
A AD-77 2 809

ARCHITECTURAL PRINCIPLES FOR VIRTUAL-COMPUTER SYSTEMS

Robert P. Goldberg

Harvard University

Prepared for:

Electronic Systems Division

February 1973

DISTRIBUTED BY:

WW sI Techical Infowmtg Servce
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

Unclassified
Security Classification

DOCUMENT CONTROL DATA. R & D
(Security lassuiflcation of title. body of abstrect and Indexlng annoatloin mumt be entered when the overall report is classified)

I ORIGINATING A CTIVITY (Co•porete author) Ii.. REPORT SECURITY CLASSIFICATION

Harvard University UNCLASSIFIED
Cambridge, MA 02138 2b. GROUP

.3 REPORT TITLE

ARCHITECTURAL PRINCIPLES FOR VIRTUAL COMPUTER SYSTEMS

4. DESCRIP7IVE NOTES (7'pe of report and Inclusive dotes)

None
As. AU THOR•S) (First name. n.Iddle Initial. last name)

Robert P. Goldberg

6. REPORT DATE 7a. TOTAL N%. OF PAGES "b. O. OF RErS

February 1973 1
C*. CONTRACT OR GRANT NO 9a. ORIGINATOR'$ REPORT NUMBE.R(S)

F19628-70-C-0217 ESD-TR-73-105
b. PROJECT NO.

c€. 9b. OTHER REPORT NO(S) (Any other numbers that may be *&slined
this report)

d.

10. OISTRISUTION STATEMENT

Approved for public release; distribution unlimited.

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Thesis Deputy for Command and Management Systems
Div. Enz'ineering & Applied Physics Hq Electronic Systems Division (AFSC)
Harvard University L G Hanscom Field, Bedford, MA 01730

13. ASSTRACT

The thesis develops principles fi-r designing machines to support virtual computer
systems. The virtual computer system (VCS) is an important construct which arises
as a solution to a problem of present computer system technology.

The most important new result of the thesis is the model of a process running on
a virtual computer system (VCS) and the derivation of design principles from that
model. The approach adopted is to consider the introduction of VCS's into the
rich, complex architectures likely to be found in IV generation systems. Because
of the additional system structure in the IV generation, the somewhat ad hoc third
generation virtual machine software mapping techniques should be doomed to failur
This result leads us away from an interpretation of virtual machines that depends
implicitly on techniques used in third generation systems. Instead, we are able
to develop a generalized model of a process running on a IV generation VCS. The
model allows us to tnderstand different properties of virtual machines and to
interpret a nuimber of proposed implemc-ttacions of VCS's in terms of the model.
Furthermore, the model leads naturally to an implementition of virtual machines,
the Hardware Virtualizer (1V) which prcvides an efficient and simplified mechanism
for virtual machines. A number of detailed examples illustrate how the Hardware
Vitualizer mitt operate in an actual, IV generation system.

flFORM 17DD IWV 7
li~d iNO NATION , TECHNIP[Unclassi fied

eNro IAioN lt CSLsPIfVcation

IV.. . .A..

Unclassified
Security Classification

-4. LINK A LINK B I.INK CS~KEY •OROS
KE ROLE WT ROLE WT ROLF 0. WTR L I

47#

virtual computer system

virtual machine
computer systems architecture
operating system design
virtual memory
segmentation
paging

44.
V

Scsf

SUecuassifiecdti
•-• ~Security Clacasifleation 7

AA;--
f i . i.--:t-'-

- - -

'L C A - N C V -- ;.-t--,-, c

hav:c fa,.lo -. fu o

INC

34.

ESD-TR-73-105

ARCHITECTURAL PRINCIPLES FOR
VIRTUAL COMPUTER SYSTEMS

Robert P. Goldberg

February 1973

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
I.. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

Jt. 3T4 ,

(Prepared under Contract No. F19628-70-C-02i7 by Harvard University

Cambridge, Massachusetts 02138.)

--~- 9 ~ tl'tr 4-~f..e r i 4- ,..- " -'-*. I '~ - - - -- ----- - - _

FOREWORD

This report was prepared in support of Project 2801 by Harvard
University, Cambridge, Massachusetts under Contract F19628-70-C-0217,
monitored by Major Roger R. Schell, HQ. ESD(MCIT), and was submitted
January 16, 1973.

This technical report has been reviewed and is approved.

LELVIN B. EMONS, Colonel, uSAF
Director, Information systems Technology
Deputy for Command & 'fanagement Systems

i4

ABSTRACT

The thesis develops principles for designing machines to support
virtual computer systems. The virtual computer system (VCS) is an
important construct which arises as a solution to a problem of
present computer system technology. The most important new result
of the thesis is the model of a process running on a virtual computer
system and the derivation of design principles from that model. The
approach adopted is to consider the introduction of VCS's into the
rich, complex architectures likely to be found in IV generation
systems. Because of the additional system structure in the IV genera-
tion, the somewhat ad hoc third generation virtual machine software
miapping tecl.niques should be doomed to failure. This result leads
us away from an interpretation of virtual machines that depends
implicitly on techniques used in third generation systems. Instead,
we are able to develop a generalized model of a process running on a
IV generation VCS. The model allows us to understand different
properties of virtual machines and to interpret a number of proposed
implementations of VCS's in terms of the model. Furthermore, the
model leads naturally to an implementation of virtual machines, the
Hardware V..rtualizer (11V), which provides an efficient and simplified
mechanism for virtual machines. A number of detailed examples illus-
trate how -he Hardware Virtualizer might operate in an actual IV
generation system.

iii

PREFACE

I am deeply incebteJ to my advisor and frienl, Dr. Us 0.

Gagliardi for his hisdom and kincness. It w3s Dr. Gagliardi~s

encouragement and confidence in me at several crucial points

luring my academic career that allowed the research to continue

to a successful conclusion. In particular, ccllaboration with

Or* Gagliardi on an earlier oapert Virtualizeatle Architectures's

led to some key insights that have become an iioortant part of

the 'thesis*

I would also like to express my grztitule to the other

m embers of my committee, Professors To Es Cheatnam, Jr. and ReVe

•3ook, and Mr. G. H. Mealy for the time they have invested in

Peacing the thesis ani for their pertinent comments* In

addition, Pr. Mealy's question (several years ago) of whether a

virtual 360/67 could be run under CP-67 essentially started the

-esearch on this thesis.

I would like to thank my colleagues at both MIT and Harvard

for the numerous discussions about virtuzi machires over the

years. Particular note for their stamina is iue to J.P. Buzen,

-I.S. Schwenk, S.E. Madnick, A.L. Brown, and R.M. Kierr.

I would also like to thank AoW. Armentit S.h. Galley, and

J.F. Haverty for a very careful reading of the thesis. Any

felicities of style can be traced to their persistence and

suggestions.

Three people aided in the preparation of the thesis and

iv

sincere thanks is due them. They are Lloy• Oic~mSn w0o suggestPd

ind executeo some of the figures in Cnapter 3, •V coisin Paul

Go'dberq who drew the fiqures in Chapter 2 3n.i calculated an.

olotted the data . the qrarhs of Chapter 4, an' 1y wife Juoitn

Goldberg whW o..eoared the remainder of the figures.

i.cause of tne long duration of the work, portions of the

:research were carried o.t at MIT Lincoln Laoorstory and MIT

Profect MAC as well as Harvard Univdrsity Center for Research in

Com,-utinq Technology. It is a oleasure to cite this succort and

3 c!o.-o., I w e the ergovragement given by j.C. Nol3n, J.J.

'"it, - r l"e: 9 d J.C R. Liclklider.

1 aI like to exoress my gratitude to my family and

friends, especially my mother ard sister, fir tl'eir sincere

in,. rest and good wishes. Finally, my wife, Judy, deserves

ioeciat recognition for her remarkable oatience and suooort

luring the preparation of the thesis. Her many significant

contributiors, both real and virtual, are greatly acpreciated.

[This research was suopo,,teo in part by AFi9(528)-51e7,

OAHC15-69-C-C347, and F19628-7r-C-021 7 . The thesis was prepared using

the Honeywell NULTICS System.]

V

TAELF OF CCt\TENTS

're facp iv

List of Figures vii

ynor. si s xii

I. Tntroduction 1

1A Over' i •.I q

1.1 Plan of !.e Tiesis 10

?. V;,rtual Computer ,ysyterr--TermnologV ?n.1 7--4grounJ 14

2*(Plan of Chapter 2 14

2.1 Terminology for VCS's 15

2.2 Cofrparison witt) Pelated Notions 28

2.3 Examoles of Virtual Machires 32

2.4 Related Literature 39

1. Princioles foe III Generation Virtual Comouter Systems-- 43

Inaaeauacy of Current Oesians

3.1r Plzn of Chapter 3 43

3.1 Characteristics of III Generatior Com3uter Systems 45

3.2 Empirical Harcware Requirements 47

3,. Sybria Virtual Machines ard Pequirements 55

3.4 Ac Hoc Hardhare "Improvements" 58

3,*5 ITI Genqratior Empirical Software Renuirements 67

Stf- Software Primitives for Tyne II VCS's 73

7.7 Conclusion 77

Vi j

LIST flF -IC-URES

;i gure FP ge

?-I Tyr~icp1 VCS-- C"-'ý? 1

?-2 Level VS. Layer ir III Generation VCS 23

?3 VirtuBI Mactire vs. Other Constructs 23

TYL~e I vs. Tyoe TI VCS 25

?-3 Vachine Environmerts 27

T- II Gereration Virtuzl Processor P'an 49

3-2 111 Generation VCS Case Stunies-- Summary 54

3-3 FVM Mode Maooini 57

3-4 Tr~o Polister andi TOO Tnstruction El

3... Virtu:,-I Macnire ';uonort for Trao Reaister 63

1-6 Sfnsitive LocEztiors in lUr';ddressable memo-y 65

3-7 Tyc'q 11 V~im 6

3-8 111 Generation. Type TI t-,se StUdies--SunmM~ry 72

3-- Process Trees 74

4-1 Tystem 9zse 85

4-? Thý? Process Mao 4 8

*-3 Thro VJ?~r73 f 934

-4 VV' Levels

1 .C f 1~ 4 97AD

!+F Proce7ss Exceotion 3nd VM Fault 100

t-! Tyo.e TI Vmman 1 2

4-8 Tyoe II Virtuzl Macnine 10 2

vii

3.Cjs'j Stuc Les of ScT~e III Gen-?ration Mach-irnet_ 198

R . Tr%+ rocict 1or 1199

B.3 HITA' 94'.L

fl*L 1cM 3501)3 r C. 3

r3 . Cata General NOQVA 2 U3

F .E HoreywetI I iCP 116 2 7 3

93.7 GF 63596,55 (H-oleyweII 5tf) 2U-5

9.8 Multjdata Molel A (SFL) 2 tr5

n .q XD 4 2 05

e9i 0 (FC POP-IA

Ol.11 AriN TENEX ,6

C. Casse Stucies of III Seneration Type IT Syst BpsL

C.'- Tntroluctior' 203

2 21

C.2 36[C/E7 IJMMPS

C.? 2 C/ 3K E?11

C.4~ "IT POP-I.. ITS 214

C.5 CP'S, T'Ie C3roridge Mcnitor Systerr P15

9. Glossary 2-1A7

JilbiograDhy2?

viii

'+, Princioles for V Generation Virtual Co. outer Systems-- 80

Tnr Virtual macrhine "aD anc its Firmware Imuclimentation

4. Plan of CP-3cter 4 8.)

4.1 Characteristics of IV Generation Comnuter Systems 83

4.2 Model of a IV Generation VCS 92

ý'.3 t'r'suita'•ilitv of Software f 107

S4.4 ThP Venice Paper 114

-• •4.5 The Hardware Virtualizer 118

4,6 Pt atile: II lustrations 138

4.7 Some Praclical Droblems of IV Generation HV 175

4u.8 IIara III Gererations Revisited 17k'

S5. Conclusion 182

5.0 Summary 182

5.1 Suggestions fcr Further Research t84

SA* Tutorial on CP-F7 187

SA .G Tntro~uct ion 187

A . I CP-r77s Virtual Memory

SA.2 CF-67's Virtual I/O 190

A,,3 CP-67"s Virtual Processor 194

+I

ix

'4 -q Tv 'f.• . Pec,,-re- n 1C6

+-10 Tyoe TI Recursion 106

+-lIJ Ping ksopin4k SChetres 110

#-12 Examcle of Rir.ng elocation 'ýegister 112

4-13 Ve-rice Proposal 116

4-14 Venice Propos~l with Decursion 116

4-1± LVmID Instruction !23

4 -16 VP Tree Structure 127

4-17 VP-F aul t 130

1-18 HV Performance vs. n 136

4-19 HV Performance vS. Pk 137

"4-2L System Base 139

4-21 Notation for Segment Table of Qunring Process 141

*-22 The VCSIAB ana VCSCB~s 143

4-23 Notation for P-2 VCSCF 144

4-24 Notation for Paged VCSC9 144

4-25 Examole 1: The LVMIC TIstruction 146

4-2E Fxamole It Execution and Exception 147

4-27 Fx-rrple 1: E£ecution and System Ease Upd3t- 151

4-28 Fxample 19 Execution anC VM-Fault 153

4-29 Examprle 1: Asscci3tor 154

4-30 Example 22 Execution ano Asscciator 156

4-31 Example 3: VP Execution 1513

,-32 Fxamole 4: Execution of Pagec VCS 169

4-33 Eximple 4: Paqed Associator 161

4-34 MV vs. 645, 360/67 1E3

x

4-35 ~x' a r Ic 5 CE,,zcutior. anm fts:ocjator 1F4L

+-36 cxawclp E: Semohires ana Pr-ccpss Queues 1(-6

- .J~7F~rrI (: Syse~rQa p pt~jl for Sermonhcras 16.1

4.-38 rxamcle bt S ys t em iRse Detail After p~sw"rl 1(9

+ -3 rý Fime 7: Multirle Processor's Processor Pap 171.

4~-4C Exarnote ~ Type TI VCS 173

+-1Interim 1/0 Pr-ooos3l 177 5

4-4 "*f=P-i3. 6identity" fl'acrhine 18)

1-1 N8D~irg Relocate! Virtual Miemory to Peal Ive-rory 189

a-2 Virtuz~1 - Real 1/0 Interface 193

CI 0S/361' 9oes Not Mask SVC~ 21

-2 Type II HVM Undier PDP-1O ITS 216

A

SYMOPSTS

The thesis devplcos princioles for diesigning machines to

;upcort virtuol computear systems. The virtual comcuter system

(VCS) is an important construct which arises as a solution to a

oarticularly vexing orotler of oresent computer system

technology.

While the recent develo•ment of lrie multi-access,

multi-orogramming, multi-crocessing systems nas simolified and

improved access to comouter systems by the bJlk of the user

community, there has been one important class of users unz'rle to

,-ofit from these recent advances. This class is Ine system

3rogrammers whose programs must he run on a bfre machine ard nOt

in an exte_.nced machine, e.g. under the operat ing system. System

orograms, e.1. other coerating systems or different versions of

the same operating systeD, require cirect adiressability to the

resources of the system and do not call uoor. the -.oersting system

to manage these resources. Tnus, system -rc-Wras may not

co-exist with normal oroduction uses of tne system. This

situation has force3 most installations into clumsy ani

inefficient administrative solutions such as "stand-alone"

Jebugqinq.

Recently, a techrioue for resolving tnese aifticulties has

been devised% The solution utilizes a construct call-d a virtual

comcuter system or virtual machine which is, b3sically, a very

efficient simulated cooy (or copies) of the bare host macnine.

These copies differ froff each other and from tne host only in

Xii

*

VA

theeir exact configurations, e.g. thp amount of ikmory or

aarticular I/0 devicPs attached. Therefore, not cnly stanoard

jser programs but system proqr-ims and comriete ocerating systems

that run on. the rezl corooter system will run on the IC; with

identical results iexceot for certain special timing

lependencies). Thus, T he VCS orovides a generalization over

familiar systems by also beinq a multi-environment system.
/S

The recent origin of the fiell nas forced the development of

j terminology to represent ideas in VCS's. Chsoter 2 introduces

some basic notions in VCS's and proposes terminology to represent

thefr. The terminology is new but some excerots were oreviously

Published by the author in "Virtual Machires; Semantics and

Examples" 153].

Despite the rather significant benefits that derive fromi

virtual machines, only a !imiteC number of current systems

feature this facility. This is largely due to the unsuitable

nature of existing hardware. In order to support a VCS on

contemporary eauipment, a Darticular software construction must

be employed. However, this construction may only be applied to

iachines with certain properties. Chapter 3 examines the

construction of VCSOs on third generation coiouter systems and

Jerives a set of empirical reauirements to deter'ine if a machine

-ay be virtualized, The appendices treat the applicaticn of

these empirical rules to a number of case studies. This material

is new although some preliminary results were reported by the

autlor in "Virtual Machine Systems" 1541 and "Hardware

xiii

.Reauir(-ments for Virtu--l Machine Systems" (52],,

The remainder of the thesis (Chapter 4) develops a structure

for computer systems that rermits the orderly introduction of

VCS's irto future computer systews-. !V gereraticn computer

systems will likely feature a formal implementation (in firfrware)

of the process model. Because of the existence of a large

latabase needed bY the firmware (and :riJvile;e3 software) to

support the process model, it will be difficult tc emolcy the

software mapping technicues used in III generation VCS's. A

model is develope, to represent the exectstion of nrocesses on a

IV generation VCS, The model features two maps: (1) a process

nap c.lled 4 which maps process names, eqg. segqents, semaohores,

orocess-id"s, into resource names, e.g. memory Ioc3tiers,

processor numuers, anj (2) a virtual machine mac (Vlmao) f which

iiaps virtual resource names into real resource names. The

orocess map is strictfy an intra-level mac expressing a

relationship within 3 virtual machine; the V.map is an

inter-level map expressing a relationship tetween (the resources

of) two adjacent levels of (virtual) machines. Thus, the sction

af running a process on a VCS consists of running it under the

composed map f o 6. If the VCS itself is running a VCS under it,

then the action consists of running a process under f o f o 4*

Thus, for VCS recursion, orly the f mao must be invoked

recursively, not the process mao 4. This result implies that for

3 complex 6 but a rudimentary f, recursion ;nouil be easy.

The TV generation VCS model leads directly to a design, the

Hareware Virtualizer (HV), for oroposed implementations of IV

-- xiv

IN

jenertion VCS's. The aesiqn has the characteristic that All

.orocess exceptions are hincled directly within thte executing VCS

Ai thout soft~are intervention. All resource faults (VM-faults)

*y B VCS are directed to its Virtual Machine Monitor (VI'Mi

without knowledge of urocesses on the VCS. Fault handl ingi

invocation arid execution of VCS's works direcfly regaraless of

recursion.

Detailed illustrations are crovided for several possible

choice-, of the VMmar f, e.g. relocation and bounds (R-8), paging.

S Pr-liminary oerformence estimates indicate that for art R-B VMrrap

f (with associative memory), VCS performance will be

3nproximately that of the real machine, regardless of the deoth

of recursion. A oaoeo Vlmap f orovides performance comoarable to

the real machine for several levels of recursion over a range of

likely onerating conditions.

Althouch the model and propcsec implementations of Charter 4

arise in an attemot to guarantee virtuali7Ztion for IV generation

3rchitectures, oy suitacle simplification and intercretatcn of

the Tooel, the orincioles which emerge are aoplicable to cther

3rchitecturest as well. In oarticular, the model suggests

introducing oaging in the IPM P36C/67 as a formal f-mao, rather

than an aa hoc 4-map as was done. This leans to a greatly

simclified structure for CP-67.

All of the material presented ir Chaoter 4., the IV

ieneration VCS mooel, suggested implementations, performance

exoertations, examoles, etc., is new and origiral. 2n early

oroposal for a firmware-assisted Lmolema,%tativ' of JVCS's was

X%'-

-4 'A

lescribed by the author [with U.O. Gagliardi] in "VirtJa!izaable

Arctitectures''" U1]. Aohpverr the interoretation of that

orocosal in ChaotEr 4, its strengths arid weaknesses in terms of

4'4

the IV generation VCS moiel, is new and original.

xvi

Page 1

CHAPTFR 1.

INTP.CD.UCT ICN

1. OVERVIEW

IReproduced from
best available copy.

The Need for Vtua _ra~prdcd ro

Pecent dev.looments in coouter system cesiGn have been

1i,-ected toward imcroving the ease of comouter use by the normal

user ocrulationr. Some. of the more cra.•atic dev-3oODwents irclude

the introduction of large ,nulti-access, multi-crcgramirinc, and

itulti-orocessirq sysfe:.s. These svstems have eliminated the need

for physical access to tne main comouting facility by th; users,

)n0 for -.- ect softwErF access to the system resources by the

jsers* Programs. Thus, users sit at teletypes cr submit jots via

remote card readeps ard need not be corcerned either with the

status of liahts or switches on the central crocessor, or with

the allocation -if memcry, I/O devices, or crocessor time to their

orcgrams. These .urctions are now rcerformed (transoaren* ly to

the users) by the ocerating system. ther either users or tteir

orogrsms reouire services to be performed, they call uCor the.

ooeratirq system which Performs the actual maniou3T icn ani

alcc.tion of re"ources. Tn some senseq the oceratin.g system

(together witt- the nardware) Provides an ideilized or Sxten!ed

view of 3 ccmputer syter. ThuS, orcara'" Drevaratior) debugging,

and running has become significantly easier for t.ost of the user

oooulation.

I-

Page 2

unfortunately, ine very important grouo of users ha• been

jnt.lo to r:zio the tenefits of these cevelooments and advances.

These nr, the users who, for 3 v3riety of rea,7onns, desire or need

lirect acc.ss to the resources of t?'e system. Their Cr3grafrs =re

writtpn to run on a kre tchine. Callirg ucon an operating

;sytem ithe so-catea extencae m_•hjnQ) wilt not go for ther. We

4iI term such users _tm Drosr•_mer and the Drojraws they

Jes're to run, .ii:2 £r mistt Because system crogra-s canrot

0 _-u under i ,e narmal operating system in the oroduction
0

envirornrent, it is usually recessary to treat tteir as srecial

caSFs. When ;hey must te run, the normal ooerating systemr is
C. Q
_x orotgnt Cowr and a system program mey run "st nC-alne.* This

oracti.ce is inconvenient for both the system crogrammers and the

or•.a I tisers, and inefficient ard wastefuI c the system

re.curc(.S. 7urthernore, it can introduce additionl personnel anr"

;r,-ceaL-ral complexities. !ndPeo, it is ironic tnht those %hO

levpIor and maintain coeriting systems are often the very ceople I

4ho Tjike thp !east edvartz.te of their efforts.

A few srecific ex3rples of some system orogramjing tas1s

qigh!t clnrify these ,oirts.

c:) Ve!ugginy the ooeratinl system-- The operating

System is 4i tt tr' to run on the tare machire.

orrenrly, Ceoua;.;ing ond imorovin.g the ýoerating syslem

is t'eatea as a second class activity, often assigned

4o comouter time in the mriddle of ihe night.

(2) qunntng diegnostic softwere-- The softmare for

Fage 3

t4,stinq malftnctions in the varic ts Ln its ir the

system, e.g., is a tapoe drive recordirq correctly, Is a

disk drive s-.eking correctly, etc. normilly rjr~s

stand-alone or tt-e bare machire or cn a rudimentary

mo,,ritor (Test anc Diagnostic Ponifor) which itself rurts

on a bare mact-ine.

(3) Punning -.ther operating systefrs-- hten tfere Is

icre than cre .operating system for a given computer

systefr for even different releases of the same

cceratinq system) iT is ofte', easier to run a subsystem

(comoilerv intercreter, etc.) under Its or operating

system tt-ar. to take the time and cost to ccnvert it to

anothen ocerating system.

"Qccently, a technicue for resolving ttese cifficultie tPas

beer deviser. The solutior. utilizes a construct called a r

c•u;1l_- (VCS) or xi£•rjj.I EBcb•Jn tSectIon 2.1 covers

7ost of this terminclcgy.] Basically a virtual machine is a very

efficiert simulatec ccoy (or cocies) of the tare hcst machireo
_3

•3ecause of its functioralityv It is possible tc r%.n s:'s.em

orogrars: because cf its efficiency, it Is reasonable to run

14Sthem in the normal croduction environment. Tlhe crog'am wPich

iediates bpetween tte virtual machire ard the actLal resources of

the system (the real cr host machine! is called the vic.

:a&&thien !•oDn.f.o (VMP). Since the virtual machine is identical to

Fage 4

the' host r..zchirte ir. ;Ell Sjgr'ific~rt resiects, the V'~" need rot

A Imr IOy th r faniliar instructicn-by-instructjcr, software

irterorpt~tion tect'niat.: t h,%t pcrrra Iv must be used. gatherg

virtu:d xracýinesz nav te constructel ir such way t 1,;3t molst

!~instructiors of the:virfia~l machine executp on the t-ost a-rectly.

iircty Tstbe irterorrterý. Thus, we in'corporate these rcticns

neer cEsually callec v.irtuel -rachines.

A vjrtual CCMDLter system i.s a hsrow~rs-softthare
dup.licite cf zF ',ez existing comouter svsten in wl-ich a
stztisticzlly lominant Subset ~f the virtLual
orccessor's irstructions e~xecute on t,,%e host orccessor
ir n,-tive mcjE.

Thus, Za ICS rProviles an efficiert orer3tict of ore or mcre

cocis's of a comolele comriuter systerr, sirrilar to the host (or

-e; 1) systErr. These cooics dif fer from, Pact, ctt-er anc fromn the

,,ost or ly ir their exict configuretiors, e .g. the amourt of

nerrcrv or the Darticul3r 1/0 device- attached. TI-e virtual ani

r~eal vroces::,ors m~ust ejt')er be idertical or memters of the same

corrCuter f arilIy, e-09. i.-P Izstew/3E6C-?7C* Therefore, not orly

3tzrda=rc user crogr;ans tit syster rrcgrems anc cc'rolpte orverating

systems that run on the real comiouter system will run or the VCS

W'itt, identical results Lexceni for certair specisl timring

lerenderciesi. Thus t?-ý VCS crovices e~ afnerelizatjcni over the

f ati Ijir mrulti-access, multi-crograrmnjrq, qu I t i-c roc essi1no4 ;ste-;s, by dilio r ovi,4i:: a multi-environment system

Tr ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -sdiio -o -sratjqtetresse rgam

Page 5

jxamples, atove, to coexist with normal prCduction uses of the

system, virtual machines introduce an additional iegree of system

flexinility. This flexioility is a consequence of the 3dditioral

level of binding itn . virtual machir.-et between the Pescurc 'i

referenced by system orcirams runnirg on the VCS and the actual

resources that they ccrresoond with. Somre iffieciate advartages

treI

(1) Punning with a virtual ccnfiguration which is

differentr from the real configuration-- This use can be

imrortant for rurning systems with more virtual memory

or processors than act6ally exist, or debugging

computer retwerks and telecommunications apclications.

(2) Measuring operating systems-- Since the VMM

mediates tetween the virtual and real resources of a

system, it can measure how an ooe-ating system on a

virtual machire is manipulating its resources (without

requiring a modification to the ooerating system).

(3) Adling hardware enhancemerts to a system-- If

hardware enhancements, e.er. paging, are added to the

host machine, it may still be possible to run a virtual

machine which does not incorporate ttese erh3ncements.

Under these conditions the operating system runnirg on

the virtual machine neec not be modified. Thus, with

relatively simole VMM modifications, the haroware

enhancements can be utilized to orovide imcroved

resource handling and capabilities.

Fage 6

Oesoite the rather sigrificqnt benefits th t derive from

virtutl machines, or.lv e limitec nurrber of current systems

feetune this facility. This situation is a result cf (i) the

"ec.-nt oriqin of the ccrnceots, (2) misunderstandings of the

technioues for imolementin9 virtual machines, ain (3 te l argely

insuitable nature of existing hardware. Thus, since existing

comcuter systems were not lesignec to supoort virtual machines,

trying to implement them is largeiy a hit-or-miss orocositicn.

Tn the thesis, we exvlore the -rotlems associated with

irclementing virtual macchines or co, temporary hardware. By

Jevelooing an emoirical oasis and a set of hard ware -ules for

iel(rmining which existirg systers sucoort virtal machines, we

ire ahle to verify the inaceauacy of current desiqns [Chapter 3].

At last, there is a growing realizaticn of the itroortarce of

lesignin. n'achines which are virtualizatle, i.e. suoccrt virtual

nachinp%. To dat , therp seem to be two ocoosing Schools of

thought. Ikhile both views have some valizity, both have

sigri ficant disadvantages.

The first view Z5r]) tyoifieo ty Lauer aP. Sroh 17'-1, argues

that since the virtual machine muct have all the furctionality uf

: real Tachine, the simoler the real machine is the easier will

oe the virtual machine c3nstruction, (See Secticr 2.4 and 4.8.]

In porticular, they suglest elimirsting sa'erviscr state, remcry

-nac~ing, etc. WrIat they inlroduce instead iS a sroecial

ýselocation-hounds tyoe memory w.ao, in which the =solvuti cortents

"o' the register may be alled to but not rezd or written. Such an

I%

Fag@ 7

S3poroach greatly simplifies virtual machire construction, tut It

nas as a major weakness that the virtual machini.s orogramning

anvironrent is rather severe and devoid of structure. This fact

imolies that the development of large, interesting systems n.n the

virtual machine ma" be cifficult. The authors observe that their

orocosal "s.. lacks some of the important features of modern

systems, particularly segmented virtual memories and A suitable

3arameter nassing mechanism,.." [761.

The second view, irtrcduced by U.O. Gagliardi and the author

£511 argues that in ccnplex (likely IV generation) computer

systems with a firmware implementation of the orocess tode! and

layered segmented address structure, there will be a neea for

firfware suoDort of virtual machires as wel I. tSee Section 2.4

3nd 4,.4o What emerges is a Proposal which directly suooorts the

image of a orocess executirg on a virtual machine. The major

advantage of th;.s proposal is that it is aoclicable to very

comrlex computing ervircnments that are likely to be developed in

the near future. The crincioal disadvantage is that, since this

ioproach dops not propose a direct hardware resource map, a

certain amount of software intervention is still reouired° In

T additior, there are some fundamental limitations on the kincs of

recursive structyres (running a VHM on a virtual mac-line) that

can be suoported.

The Principal result of the thesis is the cevelooment of a

Page 8

' ocel for running a crocess on a coffolex (TV gereraticn) computer

system [Sec-ion 4.21. The m:odel identifies a fcrmal rescurce mao

(virtual MaChine maO) and distinguishes it from the more fariliar

3rocess mac. 1his allows us to understana a number of very

co.clex phenomena ir a relatively simple way, and oerrits us to

interoret the two earlier pronosals [51i761 as merely scecial

(sub-optimal) aoolicaticns of the model tSections 4.4 and 4.83.

Furthermore, the model leads us directly to ai 3otiral orcpOsed

imDlemertation [Section 4°53 which is, in some sense, a synthesis

3f the better ideas of the two Previous wpoPosals. Thus, the

oroposel is Foplicable to the comnlete ranae of comPuter systeffs,

inc!udino the comolex (TV generation) future systemsq yet retains

the directness ano simolicity of a hardware resource map which

•needs little software suoort. In additian, since this

imolemertation is derived directly from the rocel, the recursive

invocation of virtuel machines, i~e., running a Vmt under a %HH

etc., Poses no adoitional croblems. Furthermoreq the

imvlemen.ation snotld ,e very efficient. while Performance

iieasures are h3rd to ccmnoaret there is evidence that for certain

likely choices of maoss the nerformance of the virtual machine

4ill be extremely clcse to that cf the real 73chine. Although

the mocel 3nd crooosed imp!ementaticns of Chaoter 4 arise in an

Ittemot to quarzntee virtualization for IV ;eneration

ichiterttres, by suitable sim.lification and interpretaticn of

the model the princicles which emerge Pre acolicatlI to other

jeneraticns of architectures [Secticn 4o.8].

9

Page 9

aerhans t.e major cnr.tribution of the thesIS is a clear

jndersta'n1ing of the architectural crinciples for virtu3l mzchine

cUcort. ..y following the cuioeljnes set fortn in tne thesis,

the desiqner of a future ccmputer systefr can be assur.d thit his

mlachine will be virtualixezbtle. This, the diss=--ination of these

Sorincirles should have 3 hiqhiy sicnificant imcsct uoon both the

thecretical and oractical aspects of coffouter science.

Computer archit.cture, like other arc'itecture, is the
art of determining the needs of the user of ? structure
and then cesigniriq to m.aet those ne-:is as effectively
as DoSSible within economic an1 techrolcgical
constraints. Architecture frust inclhde en.gineering

-" considerations, so that t.he design will be econ•mical
and feasible: but the emohasis in ;rcnitecture is ucon
thv the neeos of thp user, whereas in enqineerirg the

F-• emphasis is or the needs of the fabricator [21].

Ii

A A

AyZ ,- "

Pzage i13

1.1 PLAN CF TF-E THESIS

The remainder of the thesis is divided intc four chacterS,

qach chapter is rreceled by an introcuction %hich outlines the

naterial to follow, but ierhaos some brief organizaticn3l remarKs

iiere will be heloful.

The most importan' new result of the thesis, the model of a

3rocess running on a virtual computer syster (VCS) and the

lerivation cf design principles from that model, is presented in

Thacter 4. This chapter is largely self-ccotainel, ard the

.reader knowledgeable about current virtual mac*hire soolicetions

3nC technology should be able to skip directly to Cnaoter 4, if

lesired. The aoproFch adopted in ttis charter is to consia.r the

introduction of VCS's into the rich, com•plx architectures likely

to be found in IV generation systems. necouse of the 31diticral

"system structure in the IV generation, the somewlat ad hoc third

Seneration virtual machine software mapping techniaues should be

liomel to failure [Sections 4.1 and 4.31. This, result leads us

away from. an interpretation of virtual m~chines that deperds

imolicitly on techninues used ir third generaticn systems,

Instead, we are able to devplop a generalized model of 3 orocess

running on a IV generztion VCS [Section 4.2]. The model allcws

us to undterstand different oproperties of virtual machines ard to

interoret a number of crocosed imolementations of VCS's in terms

if the model [Section lo4]* Furthermore, tPe nolel leads

natur3lly to an implementation of virtu•l machines, the Hardware

'Jirtualizer (HV) which nrovides an efficlen! ard sirrrlified

r' Page 11

mectanisr for virtual machines [Section 4.51. h number of

Jetzilea examples illustrate how the Hardware Virtualizer might

ooeratp in an actual IV generation system !Section 4.61. In

3ddition, the principles develoned in this chapter are generally

lovlicjcble to other architectures as well as the highly ccmplex

TV Generation° Proper simplification and intercretation of the

i.ocel leads to retrosoective principles for how the secord anI

third neneration systems sjjl have been const,-uc.-d to supoorl

virtual machines ISection 4.81.

