

anann

ERING W

# DO NOT LOAN



# A PERFORMANCE STUDY OF A PISTON COMPRESSION SHOCK TUNNEL

G. P. Rouel and B. E. Richards
von Kármán Institute for Fluid Dynamics
72 Chaussée de Waterloo,
1640 Rhode-Saint-Genèse, Belgium

January 1974

. .

Final Report for Period February 1, 1972 - January 31, 1973

Approved for public release; distribution unlimited.

Prepared for

ARNOLD ENGINEERING DEVELOPMENT CENTER (XON) AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TN 37389. Property of U. S. Air Force AEDC LIBRARY

F40600-74-C-0001

#### NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

#### APPROVAL STATEMENT

This technical report has been reviewed and is approved.

Stow ? com Brow

ELTON R. THOMPSON Research and Development Division Directorate of Technology

popert o fits

ROBERT O. DIETZ Director of Technology

| ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)                                                                                                                                            | ······                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| REPORT DOCUMENTATION PAGE                                                                                                                                                                          | READ INSTRUCTIONS                                                                        |  |  |  |  |
| REPORT NUMBER 2 GOVT ACCESSION NO.                                                                                                                                                                 | 3 RECIPIENT'S CATALOG NUMBER                                                             |  |  |  |  |
| AEDC-TR-73-173                                                                                                                                                                                     |                                                                                          |  |  |  |  |
| TITLE (and Subtrile)                                                                                                                                                                               | S TYPE OF REPORT & PERIOD COVERED                                                        |  |  |  |  |
| A PERFORMANCE STUDY OF A DISTON                                                                                                                                                                    | Final Report-Feb. 1, 1972 -                                                              |  |  |  |  |
| COMPRESSION SHOCK TUNNEL                                                                                                                                                                           | Jan. 31, 1973                                                                            |  |  |  |  |
| COMINESSION SHOEN I ONNEL                                                                                                                                                                          | 6. PERFORMING ORG. REPORT NUMBER                                                         |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                          |  |  |  |  |
| / AUTHOR(s)                                                                                                                                                                                        | CUNTRACT OR GRANT NUMBER(S)                                                              |  |  |  |  |
| G. P. Rouel and B. E. Richards                                                                                                                                                                     | AFOSR-72-2334                                                                            |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                          |  |  |  |  |
| PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                           | 10 PROGRAM ELEMENT, PROJECT, TASK                                                        |  |  |  |  |
| von Kármán Institute for Fluid Dynamics,                                                                                                                                                           | Program                                                                                  |  |  |  |  |
| 72 Chaussée de Waterloo,                                                                                                                                                                           | Element 65802F                                                                           |  |  |  |  |
| 1640 Rhode-Saint-Genèse, Belgium                                                                                                                                                                   |                                                                                          |  |  |  |  |
| 1. CONTROLLING OFFICE NAME AND ACORESS                                                                                                                                                             | 12. REPORT OATE                                                                          |  |  |  |  |
| Arnold Engineering Development Center (XON),                                                                                                                                                       | January 1974                                                                             |  |  |  |  |
| Arnold Air Force Station TN 37389                                                                                                                                                                  | 13 NUMBER OF PAGES                                                                       |  |  |  |  |
| 4 MONITORING AGENCY NAME & ADDRESS(il different from Controlling Office)                                                                                                                           | 15 SECURITY CLASS. (of this report)                                                      |  |  |  |  |
|                                                                                                                                                                                                    | UNCI ASSIFIED                                                                            |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                          |  |  |  |  |
|                                                                                                                                                                                                    | 15. DECLASSIFICATION ODWNGRADING<br>SCHEDULE                                             |  |  |  |  |
| Approved for public release; distribution unitmit                                                                                                                                                  | lea.                                                                                     |  |  |  |  |
| DISTRIBUTION STATEMENT (of the abeliaci entered in Block 20, 11 different the<br>Shock I<br>J. Puston Cos<br>18 SUPPLEMENTARY NOTES                                                                | "Reports Performent                                                                      |  |  |  |  |
| nunnel                                                                                                                                                                                             | , v                                                                                      |  |  |  |  |
| Available in DDC                                                                                                                                                                                   |                                                                                          |  |  |  |  |
| N .                                                                                                                                                                                                |                                                                                          |  |  |  |  |
| 9 KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                   |                                                                                          |  |  |  |  |
| hypervelocity wind tunnels computation                                                                                                                                                             |                                                                                          |  |  |  |  |
| shock tubes reentry simulation                                                                                                                                                                     | n                                                                                        |  |  |  |  |
| performance                                                                                                                                                                                        | 1                                                                                        |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                          |  |  |  |  |
| 0 ABSTRACT (Continue on reverse side II necessary and identify by block number)                                                                                                                    |                                                                                          |  |  |  |  |
| A the emotion 1 study of a bigh works where a                                                                                                                                                      | iston compression toiloged                                                               |  |  |  |  |
| A theoretical study of a high performance p<br>mode reflected shock tunnel, designed to achiev<br>has been carried out. The designed tunnel suppl<br>varying from 2000 to 5000 atm at temperatures | e re-entry flow simulation,<br>y conditions were pressures<br>from 6000 to 12,000°K. The |  |  |  |  |

perfections in the equation of state covering both dense gas effects and

١,

#### UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

internal energy modes were required to be assumed. Similar running times as in conventional shock tunnels have been shown to be achieved at the design performance with relatively lowly stressed tube extensions. Helium is shown to be a more efficient driver gas than hydrogen in piston compression operation in terms of both performance and running time. An analysis applied to the geometry of the HIRHO facility currently being developed at AEDC shows that its predicted performance can be achieved using the free piston driver using helium as a driver gas.

#### PREFACE

The work reported was sponsored by the Arnold Engineering Development Center (AEDC), Directorate of Technology, under Program Element 65802F. The monitor for this project was Mr. Elton Thompson, AEDC/DYR. The report covers work conducted during the period February 1972 through February 1973.

The authors would like to acknowledge the useful discussions at the beginning of the study with Dr. Michael Lewis, then Assistant Professor at the von Kármán Institute, now at the Institut Fédéral de Recherches en Matière de Réacteurs in Wurenlingen, Switzerland. The support given by Major R. M. Bowman, Project Officer, Directorate of Engineering and Life Sciences, Department of the Air Force, European Office of Aerospace Research, London, W. 1 was greatly appreciated. Mme Rigaux typed the manuscript.

# CONTENTS

|     |                                                                                              | Page |
|-----|----------------------------------------------------------------------------------------------|------|
| 1.0 | INTRODUCTION                                                                                 | 5    |
| 2.0 | REVIEW OF EQUATION OF STATE MODELS FOR                                                       |      |
|     | DENSE, HIGH TEMPERATURE GASES                                                                | 7    |
| 3.0 | CALCULATION METHOD                                                                           |      |
|     | 3.1 Tailored-Mode Reflected Shock Tube Performance                                           |      |
|     | Calculation                                                                                  | 8    |
|     | 3.2 Tailored-Mode Reflected Shock Tube Running Time                                          |      |
|     | Calculation $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 9    |
|     | 3.3 Isentropic Compression Calculation                                                       | 9    |
|     | 3.4 Piston Cycle Calculation                                                                 | 10   |
| 4.0 | PRESENTATION OF RESULTS                                                                      | 10   |
| 5.0 | DISCUSSION                                                                                   |      |
|     | 5.1 Choice of Reservoir Gas                                                                  | 11   |
|     | 5.2 Factors Controlling the Testing Time                                                     | 11   |
|     | 5.3 Parametric Study                                                                         | 13   |
| 6.0 | CONCLUSIONS                                                                                  | 14   |
|     | REFERENCES                                                                                   | 16   |

# ILLUSTRATIONS

# Figure

۰.

.

| 1. | Schematic of Piston-Driven Shock Tunnel Operation 19                                                             |
|----|------------------------------------------------------------------------------------------------------------------|
| 2. | Schematic Wave Diagram of Shock Tunnel                                                                           |
| 3. | A Typical x-t Diagram Obtained from Computer<br>Programs                                                         |
| 4. | Shock Mach Number, M <sub>S</sub> , for Tailored<br>Configuration                                                |
| 5. | Temperature, T <sub>5</sub> , Achieved by Shock Tunnel 23                                                        |
| 6. | Driver Pressure, P <sub>4</sub> , Required to Achieve<br>Performance Aim                                         |
| 7. | Test Gas Initial Pressure, P <sub>1</sub> , Required to Achieve<br>Performance Aim                               |
| 8. | Length, L <sub>p</sub> , of Compressed Gas in the Barrel<br>Necessary to Achieve 2-msec Running Time in Tailored |
|    | Configuration $\ldots \ldots 26$                  |

#### AEDC-TR-73-173

•

.

| Figure          |                                                                                                                 | Page |
|-----------------|-----------------------------------------------------------------------------------------------------------------|------|
| <sup>.</sup> 9. | Compression Tube Length, L <sub>c</sub> , Required to Achieve<br>2-msec Test Duration in Tailored Configuration | 28   |
| 10.             | Reservoir Pressure, $P_{0i}$ , and Compression Ratio, $\lambda$ ,<br>Required to Achieve Performance Aims       | 30   |
| 11.             | Initial Driver Gas Pressure, P4 <sub>i</sub> , Required to Achieve<br>Performance Aims                          | 34   |
|                 | •                                                                                                               |      |

# **TABLES**

| 1. | Typical Computer Output of Tailored-Mode Reflected<br>Shock Tube Performance Calculation                 | 36 |
|----|----------------------------------------------------------------------------------------------------------|----|
| 2. | Typical Computer Output of Tailored-Mode Reflected<br>Shock Tube Running Time Calculation                | 38 |
| 3. | Typical Computer Output of Isentropic Compression<br>Calculation                                         | 40 |
| 4. | Typical Computer Output of Piston Cycle         Calculation                                              | 42 |
| 5. | Parametric Study-Cases Examined                                                                          | 47 |
| 6. | Parametric Study-Tailoring Conditions for Shock Tube<br>and Compression Conditions for Compression Tube  | 48 |
| 7. | Parametric Study-Details of Compression Tube of a<br>Piston-Driven Tailored-Mode Reflected Shock Tunnel  | 49 |
| 8. | Parametric Study-Effect of Reduction of Shock Tube Length<br>on Compression Tube for 2 msec Running Time | 50 |
| 9. | Comparison of Performance of Helium and Hydrogen<br>Driver Gases                                         | 51 |

.

•

#### 1.0 INTRODUCTION

The performance of a shock tunnel is mainly controlled by the driver gas composition, the diaphragm pressure ratio, and the initial temperature of the driver gas. With hydrogen as the driver gas, at a particular temperature, the maximum performance is limited to that achieved with an infinite diaphragm pressure ratio. Better performance may only be obtained by increasing the temperature of the driver gas. Several methods are available for accomplishing this, for example, resistance heaters, arc heating, combustion and compression heating. Experience at the von Kármán Institute in the use of piston-driven facilities (Longshot described in Ref. 1 and the Piston-Driven Shock Tube described in Ref. 2) has shown that compression heating has many advantages over more conventional methods. In particular, uniform heating of the driver gas to very high temperatures (>3000°K) may be obtained without a complex electrical power supply. Furthermore, the high pressure, high temperature gas is confined to the driver tube for such brief intervals of time (order of milliseconds (msec)) that the wall temperature does not increase much above room temperature. This has advantages both in the design of the very high pressure vessels required and in minimizing the risk of a dangerous explosion from gas leakage or vessel rupture. It has been shown that, at very high shock speeds, helium becomes a more efficient driver gas than hydrogen (Ref. 3). By using helium any probability of an exothermic explosion is removed.

The piston-driven shock tunnel in tailored-mode has been developed and appraised by Stalker (Ref. 4) and Stalker and Hornung (Ref. 5). An initial appraisal of the presently configured AEDC HIHRO facility has been carried out by Stalker and Pate (Ref. 6). This present study involves an analytical study of an uprated version of HIRHO to achieve combinations of high temperature and high pressure in air behind the reflected shock wave in a useable running time (greater than 1 msec) using the piston compression method of heating the driver gas.

The HIRHO facility, as currently planned, has an internal-resistanceheated driver and will use hydrogen as the driver gas. The driver is 6.25 m (20.5 ft) in length with an 18-cm internal diameter. The driven tube is 12.5 m in length with an 18-cm internal driver. The downstream end of the driven tube will have provisions for interchangeable nozzle throats. Nozzle throat diameters of 12.7, 25.4, and 38.1 mm were used in the current calculations to determine tunnel run times.

The predicted performance of the unmodified HIRHO facility using hydrogen driver gas is given on the following page. The performance figures are for the pressures and temperatures in the reflected shock region of the driven tube, i.e., immediately upstream of the nozzle throat.

Tunnel Performance with a 1000°K Heater

| Pressure, atm | Temperature, °K |
|---------------|-----------------|
| 5000          | 6000            |
| 4000          | 70`00           |
| 3000          | 8000            |
| 2000          | 9000            |

Tunnel Performance with a 1600°K Heater

| Pressure, atm | Temperature, °K |
|---------------|-----------------|
| 5000          | 10300           |
| 4000          | 10900           |
| 3000          | 11600           |
| 2000          | 12300           |

Tunnel run times of 1 to 3 msec were predicted for the conditions given above.

