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ABSTRACT

The basic objective of the work reported herein was to provide a broader
technology base to support the development of a medium S'TOL Transport (MST)
airplane. This work was limited to the application of the externally blown
flap (EBF) powered lift concept.

The technology of EBF STOL aircraft has been investigated through
analytical studies, wind tunnel testing, flight simulator testing, and design
trade studies. The results obtained include development of methods for the
estimation of the aerodynamic characteristics of an EBF con'iguration, STOL
performance estimation methods, safety margins for takeoff and landing, wind
tunnel investigation of the effects of varying EBF system geometry parameters,
configuration definition to meet MST requirements, trade data on performance
and configuration requirement variations, flight control system mechanizaition
trade data, handling qualities characteristics, piloting procedures, and
effects of applying an air cushion landing system to the MST.

From an overall assessment of study results, it is concluded that the
EBF concept provides a practical means of obtaining 'TOL performance for an
MST with relatively low risk. Some improvement in EBF performance could be
achieved with further development - primarily wind tunnel testing. Further
work should be done on optimization of flight controls, definition of flying
qualities requirements, and development of pilcting procedures. Considerable
work must be done in the area of structural design criteria relative to the
effects of engine exhaust impingement on the wing and flap structure.

This report is arranged in six volumes:

Volume I - Configuration D)efinition

Volume II - Design Compendiun

VoL ume III - Performance Methods and 'Jk•i .jidl Landing Rules

Volume IV - Analysis of Wind Tunnel Data,

Volume V Flign, Control Technology

Part I - Control System I'k~ch-mi ,:t iuII t iade Studies
Part I1 - Simulation Studies/Hight Control System Validation
Part III - Stability and Control 1Teri-vative Accuracy

Roquirements and Effects of Augmentation System Desigrn

Vol I VI - Air Cushion Landing System Trade Studly

0-1



This Volume IV represents analyiis of wind tunnel data obtained at the
Lockheed/Georgia Company's Low Speed Wind Tunnel at Marietta, Georgia between
the dates of 3 April 1972 and 19 May 1972. The basic wind tunnel data is pre-
sented in Rockwell report NA-72-670, Appendix A, dated 24 August 1972 and
titled, "STOL Tactical Aircraft Investigation Wind Tunnel Test Data of an
Externally Blown Flap Model;" Contract F33615-71-C-1760, Appendix A, Plotted
Figures, Volumes I, II, and III of XIV.

The data presented herein was obtained using the Rockwell 7-percent scale
wind tunnel model of a STOL transport employing externally blown flaps.
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Section 1

INTRODUCT ION

MIe data contained in this report represents a partial analysis of
all the data obtained by wind tunnel testing of a 0.07183 scale STOL
transport model in the Lockheed-Georgia Company's 16 by 23-foot low
speed STOL wind tunnel. It is not the intent of this report to present a
conplete analysis of the tunnel data as a great amount of data was
collected and any attempt at such an endeavor would take considerable
time; only the predominant elements of each particular model geometry
that was tested has been analyzed in order to accomplish the objectives
set forth in the North American report NA-71-1121 (Wind Tunnel Test Plan
for a Research Model of an Externally Blown Flap STOL Transport).

Included in this report is a three-view drawing showing the general
arrangement of the basic configuration, a definition of areas and sizes
of the model hardware that was tested including model dimensional data
and a wind tunnel test rTh log sumary. Throughout the report the symbols
CT and Cu_ are used indiscriminately and in either case they mean total
engine gross blowing coefficient with momentuin drag not included. The
drag coefficient (CD) used herein is total dryng with power effects and
ram drag included unless otherwise noted. Tests were conducted at dynamic
pressures of 0 psf, 16 psf and 100 psf corresponding to Reynolds numbers
of 0 per foot, 0.74 x 100 per foot and 1.84 x .106 per foot respectively.

Ilfc compressed air for the engine simulators was supplied by the M•LAC
facility through the model rear mounting strut which was an air bearing
strut and on into the model internal plenurnm cDnhifc-r, '- e high pressure

air was then directed from the plemn chIAhC throCUgh wing ducts to each
engine pylon and then down through the pylons to the ejector nozzles.
At each wing/pylon juncture an orifice adjust-in, , i ,:C, (maually set)
was utilized to balance the engine gross ti;.,t u..Lput syiimmetrically.

The downwash probes used in the rake sur"vey (i the horizontal tail

flow field environment measured inflow angles in the! vitcal plane and
sidewash flows in the horizontal plane.

Pylons of two distinct cross-sectiual sha•cs were tested, The

"fixed" pylon which was used only with the 24 degr-e sk'eep wing and the

"swivel" pylon which was tested on qll three ,upar~ite wing sweeps because
as its name implies it can be swiveled streamw,ie on any of the three
sweeps that were tested. Comparisons of' these two pylons can be found
in Section 3a.
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Two flap systems were tested, a double slotted and a triple slotted
configuration. Both configurations were tested on the same wing and were
immersed in the same high energy powered flow field. The wing used was
the AR 7.0 wing with its quarter chord swept to 24 degrees. All detail
flap testing was conducted tail-off and at a wind tunnel freestream
dynamic pressure of 16 psf with the exception of the static turning angles
which were tested at maximun engine thrust and q,, = 0 psf. The span
for both flap systems was identical as well as the number and location of
the flap bracket attach points.

The high energy flow field was generated by blowing high velocity
exhaust gases from the four powered nacelles directly on the lower sur-
faces of the flaps.

Included in this report is the analysis of wing spoilers when used
as DLC and roll control devices various other roll control devices such
as ailerons and asymmetric trailing edge blowing and combinations of
various roll control devices and power and flap deflection effects on
directional stability parameters.

Ground effects data was not obtained during this test due to a GELAC
equipment failure which prevented NR from utilizing the moving ground
plane.

The test itself ran for 509 hours during which 549 runs were com-
pleted for an overall run rate of 1.08 runs per hour. In general, five
power settings were used during the test. At a tunnel freestream dynamic
rnressure of 16 psf, total engine gross thrust levels of 0 lbs., 165.4
lbs., 330.5 lbs., 496.0 lbs., and 543.0 lbs. were set yielding CA4's of
0, 1.0, 2.0, 3.0, and 3.28 respectively. The reasoning behind the maxi-
mum CA of 3.28 is that GELAC's air supply had reached its maximum
flow capability at that point.

Each nacelle inlet and nozzle was instnn.,.im,2,•u with total and static
pressure probes so that the engine simulator flow through clharacteris-
tics would be determinable. From these the ram drag was prepared.

The AR 7 left hand wing was pressure instrumented at six chordwise
wing stations, upper and lower surfaces, and at one spanwise chord ele-
ment, also at tupper and lower surfaces. This wing pressure data is pre-
sented in tabular form in Rockwell report NA-72-670, Appendix E', Volumes 7
through 12 inclusive.

All data presented in this report ih in the stability axis system
umless otherwise noted.
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Section II

INtDEL DIMENSIONS, NCIN(ýATURE, AND PHOTOGRAPH

Illustration 1 of this section shows the relative location of various
model c.omponents with respect to each other in the basic configuration.
Butt planes for the alternate or "spread engine" location is also shown.
The fuselage reference plane (FRP) is at water plane VW.P.) 0.000 and
the fuselage nose is at fuselage station (F.S.) 0.000.

The MAC's of the wing, horizontal tail and vertical tail are also
located in three dimensions. The moment reference center is taken about
the wing MAC and is located vertically in the plane of the wing on the
wing reference plane (WRP).

The model nomenclature defines all the model configuration symbols
and model component geometry that is called out in the wind tunnel test
run log summary.

A photograph of the model as a whole is nresented in Illustration
2.2. Double slotted flap detail is shown in the photograph in Illustra-
tion 2.3, and similarly, triple slotted flap details are pictured in
Illustrations 2.4 and 2.5. The standard upward deflection of the nacelle
exhaust nozzle is photographed in Illustration 2.6. This illustration
shows also the Type II (fixed) pylon, whereas Type I (swiveling) pylon
is shown in Illustration 2.7. Krueger flap details are pictured in
Illustration 2.8. Photographs of the tip spoiler with the double
slotted flaps are given in Illustration 2.9, and with the single slotted
flap for BLC in Illustration 2.10. Pictures of the horizontal tail and
a large dorsal are presented in Illustration 2.11, and of the downwash
rake and a smaller dorsal in Illustration 2.12.

3
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MODEL DIMENSIONAL NOMENCLATURE

All dimensions are model scale unless otherwise noted.

BODY, B

Description: Fuselage simulating the D505-8 configuration. Includes land-
ing gear pods, different wing/fuselage blocks for different
wing sweeps and nose/windshield. Enclosed within the fuselage
are the supply air duct, plenum chamber, splice plate, engine
shut off valves and instrumentation bay.

Drawing No.: S-1002, -1025, -1041, -1042, -1043, -1054, -1055, -1056, -1057

Dimensions:

Length 100.849 in.
Maximum Depth 13.90 in.
Maximum Width 17.70 in.
Maximum X-Sectional Area 188.24 in. 2
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WING, W

Description: Basic AR 7 wing spar attached to S-I015-I splice plate on top
of fuselage plenum. Wing sweep is controlled by hole pattern
in splice plate. Contains internal air ducts for inboard
engine, outboard engine, LE BLC and TE BLC.

Drawing No.: S-1004, -1015, -1027, -1028, -1032, -1044, -1048, -1051

Dimensions:

Area 10.321 ft 2

Span 102.00 in.
Root Chord (B.P. 0.00) 20.816 in.
Tip Chord (B.P. 51.00) 8.326 in.
MAC, Fw (B.P. 21.857) 15.464 in.
Fus. Sta. of 0.25 E 38.155 in.
Aspect Ratio 7.0
Taper Ratio 0.40
Sweep Angle (0.25 cw) 24.0 deg.
Dihedral 0.0 deg.
Incidence 1.0 deg.
Airfoil NASA 641A212.5

WING, W2

Description: Basic AR 10 wing spar attached to S-1016-1 splice plate. Con-
taln5 internal air ducts for inboard engine, outboard engine,
LE BLC and TE BLC.

Drawing No.: S-1005, -l016, -1027, -1028, -1032, -1045, -1049, -1052

Dimensions:

Area 10.321 ft 2

Span 121.91 In.
Root Chord (B.P. 0.00) 17.416 In.
Tip Chord (B.P. 60.957) 6.966 In.
MAC, % (B.P. 26.124) 12.938 In.
Fus. Sta. of 0.25 w 38.155 in.
Aspect Ratio 10.0
Taper Ratio 0.40

Sweep Angle (0.25 cw) 24.0 dog.
Dihedral 0.0 dog.
Incidence 1.0 deg.
Airfoil NASA 641212.5
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WING, W4

Description: AR 7 wing spar used with the S-l015r4 splice plate.

Drawing No.: S-1004, -1015, -1027, -1028, -1032, -1044, -1048, -1051

Dimensions:

Area 10.445 ft 2

Span 109.43 in.
Root Chord (B.P. 0.00) 19.660 in.
Tip Chord (B.P. 54.716) 7.828 in.
MAC, •w (B.P. 23.432) 14.593 in.
Fus. Sta. of 0.25 Ew 38.155 in.
Aspect Ratio 7.96
Taper Ratio 0.40
Sweep Angle (0.25 cw) (9020') 9.33 deg.
Dihedral 0.0 deg.
Incidence 1.0 deg.

WING, W5

Description: AR 7 wing spar used with S-1015-2 splice plate.

Drawing No.: S-1004, -1015, -1027, -1028, -1032, -1044, -1048, -1051

D imensions:

Area 9.964 ft 2

Span ;7.52 in.
Root Chord (B.P. 0.00) 21.821 in.
Tip Chord (B.P. 48.762) 7.605 in.
MAC, Zw (B.P. 20.454) 15,857 in.
Fus. Sta: of 0.25 •w 38.155 in.
Aspect Ratio 6.63
Tdper Ratio 0.35
Sweep Angle (0.25 cw) 30.0 deg,

Dihedral 0.0 deg.
Incidence 1.0 d9g.

20
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PYLON, *p

Description: Type 11 pylons (fixed) in basic position, used with wing W)
only. Smooth fairing with wax and tuff-fill into wing LE.
Pylon extends -to LE of each nacelle, P.S. 0.00 equals N.S.
0.34. Contains duct to supply air to ejector simulitors.
Duct length is measured from engine plenum face to wing spar
face.

Drawing No.: S-1018, -1019, -1020, -1022

Dimensions:

Air Duct Arezý 0.985 in.2

Duct Length, !nboard 12.16 in.
Duct Length, Outboard 11.73 in.
Inboard Pylon B.P. 12.57 in.
Outboard Pylon B.P. 20.11 in.

PYLON, *P2

* ~Description. Type 11 pylons (fixed) shortened to move nacel les aft 2.38
inches, used with wing MW only. Other descriptions are the
same as *)

Drawing No.: S-1018, -1019, -1020, -1022

Dimens ions:

Air Duct Area 0.985 In.2

Duct Length, Inboard 9.82 in.
Duct Length, Outboard 9.40 in.
Inboard Pylon BP. 12.57 in.
Outboard Pylo:' 63.P. 20.11 In.