The earlier chapters d vt 6, a basic F,• 4 5'-irq of

virtual machines ana existing techrniques for i.*¶'.emenTing them,

3nd orovide additional motivatio,i for seeking i,-e brq.-,throuqhs

lescribec in ChaDter L* In Chapter 2 we introduce scmý' of the

oasic virtual machine terminology and properties, ind survey

-axistin; implementations and related literature. The ao~roach we

take to tern.inology in Chapter 2 is largely lescriotive and

iualitative. Later, in Section 4.?, a number af Ytte,,e noticons

are re-cast in terms of the VCS model of Chapter ",

Chaoter 3 examines the existing ÷ech•,clogy for thirdi)
.eneration virtual machines and shcis why nOd hotv iT iS

inaceQuate° From the construction used in IBF's CP-67 [Aocencix

A] we cerive the general software vm" lemeri•t.tioA of third

Preneration VCS'so A close scrutiny of tynical third generation

iystems leads to a series of empirical hardw-re reouirements for

virtu;a izable third generation architectures !Section 3.21.

Aoclication of these rules in a number of case studies indicates

that most third generation systems cannot be virtualizedS~I

•,• • • •°•?•`•:•j: •i ;- -A ý_________ _ --- ,----- - -- -

Page 12•

(Apeendix tid This result points out the general unsuitatility

of third gerenation architec÷sjres (for virtualization) and the

weaknesses of the software construction technique. Thus, %e are

forced to look elsewhere fo- the key issues an! solutions in

Jesigning virtualizable architectures [Chapter 43.

Other material presentel in Chapter 3 incluaes requirements

for hybrid virtual machines (HVP) [Section 3.319 ad hoc

improvefrents to third generation hardware ESection 3*14] software

renuirements for Type II (extended machine host) virtual machires

[Sectior 3.51, and suggested virtual machine software crimitives

(Section 3.35. Additioral third gereration sublects are provided

in the first three zopendices which deal with a CF-67 tutorial

[Aocendix A1, case studies of some third generation machires

:Apcendix P1, and case studies of some third generaticn Tyre TT

3peratinq systems [Aocerlix C3.

Chaoter 3 should be of particular interest ta twý classes of

-eaders. The first class incluces thcse individuals runninq

third generation systems and contemclating the introduction of a

virtual machine facility. The various empirical rul._s and

stuCies should help to cetermine if virtual machines sre possible

on the reader's system and what oractical options may be taken.

The second class of reaoers includes corouter system designers

wdho can observe now relatively insignificant design decisicn,;

have rendered most tnirc qeneration machines unvirtualizable. it

4ill be necessary for these designers to avci: such errors in

lesigning the virtual machine support for the Tv generation.

Chaoter 5 gives a very brief summary of the research end

I
Page 13

S")oirts oalt several orcmisin4 3reas for addition3l study.

The final material of the thesis, Aocendix m, is 3 glcssary

if some of the terms usel in the thesis. In acdition tc the

3oecialized ter,.inoiogy for virtual machins, eeg. virtual

.actine recursion pronerty, a num.ber of gene-aI tnougt not

4icdely-krowr terms, e~g. interior decor, are also defineoo

'N

f -3

Fzqe 14

CHIAPT!~

1ernji<)ote"iy :in(' FacicrcunI1

.. PLAN CF CI-APTEP I
Chroter 3is divi-.ei into four sectiors. The first section~

introiýuces ~.roe o f t I basic termirolcay tlt=t is used in the -

thesis. Sirce 'dirtL~at cv-ruter systems have anly recertly ccwe

intc existzricef we heve been fcrcec to 'ieyelcr re% terms to

-ecresert icv-s 3bout VCS~s. The :Fcoroa=ch take- in tt-is sectionl

is Somehhet ciescriotiv:. L;ýter, in Secticr £e.29 a nurmber of -

these rctiors are rscsst ir termrs of the VCS mocel cf Ct-aotrcr 4*

Tr the s.econl tectj~n, we contrast the noticr of z virfhal

I ýct.ir-r. w itr zý n~.fter of relqtec ccrcertse Neixt, exarctes at

!xi'5tir4 virtual ccrrcutar systems are citec. In the firzl

3;RCtior, c~tAlisflod littri-tupe reltatirg to virtuel irachires is

nrjcptiv survevelo

2m

Page 15

2.1 TERMINOLOGY POP VCSOS

The terr virtual Ccnputer System has been loosely Zollied to

3 r~nqj cf cifferent corouter system organizations. Recently, aS

loted in Chaoter It its use has been reserved for a scecific type

of comruter system entity.

SA Virtual Ccomuter System is a nhrdware-software
duplicate of- a real existirg comouter systemr in which a
statistically dominant subset 3f tre virtual

orocessor's instructions execute directly on the host

orocessor in n3tive mode.

There ar._ two parts to this definition.

.ny �in, en"-- ,A virtual computer system must simul3te e real

-xistirg computer systen. Programs and operatinq systems which

(run orn tnc real system must run on the virtual syster with

±dentical effect. Since the simulated machine may run at a

lifferent speec from the real one, timing deoencent processor and

I/O code may not Perform exactly as intenced. This is very

similar to the limitation, howeverg that charscterizes

interchangeability of orograms among different members of a

- corpotible*" computer felily, such es between tie IBM 361/41• and

the 39'/75.

__e,_. _t 1"..-P- ost instructions being executed must he

*rccessed directly by the host CPU without recourse to

instruction by instruction interpretation* This guarantees that

the virtual machire %ill run on the host with relative

efficiency. It also coroels the virtual machine to be similar or

"idertical to the host, and forbids tampering %ith t'e control

I Page 16

store lo adc an entirely new order code.

The VCS ard/or host configurations are made up of one or

-tore central processors, main memory, and I/O devices (and

oossibly T/O processors too). Usually the virtual computer

system configuration will have only one central crocessor. That

orocessor Pay be called a Mirt!ajj maachne. However, the

literature often inforially uses virtual machine and virtual A

cor•.uter systevt, ¢, ar.d VCS, as interchangeable. We shall do

! itewise.

Sirce s VCS is a hardware-software duclicate of a "real

ixisting computer system" there is always the nction of a ri9J.

Q2Er.±_e 2ysteim, RCS, or rgDI _&cneq RM9 Ahose execution is

furctior.ally eoujvalert to the VCS.

The oroaram executing on the host machine that crez;tes the

VCS envirory.ent is called the UJ.Ltu" Mg_•j~n. BgnI1or, /

^P-E7 Ic,65,851, which is ciscussed below, gives the VMF the

leneric nam.e of "control prograr"o Only in the discussion of

'ýP-67 will we depart frov the use of VMH,

The VCS differs from the host only in its exact

configuration, eeg. the amount of mewory available or the

oarticular T/O devices attached. A further distincticn miqht be

in the orecise characteristics of the virtual processor# The

"implemeentation reauireient' in the VCS Cefiniticn, above,

imolies that Ihe virtual processor must te sirilar cr identical

to the host processor. It they are not iderticzl, ther the

*s -. ~- ~ ~ * -~ -- ,-,~--- - -4-

qe17

virtusl machine must be a member of the same processor family as

the host. For example, the virtual and host processors might be

lifferert models of a compatible croaduct line, q... 3.731/jS5 an

i60/3;--t 3601/.7 and 36-,/659, or Data General Superiova and Nova*

The virtual and host Processors might even b? the same mcdel

orocessor, t.ut only differ in the fttlness of tie instructien set

implemented, e.g. universal instruction set vs. standard

instruction set.

This Oistinctior may be caotured by tne fcllowirg two

categoriest

S.•..!!_ .•Ij vjr_.t__ljzin_ (SV)-- The virtual Machire i en c lt the

nost.

f_&mIlyE=ir±IuaI.Iizaq (FV)-- The virtual machine is a memoer of the

same ccrputer tamily as the host.

Tn a self-virtualizing VCF. the functionally ecuivalent real

"computer sy st em is i~entical tc the host. Therefors, we

soretimes cell the host ,achine, the real machine. We then say

that the real/host machine has a vjCr.g , r [511.

ITf a VUS is self-virtuelizi-g, ther it is ocssible to run

another coop of the VPH on the VCS, t'ius, producing another level

2f virtual machines* This denonstrates the virtual machine

cr..•ur_•i•n • Ij2_rt and is of distirct cractical importance since --

it allows alterations tc be made to the VmP running or Ihe

virtual machine and permits testing the VvM in the rorfal

operating environment. !See Section 4.2 for the develooment of

VM recursion in terms of the VCS model.] We say that the VMH

lefines the /_/ of recursion or virtualization. If I V PM is

-N-

Page 18

Purring or a level r VM, then it produces a level nl~ VP* In

-"articular, the real/host machine is level 0. In Figure 2-1, the

-712K virtual 360/67 running CP-67 is letel 1 anc its two virtual

iachines are level 2.

The notion of VCS levesI should not be confusel with the

corceot of I_.Rrs in a comouter system. As will be discussed in

Chapters 3 and 4, III and IV generation comcuter systems have

structures which implement layers of restricted access to deta or

instructions* In III ganeretion systems, the two 13yers are

Jsually called Paster/Slzve moce (sioervisor/problemg

Executive/User, etc.). In IV generation systems, the layers will

likely be called rings [57,iC•). Since a layer is a relationship

oetweer two parts of 3n individual VCS anz a level is a

relationship: between two VCS's, they are soiewhat indeoendent

_notions, In oarticular, each level of a VCS must appear to have

A-- the same number of layers as the real machine. However, as "ill

be seen later, [Section 4.31 software implementation cf VMs have

utilized the restricted 3ccess of layers to simulate the effect

if levels. This is merely an implementation technique and not a

general orinciple. These issues are discussed further in

"Virtualizeable Architectures" 1)11 ano Section 4.2. Figure 2-2

illustrates the relationshin between levels and layers for the

CP-67 VCS shown in FiguA-e 2-1.

~- ---~ -.-. *- --

Page 19

P C P 2741 TERMINAL
768 K

CMS I 'ERNIN]AL
256 K271TRIA

CM S PUNCHED CARD
BATCH LEOWIPMENTJ

LEVEL 0 LEVEL 1 E EL 2N

TYICL CS-CP-67

FIUR 2-711EMIA

Page 20

LEVEL 0 LEVEL 1 LEVEL 2

LAYER
0A

LAYER 1

LAYER1 r

S~LAYER I

LAYER •

LAYER

0I

LAYER

LAYERR I

LEVEL vs. LAYER IN N" GENERATION VCS

° ~FIGURE 2-2

Page 21

iirt~d jte~and He'ittj nrnaltt ti:

The ir'ple ient.ntion recuirerert of the VCS lefin"tion

indicates tntýt a "statisticalIy dominant subset cf the virtual

Drocessor s instructions execute cirectly on t',e 1-ost orocessor

in nativs modes" To provide functicnal eauivalence between the

'JCS and real ccmouter systeg RCS, those instructions which Co not

execute direct(y must be simulated on an

instruction-by-instruction basis. Thusq the "performance" of the

vir t ucl machine is bound by the real machine an2 oy a "complete

3oftware interpreter cachine," U.,r. Rather than set any precise

,erformance objective or recuire any myopic machin,. dependent

imclementation as cart cf the refinition of virtual Tachineg we

3refer to treat VCS is a broac class of cotential systems.

!However, for a particular system under ccnsiceration, we

iorrally avoly the term VCS if the direct executicn subset is

"laximal •]

Thus, the "complete software interpreter mactire" is rot a

VCS since no instructicn of the CSTM executes iirectly. Neither

is the roal machine. Although all instructions of the RM execute

lirectly, the PM is not a hardware-joftjjh._ duplicate, and indeed

it requires Po VMM.

A recently distinguished VCS entity is the ycj2rj Vi•rIu

•jCbjnhe HVP. The JJ!LY is a VM in which all supervisor stete, e.g.

"taster :*,ode or Ding O, instructions are interpretel. The HVM has

oeer found to be a useful and easy-to-construct artifact where

nore faailiar VCS techniques have failed. [See Section 3.3 and

Aopenlix B9]

- -°------

Dage 2

Ar' examole of the way each of these four constructs -night

execute a Particular instruction seauence on s III generation

corrrutpr system is irdicated in Figure 2-3. Successive

instruction executions, i.e. time, are represented fr-Cm left to

right --rd the two states shown for each of tne four constructs

ire softhare interoretation anC direct execution'. ThLs, the real

'lachire -;s alwa-ys shown in the direct execution state while the

vjrtuM4 machine occasionaily traps to software interpretation fcr

-ertair jrctructions.

lyp j~ e M

The ifrplementstior' requiremert snecifies that 'iost VCS

instructions execute cirectly on the host, It -oes not indicate

-low the2 VMM gains control for that subset of instructions which

'iust be interpreted. This may be done either by a Program

runring on the bare lost machine or by a prograrn runninq under

sore ioerating system on the host machine. In~ the case of

running under an oper3tirg system, tthe host opers-tinca system

iritritives may be usec to simolify writing the virtual machine

iorjtor. Thus, two additioral VCS catego.riesc .Arise:

ly~ I--The VMM runs on 3 bare machine*

ly, fl--The V?'M runs or an extended host 153,75], unc~er the host

iveratinq system.

In -ither case, the virtual mach ine being created i s

iquivil.qnt to the bare host or a related family member.

Tyre I (bare host) and Tyoe II (extended hOtt) VCS~s are

KPA 4A*F-ii
Page 23

SOFTWRE RAL MCHIN

INJTERPRETATION

DIRETWAE---RA AHN

k EXECUTION

SOFTWARE VIRTUAL MACHINE
INTERPRETATION

V DIRECT
EXECUTION3

SOFTWAREHV
INTERPRETATION

DIRECT
EXECUTION

CSIM
SOFTWARE__ _

I'lINTERPRETATION

SDIRECT
7 EXECUTION - -- - -- ***

VIRTUAL MACHINE vs. OTHER CONSTRUCTS 2
FIGURE 2-3

..............

Page 2.

illustrated in Ficure 2-4. In both Type I ani Type IT VCS, the

1Mm cileates the VCS ervirorrent, However, in a Type T C1C9 the

,IMP in a bare machine must cerform tl'e syster's scP'P.ul;rg ý;nd

(real) resource illocation. Thus, the Typ I VP l vay irclude

much coi.e not soecifictily needed for a V*-S. In a Tyoe TI VCS9

the resource allocation and enviponffent creation furctions for

VIMs are more clearly srljt. The operating systei loes the

iorral system resource 3llocantior and provides a standard

extended machine environfrent. Th'e VHM Drogr.m runs on the

axtercled frchine envir:nfrent and Produces a oseudo-hardware

environment. [Another interpretation of Tyce I and Type II

virtus-l machines is oresentod in Section 4.2.1

There are different aavantages to be derived from using

aither a Type I or Type IT VCS. If an installaticn ncrmally rurs

3ne particular operating system and most users would prefer to

trest the system as c4n exter, ed machine, then a Type TI VMP ray

"! usec to provide a virtu.l machire fcr the occasional user who

may desire it. He might wart to either debuq systeff code or,

say, run some foreigr oneratin- system. In such a case, the

1ccess to thf system is liHely to be more convenient for the

numerous typical users, andl orobably, more efficient since there

is less overhead in running the oreferred operating system*

(Ancther approach to achieving some of these objectives is

reported by Parmelee [93o1.

If there are numerous alien operating systems tc be run and

there is no such thing as a prefe'red environment, it m•ay make

sense to run a Type T VCS. Of courset the decisicn to choose

.5e

TYPE I VCS Page 25

VIRTUAL VIRTUAL
MACHINE BARE MACHINE

MACHINE

VMM

VI RTUAL
MACHINE

TYPE Tr VCS

EXTENDEDI EXTENDED

MACHINE B MACHINE

EXTENDED
MACHINE

VMM

VIRTUAL
MACHINE

FIGURE 2-4 TYPE I vs TYPE] VCS

Page 26

Type II over Type I depends also on the existence of an operating

system that is capable cf supporting a Type II systei. Another

imcortant factor to consider is the amount of work required to

bring up either system.

Type I and Type II VCS's are two cuadrants of a ffore general

tabular structure which deserves futuee study. See Figure 2-5.

The two rohs of the table indicate the host environment on which

the monitor orogram runs. The two columns indicate the target

environpfent produced by the monitor. A Tyce I VMM runs on a

hardware host to produce a hardware target, i.e. virtual machine.

A Type IT VMM runs on an extended host to produce a hardware

target. The boxes marked ErM stand for fx2jjegeg M2gbjiW- Mgý.tv.e

The Type I EMM is a conventional cperating system. The Type IT

SMM runs under one operating systen to produce the interface

generated by some other operating system. Type II EMM can be a

valuable tocl for transporting software when a VCS is not used

f[3E•,5..

'1 5

Page 27

TARGET

BARE EXTENDED

H • BARE TYPE I VMM TYPE I EMM

S EXTENDED TYPE IU VMM TYPE U EMM

MACHINE ENVIRONMENTS

FIGURE 2-5

+I

%-

Page 28

2,2 COPPARISON WITH RELATED NOTICNS

Secause of the recent develocment of the field of computer

systems architecture, ani the absence of a generally usec, as

well as agreed upon, terminology, it is possible that the notion

3f a virtual machine may be confused with certain other related

ideas. Tn this section, some common misconcections regarding

virtual machines will be cited to provide some adoiticnal insight

into the key notions involved in a virtual machine.

2*2.1 Virtual Machire vs. Virtual Memory

Virtual memory refers to an addressing system in which a

logical address generated by a Program, called a virtual memory

address, is maoped into some other, possibly different, physical

'ne,rory address. Virtual memory way be implemented in numerous

4aysv among them simple relocation, multiole relocation, paging,

segmentation, or a combination of these methods .38]. If paging

3r segmentation is employed, it is often the case that the emount

of virtual memory exceecs actual Physical memory.

Since one aspect of a real computer system is memory, the

correspondirg attribute of a virtual computer system is

customarily called virtual memory (51]. The virtual reiory need

not be larger than availible physical memory, although it may be,

if implemented on a machine with pagingo This is tl'e case with

ZP-67 [99650, 5]. The virtual memory may be even mapoed

identically into all or Part of its corresoonlingly addressel

ohysical mevory. This is the case with the orooosed CP-E5

•Sg-, •

-4--.-.....

Page 29

(54958]1 experimental IBM 360/39 [711t or J3o~nese 4ork (51].

The Dermittea virtual memiory size or method of relccatior (or

not) are issues which affect the flexibility of the use of

virtual memory, or ease of nerforming system ster3•e allocztion°

These issues are largaly tangential to the notiors involveo in

4irtual machines*

One oarticular connection between virtual machines and

virtuel memory concerns the irterrunt control register locations

that morst systems have fixed in low ohysical core. Since the

memory of a virtual machine is functiorally eouivalent to the

nemory of a reel machine, virtual interrupt locations in virtual

miemory must have the same apoarent effect for the virtual machine

as the corresoonding real locations have for the real machine.

2.2.2 Virtuzl Machine vs. Virtual Machine Time-Sharing System

A Virtual Machine Time-Staring System (VPTSS) is a

timesharing system in which jqfb user's interface with the system

is aovirtual machine (81]. It is cossible to have a virtual

iachine without having timesharing or a VPTSS. The exoerimental

IBM 36./30 (711 or the Jaoanese HITAC 84P.0 [5C] are examples of

virtual machines running on a non-timesharini system. The

virtual 360 under UMMPS [•10] is an axamole of a Tyoe II virtual

miachine runring under a (conventional) timesharing system that is

not a VMTFS, Possible confusior between virtual frachines and

4MTISSs may be related to the success of CP-67 whict' is a VPTSS°

L oage 30

-.C.3 Virtupl Pachire vs. Pseudo Machine

A oseudo-machine (991, also called an extended machine [53]

'ir a user machine 175], is a composite machine oroduced through a

combinstion of hatdhaPrs end softwarev in whic.h the mach-ine's

S•iocerefnt architecture h~s been changec 8lightt'! to make the

machine more et•o use. Typical lyg tese architectural

changes have taken the form of removing 1/0 channels 3nd devices,

and adding system calIs to perform 1/0 and otter operations.

These system functions are normally invoked by transferring to

some Iccation in virtual memory, as in Multi:s C86,92], or

.ssuina a Supervisor Call (SVC) or Paster Mooe Entry (MME), etc.

instruction with suitable address code. The supervisor

interprets the SVC, executes the desired functior-, and returns to

the user.

Tn a virtual machine, the machine's apparent architecture is

identical to a reAJ. machine's architecture. The visibility of

all I/0 channels anc devices is left intact. There are no

3upervis)ry functions provided. If a machine wishes to perform

1/0, it must utilize its own I/C programs. Indeed, the system

loes not provide an SVC handler for the virtual machire.

Possible confusion between virtual machine and pseudo

miachine can be attributed to an overuse of the term "virtual

iachine" by certain authors. Teo often "virtual machine"' has

been used to denote a ncn-hardware "user" machine (111,112].

2.2.*4 Virtual Machine vso Emulated Pachine

Frulation is a technioue that has beer usea successfully to

-- -

Page 31

'iao one system architecture into another different architecture

(63,8.$110], Emulation at the interior decor interface (hardware

interface) cuses tte 13yer zero software visibility of the

native system to (almost) incluoe visL..i ity of the target

3ystem. Similarly, emulation zt the exterior decor interface

(extended machine) extends tne soft%are visibility of, say, laver

t to include software visitility of layer 1 of the target system

(51].

[Well-kIown exarDles of emulators include IEM's 1401 or the

36C/30, 7Gq4 on the 360/65, and DOS under OS on the 371/145. In

the first two exaiples, the target and native interior lecors are

vastly different. This reauires the emulator to be i T e 'b, ted

vie special additional microcode, and the oroces.sor quý' operatte -

in this non-native rode.

In a virtual machire, on the other hand, tne target and host

3re either similar or identical hardware miachines. If a

self-virtualizing machine has an emulator implemented on it, then

it should be accessible to the virtual machine in the same way

that it is to the real one. Thus, if there exists a scecial

instruction, such as DO Interoretive LoOp (OIL) U1JC3 which puts

*i the machine into an emulation mode, then its execution by a

virtual machine shoulc out the virtual machine into emulation

So1de. [IBM has just announced this facility fop VYM37.l [67].]

h~.4

+ '4

4 i~

Page 32

2.3 EXA'4PLFS OF VIPTUAL MACHINES

There are relatively few examples of virtuil machines that

l•ay be r.ited. We will show later [Section 3.21 that this is cue

to the general unsuitability of contemporary designs and hence

the significant requirements placec on a computer system that is

to suoport a sc.tware coistruction of virtual machines.

2.3.1 IBM Pesearch P44/44X-- Type I FV (Family-virtualizing)

The IBR M44 E91,1(31 wcis a hignly modified (II generation)

1BM 7C.44, extended tC include paoing and a number of ooeratioral

-odes, such as ProblefI/Supervisor, Location Test/No Location

Test, and Mapping/Nc Mapping. Through the use of an operating

systemn called MOS (Modular Operating System), it oroduced a set

of virtual machines called 44X's. !These 44X's are not virtual

machines in the strictest sense since they are slightly different

trom real 7044's.] A 44X operating system runs on each 44X and

provides the customary services found on most co.ratinj systefrs.

The M44/44A system was very imcortant, in the history of

computing, for trying out a numter of innovative ideas, among

them, virtual machines.

2*.3.2 IBM Cambridge Scientific Center CP-40-- Type I FV

CP-46 [3,27,5919 the forerunner to CP-67, %as constructed on

an IBM 360/40 that was soecially mccified through the aldition of

an associative memory oaqing box. This system %as a VMTSS and

supported fourteen virtual 360's. These 3.50s were standard
k'1

Page 33

36n's and did not contain any of the soecial mooifications of the

host moael 4[. The virtual 36f's were able to r!un numerous 360

operating systems, including the standard OS/3E1 [66,841 and CMS

[85]. a conversational system which was developei at Cambridge

Scientific Center specifically for use vilth CP-4o, The system
S•sufferec from the ccmposite limitations of the 36.3/400s processor

soeed, a modest amount of real core, and a slow disk for paging*

However, CP-40 die serve to demonstrate the viability of the

virtua•l machine notion. Furthermoreb it provided a VMTSS, end

with CMS, a convenient conversational system for the 360 at a

time when no other gereral Purpose timesharinq system for that

series of machines was working. Irdeed, success with this

iroject led directly to the larger system, CP-67,

2.3.3 IPM Cambridge Scientific Center CP-67-- Tyoe I FV

CP-67 [1,65,851 was begun as an exveriaental system in

conjunction with MIT Lincoln Laboratory in January, 19j7.

Initially, the CP-40 system was modified slightly to suooort the

different memory relocation system found on the 3e0/67.

Subseauently, the entire CP-67 system was rewritten. CP-67 is a

VMTSS which runs on the 369/67 and supports oetween thirty and

forty users. ýt is. by far, the most widely kncwn virtual

machine system. The virtual 36C's produced under CP-67 have been

very successful ir running a number of differert 3EO operating

systems. These include (but are not limited to) CS/360 (in many

versions), DOS, DOS-AFL, CMS, LLMFS [85). The virtual machines

have been used in telecommunications acolications. The

Page 34 1
'iniversity of Grenoble has even run the 18F CS/ASP (Attached

3upport Processor) system, connecting a real 360/40 to a virtual

360 (91.

The orincipal limItations of the virtual machines Produced

by CP-67 are that a small set of programs may not work correctly.

These are:

(1) Programs which depenc on precise execution tinmes

(2) Programs which depeno on the relationshin between
processing tine and input/output time,

(3) Proqrams which depend on precise real-time, and

(4) Programs which ccrtain self-Tooilfyin channel
Programs.

The first two restricticns are identical with those to insure

comoatibility between two different member processors of the 360

family [691.

-*3*4 Extension of CP-67 to sucport virtual 360/67-- Type I SV

In Hav, 1969, the author designed a slight extensicn to

CP-67 to support a relatively efficient iolementatior of a

virtual 360/67 (with virtual relocation) i541o. ith slight

iodificationsg this design of a virtual 36E/67 Aas imciemented !n

the fall cf 1969 by F. Furtek. Independently of this work, A.

Auroux St the TBM Cambrilge Scientific Center also desigred a
3.

virtual 160/67 extension to CP-67 c51.o *The two cesigns are very

similar and the Auroux i•plementation has aecome o3rt of the

standard (IPM distributed) CP-67 system.

The virtual 36V/67 has been limited to a 2L-bit addressing

Page 35

iooe single processor machines With this cao3bility, various

360/67 ooerating systems have been run, including CP-67 and

TSS/360 (951] Th..at is, CP-67 has beer run under itself. In

fact, this chain has been tested to a depth of at least four,

The Principal additioral limitation on the operation of the

virtuil 360/67 over a st3ndarl virtual 360 (under CF-67) is that

3rograms that dynamically alter tte contents of segment cr page

tables may not execute as .ntended, The results may or may nct

oe identical with a real 3E0/67. Ir a real machine, the corterts

3f the associative registers m.y affect the result and hence

results may also be unnredictable.

2,3.* Virtual 360 under UMMPS-- Type IT FV

The virtual 36C under UMMPS [4,60] is a Type IT virtual

lachine system. UMMPS is a conventional multicroqrawming system

which was written at the University of Pichigan ti run on a dual

orocessor 3CO/67° The Universivy of British Cclumbis has trade a

few modifications to UMtFPS to supcort a ,irlual 361. These

iodifications have taken the form of some additional supervisor

call facilities to perfcor'm• some crucial operations in dispatching

the virtual .r3chine, cp.•ren÷ exceptional concitions occurring

in the virtual mqchine are reflected by the UHMIFS supervisor back

to a user nrogram %hich perfqrms, for example, the simulation of

orivile.ped inst-uctions. Virtual (standard) 3690s are the only

virtual machines supported by this system, 1R!ahough other user

interfaces te_'des the virtual machine interface are Provided

(SLcIC as PTS or a Lonventional batch systeml. Extensicnis to

•-44

Page 36

'JHMFS to support virtual 36:/67*s as well as the standard 36GCs

3re being designed.

2.3.6 Japanese Electrotechnical Lab. HITAC-8493-- Tyoe II FV

The HITAC-8400 is the Jaoanese manufactured version of the

RCA Spectra 71/45. It is a conventional third generation

computer without a memory mappirg system, siTilar to tte IPM

System/363. As an aid in debuaging ETSS [49], s ne% time-sharing

system for the HITAC-.,OC, a Type II virtual machine %as

constructed on the existing, vendor-supplied operating system,

TOS/TOCS [5e), The virtual machine system is very similar to the

virtual 360 constructed on UMMPS. One interesting zscect of ttis

effort was the atterpt at simulating various virtu3l 1/0 devices

that did not have exact ohysical counteroarts (such as a disclay

scoce). This was done, of course, since the virtual ,achine %as

being useo entirely to debug suoervisorv code for ETSS and not

for rurring production Jobs under its

2.3.? Hardware Modifie- 18m 36f/30-- Tyre I rV

A virtual machine sy;t-m has beer constructel on an

experimenta; 363!3a through a combInation of software and

nardw3ret i.;eo micPoorcyjrameing wodifications E7t]6 These

iodifications, wnich have been introduced in orier to simplify

virtual machine constructionD are used to imojement 3 special

"'monitor" mode, and to relocate tthe interrupt centrol s•ea from

the regvlar contrAol proqran at-ea in physical page 0I, The system Z

is not i V.TSS anc only suplportS one virtual machine. Its

Page 37

arir-;inle use is in monitoring and evaluating tne performance of

existing operating systems such as Cperatirg System/3SO (OS/3f.O),

ind the Rasic, Disk, and Tape Operating Systets (OS, DOS,

TOS/36),

2,3,8 P'IT Project HMC PCP-1O ITS-- Type 1I SV H1VM

As will be seen in Chapter 3, it is not oossible to

implement virtu31 machines or the DEC POP-i1 using corventional

third generation software techniaues, Recently, the author and

So h. Galley have irtroduced the notion of a hybrid virtual

%achine for the POP-13 [561o With this techniiiue, all

axecutive-mcde instructiors are irterpreted while all user-mode

instructions execute directly. The MIT Project wAC Dynamic

4oCelirg-Computer Graphics POP-jo has provide! an ideal

environment for this implementation* The ITS (Incompatible

Timesharing System) prcvioes the reauisite features to support a

Type II (extended machire host) VCS. Furthermore, tre hardware

configuratior. is tiessed with sutficient ccre and, at times,

enough CPU cycles to make it possible to run the HVMU [See

liscussion in Apoendix C.]

2,3,9 Grenoble Monitor System for Standard 360/4n

GI'S, Grenoble toonitor System, [58] was designel by the TBM

qrenoble Scientific Center to provide multiole 360's on a

standaro IBM 365, i.e. one witi-out relocaticn. The major

objective of the system was the concurrent supp-rt of 3 limited

"iumber of virtual mac.tines, each running Ct4S, the Cambridge

Page 3

4onitor Systems Since a standard 360 does not crovlde a remory

relocation systems the store gjag hefrtCh memory protection system

Mlust be usec in virtual machine construction. !See Acgendix Be]

Hlowever, because of difficulties in installing fetch-cra~tect (rfl a

Europear model 40, the actual implerentation had tc compromise

the pure 360 hardware definition of the virtual machines* This

led to a system in which modifications were mace to CMS to allow

it to run in this "enhancedi" environment*.

2.3.10 IBM VM/370

In July, 1972, IBM announced a virtual machine facility for

various models of the System/370 [4571. This system seems tc be a

lirect descendant of CP-67* When delivered, V~M/37C will be the

first formally-supported, comirercially-offerred VCS available

from any manufacturer.

zA

Page 39

2.4 RFLATED LITERATURE

The early literature on virtual machines dealt almcst

exclusively with the imolementation mechanisis, policies, or

aoWlications of ore particular virtual comouter system. The

treatment of policies, eoge, scheduling alorithffst peag(

replacement algoritht.s, in these papers involves largely the same

consiceraticns as in non-virtual machine timesharing or

-nultiprograirming systems. Therefore, they will not be reviewed

nere. Pany of these naoers, particularly those devoted to fremory

ianagemert appear in the annotated bibliography of Parmelee et al

(95]. Since the tnesis is concernea with levelocing

-rchitectural principles and mnechanisms, we will rot revie% the

virtual macnine applications Papers either, Howeverq some of the

,more significant oapers are listed in the tiblicgraphy.

The virtual machine implementation and maichanism papers go

,)ack to Pn early unpublished paper by Sayre (101,113] which

lescribes the IBM M44/44X work and its implications. Perhaps the

first virtual machine report to get wider circulation wes the

lescription of CP-46 produced by the IBM Camtridge Scientific

^enter in 1966 t31.

With the arrival of CP-67, a number of papers were published

.hich Cescribe the mechar.isms used to create virtual '.achines.

These papers include Field [47] and Aurcux and Hins (in French)

(9] which are the rost complete. Later papers by IRV authors,

e.g. Meyer and Seawright (85], repeat much of the same oublished

niatf-ria I.

I

Page L40

Two early oaoers dt:serve particular notes Fuchios paper

[501 reports on the implementation of the first Tyoe II VMF and

ilsc gives Insightful suggestions for hardware "imor2vements" to

facilitate virtual macrine construction. Keefe's oaoer [71]

reports on some hardware modifications attemcted with an TBM

36P/3" in order to simplify production of a non-silf-vittualizing

1•MM,

Among the authores early papers are the first caoers that

liscussed self-virtualizing systems and the develcpment of an

empirical basis for deciding which machines are

self-virtualizing. "Virtual Machire Systems"* 143 recorts on the

Jesign of a virtual 360/67 under CP-67 and a virtual 369/65 under

"CP-65" (which runs on a st?ndard 3ZO/65). This same report and

"Hardware Reouirements for Virtual Pachine Systems" [521 contain

the first published analyses of the problems involved in

implementing a VM! on a specific classt i.e. third generation

,machines? rather then an individual computer systeir

Recently, there has been increased interest in VCS~s. At

the (September) 1971 IEEE International Coffouter Scciety

Conference, the author organized a session of caoers [539941131

3nd discussion devoted solely to VCS's. ene cf those capers,

written by the author, "Virtual Machines: Semantics and Examples"'

[531 proposed some of the terminology introduce' in Chapter 2.