From the performance figures it is deduced that the driver tube can withstand pressures of the order of 10,000 atm. It is assumed that for the purposes of this study, the driver can be increased in length with an extension tube of the same internal diameter and with a pressure rating of no more than 2000 atm. Also a reservoir vessel of a diameter three times that of the driver, with approximately the same length of driver and with a pressure rating of 1500 atm, is required to drive the piston. These extensions could be added for a relatively small expense. In this study, it was assumed that the piston weight was 300 kg and that the petals of the broken diaphragm would fold into recesses in the tube allowing the piston to pass and come to rest at the nozzle end wall under the cushioning effect of the mixture of driver and test gases. Such a method has been used by Hovstadius (Ref. 7).

Preliminary calculations showed that the densities of the piston driver gas, the shock tube driver gas, and the test gas of the pistondriven shock tunnel under investigation were so high that intermolecular forces have to be taken into account. High temperature imperfections also have to be included in the shock tube driver and test gases. The thermodynamic information of the likely gases (hydrogen, helium, nitrogen, and air) considered to be presently the most accurate at combined high temperature and high density conditions are usually in the form of tabulated data derived from theories based on statistical mechanics (Refs. 8 and 9). At extreme conditions, such tables remain unverified experimentally. Furthermore, for numerical performance studies of the piston-driven shock tunnel in which multiple calculations of the Riemann function and Rankine-Hugoniot equations of real gases have to be made, simplifications of the equations of state are required to make a reasonable parametric study.

Section 2.0 of this report presents a review of the equation of state models for dense high temperature gases used in this study. Section 3.0 describes briefly the four main computer programs devised. The results are presented and discussed in Sections 4.0 and 5.0, respectively.

# 2.0 REVIEW OF EQUATION OF STATE MODELS FOR DENSE, HIGH TEMPERATURE GASES

Calculations of performance of shock tunnels and piston-driven facilities often use simplified equations of state. For example, Enkenhus (Ref. 2) used the Lewis and Burgess model (Ref. 10) to calculate the properties of air through a normal shock; Siegel (Ref. 11) used Abel-Noble and Van der Waals models for dense helium and nitrogen. The advanced piston-driven shock tunnel under study requires more sophisticated equations to take into account the combined intermolecular force and internal energy terms. The computer (IBM 1130) limitations at the Institute meant that only analytical equations of state could be used, similar to that developed by Enkenhus and Culotta (Ref. 12) for nitrogen. The following equations of state were selected for the study.

<u>Air</u>: The conditions expected to be encountered in the air test gas are up to 5000 atm pressure at 10,000°K temperature. Dense gas models for this mixture of two main gases with different species at high temperatures is particularly difficult to describe analytically. A gross assumption was made that the molecular separation at these high temperatures was so large that dense gas effects could be ignored. The Hansen model (Ref. 13) was thus selected.

<u>Helium</u>: The virial form of the equation of state by Miller and Wilder (Ref. 14), considered by these authors to be accurate over the range up to 3600 atm and 15,000°K partially covers the expected range of conditions needed by a helium shock tunnel driver of 2000°K and 10,000 atm.

<u>Hydrogen</u>: The equation of state of Woolley (Ref. 15) considered by this author to be accurate over the range up to 20,000 atm and 3500°K, and agreeing with the calculation of Reggiani (Ref. 10) which are based

on the "6-12" Lennard-Jones potential covers the expected range of conditions needed by a hydrogen shock tunnel driver of 2000°K and 11,000 atm.

Algorithms to solve the Rankine-Hugoniot relations for the flow across a normal shock and to compute the Riemann function for calculating the flow across expansion waves, were developed for the gas models mentioned above. These and their application to the performance study of the shock tunnel, the results of which are explained in Section 4.0, will be reported in a forthcoming VKI publication (Ref. 17).

#### 3.0 CALCULATION METHOD

The calculations were carried out in four stages using separate computer programs. Reference to Figs. 1 and 2, illustrating the operation of the facility and the wave processes of the shock tube part, respectively, will aid understanding the programs, which will be described more fully in a forthcoming publication (Ref. 17). Typical outputs from the programs are given in Tables 1 to 4, respectively.

#### 3.1 TAILORED-MODE REFLECTED SHOCK TUBE PERFORMANCE CALCULATION

Using the usual shock tube equations the computer program calculates the temperature behind the reflected shock,  $T_5$ , in the test gas originally at room temperature, and the driver gas pressure,  $P_4$ , required to generate pressures behind the reflected shock,  $P_5$ , from 2000 to 5000 atm using driver gas temperatures between 1000°K and 2000°K. The assumptions of Wittliff et al. (Ref. 18) to determine the tailored conditions were used. This occurs when the gas behind the positive going wave (KL", caused by the interaction of the reflected shock wave with the contact surface) has zero velocity and a pressure equal to that behind the reflected shock wave. Another way of putting this is that

$$u_5 = u_6 = 0$$
  
 $p_5 = p_6$ 

In this region it is assumed that the gas is homogeneous. The shock is thus transmitted without creating additional waves. The method of calculation is then as follows:

I - guess initial shock Mach number and compute, from initial temperature and pressure in the test gas (air), the conditions behind the incident shock (Region 2) and behind the reflected shock (Region 5).

- II Knowing the reflected shock Mach number calculate the velocity and pressure change in the driver gas (Region 3) after shock passed through the interface (tailoring conditions).
- III Calculate conditions in the driver gas at the beginning (Region 4) by using the Riemann variable (expansion fan).
- IV If temperature in Region 4 is not correct, change initial shock Mach number and repeat steps I to IV.

The method of calculation will be described with more details in Ref. 17.

# 3.2 TAILORED-MODE REFLECTED SHOCK TUBE RUNNING TIME CALCULATION

For the cases examined in Section 3.1 this program calculates the length of driver tube necessary to generate a given running time defined as the time from the arrival of the incident shock wave to the arrival of the reflected rarefaction wave. The usual shock tube equations and expressions for the flow of gas through an orifice are used and real gas effects are assumed to calculate all the events, J, K, 4, 3, N, M, L, L', L'', and I, given in the wave diagram of Fig. 2.

The following main assumptions are made:

- i. The diaphragm bursts, when the piston is momentarily at rest (or more precisely, when uniform conditions exist throughout the driver).
- ii. Viscous effects are ignored such that there is no shock wave attenuation.
- iii. Heat-transfer losses to the walls are ignored in Region 5.
- iv. The effect of the flow through the nozzle is felt immediately in the region behind the reflected shock wave.

#### 3.3 ISENTROPIC COMPRESSION CALCULATION

This program calculates, assuming an isentropic compression of the gas with a given initial temperature (this assumption was verified for a helium driver gas by the tests described in Ref. 19 for the range of driver gas considered, i.e., up to 2000°K), the initial pressure that would be required to achieve the driver conditions of the shock tunnel in program (a) and the compression tube length to provide the driver tube length of calculation (b).

#### 3.4 PISTON CYCLE CALCULATION

This program calculates the basic conditions required to drive the 300-kg piston, thus generating the shock tube driver conditions calculated in program (c) with a driver tube length estimated by program (b). As shown in Section 4.0, it was found that to obtain realistic driver tube lengths the gas used to drive the piston was required to be room temperature helium. It was assumed that the piston speed was so low that an assumption of infinite speed of sound of the gas both upstream and downstream could be used. This assumption was satisfactorily checked out by comparing several cases with calculations using the full characteristics solution.

#### 4.0 PRESENTATION OF RESULTS

The main numerical results of the parametric study of the pistondriven shock tunnel are given in Tables 5 to 8\*. Table 5 reviews the values of input conditions  $T_4$ ,  $P_5$ ,  $T_4_i$ ,  $T_1$ ,  $T_0_i$ , piston weight, testing time, shock tube length, and constituent gases chosen to be studied. Table 6 gives the calculated values of the parameter  $M_S$  (i.e., shock Mach number), T<sub>5</sub>, P<sub>4</sub> required to obtain tailoring conditions in the shock tube and P4<sub>i</sub> and  $\lambda$  (compression ratio) for two values of T4<sub>i</sub> (293°K and 500°K) to achieve the necessary driver conditions. Table 7 gives In (distance between the shock tube diaphragm and the position at which the piston comes to rest), L<sub>c</sub> (compression tube length) required to give a running time of 2 msec, ignoring viscous effects, terminated by the arrival of the head of the reflected expansion wave for a shock tube length of 64 ft. The values of  $P_{0i}$  (initial piston driver gas pressure) and  $V_p$ (piston velocity) are also given. Table 8 gives the same parameters as given in Table 7 but with values for shorter shock tube lengths considered to be optimum to obtain a running time of 2 msec. These results are illustrated graphically in Figs. 4 to 11 in order to assist the ensuing discussion of the results. The final driver gas temperature, T4, is used as the primary variable.

\*Copies of the complete computer readouts are available from VKI.

#### 5.0 DISCUSSION

#### 5.1 CHOICE OF RESERVOIR GAS

The following physical reasoning, based on calculations made early in the study, was used to select helium at room temperature as the optimum reservoir gas to drive the piston.

- i. Unsteady one-dimensional flow solutions (e.g., Ref. 20) of shockless piston compression of gases show that a heavy piston is most efficient for extracting energy from a reservoir gas. This is because a large piston travels more slowly than a light one; hence, the strength of the expansion wave is lower and the pressure acting on the back of the piston is higher. For a 7-in. internal diameter tube, the weight of a steel piston with the largest practical length is estimated to be 300 kg.
- Helium is more powerful than nitrogen or air as a piston driver ii. because it not only has a much higher sound velocity, but also its high value of the ratio of specific heats allows smaller driving pressure loss. Furthermore, the compressibility factor at the high pressure conditions anticipated is smaller than air or nitrogen at the same pressure and temperature conditions. Some alleviation of the adverse effect of compressibility could be made by preheating the reservoir gas. Although it is found in calculations that considerably better performance using nitrogen could be achieved by heating to . 500°K than operating at room temperature, only slightly better performance (about 2 percent) could be achieved by heating the helium gas. Hence, room temperature helium was selected as the reservoir gas.
- iii. At these selected conditions, it was shown that it is satisfactory to assume that the reservoir gas (and driver gas) has infinite sound speed in order to calculate the compression cycle. This was verified by carrying out check cases of the cycle using the complete characteristics solution.

# 5.2 FACTORS CONTROLLING THE TESTING TIME

The running time of the reflected shock tube may be terminated by four possible events dictated by the arrival at the end wall of the following waves:

- i. The reflected wave generated from the interaction of the reflected shock wave, JK (see Fig. 2 for explanation of symbols and Fig. 3 which gives a typical computed wave diagram) and the contact surface OK, (point L").
- ii. The head of the reflected rarefaction wave (L).
- iii. The reflection from the diaphragm station or piston face of the reflected shock wave (L').
- iv. The contact surface (I).

The use of tailoring is assumed to eliminate (i) as a criterion for terminating the run time, and until further estimation of the possibilities of cancelling the expansion wave by means of the piston forward motion, it is apparent from Fig. 3 that (ii) will provide the practical termination of the testing time since events (iii) and (iv) will occur later.

The most practical approach considered by the authors to carrying out the parametric study was to calculate for a known shock tube length the distance from the diaphragm station to the piston face,  $L_p$ , to achieve a useful running time considered to be 2 msec. The values of  $L_p$  obtained are discussed later. Values of the running time denoted by JL", JL', and JI for a typical value of  $L_p$  are on the order of 2 msec, 10 msec, and 300 msec, respectively, thus justifying the selection of criterion (ii). Running times of 1 msec and 3 msec were also considered.

It has been checked also that the diameter of the nozzle throat does not significantly change these values. Therefore the 0.5-in. throat diameter was used in all the calculations (see Ref. 21).

Using the present configuration which features a constant diameter section from the compression tube to the shock tube, it is obvious that cancellation of the rarefaction wave will be very difficult, since the piston would have to be moving with a velocity on the order of that of the contact surface (equal to the flow velocity behind the shock). The velocity involved a large fraction of a kilometer per second. Further comments about cancellation of the expansion wave will be given later.

The use of constriction in order to achieve wave cancellation was not considered in this study, because of the degradation it would cause on the design performance as described in Ref. 6. It will be seen that to achieve such performance, the designer will already be hard-pressed to overcome structural difficulties of containing very high pressures without having to consider features that will increase tube pressures even further.

Using the arbitrary choice of 2 msec, it is found that  $L_p$  can be reduced by decreasing the length of the shock tube. The minimum shock tube length required to attain this running time is found to be approximately 54 ft for hydrogen and 34 ft for helium. These shock tube lengths were also used in the parametric study. Viewed in a different way, longer running times can be achieved for the same shock tube length using helium as a driver gas instead of hydrogen. This is caused by the slower speed with which the reflected head of the rarefaction wave catches up the contact surface and the position at which it bisects the tail of the rarefaction wave (point 3 in Fig. 2). Some conclusions given later indicate that if the level of shock tube driver temperature is not a main consideration, then helium can be as powerful a gas as hydrogen. It would be of value to examine the effect of using driver gases of even higher molecular weight to check whether equivalent performance can be achieved but with even larger running times (meaning a shorter facility for a chosen running time). An appropriate gas to study would be argon, or a mixture of helium and argon.