"PYLON, *P3

Descrlption: Type 11 pylon's (fixed) /ertically displ~aced upward to move
na(ýeIle' 1.47 inches, used with wing (W only. Other

descriptions are tho same a,; (INP.

Drawing No.: S-1018, -1019, -l02'0, -1022
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PYLON, *p3 - Continued

Dimensions:

Air Duct Area 0.985 in.2

Duct Length, Inboard 11.68 in.
Duct Length, Outboard 11.31 in.
Inboard Pylon B.P. i2.57 in.
Outboard Pylon 8.P. 20.11 in.

PYLON, *p4

Description: Type I pylons (swivel) �n basc spanwise location, used with
wing CW) only. Other descriptions are the same as (�p)* *

Drawing No.: S-1017, -1018, -1022

IDimensions:

Air Duct Area 0.985 in.2

Duct Length (Inboard and Outboard) 13.73 in.
Inboard Pylon B.P. 2.57 in.
Outboard Pylon B.P. 20.11 in.

PYLON, �P5

DescKpt�on: Type I pylons (swivel) in alternate spanwise location, used
with wing (W) on'y. Other descriptions are the same as

Drawing No.: S-lO�7, -1018, �l022

Dimensions:

Air Dict Area 0.985 in.2

Duct Length (Inboard and-Outboard) 13.73 in.
Inboard F 'Ion �.P. 17.86 In.
'3utboard Pylon B.P. 28.05 In.

P�LON, *P8

DescrIption: Typo pylons (swIvel) in b�ic spanwlse location, usod with
wing (W4) only. Other descriptIons are the same as ('P).

Dr8wIng No.: S-1017, -1Q18, -1022

j
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PYLON, *P8 - Continued

Dimensions:

Air Duct Area 0.985 in.2
Duct Length (Inboard and Outboard) 13.73 in.
Inboard Pylon B.P. 12.57 in.
Outboard Pylon B.P. 20.80 in.

PYLON, *PIO

Description: Type I pylons (swivel) in basic spanwise location, used with
wing (W5) only. Other descriptions are the same as (*P).

Drawing No.: S-1017, -1018, -1022

Dimensions:

Air Duct Area 0.985 In. 2

Duct Length (Inboard and Outboard) 13.73 in.
Inboard Pylon B.P. 12.57 in.
Outboard Pylon B.P. 19.68 in.

PYLON, *P12

Description: Type I pylons (swivel) in basic spanwise location, used with
wing (W2) only. Other descriptions are the same as (*P).

Drawing No.: S-I017, -1018, -1022

Dimensions:

Air Duct Area 0.985 In. 2

Duct Length (Inboard and Outboard) 13,73 in.
Inboard Pylon B.P. 12.57 In.
U-jtboard Py!on B.P. 20.11 in.

23
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NACELLE, N

Description: Nacelles used with Type I and Type II pylons, two left hand
and two right hand. Flow through type nacelles each enclosing
a TD-530 ejector engine simulator plus inlet Instrumentation.
Includes a basic cowl or bellmouth for calibrations plus a
variable nozzle exit deflector (Px). Nacelle centerline is
three degrees nose down from FRP. In the basic pylon posi-
tion the aft end on the nacelle (with nozzle at 0Q) is at the
same F.S. as the wing LE.

Drawing No.: S-1022

Dimensions:

Inlet Throat Area 8.314 in. 2

Nozzle Exit Area 7.895 in. 2

Length 13.383 in.
Incidence of Nacelle Centerline -3.00 deg.
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NOZZLE, P

Description: Deflectable nozzle exit used with nacelle (N) and both types
of pylons. Positive deflection Is up and Is considered the
basic condition.

Drawing No.: S-1022

Dimensions:

Incidence +15.0 deg.
Hingeline N.S. 12.30 in.

NOZZLE, P2

Description: Same as nozzle (P) except for deflection.

Drawing No.: S-1022

Dimensions:

"Incidence 0.0 deg.

NOZZLE, P3

Description: Same as nozzle (P) exception for deflection.

Drawing No.; S-1022

Dimensions:

Incidence -15.0 deg.
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KRUEGER FLAP KI

Description: Inboard krueger flap used with wing (W) and basic spanwise
pylon configuration (*P). Located between fuselage and inboard
pylon/nacelle, 20% of local chord. Outboard edge is flush
with pylon. Dimensional data are per side and do not take
into account any wax fairings.

Drawing No.: S-1051

Dimensions:

Area 0.1357 ft. 2

Span (equivalent) 5.26 In.
Inboard Chord (B.P. 6.51) 3.844 in.

Outboard Chord (B.P. il.77) 3.587 in.
Deflection 120.0 deg.

KRUEGER FLAP, K2

Description: Mid-inboard krueger flap used with wing (W) and basic spanwise
pylon configuration (*P). Located between inboard pylon and

outboard pylon, 20% of local chord. Outboard edge is flush
with pylon. Dimensional data are per side and do not take
Into account any wax fairings.

Drawing No.: S-I051

Dimensions:

Area 0.1217 ft. 2

Span (equivalent) 5.24 In.
Inboard Chord (B.P. 14.12) 3.472 In.
Outboard Chord (B.P. 19.36) 3.215 In.
Deflection 120.0 deg.

Description: Mlo-outboard krueger flap used with wing (W) and basic span-
wise pylon conflguratlon (OP). located between outbcard pylon
and B.P 34.00, 20% of local chord, Dimensional data are per
side and do not take Into account any w~x fairings.

OrawIng No.: S-1051
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KRUEGER FLAP, K3 Continued

Dimensions:

Area 0.2417 ft. 2

Span (equivalent) 12.42 In.
Inboard Chord (B.P. 21.58) 3.106 in.

Outboard Chord (B.P. 34.00) 2.498 in.
Deflection 20.0 deg.

KRUEGER FLAP, K4

Description: Outboard krueger flap used with wing (W) and located between
B.P. 34.00 and the wing tip, 20% of local chord. Dimensional
data are per side.

Drawing 1lo.: S-1051

Dimensions:

Area 0.2350 ft. 2

Span. (equivalent) 16.08 in.
Inboard Chord (B.P. 34.00) 2.498 in.

Outboard Chord (B.P. 50.08) 1.710 In.
Deflection 120.0 deg.

KRUEGER FLAP, K5

Description: Mid-inboard krueger flap used with wing (W) and alternate
spanwise pylon configuration (*P9). Located between Inboard
and outboard pylons, 20% of local chord, Dimensional data are
per side and do not take Into account any wax fairings.

Drawing No.: S-1051

Dimensions:

Area 0.1668 ft.2

Span (equlvalent) 7.95 In.
Inboard Chord (S.P. 19.35) 3.215 In,
Outboard Chord (B.P. 27.30) 2.826 In.
Delflection 120.0 deg.
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KRUEGER FLAP, K6

Description: Mid-outboard krueger flap used with wing (W) and alternate
spanwise pylon codfiguration (*P5). Located between outboard
pylon and B.P. 34.00, 20% of local chord. Dimensional data
are per side and do not take Into account any wax fairings.

Drawing No.: S-1051

Dimensions:

A, •0.0836 ft.2
Span (equivalent) 4.61 in.
Inboard Chord (B.P. 29.39) 2.724 in.
Outboard Chord (B.P. 34.00) 2.498 in.
Deflection 120.0 deg.

KRUEGER FLAP, KIO

Descriptiod: Mid-inboard krueger flap used with wing (W4) niJ besic span-
wise pylon configuration (*P8). Located between Inboard •;.d
outboard pylons, 20% of local chord. Dimensional dat& are per
side and do not take Into account any wax fairlngs.

Drawing No.: S-1051

Dimensions:

Area 0.1423 ftt2
Span (equivalent) 6,40 In.
Inboard Chord (B.P. 13.70) 3.340 In.
Outboard Chord (B.P. 20.10) 3.063 in.
Deflloct Ion 120.0 deg.

KRUEGER FLAP, KII

Descripticon: Mid-outboard krueger flap used with wing (W4) and "sic span-
wise pylon configuration (OP8). Located between outboard
pylon and B.P. 35.25, 20$ of local chord. Dlmensional data
are per side end do not take Into account any wax fairings.

Drawing No.: S-051

28

.. . ".......



KRUEGER FLAP, KII - Continued

Dimensions:

Area 0.2490 ft. 2

Span (equivaleot) 13.30 in.
Inboard Chord (B.P. 21.95) 2.983 in.
Outboard Chord (B.P. 35.25) 2.408 in.
Deflection 120.0 deg.

KRUEGER FLAP, KI2

Description: Outboard krueger flap used with wing (W4), loca~ed between
B.P. 35.25 and wing tip, 20% of local chord. Dimensional
data are per side.

Drawing No.: S-1051

Dimensions:

Area 0.2370 ft. 2

Span (equivalent) 16.67 In.
Inboard Chord (B.P. 35.25) 2,408 In.
Outboard Chord (B.P. 51.92) 1.687 in.
Deflection 120.0 deg.

KRUEGER FLAP, K13

Description: Mid-Inboard krueger flap used with wing (W5) and basic span-
wise pylon configuration (OPIO). Located betwe,%n lnboarc and
outboard pylons, 20% of local chord. Dimensional data are :or
side and do not take Into account any wax fairlngs.

Drawing No.: S-1051

Dimensions:

Area 0.1208 ft.2
Span (equivalent) 5.10 In.
Inboard Chord (B.P. 13.83) 3.55e In.
Outboard Chord (8.P. 18.93) 3.2A, in.
Deflection 120.0 dng.
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KRUEGER FLAP, K14

Description: Mid-outboard krueger flap used with wing (W5) and basic span-
wise pylon configuration (*PIO). Located between outboard
pylon and B.P. 33.27, 20% of local chord. Dimensional data
are per side and do not take into account any wax fairings.

Drawing No.: S-1051

Dimensions:

Area 0.2319 ft. 2

Span (equivalent) 12.03 in.
Inboard Chord (B.P. 21.24) 3.126 in.
Outboard Chord (B.P. 33.27) 2.425 in.
Deflection 120.0 deg.

KRUEGER FLAP, K15

Description: Outboard krueger flap used with wing (W5). Located between
B.P. 33.27 and wing tip, 20% of local chord. Dimensional
data are per side.

Drawing No.: S-1051

Dimensions:

Area 0.2149 ft. 2

Span (equivalent) 15.74 in.
Inboard Chord (B.P. 33.27) 2.425 In.
Outboard Chord (B.P. 49.01) 1.507 in.
Deflection 120.0 dog.

KRUEGER FLAP, K17

Description: Mid-inboard krueger flap used with wing (W2) and basic span-
wise pylon configuration (*P12). Located between Inboard and
outboard pylons, 20% of local chord. Dimensional data are
per side and do not take into account any wax fairings.

Drawing No.: S-1052
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KRUEGER FLAPI K17 - Continued

Dimensions:

Area 0.1048 ft. 2

Span (equivalent) 5.19 in.
Inboard Chord (B.P. 14.17) 2.997 in.
Outboard Chord (B.P. 19.3!) 2.820 in.
Deflection 120.0 deg.

KRUEGER FLAP, KI8

Description: Mid-outboard krueger flap used with wing (W2) and basic span-
wise pylon configuration (*PI2). Located between outboard
pylon and B.P. 40.84, 20% of local chord. Dimensional data
are per side and do not take into account any wax fairings.

Drawing No.: S-1052

"Dimensions:

Area 0.3226 ft. 2

Span (equivalent) 19.25 in.
Inboard Chord (B.P. 21.59) 2.743 in.

Outboard Chord (B.P. 40.84) 2.083 in.
Deflection 120.0 deg.

KRUEGER FLAP, KI9

Description: Outboard krueger flap used with wing (W2). Located between
B.P. 40.84 and wing tip, 20% of local chord. Dimensional
data are per side.

Drawing No.: S-1052

Dimensions:

Area 0.2358 ft. 2

Span (equivalent) 19.40 In.
Inboard Chord (B.P. 40.84) 2.083 In.
Outboard Chord (B.P. 60.24) 1.418 In.
Deflettlon 120.0 deg.
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KRUEGER FLAP, K25

Description: Outboard krueger flap (long chord) used with wing (W). Located
between B.P. 34.00 and wing tip, 30% of local chord. Dlmen-
sional data are per side.

Drawing No.: S-1051

DlmenF ons:

Area 0.3524 ft. 2

Span (equivalent) 16.08 in.
Inboard Chord (B.P, 34.00) 3.747 in.
Outboard Chord (B.P. 50.08) 2.565 in.
Deflection 135.0 deg.

KRUEGER FLAP, K26

Description: Outboard slotted krueger flap (long chord) used with wing (W).
Located between B.P. 34.00 and wing tip, 30% of local chord.
Dimensional data are per side.

Drawing No.: S-1053

Dimensions:

Area 0.3294 ft. 2

Span (equivalent) 16.08 in.
Inboard Chord (B.P. 34.00) 3.50 in.
Outboard Chord (B.P. 50.08) 2.40 in.
Deflection 135.0 deg.
Slot Gap 1.5%

KRUEGER FLAP, K28

Description: Asymmetrical krueger flap used with wing CW). Conslsts of
(K26) krueger on left wing panel and (K25) krueger on right
hand wing.

