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SUMMARY

Predictions of the IR radiation produced by the debris of
stoilchiometric CO/OQ/HQO and CHu/O2 explosion mixtures have been
made. The calculation considered optical thickness effects as well
"as spatial and temporal variations of the major species, CO2 and
HQO and temperature. The results show that the spectral intensity
is a strong function of wavelength and is determined in part by the
optical thickness of the cloud. The predictions have been applied
to select appropriate filters for an infrared vidicon sensor system
which will be used for observation .of balloons einploded in the field.
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I. INTRODUCTION

The Air Force Weapons Laboratory (AFWL) is conducting a series
of field experiments to evaluate the flow characteristics of balloon
explosions.1 A prirary diagnostic for these events will be an infra-
red vidicon sensor system operated by the Géneral Electric Company
Space Sciences Laboratory (GE-SSL) under sponscrship of the Advanced '
Research Projects Agency (ARPA). This veport presents design pre-
dictions for these measurements.

The detonable mixtures under consideration include stoichiometric
mixtures of 00/02/H20 and CHu/OQ‘ The major products of the explosion,
CO2 and H2O, exhibit strong infrared signatures between 2.5 and 3.5
microns. In fact, the debris of the explosion is optically thick in
this spectral region. Consequently, a prediction of the expected
emission from the explosion must solve the radiative transfer equatien
along a line-of-sight passing through the disturbed region. This
will enable the selection of appfopriate spectral filters to optimize
the measurements and will define the desired dynamic range of'the '
sensor system. | ' '

The .ollewing sections describe the methoaclogy uged for the
vadiation.prediétions, present results computed for the two nixtures:
under consideration and P@éommend.instrumantvparameters for the field -
experiments. o o | SR '




1T, _ZDISCUSSION OF THEORY

IT.1  INTRODUCTION

The detonation products of steichiometric mixtures of
CO/OZ/HZO and CHu/O2 contain large quantities of HQO and COZ’ In
addition, trace amounts of C0, OH, H2 and various hydrocarbons are
present.2 The infrared spectra of the major species are particularly
strong from 2.5 to 5.5 microns as is shown by Figures 1 and 2. This
in conjunction with the expected concentrations leads tc the con-
clusion *hat the infrared signature of the exp1031on will ke governed
by the major species. Thus, only emission from H20 and uoz *sbcqg-,j 
- sidered in the present 1lculatlons.

A realistic prediction of the~expecfed,intensity\9F the
-explosion debris must consider the tempeﬁatuve‘and.concentratiOnr .
variation with time and position as well as optical thickness effects. -
The rad.ative transfer model, which accounts for'f“a’abové phenoménvi»
ology, is discussed below while that. of the debrls die gvibution_iQ
considered in the subsequent section. . o

IT.2 - RADIATIVE,TRANSPERVMODBL

The monochromatic radiative transfer equatién along a ray
passing through the disturbed environment to.the sensor:is given by:31a

dr, S o
ds &, "Iy %y L . ,:(})
where: S :
I, 7 spectral intensity (watts/cmz-ster-cm';)i
& = distance along ray (cm)
e, = spectral emission coefficient, fwatts/cma-ster~cm 11,‘-

a funcflon of s

gpectral absorption coefficient,>(l/qm) a funetion of s

\\3 wé’
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Formal integration of Equation (1)‘Pe3ults.in: - A ‘
.. £ @, ds" f a ds" : o
Iv‘(z) = I f € e (2.

where: | _ ' S
I, = background intensity (watts!cm?~ster-cm~l).:

In practice, Equation (2) has been integrated numerically using
Simpson's ruleﬂ a procedure whlch optlmlzes efflclenuy and mlnlmlzes o
y - . . , e

. The properties evaand o - are functlons of p031tlon and wave- .
>,number whlch must be evaluated prlor to 1ntegratlon. ’ .