At the 1972 ACM International Computing Syroosium at Venice,

three papers specifically related to VCS's appeared. In "Virtual

Invut/Cutout in a Virtual Environment" [81, Ancilotti, Cavina and

Lijtraer of Pisa investigate the possibility cf allcwing an I/0

Page 41

channel to execute a orolram allocated in virtual memory* "Is

Supervisor-state Necessary?" [76] by Leuer ard Snow cf the

University of Newcastle-uoon-Tyne is a Particularly insightful

3nd well-written caper proposing the organization of a

self-virtualizing computer system based upon a relccatior and

bourds form of address relocation and no supervisor states As

will be discussed in Section 4.8, this design is 3 special

sub-case of the hardware virtualizer of Section 4.5 with f=R-R

and 6=iaentity map.

The third oaper was "Virtualizeable Architectures" [513 by

UJo. Gagliardi and the author. This paper was the first Paper to

suggest the need for firmware support for virtual machines ir a

complex cot'cutinq environmert, The design that emergelt called

the Venice Proposal (VP) in this thesis, features a hardware

Virtual Machine Identifier (VMTD) Regis.er to scecify the active

virtual machine, It was the work with U*O. Gagliardi on the VP

that lea the author directly tc the more general Todel of a VCS

oresented in Section 4.2. In Section 44,9 tlie VP is presented

and interpreted as a special case of the VCS model.

A number of other papers, not soecifical ly related to VCS~s,

utave affected the author's thinking during the course of this

tresearch. Some of these oacers ciscuss hierarchical operating

systems, layered protection structures, or ceferred resource

£ oinding, The early paDer by Dennis and Van Horn (1•40] describes

an hierarchical operating system anc suggests primitives for

interorocess control, The caper by Oilkstra (41] describes a

view of a system seen as a layered structure. The paper by

Page 42

Schroeder and Saltzer E1C61 proposes a hardware mechanism

sufficient to suoport a layered syster strictureo Evans and

LeClerc [4697?] describe a hardware addressing structure in which

3ddressesq e.go segment numbers, are assigned relative to each

Inoividual procedure call. Finally, Schells doctoral thesis

[1041 discusses the relationshio between logical and physical

eescurces and the mechanisms for electrical binair•g

*N

- -t

Page 43

CHAPTER 3.

PRINCIPLES FOR III GENERATION VIRTUAL COPPUTSP SYSTEMS

Inadecuacy of Current Designs

3.0 PLAN OF CHAPTER 3

Chapter 3 develops orinciples for third generation virtual

comcuter systems, The aonroach adopted is somewhat effpirical and

relies on a scrutiny of existirg III generation hardware and

software systems. The chapter Is divided irtc four subject

areasS (I) Characteristics of III generatier hardware, (2)

Harcware requirements for third generation virtual computer

systems, (3) Software recuirements for Type II third 3eneration

VCS 's, ard f4) Conclusion.

In the first section, we summarize relevsnt architectural

characteristics of III generation systems.

Section 3.2 generalizes the virtual machine construction

isec in CP-E7 to derive 3 set of empirical hardware requirements

for determining if a third generation architecture is

virtualizable. [Appendix A provides a brief tutorial on CP-67.1

The rules are a pplied to a number of reoresentative III

generation machines and the results are surmarizec in a table.

!Aocendix B orovides the detailed analysis of these case

studies.] In Section 3.3 we introduce the h-ybri! virtual machine

(HVP) and aeveloo its set of less stringent hardware

reouirements. Finally in Section 3.4, modest ad hoc

Page 44

"improvements" are considered to make more third generation

iiachines virtualizable.

Section 3.5 develovs a series of evoirical ocerating system

reouirements for determininq if an operating system on a third

)eneration rachine will support a Type 11 (extended machine host)

VMP* The rules are acolied to a number of reoresertative III

Weneration operating systems and the results are summarized in a

table* tAppendix C provides the detailed analysis of these case

stucies.] In Section 3.6, we propose an exavnle of a set of

idealized operating system crimitives to support Type II virtual

machines,

Section 3.7 reviews some of the results cf the chapter and

orovides some oerspective of how this work relates to Chapter 4.

I 4

Page 45

3.1 CHARACTERISTICS OF III GENERATION COMPUTER SYSTEMS

One of the most significait architectural innovations of III
AN

ieneration computer systems is the existence of two Processor

modes of operation. These two moces, variously called supervisor

3nd problem, executive and user, or master and slave provide two

legrees of Privilege for oroqrams. Thus, ocerating system

orograms, when executing in master mode, may typically invoke

certain special instructions, while user programs, operating in

slave mode, may not. These instructions normally control such

critical system features as the input/output facilities and the

setting of privilege itself. Attempts by programs in slave mode

to issue privileged instructions are normally prevented in cne of

several ways.

Another architectural characteristic of IT: generation

systems is, often, the presence of a supervisory call

instruction. Since a user crogram is orohibitea from issuing

orivilpqed instructions, the operating system normally provides a

t'eans for users to call upon it for these services. Fntry to the

7perating system is usually via a special instruction, such as

Supervisor Call (SVC, fRR, UUO, MME) which traos to a Particular

Slocation in the monitor* The monitor checks the request,

oerforms (if permitted) the desired function an: returns to the

user programo

An additional characteristic of the III generation computer

system concerns the means of addressing memory. Usually, but not

:lways, some kind of relocation and/or protection system is

C

Page 46

orovided. The menory relocation may take the form of simple

relocation and bounds (R-9), oaginq, or even se~gentatior and

oaginq. Most of tt~ese systems provide an absolute 3ddressing

m .ode when the memory relocation system is disablea. This usually

Socc.rs when master mode is entered.

III generation 1/0 systems usually communicate with the CPU

vie asynchronous interrupts which are affected by an Interrupt

control area in low ohysical core. Interval timers are set and

notify the CPU similarly.

Denning [37] has recently delineated the extent of III

ieneration systems by uncovering the existence cf a "Late Third

.eneration." Since his distinction between III and Late III is

iften based on facilities of the operating system softKareq we

ieec not distinguish them. Virtualization is corcerred with the

software visibility of the interior decorg not of any operating

system features. Later in Chapter 4, we take uo the likely

characteristics of TV generation architectures. Since many of

these same "Late Third Generation" facilities, e~g., interprocess

communication, are now present in the TV generation interior

leccrg virtualization must consider them. [See Section 4.1.]

-

Page 47

3.2 EMPIRICAL HARDWARE REOUIREMENTS

CP-67 has suggested a general approach for constructing

virtual machines on other conventional III generation systems*

In this section we will explore the application of the CP-67

virtual machine construction technique and see for which III

jeneration systems it is aoprooriate, Appendix A provides a

tutorial on CP-67 and descrites the maps wnich it effoloys, The

tey point in the simulation of a (III generation) virtual

orocessor is that sirce the host and virtual machine are

identical (or similar), the instructions of the virtual machine

iay be executed directly on the tost. Howevert because of the

virtual machine mapping construction it is necessary to prevent

certain of the instructions from executing directly on the host.

These instructions, if executed directly by a VM can cause

serious difficulties in interpretaticn or control. tSee Appendix

A9] Any instruction whose direct execution cannot be tolerated is

termed a 4ejsjt e instruction* Then the key to implementinq a

virtual machine on III generation systems is to orovide complete

functional equivalence with a real machine without allowing the

l"-rect execution of sensitive instructions.

The scheme adopted relies on a software mac•ing anJ permits

only the VMM to run in supervisor state* The vLrtual machine,

itself, is run in problem state. Therefore, if the instructions

that are considered sensitive are also -rivilegedg their

attempted execution by the virtual machine (ir problem state)

4ill cause a trap to the VMM, If there are some instructions

fJ.

Page 48

that ere considered sensitive but are not orivileqed

instructions, then it may be necessary to resort to massive

interpretation in order to preserve the integrity of the virtual

Iachine.
Whet are the instructions that are corsiderea sensitive ir a

virtual machine system? Certainly any instruction that attemots

to charge the mode of the virtual rachlie. As stated above, in

irder to prevent a virtual machire from gaining control cf the

host machine, the virtual machine must be run ii protlem state.

Moreover the virtual machine should not be permitted to out the

host machine into supervisor state in such a way as tc allo% the

virtual machine to execute any orivileged instructions* In

3rder to mairtain a comcatibility between the virtual machine and

its real counterpart, the VMM must crovide a virtual supervisor

state. See Figure 3-1. In this state, the virtual ffachinees

orivileged instructions are simulated by the VMP* In addition,

the virtual machire should not be able to charge its state from.

virtual supervisor to virtual problem state Without a orivileged

instruction. Since both of these states are actually run on the

nost machine as oroblem state, the VMM must be informed directly

or it would have no way of knowing that a virtual state change

has occurred, Furthermore, it is not sufficient to merely

orevent the virtual machine from changing the state of the host

machine, it must also be prevented from referencing it. Since

the host machine will be in Problem state when the virtual

machine thinks it is in suoervisor state, the ansher to the

question "What state am I in?" may give an inacpropriate result.

I

Page 49

VIRTUAL REAL

SUPER VISOR

STATE 0
PROBLEM

STATE

XI GENERATION VIRTUAL PROCESSOR MAP

A- FIGURE 3-1

page50

Conseoue.t 1v the inSti'uctions *hijh reference state iitorratiom

3t we'll as those that actually change it ,ust be orivileged

instructions. in machires in which this is not true, 1! the VMH

(.annoT perform some kind of ore-'intarpretationt a vi.rtual state

charge might occur withcut its knowlpdge. rs "ill)e seen in

kecIion 3.3, the hybrid virtual n'achine, HVM, orovidls another

solutior to this dilemma.

Another orobter arising from the fact that virtual machines

in virtual supervisor state musl, in fect, ne run in physical

problem state, concerns the interpretation or lack of

interpretation of certain bits in the instruction wo. -. Certain

machines use an additional bit in the instruction word only when

in supervisor state. Other machines use additional bits ;n the

3ddress portion of the instruction. These differences in

instruction executior in oroblem mnd supervisor state may be

lifficult to resolve without resorting to instruction-

by-instruction simulation. [See Acpendix P.]

In addition to chanqing cr referencing the stzej of the host

machine, the virtual machine Must be oreventeo ircm tampering

4ith or looking at certain sensitive registers and ccre

locations. For exagple, because the VMM must keep track cf the

-eal interval timer fcr all machines, the virtu3l machine must be

orevented from referercing the real clock. Since in scme

machines the clock is a register or a fixed location in core,

either the instruction thaT references it rust te privileged or

some method must be found for orctecting it through the use of

the protection or relocation system. In order t3 preserve the

Page -1

virtual machine notion, the V'M must maintain a virtual clock for

the virtual machire in some other part of core. Some other

sensitive dedicated core locations are the various interrupt

registers that are automatically accessed by the hardware in the

:!vert of an interrupt. Since the contents of the interrupt

locations are usec automatically by the hardhare, their values

Say be considered oart of the specification of the state of the

nachine. Therefore, the instructions that access these values

are sensitive and should be orivileged. If they are nots some

ither means for protection and alerting must be eroloyed.

Other sensitive instructicns are those involving the storage

orotection system and adaress relocation system. In order to

orotect the suoervisor and (Dossibly) other virtual machines from

an errant virtual macnire-, the virtual machine may never have

3ccess to any location that.is not in its virtual memory. This

iay be accomplished by Raking all storage protection instructions

privileged, or oermitting their effect only within the acdress

soace aefined by the aidress -elocation system. It •here is no

relocation system and absolute addresses are generat#p, th-in the

storage orotection mechanism must be used to set the virtual

'iemory size, orotect deoicated lower core locations froT access,

3nd protect the supervisor. In this case, the storage protection

Sinstruction must he privileQed to oermit the sucepviscr to manage

the protection keys for the host machine. If the host machine

ias a storaqe relocatior system (either relocaticn registers,

oaging, segmentation, or a combination of these) ther it must be

insulated from the zction of the virtual machine by making all

- - - - - - -

Page 5?

instructions referencing the relocation system crivileged. If it

is cesired tc have a virtual relocation system which makes use of

the host machine's relocation hardware then the effect of

telccation setting instructions must be sirulated. This

simulation includes translatirg virtual memory locations to real

core addresses.

Input-output instructions are always sensitive. It is

necessary that they be executed only Cy the soervisor in order

to isolate core from secondary storage, protect secondary storage

from virtual machines, and enatle the efficient scheduling of I/O

tasks for the host machine. Furthermore, the V"M may be recuired

to translate virtual device addresses into their real equivalents

before I/O transmission may take place. If the notification of

the I/C instruction does not occur before the 1/0 operation is

started, data may be lost or physical movement may be needlessly

initiated. Thus it is important to trap the I/C instrurtion as

soor as Possible. A privileged I/O instruction is the best

;3lutions

Thus, we are able to state the following empirical hardware

rules which govern whether a virtual machine monitor may be

imclemented on a conventional third generatior. coTputer system.

- -t

Page 53

(1) The method of instructioi executiar of
non-privileged instructions in both supervisor and
Problem state must be roughly eauivalent fir a large
Subset of the instruction repertoire,

(?) /A methoo cf protecting the supervisor (anc any
other virtual machine, if there is multicrigrafming)
from the activ3 virtual machine must be 3vailable.
This may te accomolished, for ex3mclet through a

protection system or an address translation systeff.

(3) A methoo cf automatically signalling the supervisor
when tne virtual mrachine attempts to execute a
sensitive instruction must be available. The trac eust
not cause urrecoverzble errors. It must then he
Possible for the sunervisor to simulate the effect of
the instruction, Sensitive instructions includet

a. Thcse irstructions which 31ter or cuery the
state of the machine, e.g. "Ts it in supervisor
stite or oroblem state?", "Is it in r•elocate mode
or not?"

b. Those instructions which alter or wuery the
st3te of the machine's reservei registers and core
locations.

C. Those instructiors which refirence the storage
protection mechanism, the msm~ry system, or
anything else that iS specifically used by the VMM

:.. ... :.:inq nnd m.neging the virtusl- mscnine.

J. Any 1/O instruc t ion,

Arnplication of these h~rdware rules to a nLmner of familiar

comcuter systems is treited in Aopendix B. The results of these

case studies are summarized in the table of Figure 3-2. Except

for the TEM 369 family of machines, most other ccrtemporary III

-enerition systems are rot virtual-zable.

Page 54

Hardware RuleMachine V iolations

IBM 360/67 none

IBM 360/65 none

HITAC 8400 none

IBM 360/85 none

DGC NOVA none

DDP-516 5, 3a, 3b

GE 635 3a,3c

GE 655 3o

Multidata A 3

XDS 940 1

PDP-10 3a

BBN TENEX 3a

Note: In some case, a machine which violates hardware
virtualization rules may still be able to support an
HVM. [See Section 3.3.)

XGENERATION VIRTUAL MACHINE CASE STUDIES-SUMMARY
FIGURE 3-2

.9

Page 55

3.3 HYBRID VIRTUAL VACHTNES AND PEOUIREMENTS

As we have illustrzted in Figure 3-2 [also Aopendix B] most

TII ciener-ation machines P. not virtuali-able because of

violations of the erroirical rules. Thus, it is desirable to

Jefine another construct which has the ridvantages of virtual

nachines, e.o. functicnal aouivalence to rezl Tachines, but is

feasible on a larler class of systems then (cor,.2ntional) virtual

iachines are. Furthermore this construct must be accomplished

without thp disadvantages of the ccfolete softwsre intercreter

nachine. The hybric virtual machine, HVM, defined in Charter 2

'eets both of these objectives.

Ar. HVm is functicnElly eauivelEnt to a re3l machine. All

instructions issuec within the most orivilege3 layer of tf-e HVR

ire software interDreted while all non-orivilegeo-layer

instructions execute directly. This leads to an imclementation

in III generation syste > in which virtual Crobleir state is

iacced into physical crobiem stat but, unlike the corventional

III gereration virtual ff3chine, the HVtd virtual suoervisor state

is rot also wapned into ohysicel oroblem, state. See Fijure 3-,.

Without mode-eaccing and direct execLtion of the

non-sensitive supervisor state code (as in the c3nvertional III

.eneration VCS;, the HVt' streamlines the ermcirical hardware

recuireffents. No loncer need ore be concerned that all

ion-privilegei instrtctions are insensitive tc toe iioae map.

Thus, the HVM eliminates empirical Pule 1 frow its set of

nardw..re recuirements.

Page 56

r.tt•.rots OY the virtu-l mact-irp to enter sui~ervisor state

ire directed to the VJIA, Since the VPF maintains the virtual

sucervisor state as cure seftware construct, a weaker fcrm of

lule 3a ic all that is neecee for wVM. Tn particular, we must

identify only those instructions which enter supervisor state.

Thus, since supervisor state is not mappedq a mide cuery need rot

oe eitter ard the irstruction is not sensitive. Finally, since

=-xecution in virtual suoervisor state is under thp ccntroi of an

instruction-by-instruction interpreter, tt-e return to oroblem

state instruction is nat sensitive. The interoreter itself can

reac the instruction anc observe that a virtual state chanqe has

3ccurred.

As illustratev in Figure 3-2 talsc Aopendix 3], a number of

III generation machines fail the virtual .iachine empirical

.ardware reouirements either because of Rule 1 cr Rule 3a. Thus,

they are candidates for 3n tVm.

I

Page 57

VIRTUAL REAL

SUPERVISOR -INTERPRETER

STATE(CPROBLEM•

STATE"

i0

HVM MODE MAPPING

FIGURE 3-3

Page 58

3.4 AC HOC HAROWARE 'TMPPOVF14ENTS°'

In adaition to the HVM, ancther approach to constructing

virtual machines on thir generation architectures mics ht involve

Troroshrg some ad hoc "imorovemerts" to permit eore systems to

satisfy the emoirscal remuirements (of Section 3.2). We term

these a tprovements "aa hoc" since they reseondo to specitic

)ardware deficiencies which arase in the use n struc tioe nal

III generztion software vir'tualI machine technioues. Orly in

Chapter 4 do we consider mote iafor archltectural cianges that

follow from a differert view of virtual machines.

The ad hoc imorovements we exolIope ari addressel

aredomirantly to machines (hich violate empiric3s rule t or (one

ir more suboarts of) emperical rule 3 [Section 3,2in We rill

3ssume that the machines discusseo in this section do not trac so

3s to cause unrecoverable errors* Thusq for ex-ample, e w• ill not

examine the ODP-516 which traps an entire instruction late

lAtcendix B1, Ratherv the difficulties we ccns.ider are either

iachines ir which (1) Senritive instructiors t riot trap when

ipcessaryv or (2) Undesirable side effects are caised in order to

juarantee some trap.

Ar example of difficulty I is a machine in which some

sensitive instruction is not orivileged and so aoes nct trap when

execution is attempted in oroblem state. The POP-j1 JRSTF

instruction is such an example (Appendix 81 Another case of

Jifficulty I is a machine in which privileged instructions

execute as a NOP in problem state. The Vultioata Model A or GE

Page 59

i35 demonstrate this Cifficulty [Anpendix Rio

An example of cifficulty 2 Is a machine in which many

"inrocent bystander" core locations must be orotected in order to

he able to protect some other sensitive loc:ation because the

nachinees relocation or protection mechanism is too ccarse cr too

inflexible. The 36G/65 or FITAC 8.OO must protect an entire 2K

oyte core block just in order to make several hundred sensitive

locations inaccessible [Aprendix 81.

3*4.1 Cifficulty Ore-- Non-treooing Sensitive Instructions

Oifficulty one m•ay be restated as a oroble-r Chcose the set

of privileged instructions so as to incluce all sensitive

instructions which mry not be "orotected" by some other

iechanismi Cog, protection or relocation system* The solutior to

this Problem must be formnulated in such a way tnit if, luring the

course of VFM desigrn it is discovered that 3n urinticipated

instruction is sensitive, then the architecture will still be

virtual izab le.

A valid solution is to oermit the supervisor tc make any

instruction orivileged by executing a soeci3l .T _n Qrod

(TOO) instruction. We assume that initially there are no

irivileqed instructions and that tt'e VMM is in ccntrcl. The VMM

initializes the system by executing a TOO instruction for each

i opccde, including TCO, that is to be made orivile;el. At the

time of machine design, there is no need to make 3 cormitmert on

which instructions are to be orivileged. When the VM? has been

Aritten (and debugged) and it is known which instructions are

Page 60

sensitive, then the appropriate initialization Mray ba added to

nake those instructions orivileged. Furthermore, if the computer

system is to be used for nor-virtual machine tasls, it may be

lesirable to return certain instructions to 3 non-orivilegezl

state.

It is necessary to show that the TOO instruction has the

lesired effect and that, furthermore, tha effect of TOO

instructions may be simulated for virtual machines. For the

ourposes of this discussion, we car assume that 3n occode is the

ooeranC of a TOO instruction.

Thus, there are two new instrLctions irtno-uced intc the

comcuter:

TOO-- describel above

UNTCC-- which turns off traoping for the operand oocode
and sets a condition coce indicating whett'er trapping
wes previously on.

cigure 3-4 gives a simplified example (of one possible

implementation) in cornectior with the IM 39-0. The onerand

field is assumed to be ff bits long. The TRAP re;ister is 2*m

bits. !The trap register is showe as a bit mask. This is just

one possible implementation, For examcle, it could be an

associative memory] Execution of the instruction "TCO o"t where

o is a valid opcode, causes bit p of the TPAP m3s.K to be set to

1. Subseauent execution (ir oroblem state) of any instruction

whose bit is turned on in the trap register causes a trap to

occur. Thus, sensitive instructions may be made orivileged.

The action of the TOO and UNTOO instructions may be

~T

Page 61

TRAP MASK REGISTER

0 1 8 9 10 128 130 255

08 (I) U)> l) Ul) 7
I-I-- COU) C

TOO TOO Initialization sequence for modified
TOO UNTOO 360 with trap register. -Status
TO SKbefore 'TOO LPSW' instructionSTOO SSK
TSis executed."•TOO I SK

TOO SVK Instruction is privileged if bit set
TOO SSM in trap register.

TOO LPSW

TRAP REGISTER AND TOO INSTRUCTION

FIGURE 3-4

..

Page 6?

simulated for virtual machines* The VMP keeps a copv of the

virtual machineas trap registerg ioe, virtual trap register.

4ttemoted execution, by the virtual machine (running in oroblem

state, as before) of the TOO or UNTOO instruction causes a trap

to the VMM, The suoervisor then simulates the effect on the

virtual trap register. Before the virtual machine is dispatched

in (virtual) oroblem state, the virtual trap register is ORged

into the (real) trap register. Figure 3-5 illustrates hcw the

virtual trap register is supported,

3.4.2 Difficulty Two-- UnCesirable Protection Sice-effects

The oroblem considerec here is largely one of inelegance,

awkwarcdness, or unreasonable Performance degralation caused by

the side effects of mechanisms reouired in order to limit access

to certain sensitive (core) locations* Most computer systems

have a rumber of sensitive locationsP often terired the interrupt

control area [69J] Since the interrupt control area is located

in physical core, it may be tampered with by non-or-ivileged

instructions. ConseGuentiy, it is necessary (as brought out in

Section 3.2) to protect these pnysical locations by means of the

orotection or relocation hardware of the host. Unfortunately,

the protection or relocation system is often too "coarse* to

oerform this task neatly and, as a result, other ncn-sensitive

locations may be Protected as well,

There are roughly two poirts of vie" that Tay be adopted to

avoid cifficulty two. In the first solutiong we alter the

.acl-•ne design to provice a finer grain protection mechanism*

Page 63

TRvm --- VM trap register

TRvmm.--- VMM trap register

TRs --- traps for sensitive instructions

to run virtual machine ----

TRvmm TRvm V TRs

trop on opcode p

peTRs p0TRs

SISIMULATE SIMULATE:. PETRvm TRAP TRAP

SIMULATE EXECUTE
INSTRUCTION NORMALLY

VIRTUAL MACHINE SUPPORT FOR TRAP REGISTER

"i r'IGURE -5

Page 64

Instead of protecting core or the basis of 2K olocks (3s in the

360/65)9 we can do it or a word ba-is. We introduce a scecial

iew irstruction Trap On Locatior, TOL, whicn m3v be used

anfIogousIy with TOC (above) to initialize the sensitive

locetiors for a virtual machine. After a location has been

TOLed, an attemot to reference it ir oroblem state causes a trap.

There are a number of different ways in wrich TOL may be

implemented. For exarole, an associative memory car be used to

iold locations that have been TOLed. Or, each hord of memory may

!e associated with one bit which inoicates if it causes a trao on

reference. This second inclementation hss been used in the

lesign of the TSPL machine at the PAND Corporation (11,12]. The

first imolerentatior with a one word (associative) mevory has

ieen used in the IBV 44 191] and the MIT Art ficial Intelligerce

"Laboratory PDP-10 161,621 to simulate aodress stoo switches.

In the secono solution, we remove the sensitive locations

from main memory and place them ir some u'.addressable or

Jifferently addressable memory. In order to access this soecial

memory, we reauire a reh privileged instruction. See Figure 3-6.

In some machines, eq. 360J/67, 370, .hl•s type of auxiliary memory

is sometimes called control memory or control registers. There

are several good reasonr for aooDting this solution. First

asscciating sensitive locations %ith oD-ivile.ed instructions

which access them provides a hor'ogeneous mechanism for virtual

machine trapping, Ancther reason for adopting solution t~o is

that some of the locations in the interrupt contrcl area are an

inlimate Part of the cescription of the state of 1'he orocessor.

Page 65

F
CONTROL MEMORY

AND REGISTERS UNADDRESSABLE

BOUNDARY __MEMORY

REGISTERI ADDRESSABLE
MEMORY

MAIN

MEMORY

SENSITIVE LOCATIONS IN UNADDRESSABLE MEMORY

FIGURE 3-6

l1

Page 66

Thus, they shOUld bP associaled with the orcc-ssor ion a more

individual basis) as the PSW is.

Soluticn two as an 3d hoc imcrovemert w•s recognized by

Ftchi et at 150] in their wor"' with a virtu3l machine for the

'iTTAC P4)1.

We have two oroposals for further hardware

improvrments. One is that memory orotection shoull
become ,more flexible to irclL -- read protection.
The other is that the ChW stor=Le area and the
timer shoula be moved from the M31r core memory to
the scratchnad memory, The latter Takes some
trouble in simulator construction and is inelegant
from the logical designer's point of vie" (5"].

If all of these reouirements are met, 1e coull
builo a more natural simulacor *.. 150].

As fertioned above, the System/370 incoroorates sone asoects

if solution two. Some of the new, sensitive loc~tiors nave been

nacle "ccrtrol registers" and are accessible only via orivilegeN

instructions. The new channel and CPU identification numbers are

invisible and accessible only via o-ivilegeo instructions. The

new 37, clock is invisible znd can be stored int3 Orly with a

orivileqed instruction. Unfortur-ately, it may be re3c by a

ion-orivile.ed instruction.

4-•

I

Page 67

3.5 TIT G6NE.ATION IMPTqTCAL SCFTWAPE REOUT•E#VENTS

Tn Section 3.?, we develooEd the emcirical hardware

-eouirements for lyne I virtual machines. In. this secticn, we

31d the empirical software requirements that m.ust .e introduced

for Tyce TI (extended machine host) virtual m•chines, Recall

that a Tyop 11 virtual machine system [Chapter 21 is one in which

the virtual machine mcnitor runs under a host o3erating system

-atther than on a bare hardware host machine.

Thus in Figure 3-7, hardware events such as the trao caused

oy an --ttemot to execuye a privileged instruction in the

supervisor state of the virtual mach'ine [ohysic3l irotlem state],

get Passed to the hcst operating system. This 3perating system

then gives control to the VMM (under it) which ray oerform

orivileged instruction simulation for the virtu-l machine*

A Type II virtual machine may be desirable in a number of

circumstances as Dointec out in Chacter 2. Because a Type TI

virtual machine supervisor has a (Possibly) ,ici set of

supervisory services (SVCes) available to it courtesy of the host

3peratin4 system, it often reouires less effort to imnlement a

Type IT system than a Tyoe I system. At the s'•ma_ time, however,

the SVC's and the SVC mechanism must be of a form that does not

nake it impossible to inolement a Type II virtu3l machine.

Thus the dilemma. The host ooerating system rust provide

those supervisory services (primitives) that maa4e efficient "he

implementation of a Tyoe IT virtual computer systet, witPout

naking it impossiole.

Page 68

I I

TRA PRIVILEGEDSI SIIOL"ATIO

VMMU .1014

VIM supervisor IJ

VMproblem

TYPE]I VMM

FIGURE 3-7

Page E9

Since the empirical software reauirements will comolement

the empirical harcware reouiremerts, we begin our search with

3nother look at the requirements of Section 3.2. Empirical

iardware rule I still remains valid. The introduction of the

idditional structure ' an operating system between the virtual

nachinet VMVt and the hardware must do nothing to invalidate rule

The Tyc(Il system version of rule 2 is that there must be a

oritritive available to protect the virtual machine monitor from

the active virtual machine. Since the virtual mnachine mcnitor

4ill be running ip ar irsulated environrent that, li'ielvt will

3revent it from utilizing the Protection or relocation hardware

lirectly, there must be a system primitive that it can invoke to

obtain the desired effect.

Rule 3 must be modified to indicate that wnen the virtual

iachine travs, the operating system supervisor Girects the signal

to the VVF fcr processini, Since the operating system ard VMM

are no Icnger a single unit, there must be a methcd of

communicatirS to the ooerating system supervisor that the virtual

machine is a particular subprocess of the VMM and that all cf the

ipprooriate virtual macnine traps are to be directed to the VtPM.

The mechanism for settin.p up the sutprocess and indicatirg where

the signal is to go may be accomelished either by a formal

sutcrocess Primitive, or it may be an informal crocedure that is

mace up of a number of the other primitives. It is not

sufficient for the virtual machine to mere'y signal the VMM. As

beforet the trap frow virtual machine to VMM (not by way of the

Page 70

)oeratinj system) must not cause unrecoverable errors. It must

be possible for the VMP to simulate the effect of the ooerationo

Thust it is not satisfactory to set up a subcrocess in which

3nythipg that appears anomaIlous is corsidered to be in error and

the subprocess is destrcyed. This is actually fairly common

imorg systems.

Since primitives (SVC's) alter or query the state of the

iact-ine, they are sensitive accordirg to hardware requiremert 3a.

Thus, their attempted execution by the virtual m9chine is

forbidden znd must cause a trap to the virtual machine

supervisor, Conseouently, the operating system reauires a

orititive that may be used to turn on or off the SVC's for a

subcrocess. Tn the case of a virtual machine, the VMv oould use

this primitive to shut-off all SVC's. ,is, of course, includes

the SVC's to turn on and off the SVC's.

Note that in a well desigred "user machineO t4297519 system

orimitives replace the hardware instructions to accomolish the

sersitive instructions atbic, and d of Section 3*2. Thus,

shutling off the SVC's makes these sensitive instructions (along

witn all other SVC's) tr3p in the Ouser machine."

Thus, we are ;b'e to state the following emoirical software

?*ules which govern whether a Type II (eutended mschire host) VCS

miay be implementea under the operating system of a virtualizable

third generation coiouter system.

I_

____- --- ~ -~ - - -

a .. . -- -- t-

Page 71.

('I) The nethod of instruction executior of
non-privilegec instructions in both supervisor and
problem state must remain equivalent for a large subset
of the instructior repertoire.

(S2) A primitive for protecting the virtual machine
monitor (and any other virtual machine if there is
multiprogramming under this VMM) from the active

virtual machine must be available. This may be
accomplisheo, for exarple, through a orotection
primitive, address translation primitive, or some more
general subprocess orimitive.

($3) A primitive to tell the operating system
supervisor to signal the virtual machine monitor when
the virtual machine attempts to execute a sensitive
instruction must be available. The siqnal to the VMM

must not cause unrecoverable errors. It Nust then be
possit-le for the virtual irachine monitor to sifrulate
the effect of the instruction. e sensitive

instructions are the same as for the hardware
requiremerts.

Aoolication of these software rules to several computer systems

is treated in Aopencix C. The results of these case studies are

summarized in Figure 3-8. Except for the ITS9 Incompatible

Timesharing System, which orovided the necessary crimitivest the

3oerating systems exawined either failed the emcirical rules or

reauired ad hoc or specialized solutions.

Page 72

Operating System Software Rule Difficulties

HITAC 8400TOS/TDOS Ad hoc solution (Se÷ S 3)

IBM 360/67 UMMPS Specialized solution (Sz+S3)
(SVC SWPTRA)

IBM 360 OS/360 Violates rules (S2 S 3)

DEC PDP-10 ITS Satisfies rules

IBM 360 CMS Specialized solutions are
possible. 4

II] GENERATION TYPE 31 CASE STUDIES-SUMMARY
FIGURE 3-8

- - -,.'---.

Page 73

Z.6 SOFTPRF. r" 'MITIVFS FOP TYPE IT VCSOS

As We have illustrated in Fioure 3-8 [also Acoendix C1, most

III generation opertating system.s are not designed to suoport Type

II VCS'se The systems %Piicn do have largely beer, rewertied to do

so. From the experience with the ITS Type IT HVM1 [Apcen•dix C] it

becomes possible to indicate tr-e kind of ocerat inql system1.

oriritives that would simolify the support of Type II thirl

generation virtual x•chines. To avoid the usu3l problems with

isynchronous I/O, we will discuss the primitives inly with

respect to the CPU and memcry of the virtual machine*

The ITS UUOVs, for example, provide facilities slightly

lifferent from those needed in supporting virtual machinos.

Since the goal of the ITS primitives is to sucport ar extenoed

machine environment, the primitives orovide greater flexibility

thar is nee leI for virtual machties. For examples in ITS a

superior may destroy all of the inferiors in the sub-tree below

it. In a virtual machine ervironment, the VMM need only be able

to destroy an immediate inferior, since that is the extent cf the

sub-tree. Support of aaiitional levels of virtu31 vachines is

transparent to the VPI and resides with the secord c. y cf ITS

3nd the second VMM which are running in the level one virtual

flachinet The coDy of ITS in the real machine does not Ktnow about

the level two virtual frachine and only sees a level one machive.

'4ence, the primitive is m.ore general than is soecifically needed

for VMM construction. See Figure 3-9.

Z- Other primitives, such as the Cennis-Van Morn orimitives

Page 74

NP.

P1 -VMM

P1. V VM

*VMM
VMM

Vm

Typical Multi- level Type [Two-level
process tree Virtual Machine Tree.

The VMM only sees one
level beneath it.

PROCESS TREES

FIGURE 3-9

Page 75

(40] and Lam,-pson (74], are concernec with Supporting dynamically

changing relationships between processes. This feature may not

be necessary with virtual machines*

On the other hand, onerating system ,rimitives usually do

iot directly support such intimate hardware features as the

relocation system, Thus, for example UMPVPS had tc introduce

3WPTRA to Switch segment numbers.