Drawing No.: S-1051, -1053

Dimensions:

Same as for K25 and K26.
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FLAP, F

Description: Double-slotted trailing edge flap used with wing (W) and flap
(F7). Located between fuselage and B.P. 38.25. Different
flap deflections require different flap to fuselage end
pieces which add to or subtract from the basic flap dimensions
(6V = 250, 6 F = 50*). Also includes flap entry fairing.
Dimensions are per side.

Drawing No.: S-1029, -1044

Dimensions:

Vane
Area 0.5978 ft. 2

Span (Equivalent) 32.30 in.
Inboard Chord (B.P. 5.95) 3.349 In.
Outboard Chord (B.P. 38.25) 1.981 in.
Def!ection 25.0 deg.

Flap
Area 0.9921 ft. 2

Span (Equivalent) 31.19 In.
Inboard Chord (B.P. 7.06) 5.726 in.
Outboard Chord (B.P. 38.25) 3.435 in.
Deflection 50.0 deg.

Flap Entry Fairing
Area 0.3969 ft. 2

Span 32.50 in.
Inboard Chord (B.P. 5.75) 2.212 in.
Outboard Chord (B.P. 38.25) 1.305 In.

VANE FLAP Gaps and overhangs (O.H.) are In
v GAP O.H. SF GAP OH. % of win- chord.
5 3.5 2.5 30 2.0 3.7I I 50 Vane gap is the distance between the

t 70 T.E. of the -10 degree spoiler and
2.5 50 the vane upper surface.
4.5 50

35 3.5 40 Flap gap is the distance between the
S 1 60 T.E. of the vane and the flap upper

l ... . -180 1 Vsurface.
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FLAP, F2

Description: Double-slotted trailing edge flap used with wing (W2) and flap
(F8). Located between fuselage and B.P. 48.41. Does not
Include a flap entry fairing. Only the basic deflections
were tested (v = 25°, 6 F = 500). Dimensions are per side.

Drawing No.: S-1029, -1045

Dimensions:

Vane
Area 0.6547 ft. 2

Span tEqulvalent) 42.66 In.
Inboard Chord (B.P. 5.75) 2.842 in.
Outboard Chord (B.P. 48.41) 1.578 in.
Gap (% Cw) 3.5%
Overhang (% Cw) 2.5%
Deflection 25.0 deg.

Flap
Area 1.0936 ft. 2

Span (Equivalent) 41.43 In.
Inboard Chord (B.P. 6.98) 4.866 in.
Outboard Chord (B.P. 48.41) 2.736 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 3.7%
Deflection 50.0 deg.

FLAP, F4

Description: Double-slotted trailing edge flap used with wing (W4) and flap
(FIO). Located between fuselage and B.P. 37.0. Includes a
flap entry fairing, same as flap (F) o<cept for bracket cut-
outs. Dimensions are based on wing (W) B.P.'s and are per
side.

Drawing No.: S-1029, -1346

Dimensions:

Vane

Area 0.6435 ft, 2

Span (Equivalent) 33.85 in.
Inboard Chord (B.P. 3.46) 3.455 in.

Outboard Chord (B.P. 37.31) 2.020 in.

Gap (% CW) 3.0%
Overhang (3 Cw) 2.5%
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FLAP, F4 - Continued

Vane - Continued
Deflection 25.0 deg.

Flap
Area 1.0746 ft. 2

Span (Equivalent) 32.65 In.
Inboard Chord (B.P. 4.16) 5.939 in.
Outboard Chord (B.P. 36.81) 3.540 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 3.7%
Deflection 50.0 deg.

FLAP, F5

Description: Double-slotted trailing edge flap used with wing (W5) anJ flap
(FII). Located between fuselage and B.P. 38.25. Includes a
flap entry fairing, same as flap (F) except for bracket
cutouts. Dimensions are based on wing (W) B.P.'s and are per
side.

Drawing No.: S-1029, -1046

Dimensions:

Vane
Area 0.5786 ft. 2

Span (Equivalenf) 31.47 In.
Inboard Chord (B.P, 6.78) 3.314 In,
Outboard Chord (B.P. 39.25) 1.981 in.
Gap (% Cw) 3.5%
Overhang (% Cw) 2.5%
Deflection 25.0 deg.

Flap
Area 0.9385 ft. 2

Span (Equivalent) 29.83 In.
inboard Chord (B.P. 8.42) 5.26 In,
O0tboar'd Chord (B.P. 38.25) 3,435 in.
Gap (3 Cw) 2.0%
Overhang (3 C,) 3,7%
Deflectio)n 50.0 deg.
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FLAP, F7

Description: Double-slotted trailing edge flap used with wing (W), flap
(F) and aileron (A). Located between B.P. 38.25 and wing
tip. Includes a flap entry fairing. Dimensions are per side.

Drawing No.: S-1030, -1048

Dimensions:

Vane
Area 0.1356 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 1.990 in.
Outboard Chord (B.P. 50.08) 1.312 in.
Gap (% Cw) 3.2%
Overhang (% Cw) 3.12%
Deflection 25.0 deg.

Flap
Area 0.2464 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 3.435 in.
Outboard Chord (B.P. 50.08) 2.565 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 3.65%
Deflection 50.0 deg.

Flap Entry Fairing
Area 0.0938 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 1.307 in.
Outboard Chord (B.P. 50.08) 0.976 In.

FLAP, F8

Description: Double-slotted trailing edge flap used with wing (W2) and
flap (F2). Located between B.P. 48.41 and wing tip. Includes
a flap entry falrinO. Dimensions are per side.

'Drawing No,: S-1030, -1049
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FLAP, F8 -Continued

Dimensions:

Vane
Area 0.1157 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 48.41) 1.585 In.
Outboard Chord (B.P. 60.24) 1.232 in.
Gap (% Cw) 3.5%
Overhang (3 Cw) 3.12%
Deflection 25.0 deg.

Flap
Area 0.1998 +t. 2

Span 11.83 In.
Inboard Chord (B.P. 48.41) 2.736 in.
Outboard Chord (B.P. 60.24) 2.127 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 3.65%
Deflection 50.0 deg.

Flap Entry Fairing
Area 0.0561 ft. 2

Span 11.83 In.
Inboard Chord (B.P. 48.41) 0.768 in.
Outboard Chord (B.P. 60.24) 0.597 in.

FLAP, F1O

Description: Double-slotted trailing edge flap used with wing (W4) and
flap (F4). Located between B.P. 38.25 and wing tip. Includes
a flap entry fairing. Dimensions are per side and referenced
to wing (W) B.P.'s.

Drawing No.: S-1048

Dimensions:

Vane
Area 0.1524 ft. 2

Span (Equivalent) 12.33 in.
Inboard Chord (BP. 37.02) 2.042
Outboard Chord (B.P. 49.35) 1.517 in.
Gap (3 Cw) 3.5%
Overhang (3 Cw) 3.12%
Deflection 25.0 dog.
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FLAPI FIO - Continued

Dimensions - Continued

FlapArea 0.2688 ft. 2

Span (Equivalent) 12.46 In.
Inboard Chord (B.P. 36.49) 3.564 In.
Outboard Chord (B.P. 48.95) 2.648 In.
Gap (% Cw) 2.0%
Overhang (% Cw) 3.65%
Deflection

Flap Entry Fairing
Area 0.0970 ft. 2

Span (Equivalent) !2.13 in.
Inboard Chord (B.P. 37.78) 1.321 in.
Outboard Chord (B.P. 49.91) 0.981 in.

FLAP, F1I1

Description: Double-slotted trailing edge flop used with wing (W5) and
flap (F5). Locateo between B.P. 38.25 ard wing tip. Includes
a flap entry fairing.' Same dimensions as flap (F7) except
for wing sweep.

Drawing No.: S-1048

Dimensions:

See Flap (F7).

FLAP, F13

Description: Triple-slotted trailing edge #lap used with wing (W) and flap
(F14). Located between B.P. 5.75 and B.P. 36.25. Includessame flop entry fairing as flap (F). Dimensions are per side.

Drawing No.: S-1050
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FLAP, F13 - Continued

Dimensions:

Vane
Area 0.6319 ft. 2

Span 32.50 in.
Inboard Chord (B.P. 5.75) 3.522 In.
Outboard Chord (B.P. 38.25) 2.078 In.

Gap (% Cw) 3.0%
Overhang (% Cw) 1.45%

Fore Flap
Area 0.7226 ft. 2

Span 32.50 in.
Inboard Chord (B.P. 5.75) 4.027 in.
Outboard Chord (B.P. 38.25) 2.376 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 1.55%_IFlap

Area 0.8337 ft. 2

Span (Equivalent) 31.21 In.
Inboard Chord (B.P. 7.04) 4.809 in.
Outboard Chord (B.P. 38.28) 2.884 In.
Gap (% Cw) 2.5%
Overhang (% Cw) 2.92%

Flap Entry Fairing
Same as flap (F)

VANE II FOREFLAP F II F•P
SGAP OH GAP O.H F GAP O.H.

1. 3.0 %.4 20* 2*% 15% 250 2.5% 292
2.50 .0% 22.2T%

_ _ ~-. - 650

S..... .75"

FLAP# F14

Description: Triple-slotted trailing edge flap used with wing (W) and flaD

(F13). Located between B.P. 38.25 and B.P. 50.08. Includes

same flap entry fairing as #lap kFM). Dimensions are per

side,

Drawing No.: S-1050
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FLAP, F,14 - Continued

Dimensions:

Vane
Area 0.1491 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 2.078 In.
Outboard Chord (B.P. 50.08) 1.552 in.
Gap (% Cw) 3.0%
Overhang (% Cw) 1.45%
Deflection 2.5 dog.

Fore Flap
Area 0.'1705 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 2.376 In.
Outboard Chord (B.P. 50.08) 1.774 in.
Gap (% Cw) 2.0%
Overhang (% Cw) 1.55%
Deflection 20.0 deg.

Flap
Area 0:2069 ft. 2

Span 11.83 In.
Inboard Chord (B.P. 38.25) 2.884 In.
Outboard Chord (B.P. 50.08) 2.154 In.
Gap (% Cw) 2.5%
Overhang (% Cw) 2.92%
Deflection 45.0 deg.

Flap Entry Fairing
Same as flap (F7)

Description: Double-slotted, long chord trailing edge flap used with wing
(W) and flap (F16). Same as flap (F13) except gap between
fore flap and flap has been closed. Includes same flap
entry fairing as flap (F). Dimensions are per side.

Drawing No.: None
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FLAO, F15 - Continued

Dimensions:

Vane
Area 0.6319 ft. 2

Span 32.50 In.
Inboard Chord (B.P. 5.75) 3.522 In.
Outboard Chord (B.P. 38.25) 2.078 In.
Gap (% Cw) 3.0%
Overhang (% Cw) 1.45%
Deflection 2.5 deg.

Flap (44.5% Cw)
Area . 1.5083 ft. 2

Span (Equivalent) 31.70 in.
Inboard Chord (B.P. 6.55) 8.608 in.
Outboard Chord (B.P. 38.25) 5.095 in.
Gap (3 Cw) 2.0%
Overhang (3 Cw) 1.55

Deflection 39.0 deg.

FLAP, F16

Description: Double-slotted, long chord trailing edge flap used with wing
(W) and flap (FIS). Same as flap (F14) except gap between
fore flap and flap has been closed. Includes same flap entry
fairing as flap (F7). Dimensions are per side.

Drawing No.: None

Dimensions:

Vane
Area 0.1491 ft. 2

Span 11.83 in.
Inboard Chord (B.P. 38.25) 2.078 In.
Outboard Ch~ord (B.P. 50,08) 1.552 In.
Gap (3 Cw) 3.0%
Overhang (% Cw) 1.45%
Deflection 2.5 dog.

Flap (44.5% Cw)
Area 0.3656 ft. 2

Span 11.83 In.
Inboard Chord (B.P, 38.25) 5.095 In.
Outboard Chord (B.P. 50.08) 3.805 in,
Gap (3 C) 2.0%
Overhang (C S ) 1. 55
Deflectlon 41 3940 deg.



TE SPOILER, .N

'Description: Trailing edge spoiler used with wing (W) and all TE flap con-
figurations. Consists of five panels between B.P. 5.75 and
B.P. 50.08 with hingeline located at 67.5% wing chord.
Capable of deflections from -12 to +50 degrees. Dimensional
data are per side and aft of hingellne.

Drawing No.: S-1029, -1030, -1044, -1048

Dimensions:

First Segment
Area 0.0655 ft. 2

Span 3.00 In.
Inboard Chord (B.P. 5.75) 3.202 In.
Outboard Chord (B.P. 8.75) 3.081 In.

Second Segment
Area 0.1804 fT. 2

Span 8.96 in.
Inboard Chord (B.P. 8.75) 3.081 In.
Outboard Chord (B.P. 17.71) 2.719 in.

Third Segment
Area 0.1802 ft. 2

Span 10.34 in.
Inboard Chord (B.P. 17.71) 2.719 in.
Outboard Chord (B.P. 28.05) 2.301 in.

Foirth Segment
Area 0.1484 ft.2

Spat, 10.20 in.
Inboard Chord (B.P. 28.05) 2.301 In.
Outboard Chord (B.P. 38.25) 1.889 In.

Fifth Segment
Area 0.1356 fti2

Span 11.83 in.
inboard Chord (B.P. 38.25) 1.889 In.
Outboard Chord (B.P. 50.08) 1.411 In.