Ideally, Equation (2) should be solved as a function of ° ‘
wavenumber with a resolution sufficient to describe the de+aiis of
self-absorbed, overlapplng rotational - llnes. However, for ‘the. case '

' :of HZO and COZ’ the ba51c spectroscoplc 1nformatlon (llne strengths
- and energy levels) is not available for the hot bands. Consequently,.'\
,the absorption and emission coefficients have been approx1mated by -
‘a statistical’ modelsu31ng 25 cm -1 resolution: The absorption
_;'coefflclents for HQO, shown in Plgure l, were taken from Ferrlsc,

' et al and are related to a by:

v H;O

) B ’ ’ (3)
- \):,H‘ O 1/7 S - .. v
o | v 2._:_ 1 +(k PH O/ua ) ) ,.
- where: e I o . T
, ' ”"'kv = spectral absorption coefficient from Réf;fS‘(cm';-atmf%Dif
. Py o = partial pressure of water vapor Catm)
a, = fine stfucturevterm (¢m”l)

Ihe fine‘structura term is proporticnal to the»local,mean value of
- - the ratio of the c611iaion half-width to the 1inelspaqing, y/d. -

(<2




"fTheAvalue for this parameter recommended by Ferriso, et al, is given
by: = | SR

: { 1/2 - 1/2 :
_ 0.5 300) . [ «300) )
a = —= ==} dp _ ({Z~ + 0.1} +
Y dv \ T ‘ HQO T o |
' ' ; (4)
0. 1593¢1 - PHQO)J
where.
o . T = local temperature °k L o .
4, = =xp(-0.0016 T + 1. 21) - Ce (8

A In the case of COQ, flne structure parameters were not readlly'
avallable. Consequently, the- theoretical absorptlon coefflclents of
'~fMa1kmue6, shown 1n Flgure 2 have been 1sed. o

-
-

W17

Va\) ,Coz B 2

. whevre: . -

mean spectral absorptlon coeff1c1ent from Ref. 6°

(em. 1--atm 1).

partial pressureﬁ.of»CO2 (atm)¢

. 1$he_total abeorption.coeffieient is now given by: -

v T OH0 T %,c0, -
:é and the em1351on coefflclcnt is computed u51ng Kirchoff's law:

- ‘where: 7 o |
B - B(T,v) = black body functionf(watts/cmz-eterucm";)

?éd’ - . f_» f ' .‘;  - _(G)' -



The: computatlonal procedure uses Lquatlons {(3) through (8) and

the data. of Figures 1 and 2 to evaluate ¢, and £, from a knowledge‘-

of the Fempepature and the partial pressures of 002 and‘qu. Nu-

:merical integration of Equation (2) is then accomplished using the

V-sky background intensities shown»in ?igurefB"as:initial con@itions.?__;f.’ﬁ

©IIL3 Flow Field of Exp1081on Debrls : ;*:"?.;--. u, ‘ L Jﬁ‘:;?
The properties: of the flow fleld assocmated w1th the debrls ' '
of - the ballﬁon explosion were. obtalned from the computatlons descrlbed
- . in Reference 1. A one- dlmen51onal Langranglan code (SAP) w1th -
“Lspnerlcal symmetry was usea -to burn’ a CH /O mlx‘ure. ‘The output
" ‘data then, supplled 1n1t1al condltlons for a tlme dependent, cylln«
~drically. symmetrlc model for compre351b1e, 1nv3501d, non eonductlng
laminar- flows (HULL). The"resultlng flow»fleluvaQVldEd ‘distributions
of temperature, density and thevratiq of entrained air to_explqsion'f:A G
.Vlldébric as a function of time and position.. These data were further !‘
. reduced by taking a ray -perpendicular to the ground pa391ng through |
 the hottest point of the dlsturbed env:wonment.8 The resultlng
_temperature proflles along thls ray for three values of tlme are -