A set of possible virtual machine primitives is orooosed

nelowo The intent of this set is to indicate the simolicity of a

VMM that might be orogrammed using theme This example omits the

consideration of I/0 or time.

l ruIoc,!,k, oo°

This Primitive creates an irferior virtual machine

orocess. The parameter Ioc indicates tte location to

transfer to or a trao from an inferior and i is the

virtual machine's identifier. The ither parameters

might indicate virtual memory Size, relocation or

protection information, virtual processor instruction

counter and register va!ues, maximum cuantum, stc.

(2) a i :

Activate or reactivate sus•re%'" ' iir;ual machine

o. Apply VMmao to derive nh,'- - •,ster values from

virtual values. VMM goes to sleep.

(3) -&t.b sltalus i,, w:

Obtain virtual register or memory location ! from

- 14 ~ S

Page 76

virtu3i machire i and write into word w of the VMV.

(4) 1set t atus lJw

Write corterts of VM? word w into virtual register

or memory location 3 in virtual machine i.

r r) g~•r•.

Destroy virtual machine i1 This cermits the

identifier i to be used again.

Given that the host machine satisfies the Type I hardware

reauirefrents, then a Tyre IT VMM (non-HVM) may be orogrammed

isirg these •imitives. I
vmm: ilvr~imcD oc, 25E.K, ,

I oc: _feS .Qhb s '•.2. _j , i, !,w; -

('.IMULATE OFFENDING INSTRUCTICN)

.•e s _•.us i,],w •

The amount of status fetching and setting and simulation of

sensitive inttr..ctions varies according to the machine's

complexity and the cifficulty of virtualizing° :n a III

;--reraticr machine which is easily virtualizabje, the

irnplemertation of the VMM sketcted above can be red'iced to a

stra"ghtforwarn program.

ti

Page 77

3.7 CONCLLSION

The main result of Chapter 3 has been the substantiaticn of

the unsuitability of most existing ITT generation systefrs for

supporting virtual machines. We have shOwn that the

architectural chara.cteristics of ITT generation systeffs and the

definition ot virtual machine leaC to a particular software

construction of the virtual machine m.o. For exaole, the

orocessor component of this software map takes the orivileoed

layer of the virtual prccessor into the uncrivileged laver of the

real machines This immeoiatelv leads to 3 set of emoirical

reouirenents, e.g, instruction execution must be insensitive to

the software layer maoping, which oistinguish III generation

virtualizable architectures* A number of exagoles reveal the

startling fact that most third generation architectures are not

virtualizable. That CP-67, the best known virtual machine

system, could be constructed on the IBM 361/67 was a happy

3ccident.

In response to difficulties with virtualizing most III

jeneraticn architectures we pro;)ose two alternatives* First, we

introduce the hybrid virtual machine which has less stringent

hardware reouirements but potentially tore overhead than the

virtual macl-ine. Then, we propose a number of simcle ad hoc

changes that might be made to III gener3tion machines to sirplify

virtualizat ion.

The rest of Chapter 3 is concerned with imolementing a Type

HI (extended machine host) VYM1 on a third generation operating

Page 78

system. The virtual machine construction is b-•sically the same

is before. However, noA the •'MM must manilmlate its conionent,

using the Oprimitives of the host operating system. Tt-is leads to

3 series of empiprical reavi rements , e.g. there must be an

eprating system pr'imitive to shut off all SVC's of the virtual

nacthinet that distirguish Type 11 virtualizable operating

systemso Crcev againj most third generation coerating systems

ire not Type If virtualizableo The magnituce of this lack Is

,ninted out by the ease of implementing a Type II VMM or an

ioeratirg system that is virtualizable, e.g, the Tyos TI HVM

under F'ITes ITS for the POP-1O [(ADver.dix C1. ro further

accentuate this fact, we cropose a set of virtua machine

-rimitives and show the -ase of develooinq a Tyoe TI UMM using

thego

However, the Tain tvoint of Chapter 3 has teen that no III

weneration systems fha'cware or software) have been cesiqned wiil

the intention of sucoprting virtual machines. This has forced

vuirtual .rachines to be introduced via a Particular IIt generation

software construction. Requirements imposed by this construction

in turn, hzve disqualified almost all III generation machires

from sucoorting virtual .machines. Even the few existing systems,

a.g., CF-67, require corsiderable scftware suoport %hich i.olies

levelooment and implementation costs, and sub-octimally efficient

operat ion.

These consequences lead us to search for machine

3rchitpctures, scecifically intendeo to sulport VCS'so As noted

in Chaoter 1, these considerations gave rise tc the crocosals by

.V .---

Page 79

Lauer an! Snow [7i) and Gagliardi ard Goldberg M319 While the

.0del of Chaoter- 4 is developed sceeifically in connection with

oroviding for the ordorlV introduction of virtu3l machines irto

the IV generation, the principles which result art, ,,ner'[''1

arplicable to all architectures. Thus, by suitable
inlerpretation of the model we can develon orincioles for IIT

jeneratijn systems* This approach is illustrated in Sectior 4.oq

-A

14-1

9 . :"4,

I ~page 80

CHAPTER 14.

PRINCIPLES FOP IV qENERAITON VIRTUAL COMPUTER SYSTEMS

The Virtual Machine Mao and its Firmware I.ilementatior

I" Q4. PLAN OF CHAPTER 4

In Chapter 4, we will discuss the problem of introducing

virtuil computer system czoabilities into the IV generation. A

Secent paper 1511 points out some of the inherent difficulties

Sind comolexities caused by likely IV generation architecture .nd

irgues for Z hardware-firmwz.re assisted virtualizer built into IV

-'• jeneration computer zyst.-ems, In this chaotetq he carry the

iotion of hardware virtualization somewhat further and orovide a

Seneral framework for viewing virtualization of a IV ieneration

computer system. Furthermore, the result that e-erges is

3ppliccble to less comolax architectures as well.

Scctior 4.1 introduces the likely char.act-.ristics of IV

ieneration computer systems architecture. The orircical

irchitectural developfert of such systers will be a formalizel

firmware implementation of orocesses. A correSocndin. model for

-3rocesses is introduced; the process map, 6, maos process naffes

into resource names.

Section 4.2 develops a model for a IV genaration VCS. He

introduce the virtual machine map (or resource vac) f wnich maps

virtual resource rames into real resource n3mPs. Then the

virtual wachine map is combined witt the Process mnap of Section

-_- g- .a -, 4 -. -

Pa.ge 81

401. Tne composition 3f the two T'aonings, f o t, expresses the

mapcirq from orocess names to real resource names, and thus

expressps the maDDing of names accessible to a orocess executing

on a virtual machine* Other related notior-s, such as recursion! nd Type IT virtual nachines are introduced int. the molel. Some

-elementary prooerties 7f tne maps and virtu3l systems are

4nurer -.ted.

Section 4.3 un;es the model of Section 4.2 to point out theL unsujtability of t software implementation of the m3p f (Bs Was

studied in Chapter .) for a IV generation VCS. The argument

lecends on the complexity of the orocess ,ip, 6, and the

likelihood of 6 v'isibility by, say, the inner layer suoervisory

software. A specific exemole of the kind of difficulty a

software ip lementation of f might cause is developec for

orotection rings,

Section 4,4 discusses the Venice Proposal, Vo, introduced in

"Virtualizealtle Architectures'" [511. The VP orovices an in~teri~m

proposeI for the design of a hardare- f irmware assisted

virtualizer (HV) for a IV generation VCS. The advantages and

disadvantaqes of the VP are pointed out usinq the model of

Section 4.2.

Section 495 introduces the design of a hardw3re-firmware

virtualizer based direcTly upon the model of Section 4.2* The

initial objective is automatic virtualization of CPU-temory

orocesses (with a minimu.m of software intervention). The new

instructions introduceat modifications to the system base and

exoecteo cerformance are all indicated.

4

-~ -- ,~ ~-~p-

IF

Page 82

Section 4.6 provides a number ol detailedi extolles to

illustrate instruction executions on virtual com.puter systems

cons+ructed with representative hardware virtualizerso

5ectior 4.7 briefly considers some of the subtler problems

raised e3rlier in the chaoter, Proner virtual treatment of

input/output, ; lechnolojical difficulty, must 3wiit Croqress in

the real treatment of inout/outouto In the interim, some ad hoc

solutiors to 1/0, derived from III qegeration technioues, are

orovidea.

Sectior 4.3 applies the model of Cnapter 4 to a

reconsideration of second and third generation covouter systems.

One design tlhaI :mergest the "f=R-B, 6=idef.tity*' m3chine, is

;imil3r to the machine recently orooosed by Lauer and Snow 1761*

The other design yields a modified ItM 3i.'! with a greatly

streamlined CP-67o

jr

N

Page 83

4aj CHARACTERISTICS OF IV GFNERATION COMPUTER SYSTEMS

The mosi distinctive architectural characterislic that will

he fourd ir IV generation machires will be the refinemert and

formal imole.,entation in firmware of the process model

[31,37,41], .ccording to this view, ectivities in a computing

system will ' e uerformed by a number of cooperating seauential

processes) each accompl| ishing some elementary task and

communicati!;% among themselves via a well-defined iechznism,

Furthermore, the processes themselves will execute in an

environment extended to include idealized objects, such as an

idealized address spaces

This view of the likely characteristics of IV generation

architecture is based on the pacers by G.M. and L.O. Amdahl

[5,7], the Plauuw paoer [19], the morris paoer [1719 the Infotech

oook [703, and, particularly, on the existing Mitre Ccrooration

4ENUS system as Cescrioed by Liskov [79]. Furthermore, we

observe that key software features of generaticn D are often

those features that are included in the interior decor of

lenerati-n p±Z. Therefore, Oenning's recent tutorial [371 on

(the software of) Late Third Generation systems strongly suggests

that the process model will be incorporated iptC future systems.

Thirn generation computer systems rely on 3n ad hoc, purely

software imolementation of processes [37]. Tnu_, tPe choice of

arimitives, organization of tables, names of o3)3cts, etc., is

not fixed and may be chosen by the software sucoort. This

implies that, for a given III generation systemq there exists no

Ii I i a l I i I~ II IJ i t• -

Page 84

fni.ue implementation of orocessesZ

By contrast, IV generation comoute: systsms %ill featur. a

firmware imolenentation of processes. The corrlete collection of

status information for all processes in the systev, will ne calle!

the system base [51,871. The firmware will k noh the base

location of the system oase, the RCOT. Since taoles and ccntrol

olocks will be of fixed (pre-assigned) format, 4n.wleJqe of the

ROOT is sufficient for the firmware to locate any ele.ment in the

system base* The system base will te located in main memcry.

For largely economic reasons 51,871, the systev tase will likely

31Sc he accessible to the inner layer, raos+ p-ivile;ei softtare

[see below]. However, durirq process execution, the system base

is referenced and uplateJ directly by the firtwav-eo

The system base will incluce elaborzte orocess con t rol

blocks, oueueing data bases, address space words, etc. [51,871.

See Figure 4-1. Tne jueueing cata bases will ce usec, for

ixamples by the firmware disoatcher to invoke the READY orocpss

with nighest oriority L991. The oueueirg data o.ses 4ill a!so be

used by the firmware in imolementing interprocsss commtunication

via Oijkstra's P-ooeratiors, V-ooeretions, 3nd 3e~rahores

The process control blocks, (PCF's) wil I oq oirted to by a

orocess table whose location can be derived from the IOCT* Thust

3n integer nisolacegent in the process table, the o-ocess-id,

identifies a oarticular orocess and tne Ilcstion of its

corresponding PC9. The PCR will contain sucn in~for7ation .as

temporary storage of the central orocessores (CPU's) register

iMa

Page 85

PROCESS TABLE PC BI

ROOT
(SAY 0) ACUTN

RUNNING6 PROCESS WORD RGSE TRG

0-READY PROCE.Z~ES

(:-:-ENAPHORE 'TABLE

ACTIVE PROCESS LINKS

MAIN MEMORY

SYSTEM BASE

_ _FIGURE 4-1

P:39e 836

values, the priority of the process, and ar aaolf.ss Soace word.

The CPU 4ill contain a crocpss-id register whosa value ilentifies

the orocess in execution. Thus, there exists no notion of an

3bsoluto mooe; qxecJtion is always on behalf -f some orocess.

Loading the crocess-id reqister activates the sub)ect orocess and

instructs the fif-mware to obtain reqister values, etc. frcm the

orocess control block (F09). Tn particular, tne adcress space

4orc is referenced anI used to form the memory m30. Thus, there

exists no notion ,f an Fusolute addressing mode; all addresses

a•re. mapped*

The icealized adrorss space will likely te a segmented

layered structure 116,3598E9!2,91. Such a structure czn be

viewed as a generalization of the two :ayer Master/Slave modes of
TTI qeneration systems. As the layer or ring 7.1-63 nutoer if an

3ctive orocess decreases, the ability, by that cr-cessq to access

segments in its segment table -ncreases corresooniinqly. In ring

1), the most priviieged layer, supervisory process.s can also be

axpected to utilize a small set of necessarily orivileged

instructions. Privilegel rinq nrocedures of proc-•.ses will also

likely be invoked ny process exceptions. This is the

generdlization c< the trap to master mode in III generation

.y sten~.3

Thp I/O systems of IV generation comuter systems will

likely be similar to those of the late III gener3tion, e.g. .BM

System/37'. In particular, IfO-.temory processes oill very likely

not ne formalized to the extent that CPU-mn)nrv procasses have

"oeen. i/O processor (channel) operations will execute in an

. . __ -•;•* i r _ S

Page 87 4

3bsolute mode without process-idos or segmentei addresses 18].

All address absolutizing, status maintenance, etc. will be

oerforred by software in an ad hoc manner [701. As a result of

the lack of progress by IV generation designers in 1/O process

formalization ani iNrolementation, the IV generation virtual I/O

consilerations are Iargely the same as those of the III

I generation. Conseiuentiy, most of the discussion of Chapter 4

waill omit 1/0; only ,i Section 4.7 will we illustrate III

generation technioues for introducing virtual I/O in IV

generation systems.

A model of (CPU-memory) process structure ta, be ottained by

3 scrutiny of the system base. Execution by the CPU is always on

behalf of some process. Hence, the names used by individual

instructions are always process namesv whether they are local or

global (system-wide) names* For examoles data or instruction

addresses are always loc3l names, defined by the segment table of

the active Process control block (PCE). Process-id's are global

process names and their meaning is defined for 11 Processes via

a single table in the system base.

Effectively# then, the system base relates two classes of

objects--those used by processes (whether local 3r global) and

those related to the actual resources. The process names are

idealized constructs while the resource names are cetermined by

the hardware. There is no requirement that or3cess names have

-%i-.-

Page 8.8

the sz fre torn or structure as resource naes. Thus, in

iarticulars it becomes possible to snezk of 3 -rocesc. hiving a

segrente1, multi-differsional address space. In contrast, the Y
real (anJ virtual) memory resource zddress soac3- nustt 3f course,

1e lirePr to mirror ohysical ccnstruclion. The distirction

3etween neriveo 3nd orimitive resource names, such as a searented

ind lirear remory, is discussed in "Virtualizpa',Ie Architectures"

(511.

We call the nFmes used by cro(,:sses, oricess names or

'•-names and' those usel by tne hardware, resource names. In

;articular, the real resource rames used by the ohysical hlrdwere

are called P-names, (However, as we shall see oelow, V-names are

r31s resource names.] It will te necessary to discuss 3 .zooinq

function, 4, which is imolementec via the system base ano maps

orocess names into resource names. See Figure 4-2, !In Figure

4-2 and all figures that follow in Sections 4,1-4.*4 orocess

spaces are representeo by circles and resource scaces by

sauares.]

Let the process Space names be P=CpilvI, e..., o33. As

Jiscussed above, P incluies the process memory sc.•ce names and

semaphore names (for the active process], all . rocess-i!*s, etc.

Let R=fr'trI, ... , rb) be the (real) resource space names. R

also includes the processor and (at least conceptually) the T/O

"^esource names, as sell as the mefrory names, Then, for the

active orocess, we oravide a way of associatiqg process names

4ith (real/virtual) resoirce names during process execution. See

.,

Page 89

P : U I{el

4' (x) if y is the resource name for process name x

e if x does not have a corresponding resource

se

R

Examples:

1 4' ~2) =6142
if seg 1 at location 6000

4'(1213) e
if seg 12 does not exist

S(sem 2)=-5000
if sem 2's header at location 5000

'(process .id 40) = e
if process 40 does not exist

THE PROCESS MAP

FIGURE 4-2

Figure 4-2. To this enct via the system tase, lie define, for

each moment of time, a function

6: P--->Q U Ccl

Sucth that if x e P, y e • then

4(x) =CY if Y is the resource nFme fcr orocess name x
C

Ce if x lops not ha've a corresco-ding resource

The value ,(x)=e caus.,s an exception to cccur to sole •xceotion

bandling procedure, presumably in ar inrer laye- 3f this process

3n this machines Ya avoic confusion with virtu3l itachine faults

[Section 4.21, Process faults will always te callei excaotions.

Section 4.6 orovides detailed examnle! of th- process map,

b. For clarityq a faw simple examotcs fellow* Throughout

T.hapter 4, we adopt the segmented address rotetion, sld, where s

is the segment number and a is the offs.t Aithin the segment

(86,921.

Examoles: (11142)=6142 if segment I is located at E0O'

6(U5'.:1)=e if seg 2:r does not exist

i(315;[JO)=e if 5 !:, outsile bounds -f Segment I

6(sem 2)=F-G", if sere 26s teader at local;on 5112.

Page 91

*6sem i3)=e If sere 1ý does not exist

.(process-id 15)=400, if PC9 for process 15 at Ioc i)^

$(process-id 4J)3e if process 40 does not exist

iH

3ý

Page 92a

4.2 l4OCEL OF A TV GENERATION VCS

In order to orooerly model the runrina of a crocess on 3

virtual mact irn, it is necessary to first clarifv what is me3rt

by a virtual machine and whý.t are virtual resources. T) do this,

Ae formr.lly introluce ar'1 j-entify an irroortant n.w conceot, the

Y~iErMZ1 EhinP IEM (VMn3P) or resource m.r. Th't VMm3o exores•es

the relationshio between the resources of a virtual mrchine anl

the resources of the 'eel host machine. Conseauently, the VMfraB

is a notion which exists comoletply indepoendently of tie orocess

iap or, for that matter, ary software visible o.ocOSs 31r-uctu.e.

"zeQzration and isolatian of the resource mao (VM,.ao) has often

ieen corfused or overlocied by nrevious authors [31,7a,108]1 ard

this perhaps accotnts for the 13cK of succ'.ss in lesiyning

easv-to-orogram virtualizatle zrchitectures.

VM M. f

A resource name used bY a virtual comCuter y•ystem will be

called a virtual name, virtual resource ni-me, :r V-n3me, ar, the

set of virtual names defines a virtual snace or environment. A

-esourc. namve used by the ohysical htrdw.ire is calte.d z. real

iame, real resource, or R-nzme, ano the set of real names i-%

called the real soace or envirornment.

In the resource soaces, real and virtual, we lust include

the processor, memory, 10 system and any cona-ctions t)ethwge

them., For example, resource names must qxi,3t f-r every

Page 93

-,adressable unit (bit, tyte, word, etc.) ir the OhYSiCal remory.

lesource no-es must exist for every orcoce ot the crocezsor.

4ames are also needed for all I/O cevices.

Therefore, the virtual computer syster construction recuires

i mapoi.in function that will mao the comriete set of virtual -•

resource names into their corresocrding physicsl resource rames,

This maooing function is illustrateo in Figure 4-3. No a oriori

issumotion is made ?bout the nature of the wio-irg functior f.

[Hosever, the implementation nort of th9 VM definition (Section .

2.11 inolies that oncE the maoninq iS establishel most

instructions of the virtual machine execute Jirectly or the

ios t .] The mapoing functior f is cellec the vintJal T3Cnine ir.aC

,-escurc.s mar, or VMmap,

For futurr reference, we oenote the virtual soace names by

J'=(vOv1,*..va) anc the real soace names by R=(-ý.rtq,,,rt), V

is the resource soace of the virtual machine ard 4 is the

resource soace of the host. We make no assumotion, hsre, about

the relative sizes of V 3nd R. goth V and P inciule the memory

space names* But they also include the other r?siurcesq as welt.

For example, we can imaqine ordering the opco-:es by assigning

thew the names following the memory soace names in V and P,.

Lauer and Snow [761] have ooserveo that it may oe sufficient to

consiler only the memory space names since other resources are

often codeo to aopear as memory. For example, tney observe that

the accumulators of the ,]EC PDP-IC and the I/O 3evices of the CEC

DOP-11 are each addressable as memory locations.

Since we assume no a priori correspondence between virtual

Page 94

f: V-R UjJ

f (y) z if z is the real name for virtual name y

t if y does not hove a correspording real name

V R
(level n+1) (level n)

Examples:

f (6142) 12142

f (25000) t if 25000 out of virtual memory

f (processor 3) = processor 2
if virtual processor 3 is real processor 2

f (processor 2) = t
if virtual processor 2 not assigned

THE VMmap f

FIGURE 4-3

Page 95

"ind rpa! namest we must incorporate a wfr t of assciating virtual

names with real names Jurinq execution of the virtuai :.achine.

To this end, we define, for each Toment of time, furction

ft V--->>R U Ct)

such t~hat if y e V an; z e P then

f(y) = CZ if r is the real name for virtual name y

Ct if y Joes not have a corresooniing real name

(he value f(y)=1 causes E trap or fault to soam fault handling

irocedure in the machine R, For clarity we alw~vs term a VM

fault & fzult, never an exceotion. The soaces V .no R iefire two

virtui! machincý levels. We say that the virtusl mzchine V is at

I higher level than the iachine Re If the level of R is n, then

the level of V is n+1. TIf P ;s the physical .achine then it is

level 0. Thus, a VM-fault is a VM-level Vault ar3 cortrol casses

to a fault handling machine at the next lower level. See Figure

In IV generatior systems, running the virtual Machine

V=fvC,vj,...vb3 imolies running some Drocess P=(oroi.o.pal on

the virtual machine. This defines 1he waocinq

6: P--->V U Cel

is bel-ore, with virtual resource names, V, sutstitutel for real

3nes in the resource range of the mao. See Figure 4-5a.

The virtual resource nzmes, in turn, are mio~ea into their

A

Page 96

LEVEL

00

n-I1•
0A

nII

f n +1

VM LEVELS

FIGURE 4-4

. .

kirl

Page 97

p(a) v

R

(C)

FIGURE 4-5

Page 98

real eauivalents by the map, f$V--- R. See Figure 4-5b. Thus, a

orocess name x corresoonds to a real resource f(6(x))* See

Figure 4-5c. In general, process narmes are manned into real

resource namens under the (composed) map

"f o 6: P --- > ' U (t3 U fe..

Section 4.6 provides examples which illustrate mapping

orocess names under the composed map f o 4.

There is no a priori reauirement that f or 6 be of a

particular form or that there be a fixed relationship between

theo. [Howover, in some sense, 6 corresponds to how the users

4ould like to program the machine while f corresconds to how the

system would like to utilize its resources.] We discuss this

poirt further in Section 4.8. We have inaicate! that in IV

jeneration systems, the memory component of the map 6 will likely

oe segmented. Since f maps resource spaces, its uemory comconent

cannot be segmented. The only requirement of I and 4 is that the

range of 4 be incluced in the domain of f° (Figure 4-5c)

We further distinguish between I and 4 by contrasting the

notions of level and layer in IV generation virtual computer

systems. As previously stated f establishes a level relaticnship

between a virtual machine and its corresponding real machine.

Thus, f exists as an interlevel map,. On the other hand, 6 is an

intra-level map, mapping process names into a p3rticular level of

'--. - ----- •-

Paqe 99

resource names. One characteristic of the 4 mao in IV generation

systems will be layering. Thus a IV generation VCS will be

nulti-lIyer per level. [See also Section 2.A.]

In the event of a IV generation VCS process name exceptint

control should be given to a more privileged layer within the

same level. A virtual name fault, however, should cause a fault

to a orocess in a lower level number machine. Sea Figure 4-6,

Another contrast between f and 4 concerns their visibility

oy software procedures. Since 6 is an intralevel mao, the inner

layer nrivileged software of that level will likely manipulate 6.

:4oweiert f is an interlevel map. There should be _no _•aj in which

software at level n+i (regardless of layer) can access the f

which maps level n+i into level n. Thus, the f-Tap is jynLjj;.le

to all software at level n+i

As discussed in "Virtual Machines$ Semantics and Examp!es"

t533, and Chapters 2 and 3, a Type II (extended machine host)

virtual machine organization is one in which the VMM runs, not on

3 bare machine as the suoervisor, but rather on an extended host

under the host supervisors Depending upon tne uses of virtual

machines, whether or not there exists one preferred, favored

operating system, and whether that operating system has certain

capabilities to permit its construction, a Type II virtual

machine system can be a useful and possioly easy to implement

artifact.

Page 100

at

p v R

• e ot

f4

P v R

PROCESS EXCEPTION AND VM FAULT

FIGURE 4-6

S..4, ,. '

Page 1(1

There is a very similar, corresponding con:eot to Type It

.ystems in 1V generation virtual machines. It a Type II IV

qener.tion system, there is a slightly different VMmao f9 which

naps virtual resource names into corresponding orocess names for

some process running on the real machine. Thus, for virtual

names V, as oefore, and foi, process names Pr, fcr a Process

running on the real machine, we define, for each itoffent of time,

a new function

f*: V---> Pr U ft)

such that if y e V and z e Pr then 2

fO(Y) = Cz if z is the real P-name for V-name yC

Ct if Y does not have a corresoonaing P-name

The value f'(Y)=t causes a VM fault to occur to some fault

narclirg procedure in the Process Pr (or so.te ott-er orocvss

cooperating with Pr).

Since the process Pr is defined on the real machine via (its

iystem base) the function 6r, a P-name generated by the VMmao is

napcei into the corresponding R-name. Thus, we nave, for V-n-Ime
y9 the R-rame #W(f(y)). This mapping is ilIlustrated in Figure -

Now for any Process Pv running on the virtual machine there

is defined (via the virtual system base) the junction *v, which

maps the set of P-nImes, Pv, into their corresoonding V-names, V.

Thus, the action of running the process Pv causi.s a P-n3me, x, to

be mapped into the R-name &r(f*(6v(x))). This maoping is

ilustrated in Figure 4-8.

I
-- "•• ... •++...- ' •++`• ... " "; -: '•,. , +-+,•• ,,+••.,• .. •,•+ .• .++ +.,+ ,, I

Page 102

'•° t oe

f re

V Pr R

TYPE RI VMmt.p

FIGURE 4-7

.eA

TYPE]VIRTUAL MACHINE
FIGURE 4-8

"1 7,;

Page 103

Observe that in a Type II system, there exists a VM map f4

for each oprocess which creates a virtual mechine (or 13chines) at

- higher level tnumbero 3y invoking the layering of the real

iachine we can control the ability of processes to create virtual

machines and if desired can legislate !hat there be only one.

Section 4.6 TE ample 81 provides a detailea example 0,' a

Type II IV generation VCS. Howeverg a simple exa(Dlet heres may

show the intent of this construction. Let fl(x) = 31x. Then the

Tyre II V~map~s memory component maps the virtual tachine s

virtual memory into one segment, say 3, of the process. This

:,ern'its the normal operating system to run as the host on the

real machine and perform resource allocation for the virtual

tachine (on a segment basis).

2Se~ursj~on

As discussed in "Virtualizeable Architectures" [511 and

Chapter 2, recursion for virtual systems is more than a matter of

conceotual elegance or a consideration of logical closure.

Indeed, it is a capability of considerable otactic3l interest.

In its simolest form, the rotior of recursi3n for virtual

iachines is that, although it makes sense to run standard

3rocesses or the virtual machine, in order to test out the Vt*

software on a VM it is also necessary to be able to run at least

3 level 2 virtual Machine. The real machine is level 0.

In the discussion which follows, we use a Ceoey-decimal tree

-awring convention in which a virtual machine at level n has n

P31e 104.

syllables in its name [5i1. This tree-name is used as a

subscript for botn the virtual resource space, e~a. V1io, and

corresponding VHmao, eag. fl1.1 Where several jitferetit

processes are running on virtual systerst the same tree-raming

scheme is useI, less creciselyt to represent the process mac on

the corresponding virtual machine, e.g. ai.i. In this

liscussi'-n all f's are of the same form, and all t's are of the

same form* The subscripts are usec to indicate different

entities.

In a Type I IV Generation VCS9 if

ft: V1 --- > 9

: ii

6: P --- > Viol

then the action of running the process P caus-s the P-name x to

be mapped Into fl(fl.i(6(x))) or fi o fi.1 o 6 (x). See Figure

4-9.

In this function fi o ftio o 4, we identify thre3 possible

faults or exceptions:

(1) The process exception to an inner layer nrocedure

of level 2, i.e. 6(x)=e,

(2) The level 2 resource (virtual machine) fault tc an

inner layer pracedre of level 19 i.e. fi.1 o 6(x)=t,

(3) The level 1 resource (virtual machine) fault to an

inner layer procedure of level 0 (the real mactine),

i*eo ti o 11,1 o, 6(x)=t°

For the general case of level n recursion, we have P-name x

oeing mapDea into

Paqe 1r.5I4
ft o f1,1 o .o f le oe 6 (x)

Thus, for a Type I VIM, regardless of the level of recursion,

there is only one aoolication of the map t followed by n

3oolications of an f mace This is an imoortant result that comes

,30 of the for-qPismr :f listinguishing the f an! 6 Taos. An

3bvious result to be discussed later is that in a system with a

comclicated 6 but with a simple f, n-level recursion Tay be easy

ind inexpensive to implenent.

•y analogy, we define Tyoe II VM recursion. See Figure

+-10. If

G 2 Pr --- >R

f'l: V -- >Pr

*I: P1 --- > Vi

feloli V1oi --- > P1

6:1.1: P1.1 --- > V1.1

Ther the action of running the process P1.1 causes the P-n.me x

to be maoped into 6L o f1t c 61 o f41°1 o 41.1 (x)°

J4

L Page 106

oe ...

SP Vi.i V-

F: TYPE I RECURSION

•-• ~FIGURE 4-9.-

Az.

TYPE I RECURSION

FIGURE 4-10
.

- A

p

•
4N

P.ige 107

4.3 UNSUITABILITY CF SCFTNARE f

Before dismissing the oossioility, it will be necessary to

scrutinize IV generation systems to see if a softwsre

implementation of the VHmap f, is viable, ke will see if the

technioues of the III generation VCS can be aoolied to the IV

jenerat ion.

As has been developed in Chapter 3, a TII generation VCS is

orffally constructeo by:

(_) Using the available memory mapoing hardware to

help manage the memory of the virtual machire, i.e.

virtual memcry.

(2) Mapping the master and slave modes of the virtual

machine into the slave moOe of the physical host

machine ano simulating the effect of •rivileqed

instructions by the VMM.

(3) Trapping all I/O instructions an3 mapoing virtual

device names into real devices via software in the VPM*

[W, will ignore 1/0*3

fhree of the architectural characteristics that one might

expect to be useful in a software imolementation if f on a IV

generation system are:

(1) Segmentee add!ress space

(2) Rings

(3) Emulation.

One might expect the zddress mapping to be useful in

establishing the virtual memory while the ring oritection system

Page 2.r.

niqht arovide the layared access control neecea to isolate the

JMV from its subject Vm. As a last resort, one miqht 3.xpect to

fall back on the extensive emulation facilities of IV generation

systems Z591.9].

Unfortunately, as suggested in Section 4.2, nr.o. of these

features helps the imolementatior of a VCS. Indeedl they make

virtualization potentially more difficult since they oill have to

oe virtualized as well. [This difficulty is similar to the

oroblem noted by Cheatham [25) regarding the self-definition of

oarticularly rich orograiming languages.] The 3roblem results

because segmentation, rings, and emulation are visiblet i~e. they

3re part of the interior decor, and are represented by constructs

in the system base which may be seen ana menipulated by

("°privileged" ring [) software procedures. We can illustrate

this difficulty with a look at rings.

A software implementation of the VMmap f 3n a IV generation

VCS reauires (1) maintenance of a virtual system bsse by the

virtual machine monitor, and (2) the control Cf access to the

real system base by instructions of the virtual mschine 1511. By

analogy with the III generation "software VMmacQ." we orevent

access to the real system base by not running ring 0 ef the

virtual machine as ring "I of the real machine. Into Ahat ring

can ring 0 be mapped?

Two of the properties of rings which must be creserved in

A

Page 109

;ny mapping are

(1) monotonicitY

(2) finiteness.

That is, thp rings define an ordering of orivileq-: ring i is

miore privileged than ring I if i<1 [57,1061. Furthermire, there

is a finite, relatively small number of rings in the system's

iniverse, e.g. Multics has eight 35,iOG1].

Therefore, two ring maDoinq schemes are oresenteJ in Figure

4-11. The first maooing scheme,

f(x) = Ex if O<x=<m
C
Ct if X=C

maps rings identically exceet in the most privileged ring. All

ring 0 instructions are simulated on an instrvction by

instruction basis. An attempt by an outer ring t3 call 3 ring 0

orocedure must cause a Process exception -hich is undqrstood as a

fault to the VMMo This construction is the IV generation

aquivalent of the hybrid virtual machine, HVM. ZSee Sections 2.1

and 3.3.1 The emoirical reauirements are simi lar, e.g. attemotfd

calls to ring) can be made to fault. Pie performance of the IV

3eneration HVM is significantly deqradeo because of the likely

frecuent software intercretation of all ring instructions.

The second mapping scheme,

f(x) = Cx+i if C=<x=<i for some i=<m

Cx if i<x=<m

ntaps ring C into ring 1. To preserve monotonicity of rings, ring

t m.ust be mapped into ring 2, etc. Howeveir, because of the

finiteness property, it is necessary to map a (o3rticular) pair

Page 110

Virtual Rinlg instruction-by-instruction Rel inInterpreter

0 ct 0

mM

Ring mapping scheme 1: f(x):= [x if 0 s

Virtual Ring] Real Ring

0 0

i +I

m 0

Ringmpingshm :f(K=xIi Sx:
Ix~ ~ ~ -ifi-r !