#### 5.3 PARAMETRIC STUDY

The superior performance of a hydrogen driver over helium in conventional tailored-mode reflected shock tunnels is illustrated in Figs. 4 and 5. If the driver gas is heated to the same temperature,  $T_4$ , then much stronger shock waves and hence higher temperatures, T<sub>5</sub>, are generated in air for the same pressure,  $P_5$ . In a piston-driven facility, the value of the driver gas temperature no longer becomes an important structural problem, since the gas is at that temperature for such a short period of time that the tube walls do not become further heated by an important amount. As  $T_4$  is not an important consideration then it can be seen that for  $P_5 = 5000$  atm, for instance, then an equivalent performance of  $T_5 = 12,000^{\circ}$ K can be achieved using either a helium driver gas at 2000°K or hydrogen at 1000°K. In the following examination of other variables of the piston-driven shock tunnel cycle, we shall call the abovementioned equivalent performance cases, Case A (helium driver at 2000°K) and Case B (hydrogen at 1000°K), respectively, to facilitate the comparison of the efficacy of the two gases. These parameters are reviewed in Table 9.

The first advantage of using a helium driver instead of hydrogen is illustrated in Fig. 6. The helium driver Case A requires 8720 atm driver pressure, 20 percent less than that required for the hydrogen driver Case B, i.e. 10,900 atm. The incident shock Mach numbers,  $M_s$ , and initial test gas pressure,  $p_1$ , for cases A and B are 12.07 and

2.57 atm and 15.48 and 1.45 atm, respectively, as shown in Figs. 4 and 7.

The driver tube length,  $L_p$ , after compression required to obtain a running time of 2 msec for helium and hydrogen is illustrated in Figs. 8a and b. Shock tube lengths of 16.3 m (34 ft) and 19.5 m (64 ft) for the former case and 16.4 m (54 ft) and 19.5 m (64 ft) for the latter are shown. It can be seen that the minimum length of  $L_p$  for Case A is 3.45 m (11 ft) and for Case B is 5.39 m (17.7 ft). Both of these values are lower than the projected length of the projected HIRHO facility (6.1 m, 20 ft), and it is clear that a smaller length of tubing at which the very high pressures, P4 (order of 10,000 atm) have to be contained is required for helium than hydrogen. It is pointed out that the tubing, a little upstream of the position at which the piston comes to rest (defined by  $L_p$ ), need be stressed only for pressures on the order of 1,000 atm.

The compression tube lengths necessary to achieve the design conditions are plotted in Figs. 9a and b for helium and hydrogen. A slight advantage of the hydrogen Case B over the helium Case A is that a shorter compression tube is required. It can also be seen that in order to keep to a realistic value of the length of the compression tube (i. e., below 30 m) then the driver gas will have to be preheated by, for example, a resistance heater to  $500^{\circ}$ K in both cases.

Figures 8 and 9 also demonstrate that there is a penalty in either running time (for a fixed geometry) or length of compression tube (for a design running time) if higher temperatures than those used in Cases A and B are used. Figure 8b, for example, illustrates that for a fixed geometry, i.e., a shock tube length of 54 ft or 64 ft, then the maximum driving temperature for hydrogen that can be used to obtain 2 msec is less than 1600°K and 2000°K. Figures 9a and b also illustrate that at these high temperatures then the compression tube becomes increasingly longer. This penalty offsets the advantages in terms of performance of running with high  $T_4$ .

Finally, Figs. 10 and 11 illustrate the important parameters of the compression cycle. Again the helium Case A has an advantage over hydrogen Case B in that both  $P_{0i}$  and  $P_{4i}$  are lower in the former case (1620 and 248 atm against 3480 and 884 atm).

#### CONCLUSIONS

The following conclusions are made on the results of this parametric study of piston-driven shock tunnels.

- 1. It has been shown that helium is a better driver gas than hydrogen in terms of performance and running time on all counts except one. That is that the compression tube required is longer for helium than hydrogen, an unimportant feature since the tube is relatively lowly stressed over most of its length. This conclusion arises from the realistic assumption, different from that required for a conventional shock tunnel, that the level of driving temperature T<sub>4</sub> is unimportant. Further calculations may reveal that an even higher molecular weight gas may be more efficient than helium for the pistondriven mode of operation.
- 2. It was found at an early stage of the calculations that to achieve the running conditions planned for the AEDC HIRHO facility, that imperfections, associated with both high temperatures and high densities, in gas properties would have to be accounted for in the flows in all three chambers of the piston-driven facility.
- 3. The running time of the conventional tailored-mode reflected shock tunnel, with the dimensions and performance planned for HIHRO, appears to be terminated by the reflected rarefaction wave, rather than by the re-reflected shock wave from the diaphragm station or the contact surface reaching the end wall (due to flow of the shocked test gas through the nozzle throat).
- 4. The calculations show that generally the compression tube lengths calculated are always more than that planned for HIRHO (6.25 m) to achieve planned running times on the order of 2 msec; however, the expense in providing an extension tube may not be considerable. This is because the high pressures are only generated in the last 3 to 4 meters. Only low pressure rated tube (1000 atm) is necessary upstream of this.
- 5. The values of the temperature behind the reflected shock wave  $(T_5 \text{ in Table 2})$  for a hydrogen-driven tunnel are higher than those values calculated by AEDC and have an opposite trend with increasing pressure,  $P_5$ . It is thought that this is caused primarily by the different thermodynamic models of the air test gas used, and perhaps also in the model for the hydrogen driver gas.
- 6. Shock tube driver temperatures,  $T_4$ , of 2000°K for helium and 1000°K for hydrogen appear to be optimum from the point of view that for lower  $T_4$  the overall pressure levels become higher and for higher  $T_4$  the compression tube lengths become larger for a specified running time. An initial driven temperature of 500°K was required to reduce compression tube lengths

to a reasonable value, which, however, were still greater than planned for HIRHO.

- 7. Although the calculation has not been carried out, if it is assumed that the reflected rarefaction wave is not cancelled, then similar running times may be achieved by not using tailoring conditions. If this is so, then the operation of the tunnel can be made much more flexible.
- 8. Calculations were made to check whether it was feasible to cancel the rarefaction waves by forward piston motion. For the constant diameter tube considered here, it was found that the piston was required to be so fast as to be impractical. A constriction was not considered as a means of cancelling the rarefaction wave because of its detrimental effect on the performance. Studies are required for the case of a larger diameter compression tube as a means of achieving wave cancellation.
- 9. Allowing the diaphragm petals to fold into recesses such that the piston passes through the diaphragm station to come to rest at the nozzle end is suggested as a means to overcome the problem of removing the piston energy in this case of equal diameter compression tube and shock tube. Some calculations are necessary to ensure that unrealistic pressures are not built up at the nozzle end of the tube.

#### REFERENCES

- Richards, B. E. and Enkenhus, K. R. "Hypersonic Testing in the VKI Longshot Free-Piston Tunnel." <u>AIAA J.</u>, Vol. 8, June 1970, pp. 1020-1025.
- 2. Lewis, M. J. and Smith, J. "Performance Experiments in the VKI Piston-Driven Shock Tube." VKI TN 69, May 1971.
- 3. Enkenhus, K. R. "Theoretical Performance Study of the Free-Piston Shock Tube." VKI TN 42, January 1968.
- Stalker, R. J. "A Study of the Free-Piston Shock Tunnel." <u>AIAA J.</u>, Vol. 5, 1967, pp. 2160-2165.
- Stalker, R. J. and Hornung, H. F. "The Australian National University Free-Piston Shock Tunnel T-3." Australian National University, Canberra, Physics Department Laboratory Report, DF-5, 1971.

- Stalker, R. J. and Pate, S. R. "Experiments on Conversion of a Conventional Shock Tube/Tunnel to Free-Piston Operation." ARO, Inc., Arnold Air Force Station, Tennessee, Unpublished Note.
- 7. Hovstadius, G. "Measurement of Equation of State Variables of Air." FFA Technical Note, AU-765, January 1973.
- Grabau, M. and Brahinsky, H. S. "Thermodynamic Properties of Nitrogen from 300°K to 5000°K and from 1 to 1000 Amagats." AEDC-TR-66-69 (AD636730), 1966.
- Grabau, M. and Brahinsky, H. S. "Thermodynamic Properties of Air from 300°K to 6000°K and from 1 to 1000 Amagats." AEDC-TR-66-247 (AD646172), January 1967.
- Lewis, C. H. and Burgess, E. G. III. "Charts of Normal Shock Wave Properties in Imperfect Air." AEDC-TR-64-43 (AD433958), 1969.
- Seigel, A. E. "The Theory of High Speed Guns." AGARDograph 91, May 1965.
- Enkenhus, K. R. and Culotta, S. "Formulas for the Thermodynamic Properties of Dense Nitrogen." <u>AIAA J.</u>, Vol. 7, No. 6, June 1969, pp. 1188-91.
- Hansen, C. F. "Approximations for the Thermodynamic and Transport Properties of High Temperature Air." NACA TN 4150, March 1958.
- Miller, C. G. III and Wilder, S. E. "Real Helium Hypersonic Flow Parameters for Pressures to 3600 atm and Temperatures to 15,000°K." NASA TN D 4869, June 1968.
- Woolley, H. W., Scott, R. B., and Brickwedde, F. G. "Compilation of Thermal Properties of Hydrogen in Its Various Isotopic and Ortho-Para Modifications." J. B. NBS, Vol. 41, November 1948.
- 16. Reggiani, F. "Zustandgleichung für Wasserstoff unter hohen Druck, Anwendung auf die Leightgaskanone." ISL Aktennotiz N15/68.
- Rouel, G. P. and Richards, B. E. "The Theory of a Piston-Driven Shock Tunnel Including Dense Gas Phenomena." VKI TN, to be published.
- Wittliff, C. E., Wilson, M. R., and Hertzberg, A. "The Tailored Interface Hypersonic Shock Tunnel." J. of Aerospace Sciences, Vol. 26, No. 4, April 1959.

- Roman, B. P., Rouel, G. P., Lewis, M. J., and Richards, B.E. "Compression of Helium to High Pressures and Temperatures Using a Ballistic Piston Apparatus." VKI Preprint 71-7, September 1971.
- 20. Siegel, A. E. "The Theory of High-Speed Guns." AGARDograph 91, North Atlantic Treaty Organisation, May 1965.
- 21. Rouel, G. P. and Richards, B. E. "Research Memorandum." Informal Monthly Letter Report 5, July 12, 1972.





c. Conditions at Diaphragm Burst Before Shock Reflection



d: Conditions After Shock Reflection (Tailored Condition) Figure 1. Schematic of Piston-Driven Shock Tunnel Operation



## <u>Key</u>

.

| Number | s in circle : index of the different regions                  |
|--------|---------------------------------------------------------------|
|        | * devotes conditions at the throat                            |
| J :    | intersection incident shock with end wall                     |
| к :    | intersection reflected shock with contact surface             |
| 4 :    | reflection of head of rarefaction wave on the piston face     |
| 3:     | intersection reflected head rarefaction wave with tail        |
|        | of rarefaction wave                                           |
| N :    | intersection reflected head rarefaction wave with reflected   |
|        | shock                                                         |
| м:     | intersection reflected head rarefaction wave with contact     |
|        | surface (nearly at rest).                                     |
| L :    | intersection reflected head rarefaction wave with end wall    |
| I :    | intersection contact surface with end wall                    |
| JL" :  | minimum running time in tailored-mode (KL" is parallel to ML) |
| JL':   | maximum running time                                          |
|        |                                                               |

Figure 2. Schematic Wave Diagram of Shock Tunnel

![](_page_23_Figure_0.jpeg)

Figure 3. A Typical x-t Diagram Obtained from Computer Programs

.

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_1.jpeg)

Figure 5. Temperature,  $T_5$ , Achieved by Shock Tunnel

•

AEDC-TR-73-173

![](_page_26_Figure_1.jpeg)

Figure 6. Driver Pressure, P<sub>4</sub>, Required to Achieve Performance Aim

![](_page_27_Figure_1.jpeg)

Figure 7. Test Gas Initial Pressure, P<sub>1</sub>, Required to Achieve Performance Aim

.