TE SFOILER #N2

Descriptlon6 Trolling edge spoiler used with wing (W2) and flaps (F2 and
F8). Consists of two panels betwuen B.P. 5.75 and B.P.
60.24 wi'h hirt~wiine located a+ 67.5% of wing chord. Cap-
able of deflections from -10 to +50 degrees. Dimensional
data are per side and aft of hingellno.
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TE SPOILER, .N2 - Continued

Drawing No.: S-1029, -1030, -1045, -1049

Dimensions:

Inboard Panel
Area 0.6245 ft. 2

Span 42.66 in.
Inboard Chord (B.P. 5.75) 2.711 in.
Outboard Chord (B.P. 48.41) 1.505 In.

Outboard Panel
Area 0.1099 ft. 2

Span 11.83 In.
Inboard Chord (B.P. 48.41) 1.505 in.

SOutboard Chord (B.P. 60.24) 1.170 in.

TE SPOILER, *N4

Description: Trailing edge spoiler used with wing (W4) and flaps (F4 and
FIO). Consists of five panels between B.P. 4.05 a,.J B.P.

49.72 with hingeline located at 67.5% of wing chord. Same
as spoiler (*N) except for end cuts on first, fourth and fiftt
panels. Deflections available are -10 and +50 degrees. All
B.P.'s are referenced to wing (W). Dimensional eata are per
side and aft of hingeline.

Drawing No.: S-1044, -1046, -1048

Dimensions:

First Segment
Area 0.1037 ft. 2

Span 4.70 In.
Inooard Chord (B.P. 4.05) 3.271 In.
Owtboard Chord (B.P, 8.75) M.0et in.

Second Segment
Same aS *tN

Third Segment
Sam as ON

Fourth Segront
Area 0.1423 44*2

Spat% 9.74 1,-.
Inboerd Chord M8.P. 28.05) 2.301 in,
OutbOard Chord (B.P. 37.79) 1.908 in.



TE SPOILERt *N4 - Continued

Dimensions - Continued

Fifth Segment
Area 0.1381 ft. 2 _
Span 11.93 in.
Inboard Chord (B.P. 37.79) 1.908 in.
Outboard Chord (B.P. 49.72) 1.426 in.

TE SPOILER, *N5

Description: Trailing edge spoiler used with wing (W5) and flaps (F5 and
FII). Consists of five panels between B.P. 6.49 and B.P.
50.08 with hihgeline located at 67.5% of•wing chord.: Same

as spoiler (*N) except for first'panel. Deflections avail-

able are -10 and ÷50.degrees. A:ll B.F.'s are referenced to
wing (W). Dimensional data are per side and aft of hinge-

line.

Drawing No.: S-I044, -1046, oI048

Di mens ions:

First Segment
Area 0.0490 ft. 2

Span 2.26 in.
Inboard Chord (B.P. 6.49) 3.170 in.
Outboard Chord (B.F. 8.75) 3.081 in.

Second thru Fifth Segments
Same as *N
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* VANE SPOILER, *S

Description: Vane spoiler used with flap (F7) and wing (W). Located on RH
vane.of flap assembly between B.P. 28.05 and B.P. 38.25.
Hingeline of spoiler is located on the upper surface and the
vane and at 23.5% of vane chord. Dimensional data are for RH
spoiler only.

Drawing No. S-1032, -1044

Dimensions:

Area 0.0360 ft. 2

Span 10.20 in.
Inboard Chord (B.P. 28.05) 0.558 in.
Outboard Chord (B.P. 38.25) 0.458 in.
Hingeline (% Wing Chord) 85.55%
Deflection 90.0 deg.
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LE SPO ILER, ,J

Description: Leading edge spoiler used with wing (W) and kruegers (K3 and
K28). Spoiler Is deflected 90 degrees from wing upper surface
and is used on right hand wing only. Hingellne is located onupper surface and Is 2% of wing chord. Dimensional data Is
for right hand spoiler only.

Drawing No.: S-1032, -1051

Dimensions:

Area 0.0537 ft. 2

Span 20.07 in.
Inboard Chord (B.P. 30.01) 0.471 in.
Outboard Chord (B.P. 50.08) 0.299 in.
Hingellne (% Wing Chord) 2.0%
Deflection 90.0 deg.
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Description: Aileron used with wing (W) and double slotted flap (FM).
Chord is 15% of local wing chord and is located on trailing
edge of main flap. Dimensional data are per side and aft of
hingellne.

Drawing No.: S-1030, -1048

Dimensions:

Area 0.1232 ft. 2

Span 11.83 In.
Inboard Chord (B.P. 38.25) 1.717 in.
Outboard Chord (B.P. 50.08) 1.283 in.
Hingellne (% Wing Chord) 15.0%
Deflection +20.0 deg.

AILERON, A7

Description: Aileron used with wing (W) and triple slotted flap (F14).
Chord Is 15% of local wing chord and is located on trailing
edge of main flap. Dimensional data are per side and aft of
hingeline.

Drawing No.: S-1030, -1050

Dimensions:

Same as A.

AILERON, A8

Description: Drooped aileron/flap used with wing (W) aij located between
B.P. 38.25 and B.P. 50.08. Consists of a single flap with the
aft 15% drooped 15 degrees TE down. The main flap Is deflec-
ed 35 degrees from the WRP. Dimensional data are per side
and aft of the hingeline,

Drawing No.: S-1031, -I048
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AILERON, A8 -Continued

Dimensions:

F lap
Area 0.3040 ft.2

Span 11.83 in.
Inboard Chord (B.O. 38.25) 4.236 in
Outboard Chord (B.P. 50.08) 3.164 in.
Def lection 35.0 deg.

Ai leron
Area 0.1232 ft.2

Span 11.83 In.
Inboard Chord (B.P. 38.25) 1.717 in.
Outboard Chord (B.P. 50.08) 1.283 in.
Hingeline (% Wing Chord) 15.0%
Neutral Position 15.0,.deg.
Deflection (From Neutral Position) +20.0 deg.
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DORSAL, D

Description: Dorsal fin located forward of vertical tail/fuselage Inter-
section.

Drawing No.: S-1003

Dimensions:

Projected Side Area 0.0608 ft. 2

Intersection, Dorsal/Fuselage
Fuselage Station 60.03 in.
Water Plane 12.41 in.

Intersection, Dorsal/Vertical Tail
Fuselage Station 72.86 in.
Water Plane 16.09 in.

DORSAL, D2

Description: Sheet metal dorsal fin located forward of vertical tail/
fuselage intersection. Larger in area than dorsal (D).

Drawing No.: None

Dimensions:

Projected Side Area 0.8418 ft. 2

Intersection, Dorsal/Fuselage
Fuselage Station 49.05 In.
Water Plane 12.41 In.

Intersection, Dorsal/Vertical Tall

Fuselage Station 77.05 In.
Water Plane 22.43 In.

Leading Edge Sweep Angle 71.5 deg.

DORSAL, 03

Description: Sheet metal dorsal fin located forward-of vertical tall/
fuselage Intersection. Larger In area than dorsal (D) but
smaller than dorsal (D2).

Drawing No.: None
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DORSAL, D3 - Continued

Dimensions:

Projected Side Area 0.6831 ft. 2

Intersection, Dorsal/Fuselage
Fuselage Station 47.43 In.
Water Plane 12.41 In.

Intersection, Dorsal/Vertical Tail
Fuselage Station 74.75 in.
Water Plane 18.95 In.

Leading Edge Sweep Angle 78.5 deg.
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VERTICAL, V

Description: Single centerline vertical stabilizer used with rudder (R),
horizontal (H) and bullet fairing (Y). Vertical is located in
the "basic" position, root chord LE at F.S. 70.762. Dimen-
sions are for the total exposed vertical above W.P. 12.785.

Drawing No.: S-1003

Dimensions:

Area, Total 2.3969 ft. 2

Span 22.805 in.
Chords, Root (W.P. 12.785) 18.881 In.

Tip (W.P. 35.590) 11.389 in.
MAC (W.P. 23.247) 15.444 in.
Fus. Sta. of 0.25 MAC 81.450 in.

Sweepback Angles, Leading Edge 33.4 deg.
25% Element 30.0 deg.
Trailing Edge 18.3 deg.

Airfoil Section NASA 64A010
Aspect Ratio 1.50
Taper Ratio 0.603

VERTICAL, V2

Description: Single centerline vertical stabilizer, same as vertical (V)
except alternate "square" tip repl6ces T-tail bullet fa;ring
(Y). Same dimensions as vertical (V).

Drawing No.: S-1003

Dimensions:

See vertical (V).
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RUDDER, R

Description: Full span double-hinged rudder used with vertical MV). Hinge-
lines are at 55% and 75% element lines of vertical tail.
Dimensions for forward segment do not include aft segment and
are aft of the hingeline.

Drawing No.: S-1003

Dimensions:

Forward Segment
Area 0.4572 ft. 2

Span 21.432 in.
Inboard Chord (W.P. 12.785) 3.776 In.
Outboard Chord (W.P. 34.217) 2.368 in.
Sweepback Angle of Hingeltne (55%) 25.68 deg.

Aft Segment
Area 0.5715 ft. 2

Span 21.432 in.
Inboard Chord (W.P. 12.785) 4.720 in.
Outboard Chord (W.P. 34.217) 2.960 In.
Sweepback Angle of Hingeline (75%) 22.58 deg.
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BULLET FAIRING, Y

Description: T-tail bullet fairing located at horizontal stabilizer/verti-
cal tail Intersection.

Drawing No.: S-1003,. -1035

Dimensions:

Projected Side Area 0.307 ft. 2

Length 19.10 in.
F.S. of Leading Edge (B.P. 0.00)- 81.75 in.
Max X-Sectional Area (F.S. 87.00) 0.0303 ft.2
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HORIZONTAL H

Description: Horizontal stabilizer which Is T-tail mounted on vertical tail
(V) with bullet fairing (Y). The airfoil is an Inverted and
modified NASA 64A210 section. The stabilizer is capable of
remote actuation (+20 degiees) and also includes a double hinge

elevator (E).

Drawing No.: S-1003

Dimensions:

Area, Total 2.776 ft. 2

Span 43.656 in.
Chords, Root (B.P. 0.00) 13.850 In.

Tip (B.P. 21.828) 5.532 In.
MAC (B.P. 9.353) 10.286 in.
Fus. Sta. of 0.25 MAC 92.429 In.
W.P. of 0.25 MAC 35.590 in.

Hingeline Center, F.S. 90.880 in.
W.P. 35.590 In.

Dihedral 0.0 deg.
Incidence (Basic) 0.0 deg.
Sweepback Angles, Leading Edge 31.70 deg.

25% Element Line 25.00 deg.
Trailing Edge 10.,4 deg.

Airfoil Section NASA 64A210 Modified



ELEVATOR, E

Description: Full span double-hinged elevator used with horizontal stabl-
lizer (H). Hinge lines are at 55% and 75% element lines.
Dimensions for forward segment do not include aft segment.
Dimensions are per side and aft of hingeline.

Drawing No.: S-1003

Dimensions:

Forward Segment
Area 0.2915 ft. 2

Span 20.978 in.
Inboard Chord (B.P. 0.85) 2".840 in.
Outboard Chord (B.P. 21.828) 1.162 in.
Sweepback Angle of Hingeline (55%) 19.23 deg.

Aft Segment

Area 0.3643 ft. 2

Span 20.978 in.
Inboard Chord (B.P. 0.85) 3.550 in.

Outboard Chord (B.P. 21.828) 1.1452 In.
Sweepback Angle of Hingeline (75%) 15.42 deg.
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HORIZONTAL SLAT, S

Description: Full span I3ading edge slat used with horizontal stabilizer
(H). The slat Is mounted on the top surface of the inverted
airfoil and is 14% of the horizontal chord. The slat gap is
1.25% of the horizontal chord. Dimensions are per side.

Drawing No.: S-1003

Dimensions:

Area 0.2040 ft. 2

Span 20.978 in.
Inboard Chord (B.P. 0.85) 1.988 in.
Outboard Chord (B.P. 21.828) 0.813 In.
Gap (% CH) 1.25%
Deflection (Nose Up) 2f.0 deg.
Extension (3 CH), Vertical 5.44

Horizontal 12.65%
Control Point (% CHt Unextended) 1 Vertical '."8%

Horizontal 0.)0%
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FEFO

Description: Flap entry fairing off; , ;: ood fairing which replaces flap
entry fairing used with fr.s (F) and (F7).

Drawing No.: S-1044-56 4-57, S-IC48

RAKE

Description: Horizontal flow survey rake used with vertical (V) and con-
taining five conical flow angularity probes. Each probe has
a conical probe with four orthogonally located surface pressure
orifices and a single centerline total probe. The number 5
probe Is inboard and number I probe is the farthest outboard.
The number 4 probe is lined up to coincide with coordinates
for 0.25 MAC of the norIzonta I stabIl I zer.

Drawing No.: S-1026

Dimensions:

Rake Strut, X-sectional area 0.0491 ft 2

Diameter 3.00 in.
Span 26.25 in.

Leading Edge otProbes, F.S. 92.429 In.
W.P. 35.5-9) in.

Probe Spacing, Number 5, B.P. 4.375 in.
Number 4, B.P. 9.375 In.
Number 3, B.P. 14.375 in.
Number 2, B.P. 19.375 in.
Number I, B.P. 24.375 in.

