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In the book are discussed the features
of the structure, properties and regulation
of the anlsotropy of reinforced plastics
(systems of the pliable matrix type - con-
tinuous reinforcing filaments). Primary
attention 1s given to the negative features
of these materials - weak shear and tensile-
compresslve strength perpendicular to the
direction of reinforecing. Taking these fea-
tures into account the traditional problems
of the strength of materials and applied
elasticity theory (rods, plate, thick-walled
rings) are examined. Speclal attention is
given to the mechanics of winding. There is
estimated the error introduced by the applica-
tion of solutions, constructed on the basls of
the hypothesis of undeformable standards.

The book contains vast experimental material,
obtained during tests of oriented glass
flber-reinforced plastics with fibrous,
laminated and three-dimensional cross-1linked
structure. Illustrations 162, Tables 40,
References 321 titles,.
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PREFACE

Among the problems of contemporary technology the problem of
the creation of new structural materials with controlled physico-
mechanical characteristics occuples a special place. From this
viewpoint reinforced plastics are of great interest, properties
of which can be controlled in a sufficlently wide range of their
change.

The ordered and thoroughly substantiated theory of the strength

and deformation of anisotropic heterogeneous materials, which
considers the specific features of the mechanical characteristics
of material, in particular heterogeneity, strong anisotropy,

weak shear reslstance, different tensile and compressive strength
and others, undoubtedly will ald the wide application of
reinforced plastics 1n the different areas of contemporary
technology.

The account of the speclific features of the mechanical
properties of material can significantly change the traditicnal
approach to “he calculation of some structural elements,
manufactured from reinforced plastics. The fact Is that the
mechanical characteristics of plastics, reinforced by filaments,
as a ruie, are such that the practlical need appears for the
account of the effect of such stresses and deformations, which in
the traditiocnal applied theorles of calculation of structuzul
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elements are considered secondary and negligible. As applled to
reinforced plastics these stresses and deformations, in spite of
their comparative smallness, can become the reason for structural

failure.

The authors of this book on the basis of their theoretical
and experilmental data, taking into accoun’ the known results of
other researchers, revealed some specific features of the mechanical
prnperties of reinforced plastics and showed how these features
change the traditional methods of calculation of strength and
deformation of structural elements. In the book in detail there
are lnvestigated the gquestions connected with the weak resistance
of these materlals to shear,,the interesting problems of the
mechanlcs of filament winding are examined, the questions of
strength and deformation of glass flber-reinforced plastics are
discussed in detaill taklng into account small irregularitles of
the reinforcing fllament, -the correct ways of <transition from
heterogeneous to quasi-homogeneous material are shown and others.

The questions examined in the book are illuminated so fully
and thoroughly that the reader-theoretician will find the
experimental material in 1t which will help him to correctly evaluate
the existing theories of reinforced media and to outline the ways

of constructlion of new more substantiated applied theories, and
the reader-applier - those methods and ways by which he will know
how to correctly calculate the series of elements of constructions,
manufactured from reinforced plastics. The authors >f the book
did not answer all the questions connected wlth the problem of

the construction of the mechanlcs of reinforced plastics, but the
steps made by them 1n this area are very successful. The principles,
which form the basis of the book, and also the results given in it
are such that they will interest a wlde circle of specialists,

who are occupled with the theoretical and applled problems of the
mechanics of relnforced media.:

S. A. Ambartsumyan
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INTRODUCTION
\

Contemporary technical progress considerably expanded the
circle of utilized structural materials. The anilsotroplic composite
materials and, first of all, reinforced plastics occupy a vi..c. =
place among them. At the basis of the creation cof these materials
lies the 1ldea of reinforcing. Attention to this ldea is caused by
the tendenc& to combine 1ightnesé with strength and hardness 1n
the assigned directions. Anisotropic natural materials have already
long been used in technology; however, only the creation of
artificial reinforced materials opens the possibility of the wide
and purposeful control of the anisotropy of properties. This
makes 1t possible within known limits to coordinate the fields of
resistances and effective forces. At present two baslic classes of
composlite materials can be 1solated matrlix + particle ahd matrlix +
+ continuous filaments. The materials of matrix + particle class
can be related to quasi-isotropic materials [227]. They are used
mainly for the manufacture of intricate-shape parts with low
strength properties. The materials reinforced by fillaments are

structural anlsotroplc materials. The anisotropy of properties

is created in the process of the produdtion of articles and is a
controllable value. These materials recelved the greatest
propagatlon during the creation of important constructions. The
prospect of materilals, reinforced by filaments, is doubtless.
Strengthening by filaments has so many advantages that, apparently,
in the future 1t will make up the basls of producling strong

FTD~MT-24-384-73 vii




engineering materials [116]. The construction of compositions
is at present the subject of numerous investigations (see, for
example, [199] and other articles of the collection).

The leadlng place among materials of the pliable matrix +
+ continuous fllament type 1s occupled by relnforced plastics:
glass fiber-reinforced plastics, asbestos fiber-reinforced plastics,
boron fiber-reinforced plastics, materials reinforced by carbon and
graphite fibers, and others. The idea of the creation of reinforced
plastics 1s extremely simple [107, 114]. They are materials,
the reinforcement of which provides strength and hardness of
composite, and polymer bonding agent - solidity of material and
pliability. This principle of construction of material makes it
possible to combine high strength and hardness, characteristic for
reinforcing fillaments, with the technical properties, which are
valuable in polymer substance, and to control the anlsotropy by
means of changing the orientatlon and mutual arrangement of the

reinforcing filaments.

In spite of the wide application of reinforced plastics,! up
to the sixties the emplrical approach to the creation of the
materials themselves and constructlions of them predominated.
Receritly in connection with the numerous technical applications
the Interest in the mechanics of composlte materials, including
the mechanlcs of reinforced plastics, considerably increased.
Large lnvestligations on the creation of the theory of reinforced
media were conducted by V. V. Bolotin, P. M., Ogibalov, G. N. Savin
and G. A. Van Fo Fy, Hashin and Rosen, Hill, Tsal and Azzl and
others. The strength of reinforced plastics and the development

!The 1ndustrial production of reinforced plastics rapidly
increases. For example, the production of glass fiber-reinforced
plastics in recent years in many countries of the world grew into
a large branch of industry. In the 1mmedlate future - the
creation of the 1lndustrial production of metals reinforced by
filaments. However, while the technology of the creation of rein-
forced plastics and their subsequent treatment is comparatilvely
simple, for metals reinforced by filaments the technical problems

are the main ones.
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of criteria of limiting states for parts from these materlals are
examined in the works of I. I. Gol'denblat, N. I. Malinin,

A. K. Malmeyster, J. Martin, Niederstadt, Norilis, Yu. N. Rabotnov,
S. V. Serensen and coworkers, N. T. Smotrin and V. M. Chebanov
and others. To the development of methods of calculation of
parts from composite materlals there are dedicated the works of
S. A. Ambartsumyan, V. L. Biderman, L. A. Galin, E. I. Grigolyuk,
V. I. Korolev, M. K. Smirnova, A. M. Skudra, G. A. Teters and
others.' In J. Hugo's work [294] there are given the methods

of calculation of typical parts from lsotropic plastics.

In literature, especially 1n chemical-technological, it is
accepted to emphasize the high specific strength and the rigidity
of composite materials and to keep quite about their negative ]
properties. However these materials inherit not only positive,
but also the negative properties of components; the knowledge of
negative properties 1s no less lmportant for the correct
utilization of composite materials [224]. The basic features
of the materlals reinforced by filaments, which 1t 1s necessary
to consider during the development of methods of calculation and
the evaluaticn of the supporting power of parts, are caused by
the pliable matrix (for example, polymer bonding agent), by the
features of the structure and comblinaticn of the properties of
components. Dlagram 1 1s an attempt to show that 1t engenders
these features, and also the ways of taking them Into account
during the development of methods of calculation and evaluation

of the supporting power of constructilons.

The strength and deformating properties of reinforced plastics
(the left side of Diagram 1) are not the deterministic value, and

1A detailed bibilography is given in the list of the used -
literature, and also in the books of many of the enumerated
authors (for example in [5, 6, 23, 30, 112, 132, 153, 170, 302]).
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essentlally depend not only on the diagram of reinforcing, but

also on technological, structural and operational factors. For

the deslgnation of substantiated safety factors the knowledge |
of the actual supporting power is necessary. Unlike the traditional
materials, which 1n dellivered state have certaln preassigned
properties, the strength characteristics of parts made of reinforced
plastics are created in the process of molding and are mainly
determined by the parameters of this process. As the experience

of the manufacture and operation of different parts from glass
fiber-reinforced plastics shows, in articles it 1s often not
possible to realize the strength properties of materials, obtained

1 during tests of standard samples [227]. This requires the
optimization of the methods and procedures of obtaining parts.

Thus, the presence of polymer bondlng agent by virtue of the
specific character of the properties of polymers makes the
reinforced plastics extremely sensitive to the previous temperature
and power history of the sample - to the technology of manufacture
and condition of subsequent operation (temperature, character

and the duration of loading).!

The load-carrylng capacity of a number of materials reinforced
by fillaments 1s suffliciently studied in detall. For example,
strength and deformation of reinforced plastics taking into
account structural, technological and operational factors are
examined in the books published recently (see, for example, [21,
153, 203, 268, 298]; detailed bibliography is given there). The
calculated resistance of glass fiber-reinforced plastics of
different structure is glven 1n review sources [23, 227], in these
works there 1s given a summary of the theorles of limiting states

!The inelastic properties of polymer bonding agent require the
complicatlion of mechanical models of the material. In the book |
this question 1is not considered. The 1lnelastic properties of the
pllable matrlix of composlite materials are taken into account for
example in [66, 67, 130, 171, 200], which contain vast
bibliographies. The problems which appear in this areas are
formulated by A. A, Il'yushin and P. M. Ogibalov [103, 1047,
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for composite materlals. The features of the materials, reinforced
by filaments, caused by thelr structure and the combination of
properties of components (the right side of Diagram 1) and the
questions engendered by these features are studied in less detall.
F The examination of these questions comprises the basic content

! of the book.

The composites, reinforced by fllaments, are heterogeneous
structural anlsotroplic materials. However the existing elasticlty
theory of anisotropic body, developed in S. G. Lekhnitskily's

i basic works [121-123], is developed basically for homogeneous
materials. The specific properties of composite materials

require an account of the real structure and circumspection
during the replacement of homogenous medium by gquasl-homogenecuw;
in any case the error introduced by such a replacement must be
evaluated. The theories of reinforced media developing in recent
years possess precisely such an advantage. The utilization

of these theorles makes it possible, at least at the stage of
derivation of the fundamental equations, to consider the materilal
as a structurally heterogeneous medium.

The classical methods of calculation of typical constructions
are irreparably indifferent to the transverse mechanical
characteristics of the material. In the real ranges of change
of the properties of reinforced plastics thls can lead to sub-
stantlal errors, therefore 1t 1s necessary to turn to the refined
theories, which make 1t possible to feel the phenomena connected
with weak shear and transverse characteristics., For the materials
and constructions in question the engineering theories
(E. Reissner, S. A. Ambartsumyan, et al.), considering the indicated

features, acquire speclal interest. The book contains an account
of the negative features of materlals reinforced by fllaments,
caused by the structure and the combination of propertles of

the components: by the substantial anlsotropy of elastlc and 1
strength propertles, by weak resistance to interlayered shear %

i
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and compression perpendicular to the reinforcing filaments. On an
example of comparatively uncomplicatved, but principally

important problems there 1s shown not only the importance, but
also the need for the account of the noted features durling the
calculatlion of parts made of these materials. In every case in
question there 1s glven an estimate of the error introduced by

the application of traditional methods of calculation and 1t is
shown that 1n many prccedurally important cases the introduced
error 1s inadmissible.

The majority of the materials reinforced by fllaments combine
the high strengths in the directlion of fibers with comparatively
low rigidity. For the orlented glass fiber-reinforced plastics
with the strength approximately equal to steel the elastic moduli
in the direction of filaments are U4-7 times less.! The utilization
of the high strength of reinforced plastics 1s connected with
large deformations. At the same time the working structural
deformatlions are comparatively small. From here comes increased
interest in the refinement of methods of calculation for the rigidity
and stability of parts from these materials (since precisely the
rigldity is often definlte for constructions of materials reinforced
by filaments) and the possibllity and advisability of elastic
examination.? In the book the maln attention is given to the

'Recently there appeared monodirectional compositions (rein-
forced by filaments of boron and graphite), whose elastic modulus

in the direction of filaments exceeds 3~105 kgf‘/cm2 (245, 260],
i.e., 1s higher than for steel.

2Requirements for the assigned hardness lead to the fact that
the material virtually works only in the initial, comparatively
small section of dependence o ~ €, in which the existing composite
materlials of the pliable matrix + ccntinuous filament type with
loading in the direction of reinforcing lead completely to linearly
elastic (see, for example, [29, 91, 130] and others).
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rigidity of the construction; strength was evaluated only from

the viewpoint of the danger of fallure as a result of interlayered
shear and compression in the directlnn perpendicular to the
reinforcing filaments.

Research of the materials reinforced by filaments 1s conducted,
as a rule, on an idealized model, made up of straight and strictly
parallel reinforcing elements routinely arranged in pliable
matrix.! In actuality the macrostructure of all the types of
materials 1in questicn 1s far from this model. The bendings of
fllaments - regular and random - are the unavoldable result of
the existing technology of manufacture of the materials, reinforced
by flilaments, and parts made of them. Therefore special attention
is gilven to departures from the idealized model of material
and to the evaluation of the role of bending and subsequent
tenslon of the reinforcing filaments on strength and deformating
properties. The effect of small initial bendings 1s so great
that the 1dealization of the materlals in question, reinforced
by fllaments, as systems of direct reinforcing element is
inadmissible for many problems.

The book contalns vast experimental material, cbtained
basically during tests of glass flber-reinforced plastics,
reinforced by rove (AG-4S, LSB-F, 27-63S and others) and fabric of
ordinary and three-dimensional braiding (VPS-7, SKT-11l, EF-32-301
and others), with different anisotropy, belng regulated because
of the placement of fllaments,

It is necessary to note that although tne examinatlon 1s
conducted on an example of reinforced plastics and 1n elastic ;
formulation, the investigated features are general for all materilals }

'The statistical theory of elasticity of reinforced plastics,
which considers the random character of the arrangement of the
reinforcing filaments, 1s developed by S. D. Volkov and colleagues
(73, 74, 205, 207] and others.
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of the class in question. The increase of strength and rigidity

in the direction of filaments because of the appllcation of i
stronger and more rigid reinforcement is unavcidably accompanied

by relative intensification of negative properties. The elastic
statement of the problem does not deprive the obtained results of
practical interest, since often in constructions 1t 1s posslble

to use only the "useful strength" of composite materials. Spreading
of the obtained results to the case where the pliable matrix is
linear-elastic-viscous can be realized on the basls of viscoelastic
analogy [84]. The investigated features of the materials reinforced
by fllaments are basically determined by the pliable matrix,

which 1s more sensitive to the duraticn of loading. For this

very reason many reinforced plastics possess distlnctly expressed
shear creep. The account of inelastic properties should lead to
intensification of the effect of the investigated features.

The authors worked on the book together. The baslic work on
writing Chapters I and IV was accomplished by Yu. M. Tarnopol'skiy;
IT and IIT Chapters were written by A. V. Rose. 1In the work are
used the results obtained by colleagues of the laboratory of
polymer constructions of the Institute of Mechanics of Polymers
of the Academy of Sciences of Latvian SSR G. G. Portnov,

R. E. Brivmanlis, I. G. Zhigun, T. Ya. Kintsis, V. A. Polyakov,

V. V. Khitrov, R. P. Shllts, on whose works are glven references

in the appropriate paragraphs. On the manuscript and 1llustrations
worked L. L. Volgina, S. A. Vanaga, G. A. Klyavinya. The authors
are sincerely grateful to all these comrades. All critical
observations and wishes about the questions touched upon in the
book will be received with great appreciation.
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SECOND CHAPTER

RODS FROM MATERIALS WHICH WEAKLY
RESIST SHEAR

§ 2.1, TENSION-COMPRESSION AND SHEAR

2.1.1. The simplest cases. The simplest loading cases u:
uniform tension and compression along the direction of reinforcing
x or in perpendicular direction (Fig. 2.1.1), and also pure shear
(Fig. 2.1.2). With loading at a certain angle to the dirsction
of reinforcing the problem

becomes somewhat com- a) b)

4 6,
plicated, since normal 6 - b4 N TETNNEY
stresses 0, and o, e 1 __1x
cau lso shears b £

se also ars Yy, ERRRER
and tangential stresses G,
T - elongation or Fig., 2.1.1. Diagram of uniform ten-
§é sion (compression) a) along the
LICTRORI €x S €z directlion of reinforcing; b) perpen-
1285 117, 123]. The dicular to the direction of reinforc-
ing.

features of the structure
and properties of materials reinforced by filaments (see

Chap. 1) make 1t possible to disregard the changes of stresses
and deformations 1n the thickness of the separate layer of

Fig. 2.1.20 Dia- ‘z r.
gram of pure shear. = P e e T,
J

..l -
1%

T\

FTD-MT-24-384-73 1

s




reinforcement h' and the interlayer of bonding agent h"

(Fig. 2.1.3). This assumption can be preserved for a broad class
of problems, where the stressed state 1s changed sufficiently
slowly [41, 42, 148, 159]. 1In the assumption that the layers

and interlayers work together (without slippage), from the

examination of Fig. 2.1.4 follows

eu=e'vi=e"\ii hog= Wo'vi +h"0"«i; . 1
Vi = Cpri =it "\\i=h\\|+h' WITH (2.1.1)
di=ati=a"0 he, =W +h"e".

?/”" o / (values with one prime
L R e pertain to layer, with

two they pertain to inter-
layer; the values without

!

!

L
O S

prime pertain to composite
Fig. 2.1.3. Laminated model of rod.

material, i.e., are
averaged along the layer
and interlayer lying side by side). On the basis of Hooke law,
disregarding the Polsson efiect, it is possible to write:

" e”s
gx= E,\e,\'; alx . E’.\e'l; = E
’. 0 o__ e .,
o:=E.e;; 0o :=E"e; o”:=E".e"; (2-102)
" "
:=Guyen i =G"v:y15i =G5

The Jjoint solution of (2.1.1) and (2.1.2) makes it possible for the
accepted laminated model of materlal to express the elastic moduli
of the composlte material by the parameters of the layer and
interlayer:

] J
£ r.,,(n ,”,,).

" £ :
£: ~ 1;,,‘,,(1 l.,.l) ; (2.1.3) |

Gl:""G\ (l G" h) .
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6 e ' 5° & 7
= e e v/ /
O; = ) ;’! [ y
el S g A el 4 T, ' A (4
-f'—« [ | --‘-'- # ;J! N r },!
. . A ; i 4
. e
a) b)
Fig. 2.1.4. The elements of i-th layer and

i-th interlayer lying side by side with load-
ing by normal (a) and tangential (b) stresses.

Since the rigidity of reinforcement is substanticlly greater
than the rigidity of bonding agent (E% >> E;, Eé >> Eg, G;z >>
the second terms of the expressions in parentheses can be dis-

Gl!
XZ
regarded. The rejection of these terms corresponds to the
assumption that the layers work only on compression-tension, and
the interlayers work only on shear. This assumption is widely
used during the study of the mechanism of the transmission of

forces in oriented glass fiber-reinforced plastics (see, for
:xample, [227]).

With uniform tension-compression along the reinforcement
2.1.1) all the elements of the rod have ldentical

(see Fig.
"
X
The stresses o; and 0; are determined by

deformation ¢ e €

X X
sectlons remain flat.

oO/Ex, consequently, all the cross

expressions (2.1.2), and the supporting power in thils case -
tasically by the strength of the reinforcing filaments. With pure

shear (see Fig. 2.1.2) there 1s achieved uniform stressed state

' "
I Tz Tys Tgs and the corresponding shearing strain 1s

computed by (2.1.2).
material are identical, the supporting power under conditions

Since the stresses in the compcnents of

of pure shear 1is determined by the pliable matrix.

The stresses received by the matrix, which possesses low
strength and rigidity (primarily tangential stresses, which
l.e., shears in the interlayer of

cause interlayered shears,

FTD-MT-24-384=73

)




bonding agent, which is located between the flilaments or layers

of reinforcement),’® are the most dangerous for constructions

from materials reinforced by filaments. It is impossible

to completely avold interlayered shears by means of the correspond-
ing placement of reinforcement at the present level of technology

of reinforcing, at least near places of applicatlon of loads and
attachment. Therefore there is a class of problems, in the
examination of which the main attentlion must be given to the weak

shear strength.

2.1.2. The bending of cross sections with stretching. 1In
the dilagram of loading, which differs from that depicted on
Fig. 2.1.1, the cross sections near the places of loading are
bent. There appear zones of edge effect, in which U # 0 and
oy # const. In 1sotropic rods the edge effect of this type in
accordance with the St. Venant principle attenuates very rapidly
(see, for example, the investigations of S. P. Timoshenko [236],
P. F. Papkovich [157], M. M. Filonenko-Borodich [249]). 1In
anisotropic rods the extent of the zone of edge effect due to
the weak shear strength can be substantlally changed depending on

f=h
the parameters B = ;ﬁ—. Consequently, the purely geometric

Xz
approach, common for isotropic or slightly anisotropic bodles,

in many instances turns out to be insufficlient and can lead to
significant errors. Let us note that the estimation of the zone

of edge effect 1s of Interest not only during the calculation of
constructions, but also during the development of the procedure

of tests of substantlally anisotropic materials. The heterogeneity
of the stressed state, connected wlith conditions of attachment and
loading of samples, strongly affects the results of tests of such

'The weak resistance of the matrix becomes apparent during
the loading of unidirectional and laminated materials perpendicular
to the reinforcing filaments (see Fig. 2.1.1b).
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materials as, for example, oriented glass fiber-reinforced

plastics.

The loading of a rod by forces applied on the ends is
examined by A. S. Kosmodamianskiy [115]. There 1s practical
interest in the case where the rod is stretched by tangential
forces, applied on the sections of the lateral surface
(Flg. 2.1.5). The diagram of loading in question is realized,
for example, during the tensile test of samples made of reinforced

plastics.,

The differential equation of the problem can be obtained
during the examination of equllibrium of the element of the layer
and interlayer (Fig. 2.1.6). After the substitution into the
equation of projections to longitudinal axis x

h g‘Tar\—‘ dx+ (twii—=Tai-n)dy =0 (2 1.4 )

of stresses expressed through displacements of layers Uy s

du; _n M=l
Oxi=ExEt‘. tv:i=0Cr: h ’ (2.1.5)
N
5 N
L]
0, 36;
———g h h ———6 + 'éx‘ d‘
J
:h%
Tia
L ax '
R B
Fig. 2.1.5. The sample in Flg. 2.1.6. The forces which
grips and the dliagram of act on the element of the

loading. laminated rog.




we obtaln the system ¢f differential-difference equations:

B ‘fj":.‘.:i+"i+|_:l',l‘;‘+“""=(). (2.1.6)

The second term of eqguation (2.1.6) can be conslidered as the second
derivative of function u(x, z) with respect to variable z,

written 1in finite differences with interval h. This makes it
possible to repiace system of equations (2.1.6) with the equation
in partial derivatilves

£ PRI T (2.1.7)

Such replacement corresponds to transition from lamlinated medium
to homogeneous. The error made in this case decreases wilth decrease
of thickness h, i.e., with increase of the number of layers n.

Obviously, equation (2.1.7) can be obtained directly,
substituting into the equation of equilibrium

%J{_Q";,n (2.1.8)

N

stresses expressed through displacements taking into account the
adopted assumptlion about the constancy of displacement w:

0\=E:QZ: T (i\:"_'l':l" (20109)

If tangential forces are distributed over the lateral

surfaces of the rod 2z = +H according to law ' i

P=1]:can= *PnCOS bnX

(Am = mn/l; m - integer), the corresponding solution of equation
(2.1.7) has the form [221]




u= 11, W2, 2 COS . (2.1.10)

In expression (2.1.10) umnliﬁzzh;:.zmanﬁ".

For other cases of force distribution the solution is obtalned
in the form of serles

W= Y My COS Fank, (2.1.11)
m-\

where during determination of U the value of P is the general
term of expansion of tangential load p(x) into trigonometric

Fourler series:

P(X) == mz:‘.p,,. COS L. (2 Ll L2

In the case in question (Fig. 2.1.5), when the intensity of
tangentlal forces along the length of section a 1s constant and
equal to Pgs

pn . .
Pn= _;'%_“!_ s 2,4, ( 2.1, 13 )

I£ it is necessary to 1look over a large number of different laws
of loadlng, less work consuming, in comparison with the numerical,
1s the method of the solution of Laplace equatlon (2.1.7), based
on the method of electrolytlc analogy; such an approach 1s used
in [186].

The diagrams of displacements, which characterize the bending

3
n-HE
of cross sections, are given on Fig. 2.1.7, where U, = u;———%— and
Pyl
ug = 1im Uy corresponds to the displacement of rods of infinite
k=+0




] Fig. 2.1.7. The bending of cross
! sections with «x = 0.1; «k = 1 and k =
= 2I

length or from materlial with infinite shear rigidity (i.e., ug -

As 1s evldent, the bending of sections is substantial at large

values of parameter Kk = N%B, characteristic for the materials
X (

reinforced by fillaments, because of large values of B = see

G
X2z
Table 1.1.1) inherent to the latter. In this case there appears

significant nonuniformity of the distribution of normal stresses

Oy and alsc tangential LR the magnitude and the area of propaga-
tion of which can be very substantial. Consequently, the unsuccess-
ful selection of the dimensions of the sample during tensile test
can lead to incorrect estimations of strength and elastic modulus
of material.

2.1.3. The experimental evaluation of the bending of cross
sections. The bending of cross sections with stretching is
revealed experimentally during tests of samples of unidirectional
glass fiber-reinforced plastics AG-4S [216] with special sensor-
wires stuck on two sides (photograph of the sample in grips and the

displacement calculated on the basis of hypothesls of flat sections).




T

diagram of its loading are given on Fig. 2.1.5). During the
stretching of samples, fastened along the planes, on which the
sensors are stuck (1.e., turned 90°), the readings of the latter
were identical:

ap

u* =lim u=—(—"———|-).
PN ] Hr l 2

Experimental results durling stretching by the diagram 2.1.5,
obtained on samples with different length of wire-sensors ZO (on

2 samples with ZO = 60, 90 and 120 mm), and also theoretical curves
u/u*, calculated according to (2.1.11) on the assumption that
tensile force N is realized by tangentlal forces evenly distributed
on the sections with length a (see Fig. 2.1.5), are ©represcr”

on Fig. 2.1.8. As 1s evident, the character of the arrangement

of experimental points and theoretical curves is identical. The
obtaining of more accurate guantitative coincidence is difficult

as a result of the impossibility of the exact determination of

the law of distribution of tangential forces p.

i R S At
(&1 5
i 1 o /]
. u i ' ; .:
» T . - - a—.—.—a'
i
:"-'-‘-.z.---.’-_—-
230]
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Fig. 2.1.8. The experimental evaluation
of the bending of cross sections.

