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a SUMMARY

Predictions of the IR radiation produced by the debris of

stoichiometric C0/02/H 0 and CH /02 explosion mixtures have been

made. The calculation considered optical thickness effects as well

as spatial and temporal variations of the major species, CO2 and

H20 and temperature. The results show that the spectral intensity

is a strong function of wavelength and is determined in part by the

optical thickness of the cloud. The predictions have been applied

to select appropriate filters for an infrared vidicon sensor system

which will be used for observation-of balloons exploded in the field.
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I. INTRODUCTION

The Air, Force Weapons Laboratory (AFWL) is conducting a series

of field experiments to evaluate the flow characteristics of balloon

explosions. A piiary diagnostic for these events will be an infra-

red vidicon sensor system operated by the General Electric Company

Space Sciences Laboratory (GE-SSL) under sponacpship of the Advanced'

Research Projects Agency (ARPA). This -'eport presents design pre-

dictions for these measurements.

The detonable mixtures under consideration include stoichiometric
mixtures of COIO If/H] 0 and CH 4 /0 2'The major products of the explosion,

CO2 and H20, exhibit strong infrared signatures between 2.5 and 3.5

microns. In fact, the debris of the explosioii is optically thick in

this spectral region. Consequen-tly, a prediction of the expected

emnission from the explosion must solve the radiative transfer equation

along a line-of-sight pa~iing through the disturbed region. This

w ill enable the selection of appropriate spectral filters to optimiae

the measurements and will define the. desired dynamic range of the

sensor system.

The .ollowing sections describe the methodology used for the
radiation predictions, present resulits computed for -the two mixtures

under consideration and recc.=uend instaunent parameters for the field.

'axp'-erinents.



II. -DISCUSSION OF THEORY

II.1 INTRODUCTION

The detonation products of stoichiometric mixtures of

C0/2 /H20 and CH4 /02 contain large quantities of H20 and CO2  In

addition, trace amounts of CO, OH, H2 and various hydrocarbons are
2

present. The infrared spectra of the major species are particularly

strong from 2.5 to 3.5 microns as is shown by Figures 1 and 2. This

in conjunction with the expected concentrations leads to the con-

clusion that the infrared signature of the explosion will be governed

by the major species. Thus, only emission from H and CO ", con-..

sidered in the present aIculations.

A realistic prediction of the-expected intensity pofthe

explosion debris must consider the temperature 'and concentration

variation with time and position as well as optical t h~kness effects.

The radiative transfer model, which accounts for tha above phenomen-

ology, is discussed below while that of the debris d" io -

considered in the subsequent section.

11.2 RADIATIVE TRANSFER MODEL

The monochromatic radiative transfer equation along a ray

passing through the disturbed environment tothe sensorl is given by:.

dI -I (1)

where:

IN, spectral intensity (watts/cm2-ster-cm-)

s distance along ray (cm)

3 -
e -spectral emission coefficient, (watts/cm -ster-cm .
a function of s

X a9 spectral absorption coefficient, (1/cm) a function of s

2N.. •
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Formal integration of Equation (1)-ieaults in:
z2

f t dslfz a4,%- Z~ f Z

I(z) IoV e ds :(2)

where:
1 0 background intensity (watts/cm2 -ster-cm1

In practice, Equation (2) has been integrated numerically using

Simpson's rule, a procedure which optimizes efficiency and minimizes
4error,

The-properties ev and a are functions of posit-ioh and wave-
number which must be evaluated-prior'to integration.

-Ideally, Equation (2) should be solved as a function of'
wavenumber with a resolution sufficient to describe the de -'l_ b of

self-absorbed, overlapping. rotational lines. However, for:the, case
of H 0 and CO the basic spectroscopic information (line strengths2 2'
and energy levels)-is not:available -for the hot bands. Consequently,
the .absorption and emission coefficients have been''approximated by"

sttit5a moe-uigl5c
.a statisticalmodelusing 25 cm - resolution. The absorption
coefficients for H2 0., shown in Figure 1,-were taken from Ferriso,

et al and are related to (% by:

kP

.5; • .- where: .. i
,.}), .. =spectral absorption coefficient from Ref. 5 ar";

'. :" "- " -'P = partial pressure- of-water, vapor (.atm)-"'.-.
2

• ,. a =fine structure term (cm ) ..

2VV.

" The fine structure term is proportional to the local mean value of

the ratio of-the collision half-width to the line spacing, y/d-

. • . ..