’showv 1n Figure 4. j A ;.‘“ F P ;‘fi; }_'J<¢;§
_ The ratio of entralned alr to exp1031on debrls has bven usad :
to obtain partial pressures of .the major species, H 0 and cog.- Tt I
. was assumed that ambient air rontamned 3.1 x 10"2 and 1 01 » ID”l : ikt
»Vmole percent of CO, and H 20> respectlvely. The Jatter fimuvea haing
based on 60% relatlve hummdlty at 60 F. ‘The pavtial pve&wureafwf '
fCO and H20 are then given by: ’ S - ; s
| -3, 0 | ey

P

- .
1]
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e e e e e -

where:

<
[

H.0 mole fraction of HZO in detonated mixture

><
"

co mole fraction of 002 in detonated mixture,

and y, the mole fraction of debris in air is computed from:

y, & — (10)
a’ Ty IR |

2

 where:
My = molecular weight of debris mixture
R = ratio of air to debris in grams/gram from HULL
calculations.
Equation (9) is valid at low temperatures. However, at early’
times, CO2 and H20 are partially dissociated. Consequently, the
~ partial pressures of these species are somewhat reduced. This has
- been taken into account using the“equilibrated_reactiqns: o o

o, co.+-1/2f02-fl.?;a:*' SR R 2

"&fi{pﬁ'i 1/2 Hy # 1/2 0,

h ti‘

";555;The resultmng partlal pressures used for the eomputatlons are shown Ifﬂf~f:?{
. -as a function of ‘time and position in Flgures 5.8, The aSSumed S
ﬁfﬂdebrls comp081tlons ave shown in Table I. R SN :
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TABLE I
DEBRIS COMPOSITIONS

MIXTURE , MOLE FRACTION
co,, H,0
C0/0,/H,0 0.89 0.01
CH, /0, | S 0.3 0,667
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IIT, NISCUSSION OF RESULTS

IIT.1 INTRODUCTION

The calculational procedure discussed in the previous section
has been applied for the prediction of the emission produced by
Q:HZO = 1:0.5:0.01 and CHu:O2 = 1:3, The
results of these computations apply along a ray perpendizsular to the
ground and passing throngh the peak temperature point of the disturbed
environment. Three times; 1, 4 and 6 seconds were considered. The

detonating mixtures of CO0:0

details of the radiation field are prusented in the following sections.
Then, recommendations for the IR vidicon field experiments are out-
lined. ' - ' '

III.2 EMTSSTON PREDICTIONS

The spectral intensity prgdicted'fcr the CO and CH,4 detonations
is shown in Figures 9-11 and 12-1%, respectively. It is noted that
the CC, al ~orption coefficient fsee Figure 2) was ‘taken as zero for
wavelengths greater than 3.225 microns. This causes a jump in the.
spectrum which is particularly noticable in Figure 9, Difficulties
arising from tlis essumption are not anticipated because the field
measurements against CO target balloons will not be taken af wave-
lengths greater than 3.2 microns. ‘ ' o

Tvamination of the spectral intensities indicates, in general,
a strong variation with tima. However, the band centers are stfongly
self-absorbed anl the intensity is controlled by optical thickness
effects, Tor methane, the thickest regions of the spectrum exhibit
no dependence with time while for co, the variation is about a factor
of three. In contrast, the wings of the bands change by as much as
five to six orders of magnitude over the same time veriod. These
results are shown in Figures 15 and 16 where the dynamic range (ratio
of emission to background) is plottad as a function of wavelength.

16
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The behavior described above can be explained by noting that
the cool outer region of the debris cloud absorbs radiation produced
by the hot central core. The degree of absorption depends on optical
depth from the source to the observer. As the wavelength varies, the
optical depth changes, thus, modifying the absorption. This, in turn,
alters that region of the cloud which is observed. To illustrate .
these points, the relative contribution to the observed intensity is
plotted as a function of distance along the ray in Figure 17. The
wavelength and the optical thickness to the peak temperature point
are shown as parameters (the integral under the curves is directly
proportional to the observed intensity). At 2.86 miceons, the debris
is very thick and the observed emission originates in the outar cool
region of the cloud. As the wavelength increases, the optical thick-
ness decreases and the emission is more characteristic of the hot
inner core. At later times when the debris has been diluted by the
entrainment process, only the band centers are fully absorbed. The
wings of the band are thin and the relative intensity distributicn
becomes independent of wavelength as is shown in Figure 18.