]

2.1.4, The bending of radii during twisting of round rods.
The cross sections of noncircular or nonorthotropic rods warp
(23, 122]. Articles made of materials reinforced by filaments,
as a rule, possess orthotropy. With the twiscing of round rods
from cylindrically orthotropic materials (axls of orthotropy b




colncides with the axis of the rod) their cross sections remain
planes. The edge effect 1s exhibited in the bending of radil
near the places of application of torsional moment. The extent

G
of these zones 1s determined by parameter Be = 525, which for
pr
the materials reinforced by filaments can differ significantly

from one (for isotropic rods Be & ) .
3

The effect of anisotropy on the bending of radil is the
simplest to trace on an example of a cylinder, fastened on the
ends and loaded by concentrated torsional moment M (Fig. 2.1.9).
The equation of twisting of orthotropic rod [122]

e , 3 Ve _ .. Ve
L2 R e T =0 (2.1.14)
(We = %' v 1s the circular displacement) by the introduction

of new varlable ¢ = Bez can be reduced to the appropriate equation

for 1sotropic rod:

,;.‘"I" "’ ,,I.'" '/"'l'a

‘)’3 v ';— U’ * 7}:’:" "(’- (2.1015)
. r d‘l'n U'l'e
With this fTu: --Gv.-g. v Ta TG""T'

Fig. 2.1.9. The diagram
of twilsting of rod.

The meaning of the introduction of new variable ¢ is the fact
that instead of a cylinder of orthotropic material there 1s
introduced isotropic, whose length is transformed Be times

10




with respect to the initial anisotroplc cylinder. The solution of
equation (2.1.15) for the different cases of loading of isotropic

bodles 1s examined in detail in [20], and for a number of problems
with the ald of the Timpe method [318] there are obtained estimates
of the zone of edge effect. In order to make use of these solutions,

generally 1t 1s necessary 1n the appropriate manner to transform
the zones of action of load and boundary conditions. For the
prcblem in question of twisting by concentrated moment 2M

(Fig. 2.1.9) this question 1loses significance if the rod can be
considered infinitely long (I = «). 1In this case the length of
the zone of edge effect 1s transformed Be times. Consequently,
if in the 1sotroplc rod it 1s possible to disregard stress level
T

and the nonlinearity of stresses t (i.e., bending of

r 6z
radii) at distance mR/4 from the place of application of the coui.
centrated moment, then in the orthotropic rod the corresponding

distance is equal to 8 GF [223] (Fig. 2.1.10).

R, wd

ThGh M 22, __rrﬂ_:-ﬂ:___—";’n. =22,

L1 ]

Flg. 2.1.10. The diagrams of tangen-
tial stresses Top and Tgy

During the solution of the problem of twisting of a cylinder
of finite length wlth its loading by tangential forces on the
sections of the side surface (such a dlagram of loading and ]
restraint 1s typical during torsion tests) the calculation formulas
can be obtalned in a similar manner, i.e., with utilization of
the solution for 1sotropic case [20]. In this case the area of
the edge effect 1s not determined through the coefficient of
anisotropy in explicit [form.

11
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§ 2.2. TECHNICAL THEORY OF BENDING

2.2.1. Methods of the account of shears. The basic feature,
subJect to account during the construction of the technical
theory of bending of constructions made of materials reinforced
by fillaments, 1s thelr weak shear strength. The classical theory
of bending of solid rods,! constructed on the hypothesis of
undeformable sectlons, was proposed by Bernoulli in 1705 [238].
The mechanical sense of thls geometrically formulated hypothesls -
cross sectlons remaln planes and do not change thelr shape - con-
slsts of the fact that the negligible smallness of the effect of

"secondary" stresses T and o, (x-axls 1s directed along the

axls of the rod, z-axizz- perpendicular to it in the plane of
bending) on the displacements of polnts of the beam with the
distribution of "main" stresses o 1s postulated. The division

of stresses into mailn and secondary appeared during the comparison

of their relative values (see, for example, [175]):

n\?
Tv:"""i:ﬂ.n U.‘"("T‘) O, (2.2.1)

here h, 7 are the transverse and longitudinal dimensions of the
rod, respectively, 1.e., 1ts helght and length; symbol ~ means

that the compared values have ldentical order. For anisotropic
materials there 1s necessary the comparison not only of relative
values of stresses, but also the corresponding resistances. Taking
into account Hooke law on the basis of (2.2.1) it i1s possible to
cbtaln the relationships between deformations:

-t (2s2e)

IEf'fect of shear !n thin-walled rods is examined in [1ho0,
1417,

——




from which it is clear that the hypothesis of undeformable cross
sections can be treated as the allotment of material with
infinite shear and transversal rigidity. Thus, within the
framework of the technical theory of bending, constructed on
Bernoulli's hypothesls, essentially there is examined the bending
of iods from transversally isotropic material with ze = Ez =

T — = ®,
Vv
ZX

For rods of isotroplc material, for which moduli Ex and Ez
are equal, and shear modulus ze is close to them in value
(Ex =E, ze), deformations e and €, become noticeable only
in very short beams, l.e., with large h/l. Therefore the bending
of cross sections, caused by stresses Ty, Was noticed for the
first time by St. Venant in 1856 during the solution in the
refined statement of the problem about the transverse bending
of a cantllever of narrow rectangular cross section. Later a
number of problems of bending of such isotroplc beam-strips under
scme particular forms of load and conditions of restraint was
solved by Menage, Timpe (with the aid of polynomial functions of
stress), Rib'yer, Faylon, Bleykh (with the aid of trigonometric

series); for more detall see [129, 236, 238].

As S. P. Timoshenko indicates [238], the first expression
for deflection of the beam taking into account shear was given to
Poncelet as early as the beginning of the past century; he examined
a special case -~ cantilever loaded by force at the end. The
elementary derivation of the formula, which describes the effect
of stresses T, on deflection, was given by Rankine [306] and
Grashof [288]. They proposed representing the total slope angle
of the axis of beam w' = %% as the sum of the slope angles
from the bending moment M (i.e., from normal stresses ox) and

shearing force Q (i.e., from tangential stresses sz):

;.':_;;.o_u‘ (.,‘.(‘-03)

ks

s s it 2




(the process of summation is depicted schematically on

Fig. 2,2.1). Actually the cross sectlions are bent as g result

of the nonuniform distribution of Stresses T along the helght of
the beam. The connection between the bending moment ang the
deflection component W 1s kept the same as in the theory based

on Bernoulli's hypothesis,

Edas s Mo - [ 20,0F (2.2.4)
r

(Fand I - the area and the moment of inertia of the cross
section), and the Supplementary slope angle w% 1s equated to the
maximum shearing strain in the corresponding section e > MaEE"

Fig. 2.2.1. Element of beam, ---:- peforpe
deformation wé; =*=°*= after rotation by

bending moment § ————— sfter further shearing
strain w;.

A more accurate value of correction from the account of shear
1s obtained ir instead of W max "€ USe the average (in an
energy sense) deformation Vi cp? which is determineq from the
€quality of the works of tangential Stresses in this section and

the shearing force Q& on sz Cp:

® ! | L A
2_(1‘: UF = ‘2‘0\‘.\: ep ‘5’\1 Q'- (2 2. 5 )

This modified Rankine-Grashor approach in literature carries the
name Timoshenko approach, in the works of whom 1t 1is the most
developed In detal|,
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Turning angles w! =y or w! = y are calculated

T XZ max T XZ cp
on the assumption that the tangential stresses are distributed

acdording to D. I. Zhuravskly. For a beam with rectangular cross

section, whose stress 1 along coordinate 2z 1s changed according

X2
to the law of quadratic parabola,

q
Yermaxn = "5 i'—(ITQ:: Yazep™= |,2 —-_—FG." .
In general case

“"'EK'F%? :;'",::- I\"-——q—— (2-2-6)

where q 1s transverse load; KT is the coefficient which dependr
on the shape of the cross section and the method of the account
of shears (according to Rankine-Grashof or according to
Timoshenko).

The differential equation of the elastic axis of the beam
is obtalned if we differentlate (2.2.3) with respect to coordinate
x and place wg and w¥ into the obtained expression from (2.2.4) and
(2.2.6):

or taking into account that d2M/dx2 = -q after double differentiation
wtve LK N i
ST GF T Eg ) (ErY
2 E'x
where B~ = S o1 =‘Eg - the moment of inertla of the section.
X2z

Equation (2.2.7) can be obtained with the aid of the geometric
equations of the mechanies of continuum [27]. With the bending
of beam by transverse load, as 1s known, the expressions for

deformat lon components have the form:

15
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M
b ().\' Exl .

C 0 dw  KQ
Ve =Gzt G..F'

where bending moment M and shearing force Q are functions of
coordinate x. We hence find the equation

0\’" _()?.\' __d:w . M + K« oQ

ox 0z ox "EJd7G.F ox

which colncides with (2.2.7) if one considers that 8Q/3x = =q.

All the mentioned calculation methods of the account of
shears, and also the experiments and the practice of operation
show that in constructions of isotrcpic materials the shears are
a secondary factor, the influence of which can be disregarded
virtually in all real cases.

The bending of anisotropic beams taking into account shear
(or the adequate problem of the bending of plates along a
cylindrical surface) 1is examined in the works of S. G. Lekhnitskiy
(123], S. A. Ambartsumyan [6], V. I. Korolev [112] and others.
It is shown that the error of the theory of flat sections
. and Ex/Ez’ to which
this theory is indifferent. 1In the beams reinforced by filaments

lncreases with an increase of ratios EX/G

along x-axis (see Table 1.1.1),

Ex 102 E: .
Go~105100, FE~510,

For these materials, as follows from (2.2.2), tangential stresses
Tez in spite of thelr smallness (2.2.1), can cause very large
deformaticnsy the account of €, @5 a rule, 1lntroduces sub-
stantially less correction [1487: £, << Y,,+ Thls 1s evident from
expressions (2.2.2), 1f we consider that G, v E, and h/T << 1.




TETERIY

Generally speaklng, the traditional (appearing in the
examination of isotropic constructions) division of stresses
into main and secondary, depending on thelr relative values,
becomes meaningless 1n the case of anlsotroplic materials. For
these materlals comparatively small, 1t would seem secondary
stresses, 1f they act 1n the directions of weak resistance (direc-
tions of low rigidity or strength), can become dangerous. For the
materlals reinforced by fllaments primarily tangentlal stresses
are dangerous, therefore the question concerning thelr possibly
more accurate distribution, examined in this chapter, acquires
practical interest.

2.2.2. Elastic line. Let us examine bendling of a beam with
length 1, height 2H, composed of layers of reinforcement with
thickness h' and interlayers of bonding agent with thickness h"
(Fig. 2.1.3). Without limiting the generality of reasonings,
we take the wldth of Dbeam b equal to one. As shown by
theoretical [236] and experimental [149] studies, the effect of
the width can be disregarded if b < 2H. In another case, where
b >> 2H, the problem 1n question changes to the problem of
tending of a plate along the cylindrical surface. Its solution
1s analogous with the case of bending of a narrow beam with the
difference that instead of flexural rigidity ExI 1t 1s necessary

3
2HE
_ X
to iIntroduce cylindrical rigidity Dx SR T [123, 151,

Xz ZX

2417,
The average shearing strain (Filg. 2.2.2)
ll;+'—lli+1172— (2.2.8)

It 1s expressed through longltudinal displacements of the middle
of adjacr:.t layers Uy 41 and Uus angle of rotation of section

17
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dw

8 = % which is i1dentical for all layers and interlayers as a
result of the adopted assumption €, = %% = 0,

From the condition of equilibrium of the element of the 1=-th
layer and adjacent contiguous interlayers (Fig. 2.2.3) in the
projection to x-axls it follows (see also equation (2.1.4)) that

hdagi+ (Tu:i —Tezi-y)dx=0. (2.2.9)

Fig., 2.2.2. The determination of
shearing strailns with bending.

Fig. 2.2.3. The stresses
which act on the element
of beam.

Transverse force @ in the section of the beam is equal to

the sum of tangentlal stresses Tygo acting in layers and inter-

layers. Taking into account that Q 1s connected with transverse .
load q by dependence %% = -q, we have [

where n 1is the number of layers.

Y ;

LA (2.2.10)

dx =,

T —_—

18




The equations of equilibrium (2.2.9), (2.2.10) taking into
account (2.2.8) and (2.1.2) can be rewritten in displacements:

ﬂz%’%}_’_“,‘u—?’:‘:"'“l-l:o; (2. 2.11)
d. < u w , du A'
PR ‘z' GR,,(-“_-"__‘ +d_-;)], (22 12

With a rather large number of layers n the finlte differences
and the sums which enter equations (2.2.11), (2.2.12) can be
replaced by differentials and integrals respectively. 1In thi:
case we obtaln the system of equations of bending of uniform

anisotropic beam:

T

dn | du
vt e =0 (EorilE)
s fd !
"Hd.t= = _”dxdz ds G.: (2.2.14) _

It is possible to arrive at these equations by varlation
(energy) means. Total energy 3 of the system in question (beam
with transverse load q) 1s composed of potential strain energy

tu
| , .
3:"'.2'5’ .{‘ (r.00 47,0, 0 Ty ) dadde (2.2.15)

and potential energy of load

[
(2.2.16)
;e = | qude,
/
n
where de .0 - the total transverse load which acts on the rod.

-

The connection between the stresses and deformations in
orthotropic body (x and z are the principal axes of orthotropy,)
can be represented in the form
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fnﬂau\'u- (2 o 2 . 19 )
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the weight of the terms entering integrand
(2.2.21) es using the approximate equalities

where, as earlier, 7 and B - the cp

aracteristic dimensions or the
rod along x and z axes.

Then from the €quations of equilibrium

l)ﬂ; (7flx

P +T=0 (2.2.22)
1’5;4%3:0 (2.2.23)

we obtain the estimates already given in the breceding paragraph:




from equation (2.2.22) - 1

h
o % o,, and from equation (2.2.23) -

h h\2
o, ™ E Tz N (%)ox. By accepting stress Oy from Hooke law as

"standard" stress o

Vg | v ]
W (¥, e A 25— R OUs CHP . A,
T E, (8 Te 14 L, g L, Mo You G..'

we obtaln estimates for deformations:

h~-¥*3+4(~y1 (2.2.24) ;

$ - =12 — .
as h E«fh Ee [N
3|~[-j;' 2—,;?:[!*2\'.. (;-) +T‘—(T) -l--a:(T) ]«.'.rd:. (2.2.25)
For the materials reinforced by filaments (see Table 1.1.1)

B G By
T >Y% GnF "

) B NS e

therefore the second and third terms in square brackets (2.2.25)
can be dlsregarded. This formally corresponds to the assumption
that %; T Vo T 0, 1.e., to the allotment of material with infinite ?
transversal rigldity. For 1isotroplc materials EX and ze are

values of one order, which makes 1t possible to dlsregard also |

the last term in the square brackets of expression (2.2.25). This,
obviously, 1s equlvalent to the allotment of material with

infinite shear rigidity. Having assumed g = 0, let us turn
to hypothesis of flat sections. x2
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As 1s noted in [46], the method used makes 1t possible only
on the average to evaluate the contribution of the different
components of the stress-strain state. This method can turn out
to be unsuitable during the study of local effects, 1.e., in the
zones located near the restraint of edges and the application
of concentrated forces. By excluding these zones from detalled
examination, on the basls of the obtained evaluations (assuming

€, = 0) we will use the expression for total energy of the system
-’ !’ ~ ? - \2
3=J,+3_~=71)-j {j [E. (:—;‘—:) +Giy :;—:-{-:—;—;L) ]J.’—q’."}d.‘. (2 ol 26)
‘0 Yon :

According to Lagrange principle, the total energy in the
position of equilibrium should reach the minimum value, which
requires vanlishing of the first variation 63 = 0. The Euler-
Ostrogradskily equations correspond to this variational problem:

‘ ol. L 10}/ ", (2 2. 27 )
" U! o
(Hl) (dl

il _ . ol o (2.2.28)

Dk J( l_:_)
thy

where L 1s the Lagrange function, i.e., integrand of dependence
(2.2.26). Using thils expression, from (2.2.27) we will obtaln
(2.2.13), and from (2.2.28) - (2.2.14),

2.2.3. The stress-strained state. In the absence of tangential
load, when only transverse load q acts, the following conditions

must be fulfilled:

L’","“ -0 When zauyy. (2.2.29)
dx

By direct substitution it 1is easy to check that the solution of
equation (2.2.13), which satisfies condition (2.2.29), has the form
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= ." im Sh 7.".["2 (oo 11 7.1...V + ."l m Sh ,7..,.“2 Sill ;.:nx""
+/|g,,.2x -+ /1.1mz + "‘61»|x+/15m; ( 2 . 2 . 30 )

W= =Ly sh st SiN dmX+ V3 f ch 20, COS Dt —

""42"! :"2:"-".1141-t +/1tm; (2 A . 31 )

K = AmBH, A Am - constants. The terms, which contéin coefficlents

>
AZm’ A3m’ Au:, A5m and A6m’ are the solution of homogeneous equation
(@0 = 0), which corresponds to (2.2.14). The homogeneous solution
describes the displacement of the rod as a rigid integral

(terms ASm’ A6m)’ tension-compression (term Aum) and pure bending
under the actlon of stresses O linearly distributed on the ends

of the rod (terms with coefficients Ay A3m)'
If transverse load 1s distributed according to law
q=qm5in;.mx. (2.2-32)

where Am = m%; m - integer (the case where g = q, cos Amx is
analogously looked over), then from (2.2.14) it follows that

Gin

.llm=—_;‘::Ex_im—Eh—z: (2-2-33)
Here
. '.m"lh Zm
Gm= 1(—/——:3;:—/—)—, A=A, 72=2 Tﬂ.
The terms which contain Alm’ Aim and are the solution of

nonhomogeneous equation, describe the transverse bending of
the rod. The solution 1in the case of arbitrary load can be obtained
by expanding it into trigonometric Fourier seriles

-

g(x) == }: o ST DX (2.2.34)
me|
and summarizing the solutlions whilch correspond to fractlonal 1loads

q. sin Amx.

m
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Coefficients q, are determined by formula

]
Gu= —[2- f g (x) sind,.xdx.
[}

For example, for evenly distributed load qp = const

=20 =1.35...):
=~ (m=1,3,5...);
in the case of concentrated force P, applied at point x',
Qm=’21‘P— sinz,.x' (m=1,23..)).

In the examination only of bending, neglecting terms Abm’ A5m’

A6m it is possible to present displacements u and w as the sum of
components of transverse U, W

n and pure bending Uys W8

= "" +"||;

W= Wyt Wy,

Correspondingly the total bending moment

H H

‘H=Jm+Jh=Eﬂ[:%gdz+Eafzgﬁda
i\ ux
" -t
Using (2.2.30), (2.2.31), we find the connection between
the curvature of the beam w" = d2w/dx2 and bending moment :
E_JU.'"-.= —I“q; (2.2. 35)
‘me.t’w"n: - M, ( 2.2. 36 )

In the case of pure bending the connection between the curvature
and bending moment (2.2.35) is the same as in classical theory
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(2.2.4). This was to be expected 1n view of the absence of
tangential stresses. With transverse bending (2.2.36) there appears
correctlion factor ¢m’ which is a functlon of paratmer «_. It

depends on the degree of anisotropy of material 8(82 =

relative height of beam % and the rate of change of the load

along the length of beam (number of half-waves m, along length 1).

With SO 0 (see Table 2.2.1), i.e., 1in the case of an infinitely

long beam (H/I = 0) or infinite shear rigldity of material

(B = 0), ¢m + 1 and the obtained dependences change to formulas

of the theory constructed on the hypothesis of flat sections 3
i (2.2.4). The error of this theory increases with increase of
parameter K In this case the value of ¢mEXI, which can be
treated as the given flexural rigidity of the beam, decreases
(Table 2.2.1).

Table 2.2.1. The functilons of the effect of
transverse shear.

3 14 th %) 1 AT L et
= W Touaw R BT L
0 1.0000 1.0000 10000 1.0000 1.0000
002 0,998 0,998 094994 10002 1,0002
0.04 0,9994 09994 0,944 1.0006 1.0006
0.06 0,9986 0,986 0,4986 1.0014 1Ll 4
0,08 09974 04074 00974 1,0026 1,0026
0,10 0,460 0,4460 0.9960 1,0010 1.0040
0,12 09942 0.9942 01,5942 1,008 1.0058
0.4 0,9922 0,9922 0,4912 1,0078 1.0078
0,16 0,9899 0,9599 0,9868 1,0102 10102
0,18 09872 01872 09870 1,0130 10130
0,20 0,9842 09842 09810 1,0160 0,0160
025 0,976 0,9756 0,9730 1,0250 1,020
030 0,9652 0,9652 0,9610 1,0360 1,0360
035 0,9533 0,9533 09510 1.0490 10190
0,10 093498 09393 0,9360 10640 1,0610
043 0.9251 09251 09190 1,0809 1,0810
0,50 09092 09091 0.9000 1,0098 1,1000
0,55 0,8922 0.8421 0,8790 1,1208 1,1210 !
0,60 08743 0.8741 0,8560 11437 1,1440 ;
0,65 0,8557 0,8554 0,8331 1,1686 1,1690 1
0,70 08364 0.8361 0,8040 1,1956 1,1960
0,73 08167 0,8163 0,7750 1,2244 1,2250
0,80 0,7966 0,7962 0,7410 1.2553 1,2560
0,85 0,7764 0,7758 07110 1.2879 1,2890 {
0,90 0,7560 0,7533 0,6760 1,3227 1,3240
0,95 0,7356 0,7318 0.6390 1,3594 13610
1,00 0,7152 07113 0,6000 13982 1,1000

—r . et S e it S e e e




Table 2.2.1.(Cont'd.).
e th x) 1 %
o T Ry 1-0.4%! Wa thug
1l 06551 06738 - . 14R 1,464
12 0,6300) 0.6315 - s 1576
1.3 0,5085 0.5966 -— ) 1672 1676
14 05627 0,503 — | 1,770 1,784
15 0.50%8 0,523 - 1w 1,900
16 0:4968 0.404] —- | 20 2024
17 04669 0,1638 - 2w 2,156
1.8 0,4369 04353 = ;2278 2,296
19 04128 0.10% = D242 2444
20 03883 0,3316 - 2,517 2,600
2.1 0,3659 03618 —_ 2732 2764
22 03149 0.3106 - 2.608 24936
23 03254 0,329 — 3077 3116
24 03074 0,3027 = 3257 3,304
25 0,206 0.2857 —_ 3,436 3,500
26 01,2750 0.2699 - 3,636 3704
27 0.2605 0,234 - 3818 3916
28 02470 02118 = 4048 4,136
29 02314 02291 = 4274 4,364
30 02228 02174 — 4,484 4,600
3.l 02119 0.2064 - 4717 4814
32 02017 0.1962 = 4950 5096
33 0,1922 0.1867 = 3.208 5.336
34 0,1834 0,1778 - 5.461 5.624
35 0,1751 0,1695 - 5.714 5.100
36 01673 0,1617 == 5098 6,184
37 0.1600 0,1544 - 65.250 6,476
38 0,1331 0,1476 == 6.536 6.776
39 0,1467 0.1412 = 6.503 7.084
40 0,1106 0.1351 — 7,002 7400
4,1 0,130 0,1294 = 7407 7.724
12 0,1204 0,1241 — 7,752 8,056
<3 01245 0,1191 = 8,061 8.39
4.4 0,1198 0.1144 = 8333 8.714
43 0,1152 0,1099 — 8,606 9,100
16 0,1110 0,1057 — 9,009 9,164
47 0,1069 0.1017 L1 9,315 9,836
4.8 0,103 0,0979 1 9.709 10216
49 0,0904 0,0943 —_ 10,101 10,604
5.0 00965 0,0909 = 10417 11,000
6.0 00694 0,0649 = 14.49 15.40
70 ' 0052 0,0485 = 19.23 20,60
8.0 0,0110 0,0376 - 24.39 26,60
90 0,032 0,029 = 30,30 33,90
10,0 0,0270 0,0243 — 3704 41,00

For the description of the stress~strained state it is

necessary to determine the constants, which enter expressions
(2-2s3104, (2.2.31)x Alm 1s assigned by transverse load; the
remaining constants Am are determined from conditions on the ends
of the beam.

For a freely resting beam with x = ¢ and x = [
w = Ox = 0. These conditions are satisfied if we assume
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1 - = = =
A1m A2m A3m AUm ASm

beam different methods of restraint of the supporting sections are

= A6m = 0. In the case of a restrained

poésible (Fig. 2.2.4). Some versions of accomplishment of the
rigid fixing are particular cases of condition

du

a.u|.,.t,. + Q. '5; T

dw 0 v
'+m37—0nmn—mx l,

(npu = when)

are constants.

Fig. 2.2.4, The versions of
restraint of end sections. a)
6 = dw/dx; b) u = 0 when z =
= tH; c) u = 0 when z = #z.;

d) su/9sz

C when z = 0.

a)

When a; = a, = 0 and &g # 0 there is reallzed "rigid"
fixing with restralned horizontal element of the axis of beam
(Fig. 2.2.4a). With this du/dz = 0 when z = +H. In the case
a, = a3 = 0, a, # 0 we have two restrained points at distance Zg
from the axls of beam (Fig. 2.2.4b and c). With decrease of value

0

corresponds to the case where at the level of neutral axis there
is fixed the vertical element of the end section (Fig. 2.2.44d):
du/9z = 0 when z = 0. With a, = a3 = 0, a, # 0 the §lope angle
of the end sectlon 1s fixed at height Zq-
=z, = 0 and a, = a3 = zl = 0 are equally Justified.

zg the pliability of restraint (slope angle 8) grows; z, = 0

Thus, cases a, = a, =

2 3

Differences 1in the methods of realization of fixing appear
only 1in the theory which considers shear and increase with an
increase in parameter K They can become substantial for beams
made of materials reinforced by filaments.
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The general condition (al # 0, a, # 0, ag # 0) is satisfied

m- l| 3. 5 , S -l'nu "'1.'wu:--'1(hll—:();
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Thus, including the case of free support, when Cm = 0, the solution
for the examined conditions of restraint of the beam can be

presented in the form

sl = 5
o, = = /{// ;#ms ).,,..\'-(f,,,z(l —2—\” (2.2.37)
: NN SV N U /
an
k) m HE e IS RY
why, }-m’.[;\/‘{’” ’.\H] AT (.,,‘,\ ( | - T)J ( 2 . 2 . 3 8)

2.2.4. The bending of cross sections. The nonlinear term,
which contains hyperbolic slne, enters the formula for
determination of displacements (2.2.37). This indicates bending
of the cross sections of the beam, which is more intense, the
larger is parameter K The direct measurement of the bending
of cross sections during bending of the beamn 1s done in [216].

It 1s measured during the bending of freely supported beams,
loaded by two concentrated forces (Fig. 2.2.5). For the diagram
In question from (2.2.37) takling into account (2.2.34) 1t follows
that

I ’2‘\"»1 vsing tyoho £
RLCENA . (2.2.39)
dal’l mlz., - tha,) cha,,
m-1,3%, .,
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Flg. 2.2.5. Determination of the bending of
cross sections during bending, a) experimental
installation, b) loading diagram.