&



The value for this parameter recommended by Ferriso, et -al-, is given
by:.

1/2 1/2

(4)

0.1593(l P 2O

where:

T local temperature K

d e-xpC-O..0016 T + 1.21) (5

In the-case of CO2  fine-structure parameters we're not readily

available. Consequently, the-theoretical absorption coefficients of-

Mlms shown in- Figure.2 .have been i:sed.

AvIC02  d :CO 2  6

Whiere:

- mean spectral absorption. coefficient from Ref. .6
(cm a)m

-P partial pressure of 002 (atm).
02

The total absorption coefficient is now given by:-

I(7)

andthe emission coefficient is computed using Kirchoff's law:

SB(Tv (8)

Where:
2 -

B(T,v) black body function. (watts/cm -ster-cm)

016



The .computational -procedure uses Equations (3) through: '(8) and--
the data• of Figures I and 2 to evaluate a. and e from a knowledge

of the temperature and the partial pressures of CO2 and'H2 0. Nu-2 2:
-merical -integration of Equation (2) is then accomplished using the

sky background intensities shown- in Figure 3-as initial conditions.7

11.3 Flow Field of Explosion Debris

The properties-of the flow field associatedwith the debris

of-the -balloon explosion were obtained from the computations described

in Reference 1. A one-dimensional- Langrangian code (SAP) with-

spherical symmetry was use-to burn a CH4/02.mixture. The ot .pu

-data then, supplied initial- conditions for, a -time-dependent, cylin- --

-drically. symmetric model for compressible-,- inviscid, non-conducting

laminar flows (HULL). The/resulting-flow field provided distributions

of temperature, density and the ratio of entrained-air to explosion "

- debris as a function of time and position.- These data were further

reduced by taking a ray perpendicular to the ground passing thlough

the hottest point of the:-dis-turbed environment. The resulting

.. temperature profiles- along this, ray for three values of time, are

shown in Figure 4.,-...

The ratio of entrained air-to explosion debris bs been used-

to obtain partial pressures of the major species, K20 and C0 , It

was assumed that ambient air contained 3 ,1 x. and 1.01 10; -

- - - mole percent of CO2 and H20, respectively. The :Iattar figuresb#-ing

based on 60% relative humidity at .,60°F. The paotial pr :ues f
CO2 and H20 arethen given by: .. "

P0= 1.01 X 10 + Yd - 1.01 x 10I

,-., C2 -. .x I02 -(9 -lO"
.. 0. 

.E ..0:

S1.0 + (X Xc :J4. _ 0-_-) -- )
"O 2.- 2 . ."

7 -

Ii'

7 "- i
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where:

X20 mole fraction of H20 in detonated mixture

XC02 =mole fraction of CO2 in detonated mixture,
22

and Yd' the mole fraction of debris in air is computed from:

1(10)
Yd MdR1+

where:

Md molecular weight of debris mixture

R ratio of air to debris in grams/gram from HULL
calculations.

Equation (9) is valid at low temperatures. However, at early
times, CO2 and H20 are partially dissociated. Consequently, the

partial pressures of these species are somewhat reduced. This has

been taken into account using the-equilibrated reactions:

CO CO + .1/20

H0 OH + 1/2 H2  U

OH =1/2H2 +i:1I/202 

The resulting partial .pressures used for the aomputations.: are shown-

..as a function of .ime and position in Figures. 58. The :assumed

debris compositions are shown inTable.. 1 .

_0.

! ..'". .. . ..- . .'. ; .... . . . . .. - ..- .. . ":- - :. -.. -.:...:..:..- ... +'...: .-:..• . -. .': .0-.
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TABLE I

DEBRIS COMPOSITIONS

MIXTURE MOLE FRACTION

00 2H20

CO/02 /H2 0 0.99 0.01

CH1 /02 0.333 0..667

21



II. 'ISCUSSION OF RESULTS

III.1 INTRODUCTION

The calculational procedure discussed in the previous section

has been applied for the prediction of the emission produced by

detonating mixtures of CO:0 2 :H2 0 = 1:0.5:0,01 and CH4 :02 = 1:3. The

results of these computations apply along a ray perpendicular to the

ground and passing through the peak temperature point of the disturbed

environment. Three times; 1, 4 and 6 seconds were considered. The

details of the radiation field are prusented in the following sections.

Then, recommendations for the IR vidicon field experiments are out-

lined.