![](_page_28_Figure_1.jpeg)

Figure 8. Length, L<sub>p</sub>, of Compressed Gas in the Barrel Necessary to Achieve 2 msec Running Time in Tailored Configuration

![](_page_29_Figure_1.jpeg)

Figure 8. Concluded

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_31_Figure_1.jpeg)

AEDC-TR-73-173

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

Figure 10 (Concld). Volumetric Compression Ratio, λ, Required to Achieve Performance Aims

![](_page_36_Figure_1.jpeg)

Figure 11. Initial Driver Gas Pressure, P4<sub>i</sub>, Required to Achieve Performance Aims

![](_page_37_Figure_1.jpeg)

Figure 11. Concluded

|   |   | DRI  | VER=HE | LIUM |    | PER    | ECT  | G/<br>NG | AS ES<br>CONDIT | ions | ; | TEST=4   | IR |       |          |    |       |          |    |   |      |
|---|---|------|--------|------|----|--------|------|----------|-----------------|------|---|----------|----|-------|----------|----|-------|----------|----|---|------|
|   |   | HS≤  | 10.36  |      |    | MR=    | 2.5  | 8        |                 |      |   |          |    |       |          |    |       |          |    |   |      |
|   |   |      | 1<br>1 |      |    | 2      |      |          | 3               |      | 1 |          |    | <br>1 | 5        |    | <br>I | 5        |    | - |      |
| P | I | 0.52 | 2394E  | 01 1 | 0. | 65562E | 03   | 0        | 65562E          | 03   | 1 | Ø.67232E | 04 | <br>I | 0.50000E | 64 | 1     | 0.50000E | 04 | 1 | ATM  |
| T | I | 0.25 | 300E   | 03 1 | 0. | 63951E | 94   | 0        | .788242         | 03   | 1 | 0.20000E | 04 | 1     | 0.14213E | 05 | 1     | 0.17969E | 04 | 1 | ĸ    |
| R | 1 | 0.48 | 844E   | 01   | 0. | 28003E | 02 1 | 0        | 22719E          | 03   | 1 | 0.91823E | 03 | 1     | 0.96090E | 02 | 1     | 0.76004E | 03 | 1 | AMGT |
| A | 1 | 0.34 | 4354E  | 03   | 0. | 16049E | 04 1 | 0.       | 16525E          | 04   | 1 | 0.26322E | 04 | 1     | 0.23927E | 04 | 1     | 0.24950E | 04 | Ī | M/S  |
| ۷ | Ī | 0.00 | 000E   | 00 1 | 0. | 29392E | 04 1 | 0,       | 29392E          | 04   | 1 | 0.00000E | 00 |       | 0.000DDE | 00 | 1     | 0.00000E | 00 | 1 | M/S  |

Table 1. Typical Computer Output of Tailored-Mode Reflected

![](_page_38_Figure_2.jpeg)

Table 1. Concluded

.

.

|                                                                     |                                               |                                                                                                                  | PE                                                                                                                                            | RFECT                                                                                                                                                                                         | GASES                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | DRIVER=                                       | HYDROG                                                                                                           | EN T                                                                                                                                          | AI LOR                                                                                                                                                                                        | ING CONDIT                                                                                                                                                                                                                     | IONS                                                                                                                                                                                                                                                                                                          | TEST=AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     | MS= 11.                                       | 4285                                                                                                             |                                                                                                                                               | MR≓                                                                                                                                                                                           | 2.5950                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ī                                                                   | 1                                             | 7                                                                                                                | 2                                                                                                                                             |                                                                                                                                                                                               | 3                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               | <br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <del>-</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                   | 0.42714                                       | E 01 1                                                                                                           | 0.65017                                                                                                                                       | E 03                                                                                                                                                                                          | 0.850178                                                                                                                                                                                                                       | 031                                                                                                                                                                                                                                                                                                           | 0.58382E 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.500CVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δтм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                   | a.29300                                       | E 03 1                                                                                                           | 0.77176                                                                                                                                       | E 04                                                                                                                                                                                          | 0.534126                                                                                                                                                                                                                       | 031                                                                                                                                                                                                                                                                                                           | 0.10000E 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.17235E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11928E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                   | 0.39820                                       | E 01 1                                                                                                           | 0.23011                                                                                                                                       | E 02                                                                                                                                                                                          | 0.33249E                                                                                                                                                                                                                       | 031                                                                                                                                                                                                                                                                                                           | 0.15947E 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.79238E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11449E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                   | 0.34354                                       | E 03 1                                                                                                           | 0.17631                                                                                                                                       | Ε 04                                                                                                                                                                                          | 0.17531E                                                                                                                                                                                                                       | 04 1                                                                                                                                                                                                                                                                                                          | 0.241248 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26348E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25348E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                   | 0.00000                                       | E 00 1                                                                                                           | 0.32467                                                                                                                                       | E 04                                                                                                                                                                                          | 0.324576                                                                                                                                                                                                                       | 04 1                                                                                                                                                                                                                                                                                                          | 0.00000E 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 CO E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.00000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CASE 16 REAL GISES<br>DRIVER=HYDROGEN TAILORING CONDITIONS TEST=AIR |                                               |                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     | 110 101                                       |                                                                                                                  |                                                                                                                                               | MR =                                                                                                                                                                                          | 5.2045                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     |                                               |                                                                                                                  |                                                                                                                                               | MR =                                                                                                                                                                                          | 5.2045                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                   | 1                                             |                                                                                                                  | 2                                                                                                                                             | MR = .                                                                                                                                                                                        | 5.2045<br>                                                                                                                                                                                                                     | <br>I                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1<br>- ;<br>1                                                       | 1<br>C.14614                                  | 1<br>E 01 (                                                                                                      | 2<br>C. 4 39 6 4                                                                                                                              | MR =                                                                                                                                                                                          | 5.2045<br>3<br>0.43964E                                                                                                                                                                                                        | 1<br>03 1                                                                                                                                                                                                                                                                                                     | 4<br>0.10881E 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>0.50009E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>1<br>64 1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6<br>0.50000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1<br><br>1<br><br>1                                                 | 1<br>C.14614<br>C.293C9                       | 1<br>E 01 1<br>E 03 1                                                                                            | 2<br>0. 6 39 6 4<br>0. 740 46                                                                                                                 | MR = 5<br>E C3<br>E O4                                                                                                                                                                        | 5.2045<br>3<br>0.43964E<br>0.41052E                                                                                                                                                                                            | 1<br>03 1<br>0 <b>3</b> 1                                                                                                                                                                                                                                                                                     | 4<br>0.10881E 05<br>0.10000E 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>C.50009E<br>O.12099E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>04 1<br>05 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>0.50000E<br>0.11502E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATM<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br><br>1<br><br>1<br>-                                            | 1<br>C.14614<br>E.293C9<br>C.13624            | 1<br>E 01 (<br>E 03 (<br>E 01 )                                                                                  | 2<br>0.43964<br>0.74046<br>0.13099                                                                                                            | MR =<br>E C3<br>E 04<br>E 02                                                                                                                                                                  | 5.2045<br>.2045<br>.0.43964E<br>.0.41052E<br>.0.24167E                                                                                                                                                                         | 1<br>03 1<br>03 1<br>03 1                                                                                                                                                                                                                                                                                     | 4<br>0.10381E 05<br>0.10000E 04<br>0.11244E 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>C.50000E<br>O.12099E<br>O.76043E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>04 1<br>05 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>0.50000E<br>0.11502E<br>0.68711E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04 1<br>04 1<br>03 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATM<br>K<br>Amgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br><br><br>1<br><br>1<br>                                         | 1<br>C.14614<br>C.293C9<br>C.13624<br>O.34341 | 1<br>E 01 (<br>E 03 (<br>E 01 1<br>E 03 (                                                                        | 2<br>c. L 39 6 4<br>0. 740 4 6<br>0. 1 30 99<br>0. 1 79 4 2                                                                                   | MR =                                                                                                                                                                                          | 5.2045<br>5.2045<br>0.43964E<br>0.41052E<br>0.24167E<br>0.18723E                                                                                                                                                               | 1<br>03 1<br>03 1<br>03 1<br>03 1                                                                                                                                                                                                                                                                             | 4<br>0.10881E 05<br>0.10000E 04<br>0.11244E 04<br>0.541795 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>0.50000E<br>0.12099E<br>0.76343E<br>0.25135E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>04 1<br>05 1<br>02 1<br>04 1                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>0.50000E<br>0.11502E<br>0.68711E<br>0.41591E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>04 1<br>04 1<br>03 1<br>04 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATM<br>K<br>Amgt<br>M/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     |                                               | MS = 11.<br>1 1<br>1 0.42714<br>1 0.29300<br>1 0.39820<br>1 0.34354<br>1 0.00000<br>CASE<br>DRIVER=1<br>MS = 15. | MS= 11.4285<br>I I I<br>0.42714E 01 1<br>1 0.29300E 03 I<br>1 0.39820E 01 I<br>1 0.34354E 03 I<br>1 0.00000E 00 I<br>CASE IB<br>PRIVER=HYDROG | MS= 11.4285<br>1 1 1 2<br>1 0.42714E 01 1 0.65017<br>1 0.29300E 03 1 0.77176<br>1 0.39820E 01 1 0.23011<br>1 0.34354E 03 1 0.17631<br>1 0.00000E 00 1 0.32467<br>CASE 10<br>DRIVER=HYDROGEN T | MS= 11.4285 MR=<br>1 1 2<br>1 0.42714E 01 1 0.65017E 03<br>1 0.29300E 03 1 0.77176E 04<br>1 0.39820E 01 1 0.23011E 02<br>1 0.34354E 03 1 0.17631E 04<br>1 0.00000E 00 1 0.32467E 04<br>2 4 SE 15 REA<br>PRIVER=HYDROGEN TAILOR | MS= 11.4285 MR= 2.5950<br>1 1 2 3<br>1 0.42714E 01 1 0.65017E 03 1 0.85017E<br>1 0.29300E 03 1 0.77176E 04 1 0.53412E<br>1 0.39820E 01 1 0.23011E 02 1 0.33249E<br>1 0.34354E 03 1 0.17631E 04 1 0.17531E<br>1 0.00000E 00 1 0.32467E 04 1 0.32467E<br>CASE 16 REAL GISES<br>PRIVER=HYDROGEN TAILORING CONDIT | MS= 11.4285<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>MR= 2.5950<br>NR= 2.59500<br>NR= 2.59500<br>NR= 2.59500<br>NR= 2.59500<br>NR= 2.59500 | MS= 1i.4285       MR= 2.5950         I       1       2       I       3       I       4         I       0.42714E       01       0.65017E       03       I       0.85017E       03       I       0.58382E       04         I       0.42714E       01       I       0.65017E       03       I       0.58382E       04         I       0.42714E       01       I       0.65017E       03       I       0.58382E       04         I       0.42714E       01       I       0.65017E       03       I       0.58382E       04         I       0.42714E       01       I       0.65017E       03       I       0.58382E       04         I       0.42714E       01       I       0.65017E       04       I       0.10000E       04         I       0.39820E       01       I       0.23011E       02       I       0.33249E       03       I       0.15947E       04         I       0.39320E       01       0.32467E       04       I       0.24124E       04         I       0.00000E       00       I       0.32467E       04       I       0.000000E | MS= 1i.4285       MR= 2.5950         I       1       2       I       3       I       4       I         I       0.42714E       01       0.65017E       03       I       0.85017E       03       I       0.58382E       04       I         I       0.42714E       01       0.65017E       03       I       0.85017E       03       I       0.58382E       04       I         I       0.42714E       01       0.65017E       03       I       0.58382E       04       I         I       0.42714E       01       0.65017E       03       I       0.58382E       04       I         I       0.42714E       01       I       0.65017E       03       I       0.10000E       04       I         I       0.39820E       01       I       0.23011E       02       I       0.33249E       03       I       0.15947E       04       I         I       0.39820E       01       0.17631E       04       I       0.24124E       04       I         I       0.00000E       00       I       0.32467E       04       I       0.000000E       00       I | MS= 1i.4285 MR= 2.5950<br>1 1 2 1 3 1 4 1 5<br>1 0.42714E 01 1 0.65017E 03 1 0.85017E 03 1 0.58382E 04 1 0.50000E<br>1 0.29300E 03 1 0.77176E 04 1 0.53412E 03 1 0.10000E 04 1 7.17235E<br>1 0.39820E 01 1 0.23011E 02 1 0.33249E 03 1 0.15947E 04 1 0.79238E<br>1 0.34354E 03 1 0.17631E 04 1 0.17531E 04 1 0.24124E 04 1 0.26348E<br>1 0.00000E 00 1 0.32467E 04 1 0.32457E 04 1 0.00000E 00 1 0.000 CCE<br>CASE 15 REAL GISTS<br>TAILORING CONDITIONS TEST=AIR | $MS = 1i.4285 \qquad MR = 2.5950$ $I = 1 = 2 = 1 = 3 = 1 = 4 = 1 = 5 = 1$ $I = 0.42714E = 01 = 0.65017E = 03 = 0.85017E = 03 = 0.58382E = 04 = 0.50000E = 04 = 1$ $I = 0.29300E = 03 = 0.77176E = 04 = 0.53412E = 03 = 0.10000E = 04 = 0.17235E = 05 = 1$ $I = 0.39820E = 01 = 0.23011E = 02 = 1 = 0.33249E = 03 = 0.15947E = 04 = 0.79238E = 02 = 1$ $I = 0.34354E = 03 = 0.17631E = 04 = 0.17531E = 04 = 0.24124E = 04 = 0.26348E = 04 = 1$ $I = 0.00000E = 00 = 1 = 0.32467E = 04 = 0.32467E = 04 = 0.00000E = 00 = 0.00000E = 00 = 1$ $CA = 5E = 16 \qquad REAL = 0.3575 \qquad Test = A1R$ | MS= 11.4285 MR= 2.5950<br>1 1 2 3 1 4 1 5 1 6<br>1 0.42714E 01 1 0.65017E 03 1 0.85017E 03 1 0.58382E 04 1 0.50000E 04 1 0.50000E<br>1 0.29300E 03 1 0.77176E 04 1 0.53412E 03 1 0.10000E 04 1 0.79238E 02 1 0.11928E<br>1 0.39820E 01 1 0.23011E 02 1 0.33249E 03 1 0.15947E 04 1 0.79238E 02 1 0.11449E<br>1 0.34354E 03 1 0.17631E 04 1 0.17531E 04 1 0.24124E 04 1 0.26348E 04 1 0.25348E<br>1 0.00000E 00 1 0.32467E 04 1 0.32457E 04 1 0.00000E 00 1 0.0000CE 00 1 0.0000DE<br>CASE 10 REAL GISTS<br>DIVER-HYDROGEN TAILORING CONDITIONS TEST=A1R | $MS = 11.4285 \qquad MR = 2.5950$ $MR = 2.5950$ |