The result obtalned on the basis of classical theory is expressed

by dependence

:U:IMHh=lﬁi(kh4f—Xﬂ- (2.2.40; ]

wlsolom 220

The diagrams of longitudinal displacements for different values

of x and 12 are glven on Fig. 2.2.6, on which thegizare placed
H). Straight

lines (x = 0) are obtained by the classical theory and curQed

the values of relative quantity uy = u(3n3ExI/uPK
correspond to values Kk = 2,

The effect of bending of cross sectlons during bending is
investigated experimentally on samples with wire-sensors (see
§ 2.1.3). The dimensions of samples (with thickness 12 mm), the
dlagram of restraint and loading is shown on Fig. 2.2.5.

The study of samples with different length of wire-sensors
(see Fig. 2.2.5) made 1t possible to determine longitudinal |
displacements at different values of coordinate x. On Fig., 2.2.7 '

theoretlcal and experimental data are compared. As is evident,
tne character of the arrangement of calculated curves and
experimental points 1s identical, the latter lie in the expected
region of parameter «.
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Diagrams of the
longitudinal displacements of
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Fig. 2.2.7. The experimental evaluation of the bending
of cross sectlions during bending (Z2 = 0.21, 12 =




2.2.5. The estimation of error of the replacement of
laminated beam by homogeneous. The bending equations (2.2.13),
(2.2.14) do not consider the heterogeneity of material. The
number of layers of reinforcement and interlayers of bonding
agent 1s taken as infinite. To evaluate the error, introduced by

" limit transition (transition from

system of equatinns (2.2.11),
(2.2.12) to (2.2.13), (2.2.14),

by A. R. Rzhanitsin's method [182]
there 1s solved the prcblem for

a laminated (n = 3, 5, 9, 17) f[rec
beam, loaded by sinusoidal load
Q= q, sin Amx. The comparison

of these solutions with the
solution of (2.2,37), (2.2.38),
corresponding to n = », shows that
for real constructions of reinforced

materials, for which, as a rule

n > 10, the error introduced by
the replacement of laminated medium
by homogeneous 1is insignificant.
For the i1llustration of this con-
clusion there 1is glven Fig. 2.2.8,
on which solld lines designate the
diagrams of tangential stresses,
calculated on the basis of
(2.2.37), (2.2.38) and points -
the corresponding values of

tangentlial stresses in the inter-

layers of composite beam (dotted

The\

i ] » line - dlagrams of tangential

stresses Ty according to
Fig. 2.2.8. Estimation of
error with the replacement D. I. Zhuravskiy).

of laminated beam by gquasi-

homogeneous. N 1is the V. L. Biderman [29] evaluated
number of layers.

the error of the replacement of

Sl




laminated beam by homogeneous on the basis of the comparison of
coefficlents in the equations of elastic line of the beam. For
homogeneous IVIO and laminated Mcn beams respectively

. i dr
-‘ 0wt ;|ui—: n‘l b .
b B 5 Moy - Eley 5

where

"
’u“‘?"””; If.‘l= }- 2%
3 i)

:i - the distance between the axis of beam and the axis of the
i-th layer.

As calculation showed,even at n > 5 values Io and ICH differ
by less than 5%.

Equations for quasl-homogeneous medium, obtained by
V. V. Bolotin [37], make it possible to consider the flexural
rigidity of reinforced layers, without resorting to the labor-
consumlng process of solving a large number of eguations, -
corresponding to the number of layers. These equations in the
case of a beam have the form

Su ) Fu_, (2.2.41)
it oz =0

2H’& ? d\w w d*u

3 )d\‘ +fd\lz -x' Lot

Equation (2.2.41) coincides with equation (2.2.13), and (2.2.42)
differs from (2.1.14) by the first term, the value of which
decreases with lncrease of the number of layers as l/n2. By
solving system (2.2.41), (2.2.42) similarly to that shown in

§ 2.2.3, we find that 1n the case of a free beam under load

qQ = qp sin Amx deflection is determined by formula
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wo:ﬁ%. (2.2.43)

where w is the deflection, calculated by formula (2.2.38);

Kk =1 + “m (h'>2 - the coefficlent which considers the flexural

b o 2\ h

r 3n

k rigidity of the reinforcement layers. The numerical values of thils
|

i coefficient, given in Table 2.2.2 (for %— = 0.5), make 1t possible

to draw the conclusion that during the determination of deflections
i of the constructions made of reinforced materials the flexural
effects in the reinforcement layers can be disregarded for a broad ]

! class of problems. i
Table 2.2.2. The values of coefficients
_ <2 (n'\? when It = 0.5, j
Ko =1+ 2\ g |
3n "
- - e .. ) .
\\\\\~ ) 2 ) 5
B L I
3 1.3 10370 1033 1.2312
3 1.0033 10133 1.0300) 1.0833
10 10008 1,033 10075 1,0200 _
20 1,000 1,08 1,0019 - 1,0052 1

2.2.6, Estimation of error introduced by neglect of lateral
deformation. The equations corresponding to system (2.2.13),
(2.2.14), but considering lateral deformation, can be obtained,
by substituting in the equations of equilibrium (2.2.22),
(2.2.23) the stresses of (2.2.17), (2.2.19), expressed through
displacements:

P

b

= O o

Elo“ Guo‘,‘(ani\u':)',o’ =0, (2.2.uu)
—:;:: +G., 3,: +Gtvali) g dxdl L (2.2.45)
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Accepting that half of transverse load Ay sin Amx is applied
to the upper, and half - to the bottom surfaces of the beam,

in the absence of tangential load the boundary ccnditions have
the form

e =0 npe 2=,
a,a-'%'- sindox  upu z=H; (2.2.46)

a,=---q2—"-sill fwx  upn 2= -H.

(npu = when)

Examining a free beam, the displacement should be sought in
the class of functions which satisfy the appropriate boundary

conditions of freely supported beam (cx =w=0when x = 0, x = 1):

@m=Bm sin Li.xexp (shmx);

Uin=2Am €OS L X OND (S).mX). (2.2.47)

Having substituted (2.2.47) into equations (2.2.44), (2.2.45),
we will obtaln the system of homogeneous eguations:

{t (Ga:s'=Es) + Brus(Gu: 4vi:Fs) =0; (2.2.48)
—.4,u$(6134'\'lel) i"Bm(E:s:"'Gl-‘) =0~

which will have non-trivial solutions, when its determinant is
egqual to zero

G. 2, -qa.,n-..i.".»l_o
.-‘lau f'\'l.-.l-.'-’ ‘I;‘.,S’-'G..

(2.2.49)

Equation (2.2.49) has four roots: i/£§’ iJgg, where

T T T
ﬁ-'-L’:i- (l -2, -7—:' -\-.,3-2:'1.). “’--l%.'
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These roots for real anisotripic materlals are real and different
(for isotropic materials a = b), consequently, solutions of (2.2.47)
taking into account the connection between coefficients Am and

Bm (2.2.48) can be presented in the form

i *(Cim Sh@hm2+Caim chahm2 i Cim shbhmz+ Cim ch 820 2) cos Duni; (2.2.50)
o= (Compa shhu2 4 Compy hitinis+ Compy sh bhm2+Compy < Bhin2) sint hms,

where

P u—«- 2 —a* G.. - "" l'."'b Gll
' a(GastvaiE) 3(Grstvusks)

By substituting (2.2.50) into boundary conditions (2.2.46), we
I find unknown constants Clm’ CZm’ C3m’ Cum Thus, there is

determined expression

chalme ) chdrnz) .
' 'Im[Pa(b+Ps)‘ha, N —re(a+pa) h'b—A—fi] $indmx

o'm - .
2\-.;E,.[(np..-—\,.)(b +p8) i all = (a+pad) (bpa—v:x) th bl ]

(2.2.51)

For materials reinforced by filaments Ex >> ze (see Table 1.1.1),

therefore when e 0 1t 1s possible to accept
° E' Gu . Gn
a'=-0~'—;-7:_—‘—, b ==T.
and deflection when z = +H taklng Into account that % << 1, to
determine as
gy G,
Q= vu(l?04l.ll G“)(I+EE, (2.2.52)

Here w; is the deflection, determined according to classical
theory; the expression in the flrst parenthesis is the multiplier,
which characterizes the correction from shears, in the second -
from lateral deformation. As 1s evident, the correction caused by
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lateral deformation for the materials reinforced by filaments 1is
negligible, since ze << Ex (see Table 1.1.1). This conclusion
agrees with that given in § 2.2.2 during the analysis of the weight
of components which enter the formula of potential straln energy.

§ 2.3. FLEXURAL RIGIDITY

2.3.1. The comparative analysis of the methods of account of
shear. The comparison of the methods of account of shear according
to Rankine-Grashof and Timoshenko (see § 2.1.1) with the refined
method given in § 2.1.2 can be the most visually performed on
an example of a free beam of rectangular cross section, loaded by
sinusoldal load q = qp sin Amx. In thls case the deflection
according to Rankine~Grashof wI,Timoshenko Wrg and refined formula
(2.2.38) w 1s expressed through the deflection determined without
allowing for shear w*, and the parameter K = mnB%:

=l *'0.52».’): (2 3.1 )
w,,-'w‘(l 4+ 0,422); (2 . 3.2 )
V.m’
9
m

As can be seen from the expansion of functions %—

m 3(Km-th Km)

into Taylor series

1 40,45m2 = 0,00195pm* +0,000 1 43t~ .. (u,,.< -}) (2.3.4)

'

Timoshenko's formula (2.3.2) gilves the best approximation. Values
w and Wpp are very close to one another over a wide range of
change of parameter «_ (see Table 2.2.1).

I Timoshenko's formula 1s presented in the form

w=w*(l+l\'5;-'—= (2.3.5)
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and we consider coefficlent K depending not only on fthe shape of
the cross sectlion of the beam (see § 2.2.1), but also on parameter

Km,

K(Zm)"";:?:j('l—"‘l 1 (2.3-6)

fm

then coincidence (2.3.3 and 2.3.5) will be complete. Consequently,
shear coefficient K depends on the relationship of elastic constants
and the relationship of cross and longitudinal dimensions.! Since
Timoshenko's approach assumes the value of K = 1.2 to be constant
for a beam of rectangular cross section, the error for this
approach can be characterized by how much function K(Km) depends

on parameter K® Elementary study shows that K(Km) is the
monotonlically decreasing functlion which 1s changed within
sufficiently narrow limits:

limKiv,) =12, limK(@z.)=1.

x, 9 7 e

When Km <

E

K(2.) = 1,2 0,00572,2 4+ 0,000122,,8~. .. (253, T)

This bears out the fact that formula (2.3.2) catches the principal
part of the correction from shear.

One should still note that as a result of the bending of
cross sectlons the deflection from normal stresses W does not
identically colnelde with the deflection determined without
allowing for shear w*, Therefore into the formula of superposition
of deflectlons (2.2.7) it 1s necessary to introduce coefflciernt

Kc:

!The effect of the relationship of elastlc constants on
coefficient K without allowing for the relationship of geometric
dimensions 1s examined in [278].

i




W=yt g -K.EN-'I-—K' ai-f

This coefficlent must be determined similarly to how KT of formula
(2.2.5) 1s determined from equality of works

1 KoM? (2.3.8)
2b [ X (!F .)E‘l .
Here wg = KoEMI - the curvature of elastic line, caused by normal

stresses. Taking into account that 1n the case 1n question the
normal stresses are determined by formula

0 max

st ch o SN ¥m i (2.3.9)

Oy =
on the basis of (2.3.8) we have

Ky ol m_t-«;_.), (2.3.10)
'[m G1n#hm

In the 1limiting case Kp 0, K0 - 1, consequently, we have the

classical conrection between curvature and the bendi..e ..cment.
With K different from zero, i.e., taking into account shears,

3’=&'¢+:&"="*(K¢+Kg/'" (2‘3'11)

As can be seen from comparison of (2.3.5) and (2.3.11)

“’;iﬂ“h"')r"n (2.3.12)
whence
» 9 lh! Zon
A'-‘Zq,..z...-'(l”;}:z_,,ﬁ- ’ (2.3.13)
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This value of KT can be obtained from equality (2.2.5) 1if one
considers that the distribution of tangentlal stresses 1s
determined by formula (2.4.1):

"‘ ‘lll II)

ST ( .
= = U taan ch Yo

§hmZrn”

2.3.2. Deflection, caused by shears. The effect of shear
on deflection 1s convenient to investigate by parameter k = NB%’
which simultaneously conslders the relationship of the geometric
dimensions of the beam % and the degree of anlsotropy of materizl
Ex/ze' With accuracy to multiplier 7 parameter k can be treated
as the relative helght of the beam, given taking into account the
degree of anisotropy. An lncrease in the relative heisht of
beam corresponds to decrease of the shear rigidity. Thus,
beams of reinforced materials of the same geometric dimenslons
as isotropic, in comparison with the latter, work as the beams

of greater height.

The effect of shears 1s analyzed on an example of free,

! loaded as shown in Figs. 2.3.1-

restrained and cantllever beams,
2.3.3. In these filgures are given the relationships of maximum
deflections, calculated taking into account (wmax) and without
allowing for (w;ax) shears. In these flgures results obtained
from formula (2.2.38) taking into account (2.2.33) are given =

on graphs they are noted by the numeral 3, and obtained from the
dlagrams of Rankine-Grashof (curves 1) and Timoshenko (curves 2).
As in the case of sinusoldal load, the amount of deflection
calculated according to Rankline-~Grashof 1s high, and the results
determined accordirz *» Timoshenko and formula (2.2.38) are very

close. Therefore the Timoshenko approximation formulas can be used

!The cantilever 1s considered as half the symmetrically
loaded free beam [26, 220]. The stricter solution Cor isotropic
cantilever ls glven in [34].
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in practical calculations. However, such formulas are known only
for a 1limited number of cases of load distribution (see [239],
and also [6, 112]).!

Fig. 2.3.1. The effect
of shear on the deflec-
tion of free beams, load=-
ed by evenly distributed
load (a) and concentrated
force halfway along the
span (b).

Flg, 2.3..2. The effect eof
shears on the deflection of
fixed beams, loaded by evenly
distributed load (a) and by
concentrated force in the span
(b), =—————— 23u/dz = 0 (when
z=0), = = = dw/dx = 0.

!1The number of problems, during the solution of which shears
are considered, is extremely small. This 1s explalned by the
fact that before the appearance of materials reinforced by fllaments
the account of shear had purely academic 1nterest.

4o




Fig. 2.3.3. The effect of shear

on the deflectlion of cantllevers

loaded by evenly distributed load
(a) and by concentrated force at

the end (b).

TR

In more complex cases 1t 1is necessary to use formula (2.2.38),
after expanding the load into series (2.2.33).

The series for determining the calculated values are
frequently rapidly converglng, which makes 1t possible to be
limited to keepling only the first or thelr several first terms. E
Furthermore, there i1s the possibility of improving the convergence

by separating from the total series the serles whose sum is
expressed in closed form [83]. For example, the deflection of
evenly loaded (qO = const) beam with boundary conditions w = dw/dx =
= 0 with x = 0 and x = I 1s determined by expression

L0
31 Eddl m=1,3,8..

' GZ. sin |n1 (l

1
) L m (mz—th mn)}

= Sl 40

By converting the first sum

4 f

~ : - :
S M- . DHE 5
) AL R Sl
L mmy thmy P L m?
mel 0% .. (S0 L Tl ’m-l 1.9
. . X
e th mzsinmy =

2: !
m (mz - m)

Tme, %,

+
X
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we will obtain

3 X X

o N 08 M2) S =

y T 1 ¥ (1 = cas mz) sinmxy 7
e 2 -

m=0,32"5.., mel,2,3...

ml
g X 4
ot sinmy = ot sin mn(l——-)
“% ) —7ﬁi*+ X - msl -
me}, 2.3... m={223...
o ﬂunm(l+%4 ' o ‘
i e IR
m=|,2,3..,

[}
. P

In turn

- 1 1o
1 Ny \ 1 th mx
S Ul L z e T
] m(my—th my P 2-' 2 Lmp -
i matns., Ume=thm) . M % S, iUk~ thmx)

(£ s

\ 1
Taking into account that -n=% instead of the initial

expression for deflection (sum) we obtain the sum with improved

convergence:

h ol X »
R RN 2 Qs Ay X X th my
e ‘mY(mz—th mx) -7( -'l—) mE(mz--th mx)

m=t 1,8.., m=1,33..

As can be seen from Figs. 2.3.1-2.3.3 and Table 2.3.1, for
free and, especially, fixed beams the effect of shears must

be taken Into account wlth any practically important ratio %.
At the same time, the effect of shear on the deflection of 5
cantllever 1s substantial only for very short beams made of highly
anisotropic material.

—

Figure 2.3.4 illustrates the dependence of deflection on
conditions of restralnt of the ends of fixed beams. The differences
in deflections, caused by restraint (see Fig. 2.3.4), are increased
with 1ncrease c¢f parameter k. Consequently, If for isotropic beams
with smali k the realization of the method of fixing has virtually
no effect on deflection, then in beams of anisotroplc material
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wlth large « thils effect 1s already substantial - deflection to

a considerable degree depends on the realization of conditions of
the restraint of supporting sections, in other words, with an
increase of parameter « the sensitivity to the method of
restraint of the beam 1s increased.

Fig. 2.3.4., The effect of the
method of restraint of the beam
on deflection: 1 - free beam

(wt deflection without allow-
cB.ON

ing for shear); 2 - 3u/dz = 0

when z = 0 (Fig. 2.2.4d); 3 = u =

= 0 when z = +0.5H (Fig. 2.2.l4c);

4 = u =0 when z = H (Flg. 2.2.4p);
5 - dw/dx = 0 (Fig. 2.1.4a).

V. I. Blderman proposed the method which makes 1t possible
to determine the deflection of a fixed beam, using the solution
for the free beam (Fig. 2.3.5). The fixed beam ls considered
as a section of a continuous beam. It 1s obvious that in view of
the symmetry in the restraint u = 0., As can be seen from the
figure, maximum deflecticn Woax Of restrained, centrally loaded beam
with length 7 is two times more fhan maximum deflection w of

1max
centrally loaded, free beam with length 7/2. Thus,

2 H?2
wma!=2w' m3x=2w: mag [l +C (’11'7] =3-'*nmx[l +4C’F—] .
7)

l.e., correction from shear 1n fixed beam exceeds the correction
for free beam 4 times.
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Flg. 2.3.5. Diagram of
determination of the
deflection of fixed beam.
KEY: (1) Point of inflec-
tion.

AN
»
A\ \

’» lﬁ (1)
. : -‘3"\". wﬂ /mﬁ_: I ’
} l S, l’—l N g ~ ” '

' S g

2.3.3. Experimental estimation. At fixed value of R, 1l.e,,
for thls material, the value of correction factors which conslder
shear depends only on relative height H/7. For the case of load-
ing by concentrated force halfway along the span this dependence,
constructed from parameter 2H/l, 1is shown on Fig. 2.3.6 (axis of

absclssa - solution withmrt
'. allowling for shears). For
I—H‘;‘I" :I:if,.,./{‘l'm_._ the isotropilc materials,
’ | | / fﬁﬁ*’ which have B < V3, the effect

2 .::gwno_._jth el of shears on deflection of
o - ZMUETHD even short beams is
._-nl._ a r—t insignificant., For orlented
| f{’r ;Y glass fiber-reinforced
:‘;—-r-"-'ﬁ'- T T ] plastics the values of B lle

Fig. 2.3.6. The effect of rela- within 3-8, consequently,
tive height 2H/7 and the degree during the calculation or
of anisotropy B on deflection

from shear —s—+— dw/dx = O beams made of this material

when x = 0, x = 13 for rigidity the account of
-— - %%lz=0 = 0 when x = 0, x = shears 1s necessary for all
= 7 practically important design

concepts. Shears durlng
the calculation of beams from boron-epoxy plastics, for which B
reaches 10, play an even larger role. Figure 2.3.6 also gives
the results of experiments on unldirectional glass fiber-reinforced
plastics AG-4S (B = 4.8), 27-63S (B = 3.5) and glass laminate
ST on epoxy bonding agent (R = 4,0) [222]. The theoretical and
experimental curves have identical character (see also [149,
256, 275, 3001]).
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Fixed beams and cantilevers [220] of unidirectional glass
fiber-reinforced plastics 27-63S and glass laminate EF 32-301
with different packing of the reinforcing layers (for example,
by packing 1:3 it 1s implied that the ratio of the number of
layers, packed basically along the axls of the beam, to the number
of layers packed with weft along this axis is equal to 1:3)
are exrperimentally 1lnvestigated. The characteristics of materials
and samples are given in Table 2.3.2; Young's modulus Ex and
shear modulus ze were determined on the same samples by the
methods described below. The results of tests are given on
Figs. 2.3.2, 2.3.3. They confirm the conclusion made in § 2.3.2
about the substantial effect of shear strain on the deflection
of beams with both ends restrained and about the negligible
effect of shears on the deflection of cantilever beams.

Table 2.3.2. The characteristics of samples
and materials of beams.

i)
jot o]
) o
— — B "
© oo & " L ~ [ol eV
o 9} o o ~ Vo] O o
) wo & N O N} on — N
v jole] > o gl A E P e
NS o P 0| x ~ o NS N
« oo - Q E ¢« NI~ N a2l .
= O Lo ~ G S B «m
o O S » b LR L2
A &N =] M X o X n &om
3 c Qe o
0 a ko
27639 1: 0 ] 1319 13 X))} kX x
EF 3231 1:1 ] 127 20 o | as +
The same| V: 3 4 1512 22 (LR, ]) 33 a
0 1: 5 4 1512 22 022 | 20 <
" 1: 10 L] 15312 20 024 3l o
0: | 1 L2 8] om || O
o
e

The low shear strength forces the reexamination of the pro-
cedure for bending test of materials reinforced by filaments.
FOCT 4646-63 [rOCT GOST = All Union State Standard] recommends
determining Young's modulus by formula
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PB
El.-ﬁﬁc::‘ (2.3.1"‘)

where Woax 1s the deflection of free beam (2H/l = 0.1) under
force applied halfway along the span. The Young's modulus
determined in this way 1is flcticious, since 1t includes also the
effect of shears. On the basis of (2.2.38) it is possible to
obtain the relationship Ef, Ex and ze:

|
T"-L'_J,;,_’(!;i) (2.3.15)

The distinction of ficticious module Ef from real Ex 1s greater,
the shorter the tested beam and the higher the degree of anisotropy
of materials (62 = Ex/ze)' For the materials reinforced with
filaments, as a result of thelr low shear rigidity the determinc. .
of Young's modulus from formula (2.3.14) when testing samples,
recommended by GOST 4648-63 (2H/1 = 0.1), leads to incorrect
estimations, which places in doubt the numerous data available 1n
literature on the modull of oriented glass fiber-reinforced
plastics while bending (as shown in [269], the aforesaild is also
related to tests of wooden beams, which have 3 < B < 7).

According to standard ASTM 790-63 [271] the ratio 2H/l is brought '
to 1/16, but in the case of highly anisotroplc materials this does

not guarantee freedom from systematic error (Fig. 2.3.7, borrowed I
from [275]).

Thus, bending tests must be conducted only on very long beams;
during the examination of results obtained on short beams 1t is

W= == . 8 e
g | Fig. 2.3.7. The error of
v | I determination of Young's 3
PP g -4 modulus of oriented glass '
! fiber-reinforced plastics 1
by formula (2.3.14).
g - - - pure bending.
rect [ Designation: wec/mm~ = ‘
- m s = kgf/mmz. ?
| & |
’ Fr (] [

h9




necessary to consider shear. This 1s possible 1f we test samples
with different 2H/l. Dependence (2.3.15) in coordinates (2H/Z)2,
l/Ef has the form of a straight line, the slope angle tangent

to the horizontal axis of which 1s equal to 1.2/ze; thls straight
line intersects the axis of ordinates at point l/Ex. Having

a number of values of Ef, found for this material at different
ratios 2H/l, thils stralght line can be constructed experimentally.
The examined approach reveals the possibility not only of determin-
ing Ex’ but also indirectly determining the value of ze - modulus,
determination of which from direct experiments 1s quite difficult.
An example of the construction of dependence (2.3.15) 1s given

on Fig. 2.3.8. On this figure are plotted the results of testing
beams of glass laminate EF 32-301. The stralght line 1s drawn
with the aid of the least squares method.

Fig. 2.3.8. The determina- #[z ., "
tion of modull Ex and GX 7

by bending tests.

Z

Qo Q2 w

2.3.4. The effect of the length of the ends, which protrude
beyond supports, on deflection. The precise support of a beam
by 1ts ends 1s virtually impracticable. When determining
deflection under force P, appllied halfway along the span, there
is actually measured the value of f = Wy - Wi which represents

the difference between deflections at polnts 2 and 1 of a beam with

length L = 1 + 211 loaded by forces P = P/2 (Fig. 2.3.9). For
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Fig. 2.3.9. The calculation dla-
gram to evaluate the effect of
ends of the beam, which protrude
beyond supports.

the loading diagram in gquestion on the basis of (2.2.38) taking
into account free ends [217] the expression for deflection can
be written in the form

{
(L) gper Sy
=33Ed 1 I { (2.3.16)
,..., 3.5...m (mz-z-lhm.c )

If in formula (2.3.16) we perform the approximate replacement of

";”‘”’ ~1 +0.4m’u’%
3L (mn b th ""‘T)

(see Table 2.2.1), then we will obtain the expression for
deflection, which dces not depend on ratio 1/L:

,= au."m‘ (sl + 0.4Km:s!)-

where
ST . I
“w  mas 485;] 3
- cmal
5. 3L E Sin'%L T
A '33 Tmb T
me),
o S"‘nnl
5. 3L 2 ST a2
T oav mt
m=1,3,8,

The calculation of the sum of (2.3.16) on a BESM-2 with
accuracy to 0.3% showed that at values « < 3 (this parameter
value 1s limiting for actual constructions from oriented glass
fiber-reinforced plastics) the deflection f virtually does not

5l




depend on the ratio of the overall length of the beam .to its
working lensth L/L:

1 .
'(l) I
a5 -0 EC [ H
0ﬂ9<!‘” ~_lwhen,

(1) - deflection for the case where ratio L/7 = 1.

The effect of ends which protrude beyond supports can be
estimated also by the formulas obtained by V. L. Biderman [29]
on the basis of the energy method. Expressions for maximum
deflection respectively not taking into account and taking
into account free ends have the form

Diae= & s (1 40,1302 --0,006972%) ( 2.3.17 )
Cman = & max (10,4862 - 0,010324%) ; (2.3.18)
in these expressions w - the maximum deflection calculated

max
according to Bernoulll's theory. When « < 3 the results

calculated by formulas (2.3.17) and (2.3.18) differ by less

than 2.2%, 1l.e., the effect of the projecting ends is negligible
(analogous conclusion is also obtained in [148, 251]). At large
values of «k formulas (2.3.17), (2.3.18) are inapplicable, since
they give the negative values of deflections; from formula (2.3.16)
it follows that 1in limiting case k + «, when the deflection is
determined only by shearing strain, it does not depend on the
length of the ends projecting beyond supports.