RINGMAP~NG SHEM-

FIUR 41

Page 111

of adjacent distinct rings ot the virtual macnire to a single

ring of the real machine. In a III generation computer system,

if mivster mode is understood as ring 0 and slave mode as ring is

the processor mode component of the software Vtmao for 11T

generation systems [as in Chapter 31 is Just the second mapui.g

scheme, f(x), with m=l and i='-!. Analaqously with III leneration

ampiricel requirements, it is necessary to prevent the orocessor

from determining in what physical ring execution is taking place.

This is rather difficult because of the potential visibility of

the rinj number in the instruction counter (Oring register

field't or in stacks, for calls acrcss a ring boundary (1061.

L�Another oroblem which might develop concerns the absolute

interoretation of physical rirg nurber for certain side effects.

For example, one proposal [106] has 'he hardware identify ring

iumbers with the segnent number of the stack segment for that

ring, or ring numbers, ioe. 9-1, 2-5? 6-7, with lifferent access

oroperties to gates.

One simple hardware oroposal that might ne made to avoid

some pitfalls of the second mapping scheme is a ring relocation

register. See Figure 4-12. The ring relocation register could

oe used to linearly displace ring numbers and, this, crevent ring

) of the virtual machine from having the same privilege as ring 0

if the real machine. However, problems stil I exist concerning

the finiteness oroperty. What ring does ring .i get iaooed into?

In recursion, what ring ioes ring m-. get maone: into, etc.?

Thus, the maooing of ring numbers via software or with A

nardware assistance ioes not necessarily helo ir the

M-

page 112

Vir Ring Relocation Register

0

m

? L-eýIi n Dgz

rn_

VirtuaI Ring Ring Relocction Register0

0

.1-
-

1

EXAMLE F RIG RLOCATION REGISTER
;

EXMFIGURE 4-12

2,

Page 113

implementation of IV gener-ation virtual machines, As we shall

see, the software mapping technioue is unratur3l and unnecessary

liven a orover understanding of the mode! of Section 4.2, Fourth

jeneration systems formalize the Process map in firmware. Thus,

in introducing virtual machines into the IV generstion, it is

iatural to consider how firmware may be used to formslize the

Ilimap, as well.

A

Page 114

4*4 THE VENICE PAPER

In "Virtualizeable Architectures" [51), called the Venice

oaper or Venice Proposal, abbreviated as VPq the authors propose

3n interirm solution to the problem of virtualization of IV

generation computer systems* The VP observes that because of the

nigh frequercy of references to the system baseq its maintenarce

3s pure software construct is likely to be ioomed to failure.

(See Section 4.3 above.] Thus, the solution orooosed by the VP is

th-at hardware-firmware be provided to assist virtualizationA

Each virtual machine will maintain its own system bi.se, visible

to itself. However, when the virtual machire is actually A

Jispatched it will be running with a soecial "trans~ated system

base" maintained for each virtual machine by the VMM, Thus, any

attempt by software running on the virtual machine to read its

system base will be directed to the virtual system base and will

go urintercepted. However, any attempt by the virtual machine to

write its system base faults to the VMM which can make the

corresponding change to the translated system! base before

redispatching the virtual machine.

Thus, the Venice Proposal provides a major improvement over

previous virtual system designs in permitting reaa access to the

system base to proceed without interruption. Only on attempted

4rite access to the system base will the farriliar

fault-simulate-redispatch sequence be reouired*

Furthermore, the VP provides a virtualization desigr that

oern.its a limited two level recursion of virtual machines to

- ~3-
n -

Page 115

operate with hardware dispatching of the aocropriate parent

virtual rm.achir.e on a write-eccess fault To an irferior virtual

nachine system base* The performance of the second level virtual

machine could be comparable to the one level case.

We can interpret the VP in terms of the model developed in

Section 4,2, Let PVR, 6, and f be as before, Then the VPF!�maintains, for a virtual machine, a translated system base,

6t = f o 0

and this is, in fact, the Process mar that is active when a

process of the VM is disoatched. See Figure 4-13. The VMmao f

is strictly a software Nap and never appears in firNware accessed

tables; 6t is accessed by the firmware. The VM10 statically-

composes f with 6 to Produce t., Thus, f o 6 is "calculated" in

advance of the process being dispatched. Consequently a

modification to 6 cannot be reflected in a corresoonding dynamic

modification to 6te To maintain integrity, a modification to 6

must cause an immediate VM-fault to the VMM, which calculates a

iew value for 6t and redispatches the VI.

Note that this analysis (as with the discussion of Section

4.3) implies that there must be an easy way for the hardware to

tell that an attempt is being made to modify tne system base. A

special instruction might be reserved* [See Section 3.4.]

Otherwise, all addresses in a physically "cverlayed" segment

structure might have to be checked, significantly degrading

oerformance.

A detailed illustration of actual instruction executions in

the VP is presented in Section 4.69

,44

Page 116

O fooc Implicit software f

P V R

VENICE PROPOSAL
FIGURE 4-13

5641 Software

OlSoftware

P V1. 1 R

VENICE PROPOSAL WITH RECURSION
FIGURE 4-14

Page 117

In the recursive case, tne VP's VMH statically c3lculates,

4ua software, the translated composed mapFti.1 = ti o 0 t1 = fl 0 f1.1 o 4

and this mao is, in fact, active when a procass cf the VI is

dispatched. See Figure 4-14. Again, attempted write access by a

orocess to 4 must VM fault to allow the change to be reflected,

via software, in 4tlo.1

The VP proooses an implementation of a IV Generation VCS.

Unlike 1he purely software techniques discussed in Section 4.3,

the VP does not require the "compression" of privileged layers of

the real machine to less privileged layers of the host.

Consequently the VP should produce efficient IV generation

virtual machines. Furthermore, the VP should be feasible ir many

cases in which pure software technicues are imoossible tc use.

However, the VP suffers from the following disaav=_ntages:

(1) Performance degradation due to faults on system

base write instructions

(2) Storage wastea due to translated system base. This

could be Particularly significant in the recursion

examp le.

(3) Complexity and software neededt in the VMM, for (1)

and (2).

In the rest of this chapter, we shall consi•er a proposed

design %hich eliminates these weaknesses*

* - C - J--CAR

Page 11.3

4.5 THE HARDWAP% V'RTIUALTZER

The Hardware Vir~ializer (NV) is a hrdwroe-firmw~re

imolemertation of the VPvtap f (for a IV generation VCS). In this

section, we shall dcuelco the zrgu.ments in favon of or HV, snow 0-w

how an HV can be constructed, show that the construction is

;easible in terms of IV generation hardware (realization)

comporients, and indicate that satisfactory oerform3nce wili

occur. As in Section 4.1-4.4 above, because tie IV ieneration

-reatmvnt of I/O is so similar to III, we do n)t inccroorate T/O

into the HV. Similarly, because of the intrinsic problems with

time in a VCS we do not discuss time. These lifficulties are

considered in Section 4.7.

It is our claim that software construction of the VMmav f is

unnatural and unnecessary given a oroper injerstanling of

virtua•liation as developed in the thesis [es.ecially Section

4.2]. In numerous other areas of computer svsteRs research as

oas.;c and underlying principles have been develooed or

Jiscovered, ad hoc anI often cumbersome software corstructs nave

oein reolaced by eiegant hardware f-firmware) mechanisms. Cne

can turt' for confirmation to management of multi-level memorv

C28,38,391 or protection rings r57,616. The firmware

implementation of the process model in IV qeniration systems

(51,79,871 is a tour-de-force, including the two orevicus

Page lig'

axafrples within it as scecial subexamoles.

WP claim that the hardware virtualizer HV nrings about a-

simplification of the virtualization mech3nism. The HV

simplifies and eliminates most of the VHM software, reduces the

main storage recquirements of the VMMI and proouces satisfactory

ioerating performance. Furthermore, it permits virtualization to

take place where, using previous software techniques, it

3rdinarily would not be oosSible.

Our design of a h3rdware virtualizer follows directly from

the model of Section 4.2. The maps f and 6 are distinct in a IV

ieneration VCS. Therefore, we implement them as cofroletely

lifferent constructs, caoable of being referenced and manipulated

independently. Execution by the virtual machine causes the macs,

f and 4t to be composad lynamical ly to form f o 4 at execution

timeO.

The construction of an HV must address the following points;

(1) The database to store f

(2) A mechanism to invoke f

(3) The action on a VY-fault

in the discussion which follows% we shall develop tie basis for

an HV design somewhat independently of the particular form of the

VHmao I which Is being implemented. Although we shall refer to

certair particular I structures, such as the q-R or paging form

of memory map* the actual detailed examples are costooned until

Page 120

Section 4.E. [The discussion which follows assvves the IV

;eneration process map 4 prpsented in Section 4.1. As 4e note in

Section '4.8, suitable simolification ano intenr,i.tatioon of the

$-mao allows us to extand this corstruction t) second and tr'%-d

jeneration architectures as well.]

The VM.P must create and maintain a database which re•resents

the VMmao f for the next level virtuel •fachine(s). This ontabase

must be stored such that it is invisible to the virtuzl machire,

includinq its most privileged software. Let is assume that for

economic reasons [511 the database must be stored in main memory.

Thep the VMtrmaD itself must be such that f is not in the (virtual)

iemory of the virtual machine.

The VM database, logically should be an a:-iition tc the

system bases A Pointer at a fixec location from the RCOT coirts

to z Virtual Computer System Teble (VCSTAB). Eich entry in the

'/CSTAR points to a Virtua: Computer System Contr.l Block (VCSCB)

or colloquial ly, VMCB. Thus, the i-th entry points to the

control block for virtual computer system i.

The VCSCB provides the implemertation of the VMmap f for the

virtual machine. It contains the memory maD 9 orocessar(s) maD,

andl at least conceptually, the I/0 map. In ad~ition, there may

be other status and/or accounting data for the virtual machine.

As noted in the VCS model (Section 4.2), the iavs 4 and f

are completely different. In varticular; the .re~ory comoonerts

f- -

Page 12t

3f the maps serve differrt ourposes end so a,-e likely To be of

lifferent form. The 6 rao liKelV will be seqmenteo. Depending

upon how the VM's will• t i used, Fhe f mar) might oe R-3, oaied, or

iulti-level paged. :1 a limited number of virtual systems are

used irregularly for ocerating system debuggin; or subsystem

tran•,eraoility, ar R-3 m~ap might te reasonable. If fictitious

iemory resources are re•uired, some form of oage map may be used.

(See pertorrancu./cost discussion below.] Wthen we Ciscuss P age

map, we, usual!y, do not illustrate fictitious resources, eog.

:iemar ,d pagiprg.

The processor component of the VCSCB inclu~es (22C• •2.•.•Qf5•o5

of the VCS) the saved values of the processor r2qisters (the last

time the VM was running), Note that this is different from the

asr.•!• 2roc% saved register values kept in the resoective PCP.s of

each process on the Vle.

These regis~ters tyccally might include:

P- curr ent Dprocess 10

IC - instruction counter

T- top of stack

STR- status

eR base registers

GP- generl! registers

SR - scientific regi-iers (floatir.q point)

(In this discussinr mw assumie that ROOT is zerc for siiplicity.)

Additionl oprocessor re'fte& informatior kept in the VPCg

incIude'-; can•] li 4 v information, for the osrtlcular virtual

orocessar (not the real processor and not processes running on

- ~&&~ J¶4 ~ -3

Pae 12?

t hr v irtu.? rrocesscr) indicat.er- rarticular f e ti.-'es a n -

instructions, or-esert ir atsent. These irclup,:P for extarnlet

3cjvrntifjc instructi~r sett Vf, -nstructicr- spt (LVbvID

irnsiructior',1 e tc . A ji ti ereI infIorrmat ior rrjic t-t irclILde a

i-Irer7.l occrc-e fault ff's or P fictitious roscurce mask. The

,)r'cc.Ap fr.ýSk c=an ta Lse to force certain oocozes in the VP~ to

=%~uIt to tt'r %JtM. ZTI-js r'ctior is cerived fromr Section 3.L 4 .1 A

f ictitjeus resourc'a r'Pk Mrnjcht inaicate whetter (tobnds tyce)

fpults -re to te lirectfl to ttp VO or the VM¶P.

Trn order to invoke the VM'trD f, th e tHV renuires cne

ieiditiorfl visible register ard c'ne instruction for Taraioulating

i t. The rpcister is ths V?~IO and ccntajrns the ruirbpr of tte VCS

in the VCSTAF that is currently executing. The new instruction

is LOM7 VJTE, LVmTC. Sea flowchart in Fiqure 4-1ý.

Fcr tt-c h;-rdware vintzAlizer desi~zr to bp successful, the

'IMTC rpoister (and the LVMIC irstructior) mrust h-aie tlhree crucial

ircrertieS £51).

(1) The VIj"r- r-eoister -t~solute conterts tray reiti-er te

rez-1 ror %ritten 1ty software.

(2) The only trodificatiors possible tc the value in

tlhe V?410 register are accerding a low crder IC syllatle

(as a result cf an- LVMIO instruction) or remrovirg some

nmb~er of low order ID syllables (as a result of a VM-fault).

(7) The Vt-ID of the real rachire is the rtlIl

IA
......

CAPABILITYIITY

FEC EXEPIO

EXISTART L MID Page 1

PROCESSOR REGISTERS

LOADED FROM
VCSCB

14

MEMORY MAP

LOADED FROM
VCSCB

•INSTRUCTION

C,•_PLETION

LVM ID INSTRUCTION
FIGURE 4-15

!,,

Page 124

identifier.

These crooerties all follow directly from the desire to model the

relative resource contexts provided by invocation of f.

Needless to say, LVMID 'loads" (appends) tne V!I9 with the

T0 specified as the ooerand of the instruction. If the VM

capability does not exist for this machine* a VP caoability

•xception occurs, which is a process exception tc a orivileged

orocedure in the same machine. If the VMIO is loaced

successfulily the firmware checks the appropriate VCSTAB entry

for validity. If it is marked as absert or invalid, a VC.•TB

3bsent or invalid exception occurs to a procedure in the same

:lachineo

Otherwise the processor enters virtual mode and (assuming no

faulting because of VCSC8 values) loads the processor registers

(P, IC, BR, etc.) from the VCSCB.

Now the memo-v component of f is active, say relccatior and

ooundst R-.. This causes a loading of the R-l. into scratchoaJ

r-egisters* say, Rcomo-fCcomp. Thus, every virtual memory name

4ill be transformed to a real name by the R-B map, i.e. value

currently in Rcomp-Bcomp. [Of course, the scratcnpad registers

Icomp-BcomDt may be neither read nor written by any software.

Wher the real machine (Vt4C=null identifier) is running, Qcomp=O

and Bcomo=ohysical memory size.] In a segmentation systeml the

result of looking up a segment P-name and obtaining the V-name

must be su.•Jected to the R-'B mae. Howevert since the segment

table is not the root of the system baset the firwaware must first

locate it from the true ROOT and the processes P-name, i.e.

Page 125

orocess-id. This endeavor requires the firmware to ffaie several

-eferences to main memory in the course of "walKjirgc the system

base list structure. Each of these references to tne virtual

iemory must te maoped to the real memory equivalent by aoplyini

R-R, i.e. adding Rcomo-9comp.

Fventually, the location of the segment tacl- is establishel

3nd it is saied in a scratch cad register. Thus, any subseauent

memcry reference may directly utilize the segment table to obtsin

j virtual memory location which is then marpeo, via P-8, into its

real equivalent.

For reasons of oerformance, the original machine reiuires zn

associative memory to store the mcst recent segment

•umber-memory location' oairse Then, the hardnare virtualizer's

asscciator wilt store 'segment rumber-real memory location'

oairs, On setting a new VMID, the associat:r can be clsared.

another possible choice, which can oe made ^n the basis of

cost/oerformance, is to have a still larger a3siciator and keeo

the VMID as a field to te used as pFrt of the search key.

Recursive invocation of virtual machinp-s aids little

additional complexity to this implementation. If the VM

capability bit in the VtM'Q is set to one, then the virtual

iachine has the same (software visible) hardW3re virtualizer VM

features as in a real machire. Therefore, a VIP r-irnin; or the

VM may attempt to create an inferior virtual michine by creating

a VCS'AS entry and a VCSC9 for the level 2 VM in its system base.

It may also dispatch the (level 2) VM by executing an LVPT]

instruction.

i-

Page 126

As noted in the Venice Paper [511 an3 3bove, recursion

reouires that the VMIC be made a "multi-syllable register". When

the real machine is executing, the VtIO value is rull. When the

VMM disoatches a VM9 it loads (appends) a value into the Vi10,

say 1. If that virtual machine is running a VhM which creates

and dispatches a Vt, say ID it then 1 gets apoenled to the VHID.

Thust the new composite value in the VMI is *1.1" which gives

the ID of the currenily executing VM. As stated atove, tfis

value may not be either reao or written by any scftw3re of the

virtual machine. See the tree structure shown in Figure 4-16.

To handle a strallt finite depth of recursion reauires the

VMIO register to be sufficiently "wide" for scecification. In

oractice, one should not expect the VM level to go more thar 3 or

4 deep.

As in the non-recursive caset the execution of the LVMID

instruction by the level I VMM causes its VCSTAE and VCSCB entry

to be checked for absence or validity. If the LVMID comp.letes

successfully, the machine is now in virtual mode at the next

level.

Now the memory component of the new f is active. t[I this

discussion, a map of the form R-B.] This causes an ad-ition of

the new R-B to the scratchpad register Rcomo-Scomo where the

current R-B value "total" is being maintained* HGwever, in

addition to the runfing sum, a collection of scratchpad registers

are set aside to hold the R-B values of each level% [As Lauer

and Snow 1761 observet it ray also be possible for the firmware

to store the reverse "trail" ir main memorye] This permits

Page 127

LEVEL 0
R(REAL MACHINE)

LEVEL I VMM'

2 LEVEL 2
LEVEL 2 VMM'"

LEVEL 3

EXECUTING VM

VM TREE STRUGTURE
FIGURE 4-16

'41 !

Page 128

restoring the previous composed map by subtracting on a VMl-fault.

In terms of the VCS model, the runninq suT ef the 9-94s,

'Rcomp-Bcomp, provides a calculation of the composition of tte two

f maps (in the memory dimension), say fl o f1.1. Then the

composed mac is combined with the 0-map.

Thus, every virtual memory name will be tr3nsforTed to a

real name by the composite R-B map, Rcomp-Bcomp. This is done,

lust as in the single level case, with the com.cosite P-E mao

taking the place of the simple R-B map. This includes Walking

the level 2 system base, etc.

Just as in the single level case where an associative memory

was u-ed to store 'segment number-real memory loc3tion" pairs, so

in the recursive case, an associator stores "level • segment

number-real memory location' pairs. The perforrarce imolicatiors

of the associator (map composer) design will be Ciscussed belcw.

Section 4.6 provides detailed examoles, includini illustrations

of the =.:ociator during HV operation*

Our discussion of the VM invocation has utilized ;n R-8

memory component in the VCSCBe The mechanism described wiorks for

other memory maps, as well. [However, we are assuming that there

is only one f map structure, common to the entire system.] For N

example, a paged memory map might be stored in the VCSCS. After

the LVMIO instructior,, map composition in the memory dimension is

lynarically performed on a page basis. This imolies that the

associator for a pagel HV is of a slightly different form from

the R-R MV. Illustrations are provided in Section 4.6.

i'

Page 429

On a Vt'-fault (VP-level fault), control must oass to the

VMM. If the VMM is running on the real machine, cortrol passes

to the real machine. If the VM is running at level n, then

control passes to the VMM at level n-i. The faulting mechanism

(firmware) must inspect the VMID register and discard the low

order syllable. The resulting value is the 13 of the VMM's

machine. See flowchart in Figure 4-17.

The characteristics of the VM-fautt can be derived from the

empirical work with III generation systems [Chacteor 3]. In

particular, the VM-fault must be completely invisible to the VM.

The VM can have no way of testing or discovering whether a fault

has occurred.

On a VM-fault, the orocessor's registers must be saved in

the VCSC3 and the associator must be ourged. A fault code can be

stored in the VCSC8 and the VM4 is started* After vrocessing the

fault, the VMM may return to the VM by issuing an LVMID

instruction.

The HV described above is feasible to constru,:t on a IV

jeneratien system. The hierarchical levels of contr3l and mao

composition facilities add little additional ccmclexity to the

orocess model. Three characteristics of IV generation

realizations [191 will be the use of large control stores,

elaborate micro-logic, and associative memories. The hardware

I I

Page 130

START VM-FAULT

STORE PROCESSOR
REGISTERS

INVCSCB

STORE FAULT
CODE IN "VCSCB

L EVEL-LEVEL-1

IPROCESSOR
I REGISTERS LOADED
I FROM NEW

VCSCB

MEMORY MAP
LOADED FROM
NEW VCSCB

rI NSTRUCTION
O. PLET10N

VM -FAULT I
FIGURE 4-17

Page 131

virtualizer will utilize these same building blicks.

4..

The expectation of acceptable performance by orocesses

runring or the virtual system depends, to some extentt on the

expectation of acceptable performance in the real system. As

liscussed above, the process map 4 in IV generatior systems will

likely involve rather elaborate constructs which must be accessed

oy the firmware for every instruction execution. For examoleg in

the case of segmentationg it will be necessary for the firmware

to obtain the resource location names (from F-names) via 6 for

every instruction. This will typically recuiret

(1) The most recently referenced segments to have

P-name, R-name pairs stored in some small finite rumber

of associative registers# and

(2) The recently referenced segments to be maintaired

in main memory by the software.

Needless to say, any architecture which incorporates paging

(as well as segmentation) in the 6 map will certainly be

implemented this way. [As: we shall see below, caging prcperly

oe!ongs in the f-map in%.tead,]

That a IV generation architecture (with sefVentation, etc.)

should oerform acceptably depends significpntly or. the principle

of locality. From the initial notion of "'Program locality" as

noted by Dennis and Denning, Madnic t[801 has generalized and

identified two specific aspects of !ocality that are used.

Page 132

(1) Temooral locality

If the logic3l addresses <all a2t *..> are referenced

during the time interval t-T to t9 there is a high

Probability that these same logical aldresses will be

referenced during the time interval t to t÷T.

This behavior can be rationalized by croqrar constructs

such as loops, frequently used variables, and

frequently used subroutines 1801.

(2) Spatial locality

If the logical address a is referenced at time t, there

is a high probability that a logical address in the

range a-A to a÷A will be referenced at time t~i.

This behavior can be rationalized by orograr constructs

such ass sequential instruction sequencing, and linear

data structures (e.g. arrays) (801.

In IV generation Systems, because of the compiex & and the cost

required to **start up" the nppt it is iike!y that the (software)

scheduler and (firmwar-e) disoatcher will enforce an additional

localityt

(3) Process locality

If the oroce-,s identifier of the process executing at

time t is P; then there is a high protabitity that it

wiit be P at time t+1.

Virtual machines and the %ardware virivualizer acd 3 new notion.

(41 Virtual machin- locatlity

!f the VMID of the currently executing '.-'h at time t is

xl.x2. n-1.xn, then thser is 3 riqt, orob-tility

'"~* C-- -- -A

.- .. . 7 ! W

Page 133

that the VMID oill he xi.x2. xn-t.xn at time t+1.

Furthermore, the other values thst it can take are

xie.2.xn-1 or xl.x2.en-1.xr.xn+i. The

first value occurs on a VN-f•slt, tte secord on

recursion. On multi-level faults, other values are possible.

VH locality implies that, with proper i Toletentatier, one

level or multi-level recursive virtual machines need not have

sigrificantly different performance from real iachines. Another

way of phrasing this observation ist

Regariless of what a page-size block is called, or how many times

it gets renamed (via a VMmop) there is still an intrinsic

orobability of reference to it by the executing orocess, Thus, a

map composer aided by an associative store shoul provide

"comparable performance in the virtual machine to that ottainel in

the real machine.

We examine the performance of B virtual machine vs. a real

•machine for the R-B virtualizer and for the caged virtualizer.

Performance of the HV can be judged by a direct comparison of

instruction execution rates of the VM vs. the real machine. The

use of a cache, look-ahe3d, etc. makes the corrcarison lifficult.

However, we can constrast the time required to teveloo 3 physical

merory address which then gets sent to the memories.

In the R-B virtualizer, as sketched above, let the following

oarameters recreseni access times,

Page 134

a - associative memory

M- main memory

s - scratchoad memory

Let Dk(R) be the probability that a segment entry will be found

in an associative memory of size k, in the rPal machine. Let

ok(V) be the corresponding probability for our virtual machine.

Then pk(V)=pk(R). Let us fix k so ttis probability is lust p.

Ther the average time to develop a physical memory address is

3pproximately

Ar = apo + M*(1-p) for the real machine

Av a*p 4 (M+s)*(i-D) for the virtual machine

Since the scratchpad maintains a cumulative value of R-B8

Rcomp-Bcompt during recursion, Av is constant regardless of the

level VW. Reasonable parameter choices are a=50 nsec, M-500

.nsect s=50 nsec, and p=.99. Then Ar=54.5, Av=55, and Ar/Av>.*9.

This result implies that, for an R-B virtualizer, regardless of

the level of virtualization, Av is approximately equal to Ar.

In the paged virtualizer, the associatop is of different

form from that of thi real machine. Whereas the real machine's

associator relates segments to physical memory, the associator in

the paged virtualizer must relate uage-size blocks within a

segment to the physical location of the oage-size block.

Therefore, in order to contrast tte performance of real and

virtual machines, we let Dk be the Probability that a segment

oage-size block entry will be found in an associative memory of

size k. For a particular value of pkH k will be larger in the

segment-page associator than in the simple segment associator.

- - ~- ~4

Page13

The parameters a ani M artý as above. We issume that for'

tacti level VM a s.cratcnoad register holds the tase of the oage

table. Furthermore, he assume that all scratchca3 references are

,)verlaoced with main mem~ory fetches and so are igftored for- this

inalysis. ThenA

I' Where n is thea:leve of j)# If..we set n=09 we obtain the result

Figure 4-18 plots the ratio AO/An as a funlction of r. for

3=50 nsec, M=500 nsec and representative values of pk. In

oractice n is unlikely to be greater than 3 or 4. Figure 4-19

olots AD/An as a function of r'k for n=i,2,3,4.

From the graphs, it can be teen. that perforriarce of a paged

~4V will be respectablet depending upon the environm~ent and

3oplicatiofl, for a range of values of pH. For n=1

.900 .E66

.950 .74

.990 .92
*995 .95
.999 .99

Through choice of 4, pk can liktely be made to be .99 U10S1.

Then, the virtual machine runs at 92 percent the soeel of the

Peal machine (at least as far as adnress dpvelopmert goes). This

speed mig~ht be satisfactory for a normral productioýn en~vironmfent.

With pk=.999 a level 2 V" runs with AG/12=.1ý4* Tt~is is

l ikely to be satisfactory for debugging the VMM.

..........

Page 136

a 50
M 500

Lo,

0.999

t0.

0.80.

Ao 0.7-

An

0.6--

0.99

0.4--

0.3--
•~0.95

0.2--" ' " -- .

0.75

-Pk =0.5

0 1 2 3 4 5 6 7 8 9 t0n

HV PERFORMANCE vs. n

FIGURE 4-18

I

Page 137

a 50

M =500
'• 1.0"

0.9"

0.8

A0
-An0.70

0.6

n=|

0.5"

0.3"- n =3

n=4

0.2-'

0 .1

0.5 0.6 0.7 0.8 0.9 1.0
PkN

HV PERFORMANCE vs Pk

FIGURE 4-19

j,
io

Page 138

4.6 DETAILED ILLUSTRATIONS

in the previous sections, we have indicated the structure

3no operation of typical IV generation hardmare virtualizers.

The intent of the present section is to make this operation

oerfectly clear by illustrating with a nuiber of detailed

concrete examples in which we show the execution of actual

instructions by the V'1. Most of the examples crovide the seme

seauence of instructions being executed by (similar or) identical

orocesses on the virtual machines. This is done to as to provide

a basis of comparison between the different VMm3os. The examples

ienerally use stylized instructions# i.e. LOAC, STORE, P, V2

SIGNAL--PROCESSOR9 and do not worry about accumulatorso base

registersq etc. Furthermore, the examples co not cover

fictitious (memory) resources, I/O9 time and other potential

special aifficulties. The claim is that CPU-meqory processes are

sufficiently interesting and complex in IV generation systems.

If we can run them well in a virtual machine we have accoMnlished

nluche

Figure 4-20 shows our stylizec typical TV generation system

oase located in main memory. All pointers illustrated in the

figure are absolute storage locations. Associated witlt each

oointer is the size of the table that is being oointed to. The

firwware has available to it the base address of the system base,

ROOT. The Running Process Word (RPW), Process Table Pointer,

etc. are located at fixed, known displacements from the ROOT.

Thus, the firmware may locate information about any Process by

Page 139

PROCESS TABLE P C B

ROOT .low

(SRY O) ACCOUNTING
INFO

MNING PR')CESS WORD REGISTER STORAGE

E PROCESS LINK TABLE
Q-READY PROCESSES

SSEMAPHORE TABLE

'_ SEGMENT TABLE

ACTIVE PROCESS LINKS

/ SEGNENT

MAIN MEMORY

SYSTEM BASE
FIGURE 4-20

•' L., .•,, ••. . ;:. : • •. ,• -•, ••: ;";- . ;-- . ..•"'•

Page 140

starting at the ROOT ano tracing through the system b3seo The

ith entry of the Process Table points to the Process Control

3lock (PCB) of Process i. The PCB stores accounting information,

CPU register values (for this orocess), etc. Thpre are also

oointers to a semaphore table end a segment table. The sewaohore

table is oiscusseo, together with the Running Process Word,

Active Process Link T3ble, and C-Ready Process below in the

example illustrating P and V operatiors on semaphores& (See

Example 6 below.] Each entry of the segment table is a segtert

lescriptor which is a pointer to that segment (if present in main

memory), together with status, and (ring) access information.

While we assume a layered ring structure, none of tie examples

oresented below will use it explicitly and so we will represent a

segment descriptor by its location and length. The handling of

access violations will be very similar to the tounos violetions

which will be illustrate below.

Rather than reproducing this complete system base in the

examples, below, we will usually Just show the segment table of

the currently running process as in Figure 4-21o This is just

the memory component of the process map 6° This, of course,

implies that the name of the currently running process, Pi, is

stored in the Running Process Word, RPWe

In the examples, we will also indicate the current value of

the executing processores instruction counter, IC, as a segmented

address. This is the IC value that, say, has oeen loadec from

the PCB when process Pi was cispatched. Again, we will not

indicate the IC's ring information in the examples.

VV

Page 141

Ic I

Segment Table

Process Pi

Main Memory

NOTATION FOR SEGMENT TABLE OF RUNNING PROCESS

FIGURE 4-21

Page 142

In Figure 4-229 we show the extension to tte systeff base

that we will use for virtual machine sucport in the Tyoe I VCS

examples. All of the siructure shown in Figure 4-20 is present

rnere, However, in addition, we now have a pointer at a fixed

Jisplacement from the ROOT to the Virtual Comouter System Table

(VCSTAE). !Note: In general, all pointers have the size of the

table they point to stcrea as a field. Thust attempted accesses

may be checked*] This table has one entry per virtual cowputer

system, which is a pointer to its Virtual Computer System Control

9lock (VCSCB). The VCSCE has, says four part, general status

information, the virtual memory mac, the virtual crocessor(s)

map, and the virtual I/0 map. The examoles, belov., will not

liscuss the status in;nrmation or I/0 map. The Ti0 discussion

follows in Section 4.7. Thus, we will normally show just two

components of the VCSC8 in the drawinqs* Most examcles will

illustrate a one processor computer system in which case the

orocessor map reduces, largely, to the storage cf register

values. tThese are, of course, the register values of the

orocessor when it VM-faultedq not of any particular process being

vrun.] Under those conditions, the VCSCB is sometimes called,

colloquiallyt the Virtual Hachine Control Block (VHCB)o

The memory map component of the VCSCB is illustrated for

several Jifferent memory maps in the examples. In the examoles

of a conventional relocation and bounds memory rap R-Eq the

values are shown stored in the VCSCR* The values are represented

is the relocation value and the length of the contiquous

allocation. See Figure 4-23, In the examples of a conventional

Page 143

VCSTAB
VCSCB

Root _______Stotus

Memory Mop

Processor Map

1/0 Mop

VCSCB

Status

Memory Map

PProcessor Mop

I/0 Map

THE VCSTAB and VCSCB 'S

FIGURE 4-22

Page 144

VCSTAB VCSCB

Root ,R-B

;3

q

3

NOTATION FOR R-B VCSCB
FIGURE 4-23

VCSTAB VCSCB Page Table
Root

NOTATION FOR PAGED VCSCB
FIGURE 4-24

Page 145

(fixed size blociK) pagec memory mao, the VCSCB contairs a ocinter

to the page table. See Figure 4-24. The page table may contain

status informatior such is presence, usage, etc. These

considerations are essentially the same as that discussed for TIT

jereration virtual computer systems [see Chapter 31. Ir our

e.xamples we do not illustrate fictitious memory resources ando

31ways show all pages iP main mempty° [This# of cos-rse, is not a

reeuirem.ent.•] fThus, St31US informat ion is omiitted from the

examples.

The Virtual Pachine Identifier Peqister (VHIO) is also

illustrated in the examples* Perhapst more accurately it should

be called a VCSID buT the name VPID is kept for historical

reasons. The value of tne VtIP idertifies a particular VCSC3 (or

set of nested VCSCB's in the recursive case) anc defines the map

(or maps) that we have been callitnq f.

Example 1 - Type I VCS9 Single Processor, P-B memory man

In this example, we illustrate some siZole instruction

executions on a virtual computer system implpmented as a Type I

JCS with single processor and relocation and bounos memory map.

Figures 4-25 and 4-26 show part of the system base used by the

V:'M 3nd part of the system base of V1419 the iirst level virtual

,*jchine (number D). The dashed lines in Figure 4-25 inlicate the

segrents of process P1 in the real machines ioe. the VMM. The

lashed lines in Figure 4-26 indicate the segments of crocess P1.

PRage 146

___PROCESS P1
ROOT ".. YMWON

VM ID

C 11200) 0LVMID 21160
2

(a) IC r 1 200j 3
(b) (1 200) 1 200
(c) Execute inst. ot 1200,}

(d) 0 (21100) = 2100

(e) Loads I into the 5
VMID register which
was previously null.
All CPU registers
stored in VCSCB1
get Ioaded.
VM1 is now active. 7

8H

14

EXAMPLE 1 THE LVMi D INSTRUCTION

FIGURE 4-25

Page 147

f, f2

VCSTAB VCSCB1 VCSCB2ROOT - 3 -5....
j VMID EZI 7ZZ

VM1 Process P, 31 31

IC! 2150 0

Execution of Instruction 5
5500 LOAD 1120

(a) IC is 21500 5501 STORE 112000
(b) p (21500)= 2500 5
(c) f, (2500) = 5500
(d) Execute inst. at 5500 7
(e) 0 (1120) = 4020 70201 99
(f) f 1 (4020) = 7020
(g) Contents of 7020 loaded
(h) IC is 21501
(i) *(21501) = 2501
(j) f, (2501) = 5501
(k) Execute inst. at 5501
(I)4 #012000) = e

EXCEPTION TO PRIVILEGED
LAYER OF CURRENT
MACHINE

[Ring access violation is
treated similarly.]