111.2 EMTSSTON PREDICTIONS

The spectral intensity predicted for the CO and CH4 detonations

is shown in Figures 9-11 and 12-14, respectively. It is noted that

the CC2 al .orption coefficient (see Figure 2) was taken as zero for

wavelengths greater than 3.225 microns. This causes a jump in the.

spectrum which is particularly noticable in Figure 9. DifficuIties

arising from tLis assumption are not anticipated because the field
measurements against CO target balloons will not be taken at wave-

lengths greater than 3.2 microns.

Examination of the spectral intensities., indicates, in general,

a strong variation with time. However, the band centers are strongly

self-absorbed an] the intensity is controlled by optical thickness

effects. For iethane) the thickest regions of the spectrum exhibit

no dependence wi.th time while for CO2 the variation is about a factor

of three. In contrast, the wings of the bands change by as much as

five to si% orders of magnitude over the same time period. These

results are shown in Figures 15 and 16 where the dynamic range (ratio

of emission to background) is plotted as a function of wavelength.

16
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The behavior described above can be explained by noting that

the cool outer region of the debris cloud absorbs radiation produced

by the hot central core. The degree of absorption depends on optical

depth from the source to the observer. As the wavelength varies, the

optical depth changes, thus, modifying the absorption. This, in turn,

alters that region of the cloud which is observed. To illustrate

these points, the relative contribution to the observed intensity is

plotted as a function of distance along the ray in Figure 17. The

wavelength and the optical thickness to the peak temperature point

are shown as parameters (the integral under the curves is directly

proportional to the observed intensity). At 2.86 micr:ons, the debris

is very thick and the observed emission originates in the outer cool

region of the cloud. As the wavelength increases, the optical thick-

ness decreases and the emission is more characteristic of the hot

inner-core. At later times when the debris has been diluted by the

entrainment process, only the band centers are fully absorbed. The

:i. wings of the band are thin and the relative intensity distribution

becomes independent of wavelength as is shown in Figure 18.
=I/Figures 19 and 20 present the optical thick~ness from the

edge of the disturbed region to the peak temperature point as a

function of time and wavelength. The C0/02/H20 debris is opticall.y,

thin for wavelengths less than 2.65 microns and greater than 3.15

microns, i.e., that region where GO abzorption is not signif icaw

On the other hand, the CH /0 mixture is optically thick fo- all2
:wavelengths considered at time 1 sec. For lator times the clotid

becomes opticallv thin at wavelengths less than 2.45 microns .and

greater than 3 microns.

In .summary, predictions have been made for the emission pro,

duced by the explosion debris of C0O 2/H20 and CH1 /02 mixztnre%. The

radiation is signifi-antly effected by absorption. Emission at the

band centers where the cloud is optically thick, originates in a

region which is removed from the peak temperature point. The relative

2b
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location of this region is a function of time and is determined by

the optical thickness. The computed intensity does not vary sig-

nificantly with time. On the other hand, radiation from the wings

of the bands originates in the region of the peak temperature, and

the intensity is strongly dependent on time.

111.3 EXPERIMENT DESIGN

The prime considerations in the design of the IR vidicon field

experiment are data interpretation and dynamic range. Of secondary

importance is the observation of seedants or tracers which can be used

to follow the entrainment process as was originally suggested by
9Wolfhard and Alyea. Fortunately, these requirements are compatible

in certain wavelength regions, the selection of which is described

below.

When the debris cloud is optically thick, absorption determines

that spatial region which is observed (see Figure 17). Consequently,

optical thickness effects must be removed to obtain the true distri-

bution of temperature and concentrations 4ithin the cloud. This

correction will depend upon the profiles themselves and complicate

data analysis irmiiensely. Fo1or this reason, wavelengths where zhe

cloud is always thin should be selected for observation.

Referring to ri~ure 19, wavelengths below 2.65 microns are

optically thin for CO/021H 0 explosions. The debris fro,- CHI/ 0
mixtures is always optically thick at early times. Vowever, at late

times, greater than four seconds, the cloud is optically thin at
wavelengths lest thin 2. , microns or greater than 3 microns, These

ranges then, are ideal from the viewpoint of data interpretation.