The experimental data, obtained during tests of beams of
oriented glass fiber-reinforced plastics, attest to the negligible
smallness of the effect of the ends which protrude beyond
supports on the deflection. Work [217] gives the results of
experiments on three materials: unidirectional glass fiber=-
reinforced plastics AG-4S, 27-63S and glass laminate on epoxy-phenol
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bonding agent. Wth constant helght 2H and working length I the
length of free ends Zl was changed. The results of tests on
determination of relative deflection in the center of the beam
f(L/1)/f* depending on L/l and thelr statistical interpretation
are gilven in Table 2.3.3. Dispersion analysis shows that at the
5% confidence level the results of experiments do not contradict
the theoretlcal conclusion about the independence of deflection
f from relationship L/L.

Table 2.3.3. The effect of the ends of the
beam projecting beyond supports on its ]
deflection. ;
—
Y OO0 - o
[c] o~ —~ ' " (<)) L 0
(VIR RS ~ [e] o £ oo
oo == * © o L P
—~ O O + > Gy (G~ 3 0 o~ ©
T 0 P n ~N O © o i
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1x 17 134 1300 5151 1L.00 oo 120 11023 0,083 6,2
254 10425 1340 7 i emafioa]l ooms | 303
B ba0435 1471 o s resal 025 9,72
AF-Ls 1004 5 0000 3 emaaas{iaml oo | a0
RNl 34100 25110 5 T LR s Lsal ok o 6,27
sopdongsof200) 1 frem- Lo ]33] o002 8 580 _
27-638 s+ 60 5Hra2l 10 Lissi-ne sl 0007 | a4z :
811 134 804130 038 10 Jorm 1350 0012 048 | 1294 1
25 8O 23| 162] 0 [ 1Le2d-Laxo 130 00510 | 11,50
354 80433 1,88 9 |onra-1a65[1250] 07820 | 1452 |

2.3.5. Beams with bent and prestressed reinforcement.
Earlier (§ 1.4) i1t was shown that the tensioning and bending

of the reinforcement mainly affect Young's .amodulus E barely

x’

changing the value of the modulus of interlayer shear ze. As

applied to the problems of bending this means that with tensioning
(or bending) of fibers there 1s changed the component of deflection,
caused by normal stresses Wos and deflection from shear wT

remains constant. Consequently, total deflection w = w_ + w

o] T
does not vary in proportion to increase or decrease of Young's
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modulus of material. For example, for the case of a free,
centrally loaded beam the relationshlp of maximum deflections for
materlal with loose w___(0) and tightened reinforcement wmax(N) is

max
i equal to (see formula (2.3.1)):

Wiax(0) Ea (V)

;~max(t\) F (0) (2.3.19)

E, (.\) 2”
141, G ( )

As can be seen from this formula and the graph constructed by it |
(Fig. 2.3.10), the nonlinearity of function w(0)/w(N) grows with
increase of the relative height of beam H/l and decrease of the

shear rigidity of the material ze.

Fig. 2.3.10. Dependence of “m on E_:

1 - 2H/1 = 1/20; 2 - 2H/L = 1/10; 3 -
2H/L = 1/5 (G, = 0.14+105 kgf/cme)

In the case of bent reinforcement on the basis of formulas
(1.3.8) and (1.3.13) we obtain the relationship between the deflec-
tions of beam with stralght w(0) and bent reinforcement w(f~) with
degree of bending f.:

1 )(_.”_) f~‘p(‘\,
“IFIQ(ZH)BNN

S e ——

u(O)

—— (2.3.20)

The experimental data on the effect of bending and tensioning
of reinforcement on the flexural rigidity are presented 1n
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Table 2.3.4 [72, 100]. They are obtained during tests of
unidirectional, laminated and three-dimensional cross=linked
materials. The given data attest to the substantial effect of

the state of reinforcement on flexural rigidity. The maximum
rigidity for unidirectional materials 1s reached with comparatively
small tightening force, which does not exceed 20% of the breaking
stress of the strip. The rigidity of woven materials in the
investigated range grows continuously with lncrease of the
tightening force of the reinforcement. The last line of

Table 2.3.3 and Flg. 2.3.11 characterize the correction from
shears with bending; the tensioning of reinforcement substantlally

increases the correctlon from shear both for unidirectional
(AG-U4S) and for orthotropic materials (SKT-11l).

Table 2.3.4. The effect of bending and tensioning of reinforcement
on flexural rigidity.*

Three-
dimensional
1 Unidirectional AG-4S SKT-11 cross-linked
© . material
o
P g' ggigiiibgg 2 Prestressed reinforcement,
n o g ) in portions of strength of
2H C reinforce-| » g material

t | S8 (ment, £ |.388
L O R
@~ Wo o
— & o 5
= g ot | oam (S S o) | o2 [ o3 o] o Jom|oes| o] oz | 0w

PEO
w3 &
% e 129 1,07 1,00 081 084 086] 0911 1,00 0815),0670f 1,00 | O3 ; 0845
1% %% 114 1.02 100 | 085{ 090 | 092 1.02] 1,00 0885| 0520] 1,00 | 0.860 | 0.8% [
'5-" 125 |18 | 140 | 149 150 | £50| 1.58) 129) 140 | 357 | 107 {104 | 1w E
R : o, . i
A

¥Data gilven in the table are_obtained according to the
results of testing 8-10 samples; w 1s deflection when 2H/1 = 1/10,
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Fig. 2.3.11. The effect of shear i
on deflection: 1 - prestressed
fibers (B = 5.31); 2 - straighten- |
ed fibers (B = 5.05); 3 - fibers p
with technological bending (B = ‘
= 4,32).
i
L s on ‘Ffl

Thus, small 1nitlal bendings lead to a drop of rigidity. The
introduction of tensioning of reinforcement increases the flexural
rigidity in the classical sense, 1.e,, decreases W but
simultaneously increases the correction from shear. The presence
of bent or, on the contrary, prestressed reinforcement does not
qualitatively change the picture of deformation of rods made of
materlials reinforced by filaments, and does not diminish the need
for the account of shear effect with bending.

2.3.6. Beams on elastic support. With the presence of
elastic support i1ts reactlon can be treated as a supplementary
transverse load, proportional to deflectlon (bed coefficient ko).
The total transverse load 1s equal to q - kow, and differential
equations of bending (2.2.13), (2.2.14) take the form [225]:

Fu | Ju

av T =0

I
d*e d*u q—kow
o i - c— I— . [] .

Mt _j;o.\-oz = Gnt DG

Deflection of the free beam under slnusoidal load g = Qp sin Amx

(A - mmn

n = 73 m1s whole number)

e WO (2.3.22)

«'m 5
[ T
‘ﬂl I-"“E;I
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T

q -
w; = ——%L——-- deflection of the beam not allowing for shears

A E I

m X

and elastic support.

By introducing shears by Timoshenko's dlagram, with the presence
of elastic support instead of equation (2.2.7) we obtain

dio Kk dw ko q K d4q (2.3.23) ;
d.\t" FG,;: dx." IE,\I ' l an dx'.

For a beam of rectangular cross section, when F = 2H, I = %H3, A
K= 1.2, equation (2.3.23) assumes the form

tw d*w e "0,283 d*q Sl Y
I 088«:.,‘1‘ +Julw = ] u“qu:,l o (2.3.

k
= -0 . p=3
where ag = HE;—’ B = 2aOBH (this equation is used in the work

of V. I. Korolev [112]).

For two of the most widespread particular cases of loading
(evenly distributed load and concentrated force applied halfway
along the span) the expressions for deflection halfway along the
beams are glven in Table 2.3.5. The graphs constructed according
to the formulas in this table are shown on Figs. 2.3.12 and 2.3.13.
The results obtained from Timoshenko's diagram are close to results
obtained by (2.3.22); for the case of evenly distributed load
this difference <2% when L > 0.6 and <5% when L < 0.6; for the
case of concentrated force the difference <10% when B/L < 8 and
<5% when B/L < 4. 1In this case of sinusoidal load the solution
of equation (2.3.24) leads to (2.3.22), where O is replaced ;
by its approximate value-frﬁ—w—— (see Table 2. 2 1).

As can be seen from Filg. 2.3.12, on which the relationships
of deflections calculated taking into account (w) and without
taking into account (w*) shear are shown, the effect of this
factor 1s substantlal for all beams loaded by concentrated force, k
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Fig. 2.3.12. The effect of shears on deflection. a)

evenly distributed load; b) concentrated force half-
La

way along the span L = /2 _Fg‘

"‘-H r

i

a-00
o 4
' i
2 A _"iﬁ- -
3 0 i 70 7] 1
s ' 2 g)d [ 5 b)

Filg. 2.3.13. The effect of the length of beam on deflec-
tion. a) evenly distributed load; b) concentrated force
halfway along the span, w: ~ deflection in the center of

infinitely long beam.

and also for short beams under evenly distributed load. The
dependence of deflection in the middle of the beam, referred to
deflection of infinitely 1oﬁg beam, on the reduced length at
dAifferent values of reduced helght 1s depicted on Fig. 2.3.13.
For the majJority of the values of parameter B the beams can be
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consldered virtually infinitely long, if reduced length L > 3.

The need for the account of shears during bending of the
beam on elastlc support appears, for example, during the calculation
of short flxed shells [120], the receptacles of electrical
machines on plastic housings [210, 250] and in a number of other
problems. The restraint of lams (Fig. 2.3.14a, b) is a cantilever
beam-strip on an elastic base wilth elastic support in the span.
The refined solution of the problem taking shears into account
in this case made it possible to decrease the dimensions of the
supporting section, and the account of shears led to lowering of
the moment in the supporting section by 20-25%.

paLpede reence So2v A
Dy2020 9370804
TN
-

c) el N

A ENUEEN BRI R R |

et 1 (3)
Boramrg_, _Znaience
( 2 LI MLE] Nt go
) J ~

Fig. 2.3.14. The restraint of lams of recertacle in
plastic housing. a) cutaway of receptacle; b) rein-
forced ring projection; c) calculation diagram.

KEY: (1) Distributed reaction of elastic support;
(2) External load; (3) Steel ring.

2.3.7. The effect of shears on the extent of the edge
effect for cylindrical shells. Cylindrical shell (see, for
example, [239]) can be represented as a system of strips, isolated
from one another by planes passing through the axls of the
cylinder. 1In the case of axisymmetric deformation each strip
is under the same conditions as a beam on an elastic support with

bed coefflclent ko = 2HE where 2H and R are the thickness and

R

60




radius of the shell, and Ee - Young's modulus in circular
direction. In this case the flexural rigidity of the strip

3g
2HE
= x =
D 3= = xe)(E Young's modulus in axial direction; Voys
Veg T corresponding Poisson ratios). Thus, results obtained in

the examinatlion of beams on an elastlc support can be used during
the study of cylindrical axisymmetrically loaded shells, in )
particular for determining the zones of edge effect. 1In this
case by the zone of edge effect there is meant the area in which
the heterogeneity of the stressed state, 1.e., the phenomena of
bending, cannot be disregarded. The deflection of the shell under
uniform pressure g near the restraint of edges 1s changed wavelike J
with decreasing wave amplitude, approaching value w_ = qo/ko
(Flg. 2.3.15). Bending stresses (normal O and tangential qu)

4

analogously attenuate.

It is accepted to estimate the extent of the zone of edge
effect depending on the prescribed accuracy according to
coordinate x = Sy (Fig. 2.3.15), with which relative bending
We=w - w_ or bending stresses reverse sign (see, for example,
{7, 169, 172]), or at distance s (Fig. 2.3.15), for which with
prescribed p-percent
accuracy (in [228, 247] five=-
percent accuracy 1s accepted)
the stressed state of shells
can be considered moment-

o]

i"!hl‘ {

1 L] L] x

less. The expression for - eparcy i
estimating the zone of edge E;’f_‘ J |

effect for elastic ¥
Fig. 2.3.15. Change of the deflec~-
orthotropic axlsymmetrically tign in the zone o% edge effect,

loaded cylindrical shells, not allowing for shears;
obtalned on the basis of - - - taking into account shears.

the Kirchhoff-Love hypotheslis by S. A. Ambartsumyan, has the form

_-..r_.cl”” s (2.3.25)

l/9€!(l~\,u\eA)
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here 2H 1is the thickness of shell; R 1s the radius of shell;
E
v

% Ee are elastic modulil in axial and circular directions; vxe,
ox = Polsson ratios (first index shows the direction of
transverse contraction, the second - the direction of force); c is
a constant which depends on the prescribed accuracy of estimation
of the extent of the zone of edge effect (with first approach

¢ = 1, when evaluating with five-percent accuracy c¢ = 3.33).

The effect of shears on the extent of the zone of edge
effect is investigated in detail in [228],! in which equation
(2.3.24) 1s used. The estimation 1s accomplished on deflections
and tangential stresses. More exact determination of the zone
o propagation of tangentlal stresses 1ls necessary for establish-
ment of the length of the section of strengthening and the "winding"
diagram of the thilckened places of shells made of glass fiber-
reinforced plastics. As can be seen from Fig. 2.3.16, when
evaluating according to coordinate Sow ( according to deflections)
or sS4 (according to tangential stresses) the account of shear leads
to an 1ncrease in the zone of edge effect. When evaluating
according to distances s and S, (Flg. 2.3.17) the length of the
zone of edge effect, determined taking into account shear, is
less than the corresponding length determined with the
utilization of hypothesis of stralght normals (with the exception
of estimation of S for the case of free support). In this case,
with certain values of B there are observed skips, caused by
the accepted accuracy of estimation of the edge effect; the reason
for the emergence of skips 1s clear from Fig. 2.3.18.

'In [112] it is noted that the low shear rigidity contributes
to the damping of edge effects; however, this question in the
indicated work was not 1lnvestigated in detail. The account of
shears during the study of the behavior of thick-walled restrained
cylinders of glass flber-reinforced plastics 1s contained in
V. T. Tomashevskiy's works [242, 243]. The error introduced by
the hypothesls of strailght normals during the calculation cf the
deflecticn of shells loaded by ring pressure is estimated by
V. V. Vasil'yev [68, 69]. 1n [169, 172] tu evaluate the edge etffec!
during tests of pipes made of glass fiber-reinforced plastics
expression (2.3.25) 1s used.
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] Fig. 2.3.16. Fig. 2.3.17.

Fig. 2.3.16. The effect of shears on the extent of
the zone of edge effect: 1 - rigid fixing (dw/dx = 0);
2 - pliable fixing (du/3z = 0 when z = 0); 3 - hinged
support.

Flg. 2.3.17. The effect of shears on the extent of the
zone of edge effect (p = 0.05): 1 - rigid fixing
(dw/dx = 0); 2 - pliable fixing (3u/d9z = 0 with z = 0);
3 = hilnged support, wlth respect to deflections;
- - - stresses,

Fig. 2.3.18. The zone
boundaries of edge effect

Sl, 82 and S3 when

evaluating with prescribed
accuracy (Bl < B, < B3)

The need for the account of shears 1s determined by

parameter
II F lo .
G (1= Viaver)

and also by the accepted diagram of support and the required
accuracy of estimation of stresses and deformations. Conducted
analysis [228] showed that in the majority of practically interest-
ing cases for estimation of the zone of edge effects it is possible

not to conslder shears.
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§ 2.4, BENDING STRENGTH

2.4.1, The effect of shear on stress distribution. The
results obtained in the preceding paragraph attest to the fact
that the determination of the deflections of beams of materials,
which weakly resist shear, according to the formulas obtained
on the basls of the hypothesis of flat sections can lead to
inadmissible errors. The error introduced by neglecting the
shears during the determination of stresses requires analogous
estimation. Taking into account that within the framework of

U =G au ow

the assumptlon ¢_ = 0, O, = Exﬁf’ Tz + ——) (subsequently

z xz\39z = 9x

stresses cx and TXZ and modulil Ex and ze are written without
subscripts x and z), on the basis of (2.2.37), (2.2.38) we obtain

the following expressions for determining normal O and tangential

T stresses in the case of slnuscidal load q q, sin Amx:

7."\ Sh 4
m C

Gm

lde totlgm\  PBchum

q Ch Am —z-
m L
Tm= ﬁ———'-'im’iq-‘;(l ~~<h o €05 J.mX. ( 2. 4.1 )

For the three most wldespread load cases the expressions for
the stresses in free beams (Cm = 0), obtained on the basis of
(2.4.1), are gilven in Table 2.4.1 in conjunction with the formulas
derived on the basis of the hypothesis of flat sectlons. They
are the limiting case where Km ™ 0.

The diagrams of normal stresses for the case of a sinusoidal
lcad are presented on Fig. 2.4.1. As is evident, the deviation
from linearity of the distribution of normal stresses o is greater,
the larger the value of Kp = MK. With increase of K there 1is
observed an 1ncrease in the degree of deviation of the law of
distribution of tangential stresses from parabolic (Fig. 2.2.8).
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Table 2.4.1. Bending stress distribution.
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Fig. 2.4.1. The effect of
shears on the diagrams of
normal bending stresses

(q = q sin Amx).
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During the 1lnvestlgation of the questions of strength the
values of maximum stresses are of the greatest interest. The
* #
dependences of relationships Omax/omax and Tmax/Tmax on parameter
k for the three methods of loading are presented on Fig. 2.4.2.
The maxlimum normal stresses are calculated with x = 0.57 and

z = +H, tangentlal are calculated with x = 0 and z = 0. (In
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the case ot concentrated load the corresponding series with

z = +H, x = 0.57 diverges, therefore % nax and o;ax of the extreme

filbers are compared with x = 0.47.) As can be seen from the graph

(Fig. 2.4.2), the effect of shear on the maximum amounts of stress
is substantial only with

sufficlently large «, i.e., for

short beams of essentially

anisotroplic materials. For
example, with the permissible
error of calculation 10% for the
examined cases the deviation of
the law of distribution of
normal stresses from linear |

and tangentlal from parabolic can
be disregarded if « < 1.2. This
makes 1t possible during the

Fig. 2.4.2. The effect of calculation of stresses to use
shears on maximum stresses.

o ad L L]

elementary formulas of the strength
of materlals.

The deviatlions of the distribution of o from linear law and

T from parabolic can be Judged by the e?pansions of stresses into
K

Taylor seriles according to parameter « < I):

2
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.
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By comparing series (2.4.3) with the appropriate series for
1 deflection (2.3.4), we see that the effect of shears on stress
is substantially less than for deflection.

Near the ends of the beam the stress distribution can
noticeably differ from the classical, obtalned on the basis of
the hypothesis of flat sections. At these places therec¢ are
observed the greatest differences in the results obtained during
the application of different theories, which consider shear.
For example, according to the formula given in S. G. Lekhnitskiy's
work [123] the stresses 1in a free evenly loaded beam are deflned

as

3(’0/ X X _E_ 1=y o 552_:11 ].
0:——.-—4—’?[7('“7),' +0.00luh/. (”, Il) ’ (2.”.“)
sodf, 2 2)
T:=—-4—H-(l l)(l e .‘

The stress dlagrams, calculated by (2.4.4) and corresponding to
formulas in Table 2.4.1, are given on Fig. 2.4.3. As is evident,
near the supports appears noticeable divergence of diagrams,
which is the result of the fact that formulas (2.4.4) are derived
under the condition of the 1integral satisfaction of the boundary
conditions (0 = 0) on the ends of the beam.

The addend of expression (2.4.4) is stress o*, determined by
Bernoulli's elementary bending theory. The augend o** - the
corrective correction, which does not depend on coordinate x and
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Fig. 2.4.3. Dilagrams of normal (a) and
tangential (b) stresses in the sections of
evenly loaded beams, - - - k = 23 K =
= 0,

therefore does not disappear on the ends (with x = 0 o¥*#* = 02).
Relation

“"nm! -
".“’*""0.0’)“"‘2. (2.“05)
(LRI
characterizing discrepancy with boundary conditions o = 0 when
x = 0, 1s increased with an increase of parameter k. It 1s small
for 1sotropic beams, which have 82 < 3, but it becomes substantial
for peams of highly anisotropic materials, when as a result
of large B parameter k 1s great even for long beams.

2.4.2. Expansion of the area of failure from shear. With
bending of rods of lsotropic materials the relationship of the
maximum tangential Tmax and normal stresses O na x 1s of order
2H/l, and strengths with respect to normal ﬂc and tangential ﬂr
stresses are close to one another (see, for example, [247]).
Therefore, the calculation, as a rule, is performed by normal
stresses. For the materials 1n question ﬂc and ﬂr differ by
an order and more (experimental data are given earlier in
Table 1.1.1). Due to the low shear strength of material the
tangential stresses, in splte of their relative smallness, can
substantially affect the strength and character of bending fracture

(92, 2741]).
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The maximum normal and tangential stresses increase in
1 -

proportion to the growth of load. In axes BT Ia0
the course of loading 1s described by a ray, outgoing from the
origin of coordinates. One ought to emphasize that this ray doecs
not depict the path of loadling in the usual sense of theories
of strength and plasticity, since i and Thax are reached at
different points of the beam

when z = #H, 1 when

(omax max

z = 0).

The slope of the ray
depends on the type of
eflfective load, relaticnshiyp

2 I T T . . 3
Ay end  EETaATE TG Fig. 2.4.4, The dizgrams of th
On Fig. 2.4.4 rays are con- growth of maximum ncorral and

™~ = m = -

in the lcad. ST,y T = c

] T

structed for three tyges
of lcading with 2H/I = (.2
and 0.05 for materlals with infinite shear rigidity (B = 0) and
materlals cf the oriented glass flter-reinfcreed rlzstics tyre
(B = 4), The effect ¢f parameters R on the slcre ¢f the rzy for

small 2H/7 1s Insignificant: with 28/ = C,0% the rzys for
& = 0 and B = 4 virtually coincide, since in this case k < 0.5
and, as can be seen from Fig. 2.4.2, at such values <f « the

cerrecticn introduced bty taking Intc acccunt shegr is regligitie,

The disposltion of limiting strzight
for this material, on the graph (Fig. 2.2.4) makes it possible to
in th

e case derlcted on

lines 1_and I _, ¥kncwn
c] T

sudge the expected ferm cf failure.

Flg. 2.4.4 there 1s expected the fsllure of teams wi<h 2H/1 = O,

3

- § 5 X R
lcaded ty transverse lcad g = g' sin T and gq = const, frow

IThis is confirmed for glass fiber-reinfcrced plastics 17 we
disregard some nonlinearity of deformzticn dlagrams.

I
\VQ!

(Fig. 2.4.4)

ftangential stresses with an incrace

)

S




shear, since the four lower rays correspondlng to these types
of loadings intersect boundary HT.

For isotropic material ﬂo and HT - values of one order.
Consequently, the boundary of fallure with respect to tangential
stresses 1s moved far to the right and failure from shear 1is
virtually 1impossible. For oriented glass flber-reinforced plastics
l’lT/ﬂ0 = 0.05-0.10 (see Table 1.1.1), and rather long beams :an !
be destroyed from shear, therefore experimental research on this
phenomenon acquires practical interest. Research on the faillure
from shear when bending a beam of reinforced plastics under condi-
tions of elevated temperatures has special importance. The strength
of polymer bonding agent 1s substantially lowered with rise of
temperature. It 1s obvious that an increase of testing temperature
expar.ds the area of failure of glass fiber-reinforced plastics
from shear when bending.

2.4.3. The effect of ends, which protrude beyond supports,
on the bending strength. In § 2.3.3 it was shown that the
effect of ends, protruding beyond supports, on deflection is
Insignificant. The effect of ends on strength is investlgated
on the samples of three different materials. The results of the
test are given in Table 2.4.2. Dispersion analysis shows that
the obtained results at the 5% confidence level do not contradict
the assumption about the independence of breaking load from
the length of the ends, which protrude beyond the support. However
this question, especially 1n the case where the length of the
ends, which protrude beyond the support, is comparatively small,
needs further study.

2.4.4. Experimental study. The effect of relationships
2H/1 and l’lT/ﬂo on the type of bending failure 1s studled on three
series domestic glass fiber-reinforced plastics - AG-4S, 27-63S
and EF32-301 [217] with different packing of filaments in two
mutually perpendicular directions. The relationship of the
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Table 2.4.2. The effect of the ends of the
beam projecting beyond the support on the
bending strength.

L) Gy
o (o]
(1]
~ (o] L
3 - 58
B fo x2H, 7, 1y, t 8
mm mm O -
It} ot &
S i < 0w
= « G o
O G~ (PR
&0 od
m X O >
= 1012 50 10 710 56
271:938 30 779 6.2
90 678 Al
100 10 550 1.1
) 317 6.3
27-635] 10x194 100 10 1501 2.7
:0 40 1515 56
100 1370 23
180 10 955 0.5
50 945 07
AG=-Ls 10X174 50 10 713 70
1:1 30 717 65
90 655 X
100 10 492 8.1
70 460 86

number of longitudinal and transverse layers for the tested
materials is shown in Table 2.4.3. The samples are tested by

the scheme of a free beam loaded halfway along the span by
concentrated force P. The speed of movement of the punch

10 mm/min. Figure 2.4.5 gives the characteristic oscillogram with
the recording of force P and the displacement under force w.

The results of tests are given in Table 2.4.3. All the
samples, with the exception of those shown in the last part of the
table, were bent 1n the plane perpendicular to the layers. In

the table above the line are given the values of the greatest
o 3P (P

2
8bH
corresponds to point D on Fig. 2.4.5). Alongside in parentheses

normal stresses 1n kg/mme, calculated by formula e

are given the normal stresses, which correspond to the origin
“of fallure (point C on Fig. 2.4.5). Under the line are given the
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Table 2.4.3, Experimental data on the bend-
ing strength.
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Table 2.4.3. (Cont'd.).

Bending in the plane of layers

E AG-4sS '3!.7(30.7) n lg.\_n_.,;. H | " !31312-‘30 I EIRTEY Wl
, L TTam T2 T e T ey (KRS F N BT I I
AG=145 1 aam) [u--c sl b oy pmsann ]l ow [emes | o

31 T4k e 2o 1o |7 s T a2 T T s

27-638!6!.2(1‘.’.’.9) W-=¢ | 60.50624) | g 633D b oy [OT0) L w

3 i‘"&mi“’ ol R las o sal 1377 62

Note: ¢c - destruction occurred as a -
result of shear along a plane, close to
neutral; H - material failed from normal
stresses.

Fig. 2.4.5. Characteristic
oscillogram during bending
test.

values of the greatest tangential stresses (in kg/mmz), calculated

£a

by formula T * ToE" To the right of these values 1s given the

max
coefficlent of variation (in %), letters "c" and "w" designate the

form of fracture.

As can be seen from Table 2.4.3, the range of fallure from
shear encompasses the area of relationships 2? = %-— %g.

when g? = %— are all samples decstroyed by normal stresses. The

Only

characteristic types of faillure are shown on Fig. 2.4.6. Fallure
from shear occurs approximately at the level of neutral line,
as a rule, along the plane of the joint between layers

(Fig. 2.4.6a). Sometimes it occurs virtually simultaneously along
all joint planes between layers (Fig. 2.4.6b). With bending

in the plane of layers the tangentlal stresses do not act along
Jolnt surfaces, therefore these samples even with large relationship
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2; do not fall from shear (Fig. 2.4,6c¢). Fallure from normal
stresses (Fig. 2.4.6d) for materials AG-4S and 27-635, as a rule,

is observed in the stretched zone, and for material EF32-301 in

the compressed zone.

Fig. 2.4.6. The characteristic types of
bending failure: a) EF-32-301; b-d) 27-63S.