14

EXAMPLE 1I EXECUTION AND EXCEPTION

FIGURE 4-26

Page 141

in the VM. The dark lines in Figure 4-26 indicate the VMes

iemory relocation and bounos.

Figure 4-25 illustrates the initiation of a VM by the VV'M.

Since process P1 of the rezl machine is running, the QPW in the

system base is F1 faltnough this is not shown e'licitly in the

figure] an! the orocessor's IC is 11230. This segmente! address

means segment 1, word 2M0.

The execution of instructions is traced in the ccm.rentary to

the left of Figures 4-25 and 4-26. We will elabcrra, cn the

commentary for this exafrole. The otte•r examples car be tollowed

4ithout as much elaboration.

The instruction coL-'ter value rtst be mapoel via the process

MaD 6 from a process name, 1120rt into a resoui-ce name, 12.0.

This is done as a result of the segment table looKuo. Since

VMIC=NULL, execution is on the real machine, 3nd the resource

name, 21'39 is a real resource. Ccnseauently, %e must fetct- and

3ttempt to execute the instruction Iccated at ohysical acdress

t2CC. This is the LVMID. A similar address calculaticn is

carried out for the instruction's operand. The ')Derand obtaired

is * 1 ano that value is loaded into the VMIC register.

•onseauently, VM1 is activatec and the information stored in the

VCSCB, i.e. memory mao, orocessor maps, etc., gets loa.ed.

Figure 4-26 pLcks uo the action when the V"TC is I. Since

orocess P1 of VMI is now running, the RPW of the VM's system bese

is P1 [although this is not explicitly shown in the figure] and

the processor*s IC is 2151G.

The instruction counter value must he ma.,oed via the process

r3
Pace 14t

itap 6 from a process name, 215.n, into a reource nape, 253C.,

This iS done as a result of the segrrerit taole lookuo. The

resource name developed is a virtual name Since the VFIC=l.

Therefore, it must be macoed via the VP"3p f into its

corresponding real enuivalento Since the Vmmaoos ffemory

componert is of form R-F, thp real eouivalent is obtained by

checking the bounds and adding the relocation. 9Oth are

expressed in, say, 1000 word units. Tnus, fl(2500)=5501.

.onsequentlyt we must fetch and attempt to execute the

instruction locatec at physical aadress 5500. This is the LOAD

instruction. A similar address calculalion is carried out for

the instruction's operand [see steps (e)-(g)1 and the next

instruction's address [stecs (h)-(l)]•

When we try to develop the address of tne STCPE

instruction's operand, ie. 11200, we cause an exceatior. On

3oplication of the process (,an 4, we discover t'iat ?C0) exceeds

the bounds of segment 1 in process P1 (in VF'1). Thus, an

exception occurs to, say, z vrivilegec layer 3f the ctrrent

iachine. This orivile~eo Procedure may be in crocess P1 or it

might be in some other crocess that gets disoatched as 3 result

of the exception. [See the semaphore discussion, below.] In any

case, this event occurs without the knowledge or concern 0? the

VMH. The VMIO is still "11 as all VM local excentions that occur

are handled automatically.

In a typical IV qenePation system, similar excentiors 3ni

local exception handling might occur for access violaticns or

lyna.ic segment linking. These are events that will lixelv occur

-J

Page 150

with higher frequency than in earlier III gener3tion systers and

it is important to have them handled with the minimum of

i ntervent ion.V

Figure 4-27 is a continuation)f Fxample 1. The intent of

this extract is to illustrate possible referencing of the system

nase in the virtual machine. Since IV generati:n systems will be

inlikely to have an absolute addressing modes segmented addresses

must be used to address the system base even though these entries

nay use absolute adcresses as pointers. [We have illustrated the

iccess to the system base using conventional LO-D anc STCPE

instructions. This, of course, assumes that the layered ring

nechanism is being used to cortrol access to the system base. A

special instruction might be used instead.]

The VMID contains "20 so VM2 is currently in execution.

4ssume that the active process, F1, is running i•n orivileged

layer ard thus may access the system base. Since P16s segment

table iies it, segment 0, the segment descriptor !or segment 2 may

be addressed as 0,1102. Both steos (g) and (n) which LOAD and

STCRE a system base value. respectively, occur directly without

interruption. This is because the VM~rap f is iistinct from the

system base being mocified. In a IIT generation software

implemented VMmao ft coth steps {f) and (n) would have to fault

3nd De simulated. As we shall see, below, the VP [51] oermits

(g) to execute directly but faults on (n).

(Below, we will discuss Potential Problems A-rising from the

Page 151

VCSTAS VCSC81 VCSCB2

VMID [.I2

IC I 30

(a) IC 11300

(b) 6(1113o0) 2300
(c) f2 (2300) 10300
(d) Execute inst. at 10300k)
(e) 0(01100=0102

Process P:1 _
(f) f2 (0102) 8102 8 8100 Seg Toble

(g) Reads the seg. ti sle o0-
vaIue [1-3

(h) IC 11301
(i1 0 10 1301) = 2301

(j) f (23:01) = 10301 10
(k) Execute inst. at 10301 10300 LOAD 0 1102 1
(I) *(01102)=0102 10301 STORE 01102
(m) f?(0102)= 8102
(n) store into seg. table [OM]

In Mrr gen., (g) + (n) fault.

In VP, only (n) faults.

14

EXAMPLE I EXECUTION AND SYSTEM BASE UPDATE

FIGURE 4-27

4!

Page 152

ise of an associative raeliory which remembers the Tost recent -Zo

comoositiors. Under certair circumstances, unonecictable results

may occur in both the real machine and in the virtusl n.3chire.]

Figure 4-28 is a further continuation of Example I. VM2 is

currently running and from f29 i.e.9 VMC82, we see that only 63000

4ords of memory are allocated to it. The zetive --roce.ssq P29 has

a segment table Which irdicates that 9060 words of memory are

311ocated to the process, No validity check is performed wt-en

the system base entries 3re stored*% they are verified only wthen
~, used,

ThUsq in the examplet in step (e) aoolication of the process

map *(2l30CG)=8G0C does not cause a process exce-tion. However,

30olication of the Vvmap, f2(8COO) causes a VM-ftult to the VPM.

The VM-fault faults to the machine whose VMIG is forerea by

iropoing the low-orcer syllable from the current VvIO. In this

case, the fault is to the null identifier, or the real physical

iachine.

In order to speed uo the oneration of the crocess Tap 4, the

eeal machine will likely use an associator, Si~ilarly, operation

of the virtual machine requires an associator to speed uc tphe

composed mao f o b. [See Section 4.5.] Figure 4-21 sketches

these corresponding associators and values that would be stored

after execution of the instructions of Figure 4-26. ZRunning on

Page 153

ft f2
VCSTAB VCSCB I VCSCB2

VMIDF. 2 8-6

3 -

A

VM2 Process P2 !

Execut ion

(a) IC is 21200 10
(b) 0 (21200) = 5200
(c) f2 (5200)= 13200
(d) Execute inst. at 13200 •J
(e) S(213000)= 8000 [OK]
(f) f2 (8000)= t

R-B bounds fault

= VM-level fault to VMM 13200[LOAD 213000

14 L

EXAMPLE 1: EXECUTION AND VM-FAULT

FIGURE 4-28

Page 154

Associotor - Real Machine -Process P,

After Figure 4-26 Steps Seg# Address Vilidity,etc.

(b) 2 2000

(e) 1 4000

.Associator -Virtual Machine 1 Process P,

After Fi:--ure 4-26 Steps Seg #1 Physicol Ad&'ress Validity1 etc

(Li2 j500-'.

(f) 1 7000

EXAMPLE 1: ASSOCIATOR
FIGURE 4-29

Page 15

the re.1l machine there iuola be no steps (c) an3 (f),]

In both coses we .issure that a cnarge in trn- Dunring Process

4oro, PPW, causes the associator to ca cleared if entries. In

the VM case, we further assum.e that a c.arge in V'MIC does

likewise. In any event, a change by an active orocess to its map

b or certain otner parts of the system base, e.;., QZPW, may cause

unpredictable results (in the real cr virtual system).

--------------------------- --

Example 2 - Pecursion Acled to Examcle 1

In Exaffole 2, we illustrate the effect of recursior or our

orevious example. The two level-one virtual vachin.s are the

same as before. However, in this example, a VVM rurs on VMi.

Figure 4-3. illustrates thp VMmap fragment in the systein nase of

VMi. After VMI executes the 'LVMID V instruction, the VMIC row

contains "i.V". The orackets on the right sice of the figure

indicate the amount of remory resource owned by tne real machire,

VM1, and VM1.1.

When we oick up the action, process P! of 'JM 1.1 is executing

3 seouence of instructions similar to that of Examole 1,. [Note

that P1's segment tacle cntries are slightly different in this

examole.] After applying the orcces; mao 6(2153J) we must a-cly

ftL.1 =rd then ft until we finally man into ol'vsical resource

,ames. The correscondina associator is alsC illustrated in

Figure 4-30. Once 3gain, segmert rulbers a3*e T.0ooel into

ohysical locations. This time, the entries reoresent fl o fl.1 o

Page 156

O , f, f2,•
0 VCSTAB VCSCB1 VCSCB2

ROOT- -
VMID 1-1

fl. 1

VM1I1 ROOT 3 VSVCSW-
Process P1 ,

I 2500 4 ,
4100 Nc/e-

0 I2 Slightly different
Execution - -from Fig. 4-2621J2•

(a) IC is 21500
(b) 0 (21500)= 2500 6500 LOAD 110
(c) f1.,(2500)= 3500 65011 STORE 1iQ00J
(d) f, (3500)=6500 7
(e) Execute inst. at 6500 70201 99
(f) q5(112o)=3o2o 0 " 8 _. _ _

(g) f.j 1 (3020)=4020
(h) f 1 (4020) 7020
(i) Contents of 7020 loaded

(I) C i s 21501

Associator-

[clear on level change]

f Seg# Physical Loc. Status
(d) 2 6000
(h) 1 7000

EXAMPLE 2: EXECUTION AND ASSOCIATOR

FIGURE 4-30

-- 4-

Page 157

S. Note that the associator need not be larger in the R-1

recursive case than in the real machine or in the single level

R-B case.

While we do not illustrate the other fragments froT Examole

19 they behave similarly. The Process exceotion has a iocal

effect and does not alert the VMH. The system base may be

referenced in LOAD or STORE instructions 4ithout causirg a

VH-fault, Finally, a V-P-fault by V,11.1 is directed to VM1.

Example 3 - Similar to Example 1 illustrating VF

In the next example, we contrast how the Verice Prcposal

[single level - no recursion] might work for the instruction

seauence fragment of Example 1. Againt we 3ssume two fixed

oartitions of the main memory for the virtual •i.chines. Since

the VP does not explicitly provide the map f [as the HV does] f

must in effect be provided in software. What the VP does

orovide, however, is the composed map &t = f o 6 for all

orocesses of all virtual machiness Therefore, the VCSCI's of the

VP do not provide the memory, processor maps etc. Instead each

VCSCtl points off to the ROOT of a complete copy of the translated

system base. Thus, in particular, thfie exists a path from a

VCSCB to its orocesses* -CBs and ccrresponding segment tables.

In Figure 4-31, we abbreviate this structure by showing a

dotted line pointer from the VCSCB to segment taole. The

contents of the segment table for process P1 of virtual machine i

Page 159

Process P1

ROOT 52
VMID LIZ

%,ProcessP

Process P1 --- 1

Ic 21500

Execution o Instrcton5 ------------ -----

(a)I~s~l005500 LOAD 1120
(b)f~~(25O)~5OO5501 STORE 1120001(b) f ,o 0 (21500)= 5 500

(c) Execute inst. at 5500
(d) flo 0(1120)=7020 7
(e) Contents of 7020 loaded 70201 99
(f) IC is 21501
(g) f1o 0 (21501)=5501 8
(h) Execute instruction at 5501(i) fo 1 (! 012 00o)=

(VP) VM-fault

14

EXAMPLE 3: VP EXECUT!ON

FIGURE 4-31

Page 159

jiveps the absolute physical location of the segments, e.c. the

map 6t = f o 0 [for level 1 VM].

Thus, in sitep (b) of the instruction execution, fl o 6 iý;

3ppiied to 2151-0 yieloing the physical location 55"C directly.

This ex; ole does not indicate reading or writing system

base instructionsq exceptions or faults since we have already

liscussed these cases ir the earlier text*

Example 4 - Type I VCS, Paged Memory- Map

The next example, Figure 4-329 illustrates how a paged

memory map might be added to the VC3CP. We assu.e that the page

olock size is 1000 words (which is also the minimum segment

unit]% We do not illustrate fictitious resources or page faults.

Although the mac il is somewhat different from Examcle is its

ipplication produces identical results. See steps (al-fl) fcr

confirmation.

In the oaged memory map, the as:ociator plays a significant

nerformince role. Figure 4-33 _1l,'vstrates the possible form of

this associatot-. Whereas :he R-8 associator cid not differ

structurdlly from the *real" associator [al though the addresses

stored werc different], the paged associater has somewhat

different structure ar, will likely be larger than the others

[for oerformarore considerations].

Note, once again, thal this a sociator is different from

,tht used in the 1".0 360/67 [68] or the Honeywell 645 (34,86]

Page 160

11p
01 VCSTAB VCSCBI Pace Tolbe VCSCB2 Page roble'

A€ ROT0 30 8

Process P1 '
VMID 1 2" -. 2 1

Execution of Instruction
5500 EE2 Z

(a) IC is 21500 5501 STORE120,

(b) 4) (2I500)=2500 6...................................... -

:•- (c) fi (2500)= 5500(d) Executeinst.ati5500
"•(e) 4 (I!20) =4020 7020[9.9
(f) fi4020) =7020 812

(g) Contents of 7020 loaded
(h) IC is 21501

e6S(b) 0 (21 500) = 2500

(c) fi (2500)= 5501
(k) Execute inst. at 55010

(f) f(i A200) = 7020

EXCEPTION TO PRIVILEGED
LAYER CF CRRENT

MACHINE

1(0

EXAMPLE 4: EXECUTION OF PAGED VCO:-

FIGURE 4- 32

~)

Page 161

Associotor

After Figure 4-32 Steps

Seg # -Page-i# Physical Location Status

(c) 2 -- 0 5000

(f) 1 -0 7000

EXAMPLE 4: PAGED ASSOCIATOR

FIGURE 4-33

P-ige i6,2

*.tc. since tIe f an. t nnat, sructure is different. The use of

oagin'a .in FxrMOle is for meory rv-ource msn3semfant only and

loes not contain anv of the process structure norT•aly fourd in

.- agini m aps. In psrticular, . Figure 4-34 for ar ill ustration

)f the aifference. Thus; whi *,,ntation, a software visible

construct, is fourd ir the 6 nirt, oging, a r-scurce 3llocation

iechanism, is best 6acec to a system. as oart of 3n f-map. The

'jse of this approach implies that complete oo, rating systems will

•e runnable without modification in a paged environment. This

result Should be contrasted with OS/360 anc TS/3F6. 71•]1. See

3ection 4.8, belo4.

-:xaffple 5 - FXamole 4 with Pecursior

.n Example 5, Figure 4-35, we add recursion to the oaqeJ

memory mao of Example TV. As can be seen, this example is very

;imil.r to the recursive P-B example of Fiiure 4-32. The

princioal apparent clfference is the form of the associalor.

-io.qever, because of locality cr.rsideraticns, ss discussej above

(in Section 4.r] zscceotaole perforTrnce shoulc result. Thus, we

nave shohn that [unlike VP] recursion ioes not introluce

3.1citional comclexity, ever in the case %i a cOTOlicatal memoryo

,iap such as againg.

- ~ 44-- - -.- -I---- -'-Via-

Page 163
HV with paged VM map: One page map (f) for all segments.

virtual machine's
segments memory physical memoryI

pgemp

S- -- -----

645, 360/67: One page map per segment

page table
segment per segmenlt physical memory

rl

HV vs. 645, 360167

Page 164

f2

0 VCSTA•B VCSCBI PbgeTbl. VCSCB2 PageTbi.
ROOT -4

VMI[1-1

443f

5 1

VM1 ROOT_____________

41000 Not e-
VM-1 Process P S/lightly different from Fig. 4-32

SIC 2C500

Execution 665001 LOAD--120 1
6501 STORE 112000 1

(a) IC is 21500 7
(b) 0 (21500) = 2500 7020 99
(c) f,. (2500) 1500
(d) fi (1500)= 6500 8
(e) Execute inst. at 6500
S(f) (120)= 3o2o
(g) f 11 (3020) =4020
(h) f1 (4020) = 7020
(i) Contents of 7020 loaded

Associator
Step Segoandf
se Page # Phys. k. Status

d) 2-0 60r)
(h) 1-0 7000

EXAMPLE 5: EXECUTON AND ASSOCIATOR

FIGURE 4- 35

Ez

~xarrpe '-Sen'iohores in z Virtual M¶aclire

T te i nt ent of this oxarrole is tc further iemnio-stratc thzt '

the virtual SySt,:m t~se liay bP used directly in ircst iistruction

axecutions without thei interve-ntion of th=- Vt"MO We will

il lustrate now firmh.-e liscoatching 3nd operitivs on sfTmaprores

ligjht hark in a virtual ma~chine. (We will 2ss-ZJTe tr-e rpader is

farrilizr wijth secpaohor-es and OiJ&kstrao P ard V o:)raT.OPr [411.

This i s crucial to th,. ocer~tion of a TV generation VO since TV

;ererjt ion OJovs* can be assumed to b,? made uo of a numioer of

coor-ereting seouential crocesses 1,871.

The crevious examcles of this section navi illustrated t!hat

,aged or other mremory rnaos in the VPCý irntroouce no 3,:ditioral

corrplicatior tnat carnnct bo solved as in% The P~3case. Tthus, we

Mill illustrate semaohor:ý!s with an 0-93 mao.

First, we illustrate semIacnc~es ano n'roces's discaýtcnirq on

the Peal ma cthine. In Figure 4-3ý-, frame (a) shw the oueue of

ready croces~es oointed to ty the system base. Each (c irclIe)

!?ntry in the oueue renresents a orocess liltý for simp active

irocess in tte system, T!hese links contair the o-ocess vaire era,

so, effectively a nointer to tt'e corresooncinq 3 Thi oueue is

3rganizel, cresunably, ii criority order, altnoullr we JC rot

LIllustrate cr co~ncern ourselves with the oriori ty f iel J.

Ir fr,-r'e (D),q tre first rrocess is rerrove-: from tn'e ~-:0 e~oy

Lirocesses nv the firmhare c~isoatcrer. its (nricess! ji'Ž--tifier

*is set in the Runrirl Process l~ord, PPV. 'et us ýSsun-E 1tnpt

o-ro~cess P1 rx-cuTes a O(;em) ard the serarporp c).nl sf spAi

ther 01 is -locked zno- rt on the aueue of s em fr e ;-2r Tne

Page 166

a) i 0-Ready Processes Running Process Word

SRPW

b) j 0- Ready Processes J

RPW P.i,1

P [ser]

c) 0- Ready Processes Sem
p3 R RPW P2

v [Semi

d) Q- Ready Processes

P3 RPW P2 ___J

SFMAPHORES AND PROCESS QUEUES

FIGURE 4-3S

Page 1&'

iext oroces.s, P2 in tnc- figure, is m~ae active (Fr3re (c0].

)rocess P2 executes a V[sem) which removes P1 fri• the semaohore

lueue an- returns it to the O-Peady orocesses (-rCee (d)].

All of these manjoulations of the system ose sre normally

zarrieo on entirely by the firmware (791. We will shcw that this

* can be the case in the virtU3l system as wet!.

Figure 4-37 orovides a more detailed oictu-e of the system

oase illustratinq the semaohore tables and proc.ss links. Each

•CB points to a semeohore tpble which defines te semaonores for

that orocess. If the semachore exists, then tie semanhore table

?ntry is a noirter to the semarhore heacer f or thar serrschore.

In Ficure 4-37, the seir3ohore "sem' is callec seTachzra nurber g

oy process P4 and semaohore number 4 by orocess 0?.

The semachore header, ccntzjns the count an:, if r.eltive, a

oointer to the too of tne semanhore "ueue. Tha cointer is given

3s a relative disolacement to the oriqinr of the Active Process

Link Table. Subsequent 3ueue entries are Iirkt toaether

3imilirly. !Note that tnis is one Cossio!e v--v simpl I

for seniaohores that may oe usec in this illustrST" ' '

machines. We do not ctaim it to ce the 0os, s

,%rganization. I

Figure 4-37 ripreserts the system base oz. --F

.xecutes i e P ,.svj ;nstructior. The execut • it P(reI

the firmware to. aoclv the 6 *.l f mpis 3 Sn dic te in h

:c3 er.ef.tary. ijnally, Fi£ure 4-393 st-o w s SYS1- -' 4fttr the

S pseI instruction. rxec-.tion cf the Sn :pC -• nt V"Cem)

instruction Ly DCrocSs F2 Tay Le trEcCý ira 'siTiImr Tr-ner.

-- '~ AC.C ~ **~**~** ~ - -

* Page 168

VMI D 0-
ROOT VCSTAB VCSCBi VCSCB2

LL 4

RPW

IC1 215E41

Execution of Instruction
(a) ICis 21504 2

(b) 0 (21504)=2504
(c) f (2504)=5504
(d) Fetch Inst. at 5504
(e)] (sem.O) = 1616

(f) f (1616) =4616

(g) Decrement contents 3
of 4616 by I VMIRoot See ValueAbove

(h) Since contents of ProcesTable Segment T.PC
4616-10 place nTb PB
process I in sema- 0
phore sem queue e

(i) Dispotch next Q-ready
process (process 2)
by placing 2 in 4-
the RPW P

.Semn. Header
4616b Count=-1

5

4 i4-

55041 P [sem

EXAMPLE 6: SYSTEM BASE DETAIL FOR SEMAPHORES
FIGURE 4-37

4'z

L'.£ 9 .9~

VMI 'STA B VCSCBJ VCSCB2

22

ViM, ROOT! S~a Value above
Process Table C813

Segcment Table PC 82

ilc t iv 1 4 -

4Sern pticre Tble Serapth. Tbl.

Q.1

L
ra

' 5504
'~~1 [semi

SYSTEM BASE rETAIL AFTER PLsm
FIGURE 4-38

-ism

Pace 170

_xarple 7 - Type I '.-S, 9ultiole Processors

This example illustrates the extensi3n introduced by

,lultiple real and virtual processors in a computer system. For

the Purnoses of the examole we assume that alI processors are

identical CPU's. [Clearly this work can be extenced directly to

ion-timinq-oependent I/C processors as well E15,17,961.]

Figure 4-39 shows the modificatior to the VCSC8. The

orocessor map now points off to a virtual processor tanle each

entry of which gives tte (instantaneous) rao between virtual ani

real processors. Also the LVMID instruction must be exoanded to

include a second operand Providing the processor number as well

as the VCS number.

Thus, when a physic-l processor, say, processor 3 executes

"LVMID ,1W, the VMIO for the processor is set 3nd real orocessor

3 is set in the processor map as correszonainG to virtual

processor i. Later, when virtual orocessor i executes 'SGIGNAL 2'

the instruction executes directly by lookirg ua tre corresconding

real processor value. When 'SIGNAL 3" is attemoted, since the

m ap value is invalia, a oending bit is set. [A Vl-f.zult may also

Scrcur to allow the VMM to schedule virtual processor 3 ...]

Note that this example iilustates just zne way that the f
1

mao may be introduced for mu;tiple processors. The virtual-real

orocessor index is a kind of page wao and the cisoatching cf the

VCS without all processors assi.ne is an exarrole of a fictitious

-zr,- = ýi-

Page 171

VCSTAB VCSCB

I memory map a•os before

t2

id&/ map unspecified

S• Q,. zProcessor Registers
0id0/ ° c', (as before)

1 3 OK

2 1 OK

3 - no

EXAMPLE 7: MULTIPLE PROCESSOR'S PROCESSOR MAP

FIGURE 4-39

2

4:

&~~&3X&

Page 172

resource. We can imagine other kinds of processor f maps. For

axample, with a relocation-bounds processor Vlmap, an induced

real processor numtner is obtained by addina the relocation to the

virtual processor number after checking that the bou•nd is rot

exceeded. One can imagine a system organizel around this mra

requiring all virtual orocessors to be assigned by start-uD, i.e.

no fictitious (dynamic) resources.

------------------..

Example 8 - Type II VCS, Sinqle Processor

In this example, we give one possible interoretation of a IV

generation Type II VCS. To shcto the operation, we return to the

instruction sequence from Example 1. Our system base no" has the

VCSCB hanging off the PCR (of some particular orivileged

orocess). Ne have the same memory, processor, etc. comoonents of

the map. However, now virtual resource names are mapped into

orocess names* Thus, the memory map itlustr~ted taka- virtual

memory addresses into segments. In our exampl,, we mzo 3ddresses

into displacements within segment i of oroce!r! 1ý. Stecs (t)-(d)

>%successivety apply the ProcL ... r' of i! machine, 6v,

o the virtual machine maD, f', an(-'-"' 'ap of the real

aI) nfachine, 6r. See Fiqure 4-1,.. The a bo of the

CU same form as that used in Example 1.

"As seen before, in Chapter " 3 e r ,umter ot

advantages to running a Type 1I VMM. ,, ,.rzt ion system,
•e)

(Da Type II VM1I permits the predor viiIting s-ystem to run

Page 173

0 PCBI Segment toble

Process Pt 0•3 Or
VMIDI- I= 3E • l 8-6

VCSCB

Process P, 3
IC 2150=0 2

Execution of Instruction 5•, 55001 LOAD 112•0 I

(a) IC is 21500 5501
(b) •v (21500) = 2500
(c) f' (2500)= 112500
(d) Or (112500) = 5500 7
(e) Execute inst. ot 5500 7020OC:: 799 I:-A

C(f) v0(1120) = 4020 8
(g) f'(4020) = 114020
(h) r(14020) = 7020
(i) Contents of 7020 loaded
(j) IC is 21501
(k) iv(21501) = 2501
(I) f'(2501) = 112501
(m) #r (112501) = 5501

(n) Execute inst. at 5501)
(o) 0(1l2000) = e

EXCEPTION TO PRIVILEGED
LAYER OF CURRENT
MACHINE

step seg # address volidity
(d)1 2 5000 14(h 7000!1

EXAMPLE 8: TYPE 11 VCS

FIGURE 4-40

~ ~ -Ž~~A

Page 174'

4ithout degradation due to the VHmap. Furthermoreq it simnlifies

the construction of the VMM since the host oversting sys?em takes

over the allocation of real resoui-ces. In this examole, virtual

Aemory is being mapoe.J Into segnments of a Drocass running on the

i'eal machine. Therefore, the allocation of -Terory for these

segments and the response to segment-absent excepti3ns may te

nandled by the standard ooeratirg system ieiory allocatien

orocedure.

I

t% ~ - - -•

Page 175

4.7 SOME PRACTICAL PROBLEMS OF IV GENERATION HV

There are a number of practical problems that prevent the

hardware virtualizert as described, from providing the corplete

implementation of a IV Generation VCS. Some of these

difficulties, e.g.# tine, are intrinsic to virtual computer

systems. Other difficultiesq such as the ao hoc unformalizel

tire-deoendent 1/0 processt are tech-nological and may pass as we

gain greater understanding of comp~uter systems arctitecture.

Until such time as these problems are overcomes we_ can still rely

on rI~ generationt software VMmap techniques, We will illustrate

how an interim solution can be developed for I/C.

The difficulty with I/O lies chiefly with its control, nct

with memory or device maoping which may be accoNolished via the

VCSCB. The interim solution we opt-for directs I/O comvletion

interrupts to the real machine. We maje the Connect (Start) I/0

instruction (and all other I/C instructions) absolutely

orivileged such that it may only be issued by the physical

-iachine .n-d attempted execution by a VM causes a VM-fault to the

VMM, As with III .generation systems, the V4M translates the

t-eouest and issues +he I/O reQuest itself. On the I/O

tervination, an int.!rrupt occurs to the VIM running on the

aosolute machine. Regariless of the VM being run at the time of

the interrupt, its status may be saveco and control is returred

tq the virtual machine (by the physical machine) after interrupt

orocessing. The VCSC8 is expanded to include an I/O interrupt

oending bit wh, ' ;s set ty the VMP. Executicn of the LVPID

had

Page 176

instruction to start up a VM while the pending bit is set for

that VM, causes an I/0 interruct to occur to thst VP'.

While the asynchronous 1/O interruot goes to the absolute

ohysical machine, the connect instruction (CIO) VUM-fault is still

3 conventional HV fault up one level to the VMM. This is an

improvement over the III generation handling of 1/0 in ohich the

connect (start) instruction (via the softw3re f) tr3Ps to the

ohysical machine. -The real trao handler must reflect the trao

oack down to the arprooriate level VM, runnint the VMMo Thus,

ever, for software 1/0 maot in the TV generation HV, recursion is

I uch easier and more natural than ir III generation sfstems. 1ee

Figure 4-41.

Another sugqesticn for I/O control can be cerivel from Lauer

and Snow '76]. Easic3lly, they suggest allowing tie virtual

machine to issue 1/O instructions subject to the device map in

the VCSCE. I/O completion inTerruots then come in to the real

machine which passes the information down the V1MM chair via

so-called "spurious interruots."

' -4

Page 177

c130n-up

V1- set pending

flfault subseq LVMID

clean-up

Asyn chronous
in iorruptI VYM- fault

do ~~LVMID smm

Im~ f sub LVMID

TIME -

INTERIM 1/0 PROPOSAL

FIGURE 4-41

- - I
Page 178

4.8 II AND TIT GENERATICNS FEVISITED

The work of Chapter 4 has been directed toward introducing

the HV into IV qeneration systems. We have assumed that IV

gereration systems define an architecture witn a process mac *

implemented in firmware. We have then expandec the design to

form a new system wticn incorporates a level invisible firmware

VMmap, as well.

We have assumea that 6 is a rather complex map. However,

the orinciples we have developed are completely independent of

the complexity of do Thus, it becomes possible tc ex3mine other

computer architectures in which the maps f or 6 may be of

lifferent form from those considered. The important oroperties

which must be oreservei, however, are that 6 corresconds to the

software visible structure wiithin a level of a virtual machine

whereas f corresponds to the map jgee two levels of virtual

11-machines. We will consiJer two representative examcles.

4.8.1 f=P-BD,=identity

If we let O=identity mzp, then we have a computer design

4Ithout intra-level structure. There is orly one mode, i.e. A

"Supervisor state is not necessary" [761. There is no memory

napoina within a level. The level structure looks very mucl lilme

I f ir st or second gereratiorn desi~gn of the sort foun! ina a FEC

OOP-.8 class minicomputer.

The introduction of an P-S f-mao allows us to develop

virtual machines for this system. [As in Section 4.5.1 9ecause

I,

Page 179

of 1he lack of structure in each machine leval it may be

iesirable to allow programs to communicate between levels by

causing a VO-level fault with a conventional bounds violation

code. This now defires a orogramming environment in which the

-* VlM-level fault is used to call on supervisory services, much as

the "diagnose" instruction in CP-e7 [2,23,65]. In Figure 4-42,

the VMiM running at level n-1 oroduces a VM at level n. At level

n. we run "two-level ooerating system" OS [in the figure3,

4hich producpej this enhanced environment at level nfi. The

"system will work as long ais level J to level n-1 each run the

VMM. This is true because of VM-recursion and level invisibility

of the f-maps.

The "f=R-Bb=ioentity" machine is essentially that Proposed

oy Lauer and Snow 176]. They observeit

It is more gener-nl than most existinq hardware in the
sense that it naturally encourages a hierarchical
structure without imposing artificial boundaries or an
omnipotent suoervisor. But it lacks some of the
important features of modern systems, particularly
segmented virtual memories and a suitable narameter
passing mechanism ... [76]

The introduction of intralevel structure, eg. process model and

segmentation, can best be accomolished usin; the techniques

developed earlier in Chapter 4. However, the "O=idertity"

lachine may still oe a useful system to construct, oarticularly

in conjunction with a line of minicomouters. In this cortext,

*" ooth f=R-9 and f=paging could lead To interesting results.

4 'I

Page 180

S~Real

Level 0 Machine VMM

Virtual
Level 1 VMM

Machine

f

41

SVirtual Interprets

MLacn n VM-level faults_• ~ ~~Mocnine sSV'

as SVC'S

Different f

Extended

Level 3 Machine User Program

Environment

f R-B, = : IDENTITY" MACHINE

FIGURE 4-42

4.8*2 f~oagirig,$=supervisor/Dr-oblenm-state (n~o rremri'y ffaoroingl

The work of Chapter 4 indicates how paging could have been

introdu-,.ed ..)to an 12:1 System/3EUI Virtual Computer System,

Insfea3 if naging bein-; z part of the visible i~ntr'a-level

structure, it should have been iriroduced as cart of a formral

f-map. UV"der these civ cumstanc~ss there would -. no need to rely

o~n the techniques discusseo in Chapter Z, i.e., -a "software

V'Imao". Privileged Instructions would be able to execute

'Aiý *ctly twithout the trao simrulate disoatch senuenceJ,

i~r** velexceotions would be directed tc the o3rivileqged

4- i,wa'4re at the current level, recursion mould be vastlyI

Simplified, and tne VHM, i.e. CP-FEJ, 4a3Vld be greatly

streamlined. Once again, a Rey point is that psging, a mechanism

for resource allocation, should nroperly be part oil the f-'map,

nwot the *-map,

14

Page i82

CHAPTER 5e

CONCLUSICN

5.0 SUMMARY

The +h-,sis has developed avpropriate terminology, an

empirical tnsifiq and a model which represents the execution of

orocesses on a VCS, The model features two mapst (1) a process

map called 4 whIch maps Process names, e~g. segmentsq semaohores,

orocess-id's, into resource nafres, eog. 7,erory locations,

processor numbers, and (2) a v.Ftual machine mao (VMmap) f which

*maps virtual resource names into real resource names, The

orocess map is strictly an intra-level mao expressinq a

relationship within a virtual machine; the VFmap is an

inter-level map expressing a relationship between (the resources

of) two adjacent levels of (virtual) machines* Thus, the action

of running a process on a VCS consists of running it under the

composed map f o 4. Arolication of the model has led to a clear

interpretation of virtual machine recursion, Type II virtual

iiach-lnest and other impoI'tant properties of virtual machines.