Tha I R, have a dynamic range of approximately 100A

Thus, it is not possible to observe the entire event using one sensor

system (see Figures 15 and 16). Consequently, it is recommended that

the two available vidicon sensors observe the same wavelength range

28
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using different sensitivities. This will extend the available dynamic

range from 100 to 10.4 Further, the low gain system which responds

to peak, early time intensities will be equipped with a field stop to

reduce light levels. After several seconds the intensity of the event

will decrease to the noise level of the field stopped system. At this

point, the stop will be phy-sically removed and the sensor wil] operate

wide open to provide high gain response. This in,--effect will increase

the available dynamic range to 106 whtch istmere-ht r sufficient to

cover the intensity variation 'over the" time period of Lx..est for the
optically thin spectral resions cited above - - -

A second difficulty- asisociated with -vidi-!on s is -is the
effect of saturation ct-he less intense reg'iof the<nmage, i.e.,

the familiar blooming effect. Thepred C.tons presented in this re-

port represent peak intensity livels. The-ege of the disturbed

region, however, will have an intensity characteristic of the back-

ground level. Blooming of the center region then may saturate

the entire image and eliminate useful data. Hence, it may be

necessary to work in a spectral interval where the intensity of the

central region is reduced by absorption while the edges which are

thinner are not. This, in effect, will decrease the dynamic range

over the image and allow observation of the less intense spatial

features. In the case of C0/0 /H 0 explosions, ?.S to 2.6 microns
2 2

is idea] while for CH4/02, 2.9 to 3.0 microns appears a reasonable

choice to minimize blooming effects.

The use of s-dants or tracers to visualize the fluid

mechanical processes is appealing. The proposed experiment would

employ small bags or containers of tracer material suspended within

the main balloon. Motion of these point sources within the flow

should enable elucidation of phenomenon such as entrainment and

turbulence. The seeding material must, of course, have an observable

ER spectrum. Further, it must be stable under the high temperature

conditions of the explosion and remain gaseous as the debris cools.

31



Of the materials examined, the hydrogen halides are most advan-9 .
tageous. HF emits strongly in the 2.3 to 2.8 mi_-Ton region while
the HCI spectrum is most intense from 3.3 to 3.7 mncrons. These

materials are stable and remain gaseous at low tempeyrature.

Table II summarizes the favorable wavelength region for
observing the mixtures under consideration within the limits described

above. The results show that all criteria can be achieved for

C0/02/H20 mixtures at wavelengths between 2.5 to 2.6 microns. On

the other hand, no single wavelength can be selected for CH! 02
mixtures. 2.9 to 3.0 microns will minimize blooming while HC! can

be observed only above 3.3 microns. Consequently, the appropriate

filter cannot be selected before the extent of tleblooming problem is

determined in the laboratory.

32



TABLE II

FAVORABLE WAVELENGTHS FOR OBSERVATIONOF EXPLOSION DEBRIS

PROPERTY MIXTURE

C/2 'U20 C 4  2

Optically thin <2.65/L 2 461

Minimize blooming 2.5-2.6)1 2.9-3.0Z(

Observe seeda'-t HF 2.3-2.8.a HCI 3. 31-3. 71

"'CHU /0, is always optically thick beffore 4 seconds.

33
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CONCLUSIONS AND RECOMMENDATIONS

Predictions of the IR radiation produced by the debris of
stoichiometric C0/02/H20 and CH4/O 2 mixtures have been made. Thecalculation considered optical thickness effects as well as spatial
and temporal variations of the major species, CO2 and H 0 and

2 2temperature. The results show that the spectral intensity is a
strong function of wavelength and is determined in part by the
optical thickness of the cloud.

The predictions have been applied to select appropriate filtersfor an infrared vidicon sensor system which will be used for tbser-vation of balloons exploded in the field. The following recommen-
dations are made:

1. The two available vidicon cameras should be operated
to provide maximum dynamic range. This can be
accomplished by using matched spectral filters andadjusting the sensitivities of the cameras such that
they just overlap.

2. CO/02 /H2 0 explosions are preferable to those of CH4 /02because the former are optically thin. This obviates
laborous and uncertain corrections for the removal of
optical thickness effects.

3. 2.5-2.6 microns is an ideal wavelength for observation
of CO/0 2/H20 mixtures. The debris is always optically
thin, the dynamic range over the time period of interest
is acceptable and HF can be used as a seedant.

4. Two filters are recommended for CH4/02 mixtures. The
first, between 2.9-3.0 microns, will mrimize the effect
of blooming but, will not be capable of observing a
seedant. If laboratory experiments demonstrate that
blooming is ra-t significant, a filter at 3.3 microns
will be satisfactory and cai. observe an HCl seedant.
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