For 1llustration of the effect of the ratio of the height of
the beam to the span and the arrangement of layers of reinforcement
In the material to the character of fallure Fig. 2.4.7 depicts
the results obtained during the test of inspection materilals
(see Table 2.4.3); the light points correspond to failure from
normal stresses, dark from tangential stresses. As can be seen
from the figure, transition from one type of failure to another
occurs with relatlonship §¥, characteristic for this material.
Sufficiently long beams fail when o reaches the bouhdaries

Ny ™~ const. Figure 2.4.7 and Tablemgfu.3 show that with bending,
as also with stretching, the ultimate strength ﬂo virtually
linearly increases with increase of the number of filaments, packed
in the direction of the effesctive forces. With failure from shear

constancy of HT is not observed - it 1s increased with increase of

relationship g?. The analogous conclusion follows from the results
of [274] (Fig. 2.4.8). This can be partially explained by the local

fallures of separate glass fibers before the total loss of supporting
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power, since large normal stresses correspond to smaller values of
2¥. It is possible to consider this phenomenon formally when
using a diagram of the type of Flg. 2.4.4, 1if instead of vertical
boundary ﬂr we constructed the curve which corresponds to the test

results.

o

- 7 |
J r"«"'l"... * ot
L / ¢ 7 3 "'_-‘J
ﬂ Al 4 A b)

Fig. 2.4.7. De-
termination of the
normal and tangen-
tial breaking
stresses when bend-
ing a) AG-4S; b)

ZE 27-63S, c¢) EF32-301.

e pfeemt e be——p#iThe llght points
correspond to fail-

,/”’ ure from normal

—stresses, dark from

0N tangential stresses.
en

o) Wozs N H5end

Fig. 2.4.8. The maximum ;:”:q°#-r-7‘?*_*.hﬁT_j

bending stresses I during
fallure depending on span/
height ratio [274]: 1 -
unidirectional glass
fiber-reinforced plastics;
2 - packing 1:1; 3 - glass
laminate.




The main reason for the expansion of the area of failure from
shear is the smallness of the ratio of ultimate strength with
respect to tangential stresses HT to strength with respect to
normal stresses ﬂo' For the investigated materials HT/I‘I0 was
changed within from 0.03 to 0.12 (as can be seen from Fig. 2.4.8,
these 1limits can be still wider). The anlsotropy of elastic
properties barely influences the type cf failure. Transition from
one type of fallure to another occurs with the relationship 2?
characteristic for this material, which for the majority of the
investigated cases proved to be less than that recommended by

GOST 4648-63 (2H/IZ = 0.1). This places doubt upon the numerous

data availlable 1n literature on the flexural strength of orilented ;
glass fiber-reinforced plastics, especlally during tests under "
conditions of elevated temperatures (see, for example, [147]).

During the determination of bending strength it is necessary to :
indicate the type of failure, since otherwise the results are §

virtually 1incomparable.

2.4.5., The effect of tensioning of fibers. The in.r-u on
of tensloning of fibers leads to the growth of strength with
respect to normal stresses and to the noticeable grcwth of sicar
strength, in comparison with ﬂo and TO’ for materials with
straightened, but unstressed fibers. Typical data for material
AG-4S are presented on Figz. 2.4.9. Relationship MN/T somewhat
drops with rise of the degree of tautness. The zone of
failure from shear (Fig. 2.4.10) is changed insignificantly. When
testing rods of woven materials the strength grows in the entire
investigated range of change of forces,

When evaluating the rigidity according to the ultimate load

for prestressed short beams the obtalned results prove to be
significantly higher than shown 1n Table 2.3.3. This 1s explained
by the fact that without exception all the beams of the iIndicated
dimensions are destroyed rrom shear, and the shear strength

(Fig. 2.4.9) increases with lncrease of the tensioning force.
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This, apparently, is consisted in the error of Goldfein [287],!

who obtalned overstated data on the effect of stretching force

on the strength and flexural rigidity. The estimation with respect
to ultimate load 1s possible only with sufficiently large ratios

of span and height.

U - % 4 Fig. 2.4.9. The effect of
n'T, / tensile force on the bend-
i . ,.“m_w,f ing strength: 1 - growth

1 with respect to normal

stresses (@ - AG-4S, A -
SKT-11); 2 - growth of
strength with respect to
tangential stresses (x -
AG-4S, @ - SKT-11).

Fig. 2.4.10. The character of
faillure of beams of uni-
directional material AG-U4S
depending on the tensloning

of fibers. @ - samples with
stralghtened, but unstressed
fibers; x - prestressed
samples.

!The effect of the force of pretensioning of reinforcement on
the rigldity and strength of oriented glass flber-reinforced
plastlcs, apparently, was investigated for the first time by
Goldfein [287], however, the processing of experimental results
by him was performed without allowlng for the weak resistance
of these materials to shear, which led to overstated estimations
of the effect of tensloning on the properties of material.
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§ 2.5, STABILITY AND LONGITUDINAL-
TRANSVERSE BENDING

2.5.1. The account of shear in problems of the stability
of rods. Shears in the problem of stability of a straight rod
were taken into account for the first time by Engesser in 1891
[282] according to the diagram, which 1is accepted to call
Timoshenko's diagram (see § 2.2.1). Taking into account that
the bending moment, caused by longitudinal stretching (+) or
compressive (-) force N, 1s equal to M = =Nw, Engesser derived
an equation of stability of a centrally compressed rod:

K¥\d#w N .. (2z5rds)
('* FGu)ant Y ET <=0

whence for the case of a rectangular cross section the value of
critical force 1s obtained [183]:

PR A T S (2.5.2)
T 40,027
N#* - Eulerian critical force, i.e., the critical force

Hp m
calculated without allowing for shear, which corresponds to case

K 0. Let us note that i1f shears are introduced according to
Rankine-Grashof's diagram (§ 2.2.1) [237], then in the second

term of the denominator of expression (2.5.2) instead of multiplier
O.4 1t 1s necessary to substitute multiplier 0.5.

Formulas for determining the critical forces in round and
rectangular plates, close to Timoshenko's diagram, i.e., derived
on the basis of the postulate about the fact that shears do not
change the plcture of distribution of tangential stresses (for
a beam thls means that they can be &..ermined according to
D. I. Zhuravskiy), are given in [6, 14, 112, 136, 137, 162, 163]
and others. Stricter solutions are obtained in [39, 43, 49, 93].
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In book [317] (see also [193]) there is given the equation
of stability, modified (according to the terminology of the
authors of book [317]) in comparison with (2.5.1):

RN\, N (2.5.3)
(' Gy aw TETY=0

It can be obtained from the system of equations of transverse
vibrations of a stretched rod, given in [181], taking into account
shearing strain, if we change from the equations of dynamics

to the statlc case. In the case of rectangular cross section
from (2.5.3) follows the expression for critical force:

|+lG tm>— | AHH
Nipm=N* """‘L_—o'ﬁfr— (2 BT

Experimentally the stability of rods of materials reinforced
by fllaments 1s extremely insufficiently studied. The results
obtained in [154] during tests of free rods of circular cross
section of three brands of glass flber-reinforced plastics are
depicted on Filg. 2.5.1. Experimental polnts attest to the
notliceable effect of shears on the value of critical force in the
Investigated range of flexibility of rods. However, due to the
unsuccessful constructlion of the supporting unit of the fixture
for testing rods for stabllity there 1s obtalned a large scattering
of values of an’ which does not make it possible to decipher
the experimental data with sufficlent accuracy. In the article
of L. V. Bayev and N. G, Torshenov! an attempt 1s made at the
experimental estimation of the effect of shears on the value of
eritical force for circiular rods whose diameter is 8 mm, length
. for the cases of support: hinge-hinge and hinge-fixing. As
can be seen from the given table, the experimentally measured

'L. V. Bayer, N. G. Torshenov. The Stability of Rods of
Glass Fiber-Reinforced Plastics. - Mechanics of Polymers, 1968, 5.
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value of critical force an3 is close to the critical force
determined taking into account shears Ndp, and 1t can be
noticeably lower than Eulerian critical force N:p

Hinge-hinge Hinge~-flxing

ILun 160120106 82 72 62 Od 152 17 928 172
Nop? ::c 330 50 72(; 1160 1470 1880 2460 675 1038 1360 glﬂ
Noyup, ncc 340 533 775 1293 1650 2270 2990 710 1148 1745 .6§0
Nap. Acc 331 510 728 1171 1450 1915 2400 G87 1070 1562 2250

[hHec = kgf]

Fig. 2.5.1. The effect of shears
on the value of critical force
[154]. - = = calculated curves;
O, @, A are experimental points
obtained during tests of glass
fiber-reinforced plastics with
different structure (A and C

are glass laminates reinforced
by fabric of different weave,

B is unildirectional materilal).
KEY: (1) Structure.

(P)comns | 4 | 2 | ¢
E.(10%), neciest| 203 | 346 | 262

2.5.2. The effect of shears on the amount of critical force
of compressed rods. As was shown in § 2.2, the basic correction
during the reflnement of the technical theory of bending is
introduced by the account of shears, therefore thelr effect on
the amount of critlcal force 1s investigated under the
assumption about the negligible smallness of lateral deformation
(es = 0) and the compressibility of the axis‘of the rod (oKp << Ex).
In this case, assuming that the loss of stability occurs in plane
xz, from system of equations (2.2.13), (2.2.14) we obtain the
system of equations of stability [188]:

P
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Pu , | Ju y
-‘r:--r—'s-z-—nb—z—i-ﬂo' (2.5.5)
T
C# o PR, 2.5.6
(201G, + V) dx,+a,,~” didz d2=0. (2.5.6)

If we make use of known solution of (2.2.30), (2.2.31), equation
(2.5.5), equation (2.5.6) car be given the form

AirBhm? ch sm (23 Eslpm+ N) sin dmg—
—A'Implm’ Ch Zm(lm: :.;I(‘ m+ A’) Cos ,-m X—z‘g"-.N=0. ( 2 . 5 . 7 )

Equation (2.5.7) will be satisfied 1if A2m = 0 and

¢\’ = ,~"le8’¢"\'

Critical values of parameter AHp m are determined from the boundary
conditlons which form the system of homogeneous equations. These
values (or equations for their determination) under some usually
examlned boundary conditions are given in Table 2.5.1.

Table 2.5.1. Values of )‘m Hp for different

methods of restraint of the rod ends.

0 Method of restraint of rod
[
Z'.g With one re-
% .f, i strained,
With one
the other -
:c:s: E’ restrained | Hinge- . With restrained
Q0| s supported |hinge- .
mole® supported
end
w=0; o=0; wm=(); v=0;
x=0 ow du dw ﬂi-
oz =0 9z=0 o or =0
-3—:."00 w=0; w=0; w=0;
x= du du 93
ou, dw S=0 o0 a0
b?""a—‘--o oz
o,
A= =T b=
] P Matig il (o
(a=1,213..) =1,2,3...) =1,23.))
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The expressions for critical force N m and for critical

Hp
Stress oHp o NHp m/2H for the cases of support of ends
examined in Table 2.5.1, when shears do not affect the value of
AHp . (Table 2.5.1), can be presenteq in the form
Nip n=GmNypm®, Tgors =¢G00 pon; (2 45580

'e
Nm= =L, o'.,..,.--'!Q',';'—" - the critical forces and stresses,

calculated without allowing fop shears, ¢m - the coefficient
which determines the correction from shear. The solutions by
formulas given in [239, 282 and 317] give the appropriate
correction factors (see § 2.5.1):

Wb -1
O.SRmz )

Gr1=-—

F08m $ U= g g Tnm=

The accuracy of these dlagrams can be eévaluated by comparing the
Fal .
Taylor series for coefficients ¢mI’ ¢mII’ q)mIII'

Fm=1=0,42,+0,1619%* - 0,0656:¢,08 +. . . (2.5.9)
Gn 1= 1 =052+ 0,250, — 0,125%,,0+. . . (2.5.10)
Grrr=1=047n+6,1600,, — 0,0640x,,8+-. . . (2.5.11)
Gn = 1=0,42,%0,32002,,% - 0,3200:,, +. . . (2 5. 1)

This makes it bossible to establish that coefficient ¢mI is understat-

ed, ¢’mIII - Overstated, and ¢mII is a sufficiently broad range of
change of parameter Km 1s very close to ¢m (see also Table 2.2.,1).

As can be seen from formulas (2.5.9-2.5.12), coefflcients

¢ and thereby relatlion o /0 * decrease with increase of
m H Hp m' "Wp m

parameter Bf faster, the larger )\Hp m is, i.e., the more rigid
the restraint of ends of the vrod (Th1. 2.5,  WMER inereags.
GBS ke Flrece 0 e e [ had OF rectraint L ends Weakoln,
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(Fig. 2.5.2). When k, = 0, which corresponds to infinitely
long rod (H/7 = 0) or to material with infinite shear rigidity

= = = #
(8 = 0), ¢, = 1, consequently S ¥ 9

Billge2:56é s The P ReEE, Olf
shears on critical force under
varied conditions of restraint
of ends of the rod.

2.5.3. Ways of increase of the critical force. Limiting
cases. Critical stress oHp can be increased in two ways: by

increasing the shear modulus ze or o:p m? l.e., Young's modulus
Ex, relation % or the riglidity of restraint of ends. The

effectiveness of one method or other can be 1investigated by
examining the partial derivatives:

Ooipm__3thstm __ Gm .
Jo*pm  27md 2 (2.5.13)

a"'fr‘"\_ __3thn"| . _i

dG,, ol 224m +2Ch3‘4m‘ (2.5‘].“)

The graphs of these functions are presented on Fig. 2.5.3.

00 90
With Km 033;2—— 1, 3G 0 with K , on the contrary,

Hp m Xz
00 90 #*
__i%_ﬂ = 0, —=E- 8 = 1, Consequently, increase of ¢ .
Boﬂp anz Hp m
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effective only with small kKqe With large «_ (order 1-2),
characteristic for rods of materials reinforced by fllaments, an

increase of o:p p Without
' a simultaneous increase of
I I the shear modulus G becomes
’ 8 X2z
;ihﬁ Ffﬂﬂgﬂ,aﬂ' ineffective. With still larger
i :. *
7 MG, SRS W SR, Km the change of c“p m virtually
l no longer affects the critical
|
N | stress ch 7 which when
. L 1 “j‘-——ﬁ==§% Ex + o or H/l + «» approaches
[ ]
not inflnity, as follows from
Fig. 2.5.3. The effectiveness Mip m2H2E
of increase of G,, and o:p n’ Buler formula (o'wm== 3 )
but toward a finlite quantity
equal to shear modulus ze:
lim Oipm= axz. (2 . 5 o1 5 )
nn-o-

(The obtained result 1is qualitatively analogous to results of
(56, 931.)

The conducted analysis 1s related not only to the problems
of stability, but generally to the question concerning increase
of the total (taking into account shear) flexural rigidity,
which 1s directly proportional to critical force. For greater
clarity 1t is possible to use Timoshenko's diagram, with the aid
of which, as follows from § 2.2, the basic correction from shear
is caught. The replacement of coefficient ¢m in formula (2.5.9)
by coefficient ¢mI corresponds to the transition to this diagram.
Hence follows

—— X »
Tupm S%pm G:s

1 1 + 1.2

As 1s evident, total flexural pliability l/oHp m consists of

flexural pliability of the classical sense 1/03p m and shear

&5
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pliability 1.2/ze. Obviously it is more effective to decrease
the large component. For isotropic materials always l/o:p e
>> l/Gxz (according to Bernoulli's theory, l/Gxz
for materials reinforced by filaments cases are possible where
l/o:p m < 1.2/G,
Fig. 2.5.3).

= 0); however,

; (this takes place when k. > 1.7; see

A model, composed of coaxial absoluteiy rigid rods, hinge
connected with rigidity ze (Flg. 2.5.4), corresponds to the
examined limiting case (2.5.15). With such a form of the 1loss
of stabllity 1t 1s theoretlcally impossible to predict which of
the equal forms (see, for example, Fig. 2.5.5a, b), adjacent to
the 1nltial form (Fig. 2.5.5c), the rod takes when the stress

reaches its critical value oHp i ze.
(]
e " ¥
.i.. =
[4
1 Iy
36, 5
! !
N L]
/,L a) b) c¢)

Fig. 2.5.4. Fiame 2 05051
Fig. 2.5.4. Model of the shear form of loss of stability.

Fig. 2.5.5. The possible shear forms of the loss of
ttability during compression (a, b) and tension (d, e).

= n E =» o can be obtained also by the
Result oHp m ze whe X )
energy method, taking into account that in this case the potential

strain energy of the rod is determlined only by shears 31 =
= 0.5y 2G Fl1 (F - the cross=-sectional area of the rod, e
= lxe w2
angle of shear). The corresponding change of potential of external_
"
force N = Fo, with this 3f=Fnul—uﬁyn)=Foll§-. From equality

31 = 32 follows equallty Oﬁp - ze.
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During the action of tensile force the shear form of loss of
stability of the solid roc¢ i1s impossible, since with the
observance of conditions of continulty of deformations a potential
of external forces less than with the initial form cannot exist
(Fig. 2.5.5¢, d). Such a loss of stability i1s possible with the
expansion of a spring [248], each coll of which can slip relative
to the adjacent coils (Fig. 2.5.5e). In this case fcr 3; and 3,
we obtain the same expresslons as for a compressed solid rod, and
therefore, the same final result oHp 8 Gycn (here Gycn - the
conventlonal shear modulus, which corresponds to the shear modulus
of an equivalent solid rod).

From equation (2.5.4) it follows that when E, > =or H/l >«
ch o X ze/K’ i.e., according to Timoshenko's diagram (and also
according to Rankine-Grashof), in the examined limiting case tii.
critical stress must depend on the shape of cross section
(coefficient K). However, as follows from the derivative of formula

oHp = ze by the energy method, the shape of cross section when

Ex + © or % + o does not affect the value of critical stress.
The disagreement of results 1s caused by the fact that in
the approaches of Ranklne-Grashof and Timoshenko the distribution
of tangentlal stresses over the section of the rod 1s accepted
as not depending on the relationshlp of geometric dimensions
(H/1) and the elastic characteristics of material (EX/GXZ), i.e.,
on parameter Kn® However, as can be seen from Fig. 2.2.8, with
increase of Km the law of distribution f(z) increasingly differs
from parabolic (a rod of rectangular cross section 1s examined).
Coefficient K (see the method of its determination in § 2.2.1) is
the function of parameter K but this 1s not considered in the
indicated diagrams, according to which it 1s accepted as constant.
For a rod of rectangular cross section in the limiting case
(k 0; shears are absent) K = 1.2 (according to Timoshenko) or
K= 1.5 (éccording to Rankine-Grashof). 1In another limiting case
(Km + =) the tangential stresses are distributed over the section
of the rod evenly, regardless of the shape of 1its cross section,

m

consequently, K = 1.
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Formula (2.5.4) in the limiting case (Km + =) gilves result
%imm oHpm = o, qualitatively different from formula (2.5.15).
m

Furthermore, from equation (2.5.3) 1t follows that for a rod under
tension the shear form of the loss of stability 1is possible when
G, K [106].

o

The nonconformity of these derivations to the results
obtalned earlier is due to the inconsistency of the account of the
force factors, which act in the sectlion of the rod. Equations
of equilibrium for an oblique-angled element (Flg. 2.2.1) are
composed the same as for rectangular [317].

As a result of the intense decrease of critical force, caused
Ly shear, dirficulties appear during the tests of materials of
the type of oriented glass fiber-reinforced plastics for
compression, since even very short samples (I/2H = 5-10) lose
stabllity. A sample made of glass laminate on epoxy bonding
agent (1/2H = 7.5) loses stablility i1f the compressive stress
reaches values of the same order as the shear modulus, which
qualitatively agrees wilth (2.5.15) (Fig. 2.5.6). The limiting
relative height of the rod, at which failure of material begins
earlier than the loss of stability, 1s determined by 1nequallty

”l-[n< “o_o

whence, by using Timoshenko's formula (2.5.2), for a beam with
hinge-mounted ends we obtailn

2H _ 233 [ G )-0.5
7 ap \g- 2

The glven analysis shows that the calculation for stability
of rods of materluly reialoresd by fllaments mmst be performed

taking Into account chears. or constructions mide ' eh
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materlials cases are possible where an increase in the shear modulus
1s more effective than an increase 1n Young's modulus of the 3
relative thickness or rigidity of restraint.

Fig. 2.5.6. Sample 2H x I = 8 x
£ with loss of stability.

x 60 mm

2.5.4. Llongitudinal-transverse bending. The simultansour
account of longitudinal forces N (we will consider them positive
when they stretch the bent rod) and transverse load q leads to
the system of equations which describes longitudinal-transverse

bending:
O-u, 1 o°
i ox? |%'Eé§=0; (2.5.16)
d'w
(2HGaz+N)d;2—+Gn fdxh—dz q (2.5-17)

The course of solutions of system of equations (2.5.16),
(2.5.17) 1is completely analogous to that given in § 2.2.3, Thus,
instead of (2.2.37), (2.2.28) we have

q [“h L I X I 8
ST o 2y 1Y p;hn coshgC ('” ) 4 (Bo5-150

Ty =___:____q_:'_‘____.___ i, = f --.:-‘.- .
e .",I)l""""‘ """‘(' ,)l (2.5.19)
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In the case of sinusoidal load (q = LT sin Amx) the expresslon
for deflectlon assumes the form

Dhpm = (2.5.20)

or with small Km

\
At KPP
Wy L m(‘ + 0, 'Am N.lip m)

(w; - deflection according to Bernoulli when N = 0; N:p .
Eulerian critical force).

As can be seen from (2.5.20), the tenslle force decreases
the deflection. For compensation of the component of deflectlon,
caused by shears, 1t is required to apply the tenslle force

c\'|=-\.‘l:p(|—¢lll)' (2.5.21)

With not very large Ko when the approximate replacement of
b = 1-O.UKm2 1s permissible (see Table 2.,2.1),

-‘\’]'-‘—'0,'3321)!‘- (2 . 5 . 22 )

In the case of compressive force the deflection is increased and,

= = #
as one ought to expect, whern N NHp i ¢mNHD " becomes infinite,
i.e., the rod loses stability.

The effect of the longitudinal force and shear on the
deflection 1s 1llustrated by Fig. 2.5.7 and Table 2.3.1, on which
" *
there 1s given relation Wmax/wmax with different relations N/NHp
for beams loaded with evenly distributed load and by force
applied halfway along the span. As 1s evident, relation w /w

max’ "max
insignificantly depends on the type of transverse load, therefore

formula (2.5.20) can be recommended to evaluate the effect of
axial forces also in the case of loads different from sinusoidal.
When Km ™ 0 and ¢m + 1 formula (2.5.20) turns into known
approximation formula [239].
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(1) Fig. 2.5.7. The effect of shears on
deflection of flattened beams. a)

Kpisas l 2

| | | evenly distributed load; b) concentrat-
£ : ed force halfway along the span.
Oll 02' osl Oingg 0 KEY: (1) Curve.

If the calculatién is performed on prescribed deformation,
then the low shear rigidity of reinforced plastics with prescrio i
relation an/N sharply limits the permissible transverse load.
Relation qo/qg (asterisk notes the permissible transverse load
for a beam with infinite shear rigldity) turns out to be inversely

proportional to the ratlio of deflectlon Weo /w;ax'

rot ‘;_m"—‘.‘;'- (2.5.23)

Relation 3% =qo“_—4 is shown on Fig. 2.5.8. From the presented
|cp

data it is evident that the permissible transverse load can be

decreased several times. Thus, the account of shears 1s necessary

during the calculation of critical force and the calculation of

deflections for all practically important constructive uses of
flattened beams made of reinforced plastics. Utilization in
these problems of the hypothesls of flat sections can lead

to inadmissible errors.

Fig. 2.5.8. The effect of
shears on the value of
permissible load at pre-
scribed deflection of

free evenly loaded beams.
KEY: (1) Curve.

(1) Tkoman | 0 | 2 | 3| o]

N
AU Y} 02| 03 Q4| 0.5
& o] e | o]




2.5.5. Longitudinal-transverse bending of beams on an
elastic support. With the presence of a linear elastic support,
the reaction of which is proportional to deflection w, the
equations which describe longitudinal-transverse bending have
the form

dFu_ | Fu
axi t g i e
(MGt XY~ K +G..f-‘;f;';;dz--¢ (2.5.25)

(kO - bed coefficient). The solution of system (2.5.24),
(2.5.25) (method of solution is analogous to that given in § 2.2)
for the case of free support leads to the following dependences
for displacements:

e b‘l*m 2

,,._s._-»——r—-—.- ot . . 6)

tya N ﬁch e ~- COS hmX; (2.5.2
o ‘E ’(q‘u“' or ’ ,-‘Exl)

R e e o Ll Rt (2.5.27)

"-‘“ Gty oggt a...l:'.l)

As can be seen from formulas (2.5.26), (2.5.27), the displacements
become infinite (this attests to the loss of stability) when
longitudinal force N reaches critical value:

Nyp™e= - 22E, I(,‘,‘... ke ’ i} (2.5.28)

As 1s evident, the critical force increases with lncrease of
rigidity of elastic base (coefficient ko). The relationship
between dimensionless quantities N o NHp mlz/nZExI and

EO = kg A /n E I is linear:

:unqm’q..-&% .