 Table 2. Typical Computer Output of Tailored-Mode Reflected Shock Tube Running Time Calculation CASE 9 THROAT DIA. # 0.5 INCH RUN TIME G.T. 0.662 MS X= 19.507 M TIME= 184.720 MS POINT RUH TIME= 2.0 MS POTIT L X= 19.507 M TIME= 6.706 HIS POINT M X= 18.249 M TTME= G.177 MS 15.948 M POINT N Χ= TIME= 5.403 HS POINT 3 X= 8.234 N TIME= 4.000 MS CURVE BETWEEN POINT 3 AND POINT 4 Х Т М **14S** 8.234 4.000 6.919 3.746 5.805 3.523 4.848 3.337 3,170 4.017 3.289 3A2 O 2.645 2.886 2.073 2,766 1.560 2,656 1.098 2.556 0.680 2.464 0.300 2.380 -0.046 2,302 CASES 2.229 -0.364 HELTUM DRIVING AIR 2.162 -0,657 -0.926 2.099 -1.176 P5= 5000. ATM T4= 2000. K 2.040 T1= 293. K -1.408 1,985 P5= 5000. ATM PS= 2696. ATM T5=12219, K R5= 93. AMGT -1.624 1.933 TS=10471. K RS= 59. A4GT -1.824 1.884 1.838 -2.012 PS/P5= 0.5393 TS/T5= 0.8570 RS/R5 = 0.63031.794 -2.138 -2.353 1.752 MAX.RUN.T1ME= 8.295 MS -2.508 1.713 -2.654 1.676 19.507 M POINT J Χ= 4.706 MS 1.640 TINE= -2.791 POINT K X≔ 18.241 M TIKE= 4.375 MS -2.921 1.606 -3.043 1.573 -3.159 1,542 1.513 -3,269 -3.374 1.484 -3.473 1,457 -3.567 1.430 -3.657 1.405 -3.743 1.381 1.358 -3.824 -3.902 1.335 -3.976 1.313 -4.048 1.293 -4.116 1.272 -4.181 1,253

MINIMUM DRIVER LENGTH= 4.181 H

.

# Table 2. Concluded

THROAT DIA. = 0.5 INCH RUN TIME G.T. 0.458 MS POINT I X= 10.507 M TIME= 150.579 MS.

30H TIME= 2,0 11S

| POINT | I. | X=  | 19.507 | И | TIME  | 5.672 | MS |
|-------|----|-----|--------|---|-------|-------|----|
| POINT | M  | X = | 18,407 | И | TIME= | 5.236 | MS |
| THIOS | N  | X=  | 15,086 | м | TIME  | 4.441 | MS |
| POINT | 5  | Χm  | 11.075 | M | TIME= | 3,836 | MS |

CURVE BETWEEN POINT 3 AND POINT 4

.

.

-

| м        | MS             |                |                   |      |        |              |         |                         |        |
|----------|----------------|----------------|-------------------|------|--------|--------------|---------|-------------------------|--------|
| 11.075   | 3 8 36         |                |                   |      |        |              |         |                         |        |
| 9.520    | 3.503          | CASE 1         | , HYD             | ROGE | N      | DRIA         | ING     | AIR                     |        |
| 8 176    | 3 390          |                | -                 |      |        |              |         | _                       |        |
| 7 002    | 3 206          | ₽ <b>5</b> = ! | 5000.             | ATH  | T4 =   | 100          | 0.К     | T1 = 293.               | ĸ      |
| 5 866    | 3 041          |                |                   | _    |        |              |         |                         |        |
| 5.900    | 2.041<br>0.041 | P5=            | 50.00             | ATM. | T5=1   | 2099         | . K RS  | i= 76. Λ                | MGT    |
| 5.045    | 2.804          | PS= 1          | 2811.             | ATM  | TS = 1 | 1191         | . K. RS | = 47 A                  | мот    |
| 4.220    | 2.700          |                |                   |      |        |              |         |                         |        |
| 5.477    | 2,038          | PS / P         | 5= 0 5            | 622  | TS /   | TS=          | 0.0249  | 85/85=                  | 0.6231 |
| 2,305    | 2.52/          |                |                   |      | ,      |              |         | (- <b>)</b> (- <b>)</b> | •••    |
| 2,183    | 2,425          | MAY            | лін ті            | MF = | 5 78   | 5 MS         |         |                         |        |
| 1.626    | 2.330          | 11///          |                   |      |        | <b>a</b> 1.0 |         |                         |        |
| 1,109    | 2.243          | 001113         | ÷ .               | ¥-   | 10 50  | 7 4          | TIMES   | 3 5 72                  | MC     |
| r.632    | 2.162          | DOLL           | 1 U<br><b>P</b> V | ×-   | 10 20  | 7 14         | TIME    | 3 965                   | MC     |
| 0.190    | 2,035          | -Bet (11)      | I K               | 7.20 | 10* 33 | 7 EL         | 11.00   |                         | P1.3   |
| -0.219   | 2.015          |                |                   |      |        |              |         |                         |        |
| -P.601   | 1,943          |                |                   |      |        |              |         | -                       |        |
| -0.957   | 1,886          |                |                   |      |        |              |         |                         |        |
| -1,291   | 1,328          |                |                   |      |        |              |         |                         |        |
| -1,605   | 1,772          |                |                   |      |        |              |         |                         |        |
| -1.900   | 1,720          |                |                   |      |        |              |         |                         |        |
| -2.178   | 1.671          |                |                   |      |        |              |         |                         |        |
| -2.440   | 1.624          |                |                   |      |        |              |         |                         |        |
| -2.533   | 1.579          |                |                   |      |        |              |         |                         |        |
| -2.923   | 1.537          |                |                   |      |        |              |         |                         |        |
| - 3. 146 | 1.496          |                |                   |      |        |              |         |                         |        |
| -3.358   | 1.458          |                |                   |      |        |              |         |                         |        |
| -3.560   | 1.421          |                |                   |      |        |              |         |                         |        |
| -3.752   | 1.385          |                |                   |      |        |              |         |                         |        |
| -3.936   | 1.352          |                |                   |      |        |              |         |                         |        |
| -4 111   | 1 320          |                |                   |      |        |              |         |                         |        |
| -4.279   | 1 2 89         |                |                   |      |        |              |         |                         |        |
| -4.440   | 1,260          |                |                   |      |        |              |         |                         |        |
| -4 594   | 1.231          |                |                   |      |        |              |         |                         |        |
| - 4 7h 2 | 1.20%          |                |                   |      |        |              |         |                         |        |
| -4 824   | 1 178          |                |                   |      |        |              |         |                         |        |
| -5 021   | 1 153          |                |                   |      |        |              |         |                         |        |
| -5 153   | 1 128          |                |                   |      |        |              |         |                         |        |
| -5 2 71  | 1 105          |                |                   |      |        |              |         |                         |        |
| -5.602   | 1 092          |                |                   |      |        |              |         |                         |        |
| -5 520   | 1 061          |                |                   |      |        |              |         |                         |        |
| -5 634   | 1 030          |                |                   |      |        |              |         |                         |        |
| - 2.0 24 | 1.010          |                |                   |      |        |              |         |                         |        |
| MINIMUM  | DRIVER LI      | FNGTH=         | 5,634             | M    |        |              |         |                         |        |

ı,

Table 3. Typical Computer Output of Isentropic CompressionCalculation

2.5. HYDROGEN T4 = 1000.0 K R4 = 1124.40 AMGT T41= 293.0 K R41= 115.61 AMGT P4 =11242.988 KG/CM2 P41= 158.817 KG/CM2 S/R= 12.088 LANBDA= 9.725 Case 16 GAS ... HYDROGEN T4 # 1000.0 K  $R_{4} = 1124.40$  AMGT P4 =11242.969 KG/CM2 T41= 500.0 K R41= 359.11 AHGT P41= 913.836 KG/CM2 LAMBPA= 3,131 S/R= 12.088 GAS ... HYDROGEN T4 = 1000.0 K R4 = 987.65 AMGT 14 = 8643.792 KG/CM2 141= 203.0 K R41= 91.78 AMGT S/R= 12.341 LANBDA= 10.760 1941= 108.286 KG/CM2 Case 26 GAS...HYDROGEN R4 = 987.65 AMGT R41= 295.34 AMGT P4 = 8543.792 KG/CM2 P41= 709.398 KG/CM2 T4 = 1000.0 K T41= 500.0 K LAMBDA= 3.344 S/RH 12.341 GAS...IYDROGEN T4 = 1000.0 K R4 = 625.20 AMGT T41= 293.0 K R41= 67.94 AMGT P4 = 6193.233 KG/CM2 241= 78.796 KG/042 case S/R= 12.665 LAMBDA= 12.145 36 GAS... HYDROGEN R4 = 025.20 AMOT R41= 227.12 AMOT P4 = 6198.235 KG/CMZ T4 = 1000.0 K T41= 500.0 K P41= 514.091 KG/CMZ S/R= 12.665 LAMBDA= 5.633 DAS ... IYDROGEN T4 = 1600.0 K T41= 293.0 K R4 = 879.34 AMGT R41= 20.33 AMGT P4 =10394.408 KG/CM2 Pil= 23.463 KG/CH2 S/R= 13.888 LAMBDA= 42.095 Gase 56 GAS... HYDROGEN R4 = 879.34 AMGT R41= 76.09 AMGT P4 =16394.408 KG/CM2 T4 = 1600.0 K T41= 500.0 K PHI= 152.335 KG/CM2 S/R= 13.888 LAMBDA= 11.557

## Table 3. Concluded

· · · · .

...

•

.

.

.

**NAS...**117LIU1 T4 = 2000.0 κ η4 = 879.90 Λ'ΙΩΤ T41= 203.0 κ η41= 58.59 Λ'ΙΩΤ S/R= 14.430 LAMBDA= 15.017 F4 = 9008.041 KG/CM2 P41= 65,940 KG/CM2 ase 9 GAS ... HELIU'I R4 = 879.90 AMAT R41= 127.13 AMAT T4 = 2000.0 K T41= 500.0 K P4 = 9008.041 KG/CM2 P41 = 255.827 KG/CM2 S/R= 14.430 LAMBDA= 6.921 GAS...HCLIUN T4 = 2000.0 K R4 = 733.12 AMOT T41= 203.0 K R41= 47.43 AMOT P4 = 7132.395 KG/CM2 P41= 53.372 KG/042 case 5/7= 14,656 LAMBDA= 15.456 tď GAS ... HELIUM n4 = 733,12 119T n41= 103,42 119T LAMBDA= 7,083 T4 = 2000.0 KP4 = 7132.395 Kg/c12 P41 = 205.752 Kg/c12 T41= 500.0 K S/R= 14,656 GAS. .... YELIUH T4 = 2000.0 K R4 = 574.43 AMAT T41= 293.0 K R41= 36.02 AMAT P4. = 5290.748 50/012 P41= 49.678 50/012 S/R= 14,936 LM137A# 15,944 Caute 11 GAS ... HELIUH Th = 2000.0 K Rh = 574.48 A'IST P4 = 5290.748 K°/712 Thi= 500.0 K Rh = 78.97 A'IST Phi= 155.217 KG/C12 S/R= 14.936 LANBOA= 7.274

.

.