Flguves 19 and 20 present the outzcal thlckness from the
edge of the disturbed region toe the peak temperatu"e point as a
"'function of time and wavelengrh The co/o, /H 0 debris is optically
;:thxn for wavelengths less than 2.65% m;evons and greater than 3.1§
_7ﬂicrons, i.e,, that regimn where FO ~absorption is not significan:.
. 0n the other hand, the CH, /0 mi\tura is aptlcallv ‘thick for all
lwavalewgth& consic ersd at tina 1 see. For latar times the cloud
becones o;t*cally thin at wavalangtha 1995 ;han ..45 microns ‘and
. greater ‘than 3 microna. '

In sunmary, vveglctxens hava been made fcr the emigsion pro-
"ducad by the explesion debris of uﬂlazlﬁ 0 and CH,, /O mixtuves, The
_vaaxatlon is significantly erfected by abg crpcxan. Lmins;on at the
band centers where the cloud is optically thick, originates in a |
region which is removed from the peak temperature point, The relative
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location of this region is a function of time and is determined by
the optical thickness. The computed intensity does not vary sig-

nificantly with time. On the other hand, radiation from the wings
of the bands originates in the region of the peak temperature, and
the intensity is strongly dependent on time.

III.3 EXPERIMENT DESIGN

The prime considerations in the design of the IR vidicon field

§ experiment are data interpretation and dynamic range. Of secondary
! importance is the observation of seedants or tracers which can be used
to follow the entrainment process as was originally suggested by

: Wolfhard and Alyea.g Fortunately, these reguirements are compatible
2 in certain wavelength regions, the selection of which is described
3 below.

When the debris cloud is optically thick, absorption determines
that spatial region which is observed (see Figure 17). Conseguently,
optical thickness effects must be removed to obtain the true distri-
bution of temperature and concentrations w~ithin the cloud. This '
correction will depend upon the profiles themselves and complicate
data analysis immensely. For this reason, wavelengths where the
cloud is always thin should be selected ?ar‘observation.

o Referring to Fisure 19, wavelengths below 2.65 miorens are
optically thin for cofozfsgo explosions. ‘The debris frpm,CH“lag
mixtures is always optically thick at early times. Howaver, at late
times, greater than four secands,'the cloud is optically thin at |
wavelengths les: thin 2.4% microns or greater than 3 micrang. These
ranges then, are ideal from the viewpoint of data_interprataticn.

~ The IR vidi_ous have a dvnamic range of approximately 100.
Thus, it is not possible to observe the entire event using one sensor
system (see Figures 15 and 16). (Conseguently, it is vecommended that
the two available vidicon sensors observe the same wavelangth range
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using different sensitivities. This will extend the available dynamic
range from 100 to 10." Further, the low gain system which responds

to peak, early time intensities will be equipped with a field stop to
reduce light levels. After several seccads the intensity of the event

will decrease to the noise level of the field stopped system. At this

[aly

point, the stop will be physically removad an the sensor %ill operate

8 in*effect will 1ncre 15e

r},.