This relationship at different values of the parameter k = ne%

is represented on Fig. 2.5.9. The 1inclination of straight line
ﬁ“p e f(ﬁo) does not depend cn shears. The latter aftect only
the location of the point cof intersection of the straight line with
the axis of ordinates. When ko = 0 the minimum value of critical

force corresponds to one half-wave (m = 1); however, with increase
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of ko the number of half-waves, at which the minimum of critical
force is reached, is increased.?®

Fig. 2.5.9. Change of the

] critical force depending on the
v rigidity of elastic support at
different values of parameter
K, Wwhich conslders the effect
of shears.

hym ~

The transltion from m half-waves to m + 1 half-wave 1is
determined from condition:

n k k
7.m'¢m+}:'nz‘z:rl‘ ='Am+lz¢m+! +m¥a ’ ( 2.5.29 )
whence
Fommt(ma 1)t 1Dt = (2.5.30)

(m+1)2—m?

or for values of Ko at which the approximate replacement of
o, > (1 + o.lmm)-l is permissible (see Table 2.2.1),

To=R*onGm1. (2.5.31)

With « > 0 and ¢ > ¢ ., > 1 formula (2.5.30) changes to the
formula not taking into account shears [76]:

'Analogous results are obtained in work of B, L. Pelekh,
G. A. Teters, R. V. Mel'nik "The Stability of Glass Fiber-
Reinforced Plastlc Plates, Connected with an Elastic Support,"
Mechanics of Polymers, 1968, 6, 1082.
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ling?o==k'"o=m=(m+l)3. (2.5.32)
R~

As can be seen from Fig. 2.5.9, the effect of shears is
manifested in the fact that the boundaries of transition from

the less number of waves to greater are shi’ted toward smaller

values of parameter EO. This
effect can be Judged from
Fig. 2.5.10, on which there
are shown the zones which

correspond to m = 1-4 half-

waves, depending on parameters

Kk and ko.
Fig. 2.5.10. The areas which
The obtalned results correspond to loss of stability
can be used for determining with number of half-waves m =
= 1-4,

the upper critical forces
of cylindrical shells., If
we examine the axisymmetric problem of a round cylindrical shell
with Young's modulus along generatrix Ex and in circumferentlal
direction Ee, then

po2Es 5 3EeB
R %m’G ox R:
where
. m23E H?
¥m = Gos P (1—vreves)

—  3(l-yHt
(for isotropic shell kwa'yiugél). Consequently, the critical

axlal pressure

mE, M2 Lol
Pro=""gs " iRE
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§ 2.6. FLEXURAL VIBRATIONS

2.6.1. The account of shears in problems of flexural
vibrations. Shears in the problem of transverse vibrations of

a beam were introduced for the first time by S. P. Timoshenko
[240]:

dw, o F ow _K-L dw o Jdw

T TE T on X6 dxon E, vt
e 0 0w
tKGo .o =0 (2.6.1)

here p - material density, K - the coefficient which depends on

the shape of the cross section and the method of the account of
shears (see § 2.2.1). The last two terms of equation (2.6.1)
consider the rotary inertia of the section. Disregarding it,

i.e., taking into account only shears, instead of (2.6.1) we obtain

'

e E 6’.9 o dw _
wrET ~K = goE =0 (2.6.2)

"o " OxIeE

which follows from (2.2.7), 1f in it on the basis of the
d'Alembert principle we replace the transverse load by inertia
term

2w

9=oF5m -

In the case of a free beam! from equation (2.6.1) follows the
equation of frequenciles

(I‘nl

(l)m) I\ﬂl‘) 0= =0, (2.6.3)

(14 Kp? )}( mm) +[\a 2t

'In [192] 1t 1is proposed to use formula (2.6.4) for determining
natural beam frequencles with different conditions of restraint
of ends.
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where m°m=zmwl/%i«- m angular frequency, determined without allowing

for shear and rotary inertia; 1 = % - the radius of inertig
of the cross section of the beam; Am =mn/l, m - integer. The
roots of equation (2.6.3) are determined by expression [1817]:

on V'L RE [ )T ARE 2.6.4)
“)“ = = UF i1+ KRS ¢ (

o' 2RE 7

Frequencies Wom Correspond to predominantly flexural [48] vibrations
(sign "+" in expressicn (208, 1)), Taking into account rotary
inertia one additional series of frequencies appears Yim (sign

"-" in expression (2.6.4)), Taking into account the smallness of
the augend under the Square root in formula (2.6.4), we have

*
(0] ,yn

gt = |+,'z;.mz"(| +Kp) : (2.6.5 )

(0] .‘v
it = Rls:idi'i = G (BuBaby)

Without taking into account rotary inertia we have only one

series of frequencies W s which corresponds to Yom'

= w3,
""""'T;'Fwﬁm.‘ (2.6.7)

In 8. P. Timoshenko's work [240] there are given formulas taking
into account rotary inertia and shears:

Wom =w‘n-[| “O,Siglmz(l +Kp=)] ( 2. 6 . 8 )
and taking into account only shears:
om=0*(1-0,5Kp*Am?). (2.6.9)

Formulz (2.6.8) r'cllows from (2.6.4), and (2.6.9) -~ oy (E.B%T ) 5
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i1f one assumes that parameters Am (lowest frequencles) and B

(isotroplic materials) are small.

The examined approaches obtained their development in the
theory of vibration of plates and shells (see detailed
bibliography in [2, 98, 138, 142, 155, 156, 160]). As applied
to constructions made of anisotropic materials a serles of
problems taking into account shears has been solved by
S. A. Ambartsumyan [6], V. I. Korolev [112] and others (see
review [142]). V. V. Bolotin and coauthors developed the
theory of vibrations of constructions made of reinforced
materials [38, 43, 52, 270}, on the basis of which there is
solved a serles of problems, which makes it possible to consider
the flexural effects in the reinforcing layers.

2.6.2. Basic dependences. The equations of vibrations
of the beam can be obtained from equations (2.2.13), (2.2.14) by
the addition of inertia terms to them:

u | dFu @ Ou,
2)}; -F;.;;;;--E;.D-l?' (2.6010)
"
v Pu 0 0% (2.6.1&)
24 VIO 2 Jdxu2 ‘”"'2”'07,'7;:‘:'

These equatlions can be obtalned on the basis of the Hamilton
principle (see, for example, [52]), according to which the proper
motlion of the system 1s such that 1t 1mparts steady-state value to

integral
h
[= ‘f (T-3,-3y)d!

(at the ends of interval (to, tl) the expression is not varied).
Expressions for potential strain energy 31 and potentlal energy
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of external load 32 are obtained earlier in § 2.2. The kinetic
énergy of the system T is determined by expression

r- ![ %) (%) ] s

By presenting displacements U, w 1n the form of periodic
functions of time

u=U(x,2) sin (ol+8);
w=W(x) sin (of+9),

from (2.6.10), (2.6.11) we obtaln the system of equations
for the amplitudes of vibrations U, W:

*U eut, | U _ o
ot E Ut itgE =0 (2.6.12)
ow? eU -
2H(dxl +G:u7)+._/;l_—dxdzdz 0. (2.6.13)

Conditions of free beam

ol
(I Pty ) :-0, J =-=’;
n = 0 npn x v
o +%-“f =0 npn z=%/

[npu = when]

will be satlisfied if (see § 2,2.3)

L'“l =3 - ‘;g‘m‘z’n sh '|n.ﬂZ'C()§ ,.mx; ( 2. 6 . lu )

“"m = /‘ mS i n ,-mx.

. B M)
where [ _,“._Li 'Am"‘l‘mﬂ”'

o In thls case cgquation (2.6.12) 1is
x

satisfled 1dentically, and from (2.6.13) follows the equation for
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1 determining the circular frequency:

Win -(l).sm;l;f;vm' (2.6.15)

where
3(31 —thz )
wm___;LZF_zL

2.6.3. The effect of shears and rotary inertia. If we
disregard the forces of inertia in the direction of the axis
of the rod, i.e., rotary inertla and bending of cross sectilons,
then equation (2.6.10) will not have a right side. Hence it
follows that M, = Am and correction from shear for the square of

l circular frequency 1is the same as obtained earlier (see § 2.5) for
critical force:

(om’“‘(l)“mq)m- ( 2.6.16 )

Taking into account the rotary lnertia and bending of cross
sections, 1t 1s necessary to solve transcendental equation (2.6.15).
The circular frequencies are determined by expression

7.,,.29‘-'”'——;..‘

Ont =0t T (2,'6.17)
where Em are the roots of equation:

hatmem 20— (2= 1 2.6.18

t xm-m"(p- )Xm- ( . ol )

Equation (2.6.18) with fixed m has (see Fig. 2.6.1) one real
posltive root EOm’ which corresponds predominantly to flexural
vibratlons, and infinltely many imaglnary roots. Consequently,
the account of inertia of bending of sections instead of the
averaged value (rotary inertia) leads to the appearance of an
infinite multitude of seriles of frequencies. Formally equation
(2.6.3) follows from equation (2.6.15), if in the latter we

: T YT N
A AR Ak = el S N A d




Fig. 2.6.1. For determina-
tlon of the roots of

Xf—:’ - Ly x
equation (2.6,18).

hx

. X
V X,

20 xVifitgx

:‘f'f’-(p 210

replace function ¢m by 1ts approximate expression ) (see

1+0. MK

Table 2.2.1) taking into account that forp the beam in question of
unit width and with helght 2H the radius of inertia 1 = /3H,
The determinaticn of frequencies Yo by formula (2.6.5) instead

of the more accurate (2.6.17) leads to error <6%, if 2H/1 9 Oy
m < 10, B < 60.

The imaginary roots of equation (2.6.18), taking into account
that for materials reinforced by filaments B >> 1, can be
determined with sufficient accuracy by expression

?,.,,.=(2n—|)-’;-;/71‘.

Consequently, m frequency of n series

mn.,.-_-.ﬁLl’- m*Vm’+ (2_;";,;3)2” g (2.6.19)

The comparison of values of natural frequencies for beams
with relative height 2H/I = 0. 1, calculated according to the given
formulas, 1s given in Table 2. 6.1, from which it 1s clear that
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Table 2.6.1. The effect of shears on the
natural vibration frequency of beams.

-

ny,, 10°
(] -
| (1) i (2) . Yz | S
Wy, =ty PR =3
1 € Y4r10M ! Ccy viera - "
8y il Huepnum i EHEPINN
m b L lln.u.:o‘uul CHETHGITTE |

TG 3y 13Y (LRI

AEI
| [EX T} 1268) (260 (26 (266)

Q2617 (20 149)

— = o s — e s —— e —
e o o " ¢ ——— _— — s ——— o —

. | &

24 ' OUR3] 053 06871 04UN7 7005, KT8 205,04 '3!2.20
o2 antl owg  onnn) o oson | 27280 2700 | 7461 (12479
v 0Iml 0500 07921 O Isos) 1802 | 44,02 7200
: 26, 00938 0432 0030, 09 | 2085 1795 | 5162 | 85,72
2 | M 0745 0589 1 0717 0606 828 827 | B30 330
G0 «L542|<o lLSIIriﬂ G351 656 | 1209 ] 18,64

26 | OB ORI 00| 0885 861 843 | 2300 3815

3 N 05931 0075 | 0xn wll) 455 458 9,081 14,19

60 0,395 <0 N9 | <0 3.8t 4,00 6,00 922
20 | 0735 0578 | oim 0680 353] "352 | aso| 13s8
5| 20 |o403l<o | oi0l<o 23| 2 | 369| 540
€0 0.250| <0 0251 <0 225] 228 | 279} 361
26 | 0478|<0 0,527 | <0 18] 130 | 232 359
10 | 20 0.216] <0 0.219! <o 109 1.13 1.33 | 166
0 0.128; <0 | 0129120 104 110 | 18] 131

KEY: (1) Taking into account rotary inertia;
§2) Not taking into account rotary inertia;
&) JBTIR

Timoshenko's formulas (2.6.8), (2.6.9) even durilng the
determination of frequenciles of the lowest tones give perceptible
error at large values of parameters 82, characteristic for the

materials reinforced by filaments. For these materials the shears

strongly lower the values of natural frequencles, therefore
disregarding them can lead to incorrect estimations of Young's
modulus, determined according to the frequency of flexural
vibrations. When determining frequencies Wom for these materials
the correction, Introduced by the account of rotary inertia,

1s substantially less than the correction from shears, which
makes 1t possible with sufficient accuracy for practical
calculations to use formula (2.6.16).

2.6.4. The effect of elastic support and longitudinal force.!.

The equatlons of vibrations of the beam on an elastle support, the

IThe effect of longitudinal force on Lhe vilratlons of v iin-
drical coll springs, considering them as a bar with low shear
rigidity, was investigated in detail by V. I. Biderman [181].
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mass of which can be disregarded with the presence of longitudinal
tensile (+N) or compressive (-N) force are obtalned from system
of equations (2.5.24), (2.5.25), if to them we add the inertia
terms:

Fu, 1| du_ o 0, 2.6.20

T T P T Ce )

AN LA L f'f" ] _.?’_'d; (2.6.21)
"-.’»//(i.,.) ox TaG T i J oxoz 4T Gy anE

By solving thls system for the case of a beam with freely resting
ends, similar to the solution of system of equations (2.6.10),
(2.6.11), we come to the transcendental equation

]
220 m('[ .;11'-'- f"l'm) (2.6.22)
where

l kﬂ r
W= 22 7 ot “)'

Circular frequencles are determined by expression (2.6.13), in
which Em - the roots of equation

(2.6.23)

!
"\Amﬁ’ : xm(ﬂ ] = ko x )

UG hnd 20Gy)”

If in the equation of frequencies (2.6.22) we perform the approximate
replacement

= 1
Vi 1 +0,4u8 )

then 1t 1s converted into bilquadratic equation

o) 3 ?m 2

( > ) + 1+ o+ 0L 2 p2p =0,

0%n

(2.6.24)
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By disregarding the rotary inertia, the correction from which for
materials reinforced by filaments 1s an order less than the
correction from shear, we have

k wmz':(l)‘m(q?m'*'wm). (?-6-25)

After the approximate replacement of

¢'~-—“j—“

140

for small values of Km2 formula (2.6.25) can be simplified:
on=0%n(1 "0.2H252;-m2+o.5\rm+o.l¢mﬁzﬂzlm=)o (2. 6.26 )

If we disregard shear (ze + o), then formula (2.6.25) changes
to the known formula obtained on the basls of the hypothesis of
flat sections [240]:

. b, N
0= (|+lml VAW J) (2.6.27)

In another limiting case (EX + «) the natural vibration frequency
approaches not infinity, as follows from classical formula (2.6.27),
vut a finite quantity, equal to

’.mzaxl ko V
s =0 (“’2::0 BYRET T ) (2.6.28)
From formula (2.6.28) fol.iows
lim ot=tm0x (2.6.29)
B-on '..2

i.e., the error of the approximate solutlion is the same as 1n the
problem of stabllity of the rod (§ 2.5).
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With an increase of the rigidity of elastlc support the
vibration frequency, as can be seen from formula (2.6.25), is
increased. The longitudinal tensile force +N has analogous
effect, 1In the case of compressive force the vibration frequency

decreases and vanishes when

N——>Nepm (2.6.30)

where ywnﬁ,7¢mNﬁmw+3% - the critical force, calculated taking

into account the elastic support (§ 2.5).
§ 2.7. CURVED BARS

2.7.1. Introduced observations. Recently winding has become
one of the princilpal methods of manufacture of important con-
structions for materials reinforced by filaments. In thils case
there 1s created materlal which possesses curvilinear anisotropy
[123]. The strong effect of the winding parameters (tensioning
force, number of turns, conditions of polymerization and others)
on the properties of the material in the article required the
development of corresponding methods of tests of the wound articles
and materials. It 1s recognized (see, for example, [266] and
others) that the most acceptable are samples which have the shape
of a ring or 1ts part - segment. During the manufacture of ring-
shape samples the technology of winding 1s comparatively easily
reproduced. The testing technique of these samples 1s quite
simple. However, in the majority of cases the results of tests
of rings and segments are processed, as a rule, according tc
formulas of classic strength of materlials. Depending on the
relative thickness of the sample and the degree of anisotropy of
material the utilization of these formulas can lead to high errors.
Two dangers are possible. For comparatively thin samples geometric'
nenldrezartts 1o developed.s With an ineressc off relat Tve thlckess
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the weak shear strength begins to play an increasingly greater
role.! This 1s 1llustrated well by the experimental data presented
in Fig. 2.7.1. From the figure

one can see that the Young

"apparent modulus" of orilented Egt*mnt o o |

glass fiber-reinforced vl o ™8
plastic, determined by the | i

formula of strength of materials, poe Hmf:fff:’*___ﬂwp o
depends substantially on the u.wl l z‘ﬁ
relative thickness of the : - ‘

sample. Let us note that the J 30 ]

SUTEE o8 HEIPRIS e Bym i Fig. 2.7.1. The experimental values

regarding the "reptation" of of Young's modulus of glass fiber-~
reinforced plastic, determined
sample-segment tests. The calcu.a.2d
curve is constructed by the formula
which does not consider the effect

of shear ana slipping on supports.

samples from supports.

The account of non-
linearity 1s given in [226];
the effect of shear when testing such samples (and also in the
work of similar constructlions) can be taken into account as is
done for straight rods (§ 2.3). The corresponding equations of
bending are derived for a uniform curved beam, which possesses
cylindrical orthotropy. The effect of heterogeneity - the effects
of bending in the layers of reinforcement - is examined in the
works of V. V. Bolotin and his coworkers [38, 43, 53, 118]).

2.7.2. Equation of bending. The rod is related to
coordinate system 6, z (Fig. 2.7.2); the corresponding displace-
ments are designated by u, w. The curved beam 1s limited by
clrcular arcs of radlli a and b and radial planes 6 = C and 6 = eo.
The cross section 1s a rectangle of unit width, with height
2H = b - a. The axis of cylindrical orthotropy of material is

!The weak shear strength presents an even larger danger during
endurance tests of rings, when shear creep of materials reinforced
by filaments 1s sharply manifested.
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Fig. 2.7.2. Diagram of
curved bar.

located at point 0. Considering the height of the rod sufficiently
low, 1n order to disregard the change of radius along it (2H << R),

and, as for straight rods (§ 2.2), assuming e, = 0 (effect of
e, estimated in (180]), we represent Hooke law and the connection
between deformations and displacements in the form

oo =Lete; To:=Go:Yo:l (2.7.1)
| {du .\, Ou ] dw
““7?('66*“’)' Ve gz R\ “)’ $300 o)
The potentlal energy of deformation 31 can be expressed
through displacements:

8, I

3:-—ff (eenoho.re,)Rdedzv

v n
" A

.f—!' du +w) +Ge. (R()tz+d..' u)]d(-)dz (2.7.3)

U

The potential energy of normal load g

°
33=-quRd6. (2.7.4)

n
q=.f¢ﬁdz-— total normal load. By composing the expression for
n )

fctal energy 7 = ?n + 3ﬁ. analogous t. § 2.2.2, inid . _tvlng
variational pruclem 83 = 0, w2 obtaln the equation of bending
uf curved beam:
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d*u +R.a~“+(l+n) —u=0; (2.7-5)

r 509- dz3
| d R?
e )+][Rd§j,‘z—(t+m—1dz & (2.7.6)
where
i Pt

| By introducing curvilinear coordinate x = R6 instead of angular
coordinate 6, instead of (2.7.5), (2.7.6) we obtain system of

I equations
i
E Fu , | du 1+ dw 1 _g.
3?:?+F'oz=+ BRY dx pR
d £ i 2HE . 1+B d q_
e * Fu ) ) u
Rl RE TRl it L of

which, as 1s easy to establish, changes to the system of
equations of a straight rod (2.2.13), (2.2.14), when the radius

of curvature R + «,

2.7.3. Bending of circular ring. The effect of shear during
bending of rods with circular axis is investigated on an example
of a solid ring, loaded by two concentrated forces, applied at
diametrically opposite points. Any transverse load q(6) can be

represented in the form of Fouriler serles:

q(0) =g+ Y, gmcosm®, (2.7.7)

me}

where

me— f q(0) cos mede.

In the case in question (Fig. 2.7.3)

R i e o

2P
q,,,=:1—E (m=0,2,4...).
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Fig. 2.7.3. The calculation diagram and
attachment for loading and measuring deforma-
tions. (Failure from shear is distinctly
evident - discontinuity of black lines,
applied to the sample before loading.)

Since the ring the closed, the snlut

(207 .5, EBL7% 6 should be searched for in the class of functions

which s=atisfy the condlition of periodicity on coordinate 6
(period 2m):

ion of system of equations

“(e' 2) = )_‘ "m(Z) Sin 'ne; (2 . 7 . 8 )
me=2428...
W@ =w+ ¥  wn.cosm@, (2.7.9)
m""-‘. ‘..---

As 1s easy to check by direct substitution

» to the term of
eéxpansion of load Qg =

2P/TR corresponds the solution of

QoR? . (2.7.10)
2HEy "’

=0; wy=

With this particular load 4g = const the deformation of the




ring 1s axisymmetric (shear is absent), and therefore formula
(2.7.10) coincides with the known formula of the strength
of materials [239].

For finding expressions U, W (m=2, 4, 6, ...) system
of equations (2.7.5), (2.7.6) should be converted into system

of ordinary differential equations by substitution of expressions
(2. T)=(25 7997 In (2L 555 (2l.:Tmbl) 2

d*tm ., _ m(1+5%)

-——--zz — pmillm= R: 'y (2.7.11)
f a q-R?
o {1} . - _ gmi®
...2H(m2+p-)wm+m£[R$——(I+ﬁ-)u]dz— Gar ' (2.7.12)
where
uf=l+?ﬁﬂ
The solution of equation (2.7.11) is
Con ! Con -ttt i
'Mw=4m“HhJ4'4w°‘FM'"];Bﬁﬁ"?"‘ (2.7.13)

Constants Cm are determined from the condition that tangential
load on the surfaces of ring z = +H 1s absent:

du  dw
R-(Tz--l-a—e-—ll =0,

Substitution of expressions (2.7.8), (2.7.9) into this condition
with z = +H gives

du
R —_e. Wy — Dy, = oo

dz
whence

% . Cypm (M= D&
Clm"R”mC‘.'nu C:m l"“ +’":ﬂ:) ch V-m. Zm "l"'-”' ( 2. 7 .1 “ )
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Further, from (2.7.12) we find

- q!,_,_Rt .
w'm (m=_l)=Eol¢m (2.7'15)
2R3
where, as in § 2.2, I = = T
section
l{n|=_—3(z"'—th #m) .

'l!ma

Thus, the deflection of points of the ring, loaded by two
concentrated forces (Fig. 2.7.3), is equal to

oo PR_2PRE S cosm® (2.7.16)
*—-J’IEQ nEﬂl'"‘-‘".a...(’”:_l):‘;m.

2.7.4. Experimental study. During tests of rings by the
diagram of Fig. 2.7.3 there are measured the normal displacements
of points of vertical w(0) = w(m) and horizontal w(t%) diameters.
After the replacement of parameter ¢m in formula (2./.16) by 1its

approximate value ____l__§ (see Table 2.2.1), the expressions

l+O.NKm

for these displacements have the form

w a2 —
. b . ~ 0 th - mepR)
L Pt s AR el (2.7.17)
abgl] SR, G (m* -1): _
- 1: 00 i by mp’)
o2 2R e N (- 1gF - " (2.7.18)
~(2 1E”I'3R= - (m* )3 )

By disregarding the stretching of the axis of ring, i.e., by
rejecting tovm whionoeond b H b wii b Pastor #0, constders
ing that [383]

110




SO . 0 DR R N
wose  ESETONGTZ G - )"lﬂ'
~» 0o ~ )
L (—1)’ 1 =a 5 (-l)’nﬁ A

+2; =
46 8

me2, (IN" |,I .7 ' me24,6. ('"' k “’ 8’

instead cof (2.7.17), (2.7.18) we will obtain Timoshenko formulas
[239]:

“"“’“%%(‘8"?*72’6“:”—’; ﬁw~(0)(|+2.|m=-;§): (2.7.19)
w(2)= LR (L v E) e | LG (2.7.20)
2 )"~

The comparilison of experimental and theoretical results 1is giver
on Flg. 2.7.4 [226]. As 1s evident, the coincidence of results
is quite good. The overstated values of experimental results with

small £l can be explalned by the extensibility of the axis of

R
the ring.

The determination of Young's modulus Ee of the materials
reinforced by filaments, according to the test results of rings
(analogous to that ccnducted during testing of beams, see § 2.3)
according to the diagram presented on Fig. 2.7.3 can lead to
substantial errors 1f we do not consider shears, l.e., determine

Young's modulus according to formulas [239]:

E,(0) = om,,lpk(:» (2.7.21)
E( ) R T ( ) (2.7.22)

The values of Young's modulus obtalned in this case are ficticious.
The connectlon between Ef and Ee can be obtalned by comparing
formulas (2.7.21), (2.7.22) with formulas (2.7.19), (2.7.20):
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Fig, 2.7.4. Fig. 2.7.5.

Flg. 2.7.4. The effect of shears on the normal displacements of
points of vertical (x, curve 1) and horizontal_(e, curve 2) dia-
meters of rings of materlal JSB-F (E6 = 3.6-105 kgf/cm y G =

02z
= 2.2.103 kgf/cem?).

Fig. 2.7.5. The determination of moduli E6 and Gre when testing
rings of different relative thickness.

l-b) Ee %ﬁ?(Q”) (2.7.23)
Ei ) fo %%?FH) (2.7.24)

Formulas (2.7.23), (2.7.24) have the same structure as (2.3.15).
Consequently, the values of modull E8 and Gez can be determined
by testing rings with different relationships gg-and plotting

2
results 1in coordinate system (%g) s %— (Fig. 2.7.5), analogous
R

to system of coordinates on Fig., 2.3.8. With loading of rings by
nonaxisymmetric load it 1s necessary, as when testing beams, to

orcdider the posstb LD o o Pallure ffeom shesrs,  For determinine

fhe velallve thlckness 'ﬁ, with which there 1o uecompllihed tin

tranclition from fallure from normal stresses to fallure from
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tangential stresses, similar (. that done in the case of stralght
rods, let us disregard the deviation of the diagram of bendlng
stresses from linear and tangential stresses from parabolic.

Then maximum normal stresses!

mag = 2[’, 2'1,[’ . mag 8” .

Consequently, the type of fallure 1s changed with

oH . ..M,
R =255

whereas for stralght beams thls occurs when

2H Me
T=2 n' .

3

For the examined materials ﬁl = 0.03-0.12, consequently, critical
o

relationship %$ = 0.0765-0.306.

2.7.5. The effect of shears on the value of critical
pressure. By considering the ring thin and 1ts thickness constant
(ez = 0), the equations of stabllity in the case of hydrostatic
pressure p can be obtained by substituting in (2.7.6) q =

2
Pfd™w
2 = ——— W [50]:
R(d62 )

B Rk (1) S =0,

35 (2-1:25)

'When loading before the failure of thin rings from normal
stresses it 1s necessary to consider the geometric nonlinearity.

Generally this diagram of loading is hardly sultable for determining

n, [226].
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(2/Go; ~R) 91'“'7’ ~ (2HEq +pR)w +

e f[Rdedz B+ 1) 38 dz=0. (2.7.26)

The solution of equation (2.7.25) is known (see 2.7.13).
Equation (2.7.26) will be satisfied when

p=(m*— |) 1'm
Thus, critical pressure

Pnp=P'np¢mo (2 . 7 . 27 )

where p*p= - critical pressure, determined not taking into

account shears. By coefficient ¢m there 1s determined the correc-
tlon from shear and the compressibility of the axis of ring. 1In

the case of essentlally anisotropic materials 62 >> 1, therefore
Ky = m%B and the correction according to formula (2.7.27) is
analogous to the correctlon from shear for critical force of

compressed straight rod (§ 2.5).

2.7.6. Free flexural vibrations of the ring in its plane.
The equations of vibrations of the ring can be obtained by
addition of the followilng corresponding inertia term (p -
material density) to the equations of bending (2.7.5), (2.7.6):

d*u

aae,+R’ ~ut () 0 =g RO (2.7.28)

Ge; dl= .