The model also allows us to understand the implementation of

III generation VCS's as the software construction of the VMmap ft

utilizing parts of the hardware process map 4. However, the most

important result of studying the model is that it leads directly

to the design of a hardware virtualizer for or.posed

imolemenlations of IV generatin VCS's. Tne design has the

Page 183

characteristic that all orocess exceptions are h3ndled directly

4ithin the executing VCS without software intervention. All

rescurce faults (VM-faults) by a VCS are directed to its VFM on

the real machine without knowledge of orocesses on the VCS.

•ault handling, invocation and execution of VGS's wcrks directly

-egariless of recursion. Furthermore, preliminary oerformance

studies indicate that this design will provide oerformance of the

virtual rachine comparable to the real machine for the likely

Choices of the maps f anJ 6.

4

V

Page 184

5.1 SUGGESTIONS FOR FURTHER RESEARCH

IA

The development of the princioles reportea in this thesis

hias also .ointed out a number of areas for future research. The

lodel and suggested implementations of Chacter 4 have been

directed largely toward virtualization of a single orocessor

(without T/O] computer system. Examole 7 of Section 4.6 sketches

an approach to multiple processor configurations and Section 4.7

suggests an interim soluticn to I/O. However, there is s~ill

much work to be done in incorporating either of these features

into the model and the hardware virtualizer. As Section 497

ooints out, progress in the treatment of virtual I/O is somewhat

tied to progress in the treatment of real I/0 As long as timing

dependencies and asynchronous interrupts exist in I/O systems, it

will be difficult to treat the virtualization of 1/0 in a

homogeneous manner with the rest of the system.

Another area for further development of architectural

principles concerns machines witt- reloadable control store

(97,98]. The work of the thesis has been 1irectel to

virtualization of interior decort and, as cart of the defintion

of a VCS, we have assumea the existence of some "native mode."

However, the whole concept of interior oecor in future systems is

likely to be extended by reloadable control store., The

incorporation of such machines into the theory will have an

important impact upon preparation and extension of code for the

uicroprocessor,

The study of VCS 3 s seems to provide an excellent meeting

Parqe 85

Iround for a number of traditionally separate disciolines of

computer science. One area, in particulir, c:ncerns the

Jevelooment of models which crovice an inte-icr cecor level

Jescription of the execution of processes on 3 computer system.

The empirical work of Chapter 3 has Provicei an essential

foundation upon which to create s useful abstraction of orogram

execution in a III generation VCS.

The thesis has been concerned With Techanisms for

implementing VCIPsi rather than sp-cific policies for aoolying to

thefr. Thus, we have not discussea issues of resource allocation,

oerformance, or througnrut as applied to tie real or virlual

systems. This includes the introduction of fictitious resources,

i.e. demand paging, or carticular multiolexing ilgorithqs to be

used in a VMTSS. It is ouite important to develop models that

w•lI make possible reasonable resource allocation decisions. One

3spect worthy of study cancerns treatment cf the process interval

timers 3nd the firmwara process dispatcher. Should the virtual

ivachine dispatcher be implemented as a firmware adjunct or will

software be sufficient? How does this choice deoend on the

intended use of the system, i.e. many or few virtual 'rachines°

Another ouestior. corcerns oossible corflicts and

counterproductive algorithms between different levels of

virtualization. For example, if the 6-map is segmentation and

the f-map is oaging, then m.mery compaction by the virtual

machine may be a sub-optimat policy. AnoTha.r examole %,ight

involve "double soooling"-- once by the virtual machine a.nd once

by the VMN. Performance models and studies will be a necessary

Lvi

Page 186

oart of future VCS theory and imclementatione

,M

r. ->

Page 187

APPENDIX A

TUTORIAL ON CP-E7

SAO
Trtroduction

In this appendix, we shall illustrate the typical software

implementation of virtual machines on third generation systems by

reviewing the mechanisms used by CP-67 [9g32,54,851.

c In order to faithfully nrocuce a virtval 3EO CP-67 Tust

provide a virtual processor, virtual memory, and virtual I1/0

charnels and I/O devices. The basic approach that CP-67 adopts

is to handle high frequency events in an automatic manner with

little, or not overhead, while handling infreauent events in a

less efficient manner. This rotion IVals CP-57 tc a rather

'.fficient handling of virtual processor an: virtual memory.

Virtual I/C events which occur at a much lower frequency may be

, rocessed with greater overhead.

CP-67 is able to simulate a 360/67 in both of its moces of

3peration. In one mode, the 360/E7 behaves 3s a 3Ai1/E5, a

standard 36P without memory mapping. In the cther met called 4

oy IBM "extended mode", the 360/67 uses a num.ber of 3dditioral

registers and instructions. In extended mode, the 361/67 has the

-1bility to enter relocate mode. The 360/9.?*s oneration in

eixtended mode, but not relocate mode, is very similar tc the

operation of a 360/65c

4•

Page 183

A.1 CP-6?7s Virtual memory

The simulatior of virtual memory for virtual machires is

oerhaps the easiest of CO-D67s chores* The 369/67 has a memory

relocation mechanism, called DAT (Dynamic Adzress Translation),

4hich features a segmented-paged address scace 1112). The 24 bit

virtual address oroduced by the 360/67 in relocate moce is

interpreted as a four bit seament numbert sn eight bit Dage

iurber, and a twelve bit displacement witnin the page, Segtrent

and page tables arn located in core.

CP-67 always runs viri'ual machines in relocite ,o.•e. Thus,

the paging mechanism theoretically cermiis virtual machines to

address a memory of up to 2#2*2 or 16 millior bytes. This

vIr',-ual memory may far exceed the amount of physical memory

*ctually available. In Dractice, however, for reasors of

efficiency virtual computer systems are normally configured to

nave a significantly smaller virtual memory, usually I-ess than i

million bytes.

The paging mechanism may be used directly as long as the

virtual machine, itself, does not attempt to execute in (virtual)

relocate mode. If the virtual machine, e.g. 3S0/67, goes into

relocate mode, it is necessary to map the relocated addresses of

the virtua; machine into their corresconding real addresses.

This facility can be provided with reasonable efficiency via a

software algorithm as described in Goldberg [541 and illustrated

in Figure A-I.

In Figure A-i, the oage map (C) provides the corresvorderce

oetween addresses in the relocated virtual meemory (1) ard the

A1

Page 189

Composed Relocated Virtual Page Virtual Page Real
Page Map Memory Map Memory Map Memory

A B C D E F0 ... 0•iO . . .

I1 1I1

2 2 2 A
3

3 3

4

5

6

3

Composed mapping

MAPPING RELOCATED VIRTUAL MEMORY TO REAL MEMORY
FIGURE A-I

{I

-K

- - -. t- - . --

P.

Page 190

(nor-relocated) virtual memory (C). Thus, relocatel virtual

m emory page 2 is napoel into virtual memory oge 7. Similarlyt

the page map (E) orovides tne m,%u 4rom virtual merory (0) tc real

miemory (F). Thust virtual page 7 is maoped to re3l page 3.

Since all acdresses must ultimately be mapped into real addresses

and the 36V/67 hardware provides only a single level of nage

mapcing [this example ignores the "segmentation" of the 3E0/6719

it is necessary to use scftware to derive the comoosed page mao

(A) which maps directly from (M) to (F). Therefore, when the

virtual machine that is illustrated executes in (virtual)

relocate mode, relocated virtual page 2 is maooed into real page

A.2 CP-67's Virtual I/O

The simulation of virtual 1/0 channes; and ievices is

oerformed in a number of differert ways by CP-67. Virtual

iachines may be configured with I/C devices that are realized as

dedicated, spooled, or shared devices. A eedicated device is a

levice such as a tape Irive or an entire disk oack which may be

*."sed bY only one virtual machire ai a time. Consecuently, tape

drives arv attached to some virtual machlne for a given duraticne

The virtual device adcress need not be the saqe as its physical

address* A corresponcence between the two is established at the

time that the device is attached.

A shared 1/0 device is a physical device which way be

simultaneously part of the configuration of a nu.oer of different

virtual machines. A shared 1/0 device is divided among -ac'n of

- a-ong

Page 191

the oiferent own.,rs in such a way that each virtu3l machine

oelieves that it alone owns the aevice, but th3t the virtual

ulevice is smaller than the actual physical device. An example of

3 shared Device -s a disk pack that has been dividec among

several virtual machines. These so-cal led ,.ijj2.-_iSj!s behave

e-Xactlv like the ordinary TlM 2311 disks exceot that tney have

"fewer cylinders. Another- example of a shared I/C device is a

transmission ccntrol unit, such as the IBM 27929 in which each

virtual machine may have only a small number of the transmission

lines into the device. Such sharing artLfacts, like the

iini-dis:., are intrcduced for cost or "efficiency"

consieratior.s. They improve the sharing of large resources that

might otherwise be ineffectively utilized.

Scooling is the third methoc which CP-67 uses to simulate

11C devices. Each virtu31 machine has attached to it, a virtual

card reader, virtual card punch, and virtual line orinter.

•ather than provide a separate real device for eacn virtual

iachine, CP-67 utilizes buffered disk files to simulate tt-ese

levices. On outout, data directed to the virtual printer or

lunch are written on a special disk file. When the real physical

Jevice becomes available, the temocrary file is crocessed all in

3ne piece, Similarly, card input is first read in by CP-67 ani

written on a disk file. Card images are then crovided or each

virtual I/O read reauest.

Dedicated I/O device simulation is the most general approach

jse0 by CP-67 and may be used for devices which are unsupocrtedv

or supported in other ways. Thus, alien devices, such as the IBM

Page 192

1.250 graohics console (831 may be connectea oroviding that the

virtual machine contains the appropriate I/O handling sucport.

CP-E? need otaly provioe very simole interrupt hi'-:ling. Devices, -q

such as the reader, ouncn, or printer, which are normally scooled

levices, may be attached to a single virtual macnine if desired.

Devices, such as disk Dacks or telecommunications contril units,

V, which are normally sunoorted by CP-E7 throu;h sharing, wlay be

I e,' cated to a single virtual machire on a whole device basis.

Thus, CP-67's hantling of I/0 devices is suite flexible and R

allcws for configurations which are somewhat different from the

actual resources available.

Since a virtual device address may differ from its

corresponding physical device address (that is used to realize

it) it is necessary to verform some kind of device macoing befcre

3n 1/0 transfer may take place. The device m3o0ing is

illustrated in Figure A-2. A virtual device is located on some

oarticular virtual channel and virtual control unit. Once tte

levice correspondence is made with the real I/0 levice, its

oarticular real control unit and channel may be identifiec. I/0

transmission requests, CCW (Cnannel Command Wore) chains, must be

translated to reflect the corresponding real I/C oevice involved

(as well as the physical location in core memory). The CCW

translation is done and the I/C request is placed on the queue

for the real channel. When a completion interrupt ccmes in on

the real channel, this information is postel bacK to the

corresponding virtual channel.

Because of the recessity of translating CCW chains before

Page 193

-Y-J

~ck

z =)

- S24

>0

:475

Page 194

tiC initiation, CP-67 introCuces the adaitional restriction that :

10o cha~nnel orogram is changed by th'e CPU or the chann~el during

the Interval between execution of the START 1/0 instructior and

I ~the Charnel end interrucl excep't that oerformed by the OS indexed

sequential access methel (ISAtP)s The restriction arises because -

',P-E7, having translatec the channel orogramt will have no way of 4

tinowing that it has been changed and should be translated again

The actuni mechanism that allows CP-67 to gain control

before a virtual machine can start up 1/0 willI be explained below
IS

in the section on the virtual processor.

V

A.3 CP-67*s Virtual Processor

CO-67 simulates a virtual orocessor, e.g. 36), by using the

virtual Machine mechanism that was sugqestea in Chaoter I. ard

Chapter 2. Since the virtual processor and real host are similar

(or identical), the virtual orocessor~s opcodes mray be executed

lirectly on the host machine. Thus, an instruction-

oy-instruction interpretation is not required* H~iqever, it is

necessary to prevent certain instructions from executing directly

on the host machine. These instructions if executed directly by

3 virtual machine can cause serious difficulties in

interoretation or control. Any instruction that will rot be

oermitted to execute directly on the host machine Is term~ed a

2SD~jjjE Instruction.

The approach that CP-67 adopts to orchibit the direct

execit on of sensitive instructions is to run the virtual machine

Page 195

always in (chysiral) proolem state cn the host M3chine. Recall

that a real 363 has two modes of operation: (1) supervisor

state, in which all instructions are permittec to execute, and

(2) problem state* in which only a subset of the instructions are

allowed direct execution. The attempt to execute a privileged

instruction (one which may only be executeo in suoervisor state)

4hile in problem state causes a program interructj i.e. tracp By

running a virtual machine only in proble. state, CP-67

"efectively prevents the direct execution of all orivileged

instructions. If the sensitive instructions are privileged then

AA

CP-,67 has succeeded in creventing their direct execution.

CP-67 maintains a number of tables in its suoervisory area.

Amcong them are copies of all working registers that the virtual

machine believes that it has. The registers include a virtual

orogram status wore PSh. This register indicates the state that

the virtual machine believes that it is in. If the virtual

lachine is in (virtual) problem state anc a privileged

instruction is attempted* CP-67 reflects this fact bacK to the

virtual machine. The virtual machine is cut into (virtual)

supervisor state so that it may process the crograq interrupt

itself. The real host machine still remains in problem state

while the virtual machire is running. If the virtual machine is

in (virtual) supervisor state and a privi leged instruction is

attemoted, CP-67 recognizes that this woulc be a valid

instruction on the real rechine ard simulates the effect cf the

instruction.

Some of the privileged instructions of the 360 hhich CF-67

o•I

Page 196

nandles in this manner are the state charging instructions Load

"Drogram Status Word (LPSW) and Set System Mask (SSM)t the storage

orotectior, instructions Insert Storage Key (USK) and Set Storage

Key (SSK), the I/O instructions Start I/O (SIO), Halt I/0 (HIC),

Test I/O (TIO), and Test Channel (TCH), some special instructicns

Oiagnose (OIAG), Read Direct (POD), and Write Direct ikRO), and

the special 360/67 instructions (for relocation) Load Multinle

Control (LMC), Store Multiple Control (STMC), and Load Real

Address (L.A). Since the Start I/O (SIO) instr'ucticn is

orivileged, the attempt, by 3 virtual machine, to perform I/0 is

immediately recognized. It is at this point that CP-67 may

oerform the mapping betweer virtual and real I/0 devices (as

lescribed above) and then initiate the corresconding T/O

operation itself. The storage Protection instructions ace

orivileged and this allows CP-67 to keep a ccpy of a virtual

vachine s protection keys and use them when the virtual machine

is dispatched, Likewiset the Instructions which start up the

relocation system are privileged and so virtual relocation way be

napped like virtual 1/0 [54]J

Thus, CP-67 simulates a virtual 360 processor through a

combination of hardware and software* It insulates the (f-eal)

host machine from actions of the virtual machine by always

running the virtual machine in problem state and in relocate

mode, Because the host is in oroblemn state, it is immune to

tamperinq by sensitive instructicns* Because the host is in

relocate mode, certain reserved registers in low physical core

are isolated from the virtual machine. The actions of the clock

Page 197

and these interruot locations are simulated f3r thi virtual

iSachines by CP-67,

-p

4-

Page :9B

APPENDIX 6

CASE STUDIES OF SOME III GENFRATION MACHtNE3

3.0 In.troduction

IT this, appendixg we provide a number of e43noles 3f thirl

jenerctian r-acnines which --re ;nc4 which -re lot virti•lizaole.

For the machines vhtich are not, we indicate whici of the

3rmpirical rules ot Section 3.2 urp violated. Twkse results ire

summarizeJ in Figure 3-2, This sel of examples is not ve-5nt to

ae an exh',usTive survey. RzPther, it iS ilntelI.}d t.) 3ive The

reader representative ex3mples of problems th3t orne .2ncounters

4ith contemporory machines. Ineoed, it aooes-s that Anether or

iot a particular nost siJports virtual machia-Z; is merely 3

,iatter of chance. This is due to the f.,ct rtnt n,.-.. of tne

naci.ines cited in this section were ever i.-ilnel with the

thougnt of supoorting virtui.l mf3cines.

lei IHM 36 /37

CP-67 has beer. in existence for several y.A.s n3w, so there

can be little oouot concerning the 361/67's .toiliTy t3 3upoort

virtu.il macnines. Tne initial CP-67 ran on a 317/67 aut oroducei

,nly virtual stanlarJ 3."s, eog. 363.!, Unier these

-conditions, CP-67 w-=s not self-virtualizing a(,-J so nat strictly

inder consid eratio, here* The extensior of "P-F.7 to suonort a

ivirtu.,I 360/L7 maKes it self-virtualiZing 3.nJ ipprapriate for

study here.

......

Page 199

CP-o7 is a Type I VCS wlier, is i t,.shsr'•• 3ystefl, i~e.

-/MTSS. It rroouces virtial machines using tne o-isic ,echan ism

.escribeid Ln A-Pendix A, The .360 has two nircwsr. modes of

)oeration utc so it is aoorooriate to apply tha rules levelooed

in section 3.2. Rule I is s3tisfied sni:e trie ilitruction

3xecution is ioentical for non-privileged instU.T:t1kOS int botn

supervisor and Problem sTate. This is a cna.icteristic of ;,|I.

36.'st riat ;ust the 36t/i7. Rule 2 is satisfiel sinca tie 36,/f?

)AT r0location system may be used to isolate 1•t jirtia! macrt.ne

from the VMM, Rule 3 is satisfied since sensitive in3tructions

:ause recover]Dle traos, In ;articularv ir the 1.56/17t all of

the instructions which can cause Problems are orivilae-a. Thus,

3ule 3a is satisfiec by LPSW, SSM, SVC, DIAG9 L m C, STMC9 LRA [aS

4xplainea in AppenJix A], Rule 3b is satisfiea oacause the

relocation system makes the h3rdware's reservej coar locotions

inaccessible to the virtual -machine. Again, the instr,|.tions

Arich refer-nce tne reserved registers, such Is the PSW or

c;ontrol Registers are privileged, Rule 3c is s3tisfiei oecause

the zip~rovrizte sensitive instructiors 3r. orivilej,. Id
Furthermore, the use of the nmemory reto*c.tion ;yst em in

"man3gin3" the virtual *auchine aoes not intr•juce 11ditional

TA insolvable complications. Thus, relocation of vi-tual iiemory may

3ccur without error* Any traps that occur in rac•.cili••j vitual

iddresses with real addresses or even relocated virtual addresses

4ith real addresses do not cause unrecoverzble irrors.

Two points are of consideraole interest i.) this discussio.n,

First, the 3b0/67 prechecks instructions wth.cn tay crass o:,ge

Page 2,00

Doundaries, Thus, instructions which may cause jifficJlty, 3ucn

is the Aad Decimal instruction, are suppressea oifor4 execution

rather than terminated nuring it (5.•3. Th_ sec)nl rcint is thtt,q

in reconciling relocated virtual addresses with real j.1dre1Žs, I
the OAT mechanism may oe set to trap until this mt:ory na3poing is

correctly established. Rule 3a is satisfied beciJ.e tne various 4

instructions which reference I/C are privileged.

Thus, rot surorisingly, the SbO/67 srtisfies ill of the

empiricz, l hzr Jwre reauir!ýments stated in Secti3n 3.2. JA

1°2 IBM 36U/65

In this section. w Jiscuss the oroblem af iaplenentin4 a

ý,P-i5 svster. CP-65 is a VCS which runs on a 3iO/63 to Proluce

virtual 3b1/65"s.

As was mentioneiJ .bove, a standard 3!iU, e.g. 3 E•Ir5,

satisfies VCS haraware r.,.uirements one and twis With rejar,1 to

-ule 2, the 36U/65 has no relocation system so that it list rely

in its storage Protectiorn system to protect ti.! VM9. It also

"must use th.. protection system to prevent in5tructioris from

: •fer•_ncing the soecial 3ysteu-wiae registers (iule 3o) store3 in

low core since, in generall they may be 1ccfs5ae without

ariviItgit- instructions* Rules 3al c, a are 3itisfieJ because

the relevant instructions ;-.re orivileged. Thu3 it is ;ufficient

to see if the storage pratection system is aje•ujte t) satisfy

conoitions Z and Sb.

Since we are using th.- protection systemi ro protect .zuertes

is well s .Iterations, we &re led to the conclisioor tnt we ne-e-

Ni ___

N N -N - 'N-- - '4N

the 36.-s five bit key store-3nd-fetch protecT System, With this

fectvr-e earn 21(byt- half-page is assigne3 a stvr-ige seV via the

orivile,.a SSK instruction. Four of t ri oL t fof.i, m st.re

.rotect Key &nd the fiftn bit m2y be set t indicdte fý-tc -In
3rotect as well. If tMe four bit key in the 3SA corr:!5oonds to

the four Oil Key assignei to a 2K block, te-i. the task is

oer, oitte.1 to fetcn or store into the olocK. If the k.ys co not

iatch then the task nas 3nly fetch access to tne :locrt -inless the

fetch L-rotect nit is also set. If the key in tn. P3W is zro

then the tu.sk has fetchi anQ store access to any -aloci 3f stor-:sge ••

f-egaroless of the Key st~tee with it*•+

Thusq for CP-63, a zero storage orotection K.ty in the PSW is

inalojous to being in supervisor state. It gives the h•lder mare

.ower than he may be able to use wisely. It is t~o m'Jci power to

live to i virtual machine and so the virtual mal nineos cey in The 2•A
1SW must be some other valuv. Only the supervisor M3y actu3lIY

-un with storage Key zer., The virtu3l machine rins ,iith storage

liey "virtual zero" in which the superviso- oerfo.ms a Key

translation for the virtval m;jchine.

While this scheme adequately limits virtij-l menory znd

)rotects the supervisor, the dezlicated locations in 13w core (the'

first 2K bioci') cause it trouble. Since tnere is no relocation

scheme on a standara 36-. an the machine can generute ind store

3bSolute 6ddresses, the virtual machine runs unriloCitai. Tnus,

the virtual macnine's aldresses .- 2K correso~ni t%) th-ý r..?al

3ddresses -2K. In order to prevent the vi-tJ3l macnine from

3ccessing the interval timer, new PSW's etc., tie first 2K block

PAe - _-2

nust oe fetch and store protected from all virtuil m3ciines. In

af-Oer. to r-*rvo tthe notion of a virtual rfvchine- theri must be

i set of corresponding virtual special re.jisteri ;tored somewnere

?Ise. These may be ieot in uooer core. Atteerpts to accss

r-egisters will be trapoeJ by the storsge orotrecti3: mecianism and

the supervisor -ny simul3te the effect* This met:ioo of using the

:arotection Kys to preveqt the virtual macniie fro". executing

sensitive instructions Aorks. Unfortunately siice tha .rotection

system on the 36., involves 2K blocks of storojet th_ c~re above

byte location 128 (decimal) in block Z rr is orotecteJ

unnec-s.sarilye As a resilt any instructiorn ir, core i~cition'ý 3•s

tnar ZK or any instructior. accessing dlats ir- zore I3cition l•;s

than 2K, will be trapoe1 automn;.ticallye This will occur for 311

instructions, not just for the sensitive ones. Conse.luently in

3rder to prr-serve tne virtual machine notion, tie suoer.isor' iust

3imulite eacn such instruction. This car, c3u3:i z sijnific3nt

loss ar efficiency.

Actually, tnere is at least one somewhat jnkikely condition

Jnder which such an instruction may not be correctly simulatece

S If a storge-storage type instruction, lakg Aim JECIIPAL is

interructea jQSIjjU execution, due to a nretecti3n exceptiont the

itistruction is termin3te: and partial results m3y be lost.

The I1IAC 84jý is tne Japanese equivalent 3f the Spectra

""u/45, As such, it is very similar to a stindarJ 36 , e.g.

$6,;65j an3 so, tne orecedinj Jiscussion is camoletely

Page 2 L3 U

jorlic-ble. It saTisfias th4 emuirical nzrwa--e rewij-emn-rts in

the same way thit the 36J/65 tia, atove.

1.4 IBM 3t,./d5

The IR 36.-/85 is a stanJiard member of the 3r3 fimily. Its

i ntIrior decor is similar to the other stailird noaIis, e.g.

3641/65. Its Principal structural change from tie other nolels is

Sthe introduction o f a s.fta II buft er memory c ll1,ý-o t:n cache.

-ince tne cacne is invisible at the machine arcnitectJre level,

"i.e. riot part of the interior aecor, it need not oe virtualize.,

ind reel noot even enter into virtual machine consierations.

Since iny , 369 may be virtudlizedl tne 35j/85 may oe.

1 - U.-. Dta General NCVA

-7 Iri eO.=t 3 Gerieral1 NO0V A and SUPERNOVA 3r!: sixteen 0it -

S• inicomputers. 'Recent 40rK by the author and Lo]ic~min ha•s led

Sto the --s -rof -j VCS for the NOV A. The virtu3l NOVA is •

SfaciIIt.Iteda oy the ven,3ry allocation an• protection o.)tior. tnat

is availt.li. This option introduces Payirvq aiJ two orocessor

S*o~es-- supervisor and user. Since all instructi iis whicnf

n anioulate state Lnformwatior., e.g. the page table registers, zre

1"1/0 instructions'" ,n1 all I/O instructions are or~vilejea, Rules

Jaib,c 3nd d are satisfiei. R-ules 1 and 2? are simIilarly

i-4tisf ie.1. Tnerefore the NOVA is virtualizaule.

3.6 Honeywtll O0? 516

The Honeywell OOP-516 iS a 16 bit mini-cm.jute- with two

2A(

P3ge 204

lardware moces of ooerationt q stora (but not feitch) arotection

Systemo and rno relocation system, The maCnine cinnot be

Eirtu.ilized for a ntinber of different reasons.

Rule is generally viol ,oted. Scre 3f th . sensitive

instruction,; are trappedt either as a result af the orivile-,e

instructions, the trap is ceftrred one full iistruction

execution. Thus, the stite of the machine will o. ch3njeO before

the supe=rvisor gains c ontrole In fact, it is even oossiole for

the instruction following the sensitive instruction to store into

that instruction oefore the trap has occurrei ° 41•w tha VMt nas

io hope of simulating the instruction.

Pulp 3.- is violated in a mznrner simil:r to ti,! P]P-ti•. -See

oelowt] The instruction useJ to return from sxo.rvisOr stato to

iroblem state is ERM (Enter Pestr-icted Mode). Unfortun3te!y,

this instruction is not privileged, Thus, its zx3cution in

virtual supervisor state will Pot cause a trap. A virtJ3l state

change may occur without the knowledge of the V ,4M ,

Rul = 3b is violated bec 'use of the Ilick 3f a rel3cation or

fetch protecT tysten. ° T his Jifficulty by its-alf neei not be

fatal since the introduction of a s;uitatble restriction can still

oroauce a useful virtual machine (as in Fuchi (-91). HoweverI

- ule 3b is violateo in another more severe m3nier Aitn the TMA

(Interchange Memory and Accumulator) instruction. If IMA is

ittemoted into an area tnat is protecteo, the a:cjmulator will be

loaded b-fore the orotection violation is signallIdo

'Consecuently, it is impossible to recover the original contents

Page 20.5

of the accumulator and simulation is not possible,

3.7 GE 635 tb55 (Honeywell 6,u.)

The Ge. 635 cannot Do virtualized because)f violations of

. ults Za ana 3c. The LOT (Load Titer) ana L3AR (Io.a,1 q3se

Address Reyister) instructior.s are sensitive i;istructions that

iull execute rather than trap when issued in prolem 5t.ate (sli ve

node)* The GE 655, a successor to tne 635 attemotz t) correct

this error Cy providing a trap on LOT or L3AR ii problem st.ate.

-owever, there are still difficulties with the 1icChin- oecause of

visibility to the p.iysical master/sl3ve node vi1 the

-on-priv~leged store indicators instruction.

1.8 4ultiaota MoJel A (SEL)

Tne Huitijata Model A is a 16 bit mini-comouter witn a

iardw3re implementee oaging systento A vi;.-tu~l ;achine system is

impossible since Rule 3 is completely vioiateo. All arivileied

instructLon:. execute 3s NOP when in proble.m stat-3o T'h•se

instructions include tne status switching instructiois and 1/O

instructions.

3.9 XOS 941-

The XDS 944 cannot oe virtualized because 4f findamental

uiolition of Rule 1. Bit 0 of each instructioi %orJ indicates

4hether or not the memory mapping is to oa on for that

instruction. The bit h3s effect only in supervisor st3te out is

ignored in problem st3te where it is assumed th3t all 3ddresses

I'
i " ' -i i I i" I i - . - . -...

Page 2v6

ire mapped. This, ruining the virtual suiervisor state as

ihysical proolem state .does not provide 3 mechrmnism to

JiStinquiSh betoeen mapped ani un.apoed addresss.I

3 01. 0E'C POP-1j

.he OLC PrP-13 may riot be Virtualized oaciuse it viel3tes

,ule Sa. The JRSTF (Jumo and Restore Flags) or "JRST 1,0° (Jump

to User Proarzm) instructions are used to return fron ;uoervisor

itate to problem state. When executed in (3nysical) oroblem

3tate, the instructions do not trap. Thus, it is imo)ssible to

lerect a virtual state cnanqeo

l Another violation of Rule 3a concerns tn- icces3i-3ility of

inthe nChfindicate what physical mode the machine is in.

•, Thus, a .oro_-rar. in virtu31 suoervisor state migit aiscaver from

the fI ,4s that it is Jr. (physical) orouies state 3nd become

"con-fused".

As with several othr n.achines wnich viol3te Rules 1 or 3a,

it is Possiole to honstruct a hybrid virti3al nacnine on the

'OP-i ! iSee Section 3.3.1 Th.? HVM is possible since ai attenpt

ay a virtu.-l machirne to enter supervisor state tr.ips t: the VlM.

The means of entering suoervisor state are vii a (privileged)

"JUD. Thus, zn HVA, Type I or Tvoe TI, is possiol. on tne POP-ID.

The organiz,.tion of a Ty.)o II HVM is discussed in Avpenlix C.

3.ol BEN TLNEX

TENEX (2-] is a PDP-It that has been m~dafiel to incluae

nardw3re pagin-. This modification has not cha-,1ed tie situation

N

Pige 207

.ilth respect to the JRSTF instruction* Thuss TEIE4 is not

virtu.ilizable but an HVM may oe constructe.I

-N

Page 208

Ar'PENDIX C

CASE STUDIES OF THIRD GFNERATTON TYPE TI SYSTEMS

C.o Introduction

In this apoendix, we consider examples of several different

operating systems whicn co and do not support Type TI (extended

iachine host, VMtls. For the ffachines whicn are Tyce IT

viryualizable, we indicate the modifications tqat had to be made

to support the emoirical software recuirements. For the systems

which are not, we indicate the empirical rules which are

violated* These results are summarized in Figure 3-8. The

POF-1 did not satisfy the haroware requirements but the ITS

operating system satisfies the software rules. Consecuently, we

are able to exhibit a Type II hybrio virtual machine for this

system. As with the hardware examples of Aooendix B, the

operating systems investigated in this section were not aesigned

4ith the thought of supporting virtual machines.

••.1 HITAC 8400

The HITAC 8400 Z491 has a Type II virtual machine whict' runs

under the TCS/TOOS operating system. The HITAC 14010 is (more or

less) Type I virtualizable [see Appendix P]o TOS/TOCS satisfies

software rule St but does not tatisfy S2 or S3. Consequently,

moGifications were irace to provide protection on an ad hoc basis.

3ther ad hoc solutions were introcuced to eliminate some cf the

violations of Rule S3. For examDlel

A:

Page 209

Ssupervisor call instruction (SVC) is not a orivil.qed

instruction but it causes interruots changing the
current program state to P3, As TOS/TDCS had no
set-exit function for- this instruction, we used an
illegal code instruction instead of 3 SVC instruction
to permit simulation through a (sic) illegal code trao
(491,

The authors indicate some of the Type II requirements.

The supporting operating system must provide a "set
exit" or "ON" function for these types of traos caused
by hardware. Aside from privileged instructions, the
so-called SVC (supervisor call) instruction must also
be "set exited" and simulated., The SVC normally
communicates with the current supervisor but now it
must be forced to direct to the suoervisor simulated

14.91.

Recognizing the inelegance of their systeml the authors orooose

sore improvements:

As for the TOD/TDOS, the interval timer should have
finer precision and set-exit functions for address
errors and SVC should be provided as standard features.
In addition, "set storage key,°° "set timep' and "set
CAW" functions should be prepared (491.

C92 36C/67 UWMPS

A Type II virtual machine has been constructed on the UFPPS

system for the IBM 363/67 1496C]. Since UMMPS did not satisfy

Rules S2 and S3, it was modified to incluoe several new

orimitives° The most imoortant of these is callea SVC SIPTRAo A 1-

very brief description of the virtual machine monitor (called

"the monitor", below) and the action of SVC SWPTRA is given in an

informal user's guide.

When you run the monitort you tell it (by way of
-the VARY command) which virtual devices are attached to
which real devices% You then issue tie IPL command and
the monitor fakes the IPL sequence. After this, you

Page 210

coumunicate with the virtual system by way of commands
which make available the 360 console functions (disnlay
and alter memo.ry, PSk restart, exterral interrupt,
console request, etc.)

The monitor acouires space forp and loads the
virtual system into segment 3. The resson for using a
new segment is thisl when the virtual m3chine is
running, it must have addresses 0-aSK (or 0-512K or
whatever). This is accomplished by SVC SWPTRAt which
swaps the segment table entries for segment 0 and
segment 3, detaches segments 0 ano 1, and 4+, and I
transfers into the virtual system. This takes care of
the addressing problem*

Now the virtual machine is ruening in oroblemi
state* Therefopeg whenever it attemots a orivi1eged

operation (SI09 LPSW, SSK, etc.), a crograrr interrupt
occurs* At this point, the supervisor (UMmPS) swaps
segments 0 and 3 tack again and reconnects the oth•er
segments a.no transfers into the monitor. At this point

the monitor can fake the privileged oceraticn or not as
it sees fit.

