 W*lll + H 133 w*m " N W»1 “ (M2 " °» 

^'n + ^ r “ °» 

Lr * E r - y c - u c - (i23/a)n ♦.j 

m2 w*i a °» y 

where the identities, based upon equation (6.13), 

M2 <t’»1 + Q2 <<• = (M2 ¢)^, 

CM2 + W2 ¢)*l S (M2 ^^ll* 

(13.4) 

(13.5) 

(13.6) 

(13.7) 
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have been used. 

A stability problem very closely related to that embodied in equa. 

tions (13.3)-(13.7) with 0 set equal to zero has been discussed in 

references [33] and [46], 

33 

46 

ANDERSON, G. L. On the stability of a deep beam subjected to noncon- 
f05CM* "atervliet Arsenal Technical Report 

R-WV-T-2-14-73, Watervliet, New York 12189 (1973), * 

BALLIO, G. Sulla trave alta sollecitata da carichi di tipo non 
conservativo. Rend. Istituto Lombardo, 101, pp. 307-330 (1967). 
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