•

 Table 4. Typical Computer Output of Piston Cycle Calculation

| CASE        | g PP7   |         |          | PAGE 1    |          |        |        |
|-------------|---------|---------|----------|-----------|----------|--------|--------|
| HELIU       | A DRIVI | NG HELI | 34 M=3   | 500. KG   | L=24.00  | 00 M L | 3=25M  |
| P41 =       | 255.887 | KG/C112 | T41 = 50 | 0.0 K     |          |        |        |
| P0  =1      | 577,200 | KG/C/12 | T0! = 29 | 33.0 K    |          |        |        |
| т           | x       | DX/DT   | P0       | TO        | PL       | Ru     | T4     |
| (SEC)       | (4)     | (M/SEC) | KG/CM2   | (K)       | KG/CM2   | AMAGAT | (K)    |
|             |         |         |          |           |          |        |        |
| 0,00000     | 24.0000 | 0,00    | 1677.19  | 293.0     | 255.886  | 127.13 | 500.0  |
| 0.00500     | 23.8626 | 54.62   | 1674.41  | 292.8     | 258.475  | 127.86 | 502.0  |
| 0.00750     | 23,6922 | 81.64   | 1670.98  | 292.5     | 261.742  | 128.78 | 504.5  |
| 0.01000     | 23.4545 | 108,49  | 1666.20  | 292.2     | 266.411  | 130.08 | 508.0  |
| 0.01250     | 23,1499 | 135.13  | 1660.11  | 291.8     | 272,591  | 131.80 | 512.7  |
| 0.01750     | 22.7790 | 197 52  | 1622.74  | 291.2     | 280,429  | 136 56 | 518.5  |
| 0.02000     | 21.8418 | 213.15  | 1634.33  | 290.0     | 301,916  | 139.69 | 533.9  |
| 0.02250     | 21.2773 | 238,31  | 1623.39  | 289.2     | 316.149  | 143.40 | 543.7  |
| 0.02500     | 20.6506 | 262.93  | 1611.37  | 288.3     | 333.240  | 147.75 | 555.2  |
| 0.02750     | 19,9631 | 286.93  | 1598.35  | 287.4     | 353.740  | 152.84 | 568.5  |
| 0 03250     | 18 4128 | 332 63  | 1560 55  | 280.4     | 218.202  | 158.77 | 563.8  |
| 0.03500     | 17.5542 | 354.10  | 1553.94  | 284.2     | 444.084  | 173.81 | 622.0  |
| 0.03750     | 16,6433 | 374.44  | 1537.63  | 283.0     | 488.140  | 183.32 | 645.7  |
| 0.04000     | 15,6831 | 393.45  | 1520.72  | 281.8     | 542.573  | 194.55 | 673.1  |
| 0.04250     | 14,6773 | 410.87  | 1503.30  | 280.5     | 610.667  | 207.88 | 705.2  |
| 0.04500     | 12.5474 | 420.50  | 1467.49  | 277.8     | 808.837  | 243.17 | 742.9  |
| 0.05000     | 11.4352 | 449.67  | 1449.17  | 276.5     | 956.157  | 266.82 | 840.9  |
| 0.05250     | 10,3022 | 455.95  | 1430,95  | 275.1     | 1155.077 | 296.16 | 905.4  |
| 0.05455     | 9,3655  | 457.31  | 1416.15  | 273.9     | 1374.041 | 325.78 | 968.8  |
| 0.05480     | 9,2512  | 457.19  | 1414.36  | 273.8     | 1405.205 | 329.81 | 977.3  |
| 0.05530     | 9 0227  | 456.75  | 1412.57  | 273.5     | 1470.943 | 338.16 | 994.9  |
| 0.05555     | 8.9085  | 456.42  | 1409.01  | 273.4     | 1505.621 | 342.49 | 1004.0 |
| 0,05580     | 8.7945  | 456.01  | 1407.24  | 273.3     | 1541.573 | 346.94 | 1013.2 |
| 0.05605     | 8.6806  | 455.52  | 1405.47  | 273.1     | 1578.864 | 351.49 | 1022.7 |
| 0.05630     | 8,5667  | 454,96  | 1403.71  | 273.0     | 1617.553 | 356.10 | 1032.4 |
| 0.05680     | 8.3396  | 453.57  | 1400.20  | 272.7     | 1699.384 | 365.86 | 1042.2 |
| 0.05705     | 8,2263  | 452.74  | 1398,46  | 272.6     | 1742.567 | 370,90 | 1062.7 |
| 0.05730     | 8.1132  | 451.82  | 1396.72  | 272.4     | 1787.621 | 376.07 | 1073.2 |
| 0.05755     | 8,0004  | 450,80  | 1394.99  | 272.3     | 1834.330 | 381.37 | 1084.0 |
| 0.05/80     | 7.7756  | 449.08  | 1391.55  | 272.2     | 1882.875 | 302 LO | 1095.1 |
| 0.05830     | 7.6637  | 447.11  | 1389.84  | 271.9     | 1985.816 | 398.13 | 1117.9 |
| 0.05855     | 7,5521  | 445.67  | 1388,14  | 271.8     | 2040.401 | 404.01 | 1129.7 |
| 0.05880     | 7,4409  | 444.10  | 1386.46  | 271.7     | 2097.191 | 410.05 | 1141.8 |
| 0.05905     | 7.3301  | 442,41  | 1584.77  | 271.5     | 2156.293 | 416.25 | 1154.2 |
| 0.02020     | 7 1008  | 440.59  | 1381 hh  | 271.3     | 2281 862 | 422.01 | 1179.8 |
| 0.05980     | 7.0004  | 436.56  | 1379.79  | 271.1     | 2348.559 | 435.85 | 1193.0 |
| 0.06005     | 6,8915  | 434.33  | 1378.15  | 271.0     | 2418.025 | 442.74 | 1206.5 |
| 0.06030     | 6.7833  | 431.96  | 1376.53  | 270.9     | 2490.391 | 449.80 | 1220.4 |
| 0.06055     | 5.6756  | 429.42  | 1374.91  | 270.8     | 2565.791 | 457.06 | 1254.5 |
| v • vo vo v | 0,0000  | 440 13  | T11111   | 4 I V . V | 2044.333 | 404031 | 4477.V |

c

.

# Table 4. Continued

.

.

| CASE               | 1 (CONT'1 | ) PP               | 7                    |         | F                    | PAGE 2  |             |
|--------------------|-----------|--------------------|----------------------|---------|----------------------|---------|-------------|
| HELIUN             | DRIVI     | G HELI             | JN M=                | 30D. KG | L=24.00              | 00 M L  | R = 25 M    |
| P4  = 2<br>P0  =16 | 55.887 P  | KG/CI12<br>KG/CI12 | T41 = 50<br>T01 = 29 | 93.0 K  |                      |         |             |
|                    | v         | DYIDT              | 00                   | TO      | 01                   | Dh      | <b>T</b> 1. |
| (SEC)              | (M) (     | (M/SEC)            | KG/CH12              | (K)     | KG/CM2               | AMAGAT  | (K)         |
| 0 06105            | 6 46 93   | 1.23 97            | 1371 72              | 270 c   | 2726 220             | 1.72 16 | 1967 0      |
| 0.06130            | 6.3567    | 420.83             | 1370.14              | 270.4   | 2811.555             | 479.99  | 1279.0      |
| 0.06155            | 6.2519    | 417.62             | 1368.58              | 270.3   | 2900.480             | 488.04  | 1294.4      |
| 0.00205            | 6.0448    | 410.60             | 1365.50              | 270.0   | 3089.731             | 504.75  | 1326.4      |
| 0.06230            | 5.9426    | 406.79             | 1363.99              | 269.9   | 3190.373             | 513.43  | 1342.9      |
| 0.06255            | 5.8414    | 402.77             | 1362.49              | 269.8   | 3295,228<br>3404,446 | 522.33  | 1359.8      |
| 0.06305            | 5,6422    | 394.04             | 1359.55              | 269.5   | 3518.176             | 540.77  | 1394.5      |
| 0.06330            | 5.5443    | 389.32             | 1358.11              | 269.4   | 3636.573             | 550.32  | 1412.4      |
| 0.06380            | 5.3522    | 379.12             | 1355.29              | 269.2   | 3837.904             | 570.08  | 1449.2      |
| 0.06405            | 5.2581    | 373.62             | 1353.91              | 269.1   | 4021.078             | 580.28  | 1468.1      |
| 0.06455            | 5.1054    | 361.76             | 1351.22              | 269.0   | 4159.599             | 590.69  | 1506.9      |
| 0.06480            | 4.0846    | 355.38             | 1349.91              | 268.8   | 4451.768             | 612.12  | 1526.7      |
| 0.06505            | 4.8966    | 348.68             | 1348.63              | 268.7   | 4505.899             | 623.12  | 1546.9      |
| 0.06555            | 4.7258    | 334.31             | 1346.15              | 268.5   | 4929.967             | 645.64  | 1587.8      |
| 0.06580            | 4.6432    | 326.62             | 1344.95              | 268.4   | 5099.759             | 657.13  | 1608.6      |
| 0.06630            | 4.5025    | 518,50             | 1345.78              | 268.3   | 5274.505             | 680.46  | 1629.5      |
| 0.05655            | 4.4075    | 301.34             | 1341.54              | 268.1   | 5637.936             | 692.26  | 1671.7      |
| 0.06679            | 4.3333    | 292.16             | 1340.47              | 268.0   | 5825.944             | 704.11  | 1692.9      |
| 0.06729            | 4.1920    | 272.62             | 1338.43              | 267.9   | 6212.179             | 727.84  | 1735.0      |
| 0.06754            | 4.1252    | 262.24             | 1337.47              | 267.8   | 6409.149             | 739.63  | 1755.9      |
| 0.06779            | 4.0610    | 251.40             | 1335.67              | 267.7   | 6806.911             | 762.88  | 1796.9      |
| 0.06829            | 3.9409    | 228.66             | 1334.83              | 267.6   | 7005.782             | 774.22  | 1816.8      |
| 0.06854            | 3.8852    | 216.65             | 1334.03              | 267.5   | 7203.187             | 785.32  | 1836.2      |
| 0.06904            | 3.7832    | 191.41             | 1332.57              | 267.4   | 7588.463             | 806.50  | 1873.2      |
| 0.06929            | 3.7370    | 178.21             | 1331.91              | 267.4   | 7773.573             | 816.47  | 1890.5      |
| 0.00954            | 3.6547    | 150.69             | 1330.74              | 267.3   | 8121.088             | 825.94  | 1905.9      |
| 0.07004            | 3.6188    | 136.42             | 1330.22              | 267.2   | 8280.357             | 843.13  | 1936.7      |
| 0.07029            | 3.5865    | 121.83             | 1329.76              | 267.2   | 8427.835             | 850.72  | 1949.8      |
| 0.07079            | 3.5331    | 91.80              | 1329.00              | 267.1   | 8681.076             | 863.58  | 1971.9      |
| 0.07104            | 3.5121    | 76.43              | 1328.70              | 267.1   | 8784.009             | 868.76  | 1980.8      |
| 0.07129            | 3.4949    | 45.14              | 1328.27              | 267.1   | 8936.263             | 876.34  | 1993.9      |
| 0.07179            | 3.4724    | 29.30              | 1328.14              | 267.1   | 8983.650             | 878.69  | 1997.9      |
| 0.07184            | 3.4710    | 26.13              | 1328.12              | 257.1   | 8990.732             | 879.04  | 1998.5      |
| 0.07194            | 3.4687    | 19.76              | 1328.09              | 267.1   | 9002.478             | 879.62  | 1999.5      |
| 0.07199            | 3.4678    | 16.57              | 1328.07              | 267.1   | 9007.130             | 879.85  | 1999.9      |

,

# Table 4. Continued

•

| CASE 9                                   | (LONT'D) PP                                                 | 7                                                                                 | PAGE 3                                                                 |                                        |
|------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|
| HELIUM<br>P41 = 2<br>P01 =16             | DRIVING HELI<br>55.887 Kg/CM2<br>77.200 Kg/CM2              | UM M=300. KG<br>T41 = 500.0 K<br>T01 = 293.0 K                                    | L=24.0000 M (                                                          | _R: 25 M                               |
| T<br>(SEC)                               | X .DX/DT<br>(M) (14/SEC)                                    | PO TO<br>Kg/CI42 (K)                                                              | P4 R4<br>Kg/cm2 amagat                                                 | Т4<br>(к)                              |
| 0.07204<br>0.07209<br>0.07214<br>0.07213 | 3.4670 13.39<br>3.4664 10.20<br>3.4660 7.01<br>3.4658 3.82  | 1328.06 267.1<br>1328.05 267.1<br>1328.05 267.1<br>1328.05 267.1                  | 9010.980 880.0<br>9014.003 880.1<br>9016.205 880.3<br>9016.282 880.3   | 2000.2<br>2000.5<br>2000.6<br>7 2000.8 |
| 0.07224<br>0.07229<br>0.07234<br>0.07239 | 3,4656 0,62<br>3,4657 -2,56<br>3,4659 -5,61<br>3,4663 -8,66 | 1328.04 267.1<br>1328.04 267.1<br>1328.05 267.1<br>1328.05 267.1<br>1328.05 267.1 | 9018.142 830.39<br>9017.880 880.39<br>9016.828 880.3<br>9016.828 880.3 | 2000.8<br>2000.8<br>2000.7<br>2000.7   |

.

.