The seouence is therefore like this: Th~e monitor

transfers control to the virtual machine by way of an
SVC SWPTRA° Any task interr'upt in the virtual machine

(program interrupt, time overflow, asynchronous cevice
exit, etc.) will cause the supervisor to re-establish
standard addressirg and transfer into the mcnitor. [60]

Thusq SVC SWPTRA• com•es fairly close to being a prim.itive

that starts up a subprocess. In its case, the Particular choice 5

of which interrupts trap back to the virtual macnine supervisor

nave been decided in advance. There is no general flexibility in

deciding more precisely what is oermitteo in the subprocess*

However, since the subprocess is a particular kino of virtual

iachineq e.g. System/360 (360/65), there is no re3l need to

orovide the additional flexibility.

Note that the U'AMPS virtual machine is not

self-virtualizing, That ist the VIM runs on a 360/67 to produce

a virtual 360/65, The work is currently being extended to

Page 2i1

include a virtual 360/67o

C.3 OS/360

0S/360 [66841] is the principal operating system being run

,.ith t he ITP System/360o As such it is extre•mely dif'icult (anel

possibly foolish) to imolement ad hoc changes in it. One of the

orincipal reasons that CS/360 is run is so that an instal lation

will be somewhat compatible with the rest of the IBM %orld.

4aking ad hoc changes to 0S/360 sabotages that objective*

Thus, in contrast to UMMPS9 say, where the ocerating system

4as modified to support virtual machines, one would not expect to

find changes to OS/360. This, in part accounts for the lack of

Type II virtual machines under OS/360 sincn a standard 360 is

Type I virtualizableo [See Appendix B.]

In this section, we will examine some aspects of CS/360 and

show how the public version of OS (pre-1970) violates Rules S2

and S3. We use as a guides "Notes on Construction of Subsystems

Within Operating System/360" by E, Satterthwaite [1001.

Satterthwaite~s objective is slightly different from imolementing

virtual machines, but the difficulties he uncovers are ecually

applicable. Since OS/360 Is continually evolvingt remarks made

about it often tend to be time-deperdent.

OS/360 violates rule S2 because all memory available to a

job is assigned a single key, and that key appears in the PSW of

every task associated with that job. This implies that the

virtual machine is able to destroy the VFP* SattertPwaite

suggests that 0S/360 provide a pair of SVC Instructions, which,

-N ~ - -.-" .

Page 212

ifter approoriate validity checking, switch the protecti on key of

a part of a partition (region) between zeri and the key

associated with the corresponding lob.

OS/360 violates rule S3 in many different ways. Of the

interrupts and exceptions, only program ir,terrupts may be

signalled to the virtujal machine monitor in such a way as to be

recoverable. For program interrupts in the virtual Machine, eog.

attempts to execute p-ivileged irstructions, the VMM is able to

issue an SVC SPIE to give the addre•s of the Sooropriate "error

handling" routine.

Other interrupts such as I/O0 timinq or SVC nterruptions

ire nol handled as well. For examole, althaugh the virtual

machine supervisor can specify a time interval and an exit

routine to be given control upon the expiration of that interval,

there does not aopear to be a method by whicti the exit routine

may examine or alter the PSW or general register contents

existing at the point of interruptions Thus, it is ifroossible to

simu!ate the effect of this instruction. Thi. worst failing of

0S/36G concerns the lack of an hierarchical viyj.piei+ concerning

SVC°s. There does not appear to be a way in CS fcr a virtual

machine supervisor to mask out the SVCes of its virtual machire.

Such a mask shoulc enable a specified exit routine to

conditionally inhibit the execution of selected supervisor

services. Without this trap, there does not 3opear to be a way

for the virtual machine~s SVC~s to be signalled, a violation of

Rule S3a. Thus, in Figure C-i, execution of an SVC by the

virtual machine (in problem state) causes a haraware trap to the

II

Page 213

I I

I 360

-i 0S/360

, I

VMM
VM
V M supervisor

VMproblem

0S/360 DOES NOT MASK SVC'S

FIGURE C-I

Page 214•

system and control passes to 0S/360. CS/360 tnen interprets the

SVC as a request for Its, service, performs the service 3nd

returns to the calling virtual machine (in oroclem state). Thus

the VVY" never gets control and it cannot put the virtual machine

into virtual suoervisor state fer the intended SVC hancling.

oioe the similarity between the neec to mask out SVC's of the

extenied machine and the need to cause tracs cn sensitive

instructions in the hardware machine. Al nmasking SVC is, thus,

very similar to the TCO instruction of Section 3.4. 7C

C.'. MIT POP-it ITS

While the PDP-1O is not virtualizable, it is, however,

oossible to construct an HVM on it. (See Secticn 3.3 anJ

Appendix B.9 Furthermore, wher running 4ncer MIT's ITS,

Incompatible Timesharing System (42,431# it tecomes fe3sible to

construct a Type IT Hybrid Virtual Pachine (HVM) t5633.

ITS is an hierarchicai ooerating system in which one process

can control a sub-tree of other crocesses. In oarticular, ITS

orovides primitives (UUC's) which enable a orocess tn create a

"subprocess, read the core image of the subrrocess, and get

aierteo when the suborocess attempts to reference cutside its

core image or attempts to execute a orivile;ed instruction or

JUUO. The entire signailing mechanism (user trao mode) is

controlled by one bits called the UTRP bit, in the Orocess's

control block ("system variables")o A UUO to turn the UTRF bit

on or off is available to the parent process-

Thus* it becomes a simple matter to design a Tyne II "VMt.:

S,,

Page 215

The VMM is the superior, the virtual machire the inferior in a

orocess tree. The VMP sets the UTRP bit" to direct 11 inferior

traos to the VMM. The VIM permits the HVM to execute directly in

'iser mode. Wnen the HVP attempts to enter vi.tual executive

mode, the VMH is alerted. The VMh irterprets each instruction

jntil the virtual machine returns to user mode. See Figure C-2.

C.5 CMS, The Cambridge Monitor System

CMS (851 is a rather bare single-user conversational

aoeratirg system which Puns or a standard 360. It is 'ost often

found in conjunction witq CP-67. In this usage, CMS runs on a

virtual machine under CP-67. CMS provides a number of operating

system primitives that may be used by a orospective VFM.

However, sirce CMS is 3 single user conversational system (most

2ften run on a virtual eachine), it does not Prcvide any features

that may bi used to protect or signal the VMM as re.uired by

rules S2 and S3. At the same time, CMS Joes not make the

naroware features (instructions) to accom'plisi tnese tasks

inaccessible. Thus, with rather simpole alterations, the

necessary mechanism.1s may be added to CMS. 1hile no virtual

nachine under CMS has been discussed in the literaturet varicus

installations, such as "IT Lincoln Laboratory, have m3d- most of

the modifications that make this possible.

41

Page 216

time

PDP-IO

ITS

Complete interpreter
Trap for executive mode

VMM

bit LHVM

Direct Direct
execution execution

TYPE I1 HVM UNDER PDP-1O ITS

FIGURE C-2

Page 217

SPIPDND1X 9

GLCSSARY

ThrF. intent of th~e glossary is to~ provide, in one ol~acet very

iric' cuir-ary dc-finitiors fcr some of tt-e termrs or abbrevi.2tiors

-: .i~ec ir thc4 the~jV. Fcr this rpasc-' there is~ po .attemint Tr;de to

iivde vf~ry coprol.ete o r o~irticularly f orm-v I d-?fjnjtjons* This

ilosssry iS rrereIV intendel Re a coflvcfience for tnq rE~derq

-eqrindirz; nin- a, cirl~in Tern'fs Lr - ýbbrevijaitimns Fop- more

in f ormýtijot,, th~e reader, is directe~d to "i sectin numbers

incic~ate- with mos~t entries.

3f~fitt!fl: ttrituteS of a '.ývStegm as sfen hy T'143 Or~r-n~irferl
i~e. the carcp-tual I tructt~re ;=nd functio,-il betvavior, a~sA
listiruct from- the or~cnizatian of thie datz, flow i rd ccntrols, ithe
logiC3l -esign, an- t?~e rohysiczl ir-len-entztjon

_j e j.&tgr 2 arloere device fcr cerforn-inc; rzoio3 oarillet searcon

!r.QniflJ.L j~r-sna-11 virtuEl rrachine rnCnifor

MM 0tA exterdeo mnachine arcnitor mraocir.; oro;r3rn betweer twsoC
lifferent ooer.ating systemns t2.11

em~J~t~n technioue for Sim~ulating an interior lecor on a
mhachineO with some different one

jX.entj.2D trap causel by orocess violetion [different fr am
fault):6 cortrol shouli remn3in withiw' ex~cutin3 virtu'.l 'naChine
i4.1'

tD.MiJI: com~patible series of computers w it,- cossitbly ni inor
interior decor lifferencas, eto. I6L/4Q anc 3Ký/V?,

±f IJMMC11~l tr! virtual machine is r.t.t identic3i to the
nost but is a member of the sam~e comouter family 12,1)

nPajqe 1

±..j~ta- iricroprograrn which Oefjnez interior i~cor

T V f--rrjly-virtualjzijrf j2.11

f: vir+ufl rracnine rlio [4.?]

jerer~tjcn: architectural Characteristics c f the crircical
iichjrncs of tnst 'ieneration ITre the The'SiS, Serneratiin aIlw~ys

neftr. to rcmitoectur-j, never to rohysic;Al im. o Ie-T.ltzt iong. etc.

-4 V horzvsre virtusl i~er (4.',]

j'?hyorjs* virtual machine Z7.31 A

rIa.9QCwE MjALIjMEr1iZ: c ollIec t ive t itlIe f or P row tr a- f irrhare
ieiowhic?, directly suoncarts the (TV p en F-ret ior) 0 4", S mcdel

:]~st rs~\jn:o'3rE' rEact~ine on which virtuc-l macnine monij--C run-,

_12,.1 _2CQ LA. e raiq n cnerating ss t cq, uniter which Tyoe TT
jziu. iactnine rponjto!^ rurs [2.1]

2XC&2yrs yr vjtU2 Maznjglj v ir tualI maclhin e i n which a I1
instructionse is-suez' within. the most crivileqea 1mver =l. softft;re
inlernr:ýtp1ý zen- all itner instrUCTions eXecute lirectly (3.3)

ji EEiqLg £c i on: seconIc nenerstior' 3rchilecturqs tyoic~l cf 1R9

a9 r&ri.51iont thir! generation architectuu-cs tvoical of TOM

22DRE21r1gOQ f curtt, generztion architectures with elabcrate, '
-ict) nrccess structure irrole'nerted in firmtvare (4.1]

.Ljr! .4-r.3 software-visit'Ie definition of 3 system, i~e.
ircri tecturp.

inr:meI~~ wao withir. a virtualI machine level which
istat-lisnes the (layer) structure within that lavel; th? mac may
it visietle. Ic rrjvilecaec softw-rre of that level (4.194..?]

iDnIsr-::I&sMI aa (lMm.3) map between two levels if virtual
iachines, eec. level r, V) :evel fi+j, which is invisitle tc the
niQ'ýeP level, e.q. level n+1 (1..?]

iny~ii2:unable to be detected ir software

Page 219

t I E.Yr restricted accss structLre (within 3 level) such as

laster/slavp modes or rinis [2.*14.71

I£ejl: number of VPmaos which must be successively aoclieie to
.FI Z. virtuwl resource namp into a reol res)urce nite: also
corresponds to the nurrbe- of syllables in the "J.10 thus, the
-e.. mz~chinr. is levF~l

tjy.• !r.Qde: operation •f system, e.g. CPU, with oreferredI orter

code, rot emulation

3rc~er "e-e: irstructior set

_"L• process contrcl olocK, orocess status kiot in systemr base
(4.11

2'-nkme: nan.e usel cv Proces.s to refer to somp intity

roess m:3.2 abstraction of the mir from process namrns, e.g.
segment nurters, to resource names, e.g. remory locatiins (4.13

2ri:i 1f!.ed inst~ru.Qjin" instruction which exacutEs (correctly)
3nly in orivileged mode, i.e. supervisor state, -ino zero (3.11

I-np,.e: re;ýl reso)urce rarne i4.21

R_-9: relocation-bound form of address rclocation, as in CEC

zelc_ uic-9e COt'l stre: modifizole microrroca.ssor storage

:&clz•rci m• virtual machine map

:Inat layereo protection systemg qeneralizat±:n of raster/slave
ioae, suoervisor/oroolevr state (4.11

:~n• •: most orivileged ring [4.11

.001: origin Pointer of system base of typic3l IV leneration
machine (4.13

_Pw: running Process oorO, in system base, c--ntains ilentifler
)f active Process [4.E1

31L: self-virtualizing [? 11

i =elf jircualizinq: the 3rocessor of the virtual cotrrtr system
is identical to the host (2.11

Ia.mnhnre: neans for intprvrocess comvunication in tyoical IV
I eneration comouter system [4.1,4.61

!A

Pace ??91

!ntqjji rtute %hh ecause of !T

inCcrr'-ct '-;-sult if oer'ritttfd to s-xccutp i r c T Iy on, tho 'hCSt

;u2-rmi s or Kali: (3VC) irttrutL~fir which is uti-i to cjmrruric1=te

al5±gMtetnbas: O-,*ab:.sE- airectf-0 sCcser-e by f jrT.43re (a3,,1 ur-d~tel
~v -,rri vi Ic~-~ n oftware) of 11izycIl IV. qener3tion y S t e. to
~uoror- ji mr. I~w~ ;-4ni-t i.)r. of t".e rroc ~s~s ;('Oce I ~ 4*i.

IOC I tr in cr. orrd p ins tr ..ct ior.,9 ao' hoc ~u-ig es t icn f or Jo~si 3n! n)
I (TI T ?reri-t i ;) x -:c)iir e i n whi ch orj vji. jr, intruJctions sre

:hosen zt 'qxecutiton 1jnf~e, z~r ihu-ý C;n crr1~ I j-?npr.-fi on
;of tw-ir ý i 'rt u,ýI nptcsc in,- construc t ion ~3. 4

lync !I VvV: the VvM runs on Fn extencec* ti-acrnire nast, un'!er the

nost occratjrg ;y:;tem.

'JI1JO: s~u,ýPrviscor call irstrucTion on O)EC CPr-1O

VCS: v~irtu.-.I co:m~utir sytemr

~/C~P:VCS cont-:1l 'IcCt% in systemr L-se of harliw~re vintualizer
-)rovi "-: VMmnýn for virtual -i~icrnin- 14.1;1

.I A 3: VCS t i iIt ir Sy(St arn bzSe of h Pr - ns -e virtuFl i~e'-
sontairs coirtpr:. to V(ý<ý!s for virtu, Im~cnin3s [4.31

p: vi-tt,.rl iLhr4 n,?vzr virtuz I rnrrý-cryl

V M.!f2 S-Te -S VOSCR.t.

MC: virtuzl nacnile icentifier rejistýr- in nardware
v iru li-er in~cicates t~ctivr- virtual rnachir-e 14Z- -

L j, Inao VMIr) in~struction in -3r1ware v ir tumIi~er, apoemos
jpxt. sylltlte to th'e VMIO r-egister andi disoitches tne virtual
rnachine (4js]

'JMm: virtouzl ff..cl,ire :ronitor, software whic~h -ediates netween

the virtual nmacnine and lhost [P.1]

~MT~: virtual mnachine tirnesh~rinn Ti'chitic ~.~

41p: Vericii ;)aoer cr orcoosal:, orotposal for tirrrwari .)ssistel1
v'irtu.alizer m~ade in [511 ('4.41

V-n.@e2. virtual PeSource neme 14.2]

Page 221I

to exoress rurnni'j z. or'ocess on a virtual cofl1out2, sviter, [4.21

1LICIVajjah le I ab I tc create~ sel f-vi rfua Iizir. g) virtuzl

LpZ fZ.V I res~ource fault by virtual m'achine to Vvm t(a.?3

'JH-jt-%dj Vj: P-fiulit

vMtTgj: ;bsi-acti~n of ff30 betveen tw~o levels of virttaI reqsource

3liccu:tion Ecor'nlitelv distinct froff oroc~ess ma-)14E.2.?3

VMre~~jr~~ir. self-virtuali7i-):? vsrtusl -nachire,
ibilitv To run a VXF on th~e VM (2.1s4.?]

_J

Page 222

2 TfLIOGRAPHY

1 cce<rwanp 14-D. anc Plummier, 1%.W. r, i trolIeTe rts tjion of a

grulIti vroce ssj n c co1mDuter system. CE."`Yrj mQ-gain

2 oa~iro R. and garc, Y. CP-E7 ireasuremient method. I.EM

3 Anazir, R., 9Bayles# RoU.,1 Comeau, LZ1W. aind Creasylr, . j. A4
virtual mz-chinc system for the 3F"/4P. Cani.a j3..12rill-

&.Z(May, jF) nv

AmanLijtier N.M Virtual O.Fort

6 ~ ~ ~ ~~s C.dhl Loe lzw e canceotk re0.Achin ituectues

2e~g~nE. 3nnee,, 1964).,pp £3-j

71 Amahel* P.. Arhiectural laguae eifctions.o h sev nties
Coro.,an. 1370).~~ 190)

12 Palze tr, inM zSP v~irtualeorvirncilpft ooroQ-M an
Co xn, -S.t E-2gFP (14uq., Italyq(oi 1:4 .7) c

CP-e AuoeqAsurent hars C.aLe cjs, it degmachione stu tuelle187

CoHezr., Cemteri The Scintfi languae specifications, uv'e
Coro.) R-6-.AMgl17)

12 Plzeg PM. GPL achne rinicls ofooeat,3n. qa4
Con*R5?AP 4g9I7)

Page 223

14 Ori V.Y Per formanrce cr it e ria ar-cO mesisurerneit for a
tire-Sharing systeni. T13M .Sy~ J.i 3 (171), o .i3 -2 1

H-si .9. , '3)ora ?rson, *. ,n cober ts, re POTME--A
no --u I r arcij tecture f or terri naI- jrie nt. sys tems. Pr
zf CC(1972) , cD.431-'.37.

f~ Rensoussang A., Clingen, C.T. and, Daley, ;.C. The mu Iti cS
virtual memory. ý)rj A~t! "zMR QQ 51s fti Princeton U.

17 Bell, C.G. and Newell, iL. LIom~ijger strqituAgý rgll9 ?2 D-fl dL

a mJ1 Mcraw iil N.Y (191T-

18 nelliro, J. and Potin, Ph. Pecanismes z -n hyo)erviseur.
2 rtof 1.52! Qgjjzjj~£ntert Grenobl e, France.

Pq I -auw, G. A. H4ardwztre r'eauiremrents f or th3 ? ourth'

~ t.j~jj~ *ec. F. Gruenberger, Prentice Ha'a ~15'7

F 0 Potrow, D. G., ~cf ire I J.0. , murphy, q '.L. ir' i "Smlinsorn,
.S, T ENEX, a caged time-sharing sysfem ft.' !he PCP-iP.

.o _~_9, 3 (Vra'ch, 197?)~ op. 135-143.

?I Prooks, FeP., jr. Architectural philosochy. ~.ni~.
f-:2vtl 5ysrm ec. 6. Buchhe I z, McGraw H ill, N.Y* (1962),

0>7 U7en, J. 30timi~zing rhe aegree of multiorogra'imting in
d ? rr~nd oagi.-g. systemrs. ILEr _Qp2L4. .5_q. Col 9osten,
Mpss. (Sept. 22-24, 1S71). oo . 141-14'2.

3 Calloway, P.H. Performance ccnsicereticns for the u re o f
the virtual Pachine capability. IRM Co-n.9 T.Jo Watson
Pesearch Lao., Ycri~towr Hpiqhtsy N.Y., S2-I 2 tP ("ay
12, 1971).

Z_ 4 Calloway, P-H., Ccnsi~ine, J.P. and Thompson, C.,H., Uses of
virtual storace systems in a scientific ervircnmvent. 12M .

25 Ch-:atham, T.E. The recent evolution .3f origramming
lanquaces. Er.Q. IFQ C-n-- North H311and Oubs Co.,
Amster'1%m (1q~71).

?~Com'eau, L.W. A stuay of the effect of user oroqram
ovtimizztjcfl in a Pagirg system. A.Qj! ýzyQ. _g Q2. Sys.

6rn. atlinburg, Tenressee (Oct., 19U7).

27 Comeau, L.Wo, Lindeiuistt As8. PnCO Seener, PRe. A
time-shzring system using an associative memnry. Er. At.

W'
Page 224

28 Corbatct F.J. System reouirements for 'rultiol? access
tirre-snrzred coffouters fAC-I':-3q t'IT, Cjff blicgJet Msss.

29 Corbato, Fojo, Saltzer, J.H. ana Clin;e'n, C.To
flulticT--tne f irszt seve2r Y-irs. Prýýo gi :zCC (1972), co.

30 Corbato, F.J. arJ Vyssots'y, V.A. Introduction -andiioverview of the 14ULTIC,.S system. AFIfS Pt-QL., f~lgg 27, I

31 MCINE Task Force VIII. A n ur. derQ r, u st e course on
qrcrztireg ýyst&.1is p~rinciples (June, jq71).

32 _.E~f!ZLC Progra.n 3 6 0l-nc'E. 2 . 0 5, IRV Core *, Program
Ir~forrnation lOerito 'Iahthorneg N~.Y. (June, 1969

33 Creasy, F.J. General lescriction of th? rese~rch time
stharirg syitem with speciel emcnasis on th3 control program*.

Wz~no 19f.5) j fQp~Sintf~ nte.C, . mtridge

34 Oalevq Root Proposed 6-45 follt3w-on Irocessor
specifica~tion. Multics C45 Follow-or Hzpr:wz~re Cesiq'n MeTO, '

35 %aley, R.C. and Dennis, J.3. Virtuz.l ffamoryt orocess'es,
an sharing ir Pultics. r.9R:M _Q± A.Ct il, 5 (may t969), cD.
30b-312.

3E F. Drtmrouth University. Snecil icat ions f or G;__C 0S !TT
executive c om rr.3r,ds as i mo Ie iren ted on tie DTSS (Phase IT)
GFCOS subsvsten'. Kiewift Computer Cinter, Cartmcuth
University, Hanover, N.H.

'A7 Cerniraq P.jit T h ird gereratior c~3Trcuter systems.
_Qg-L.jtjn~ Sur~y 3, 4 M¶ec., 1'q7t). s

38 (lennirng, OoJ. Virtual memory. f.Q2Mj O~ _M~ 2, 3

39 *Oni, J.8. Segmnentation ana the design of
multiprogrammnect comouter systemso. 4AfM 12, 4 (Cct., 19A;), J
pC. 58S9-6"".2

4C Dennis, JOR. &nd V~an H~orn', EoC. Prograrrnin] sexaitics ~or
mu Iti orogrammrec ccmputation* L.jt S, 3 Ct43rch, c~F,,oo.
143-155e

41 Oijkstra, E.W. The structure of THE Tultioroqramn'ing
system. CAO. 11, 5 (?'ay, 19M9) PC. 341-1460

Page 22151

4? F=St lake, D.F. 1TT status revort. VemgQ h. 71ý AT Lab,
MITT (Ap-ril, 107?).

43 restlaket O.E. TTS 1.5 Deference Manual. MTT Artificial
Tr-telI liger-ce Lzabor,3tory Mero ',o. 1!; 1A (i150 *1AO-m-377).

44 =;jaVLsjDc9 flQ.S unde- CS for IBM Sy-t.1gmL.Y0. 'IOV~ 5yslej
E212iDs. Liturn f..E jja-=Z IP~M Corn.! White Plains,

45. --n-)lance, A.C. an-. *3yCr, n. A CEC It"/52 sim'ulzt.-r desigrel
to rkun o- ITS. Ur'ouhlished Project MAC ireyo (Oul., 197?).

46 Evans, D.0. andi Lel~lerc, J.Y. Address T~ocin~i lnd the
cortrof of zccess in an interzctive cowcutor. AFTPý of

7~(1q67 SJrC), no. ?3-3C.r

*47 Field, .S . Vu It i access systeaiS-the ~irtu il mac fi ne
ý,ýroach. IB ~rde Scientif ic Center 7 2-23

48 Fcrgie, J.W. A time-bn'n merrorv-shalrinq excu.tivi oro-ýram
for 1ULCkr response. 1965 FJCC.

*49 Fuchi, K. and Kaneia, Y. Utilization. af si~oIe caging~
Mepchanism. -3v. P-1-_q1LQtgg l~ab. 34, 4 (lc~'l), cn. 55-63.

32 Fucl~ij K., Tana'La H, Nam;:o, Y., an'd Yuca, T. ooqa

~fli1.~Princeton, New Jersey (Cct., 1%69), no. 97-1G4.

al 0, G3l1i ;r:li, U .0. anc Goldt-ero, Re.P. Virtual izeatle
3rchitectures. Prg; of L-72 AC_Q!_nternotaa po

*Venice, Itzly (A;)rIl, Iq2) co. 527-ý-3--.

52 Gollth*roq P.D. H,-t-Jware reaujrerrents fcr virtual machine

S~Ejr. Honolulu, HFawaii (J;.n., 17)

-;3 'Goldberg, P.P. Virtuý-O n-aChires: semrantics ani 2xamroles.

54 Goldbergt R.F. Virtual maching systeis. VII LjmAngg'
L.,ia r a1r 8_Qoct NW. YS-2.RE7 (also 28L-)1'-36.). l.exir.,Jtcn, i
mass. (Sert., 1969).

55 (;ol-brRP Unaut~lished lecture, Aile 13thematjcs
251a, 1Mervar,4 University (Dec. 7, 197C) .

page 2

56~ GcJdberg, RoP. and Galley, S.W. A Tyne II Hybrid 'Jirtual
M Fc h ir% f or the OPC POP-10 under I T S. MIT P-oject MAC
internal note (Oct., 1.q72)9 l

57 Grsahams R.M. Protection ir an inf orrr 3ticn -rocessir'g
Uti lity. litt 11i (May 1.965)v Dor. 36~5-35-

7ý8 H;Ensg C. et at. GMS guide de loutiljsateur. Rn±.2 -I D IBM~

' zje~jfjjj Q~~g of GfLj:t2Qj2.e Grpnoble, France (JulIy,

519 Ho'qrpes, G.E. and -jellermar An excer imenta1 360/40 f or
tim~e-Sharing, !?.iiAtjjQfl 14, 4i (AprilI, q1%8) pc . 39-42 .

6 . Ho 47, J. and laooerom, P. The virtual machine
facility--how to fzake a 36C.* Univ. c f 13ritish
(Colum~hia--U:niv. of M4ichia;ýn Tnternel Not-,.

I~ Hollowjayq Jo POP-13 Daging aevice. H .3 r~~' t. r TT

_?A, MtT AT Lab. (Feoo, 19713).

Prentice-Hall, Erglqwood Cliffs* New Jersei (1971)).

6~4 I~m. A,:cVi n I comotiter virtually. 18t 'Ct.ýjjjr 2 S, in I
TIT, 2 (Mz1rcht 1967).

6,5 IBM1, Control vrogram-EfCambridqe monitor svsteT. 18W F ly
.111 reeaa EQ _1D= -512- US IP Ccrz Poga
Information Oer~rtmint, lHIawthcrne, N.Y.

C. 6 19M1, OS/3.-3 Concepts ani Facilities. GC21-;5535o

68 IBM, IBM system/361 mrodel 67 functional cnzr=cteristicso

69 TAM, IB3M system/36O crincioles of ooeraitiori.

70 Irfotecri. Ilbs1 S~ lerkcati gin Inf otecn, ?4~ider',headv
Englandl (in nutblication).

71 Keefe, 0.0. Hierarchical ccntret vroqrTS for system~s
evalkuation. o Syl. je NJoo 2 (1968), Poo. 123-133.

7? Kelch, J.A., Seawrighl, L94. An introducti~n to CP-67/CFSo
IL. __ jrt~L9 P tD.I4 -2~t~ 0i 32 20? (Seat.,

1968).

Pqe227

73 L=.rroson, 2'.W. An o~verview of th~e CAL tir'e-sharini system.
(COwl). Center, Univ. :)f Calif,, BerIkeley (Sent. 5, t~1%).

74. Lzmnoson, 1,,W, Cyniunic orotection structures. ~ ~ f
2C0 r,9 3r (19ý59 FJCC), Po. 27-38.

715 Lnmosori, I.W.9 Licitenb.'erqzr, W.W. and Pjrtle, M.W. A user
man:hinO in a time-shpring system. Pr;,r. 21 54, 12

76 Lz-uer, H.C. ard Sraw, C.P. Is suoervisor-statp -iecessarv?

Trtifrn-st'Erin L2s22* using. Er.QQ* Vesiciaie, memry. (Iri t2t
.197 2) (ne. ,:9E6) c. 77-17

77 A~ Le !erc J*Y (Marctucue-ro itritvezme

Oh.O MannicL1 , Univ. of~r~ Calif.ch Berkeley, Clfh.# Tesisg
* ~ ~ ~ ~ ~ ~ Mv 1966).et A (ay 97)

81 tzi ic, 'iE Tm-shzrinq system sn nasoitv vi~ryu. Prona. .1neE
c.c, nce Det qlq6) covcton. a774 r17 ch. M.Ir ~ 2

(March3 194), cn 3972;o

82 M, I Ia c;% q L. G. Emulationt zractice zn o O)rincloles. -M
.2tjfl.rAEY~i (forthcoming).

13 1Mcf',rath, M. Virtul3 iracthine co'meutina in an eiginiering
en'virornm.ent. 1jM y,1.2. .4911uralIll 2 (11721) ~P.P 131-14i9.

Ill mealy, G.H., Witt, P.,j* ýnd ClarR, Y.A.P The functj:)nal
structu-e of OS/3-',O. iEý1 5.-iz .40nnuI 3. 1 1196,6) .

3r: Meyer, P*Ae, anc S~rawriqhtt L.H. A~ virtual machine
tjwe-s'-.arjna systei~. IBM Symtn, j~nDa 3. 3 (1970)f op.

8' F_ IT Prc)ect MAC n ItIU & ~ir
rM~~ t~r ~ !~n~. MI Proect M8Ct Rev. lrv

1972.

87 morris, D. The nature And 'benefits of Tojutar ocerating
systems. The IV L~nr~.Etjon. Infotech, Maicei~heai,' Er'gtand
(in outl ication) .

SMorris, 0. anC Cotlofson, G C. An i n- I -Prt 3t i n o f a
Segm~ented virtual storp. [lent, if Corn. Sz~iog Iriv~r'sity of

8q morrjs, G. anc Cotlofson, 'IQ A virtU31 Drccec3sor 4For i

r'd mcr ocGf'3tior. Leol. Of C 0 (1 'SC L Uriersity of
moznchestert Manchester, Froalnld

9' MotohFV.eshj, T., V3SUrda, To and Takarashit N. I T HITAC

tulti-croc~ramtninj Lystem w~itl' lynatnic _md:pass +rinslatinen
AE-j~ 39 (1957).

92 Cr.,anicK, £.oT. Th- multics svste'm: an =xarirati-n of its
ctructureo M1IT Press, Carroridceg M~!: 41i72) .

93 Parmelee, RoPo Priferred virtUal mn'chines for CP--)7. TPM

94 Pzrgrelee, R. Virtual n-'-cnir'es: so.iTe inexcectc-I
ap~lc Ijct i ons. Ej:;g~j .1ccE LDDULL agZ B;2I 8ston, Ma'ss.
(Seot ., 1971) .

C;5 Parmnelee, R.P,Pete-Sor.,ToT-t Tiltmn.n,C. Go*a atfielcq

96 Veiyp'lo LoW., F~hcerq U. An~d Fist'ert P-.A. Tie irteroreter--
a Imiciovro~r-f~amma3e buitiinq. olock system, -P EDr~. Q

(19Z~,op:, 7nF-?3,

97 Rosin*. RoF. CofltP3oorary conce!Dts of !micro-crogra?miinq ;31i

98 'Pcsin, R., Friederr G, arc, Ecfliouse, P. anr erviriritert for
rtsearch .;r o(roo.rji$Yirz~rnn and en'ub-:ticn. 4th Q~ Qf

~~~1.,3 Slrmt~ Crux {et 1 13),reri' tS

-99 Fznltzere J.H. Traffic conTrof in a nuf~ialexal cofrouter

100) 'Ezter-thwaltet E. lictes on coos t ruct iin of subsysterrnS
within ooerating ty-Ttpa/3n. Mcim~~ LUrju. Cor

~ $Y#et Aatcing comcsjt'ýr-s virtually, IE4 Coro., Tc~t

12 Savref T-S asutQot!.atic lfollinsy' cf o r r zms effici-ent
AfroAgt~ t C disolace imanuM? 1 1, 12 (eeca, 1950),



Page 229

ii03 S~vre, 9). On virtual systems. IBMJ Corn., T.J. hatson

Pesearch Lan., Ycrktown Heights, N.Y. (Anril 159 1966).

ý':Ystem . MIT Project MAC, Camnbri~ige, Mass. (June, 1971).

1115 Schroeder, M.D. Performrance of th-e G:-:-241 associative

nt.eff ory wh ilIe irultics is in oceratior. Ar:..Q.c _H2rfl~ctfl

106 Schroeder, 4.0. 43PI Slt~7erq J.H. A hzirl-14ce 3rcnitecture
for irnrlermentins -3rotection rings. M" 15, 3 (IFarchg

- 19J72), vo. 157-170.

1:7? Schoew-mt~ P.EF. Excerience Qaireui in the izveloni~ent and use
4of TSS/36(. Pr~q 2.1 5:e' (172), op. 559-5711.

108 Sciart M.J. ar.1 Organick, ':.I* An oporati,4 system mcdel
fezturif g demand scbiedulinq of virtual res-.urces. Presented
at 3r, Hawaii International Ccnf. on System Scien:esq Univ.
of Honclulut Hawaii (Jan., 107C).

1.0 TuCkcer, G Fnfutation of Large Systems. q..QA St12 (Dec.,

110 TuckerqA.-'. z-nd Flyrn, 4.J. Cyrnamic frjcrocr3jr-a"'!irn:
orocessor orianization ztt croqramminoe CAC4 1'4 (borilt
1971), O 240-250.

1-11 Van Horn, E.C. Coro-uter dqsioi for zsy'nc~irora~usly
reoroducitle rnulticrocessing. !jAfl:10-74 (Nive~bberq 19A6).

112 W.atsong Dow. T.L:svarjnn anrn Jai~in ;a;&-2 V'cGraw
Hill, N.Y. (1970).

1.13 Winett, J41M, V it-tua: machines I or devel1crirvg systems

t4 -Wirth, N. On mltjororanmwjngg machine ccdirigg and
cornoutir orqani7.atiin, C~ 1?, 9 (Seot, 9.)

4:
;-A

- - -, - .- Z