Probe Diameter 0.312 in,

BELLMOUTH

Description: Bollmouth-inlet cowl used with nacello (N) during part of
engino calibratlon. Includes Inilet instrumentation to mea-
sure inlet weight flow. Purpose was t+ prevent possible flow
separation from Inlet lip on basic cowl. One bhl!mouth was
mounted on each nacel le.,

Drawing No.: S-1022

Dimensions.,

Throat Dimeter 3.253 In.
Throat Area 0,0578 ft 2

Lip Diameter (N.S. - 1.86) 6 506 In,
Capture Area 0.2310 ft2

S7
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Section III

WIND TUNNEL TEST RUN LOG SUM4ARY

The last column of the run log summary titled "Figure No." represents
a means whereby any particular run is cross-referenced against the GELAC
wind tunnel data plots (STOL Tactical Aircraft Investigation, Wind Tunnel
Test Data of an Externally Blown Flap Model, Contract F33615-71-C-1760,
iAppendix A, Volumes 1 through 3 inclusive, 24 August 1972.)

S-me runs appear without any cross referenced data plots. These
were calibration runs, or single point runs for static tuiniing angles,
or have been re-run later in the test and then plotted. Any force data
taken with the horizontal tail flow field survey rake installed was not
plotted.

Preceding page blank s9
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Section IV

WING SWEEP

Three wing sweep angles were tested at three CM 's each. The AR 7
wing was tested at.A. - 9.33%, 240, and 300. Each sweep angle was tested
at Ca, a 0, 2.0 and 3.0. All wing sweep tests were conducted tail-off
and with the inboard Krueger removed from the basic configuration of
A.. = 24* since no inboard Kruegers were available for the other wing

f sweep angles tested.

4.1 EFFEICTS ON LIFT

Wing swe;ep effect. on total powered lift coefficient are presented in
Figures 4.,1.1 and 4.1,2 for cK Is of 00 and 80 respectively and at vary-
ing engine thrust coefficients. The reference point frcm which increments
were takea is the basic configuration wing sweep angle of 240.

As the wing is swept forward from A 240, the lift coefficient
increases and as the wing is swept further aft from A - 240 the lift
coefficient decreases. The higher blcwing ccefficients al ays generate
positive lift coefficient increments at any sweep angle over the unpowered
lift coefficient increments.

Figures 4.1.3 and 4.1.4 a-e test data points from wfich the sweep
effects on lift coeffient were *.ltained.

4.2 EFFECTS ON DRAG

As woculd be expected the effects of wing sweep variation on total
powered drag coefficient closely parallel the lift coefficient effects
as can be seen in Figures 4.2.1 and 4.2.2. Wind tunrwl backWp data is
presented in Figures 4.2.3 and 4.2.4.

Preceding page blank 7,



4. 3 EMFTCrS ONt PITOIING WKIBM

Figures 4.3.1 and 4.3.2 show the stabilizing effects of sweepingth
wings rearward. At any given wing sweep angle the stabilizing
tendencies increase appreciably with increasing power. This is du-e to
the rearward shift of the wing center of pressure as C. is increased.

Wind tunnel backup data is presented in Figures 4.2.3 and 4.2.4.
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Section V

ASPECT RATIO

Two wings of different aspect ratio were tested by NR on the MSIT
model. The wing of the basic configuration with an AR - 7.0 and an alter-
nate wing with an AR = 10.0 were evaluated during the LSWr-090 wind

tunnel test. Both wings were mounted to the model fuselage so as to
position the quarter chord points of their respective MAC's at F.S.
38.155. Each wing was 10.3214 ft. 2 in total area and the quarter chord
of each wing was swept to 24 degrees. The Z of the AR = 7.0 wing was
15.4-636 inches on a 51.00-inch semi-span and the E of the AR 10.0
wing was 12.9377 inches on a 60.957-inch semi-span.

The AR = 10.0 wing was tested wi*h the 25750 full span double slotted
flaps only. The inboard Krueger section was not available for this test.
This wing was tested at various C/A 's tail-off and tail-or.,

5.1 rýFFECTS ON 'IFr

Figure 5.1.- shows that for any angle of attack less than 0< stall
the A;Z = 10.0 wing demonstrates positive lift coefficient increments when
compared with the AR = 7.0 wing. The AR = 10.0 wing, however, stalls
at a much lower angle of attack as can be seen in Figures 5.1.2 and 5.1.3
when bo*h iings are blown. One reason for the sharp decay in the AR w
10.0 wing cKsral: agles may be possibly a span effect. A smaller
area of the AR - 10.0 wing is imersed in the engine exhaust plume due to
the increased span than is with respert to the AR - 7.0 wing. Hence
the phenomenon of super-circulation is experienced by a greater portion
of Lhe AR - 7.0 wing thereby possibly enhancing its stall characteris-
tics over tOat of the AR - 10.0 win.
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5.2 FEMCS ON DRAG

Due to the increase in aspect ratio of 30 percent, alt. drag
coefficients are lower for the AR: 10.0 wing than for the AR a 7.0
wing because of an approximate 30 percent reduction in the wing induced
drag. Since the wing areas are the same the wing profile drag levels
are, for all practical purposes, the same. Figure 5.2.1 shows this reduc-
tion in drag coefficient and Figures S.2.2 and 5.2.3 are the plotted wind
tunnel data points except as noted.

5.3 EFFECTS ON PITCHING MJENT

Figure 5.3.1 shows that going from an AR 7.0 wing to an AR 10.0
wing introduces destabilizing tendencies at high power and angle of attack
settings.

As was mentioned in Section 5.1 the reduction in influence of power
effects on thE AR = 10.0 wing due to increased span will cause this wing's
center of pressure to move forward on the wing's MAC for any given power
level thus causing the nose-up tendencies.

Figures 5.3.2 and 5.3.3 present plotted wind tunnel test data
except as noted.
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"Section VI

.- WASH

Downwash angles were determined through the use of a flow field
pressure rake. The pressure rake measured the environmental in-flow

* angles experienced at the location of the horizontal tail as the rake
*; was mounted on top of the vertical fin in place of the horizontal tail.

It was mounted in the plane of the left hand horizontal stabilizer chord
line in the 'T' or high position anl located axially such that the
pressure sensors of the second of the five probes outboard from the

*. fuselage centerline was congruent with the horizontal stabilizer MAC
quarter chord point. The right hand horizontal stabilizer was removed
for this test series. The rake was fitted with the five probes each
having four orthogonally located static pressure orifices and a single
center total pressure orifice. The five probes were located spanwise
five inches over centers so tlat the outboard most probe was beyond the
horizontal tip, Y/(bH/2) = 1.12.

The measured in-flow angles are calibrated angles and represent
local horizontal tail angles if attack (NKT) at i1i = 0. Averaging their
spanrwise readings, weighting the average in favor of the probe represent-
inc the horizontal tail MAC, the downwash factor (I-JC/d•) can be deter-
mined.

6.2 EFFECTS OF POWER

Power effects on downwash angle at oc - are presented in Figure
6.i.1 for varying wing flap deflection and engino simulator nozzle deflec-
tion. The angle, E. , presented in this figure is measured with respect to

* the ambient freestream streamlines. These data are for the clustered
engine configuration. Figure 6.1.3 presents similar data but for the
spread engine configuration and also shows effects on downwash at 0 = 0
for various leading edges.

Figures 6.1.2 and 6.1.4 demonstrate power effects on downwash fac-
tor (1 -dC/acx) for the clustered and spread engine configurations respec-
tively. The clustered engine plot also includes effects of varying the
wing leading and trailing edge geometries. Quantitatively the downwash
factors of both engine configurations are comp#able with each other.

Preceding page blank 101
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Figures 6.1.5 through 6.1.8 inclusive are plotted wind ttmnel test
data points.

6.2 EFFECTS OF ENGINE NOZZLE DEFLECTION AND FLAP DEFLECTION

The effects of wing flap and engine exhaust nozzle deflections on
powered downwash angle are summarized in Figure 6.2.1 at o'. = 0". It is
apparent that considerable scatter in the downwash angle exists.

Figures 6.2.2 through 6.2.11 inclusive are plotted wind tunnel test
data points, showing unexpected trends in the effect of flap angle or
considerable data scatter.

6.3 EFFECTS OF VARIOUS LEADING EDGE DEVICES

The effects of synmntrical various leading edge devices on powered
downwash angle are presented in Figure 6.3.1 at o4 - 00. The entire lead-
ing edge of the wing was clean with the exception of the outboard most
31.6 percent of the semispan where the various leading edges were tested.
The short and long chord Kruegers as well as the blown leading edge
present little influence on downwash angles at the tail.

Figures 6.3.2 through 6.3.6 inclusive are plotted wind tunnel test
data points.

6.4 EFFECTS OF ENGINE SPANMISE LOCATICMi

The engine nacelles were perturbed in an outboard direction in order
to evaluate the effects on downwash of spreading out the powered flow field
over the horizontal tail. The inboard nacelles were moved from Y/(b/2) *

0.247 out to y/(b/2) - 0.350 and the outboard nacelles were moved further
out from y/(b/2) - 0.394 to y/(b/2) - 0.550. Figures 6.4.1 and 6.4.2
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show that by spreading out the powered flow field the tail angle of attack
variation with model angle of attack is dramatically improved especially
at the higher Cu. s.

Figures 6.4.3 and 6.4.4 show the spanwise tail angle of attack varia-
tion for the clustered and spread engine configurations.
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Section VII

REYNOLDS NIMBER

Since the GELAC tunnel is a single return tunnel not having variable
density capabilities, the only way to increase Reynolds number was to
increase tunnel speed. As was mentioned in the introduction, three tunnel
speeds were run corresponding to tunnel q's of 0 psf, 16 psf and 100 psf.

7.1 EFFECTS ON LONGITUDINAL AERODYNAMIC PARAMETERS

Figures 7.1.1, 7.1.2, and 7.1.3 show the effects of Reynolds number
on the power-off lift, drag and pitching moment coefficients. Along with
Reynolds number effects a high lift configuration buildup is presented
beginning with clean wing, then adding full span leading edge Kruegers
and final!ynmounting trailing edge double slotted flaps.

7.2 EFFECFS ON LATERAL-DIRECTIONAL AERODYNAMIC PARAMETERS

Figures 7.2.1 and 7.2.2 present the effects of Reynolds number on
dihedral effect for o, FRI. 00 and 120 respectively. At 0 FRL . 00
practically no effects of Reynolds number are seen on Cpy but in
sharp contrast at 0( FRL = 12*, severe flow separation existing at 16q
are completely eliminated with an increase in Reynolds number at 100q.

Reynolds number effedts on directional stability are presented in
Figures 7.2.3 and 7.2.4. As can be seen little change in either stability
level or vertical tail stall angles are affected hv increasing Reynolds
number.

7.3 EFFECTS ON W)RIZO(WAL TAIL AN.JGLh OF NITACK

Figures 7.3.1 and 7.3.2 show the effects of Reynolds number on hori-
zontal tail angle for twu different leading edge configurations.
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Section VIII

FLAP SPAN

The model was equipped with inboard and outboard flap sections. The
inboard flap section extends from the fuselage out to 76 percent semi-
span and the outboard flap section continues from 76 percent semispan out
to the tip of the wing. The outboard flar section was available only
with the one double slotted flap deflection of 25/50 degrees.

8.1 EFFECTS ON LONGITUDINAL AERODYNAMIC PARAMETERS

Flap span effects on power-off and power-on lift coefficient are
shown in Figures 8.1.1 and 8.1.2 respectively for two different leading
edge configurations.

Flap span effects on power-off and power-on drag coefficient are
shown in Figures 8.1.3 and 8.1.4 respectively.

Flap span effects on power-off and power on pitching moment coefficient
are shown in Figures 8.1.5 and 8.1.6 respectively.
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,�Section IX

HORIZONTAL TAIL AND ELEVATOR EFFECTIVENESS

The horizontal tail was tested in the high or "T" tail position only
at q - 16 psf and at q - 100 psf. The elevators were tested at q = 100
psf only with varying horizontal tail incidence angle. This test series
was conducted with a ciean wing trailing edge and engine power off to
assess the effects of the horizontal tail leading edge slat and effec-
tiveness of the deflected elevator in a virtually nondisturbed wing flow.
The tail volume of the horizontal tail tested was V1. - 0.942.

The horizontal tail trim capability was determined with zero elevator
setting at q = 16 psf, with wing trailing edge flaps at 25/SO and at
35/60 degrees for varyj',g engine power levels.

9.1 HORIZcINTAL TAIL LFFEcrPvENESS

With the horizoital tail incidence angle set at iH 00 and
°FRL = 00, engine lower effects on tail contribution to pitching moment

of the model is presented in Figure 9.1.1. The leading edge slat is
extended and data points for two flap deflections are spotted on the curve
which represenLs a reasonable fairing through obviously wide data scatter.

Figure 9.1.2 shows the engine power effects on tail contribution to
model pitch stability levels at o4Fp i 00.

flori.:ontal tail e•ffectiveness for tio flap deflections is shown in
Figures 9.1.3 and 9.1.; vers,:.; gross engine blowing coefficient.