# Table 4. Continued

•

| CASE                                                                                                                                                                                                                                                                                                                                 | IЪ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PP7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAGE 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| HELIU<br>P41 = 9<br>P01 =30                                                                                                                                                                                                                                                                                                          | N DRIVING<br>913.838 KG/<br>500.000 KG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HYDROGEN //=<br>/CM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300. KG<br>00.0 K<br>93.0 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>1=</b> 16.9(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )00 M LR                                                                                                                                                                                                                                                                                                 | = 17.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| T<br>(SEC)                                                                                                                                                                                                                                                                                                                           | X D)<br>(M) (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (/DT PO<br>/SEC) kg/cm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TO<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4<br>Kg/cm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R4<br>AMAGAT                                                                                                                                                                                                                                                                                             | Т4<br>(к)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| (SEC)<br>0.00000<br>0.00250<br>0.00750<br>0.01500<br>0.01250<br>0.01500<br>0.01750<br>0.02000<br>0.02250<br>0.02250<br>0.02250<br>0.02250<br>0.02250<br>0.02255<br>0.02980<br>0.03055<br>0.03030<br>0.03105<br>0.03105<br>0.03105<br>0.03130<br>0.03155<br>0.03280<br>0.03255<br>0.03280<br>0.03255<br>0.03280<br>0.03355<br>0.03380 | $ \begin{array}{c} (M) & (M) \\ 16.9000 \\ 16.8348 & 5 \\ 16.6429 & 10 \\ 16.3262 & 19 \\ 15.3311 & 24 \\ 14.6622 & 28 \\ 13.8883 & 32 \\ 13.0186 & 36 \\ 12.0651 & 30 \\ 12.0651 & 30 \\ 12.0651 & 30 \\ 12.0651 & 30 \\ 12.0651 & 30 \\ 12.0651 & 30 \\ 12.0851 & 43 \\ 3.9752 & 43 \\ 8.9752 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 43 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8.9758 & 44 \\ 8$ | SEC)       KG/CM2         0.00       3599.99         1.51       3595.29         1.51       3595.29         1.51       3595.29         1.51       3595.29         1.51       3595.29         1.51       3595.27.85         1.29       3558.85         1.29       3558.85         1.29       3527.85         1.29       353.29         1.29       32.34.37         1.9       60         1.9       61         1.9       32.09         1.29       3145.42         1.9       30.93.02         1.3       30.93.02         1.3       30.93.02         1.3       30.93.02         1.8       3061.87         1.8       3061.87         1.8       3043.64         2.9       30.43.64         2.9       30.43.64         2.9       30.43.64         2.9       30.43.64         2.9       30.25.85         3.031.73       30.32.86         3.031.73       30.33.00         1.8       3014.29         1.4       3097.46 </td <td>(K)<br/>292.9<br/>292.8<br/>292.8<br/>291.6<br/>289.3<br/>287.0<br/>284.0<br/>284.0<br/>277.6<br/>275.3<br/>275.1<br/>275.3<br/>275.1<br/>275.3<br/>275.1<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>275.3<br/>277.4<br/>275.3<br/>277.4<br/>275.3<br/>277.4<br/>277.4<br/>277.4<br/>277.4<br/>277.4<br/>277.4<br/>277.3<br/>277.4<br/>277.4<br/>277.4<br/>277.5<br/>277.3<br/>277.4<br/>277.3<br/>277.4<br/>277.4<br/>277.5<br/>277.4<br/>277.4<br/>277.5<br/>277.4<br/>277.5<br/>277.5<br/>277.4<br/>277.5<br/>277.4<br/>277.5<br/>277.5<br/>277.5<br/>277.4<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>277.5<br/>27</td> <td>KG/CM2<br/>913.835<br/>920.368<br/>940.056<br/>974.135<br/>1024.871<br/>1095.886<br/>1192.725<br/>1323.836<br/>1192.725<br/>1323.834<br/>1502.217<br/>1748.675<br/>2594.972<br/>3180.019<br/>3265.654<br/>3354.896<br/>3447.909<br/>3544.860<br/>3645.920<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.865<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.20<br/>3751.267<br/>3861.084<br/>3975.560<br/>4094.855<br/>4219.200<br/>4483.674<br/>4525<br/>4219.200<br/>4483.674<br/>4525<br/>4219.200<br/>4483.674<br/>4525<br/>4219.200<br/>4483.574<br/>4525<br/>4219.200<br/>4483.574<br/>4525<br/>4219.200<br/>4525<br/>4219.200<br/>4555<br/>4219.200<br/>45555<br/>4219.200<br/>455555550<br/>4219.200<br/>45555550<br/>4219.200<br/>45555550<br/>4219.200<br/>45555550<br/>4219.200<br/>4555550550<br/>4219.575550<br/>4219.575550<br/>4219.200<br/>45555550<br/>4219.200<br/>4555550550<br/>4219.200<br/>4555550550550550<br/>4219.200<br/>4555550550550550550550550550550550550550</td> <td>AMAGAT<br/>359.11<br/>360.50<br/>364.65<br/>371.72<br/>381.99<br/>395.85<br/>413.91<br/>436.98<br/>466.17<br/>503.01<br/>549.54<br/>668.11<br/>676.18<br/>684.45<br/>692.89<br/>701.53<br/>710.35<br/>719.37<br/>728.58<br/>737.98<br/>747.58<br/>757.37<br/>767.35<br/>777.52<br/>787.88<br/>798.42<br/>809.14<br/>820.03<br/>831.09</td> <td>(K)<br/>499.99<br/>503.99<br/>509.55<br/>509.55<br/>559.6<br/>555.55<br/>559.6<br/>555.55<br/>557.49<br/>555.6<br/>555.5<br/>555.6<br/>555.6<br/>555.7<br/>555.6<br/>555.7<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.8<br/>555.</td> | (K)<br>292.9<br>292.8<br>292.8<br>291.6<br>289.3<br>287.0<br>284.0<br>284.0<br>277.6<br>275.3<br>275.1<br>275.3<br>275.1<br>275.3<br>275.1<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>275.3<br>277.4<br>275.3<br>277.4<br>275.3<br>277.4<br>277.4<br>277.4<br>277.4<br>277.4<br>277.4<br>277.3<br>277.4<br>277.4<br>277.4<br>277.5<br>277.3<br>277.4<br>277.3<br>277.4<br>277.4<br>277.5<br>277.4<br>277.4<br>277.5<br>277.4<br>277.5<br>277.5<br>277.4<br>277.5<br>277.4<br>277.5<br>277.5<br>277.5<br>277.4<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>277.5<br>27 | KG/CM2<br>913.835<br>920.368<br>940.056<br>974.135<br>1024.871<br>1095.886<br>1192.725<br>1323.836<br>1192.725<br>1323.834<br>1502.217<br>1748.675<br>2594.972<br>3180.019<br>3265.654<br>3354.896<br>3447.909<br>3544.860<br>3645.920<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.865<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.20<br>3751.267<br>3861.084<br>3975.560<br>4094.855<br>4219.200<br>4483.674<br>4525<br>4219.200<br>4483.674<br>4525<br>4219.200<br>4483.674<br>4525<br>4219.200<br>4483.574<br>4525<br>4219.200<br>4483.574<br>4525<br>4219.200<br>4525<br>4219.200<br>4555<br>4219.200<br>45555<br>4219.200<br>455555550<br>4219.200<br>45555550<br>4219.200<br>45555550<br>4219.200<br>45555550<br>4219.200<br>4555550550<br>4219.575550<br>4219.575550<br>4219.200<br>45555550<br>4219.200<br>4555550550<br>4219.200<br>4555550550550550<br>4219.200<br>4555550550550550550550550550550550550550 | AMAGAT<br>359.11<br>360.50<br>364.65<br>371.72<br>381.99<br>395.85<br>413.91<br>436.98<br>466.17<br>503.01<br>549.54<br>668.11<br>676.18<br>684.45<br>692.89<br>701.53<br>710.35<br>719.37<br>728.58<br>737.98<br>747.58<br>757.37<br>767.35<br>777.52<br>787.88<br>798.42<br>809.14<br>820.03<br>831.09 | (K)<br>499.99<br>503.99<br>509.55<br>509.55<br>559.6<br>555.55<br>559.6<br>555.55<br>557.49<br>555.6<br>555.5<br>555.6<br>555.6<br>555.7<br>555.6<br>555.7<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555.8<br>555. |  |
| 0.03380<br>0.03405<br>0.03430<br>0.03455<br>0.03480<br>0.03505<br>0.03555<br>0.03580<br>0.03655<br>0.03655<br>0.03655<br>0.03705<br>0.03705<br>0.03755<br>0.03780<br>0.03780<br>0.03780<br>0.03805<br>0.03830                                                                                                                        | 7.3024 39<br>7.2051 38<br>7.1093 38<br>7.0148 37<br>6.9219 36<br>6.8306 36<br>6.7410 35<br>6.6533 34<br>6.5675 33<br>6.4838 33<br>6.4023 32<br>6.3230 31<br>6.2462 30<br>6.1719 29<br>6.1002 28<br>6.0313 26<br>5.9654 25<br>5.9024 24<br>5.8426 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.43 2992.00<br>6.26 2986.63<br>10.73 2981.34<br>74.81 2976.15<br>18.51 2971.05<br>1.79 2966.06<br>14.66 2961.17<br>7.10 2956.38<br>19.09 2951.72<br>0.63 2947.18<br>1.70 2942.77<br>2.30 2938.50<br>2.41 2934.36<br>2.41 2934.36<br>2.41 2934.36<br>2.51 2920.82<br>7.91 2919.30<br>5.54 2915.94<br>2.67 2912.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 271.9<br>271.7<br>271.5<br>271.3<br>271.9<br>270.9<br>270.8<br>270.6<br>270.4<br>270.2<br>270.1<br>269.9<br>269.8<br>269.5<br>269.5<br>269.5<br>269.3<br>269.2<br>269.1<br>269.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5245.130<br>5415.762<br>5592.757<br>5776.124<br>5965.898<br>6162.010<br>6364.374<br>6572.806<br>6787.070<br>7006.861<br>7231.739<br>7461.222<br>7694.644<br>7931.303<br>8170.303<br>8410.669<br>8651.240<br>8890.767<br>9127.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 831.09<br>842.30<br>853.66<br>855.15<br>876.77<br>888.48<br>900.29<br>912.16<br>924.07<br>936.01<br>947.93<br>959.81<br>971.62<br>983.32<br>994.87<br>1006.23<br>1017.36<br>1028.20<br>1038.72                                                                                                           | 811.8<br>819.0<br>826.2<br>833.6<br>841.0<br>848.5<br>856.0<br>863.6<br>871.3<br>878.9<br>886.5<br>894.1<br>901.7<br>909.6<br>923.9<br>931.0<br>938.0<br>934.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

.

.

Table 4. Concluded

,

ŧ

.

| CASE ID (CONT'D)                                                                                                                   | PP7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAGE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HELIUM DRIVING<br>P41 = 913.838 KG,<br>P01 =3600.000 KG,                                                                           | IIYDROGEN M=300. KC<br>/CH2 T41 = 500.0 K<br>/CH2 T01 = 293.0 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 L=16.3000 H LR= 17.5 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T X D)<br>(SEC) (H) (M)                                                                                                            | X/DT   PO    TO<br>/Sec) Kg/CM2  (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P4 R4 T4<br>Kg/CM2 Amagat (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                               | 19.31 2909.75 268.9  05.47 2906.93 268.7  91.16 2904.30 268.6  76.41 2901.86 268.6  61.23 2899.63 268.5  45.65 2897.60 268.4  29.70 2895.78 268.3  13.40 2894.18 268.3  96.80 2892.79 268.2  79.94 2891.63 268.2  62.85 2890.69 268.1  28.19 2889.98 268.1  28.19 2889.49 268.1  24.70 2839.42 268.1  24.70 2839.42 268.1  17.72 2889.31 268.1  14.22 2889.27 268.1  14.22 2889.23 268.1  7.22 2889.21 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889.20 268.1  7.22 2889. | 9360.925 1048.87 951.3<br>9588.427 1058.58 957.5<br>9808.584 1067.82 963.5<br>10019.584 1076.52 969.1<br>10219.576 1084.64 974.3<br>10406.666 1092.13 979.1<br>10579.015 1098.94 983.5<br>10734.796 1105.02 987.4<br>10872.355 1110.33 990.9<br>10990.078 1114.84 993.8<br>11086.621 1118.51 996.1<br>11160.789 1121.31 998.0<br>11211.675 1123.22 999.2<br>11219.001 1123.50 999.4<br>11225.361 1123.73 999.5<br>11230.757 1123.94 999.7<br>11235.187 1124.10 999.8<br>11241.134 1124.33 999.9<br>1242.644 1124.33 999.9 |
| 0.04135 5.3374                                                                                                                     | 0.22 2889.19 268.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11243,189 1124,40 1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.04200 5.3975<br>0.04205 5.3978<br>0.04210 5.3982<br>0.04215 5.3987 -<br>0.04220 5.3995 -<br>0.04225 5.4004 -<br>0.04230 5 4014 - | -3.27 2889.20 268.1<br>-6.55 2889.21 268.1<br>-9.83 2889.23 268.1<br>13.11 2889.26 268.1<br>16.38 2889.30 263.1<br>19.66 2889.34 268.1<br>22.93 2889.40 268 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11242.750 1124.39 999.9<br>11241.390 1124.34 999.9<br>11239.117 1124.25 999.9<br>11235.912 1124.13 999.8<br>11231.810 1123.98 999.7<br>11226.804 1123.79 999.6<br>11220.894 1123.57 999.6                                                                                                                                                                                                                                                                                                                                 |
| 0.04235 5.4027 -                                                                                                                   | 26.19 2889.47 268.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11214.078 1123.31 999.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| CASE |              | DRIVER   |                                        | (•k)         | (atm.)           |  |
|------|--------------|----------|----------------------------------------|--------------|------------------|--|
| 1    | (16)<br>(26) | He<br>He | (H <sub>2</sub> )<br>(H <sub>2</sub> ) | 1000<br>1000 | 5 000<br>4000    |  |
| 3    | (3b)<br>(4b) | He<br>He | (H <sub>2</sub> )<br>(H <sub>2</sub> ) | 1000<br>1000 | 3 000<br>2 0 0 0 |  |
| 5    | (5 b)        | He       | (H <sub>2</sub> )                      | 1600         | 5000             |  |
| 6    | (6b)         | He       | (H <sub>2</sub> )                      | 1600         | 4 000            |  |
| · 7  | (7ь)         | He       | (H <sub>2</sub> )                      | 1600         | 3 00 0           |  |
| · 8  | (85)         | He       | (H <sub>2</sub> )                      | 1600         | 2000             |  |
| 9    | (9b)         | He       | (H <sub>2</sub> )                      | 2000         | 5000             |  |
| · 10 | (10Ы)        | He       | (H <sub>2</sub> )                      | 2000         | 4 000            |  |
| 11   | (IIb)        | He       | ( <sub>H2</sub> )                      | 2000         | 3000             |  |
| 12   | (126)        | He       | (H <sub>2</sub> )                      | 2000         | 2000             |  |

Table 5. Parametric Study-Cases Examined

In all cases, test gas is air.  $T_{4_i} = 293^{\circ}K$ ,  $500^{\circ}K$ Helium is used to drive 300 kg piston with  $T_{0_i} = 293^{\circ}K$ Shock tube length : 34 ft, 54 ft, 64 ft  $T_1 = 293^{\circ}K$ Test time : 2 msecs Tailored conditions

ī

.