wide open to provide high gain response. Tl
the available dynamic range to 106 'Lién is: mbre than ufficient to
cover the intensity varlatlon over the time perlod of i'fgrest Zor the

s
t
i

optically thin spectral re ElOPS thed above.f":‘—g;.\p o

A sacond difficulty:assoc;ated-w;th=v on';;.vcicviu the
effect of saturatién46§;the less intense regaons of +the dmage, i.e.,
the familiar blooming. effect, The pre digd tions prezented in this re-
~ port represent peak intensity leveis.; T‘ euge of the disturbed
region, however, will have an intensity characLerlstlc of the back-
ground level. Blooming of the centepipegion then may saturate
the entire image and elimiﬁaﬁé useful data. Hence, it may be
necessary to work in a specfral interval where the intensity of the
central region is reduced by absorption while the edges which are
thinner are not. This, in effect, will decrease the dynamic range
over the image and allow observation of the less intense spatial
features. In the case of CO/O /H 0 explosions, 2.5 to 2.6 microns
is ideal while for CH“/OZ, 2,9 to 3 0 microns appears a reasonable

choice to minimize blooming effects.

‘The use of s..dants or tracers to visualize the fluid
mechanical processes is appealing. The proposed experiment would
employ small bags or containers of tracer material suspended within
- the main balloon. Motion of these point sources within the flow
should enable elucidation of phenomenon éuch as entrainment and
“turbulence. The seeding material must, of course, have an observables
iR spectrdm. Further, it must be stable under the high temperature
.conditions of the explosion and remain gaseous as the debris cools.
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0f the materials examined, the hydrogen halides are most advan-
tageous.9 HF emits strongly in the 2.3 to 2.8 mi~»on region while
the HC1 spectrum is most intense from 3.3 to 3.7 mwcrons. These

materials are steble and remain gaseous at low temperature.

Table II summarizes the favorabkle wavelength regicn for
cbserving the mixtures under consideration within the limits described
above. the results show that all criteria can be achieved for
CO/G2/H20 mixtures at wavelengths between 2.5 to 2.6 microns. On
the other hand, no single wavelength can be selected for CHH/O2
mixtures. 2.9 to 3.0 microns will minimize blooming while HCl can
be observed only above 3.3 microns. Consequently, the appropriate

filter cannot be selected before the extent of the blooming problem is
determined in the laboratory.
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TABLE II
FAVORABLE WAVELENGTHS FOR ORSERVATION OF EXPLQSION DEBRIS

PROPERTY MIXTURE
0 /
) C0/0,/H,0  CH /0,
: Optically thin ' <2.65H <2, usps
>3.0H
Minimize blooming 2.5-2.6 2.9-3.01
Observe seedan* HF 2.3-2.84 HCI 3.3~-3.71k

*CHM/OQ is always optically thick beforeiu seconds.




CONCLUSIONS AND RECOMMENDATIONS

Predictions. of the IR radiation produced by the debris of
stoichiometric CO/OZ/HQO and CHU,/O2 mixtures have been made. The
calculation considered optical thickness effects as well as spatial
and temporal variations of the major species, 002 and HZO and
temperature. The results show that the spectral intensity is a
strong function of>wavelength and is determined in part by the
Apptical thickness of the cloud.

The predictions have been applied to select appropriate filters
for an infrared vidicon sensor system which will be used for cbser-

vation of balloons exploded in the field. Thé-following recommen~
dations are made: ‘

1. The two available vidicon cameras should be operated
to provide maximum dynamic range. This can be
accomplished by using matched spectral filters and
adjusting the sensitivities of the cameras such tha
they just overlap.

2, CO/OQ/HQO explosions are preferable to those of CHu/O2
because the former are cptically thin. This obviates
laborous and uncertain corrections for the removal of
optical thickness effects.

3. 2.5-2.6 microns is an ideal wavelength for observation
of CO/OQ/HQO mixtures. The debris is always optically
thin, the dynamic range over the time period of interest
ils acceptable and HF can be used as a seedant.

. Two filters are recommended for CHu/Oz mixtures, The
first, between 2.9-3,0 microns, will miimize the effect
of blooming but, will not be capable of observing a
seedant. If laboratory experiments demonstrate that
blooming is r-t significant, a filter at 3.3 microns
will be satisfactory and cai observe an HCl seedant.
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