9.2 EFFEC[' OF 11ORIZOM'A.L TAIL UiADING EDGE FXAP

Figure 9.2.1 shows the effects of installinm! a leading edge slat on
the horizontal tail. "Ihe slat is demonstrated with and without elevators
deflected, power off and at q - 100 psf. A dramatic increase in C
of the tail is readily apparent. The ;Iat was .14c in length, deflected
2S1 upward with a gaap of 0.0125c and a zero •vivcent overhang. The
slat was deflected upward because the hori..ontal tail was mounted in-
verted.
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9.3 ELEVATOR EFFECrIVE4ESS

The elevator was a double hinged device with its forward hinga at
0.SSc and its aft hinge at 0.75c.

Figures 9.3.1, 9.3.2i and 9.3.3 show the effects of elevator deflec-
tion on model lift, drag and pitching moment coefficients respectively
for varying horizontal tail incidence angles. The wing flaps were at
0/0 degree and pmer was off. The data was analyzed at o' - 00.

Figures 9.3.4, 9.3.S, and 9.3.6 present the change in model lift, drag
and pitching moment coefficients respectively due to elevator deflections
at various horizontal tail incidence angles.
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Section X

LEADING EDGE DEVICES

The leading edge Kruegers were installed in four separate segments
consisting of the inboard segment which was mounted between the fuselage
and the inboard engine pylon, the mid-pylon Krueger segment which was
mounted between the inboard and outboard engine pylons, the outboard
Krueger segment which was mounted just outboard of the outboard engine
pylon and finally the tip Krueger which was mounted on the outboard most
16 percent cf the wing semi-span.

10.1 EFFECT OF LEADING EDGE KIUEGERS

In order to be able to determine individual Krueger segment effects
a leading edge buildup was tested whereby each Krueger segment was added
one at a time and tested. In order to evaluate the effects of wing
sweep the inboard Krueger on the basic configuration had to be removed
once since no inboard Krueger was available for the other wing sweeps
tested. Figure 10.1.1 shows the effects of removing the inboard Krueger
from the basic configuration on the longitudinal aerodynamic parameters
with power-off.

Figure 10.1.3 represents the same test results and for the same
purposes as does Figure 10.1.1 with the exception that Figure 10,1.3 is
powered.

Figure 10.1.2 shows the effects of performing a leading edge slat
build-up on longitudinal aerodynamic parameters with power off. The
build up begins with the tip Krueger only installed and continues adding
each segment working inboard until a full span configuration is
realized.

Figures 10.1.4 and 10.1.5 represent the same test results as does
Figure 10.1.2 with the exception that the tests of Figures 10.1.4 and
10.1.5 are powered.
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10.2 QO4ARISON OF LEADING EDGE BLC WITH LEADING EDGE KRUEGERS

In this test the leading edge was clean with the exception of the
tip segment where the three different leading edges were tested. They were

tested at a C/u. - 2.0 so that leading edge blowing would be available.
Figure 10.2.1 shows the effects of the three different leading edges on
powered CLmax and c, stall. Leading edge blowing was a direct function
of engine blowing level and was mechanically adjusted so that maximum
engine blowing coefficient will produce a maximum leading edge blowing
coefficient of approximately 6 percent per side and total maximun lead-
ing edge blowing was 12 percent (C"le 0.12).

The variation of CL a with power is presented in Figure 10.2.2 for
the three leading edges T"%sted.
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Section XI

NACELLE LOCATION VARIATION

The engine nacelles were moved vertically and fore- and-aft to two
locations other than that defined in the basic configuration. The center-
line of thrust in the plane of each exhaust nozzle is located vertically
(Z/C) and axially (X/C) with respect to the wing leading edge. lIn this
test, at the basic spanwise location, the nacelles were moved aft from
an X/C - 0 to an X/C = 0.15 in the horizontal plane of Z/C = 0.27 (basic
configuration) and they were moved up from a Z/C = 0.27 to a Z/C = 0.19
in the vertical plane of X/C - 0 (basic configuration).

Lateral relocations were carried out with the nacelles mounted in
the basic configuration (X,/C = 0 and Z/C = 0.27) with respect to the wing

.leadiiug edge and the nacelles were moved outboard along the span. The
inboard nacelles were move," from Y/(b/2) i 25 percent to Y/(b/2) • 55.6
percent and the outboard nacelles were moved further outboard from
Y/(b/2) o 40 percent to Y/(b/2) - 56 percent based upon a semip&In of
50.08 inches.

11.1 EFFECFS OF LINGITUDjtAL AND VERTI'AL ENGINE LOCATION PERFT1RBATTON
ON LONGITUDINAL AERODYNkkMIC PjpAPETER

The effects of axial aid vertical engine nacelle relocation are pre-
sented in Figures 11.1.1 to 11.1.6 inclusive. The increments in the
total lift, drag and pitching moment coefficients are shown for Or - 0
and 2.0 and atoC = 00, 40, and 80. Figures 11.1.1 through 11.1.3 show
the effects of a rearvard nacelle shift and Figures 11.1.4 through 11.1.6
show the effects of a vertical nacelle shift.

11.2 TFamEFS Or fNGINE SPASWISE PR!•I'UMIJATI'q

Figures 11.2.1 through 11.2.3 inclusive show the effects of the span-
wise engine perturbation on incremental lift, drag and pitching Moment
coefficients due to power. The increitnts were taken at C V0 with
tail off.

Preceding page blank

• : • •" •':'• •, •& • '• •" : •:•-' ••-. -" •":• :•.-•4 •::• ;•<-° •s•.:, x• ,•,•-'• '• : f .., ..., ... ....., . ...... . ....



Figures 11.2.4 through 11.2.6 inclusive present the effects of engine
spanwise relocation on the lateral-directional derivatives. These data
were taken at o. - 00 with tail on and at Ct. 's of 0 and 2.0 only.

11.3. CCMPARISON OF "FIXEIY' AND "SWIVEL" PYLONS

Figures 11.3.1 and 11.3.2 represents the increments in the longitudinal
aerodynamic parameters at CT = 0 and 2.0 respectively involved when
changing from the fixed to the swiveling pylon. As can be seen at CT - 0
practically no differences exist in going from the fixed to the swiveling
pylon. However a Cr = 2.0 and at angles of attack greater than 2.00
significant drag coefficient penalties are incurred With the use of the
swiveling pylon. The fixed pylon is called "Type II pylon" and the swivel-
ing pylon is called "Type I" pylon.
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Section XII

FLAP aiAACTERISTICS

A cross sectional view of both flap systems tested, the double slotted
and triple slotted flap, can be seen in Illustrations 12.1 and 12.2
respectively. The double slotted flap illustration also shows the vane
flap spoiler which was used for roll control testing in conjunction with
both flaps and will be discussed in Section XIV.

12.1 POWER-OFF LIFT CAPABILITY

This subsection is arranged so as to show a high lift system systema-
tic buildup. Power-off lift coefficiemit for a clean wing is shown in
Figure 12.1.1. A full span short chord Krueger is added to the leading
edge with the trailing edge still clean. Power-off lift coefficient for
this configuration is presented in Figure 12.1.2. The increase in maxi-
mum lift coefficient due to addition of the Krieger only is 0.46 (1.51-
1.05) while the stall angle increases 4.60 (21*-16.4*). With the full
span short chord Krueger extended, the double slotted trailing edge flaps
are extended to 25/30 degrees. The power-off lift coefficient for this
configuration is presented in Figure 12.1.3. The power-off nmaximum lift
coefficient now increases an additional 1.57 (3.08-1.51) and the stall
angle is reduced 4.2'. Figures 12.1.4 and 12.1.5 present power-off lift
coefficient vs angle of attack plots for various double and triple slotted
flap deflections. All above data is tail-off and untrimmed.

Figure 12,1,6 presents the power-off trimmed lift coefficients for
the same flap configurations as presented in Figure 12.1.4. The trim
lift coefficients were determined analytically by multiplying the
corresponding tail off, nower-off pitching moent c:.fficient by the inverse
of the non-dimensionalized horizontal tail arm. The horizontal tail arm
length was taken as the distance from the wing MAC to the horizontal tail
'fAC (see Illustrati-n 2.1).
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12.2 SIATIC TURNING ANGLES AND EFFICIENCIES

A summary of all the static turning angles tests that were conducted
in test LSWr-090 for double and triple slotted flaps are presented in
Figure 12.2.1.

12.3 FLAP GAP OPTIMIZATION FOR DOUBLE AND TRIPLE SLYITEDFLPS

The flap gap was optimized for both the double and triple slotted
flaps by varying the wing trailing edge spoiler which controlled the gap
between its trailing edge and the leading edge upper surface of the flap
vane (see Illustrations 12.1 and 12.2). In the case of the double ilot.",d
flap (Sf = 250/500) with the wing spoilers at-10', the optimi,:ation
testing was conducted on the 3.5 percent gap bracket. Figure 12.3.1 shows
the actual measured flap gaps for each flap gap bracket for given spoiler
deflect ions.

Figures 12.3.2 and 12.3.3 show the effects of flap gap variation on
power-off and power-on lift coefficients respectively. Figure 12.3.4
presents cross plots of the two preceding figures at od = 0* and o4.= max.
for both the powered and unpowered conditions. The objective of this
plot was to determine at what spoiler deflection an Optihnn CL would be
reached. It appears that optimum CL is being approached at a spoiler
deflect iV. of -12*.

Unpowerd and powered drag polars were plot ted and are presented in
Figures 12.3.5 and 12.3.6 respectively for a variation of fhlp gaps.
Figures 12.3.7 and 12.3.8 are the unpowered and powered cross plots of
the two preceding respettive plots. The drag I eters have been plotted
for constant lift coefficients to detenrmine it a definitive drag "bucket"
exists for any given spoiler deflection and if so, whether it is the same
spoiler deflection at which the optimumn lift coefficýcnt appeared. As
can be seen in these two plots a "bucket" is hardly definitive but one
might suggest a drag bucket at ipproxLmately -10.5° Sof slXiiler deflection.

Figures 12.3.9 shows a plot of powered lift coefficient for varying
spoiler deflection angles. 'lh1e lift coefficients wert, taken a CI) 0
for each spoiler deflection from Figure 12.3.6 which represents 1' 0'
since the axial drag balance read thrust and drag and CD) is as mentioned
previously is total drag balance rteadout, thrust included. This plot
again shows a spoiler deflection angle of approxiruately -120 (3.05 percent
gap) to be optim mr.
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The same type of study was made for the triple slotted flap. The
triplz slotted flap deflection used for the gap optimization was
6 f = 2.SO/'20*/450 . Figure 12.3.10 shows the actual measured flap gaps
for each available spoiler deflection.

As can be seen in Figures 12.3.11 and 12.3.12 the unpowered and power
ed lift coefficients of the triple slotted flap are exceedingly less
sensitive to gap variation than are those of the double slotted flap.
Figure 12.3.13 shows an opti.nmn lift coefficient of approximately -7*
spoiler deflection at o(- = 0.nd approximately -4* spoiler deflection
at OC.=max.

The drag coefficient polars for the unpowered and powered conditions
are presented in Figures 12.3.14 and 12.3.15 respectively and show further
evidence of the irnsensitivity of the triple slotted flap system to flap
gap variation.

An attempt at cross plotting figures (12.3.14) and (12.3.15) was
mide and the results appear in Figures 12.3.16 and 12.3.17. One may
suggest the presence of a drag bucket at approximately -4O spoiler deflec-
tion.

Once again as with the double slotted flrp a triple slotted flap
optimum powered lift coefficient at d% 00 has been sought and Figure
12.3.18 shows that at -4' spoiler deflection (2.00 percent gap) the
optimum powered lift coefficient is realized.

12.4 Puffif LI'FT CAPARf!!.rY

The increment in lift coefficient due to do•,r is shown in Figure
12.4.1 for the double slotted flap deflections of 25*/50@ and 350/600
at two angles of attack (O - 0* and 80). These are based on Figures

S12.4.4 through 12.4.8 i','Kusive which are basic wind tu-iiel lift
Scoefficient data plots for the double slotted 25'/XX and 15"/XX series

Sflap systems

Figures 12.4.2 and 12.4.3 present the effects of the double slotted
iaIp deflection on total powered lift coefficimet. These data are pro-
sented for two angles of attack and two-engine blowing coefficients
(CA - 2.0 and 3.28).
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The increment in lift coefficient due to power is shown in Figure
12.4.9 for the triple slotted flap deflections of 2.5 0/20*/45* and
2.50/300/550 at two angles of attack (oL- 00 and 80).

Figures 12.4.10 and 12.4.11 show the effects of the 2.5o/200/)O
series triple slotted flap direct lift control system on total powered
lift coefficient. The difference between the plots is spoiler deflection.
Figure 12.4.10 has full span spoilers at -7* and Figure 12.4.11 has
spoiler segments 1 through 4 inclusive raised to +100 and spoiler seg-
ment 5 at -70. For a definition of spoiler segments see Illustration
2.1.

Similarly, Figure 12.4.12 shows the effects of the triple slotted
flap configuration on powered lift coefficient for a 10' larger flap deflec-
tion (2.S*/30 0/Xr. All three triple slotted flap direct lift control
system plots present data at two angles of attack (C0- = 0* and 80) and
at two engine gross blowing coefficients (Cc,. = 2.0 and 3.28).