" .
vl o ou R Fw (2.7.29)
211(09, p...-)-u-fj P (B+l)de]d‘ =2HoG—+ G

The solution of system (2.7.28), (2.7.29) must be periodic with
respect to coordinate 6 with perlod 2m, since the ring 1s closed,
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and periodic with respect to time, since the oscillating process
is examlned. Accepting

w=U,(2) sinmO sin (of +8);
w-= W, cos mO sin (ol + 8), (2.7.30)

from equation (2.7.28) we obtain ordinary differential equation

dUn m(l+p2) (2.7.31)

S l'm:Um = - “7m.

dz R

in which enters parameter

Pmd= -L- (14-mp?- i’ﬂ’(-v)'m’) R

containing unknown value - the circular frequency of oscillations

(here wm=uvn=" T~ dimensionless frequency; 1 = —5). The
3R

solution of equation (2.7.31) is known (see (2.7.13)). After the
substitution of expression (2.7.30) taking into account (2.7.13)
into equation (2.7.29) we will obtain the equation for
determining the circular frequency

— BVt + (B 1) (m2+1) = (m2=1)2+

2 2-—'_1- 1-1)2 zm
4+ m —ion? 1) _“.M =0. (2.7.32)
m?2— ot “m

For thin rings, when it 1s possible to disregard the terms which
contain powers of small parameter 1 higher than the second, from
(2.7.32) follows the known formula for vibration frequency,
determined not taking into account the shears:

v Eol mi(mi—-1)?
0% = RS Wl (2.7.33)

If we also disregard 1nertia 1n circular direction, i.e., reject
the right side of equation (2.7.28), then parameter Mo willl nov
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contain w and instead of (2.7.33) we will obtain

t’—-.__E_!.'._ 2
o -—2HQR‘(," D% (2.7.34)

As 1s evident, the difference between frequencles w#* and wi is
decreased with an increase 1n wave number m. The frequency of the
basic tone (when m = 2), determined by formula (2.7.33), is

10% lower than this frequency determined by formula (2.7.34):

2
0®= —=w®%.

By disregarding inertia in circular direction, but taking into
account shears, we will obtain the formula analogous to formula
(2.7.21) for determining critical pressure:

0= 0*4 ¢ m. (274350

The structure of formula (2.7.35) 1s analogous to the structure

of formula (2.6.16), by which 1is determined the frequency of
flexural vibrations of beams. Therefore the results of § 2.6.3 and
2.6.4 can be directly used for analysls of the effect of shears

on the vibrations of a ring in its plane.
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THIRD CHAPTER
PLATES WEAKLY RESISTING SHEAR

§ 3.1. REFINEMENT OF THE CLASSICAL
THEORY

3.1.1. Brief review. The problems of bending of plates in
strict setting are three-dimensional probtlems of the theory of
elasticity, the direct solution of which even in the simplest cases
1s very complicated. Therefore the majority of the problems of
bending of plates 1s solved within the Kirchoff-Love classical
theory, which assumes only three strain tensor components - €0
ey and ny to be nonzero (plane xy is parallel to the middle plane
of the plate). This makes 1t possible to bring the initial three-
dimensional problem to a two-dimensional, whicl naturally is

sclved much more easlily.

The Kirchoff-Love hypothesis, called also the hypothesis of
conservation of normal element [86], postulates that the normals
to the middle plane of the plate with deformation retain thelr
length and are not bent. This hypothesis contalns two assumptions -
about the negligible smallness of lateral deformation €, and
shearing strains 7 and sz. By emphasizing the last property,
the Kirchoff-Love hypothesis 1s occasionally referred to as tae
hypothesls of straight normals. The question concerning the
replacement of Kirchoff-Love hypothesis by less strong hypotheses
recently attracted the attention of many researchers (sce, for
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example, [71, 82, 124, 133-135, 1l44-146, 161, 165, 177-179,

254, 255, 261, 286, 297, 303]). The aporoach proposed by Reissner
[307-309] 1is the most widely used. 1In this theory, besides basic
(precisely in the classical sense) stresses Oy oy and Txy, there
is also considered the effect of "secondary" stresses =y Tyz, O,
the law of distribution of which 1s determined from the assumption
of linear change of stresses Oy oy, Txy along the thickness of

the plate. As shown by A. L. Gol'denveyzer [87], the Relssner
theory can be easlly generalized in the case of applying other laws
of distribution y(z) of stresses Oy oy and Txy different from
linear. The refined relationships of the Reissner type theory
differ from classical (according to Kirchoff-Love) by the terms
that contain multiplier 52 - square of the relatlve thickness of
the plate. Furthermore, these terms contain numerical coefficients,
which, as shown in [87], depending on the selection of function

Y(z) can vary within very wide 1limits.

The theory of anisotropic plates, which makes it possible to

consider "secondary" stresses Teg? Tyz and 0, is developed in
detall by S. A. Ambartsumyan and his coworkers. The basic results
of the carried out cycle of investigations [8-10, 13, 15, 16] are
generalized in books [5, 6]. In the theory of S. A. Ambartsumyan,
unllke the theory of Reilssner, there 1s already postulated not
law ¢(z), but law f(z) of distribution of tangential stresses Tt
Tyz according to thickness of the plate. The proposed theory
makes it possible to examine any law f(z) of their distribution.
However, the solution of the majority of problems 1s constructed
on the reasonable (according to S. A. Ambartsumyan's terminology)
selection of function f(z). As approximating function there is
selected quadratic parabola. As willl be shown subsequently,
precisely the parabollc law of distribution of tangential stresses
is of the greatest practical interest. The assumption about the
parabolic law of distrlbution of stresses 1 and Tyz is used also

X2
by V. I. Korolev, in whose book [112] there 1s solved the cycle

xz?
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of problems which are of practical interest for calculating plates
and shells of laminated reinforced plastics.

Since Ez > Gaz (o = x, y), the basic correction to the
classical theory will be given by the account of shears (see
§ 2.2.6). Quite many investigations are devoted to the theory of
plates and shells with small shear rigidity (see, for example,
(1, ©3, 197, 203, 204, 229, 230-2331).! In all these works,
which differ among themselves by the approach to determination of
the stress-straln state, close results are obtained for the

T... As
y* xy
S. A. Ambartsumyan showed [5], when determining these values it is

deflections and "basle" stresses o o
x,

possible to be sufficlently freely directed by the 1law of
distrlbution f(z) of stresses Tepo Tyz, which, according to
classical theory, are considered secondary. However, for materilals
reinforced by filaments (with low intcerlayer strength), the so-
called secondary stresses can be the reason for fallure. This
forces relating them to the number of basic stresses, the more

precise determination of which acquires practical interest.

Thus, the application of refined technical theories, con-
structed on the postulation of the law of distribution of shear
stresses, to materials reilnforced by fllaments, requires the
estimation of error introduced by such an approach. In this
chapter on an example of the simplest problems, which are solved

in the refined formulation, 1.e., without postulation of law
f(z), there are estimated the 1limits of applicability of the
mentioned theories of bending of plates, which consider shears,

to the materials reinforced by filaments. In this case on the !
basis of the analysls done in § 2.2.5, the material is considered i
as homogeneous; the effects of bending in rigid layers [36, 37,
4o-43, 45] are not considered.

!The weak shear strength is manifested in the examination of
problems of stress concentration around the openings in plates and
shells of reinforced plastics [22, U5, 66].
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The examined approaches are based on the different assumptions
relative to the character of the stress-strain state of the plate.
Such approaches, in spite of some 1lnconsistency, in view of their
simplicity during sufficient experimental check give practically
applicable results faster than stricter theories (which in
; no way diminishes the value of the latter), which give the
{ possibility 1n principle to obtain as exact a solution as desired
of the 1nitlal three-dimensional problem of bending of the plate.
The works of I. N. Veku, I. I. Vorovich, B. G. Galerkin,
A. L. Gol'denveyzer, N. A. Kil'chevskiy, S. G. Lekhnitskiy,
A. I. Lur'ye, Kh. M. Mushtari, V. V. Novozhilov, P. F. Papkovich,
V. K. Prokopov, E. Reissner, K. Friedrichs, et al. are dedicated
to the exact solution (for detailed review see [(77-81, 88, 89,
108, 109, 119, 128]).

3.1.2. The application of the refined theories to materials
reinforced by filaments. The classical theory, which disregards

shearing strains Vgz sz and lateral deformation €, in essence

examines plates from hypothetical transversally isotropic materilal

i with infinite modull of interlayer shear (Gaz = «©) and Young
modulus 1n transversal direction (Ez = o), Error of classical
theory, obviously, 1s greater, the greater real plate differs from
hypothetical (EZ = Gaz = w), i,e., the smaller the actual moduli
Gaz and Ez in comparison with Ea'

The avallable, although to be sure scarce, experimental data
obtalned during bending tests of plates of glass fiber-reinforced
plastics and processed according to formulas, which do not consider
transverse shears, attest to the fact that the measured values of
deflections considerably exceed the calculated. As an example
Fig. 3.1.2 shows the dependence of deflection in the center of the
annular plate (Fig. 3.1.1) on the degree of orthotropy o,
characterized by the relationshlp ot c¢lastic modull in radial Er
and circular kg directions [94]. This relationship was changed
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because of the number of reinforcing fibers, stacked 1n the
indicated directions in the process of manufacture of plates.

Fig. 3.1.1. Annular plate
of glass fiber-reinforced
prlastic., Dlagrams of ,
loading (a) and packing :
(b) of reinforcing fibers.

e -

ing of fibers on the rigidity of
annular plate. is calculated
curve (not taking into account
shears); 0 are experimental points
for packing 10:1 (o = 0.53), 4:1
(a = 0.60), 1:1 (a = 1.00).

a=fo
E’

Fig. 3.1.2. The effect of the pack- aﬂw%éh_-[-- )

The presented experimental data (Fig. 3.1.3) attest to the
possibilities, which open the rational packing of reinforcing
for the creation of constructions of the greatest rigidity and
strength. In the considered example the strength of cover with
packing 10:1 1s 22% higher, and deflections 25% less than for
a plate with packing 1:1 [206].

For polymer materials reinforced by glass and boron fibers

G E
_%E =10, @1-40.1), EE 2 0.1-0.2 (see Table 1.1.1). Consequently,
ol

o

the calculation of plates of such materlals according to Kirchoff-
Love theory, which 1is 1indifferent to the terms which have

multiplier of type Ea/Gaz’
plates of anisotroplic materials of the type in question work as

Ea/EZ, can lead to inadmissible errors;

plates of greater thickness (in comparison with isotropic plates
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of the same dimensions), therefore for them the acficlencies of
the Kirchoff-Love theory appear very strongly. In the problems
examined in the Third Chapter there 1s considered only the
correction from transverse shears iz and sz' It, as a rule,
substantially exceeds the correctlons from the account of trans-
verse deformation €, and flexural effects of the reinforcement.
This is distinctly evident on Figs. 3.1.4, 3.1.5, borrowed from

[541].

apa

Fig. 3.1.3. The dependence of
maximum deflection on the packing
of reinforcement. The ratio of the
number of radlal layers to circular:
1 -10:1; 2 - b4:1; 3 = 1:1; 4 -
with chaotic packing of fibers.

Ty

AN
e

Fig. 3.1.4., The effect of different factors
on the deflection of a square plate (a x a x
x 2H) under sinusoidal load [54]; n = 5,
E'/E" = 20, h'/(h'" + h") = 0.7 (axis of
absclssa - deflection according to Kirchoff-
Love: 1, 2 - deflection of the upper and
lower faces of the plate, calculated taking

into account Yyez? sz’ €, and flexural

effects 1n the reinforcement; 3 - deflec-
tion not taking into account €3 4 -

deflection takling into account only o

and sz)'

Fig. 3.1.5. The effect of flexural effects
in the reinforcement on the deflection of
n-layer plate [54]. is the deflection
calculated taking into account flexural

' fectsy === 1s not fakine tut o~ acconntd
t'lexural ef'fecty.
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§ 3.2. RECTANGULAR PLATES

3.2.1. Basic dependences. The orthotropic plate, referred
to coordinate axes x, y, 2 (Fig. 3.2.1), so that its middle
planc, which is simultaneously the plane of elastic cymnetry,
coincides with plane xy,
and planes xz and yz are

parallel to the two remaining
planes of elastic symmetry.!
If we disregard the change of
the thickness of plate 2H

(Ez = 0), then Hooke law

in the case 1in gquestion has
Fig. 3.2.1. The diagram of load-

ing of orthotropic plate. the form

- L Exvoeys oLt Evage

(3.2.1
f;y"‘cuy\'xm T.u"Gt:\'l:: fy-'"(;'l-'\'llh 3 )
where 5 . 3
Fose P2 g e
l - VayVyx l Vg Ve
Accordingly the potentlal strain energy
3, [ 1S, (3.2.2)
k)

where S 1is the area of the middle surface of plate,

I'—’_— f(r,\n, +ey 0yttt Tyt ) dz=
-

oul? —_.~ (h il du de du (L
f[L’( ) +2vy t'd..\'ﬂdu tGyy Jy dr) 0

Yo o
+Gu: du) d")*"‘u duw 3.)]

!The rectangular orthotropic plate, loaded at an angle to the
axes of elastlic symmetry, is examined by L. I. Balabukh [25].
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Potential energy of transverse load gq(x, y)

'33=!Lglls. (3.2.3)
where
Ly~ —qw.

Since the total potential energy 3 = 31 + 32 in the case of
equilibrium must have minimum value, it must be 63 = 0. The
Ostrogradskiy-Euler eqguations correspond to this variational

problem (see, for example, [43]):

ol d JL _oL
9u " ox Qz_t_) du )(du) ()z _0Ll)

6L a 4L a
—C-’?—J 0.) (7:/ dd) ()‘ (OJ) (3-2.}4)
ol 5= Jd
aL ol Jd
ow (Jx 0‘.) ()J (dw
ox

After substitution of integrand L = Ll + L2 of total energy of
system 3 in (3.2.4) there are obtained the equations of bending

185

o tFu ] Fu e o 2
I-"L\: H (;”, 'y‘T(" ‘) o +(le-’- "l\ |y)"'i_"!"' ". (3' 5)
g (PR o R g < Fu . .2.6)
13, oyt -+ (lw",\': + Gy gzt 14 (Gw vy UUTl; '0, (3
T, ‘ ( )
one: PR 7 u a0 3.2.7
TH ' A AL I el - .
21! l., oy 204, Iy i L(G"'U.VIJZ - Gy: dydz)dz 9,

which are simplified Lam’ cqeations o orthotrepl: body:




du Fu Pu
Bavgpa * "'olf +Gu: Jz? +(Gay 4 "w) "'"+
«r..;

dxdy
4(!Exian)d Jz =0;

w:;:; rG,v‘f\U ’(‘w‘;‘: 1 (G a) ,):.),‘)‘y "
R
:;::*(':;\: +Gy, 3: -+ (G +a,:) ,;r:;z
where + mu:*“%.-)% =0,

E, E.
(I.A\‘"I}—” VLV dyy = “ avas)s a:;zﬁ—”-vw\‘“);
E. Ev . .
[ N ¢ O ‘:73- ‘\'\'4 + \'.\:\'-'U) = _B! (‘.V w ‘.U:\.");

Q. %" (\'.: + \'y\\’.\':) == % (\':g + \':x\'.ry);

.. 2
doy Sl = ——B:- vy e \';.-,-\'y_\v) -2 ‘B— (\'A\: + \'.\'y\'y:);

B ovivee Vv, v, SR L S R N o

in this case where the hypothesis about absolutel; transversal
rigidity of the body 1is applicable (l/Ez = G = vzy = 0).
8:2a2. Freely supported plate under sinusoidal load. The

system of initial equations (3.2.5)-(3.2.7) can be converted into
a system of simple differential equatlons, if

XY s STV ELLN ST A0, (3.2.8)

and displacements u(x, y, z), v(x, y, z), w(x, y) are sought
in the form

#0002 COS B, X ST G,
[Salf LAY (:) 5i" ;.m-\' COs ;-u!/; ( 3 . 2 . 9 )

& Whn ST 208 S0 Bl
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Here znrj"";z.*%g("h"”"13-~h w., 18 an unknown constant;
a

umn(z), vmn(z) - unknown functlons of variable z. In this case
at the edges of the plate (Fig. 3.2.1) x = 0, x =a,y =0,y =0b
the conditions of free support are automatically satisfied

< IR
w=0; “\":I-'.rm'{":\\'\.u:_,;?"‘n;
1 o )
ﬂu-—k,,;)?’-+E\\,.";E=0. 1

Substitution of (3.2.9) in equations (3.2.5), (3.2.6) converts them
into a system of two ordinary differential equations:

|
i
3
d:;l_'-_:'" ”-‘hm.“-:-u +“'.'-nu Cone
d(-;;':" = Vol + A Smnlin,
el B 1 . . L. .
-‘h.n = Gl“: ‘E'.;.:n:':' G\!,-/.:.'); -".“l.u i G_r; (G\U 1 \',\y’-'\)"u’nn; ( 3 . 2 . 10 )
Gt:_ . N l Ty on . 2
~“:'--:- =-l:'-m6y:. -‘.n'l 5 Gy; (Ey'-n +G\u/-n ).
Characteristic equation of system (3.2.10)
S ""I" lf -“h-r-)-":'%‘ "‘lv-m-‘h-m —/1‘!nm-".1nm =0 (3 ] 2 <11 )
(for real materials, reinforced by fibers, which have AlmnAan - 1
- A2mnA3mn > 0) has four real roots: ts, and #s,, where
o ' ’I’v.u ' 'I": w !
0t P R |
1= L&,
.s.:: ~'|lnm g’ "-“4.:0 ; 0
26,.;."3,0,00

Pun | 14+Cut Cun= (;u..?.f;:";. _:] ‘"”;’. ¢
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In the case of absence of tangential load on the surfaces of the
plate (z = #H)

du, dwe o de 0@
Uz ik e 8 5 +«)y -
the solution of system of equations (3.2.10) will have the form :

than = Crovi sh 8124 Capy sh 8325

2.12
Crun” (‘Jmu sh 55+ Chuu sh s 22, ( 3 )

and constants Cmn willl be determined by dependences:

fon
25, ch s M
rIHMG
(pmu +' l ) Gl

Cron = = ( 1+ \'mn) Lhang

C:\m w= Clm "

’".
T 9sach saH (l
‘.’""G\,

Come = Conn = 1) Gy

C‘.’m [

Vinn) Wuied

Vo = 1+ "’ s ) ]

The unknown constant Won is found from equation (3.2.7) after

substitution of (3.2.8), (3.2.9) in it taking into account
(3.2.12):

- Bn ( 3 el 13 )

In equation (3.2.13)

¥

A... zur;'{(u"").!*' -».n.[,,. ]m.»!z,
2 ] PR ] /)

U P L)
2 ) ;.m‘pv» n-* l, -\'3” *
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Thus the solutlion 1s obtained of the problem of bending of the
plate without a priori postulation of the law of distribution

of transverse shears f(z) along the thickness of the plate.

The analysis of this solutilon (estimation of the effect of shears)
and its comparison with the solutions obtained on the basis of the
postulation of law f(z) can be the most visually accomplished on

an example of a transversally isotroplc plate. f

3.2.3. The effect of shears on deflection and stresses. In
the case of transversal isotropy of material (planes of istropy
are parallel to the middle plane of the plate), when

EvaByeloagfa vymvee; |
G,y l:‘ i G, =Gy, G|'
1) .2““’o Ve ys ’
"l"'" = B! (;-m:+ ’-uz'!_j'z-‘\:); -12mh H-“ LI T B:)"""" "l' -:,:"". ;
R ‘g.,'" = ﬂ: (7_"3.}.,_".3 .'_;.\:); = ;.’f:'.':;'.!:;c s ( 3 . 2 . lu ) i
_ Am:_'r ;- _2_ .. "l.n‘us , . 'l’_-vimz ! -\ 1.
P =i ot ST SEE Tt g ety
Clum .k — _JL’L'L; Ctl..n = Cimu =(); C.::n W Cin' " ?._"' H
Zumn Ch Ziun lan

B,y E.\',“-m"f‘}-n:):‘[':: Ny

the expressions for displacements (3.2.12), (3.2.13) are
substantially simplified:

Pl S 22y ﬁ {
u'."l N ; l

T R e —

oy Ch Zin

. 2
/.,,” Sh Zimn

Unins= — = - H- T (3.2.15)
#man €h Yma =T
a.":'l i a"u:-q‘nm—'v
[3 . s P ol A2
where o..,0- ( 2 ;.1|:”I:‘$"’; ”-_.:_ Z[;_; o .H/.,»; h: Ziaa) : w .‘”' = QMn('.l':;I‘}'A! ! =
1 Zinn .
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deflection, found without taking into account shears; pﬁ,ﬁff:”

flexural rigidity of the plate.

The law of distribution of tangential ustresses e and T

yZ
along the thickness of the plate f(o)(z) (Table 3.2.1) is the
same as in the beam bent by sinuscidal load (§ 2.2). In
S. A. Ambartsumyan's works [5, 6] there are examined laws f(l)(z),

f(2)(z), f(3)(z), given in Table 3.2.1 , where expresslions are
also written out for other calculated values whenm=n =1,

a =Db, It 1s easy to check that when Kon = 0 the refined

expressions change to classical.

Table 3.2.1. Deflections and stresses with
different laws of distribution of transverse
shears along the thickness of the plate.

R U LTI
It we a* : bC " Tinag
NP gy -
o ..” " e ?,", = ; .N... N ch y_”-_-_l
ez | 3 -thyy) S 2 ch Ry shoxyy
m ol 04,2 42 -, 0 2 o B
I [} e 110420, | 002y, FOOT 4y, E 2.4 |-0.|34x..‘
= EA H e . 2 By
(RTINS [ kS o VIt ALK PP P e ol oo
I | i 1403310 10035034 00832, o 2440115
™ const 1 F0,333,, Co -9;"

In the table m»§%ﬂﬁ2r The asterisk

deslgnates the values calculated wilthout
taking into account transverse shears,

Figure 3.2.2 gives graphs w/w* and o /0 s characterizing

max ;ax
the amount of correctlon to the classical theory, introduced by
the account of shear for the area of practically 1important
values of parameter Ky1 = n/ﬁsg. As can be seen from the given
graphs, this correction is most essential when determining

deflections.
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The disagreement between re
of law f(z) (we find law f(o)(z)
its postulation in the form

(1) o(2) o(3)

(0

provided

)

L]

illustrated by graphs w/w

(0) (0)
max/omax’ max/Tmax’
on Fig. 3.2.3; the diagrams of

tangentlal and normal stresses
along the thickness of the plate

are gilven on Figs. 3.2.4 and
3.2.5. From these results it
follows that f(o) is

satisfactorily approximated by
law f(l), whereas the
arbitrary selection of

law f(z) (3)

substantial error during

or leads to

determination of 1 and

max
p. Generally speaking, with
replacement of f(z) by a parabol
(see [87]); however, for a suffi

it is small and the utilization
fruitful.

sults, obtained without postulation
in the course of solution) and with

The effect of shears
and

Fig. 3.2.2.
on deflectlon and stresses cx

oy 1-3 - laws 1nvestigated by

S. A. Ambartsumyan [5]; 0 -
solution without postulation of
shears,

a the error can be significant
clently broad class of problems
of such an apprcach can be

X

it

Fig. 3.2.3.

22 i3

The effect of the taken law f(z) on deflec-

tion, maximum normal and tangentlal stresses and rela-

T .
max/ max

S. A. Ambartsumyan [5].

tionshlp p = ¢ 1-

3 - laws investigated by
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Fig. 3.2.4. Diagrams of nor- ¥ig. 3.2.5. Diagrams of
mal stresses Oy and oy along tangential stresses L
the thickness of the plate. ' and qu along the thickness

of the plate.

3.2.4. Deflection of orthotropic plate. In the case cf -~
square plate (a x a), reinforced identically in two mutually
perpendicular directions x and y, Ex = Ey = E, vxy = Vyx =V, ze

= qu = Gl and the roots of characteristic equations (3.2.11)
are determined by expression

A lm’-wn'-’)(l - ) |-i'n"-’m'-"(\-'H})*-r'(;ri:ylii!) (1 -,.)3‘:

-..' .'
s P G (1--v7)
2?2 “z".‘. p= Y E-

The general term of expanslon U of transverse load q(x, y) into
double trigonometric Fourier series

q(x, ") = x }: \ Ginn sin i N sind.y

me-lone

is determined by formula

a b
Qran = j j o (X, ¥)5in 2,,x sin b ydxdy.
[/ ']

Yor the case of load evenly distributed along the area of a
rectangle with the center at point (£, n) and sides a' and b'
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(Fig. 3.2.1) with intensity q = P/a'b', where P is the total
load,

wep . . ... ., 4, b
Yn = 2mna’ b;sm Zong SN 2,00) 50 2oy —9—sm o 3
(r,n=1,2,3...).

Hence for even load along the entire area of the plate, when
g =0.5a, n=0.5b, a' = a, b' = b

Grin= B (m,n=1.35..).

3mn
For concentrated force P, applied at the point with coordinates
Es Ny

... ..
(i SIMALZ i L.

If force P 1s evenly distributed over the area of the
circle of radius c¢' with the center at point (£, n), then

EPsina, ETeina = .
s L RTY PRI
“"“‘ 'l-“l-"";oh-

‘,-u "

where Jl 1s the Bessel function of the first order. The deflection

at the point with coordinates (x, y) is determined by formula

3ui(l - )

O A . (3.2-16)
2MPE

S s.
The form of multiplier S depends on the assumptions forming the
basls of the calculation scheme. If we disregard transverse
shears [123], then

s - 2‘ Y G SiD X sinduy RPN

S S S (v £ 2)

It we conclder trancsverse shears and accept that along the
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thickness of the plate they are distributed according to the law
of quadratic parabola [5], then

5+adp)(ndtm?) -+

R 0. 2/.._‘_[_,‘_(l_nf+rz ) 4o () - 2pv oo N2 )
=% = ”Z_ M s 23 (v + 2p0) +
T (R ) (mc 4+ nd) 4 mEnt (= 2pv - v
N v ST DX SIN DY (3.2.18)

(formulas given in [112] coincide with expression Sl)' Without
being given the law of their distribution (according to formula
3.2.13), we obtain [218]

s /-22 o Gon St g., \\lll) A o

) :"--:.-ln.. (N4 m,(‘,lhs “”')‘l
drcm2 erm + =) (1 —p) 1hc- lhs,) (3.2.19)
YHERE (vt (=2 (1) | S

As 1s easy to check, when Ky > 0 Sl > 82 +~ S*, 1.,e., refined
solutions (3.2.18), (3.2.19) coincide with classical (3.2.17), if
the plate 1s infinitely thin or has infinite shear rigidity in
the transverse planes. It should be noted that when a' - 0, b' -»
+ 0, 1.e., in the case of concentraved force, the expression for
deflection w at the point of application of force, calculated
by formulas (3.2.18) or (3.2.19), diverges, since the sum of
S i: ' does not have a 1limit [83] (the physical unreality of

- 240
E=P ) +n

such a result shows the groundlessness of the assumption about
the fact that the force is applied at the point). The expression
for S®* converges everywhere. The qulickness of convergence of
serles S2 is represented by Table 3.2.2, in whlich the values

are glven for particular sums of 82 in fractions of the addend,

if we are restricted to terms in whlch m < r and n < r. The
results given 1in the table are calculated for v = 0.1, uw = 0.1,
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Table 3.2.2.

For estimation of the con-

vergence of serles for determining the
deflections.

——— e —— -

e | n'-o.mnl W' =000

x,.~l:0 .

~ Y o -

- en e s cam
R TR I - )

o

x=y=g=n

formula (3.2.18), for case

20
Waee

-4 =048
- 3-; 023
3-pa0 10
Gu=-002

——ye g

fﬁi‘l"l

- -'.q' .

o |

1162
1205
1262
1315
1310
1360
1356 |
1.3%
1400

= 0.5a.