Table 6. Parametric Study-Tailoring Conditions for Shock Tubeand Compression Conditions for Compression Tube

.

|             | TAILORING CONDITIONS |                  |                  | COMPRESSION CONDITIONS     |                          |                         |                           |         |
|-------------|----------------------|------------------|------------------|----------------------------|--------------------------|-------------------------|---------------------------|---------|
| CASE        | MS                   | т <sub>5</sub>   | Ρ4               | P <sub>4i</sub> (atm)      | P <sub>4i</sub> (atm )   | X                       | λ                         |         |
| No.         |                      | (•K)             | (atm)            | (T <sub>4</sub> i =293°K ) | (T <sub>4</sub> i=500°K) | (T <sub>4</sub> i=293%  | ( T <sub>4</sub> i=5 00°K |         |
| 1<br>(Ib)   | 8.99<br>(15.47)      | 6920<br>(12 100) | 9840<br>(10880 ) | 403<br>(134 )              | 1565<br>(884)            | 4·53<br>(9·72)          | 2-30<br>(3-13-)           |         |
| 2<br>(26)   | 876<br>(15.05)       | 6620<br>(i1660)  | 7660<br>(8370)   | 318<br>(105)               | 123 3<br>( 687)          | 4 <u>7</u> 4<br>(10.76) | 2.36<br>(3,34)            | 0•K     |
| 3<br>(3 b)  | &.52<br>(14→65)      | 6300<br>(11190)  | 5560<br>(6000)   | 236<br>(76)                | 910<br>(498)             | 5.00<br>( 12.14)        | 2.4 4<br>( 3.63)          | 4 = 100 |
| 4           | (8.28)               | 5960             | 3580             | 155                        | 596                      | 5.32                    | 2.53                      | +       |
| (4.b)       | (_)                  | (_)              | (_)              | (_)                        | (_)                      | (_)                     | (_),                      |         |
| 5<br>(5b)   | 10.95<br>(19,19)     | 9760<br>(14860)  | 9070<br>(10060)  | 116<br>(23)                | 443<br>(147)             | 10.25<br>(42·10)        | 4.8i<br>(11-56)           |         |
| 6<br>(6b)   | 10,79<br>(18,93)     | 9410<br>(14860)  | 7160<br>(7880)   | 93<br>(18)                 | 356<br>(116)             | 10-61<br>(46.01)        | 4 .94<br>(12 .52)         | X.O     |
| 7<br>(7ь)   | 10.62<br>(18.67)     | 9050<br>(13 860) | 5290<br>(5780)   | 70<br>(13.2)               | 268<br>(85.7)            | (50.8)                  | 5.09<br>(13.7)            | 4 =160  |
| 8<br>(&b)   | 10.45<br>(18.42)     | 8670<br>(13280)  | 3470<br>(3770)   | 47<br>(8.7)                | 180<br>(56.3)            | 11.51<br>(56.95)        | 5.27<br>(15.23)           | -       |
| 9           | 12.07                | 12220            | 8720             | 65                         | 248                      | 15.02                   | 6.92                      |         |
| (9b)        | (21.49)              | (18220)          | (9510)           | (9.04)                     | (587)                    | (89.8)                  | (24.0)                    |         |
| 10          | 11.94                | 11890            | 6900             | 52                         | 199                      | 15.46                   | 7.09                      |         |
| (106)       | (21,31)              | (17630)          | (7520)           | (7.18)                     | (46.64)                  | (96-8)                  | (25.8)                    | ¥       |
| l n         | 11.80                | 11570            | 5120             | 39                         | 150                      | 15.94                   | 7.27                      | 200     |
| (II b)      | (2113)               | (17030)          | (5570)           | (5.35)                     | (34.8)                   | (105.2)                 | (27.9)                    | 14      |
| 12<br>(12b) | ( 20.97)             | (16430)          | (3670)           | (3.56)                     | (23.1)                   | ( 115.4)                | (30.6)                    |         |

\*Values in brackets : Hydrogen as barrel gas

Table 7. Parametric Study-Details of Compression Tube of aPiston-Driven Tailored-Mode Reflected Shock Tunnel

.

.

.

:

|             | "TAILORED" TUBE LENGTHS |                         |                          | COMPRESSION TUBE CYCLE DE TAILS FOR 293 K |                                                        |                                                    |                                         |
|-------------|-------------------------|-------------------------|--------------------------|-------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------|
|             | FOR 2 MS. RUN TIME WITH |                         |                          | HELIUM RESERVOIR GAS AND 300 KG.          |                                                        |                                                    |                                         |
|             | NO EXPA                 | NSION CAN               | ELLATION                 | RESERVOIR                                 | PRESSURE                                               | PISTON V                                           |                                         |
| CASE<br>No. | Lp<br>(m.)              | Lc (m.)<br>(Tai 12 93°k | Lc (m.)<br>(T41 = 500°K) | Poi (kg/m<br>(Tai = 293°K)                | Poi (kg/cm <sup>2</sup> )<br>(T <sub>41</sub> = 500°K) | Vp(m/s)<br>(T <sub>e</sub> i = 293 <sup>°</sup> K) | Vp (m/s)<br>(1 <sub>4</sub> i = \$06°K) |
| 1           | 4.21                    | 19-1                    | 9.69                     | 23 87                                     | 4665                                                   | 445                                                | 293                                     |
| (18)        | ( 5. 63)                | 1 34.7 1                | (17,17)                  | 0167 1                                    | (3600)                                                 | (650)                                              | ( 4 3 6 7                               |
| 2<br>(2Þ),  | 3-96<br>(5.10)          | 18.9<br>(55)            | 9-45<br>(17-1 )          | 1 8 4 4.5<br>(097 1)                      | 3674<br>(2750)                                         | 391<br>(564)                                       | 263<br>(384)                            |
| 3<br>(3))   | 3.74<br>(452)           | 16.7<br>(5 5)           | 9 11<br>(16 45)          | 1332<br>632.71                            | 2 6 6 4                                                | 330                                                | 221                                     |
|             | 3.45                    | 18.4                    | 8.75                     | 8 5Z                                      | 1717 2                                                 | 265                                                | 176                                     |
| (46)        |                         |                         |                          |                                           |                                                        | _                                                  |                                         |
| 5<br>(5b)   | 4.1 <b>0</b><br>(5,02)  | 42 8<br>(212)           | 20.1                     | 1 13 1.9<br>(347 .4)                      | 2357.8<br>{1173 ± }                                    | 556<br>(804)                                       | 445<br>(650)                            |
| 6           | 3.96                    | 62.0                    | 19.6                     | <b>69</b> 2                               | 1#50 B                                                 | 491                                                | 385                                     |
| ( 5 b )     | (4.61)                  | (212)                   | (527)                    | (289.2)                                   | ( 908.1 )                                              | (705)                                              | (576)                                   |
| 7           | 3. 78                   | 41.7                    | 19, 2                    | 650.5                                     | 1374.9                                                 | 4 21                                               | 334                                     |
| (71)        | (4.18)                  | (212)                   | (57.4)                   | (195.7)                                   | (65 0.0)                                               | (597)                                              | (491)                                   |
| •           | 3.50                    | 41.2                    | 169                      | 4 32 . 3                                  | 902.3                                                  | 340                                                | 269                                     |
| .0001       | (3.71)                  | (211)                   | (56.5)                   | (126-8)                                   | (425.6)                                                | 14 851                                             | (3 9 3)                                 |
| 9<br>(9 b)  | 4-18<br>(4-82)          | 62.8<br>(432)           | 29.0<br>(116)            | 793<br>(180-8)                            | 1677.2<br>(626.2)                                      | 600<br>(#55)                                       | 50 0<br>(73 9)                          |
| ;           |                         |                         |                          |                                           |                                                        |                                                    |                                         |
| 10<br>#0b)  | 4-03<br>(4,45)          | 62.3<br>(430)           | 28.6<br>(115)            | \$27.8<br>(142)                           | 1328<br>(491,2)                                        | 534<br>(760)                                       | 445<br>16 54)                           |
| 11          | 3.00                    | \$2.0                   | 28.3                     | 465                                       | 984                                                    | 457                                                | 382                                     |
| (11.6-)     | (4.0 7)                 | (4 2 8)                 | (113-5)                  | (104.8)                                   | (361.6)                                                | (855)                                              | (556)                                   |
| 12          | —                       | —                       | —                        | —                                         |                                                        |                                                    |                                         |
| (12 b)      | {3.67}                  | ( 424 )                 | (112)                    | (69)                                      | (237.2)                                                | (92 81                                             | P 6 8 1                                 |

.

.

| COMPRESSION TUBE<br>DETALS FOR SHOCK<br>TUBE LENGTH 34 FT. |       |                |                      |  |  |
|------------------------------------------------------------|-------|----------------|----------------------|--|--|
| н. н                                                       | ELIUM | DRIVER         | _                    |  |  |
| CASE                                                       | Lp(m) | L c (m.)       | Lcm                  |  |  |
| N*                                                         |       | ī.=29 <b>3</b> | T <sub>4</sub> i=500 |  |  |
| 1                                                          | 3.40  | 15.4           | 7.8                  |  |  |
| 2                                                          | 320   | 15.20          | 7.55                 |  |  |
| 3                                                          | 2.98  | 149            | 7.26                 |  |  |
| 4                                                          | 2.73  | 14.6           | 6.92                 |  |  |
| 5                                                          | 3.41  | 35.0           | 16.4                 |  |  |
| 6                                                          | 3.24  | 34.4           | 16                   |  |  |
| 7                                                          | 3.04  | 33.6           | 15.5                 |  |  |
| 8                                                          | 2 .9  | 33.4           | 15.3                 |  |  |
| 9                                                          | 3.46  | 52             | 24                   |  |  |
| 10                                                         | 3.33  | 51,4           | 23.6                 |  |  |
| 11                                                         | 3,19  | 50.9           | 23.2                 |  |  |
| 12                                                         | 3.09  | 50.6           | 22.8                 |  |  |
|                                                            |       |                |                      |  |  |

| COMPRESSION TUBE<br>DETAILS FOR SHOCK<br>TUBE LENGTH 54 FT. |         |                                 |                               |  |  |  |
|-------------------------------------------------------------|---------|---------------------------------|-------------------------------|--|--|--|
| Н Ч                                                         | DROGEN  |                                 |                               |  |  |  |
| CASE<br>N <sup>8</sup>                                      | L p(m.) | Lc(m.)<br>I <sub>4i</sub> =293K | Lc(m)<br>T <sub>4i</sub> ≢500 |  |  |  |
| 16                                                          | 5.39    | 52.4                            | 16. <del>9</del>              |  |  |  |
| 25                                                          | 4.87    | 52.4                            | 16.3                          |  |  |  |
| 36                                                          | 4.31    | 52.4                            | 15.6                          |  |  |  |
| 4ь                                                          | 14.15   | 52.4                            | 15.1                          |  |  |  |

- .

.

Table 8.Parametric Study-Effect of<br/>Reduction of Shock Tube Length<br/>on Compression Tube Length<br/>for 2-msec Running Time

•

Table 9.Comparison of Performance of Helium and HydrogenDriver Gases

.

1

.

| CASE                         | A           | В           |      |
|------------------------------|-------------|-------------|------|
| DRIVER GAS                   | HELIUM      | HYDROGEN    |      |
| P <sub>5</sub> ,atm          | 5000        | 5000        |      |
| Τ <sub>5</sub> PK            | 12,200      | 12,100      |      |
| Τ <sub></sub> ͺ, K           | 2 000       | 1000        |      |
| P <sub>4</sub> etm.          | 8720        | 10,880      |      |
| Patm.                        | 2.57        | 1.46        |      |
| <b>Т<sub>I</sub> ,9 К. ·</b> | 293         | 293         |      |
| MS                           | 12.07       | 15.48       |      |
| Lshock tube,m                | 10.35 (34') | 16.46 (54') |      |
| Lp, m                        | 3. 46       | 5.39        |      |
| Lc,m                         | 24          | 16.9        | 52.5 |
| λ <sub>4</sub> .             | 6.92        | 3.13        | 9.72 |
| T <sub>4</sub> i, atm        | 500         | 500         | 293  |
| P <sub>4</sub> i ,atm.       | 248         | 884         | 134  |
| Toi , <b>"</b> k             | 2 93        | 293         | 293  |
| Poi, atm.                    | 162 0       | 3480        | 1150 |

.