Some basic wind tunnel lift coefficient data plots for the triple
slotted 2.5*/20*/XX and the 2.5 0/30 0 /XX series flap systems are found in
Figures 12.4.13 through 12.4.16 inclusive.

12. S POWER EFFECTS ON DRAG

The increent in drag coefficient as effected by an application of
power to the double slotted flap deflections of 250/500 and 35*/'60* for

two angles of attack (c0- - 0' and 8') are shown in Figure 12.5.1.

The effects of the double slot~od 25°/XX an, IS°/,XX flap direct
drag control systems, or flap angle changc, on total powered drag
coefficient for two angles of attack and Zwo engine gross blowing
coefficients (CAA. - 2.0 and 3.28) are presented in Figures 12.5.2 and
12.5.3.

Figures 12.5.4 through 12.5.6 represent basic wind tunnel drag
coefficient polars for the double slotted 250 /XX and 35*/XX flap series.

Similarly, for triple slotted flaps, the increment in drag coefficient
as effected by power is shown in Figure 12.5.7 for 6 f - 2.5 0/20*/4S5
mnd d2.S/30*/3S* and ar two anwles of attack (C - 0* and 8*).
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The effects of the 2.5*/200/XX series triple slotted flap direct
drag control system on total powered drag coefficient are shown in
Figures 12.5.8 and 12.5.9 for two angles of attack and two-engine gross
blowing coefficients. Larger flap angles are shown in Figure 12.5.10
presenting the effects of the 2.50/30*/XCX serie! triple slotted flap
direct drag control system on total powered drag coefficient.

Figures . 11 through 12.5.14 inclusive present some basic wiid
tunnel drag co,'. ient data plots fromn which som- oA the analysis data
points were extractcd.

Figure 12.5.15 represents the average ram drag coefficient per engine
variation ýtith total simulated engine blowing coefficient. These data
were collected by the use of simulated engine nacelle inlet static and
total pressure probes mounted in rake fashion and these data were reduced
per subsections 6.2.1.2 through 6.2.1.11 inclusive of NR MST pretest
report NA-72-107.

12.6 POWER EFFECTS ON PITGIING WOnr

The increment in pitching monent coefficient due to powei ...... :ted
by the double slotted flap deflections of 25*/500 and 350/60* are shown
in Figure 12.6.1, The pitching moment increnents are insensitive to angle
of attack variation between o( - 0' and 80.

The effects of the double slotted 250/XX and 35*/XX flap series'last
flap segment deflection on total powered pitching moment coefficient
are shown in Figures 12.6.2 and 12.6.3. As can be seen there is little
angle of attack effects at the high engine ;-i i blowing coefficient
(C'"a - 3.28).

Figures 12.6.4 through 12.6.9 inclusive present unpoered and power-
ed basic wind t.uziel pitching moment coefficient data plots. The moment
reference center was about the wing StV quarter chord.

The increment, in pitching moment coefficient due to power as effected
by the triple slotted flap deflections of 2.S 0 /200 /4S* and 2.So/300/$S*
are shown in Figure 12.6.10. An ,angle of attack variation (between 0*
and 8*) can only be detected with the 2.S*/30"/SS* triple slotted flap.
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The effects of the 2.S0/20o/XX series triple slotted flap last flap
segment articulation on total powered pitching moment coefficient are
shown in Figures 12.6.11 and 12.6.12. These data are shown for two
engine gross blowing coefficients and are ind-pendent of variations in
angle of attack between o- - 00 and 8S. As in the powered lift subsection
12.4 the only configuration difference in these two plots is the wing
trailing edge spoiler angles.

The effects of the 2.5'/600/XX series triple slotted flap last flap
segment perturbation on total powered pitching moment coefficient is
shown in Figure 12.6.13 for tio-engine gross blowing coefficients (C/tU
2.0 and 3.28) and also is cx. independent between 0' and 8*.

Figure 12.6.14 is a zero power wind tunnel pitching moment data
plot.

12.7 FLAP DEFF CTION AND POWER EFFLC.IS ON AEPflDYXIIC CENTER LOCATION

Flap deflection effeeots on the aer" ,rTamic center location for double
-aid triple slotted flaps at varying engine gross blowing coefficients irc

presented in Figures 12.7.1 through 12.7.3 inclusive. The a.c. locations
plotted are all referenced from a 25 percent c.g. and all data presented
is tail off. The negative values represent a forward movement of the a.c.
or a de-stabilizing shift and the positive values represent a rearward
movement of the a.c. or a stabilizing shift.

It can be seen that for the full range of engine gross blowing

coefficients evaluated the triple slotted flap consistently demonstrates
better stability gradients than does the doub Lotted flap. The triple
slotted flap also shows increasing stability' levels to much higher flap

deflections than dois the double slotted flap because of its capab lity
of delaying flow separation as a result of tiho added slot.

Tho et fect on aerodynamic center loA'atio, of directing a high energy
flow field on to the lower iurface of the d-xible and triple slotted flap
configrurations is presented in Figure 12.7.4. The data was obtained with

the taii off and at constant flap deflections for the &)uble and triple
slotted configurations while engine gross blowing coefficients were

varied.
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Here, again, the triple slotted flap shows to be more stable than the
double slotted flap. However, as powe was increased the a.c. location of
the ikult• slotted flap moved rearward in a stabilizing direction and
the a.co location of the triple slotted flap moved forward in a de-
stabilizing direction.

12.8 EFFECTS OF FLAP INLET FAIRING CN LONGITUDINAL AERODYNAMIC PAR4M,-TERS

The flap inlet fairing was a device mounted on the wing lower surface
ahead of the flap vane and was used to control the direction of the stream
flow attacking the flap vane (see Illustration 12.1). Although it was
•ised with all flap deflections tested, its effects were only determined
with the 25°/50* double slotted flap.

The effects of the removal of the flap entry fairing on lift,
drag and pitching moment coefficients are presented in Figures 12.8.1,
12.8.2 and 12.8.3 respectively, These data are presented for engine
gross blowing coefficients o' C,4i - 0 and 2.0. An obvious lift loss is
encountered with the fairing removed when under engine power influences
therefore the fairing was left in place for all testing.
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Section XIII

WING SPOILERS

Wing spoiler numerical designation and panel segmentation ar4 defined
in the general arrangement three view of Illustration 2.1. In general the
only other symmetrical spoiler deflections tested other than those ,of the
flap gap optimiltstion program were 6 Sp = +10° and +50*.

13.1 DLC EFFECTS ON LONGITUDINAL AERODYNAMIC PARAMETERS

Figures 13.1.1 and 13.1.2 show the effects of full span spoiler
deployment for the unpowered and powered configurations respectively.
These data were evaluated at o. = 0* and the basic configuration spoiler
deflection of -10* is the zero reference from which all increments were
taken.

The effects on lift and drag coefficients due to partial span
spoiler deployment are presented in Figures 13.1.3 through 13.1.6 inclu-
sive. These increments are presented for two-engine gross blowing
coefficients (CA = 2.0 and 3.28).

Figures 13.1.7 and 13.1.8 are the basic wind tunnel longitudinal

coefficients from which the spoiler incremen-ts on the preceding figures
were taken.

13.2 FHFFiA:'S ON )NGCITtDINAL AJ)DYNAMIC PAPAMTE•RS •WEN USED M• AERO-
MIMIMC BVNG DIYICS

"This Subsection deals only with the iazximan spoiler deflection
available which is SO*. A full span 6,(q *+50 was not nui during test
INSW 090. !Iowever, aSp *50' half !pwi test was run at C.t - 0
and 2.0. Thereforc the Full span data was obtained by du.lxling the half
span incretmnts.

Figur 13.2.1 showi the effects of raising a half span spoiler to *5O*
at CT 0 U. Figut 13.2.2 presents the iarcrements of Figure 13.2.1 and
douhled to simulatv the effects of a full span sipiler d&fleVt,-1 to -50*
at CT

................



Figure 13.2.3 shows the effects of raising a half span spoiler to
+50 at CT 2.0. Figures 13.2.4 and 13.2.5 presents the increments
obtainted from Figure 13.2.3 and dubled to simulate the effects of a
full span spoiler deflected to +500 at CT - 2.0.

2•
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Section XIV

ROLl, CCNTROL

The various roll control devices tested in LNTr-090 are shown in
cross-section in Illustrations 14.1 through 14.4 inclusive. Methods
tested for obtaining roll control were ailercn deflection, spoiler deflec-
tion, aileron plus spoiler deflections, blown aileron deflection i asymne-
tric flap vane spoiler and asymmetric leading edge devices such as the
outboard short chord Krueger, the outboard long chord Krueger, the out-
board long chord slotted Krueger and 13ading edge boundary layer control.
All roll control devices were tested on the AR 7 wing at-/A - 240 and
with double -lotted flaps (Sf - 25"/500 and 350/60°) unless otherwise
noted. Th1c 3roiler panels are numbered per Illustration 2.1. Stability
axis data is used throughout this subsection.

14.1 ROLL DUE TO FAkIILED FNGINE

Rolling moment coef.jci1-nt-. f.: tc•ir-tngine thrusts are presented
in Figures 14.1.1 and 14.1.7 for the two basic double slotted flap con-
figurations (50' and 600 flaps). This data shows the effects of model
hardware including e',gine power non-uniformity.

Total rolling moment coefficients with an outboard engine failed,
(CR )EO for 8 f = 250/50' and 35"/60' at two thrust per engine
coefficients are presented in Figures 14.1.2 and 14.1.8 as functions of
angle of attack. Incremental rnlling moment coefficients due to one engine
out (AC, s)EO, are obtained Vy subtracting the four-engine rolling
moment coefficients from the engine-out rolling moment coefficients and
ar., presented in Figures 14.1.3 and 14.1.9 for their respective flap
deflection!; and thrust per engize coefficient. Thlese figures indicate
that poier has a relatively sma-ll effect on engine-out rolling r•noent
coefficient when analyzed on this basis.

Effects of outboard engine failure on powered lift are shown in
Figure 14.1.4 and Figure 14.1.5 presents a compari on of total rolling
mo.•ent coefficients of the outboard and inboard engine failures. Incre-
mental roll inq mament coefficients for xitbhoari nd intxjard engine failures
are presoted in Figure 14.1.6.

Rolling nr,•,t coefticient dise to out.board engine failure is plotted
against four vngii.e pwoered trim lift and three-engine poered trin lift
at o0. - 16' Wd is presented in Figure 14.1. 10. This plot demnistrates
that the awount of rolling mmient associlted with engine failure is propor-
tional to the loss in lift when uncorrected data is used.
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Figure 14.1.11 shows the centers of pressure of span loading for the
inboard and outboard failed engine conditions. These centers of pressure
were determined by using absolute wind tunnel data and appear question-
able. In Figure 14.1.12 an increment in spamise load centers was ob.
tained by subtracting out the four-engine spanwise load centers which
increases the credibility considerably.

14.2 EFFECT OF TAIL WN ROLLING WfU'JT

The effect of the tail on total rolling monent with outboard engine
inoperative is plotted as a function of angle of attack and is presented
in Figure 14.2.1. Incremental rolling moment coefficient due to engine
failure is plotted in Figure 14.2.2 as a functi'n of angle of attack.
As can be seen in both figr- es, the tail has little effect on outboard
engine failed moment :oefficient.

14.3 EFFECT OF SIOTTIED KRIIEGERS AND FLAP VNE SPOILER ON ROLLING MEWt1FT

The effect of slotting the long chord Krueger on total rolling moment
is presented in Figure 14.3.1 as a function of angle of attack. It is
apparent from the plot that essentially no beneaits Pre gained from

slotting the long chord Krueger either symmetrically or as)mmetrically.

Figure 14.3.2 shows the effects of adding a spoiler to the right hand
vane flap on the inboard flap segment and corresqonding Vpanwise to the
fourth spoiler segment. The objective ins to cau e a right wing down

rolling moment by spoiling the flow over the vane flap. Only minimal
results were achieved.
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14.4 ROLL iNcRIMNT DM Th AILERONS AND SPOILER DEFLECTION

An tmlpwered rolling moment coefficient increment for aileron only

( - 201-.20°) is shown in Figure 14.4.1 as a function of angle of
attack. The aileron power goes to zero at 0( stall. The aileron is
located behind the open number S spoiler parp'i and therefore is of only
limited effectivenesss.

Rolling moment coefficient increments due to deflection of ailerons
and spoiler panel No. S are shown in Figures 14.4.2 and 14.4.3 as func-
tions of angle of attack for symmetrical four-engine power, asymmetrical
three-engine power and the power, off configurations. It is apparent that
the spoiler panel '>!o. S is very effective at the full 50' up deflection.

Three enqine itcxemental spoiler data is permitted to be interspersed
"with four-engine incremental spoiler data since the failed engine is on
the wing opposite to that on which the spoiler panels are being evaluated
and as such does not change incremental spoiler effectiveness.

Figures 14.4.4 through 4.4.6 inclusive show incremental rolling
moment coefficients as functions of angle of attack for the unpowered
:d powered configurations (three and four engines operating) for various

cmbinations of spoiler panel deflections with and without aileron
deflection.

It will be noted that an abrupt increase in rolling moment is intror-
duced at or very near the stall angle when spoiler panels are deflected.
This is attributed to the decrease in wing local c< stall when a spoiler
pane- is; raised thu•s causing the spoiled wing to stall first and causing
what appears to be this large increass in roll effectivity.

The effect of spoiler deflection on three engine lift is presented,
tail on, as a function of angle of atta.:k ii. iUsure 14.4.7.

The roll effectiveness of spoiler panels Nos. 3 and 4 are presented in
Figunre 14.4.8 for unpowered and powered conditions with n.nd without The use
of tip spoilers and ailerons. 1hen the tip spUiler and ailercn is used
in conjunction with spoiler panels Nos. 3 and 4 the esultant interference
causes a decay in roll effectiveness of spo•iler panels Nos. 3 and 4 of
approximately 33 percent uinpowered and 18 percent powered. Very small
power effects are seen in the roll effectiveness of the tip spoiler plus
aileron combinaticn becaise they are located almost beyond the influence
of engine blowing. The roll effectivity of spoiler panels NW. 3 and 4
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alone is Approximtely 50 percent greater thian the roll effectivity of the
tip spoiler u 8ileron combination by itself unpowered anid approximately
69 percent grVater when powered.

Figures 14.4.9 and 14.4.10 present incremental rolling moment
coefficients of spoiler panels Nos. 1 and 2 and of spoiler panels Nos. 1
thrgh'h 5 as functions of angle of attack for the unpowered and powered
configurations.

Incremental rolling moment coefficients due to various spoiler
panel combinations are plotted as functions of spoiler pahel deflection
for CT - 0 and 2.0 and at x- = 0* and 80 and are presented, tail on, in
Figures 14.4.11 through 14.4.14 inclusive. These plots demonstrate the
maxinui roll capability of the various spoiler panel combinations.

Since the available rolling moment is a function of the wing lift,
Figures 14.4.1S and 14.4.16 present plots of incremental rolling moment
coefficient due to spoiler deflection as a function of synmetrically
powered unspoiled total wing lift. At low angles of attack the (ACCs)6sp
is a linear function of CL and is independent of power influences, other
than those of CL.

Similar analysis of the three-engine data for roll control is made
and incremental rolling moment coefficients due to spoiler deflections
are plotted against three, engine unspoiled total wing lift and presented
in Figure 14.4.17.

The location of centers of pressure due to spoiler deflections were
obtained by dividing the rolling moment increment by a corresponding
lift loss. Figure 14.4.18 shows the effects of o4 on c.p. locations with
spoiler panel No. 5 only deflected. Figure 14.4.19 shows the effects of
engine blowing on the c.p. locations of spoiler panels Nos. 3 and 4 as
well as o0. effects, This shcws ti:at. the appl iI icn of power moves the
c.p. locations inboird. The effects o0 p)ower and angle of attack on the
c.p. locations of all five sr, iler panels raised is shown in Figure
14.4.20. The application of;power to this configuration, in contrast with
the previous figure, moves the c.p. locations outboard for OC 's in
ex:ess of 40.

Rolling moment coefficient for spoiler panel Nos. 3, 4, and 5 plus
aileron deflection is plotted alinst angle of attack for the triple
slotted flap ( 6 = 2.5/20'/25*) at two engine gross blowing coefficients
(CAI. Z.0 and 3.28). A unique phenomenon appears here in that more roll
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is available at CT - 2.0 than at CT - 3.28. It is suggested that because
of -:he additional slot in the triple slotted flap system follQwed by the
main flap segment, powered lift is being generated with spoilers deployed
due to flow being directed through a slot and causing a flow reattachme-it
to the main flap segment behind the spoiler action, This flow reattach-
ment then could be developing more lift than the spoiler is capable of
destroying resulting in a lesser roll capability at a higher CZ

A comparison of double and triple slotted roll capability is presented
in Figure 14.4.22 where it is apparent that the ddLible slotted flap is
more than twice as powerful as the triple slotted flap at o- 00.

14.5 ROLLING W NIFrMS DUE TO BLOWN AILERON

The wing trailing edge or aileron blowing was treated the same as
the leading edge blowing in that the aileron BLC was also a direct function
of engine blowing level. It was mechanically adjusted so as to give the
thrust at the BLC nozzles for the thrust of the simulated jet engine
nozzles as presented in Figure 14.5.6.

Figures 14.5.1 through 14.5.3 inclusive show the effects of blowing
on the aileron on one side only at three symnetrical aileron deflections
(6a "- 350/300, 35,/150 and 35'/70') as functions of angle of attack.
The plots at the bottom of these figures are cross plots at the indicated

C 's of the curves at the top of the figures. An obvious decay in roll
capability is recognizable for C,4's greater than 2.0. It is suggested
that t] is loss in aileron BWd effectiveness above C(4 = 2.0 is possibly
due to model asyimnetries as was found in Figures 14.1.1 (6 f = 250,/500)
and 14.1.7 (6f - 350/600). In both of these , . , a reduction in four
engine rolling moment coefficient was observea when CA was increased
from 2.0 to 3.0.

Figures 14.5.4 represents a siumrntay of the bottom plot,; of each of
the three preceding figures. This plot p•ints out that a reduction in
aileron effectiveness also exists as a ftit ion of angle of attack whereby
the4a - 350/300 is the least effective at o- 00, and it becomes the
most effective at r• ,*

3L) 7



Figure 14.5.5 presents the incremental rolling moment coefficient due
to blown aileron corrected for model asymmetries in the upper family of
curves and blown aileron incremental rolling moment coefficients due to
engine blowing coefficient in the lower family of curves. Since there are
no directly comparable runs for the blown aileron deflections of 35*/300,
350/50*, and 350/700, the 6 f - 250/500 full span flaps are used as the
base four engine run. Note that the decay in roll effectiveness above
C,,• - 2.0 previously experienced in Figures 14.5.1 through 14.5.4 inclu-
sive does not occur in Figure 14.5.5. The family of curves at the bottom
of Figure 14.5.5 not only shows data with corrections applied for power
asymmetries in the base run, but also model asymmetries in the power off
case.

14.6 SPOILER EFFECTIVENESS WITH FAILED ENGINE

Figures 14.6.1 shows that deployment of spoiler panels Nos. 3, 4, and
S in conjunction with aileron deflection art quite sufficient throughout
the power range to trim out the rolling momeni caused by an outboard engine
failure up to Ocstall. However, this combination of roll control devices
is not adequate to maintain control of the large asymmetric wing stall
characteristics associated with an engine failure.
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Section XV

DIRECTIONAL CONTROL

The yaw run data obtained in test LSWr-090 was taken at only two
angles of attack, R a 00 and 120. Data was obtained flaps up and down,
tail on and off, with and without engine failures and with and without
rudder deflected.

15.1 DIBcrIEONAL STABILITY - FLAPS UP AND FLAPS DOIW

Figures 15.1.1 shows the stabilizing effect an application of power
has on flaps down total directional stability. Figure 15.1.2 presents
the increment.

Similarly, Figure 15.1.3 shows the effects that increasing power
has on the flaps deflected total dihedral effect, CG , while Figure
1S.1.4 presents the increment, showing a decrease in stability.

Figure 15.1.3 shows the effects of power application to the flaps
down side force derivative and corresponding increments in side force
derivative due to power are presented in Figure 15.1.6.

Some basic yawing moment coefficient wind tunnel data are presented
in Figures 15.1.7 and 15.1.8.

15.2 [XOD•kL OPlTIMIZATION

Dorsal fins of three projected side areas were tested. The basic
configuration dorsal or the D dorsal was the smallest with a projected
side area of f.0608 ft. 2 . The next in size wis D; 3) dorsal with a
projected side area of 0.6831 ft. 2 uid the largest dorsal wos the DZ
dorsal with a projected side area of 0.8418 ft.2.

Figures 15.2.1, IS.2.2 mid IS.2.3 represent the stability axis yawing
mment coefficient, rolling •nt coefficient and sid& force coefficient
versus tht angle of yaw, •4' . All three dorsals are shown on these plots
for at least two C"'s euch. These figures are basic wibd twtiel data
plots.
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15.3 YAW CHARACTERISTICS WITH WrINE FAILURE

The model was capable of simulating engine failures by remotely
closing either of two valves in the engine air supply line. The engines
failed were the left side outboard (Engine #1) and the right side inboard
(Engine #3).

Figure 15.3.1 shows the yawing moment for norimal engine operation
and engine failure at zero flap deflection on model yawing moment
coefficient ato FRL - 00. Stability levels are inaffected by engine
failure in this flaps up condition.

The normal engine operating directional stabiliTi (Cnr ) is doubled
by deflecting the flaps from 0* to 250 /S0 0 , which is also shown in this
figure. Additional engine failure effects on ya•wing ,rment coefficient
at O(FRL = 0* with flaps deflected are presented in Figure 15.3.2.
Note that the inboard engine out develops larger yawing iaoment coefficients
than the outboard engine out. This unique behavior is also seen in Figure
15.3.4 the c.ly difference here being OeFRL - 12'. ;he causes for the
unorthodox engine out yawing moment coefficient tendcrncits are at this
time unresolved. It is possible that highly asynnetric wing spanwise
load distributions are being generated with inboard engine out which may
induced sizeable sidewash components; the effects of which are reflected
in the yawing moment.. The need for additional detailed inve3tigations
in this case is obvious.

Fi-tire 15.3.3 prosents the corresponding side force data for Figure
15.3.2.

Fiurei 15.3.5 and 15.3.6 show the effects of flap uteflection on ,ut-
board wnd inboard engine failed v'awing moment co'efficients respe:tively
at Oc FRL = 0'. hliese data show less engine failed yawing rnoent
coefficient results with the flaps at 35"/6 0 * tuin at 25*/500.

The total yawing mioent coefficient pr,. . y spoiler deflect'oin

with the outboard engine failed ire show• in -,gure 153.7 for two double
slotted flap deflections attCKpj, - 0'. Corres-"idiny. side force
,oeffictnt lat: is plotted in Figure 15.3.8.
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15.4 RUDDER EFFECTIVENESS AND '.i`, I..,ACY

The rudder tested in test LSfI'-090 was a double cambered device
similar to the elevator. The forward rudder segment (6rl) was hinged at
the vertical fin 55 percent chord element and the rear rudder segment (Sr2)
was hinged at the vertical fin 75 percent chord element. The forward
rudder segment was tested only at the 0' and 25* deflections with respect
to the vertical fin centerline and the rear rudder segment was tested at
00, 150, 20*, and 250 deflectims with respect to the forward rudder
segment centerline.

Figures 15.4.1 and 15.4.2 show the rudder effectiveness for Sf
250/50* and 350/60' respectively with normal operating engines and ond
engine failed. The data was taken at OiFRL = 00 and with maximum rudder
deflection of 8 rl/ Sr? = 250/25* and at varying sideslip angles.

The contrMl capability of the vertical tail, with deflected rudder is
shown in Figure 15.4.3. The yawing moment coefficient of the vertical
tail with corresponding vertical tail lift coefficients is given for
varying rudder deflections.

The control surface efficiency of the vertical tail with deflected
rudder is shown in Figure 15.4.4 as well as the maximum lift (or side
force) coefficient for maximum rudder deflection. Also presented in
this figure is a single surface deflection control efficiency versus
rudder to vertical tail chord ratio.
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Section XVI

COWc SI(NS

In general all of the objectives enumerated in the Rockwell report
NA-71-1121, "STOL Tactical Aircraft Investigation: Wind Tunnel Test Plan
for a Research Modal of an Externally Blown Flap STOL Transport," dated 7
December 1971 have been met with the exception of the ground plane test-
ing and flow visualization testing. All testing was accomplished at the
Lockheed Georgia Company's low speed wind tunnel in a 16 by 23-foot test
section between 3 April 1972 and 19 May 1972. The test was designated
by Lockheed as LSWT-090.

A great deal of force and pressure data was obtained during this test
and a large amount of the force data has been analyzed and is in a form
suitable for application to design. Much of the analyzed data has been

used irt the design of the baseline zonfiguration and in the design
compendium update. Some of the data was used in performance tradeoff
studies and for the sizing of the horizorntal and vertical tails of the
baseline configuration.

A comparison analysis of the double and triple slotted flaps has been
completed as well as an analysis showing the benefits of the various
leading edge extensions and leading edge boundary layer control systems.

.An nalysis of the data for various roll control devices led to the
eli.ination of the asymmetric leading edge BW system, as a candidate for
an adequate roll control system.

rata has been acquired, analyzed und presented in this report showing
the calpabiities and efficiencies of double cwambered ridder and elevutor
surf acs.

1he only pressure data analyzed to date '.ti raat acquired with the
downwash study rake. The %ing pressure daita htvs not been looked at yet.
With a text of this magnitude ad complewi'y it is otvious that time would
not permit extensive detail testing in any singular area. Yet th-' analysis
reveals that such additicunal detail testing is required, to better under-
starld the effvcts of flaps on the d-owwash flo., field or ! more accurate-
ly define the causes leading to tte inboard engine failed being critical
in yaw rather thwn tht outboard engine failed. Other areas that need
further detailed investigation are, for example, VIA: effwe:ts on full flaps
dovnwash, static turning atles for all flap deflections wul engine no:ile
deflections, roll canrol effectiveness at low engine CT's, r.nd hsic flaps
up yaw& dat. at varying CT'S. These are only a few of the areas that
require additional twting in order for ths using aerodynmicis, ,, g,'1t an
in depth feel for these data.
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