Fig. 3.2.6.

of shears on the de=-
flectlion of centrally

loaded plates.,

1000
1.182
1,239
1.303
1329
1346
1376
1,361
1.364
1354

The

The effect

: .0::0.'.0! il

asomal wea | om0t [ mctt 1 e
1,000 Loon 1000 1000 | 11600
1138 X} 142 L1348 1214
IREN 1,560 1072 1.183 1.333
1,197 04 30 1,074 1197 1.368
1.20m 0,649 1074 1,200 1374
L1 0644 1074 1.999 1371
.16 0,647 1074 1.196 1365
1194 0615 1074 1.194 1,360
1,193 0,646 1074 11493 1358
113 NneI6 1.074 ; 1,193 137

correctlon from shear, calculated by
£E =n 0.5a, a' = b! 0.2a 1s

1llustrated by Fig. 3.2.6, on which
Sz/S*
at different values of Poisson ratio

there are glven graphs w2/w* =
v and parameter u. For the comparison
of results obtained by formulas
(3.2.18) and (3.2.19) Fig. 3.2.6 also
‘C% (designated
——.——), constructed the case

v = 0.5, u=20.25. As 1s evident, it
differs little from the corresponding

gives curve wl/w* = 5]

for

curve w2/w*, which attests to the good
approximation which the selection of

function f(z) in the form of quadratic parabola gives.

3.2.5.

(in the range of loads at which deviation

Experimental estimation.

The experimental study
from linear elasticity

was not observed) of the effect of transverse shears on deflection

1s conducted on freely supported square (a x a) plates made of
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glass fiber-reinforced plastics equally reinforced in two
directions (packing 1:1) [218].°} The device for the loading of
plates and measurement of deflections in the center of the plate
is shown on Fig. 3.2.7. The necessary characteristlcs of the
material of the investigated plates are given in Table 3.2.3
(elastic constants are determined according to the methods in

§ 2.3). As can be seen from Fig. 3.2.8, the results on determining
the deflection in the center of the plate Woax satisfactorily
agree with the calculated curves constructed by formula (3.2.19).
he amounts of deflectlons of the points located on the diagonals
of the plate (plates No. 5 and 6, Table 3.2.3) at distance d

from the center are given on Filg. 3.2.9. As 1s evident, they can
¢ be calculated with sufficient accuracy by formula (3.2.19).

Fig. 3.2.7. [Device
for bending and
measurement of deflec-
tions of free
rectangular plate.

m

!The experimental check of the dependences, which consider
transverse shears, 1s virtually absent. An exception is [273, 3147.
In [314] the increase of deflection as a result of shear is
investigated on round metal plates; in [273] the diagram of
tangentlal stresses, calculated by Reissner, is compared with
the experimental results obtained by the photoelastic method.

ol
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24

a0

!/j Fig. 3.2.8. The effect of
1 ff / degree of anisotropy B and
7 % %? on deflection, caused by
1) shears. In the upper corner
is shown failure from shear.
|o=dfel |
9 J0-d04 2N
| d |
0 205 0 FH

Table 3.2.3. Parameters of the investigated
plates and breaking load.
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Fig. 3.2.9. The comparison of
experimental and calculation data.
deflection calculated taking
into account shears by (3.2.19);

- - - deflection not taking into
acrount shears (3.2.17).

KEZ: (1) Plate.

Inaarmuna 100° 89
bnagemusa 230099

fnaacrawe 00080 1
draaemuna 130: 1% }
1
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Plates 80 x 80mm2 were brought to failure. In this case, besides
the failure from normal stresses (Fig. 3.2.10) there was also
observed failure from interlayer shears (Fig. 3.2.8). Therefore,
as 1n § 2.4, strength calculation is necessary not only with
respect to stresses Oy oy and Txy,but also with respect to

tangential stresses Tys and Tyz.

Fig. 3.2.10. The character
of fallure of plates: a)
top view; b) bottom view.

§ 3.3. ROUND PLATES

3.3.1. Basic dependences. A round plate with thickness 2H
and radius R (axis of cylindrical orthotropy of material coincides
with the axls of the plate) 1s examined in the system of
cylindrical coordinates (r, 6, z) (Fig. 3.3.1); the corresponding
elastic displacements are designated u, v, w. If, as in the
case of rectangular plates, we disregard lateral deformation,
i.e., assume €, = 0,'! which is formally equivalent to l/Ez =
- Polsson ratios, which characterize

= v =V
zZr z6 VA

abbreviation 1n direction z when stretching ir direction r or 6),

= 0 (vzr and v

then Hooke law takes the form

'Tn {907 witnout utilization of Lyjnthesis €. = U there is

examin~d the parvicular case ot anisctropy and loading.

137




iz
[

'||1, i
t e htypeeed

WIS -,

x*
N_l,

M

- e [y

Fig. 3.3.1. Diagram of transverse
loading of a round plate.

a‘-ft‘.‘}v.nf_!.:; CH IZ'uH’ v,k

L G .\'l.; v, ”l(v't: t"."'(““.'\'ﬂ:; (3. 3,1 )
3 L, e La
= oow 00 I [ . -,
b' ]~V vy b 1 - Vi Vor

Proceeding as 1s shown during the derivatlon of equations of
bending of rectangular plate (3.2.1), and taking into account

that

(’“ ol ' .QU' ‘l_‘. L bt ow . o
urt e tag T e By
Pouyde o e | dw, (3.3.2)
n g JH dr " r? \”"':dz+r vo'
r)u du)
()s

we obtain the system of equations for a round plate [187]:

du | Ffu d*u | du - u
Ir ’rl T ("ﬁ 5] = )eq +Gr ‘)_ L " dr E. """
Jv 1 dv
+ (VoL +Gm) " d&or (ke -+ Gm)-,;'36=0.
. P s I (0 g% LLCES v
Gongpe +Eo s it o s + 0w G -Gyt

au du SN
—~(\'NF+G,”), dda'r(['e'i'(he) ,'36"‘0 (3.3.3)

. R L
2', (J'-—‘)"i‘+(i.- r )’ Gﬂz '3 (-“_)o)"'
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d from }
E:gtrojvuaﬁleablo copy

which 1s the simplified Lamé equations for cylindrically orthotropic

body:
Pa 1 du L a P S
l‘ llu(l)r: + "'"“"; X LT (l,n"'r-"’,'l-l;'ﬂ t (i G, ’()H'Z v
1 dw R Y MO LT
; Pl e gy ey G e G G b
I Pu |
F o =R a....~'-3-u -0,
' . w1 e b |
| (€ ""““)_‘—.d(ﬁi + 0w ror G'";?‘ y (("“+"'“).7'l)r()(<)+
. 0& o’y A 1 o
+ O “ +‘i” ()2 *‘((l“ td. ”) r ‘,:;",i*' ta "“-;1—.(“’: 'oo
oW u l dw | du
G::“". *((‘r +0,; )()Z G ’ "'+((‘r +a H)'-' )z+
ri’ ' d! (r&
Gt e ST G Gt 0 5 0.
Here
]
RIS '“(' Veavoa); daa "_‘%2“ -V V)i

a_-;=-f-’i(| ~V.ava-):
la—=Qg, +'-(\ A Y n’—-'B (‘Hr’*“ﬁz‘ P’
E, E,
aQ.—a; _‘l}-(\.:r+\';8\'ﬂl) = 'Ij—‘\..:'}'\'lﬂ\'ﬂ.');
E, o8
. =¢I_.,,=—£-{\'nl 4\ \',:)= ’g':("::{'{‘\'::\':ﬂ);

Bzl —v vy - vov,—vy v TV VN e — Ve Vi V0

in the case where it 1s possible to accept the hypothesis about
absolutely transversal rigidity of the material.

During the solutlon of axisymmetric problem, when v = 3u/939
aw/36 = 0, system (3.3.3) is simplified:

Fu ) du a1 Qu

+-.—-__"-_.+_...,_._-=0; (3.3.“) E

artr dr B a2t




zu(‘“"'.' Mk t("“ S T (3.3.5)

dré oo “..
where :

" 'l:', - ’n
W i

The course of the solution of system (3.3.4), (3.3.5) 1s analogous
to that given earlier (§ 2.2); in the problem in question instead
of trigonometric functions Bessel functions appear in the solution.

By direct substitution it 1s easy to check that the solution
of equation (3.3.4) is

o VW) shps £ Vg ) ez +.0.8 (6 shafe +
. LY gt ) chape ¢ Broz+ B s Br 224 Bur 9, (853:6)

where A, B, XA are constants; Ja’ Ia - Bessel function of the first
and second type of order a.

In the case of a solid plate in its center (r = 0) u = 0,
whence A2 = A3 = 82 = B3 = 0, If the flat surfaces of plate
z + H are free from tangentlal stresses, i.e., ou/dz + dw/dr = 0
when z = +H, then also A1 = 0. Consequently,

ufr,2) =\g(,) shafs4 Broz+ Byre; (3.3.7)

) = - Apeh o nr)— /3_11: (3.3.8)
where z=hnH.Fqnm)=j:u(lﬂdﬂﬂ- constants A, B, C, X are determined
by restralnt conditions of the edges of the plate. Equation

(3.3.5) taking into account the expression for displacements
(3.3.7), (3.3.8) takes the form

LyiipDohab gtin) g, ez
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where Dh.-—ggig—— - the flexural rigidity of the plate;

3(' & \‘l”\'ﬂl’

S tha) g VR L0 ),
A -

4 2 a

Thus, as 1n the case of bending of beams (§ 2.2), in solutions
(3.3.7), (3.3.8) there are terms which correspond to transverse
bending (terms with coefficient A) and terms which satisfy
homogeneous system of equations (3.3.4), (3.3.5), which correspond
to tension-compression and to pure bending of the plate (terms
with coefflcients B, Bl’ €3

3.3.2. The effect of shears. In the case of transverse
load

q -q.M,0..1), (3.3.10)

where Am - roots of equation ®a(AR) = 0, from (3.3.9) follows

. L R e
I' LA q ,,.ﬂ L‘h xm,.m‘D ' ( 3 3 l l )

For fulfillment of conditlions w = 0 when r = R there must

be

Ra+t

G B T

where Bm are constants, the expressions for which under varied
conditions of restraint of the edges of plate are given in
Table 3.3.1.

For plates with cylindrical orthotropy of type Ee = Er’
l.e., when o = 1 (with axisymmetric deformation this case does
not differ from the case of transversal isotropy),

Finr) - Jutir); the(ar) --1,(ir),
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and the problem of transverse bending with arbltrary load can be
solved by expansion of g(r) into Fourier-Bessel series

21 = ¥ qudotior), (3.3.12)
m-e|)
where the general term of expansions apy 1s determined by formula
9 [ 4
qlﬂ g-‘J‘z(;.';le')of,q(')Ju(;-pur)d’-

In the case of evenly distributed load (with intensity qo)

2q
Ay = 3 RJO TR and deflection i1s determined by expression
m-1'"m

e o[  20doldwr)_ . 3.
S 2'[:..,.5(;,..01‘*1.o....m B g +Co). (3.3.13)

-\

Corresponding solutlons for deflection are given by S. P. Timoshenko
[241], S. A. Ambartsumyan [6], V. I. Korolev [11l2].

The expressions, obtalned by different methods for deflections
in the center of the plate Woax? pertaining to deflection w%ax
(here as usual # designates the values obtained with taking into

account shears, 1l.e., where Grz + ©), are given 1n Table 3.3.1.

H *
As 1s easy to check, when BR + 0 Weax ” Ymax? i.e., all the sclutilons
taking into account shears convert to solutions obtalned on the
basls of the hypothesis of straight normals, when the plate is

infinitely thin or its material possesses infinite shear rigidity.

* i 4
Graphs Wmax/wmax (Fig. 3.3.2), constructed by formulas I-X

of Table 3.3.1, depending on relative thickness 2H/R and the degree
E
of anlsotropy of material 8= 52— make 1t possible to determine
rz

the correction from shear and to estimate the error introduced by
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Fig. 3.3.2. The effect of shears
on deflection of free (I, III, VI,
VIII), pliably restrained (2| _o =
= 0 when r = R; II, V, VII, IX) and
rigidity restrained (%% = 0 when

r = R; IV, IX) evenly loaded
round plates.

a priori postulation of the law f(z) of distribution of t=angential
stresses v. along the thickness of the plate (see § 3.1.1). The
practical coincidence of curves III, VI and VIII, and also the
relative closeness (with not too large values B%) of curves IV

and IX indicates that during the determination of deflections the
parabolic law fo(z), accepted in [6], is a good approximation of
the law found from the solution of system of equations (3.3.4),
(3.3.5).

The data given on Fig. 3.3.2 attests to the fact that in the
examined really possible range of changes of parameter B% the
shears strongly affect deflection even for a free plate. The effect
of shears in the case of a restrained plate, when the vertical
element of the edge of the plate (%%|z=0 = 0 when r = R) is fixed,
is very substantial. However, 1in case of the restraint of the
horizontal element of the middle plane (%% = 0 with r R) the
effect of shears can be dilsregarded. The large disagreements
between the two cases of reallzation of flxing attest to the fact
that deflection, determined 1in the experiment, highly depends on
the realization of conditions of restraint (see Fig. 2.3.4). 1In

this case the sensitivity to variations of boundary condlitlons is

inecreased vith Increase of the unlsetrony of matertial B.
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Deflection due to sheas for square (a x a) plates of material
of uniform strength (Ex = Ey) with the same relative thilckness

2
ﬁ? = %% can be both more and less than the deflection due to

shears for a round transversally isotroplic plate. As can be seen
from Fig. 3.3.3, this depends on the value of shear modulus in the

E
plane of the plate ny

Fig. 3.3.3. The effect of shears
on deflection of square (a x a x
x 2H) and round (2R » 2H) plates.
KEY: (1) Square; (2) Round.

In Table 3 . 3 . 2 ‘.-“,.’l € ';". TR

L R Y I NP R L A | K K IR

= 27wy T T g 2atl-a) e’
« iy, 20 F,  wt o
L A [/ . ":‘ St g e Vet
1'-[' o w) lu. oo o Vel N v
I AT A R L I N e v)(v,-vuq ) o
" r . dw
% '21\'7.(5,." it e 0 wvhen r = R:
. "oy, )
x-0pdf e 0 M) 0 uhen p = n.

RGO ar e

3.3.3. The stressed state of cylindrical orthotropic plates.
The distribution of stresses 1n round solid or annular plates
depends significantly on the parameter of anisotropy o = /EB/E;

So, In the solid plate of radlus R, compressed by evenly distriiuted
radial load with intensity N [123],
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Table 3.3.2. Stresses and bending moments in cylindrically
orthotropic round plates.

Caewa '(1) - - ‘
"::“n.'l": g T T I' S R0 07 020 . ‘ | .

it Ve

MOCHUH ‘ )
A g MV .
T ! = =3 Y e LA
{ [0 2y, & : DS
o 'wn[s"?‘m'ﬁrn o g <0 (2)
M AR l Na'xn V-l t Ak -y A" = 1)
Vel | A(uxu-t=q'x3) ' Aua’xe V-d'\x%) B L (77 R P L T AMua s t-g¥y)
I
2 1
'"" - IIR.“Z - I‘“ g 1
I 0 ! 10{—v) ! 0 0x({a~=v) L
]
’ PTR 0 0 ll“.a
U _ R : - T 0
e ‘ 0 ! M- v) uxs ! 0 lO.‘l(ll-\'ix'\“
Mo Bl ) | 1 =yrasty * : 0 0 .
Myt | Bl =uxn ) | Bl -unxn-y) ' 0 , ) 0
: | | g i o
X0 { I TR { (;[ . 23+y) ..]u«n (3)
w- | (a=1)(u-rv)
| ! , Gynitin M. (2) u Mg (2} aninntea Nonoromnivg
Neg? 2wl Jad ~[.. 2w +3y_Jas
LA w(ee -1 (34v) | Clulu=1) (v

KEY: (1) Diagram of support and loading; (2) When; (3) Functions
Mr(x) and Me(x) are monotonic.

o - \(,;-)' "o = --‘\'(7})& g (3.3.14)

Consequently, the stressed state in the plate is uniform only
when a = 1. When a > 1 the stresses decrease in proportion to
approcach to the center (when r = 0 0, = 0g = 0), while when

a < 1, on the contrary, they grow unlimitedly. A similar pattern
1s observed during transverse bending - the bending moments,

T 0
both radial u, = J mdz, and circular My= | :sed: in the center
i "

of «venly losded (q = 20nst) plate ar equal to tevo whan a > 1,
are nonserc, but are r'Intto when o = 1 and become Int'inlte when
a < 1 [112]. It should be noted that case a < 1 is hypothetical,
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since it 1s virtually impossible to manufacture a plate (for
example, by reinforcing with filaments) of constant thickness with

anisotropy Ee < Er'

The bending moments also depend on the tangentlal stresses 1n
transverse planes Trg (with axisymmetric bending Tgy = 0) and
normal stresses g, According to S. A. Ambratsumyan's theory
[6], these stresses in evenly (cz = -q when z = =H, g, = 0 when
z = H) and centrally loaded plates are determined by the formulas
given in Table 3.3.2. The bending moment (radial M, or circular
Me) in any section can be represented as the sum of

MMM (3.3.15)

where M* is the moment determined according to classical theory,
i.e., not taking into account Tz and G, and M' and M” are

correctlions, which consider stresses t and o_. For freely

resting and restralned plates, loaded g; evenl§ dlistributed load ;
with Intenslty qy or concentrated force P in the center, M¥, MT i
and M® are determined by the formulas given in Table 3.3.2. Analysis

[164] shows that correctlon Mz, Just as in beams (see § 2.2.6), ;

1s negliglble. The effect of shears grows with 1ncrease of
parameter ¥ (see Table 3.3.2), 1.e., with increase of relative ;
thickness H/R and degree of anilsotropy 8. With a change of
parameter x the relationships are changed between the radial and
circular bending moments in the center of the plate and at its
edge Mr(O), Mr(R)’ Me(O), Me(R). The qualitative change of the
relationships between moments occurs at values of parameter x

equal to:

ha—-vie), o 4w Von v -l
3 wa+3) 1 TPY KA Ak o BT w-1 X
R e o IV IR T
T IS TR AR A i 4

’= Q!:'!..(u?f\.) YT R \""—'|, o . ’ w=-2-y ’
T a+v)at(a+ ) LA S5 Watv) & ST Ly A
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) WW—ad-2v v—ol
Xa= u(a+v) K ge= u-(m*-\)"

Diagram 4. Change of the relation-
ships between bending moments in
restralned centrally loaded plates
depending on parameter .

RO < Mol | (0> (R l M <l
H,(0) <My [ XY Ln,«m«,'n, @y
Hi<Mm | mEbiMB] Ry
My () >0 ] Nmed

>0 CRLY)
ow o, 5w § B %

Diagram 5. Change of the relation-
ships between bending moments in
restrained evenly loaded plates
depending on parameter .

H -- .' .' - e - w— ..'.'....l..‘... —— o
M"db'- u/ h:‘u/-lau' ] m /»ta-

e ';. ow‘u_I_oc'm a pa d T 0< & ~ 0<a L

The form of these relationships with given x can be
established by Diagrams 4 and 5. Thus, for instance, when
X < x < xé from the first line of Diagram 4 1t is evident
that M_,(0) > IMr(R)l; from the following lines it follows that
M (V> | M (R) |, [MARY S | Ma (R)]. Ma (R)>0, AL(R) <O,

Graphs on Figs. 3.3.4 and 3.3.5 1llustrate the change of
bending moments (N = %—TM) along the radlus r depending on
5q,R
0
parameters o > 1 and x. As is evident, with increase of a points
x° (see zlso Table 3582 amd xo, which correspond to extrema and
zero values of functions Mr' and Me, are displaced toward larger

values of the coordinate.

Lt should be noved that in Che case o free i port the
“hears (parameter x) do not affect the distribution and t he
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Fig. 3.3.4. Change of the bending
moments along the radius of free
round plates depending on the degree

of anisotropy o (v'6® = 0.4).

a) : b)

Flg. 3.3.5. Change of circular (a) and radial (b) bending
moments along the radius of restrained round plates. 0 - x = 03
1 - x=-0.1; 2~-x=20.1.

amount of bending moments; in the case of restrained edge the effect
of shears 1s considered by coefficient C (see Table 3.3.2):
coordinates x> and xo are changed C times, and moments at points

3 2
x> - C

calculated taking into account the hypothesls of straight normals.

times 1n comparison with the corresponding values,
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The effect of shears shows up not only on the distribution
of bending moments - consequently, and the stresses L and Og =
: aleng tne radius. Stresses Thy Can significantly change the
E diagrams of distribution of L and 99 along the thickness of
the plate. According to S. A. Ambartsumyan's theory, these
stresses along coordinate z are changed according to the law of

cublc parabola
a=ad+he4-c (3.3.16)

(as i1s shown, the classical theory gives the linear law of
distribution of these stresses, whereupon ¢ = 0 when z 0). The
baslc correction to the classical solution is introduced by the
account of shears. The effect of o, 1s considered constant c.

By practically important cases it does not exceed 3% [164].
Disregarding O for evenly loaded plates we obtain

55 oM il -0, (3.3.17)

qa ="";,‘;“. h

3
“ i
gl A VE.

A0y Gor when

When determining the radial deformations SL:

=t v

determlning peripheral stresses ﬁ.—au,l+v. Thus, stresses o

and 0g can be expressed by the appropriate bending moments and
supplementary correction, which is considered by parameters Mr’
My :

A a0 s\l 18
""'217-7[' 2.\’](' ':slﬁ)l' (35318 )
The comparison of the maximum stresses max o with thelr correspond-
ing values in the center of Ilsotroplc plate, determined according
to classical theory max o*, is given on Figs. 3.3.6, 3.3.7.

Curces | oeorrespend to calealatdon not Laklug Into acecunt shearn

Cbut taklne Into account anlesot popy EC/EP\, and U oand 3 - to th

caise where HEEP/Pg?rZ = 0.5. As can be seen from Figs. 3.3.4,
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3.3.5, the maximum bending moments in terms of absolute value can
appear when x = 0, x = x> or x = 1. Taking this into account

max o, and max 9 for the cases of free and pliably restrained
(du/3z = 0 when x = 1, z = 0) plates are determined when x=x ¢"

and in the case of rigid fixing (dw/dr = 0 when x = 1) - when
X(LETEET

P e i Fig. 3.3.6. The effect of

- /1 anisotropy on the maximum

—_— il f normal stresses in free

= ff__ plates (\)Pe = 0.4)., 1 -

x = 0; 2 - x = 0.1.

Fig, 3.3.7. Fig. 3.3.8.

Fig. 3.3.7. The effect of anisotropy on the maximum
radlal stresses for restralned plates. 1 - not taking
Into account shears; 2 - dw/dr = 0 when r = R; 3 =
au/az|z=o = 0 when r = R.

Flg. 3.3.8. The effect of anisotropy on the maximum
peripheral stresses for restrained plates. Designations
are the same as on Fig. 3.3.7.
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It should be noted that cases are theoretically possible where
the stresses or and 9% reach extreme values inside the plate, and
not when z = +H, as follows from classical theory. Thls phenomenon
is 1llustrated by Fig. 3.3.9, on which the change of the character
of dlagrams of normal stresses 1is shown depending on parameter
M, with the aid of which shears are considered (3.3.17).

1 ; \ Fig. 3.3.9. The effect of shears
on the diagrams of normal stresses

]
AT o
]
ittt sl sl e —
1!

§ 3.4, THE EFFECT OF SHEARS ON THE
MAGNITUDE OF CRITICAL FORCES AND
NATURAL VIBRATION FREQUENCY

3.4.1. The stability of rectangular plates. The equations
of stability of a rectangular orthotropic plate, compressed

along axes x and y by evenly distributed forces with intensity
Nx and Ny (Fig. 3.4.1), can be obtalned from system of equations
(3.2.5), (3.2.7), if we replace q by ficticlous load q =

2 2
— d~w d"w
= -ngzg + Nyg—§ (see, for example, [43]). Consequently,
y
- Fu a*u . Fu
tl ()." '?Gjy )J’ ( ()2’ <+
R
-ol(i.,"‘\'”E\);l"‘.‘lyr (3.Ll.l) "
s F;. d:.'_ 7.'&. )" q
E. ;’u: - G'"¢h.: + GV" E)‘:E' i ‘G~'v+\'lul:\) ; )‘l =0, (3. 4,2 ) .
HGy =~ N8 421G N,) T84
(2 i )() -. + "kl ") oy‘
du o o\ (3.4.3)
f(‘l (,' 0‘ ' "!;"'E)d‘ O. )
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Fig. 3.4.1. Diagram of evenly Iy "y
compressed rectangular plate. o L
- 4
Ny - e .. I L]
o Tl .
i s
Ny

ror the case of free support the solutions of eguations
(3.4.1), (3.4.2) are given in § 3.2. By substituting them in
(3.4.3), we find the critical values Nx and Ny‘ The value of the
critical lcad depends on many independent geometric and physical
quantitles, therefore in the most general case the complete
analysls of the behavior of critical load depending on the
Indicated factors 1s difficult. If the plate is transversally
isotroplc (§ 3.2.2) and the relationship between compressive

forces N_ and N_ 1s kept constant (N_ = N, N = cll), then
X y X y

Gatener L
-\i:~um = P Chd (fmuD- ( 3 4. 4 )

If we disregard shears, then umes (Am’+ia?) 21 =0, qma- 3@2ﬂ:lh;ﬂﬂ =
zon’

and formula (3.4.4) changes into the formula obtained on the

basis of Kirchoff-Love hypothesis [123]. In the case of
compression only in direction x (IIy = 0) from (3.4.4) follows
Nionn ™ N e (3.4.5)
G R
N:p - m n D ~« critical load determined not taking
2
Am

into account shears [123]. Consequently, in this case the connec-
tion between the critical load, determined taking into account

i D mn® is the

shears an
same as in the case of rods (formula (2.5.8)). The solution,

and not taking into account shears N§
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which considers transverse shears, but which a prilorl assumes
that they are distributed according to the law of quadratilc
parabola, leads to formula [6, 14]:

RIS
HES ) X P u= )

.\'|.|| ran =

Consequently, the accuracy of approximation of the actual law
of distribution of transverse shears f(0) (see Table 3.2.1) by

quadratic parabola 1s equal to the accuracy of approximation of

1 The error introduced by
1+0.uKmn

such replacement can be judged from Table 2.2.1. The decrease

2 i 2

of critical load depending on parameter h* = 0.4n -5 B8
b

characterized by stabillity curves depicted on Fig. 3.4.2, borrowed
from S. A. Ambartsumyan's book [6]. As 1s evident, shears
substantially lower the critical load for plates of materlals
reinforced by filaments, for which large values of 82 are

functilon ¢mn by function 5

is

characteristic (see

Table 1.1.1). The noted
feature 1is frequently over-
looked (see, for example,
source [125], in which the
stability of plates of glass

fiber-reinforced plastics is
Fig. 3.4.2. Stability curves for
different values of parameters

[6].

examined).

During the action of
complex contour loads, for example concentrated forces, on the
plate the problem of stabllity is conveniently solved by using
the energy criterion proposed by N. A. Alfutov and L. I. Balabukh
[3], which does not contain initial (subcritical) stresses. The
determination of these stresses in the case of complex loads
presents significant difficulties.
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Following the line of reasoning of the authors of the mentioned
work [3], the criteron proposed by them can be spread also to
anisotroplc plates. In the case of orthotropy the critical
values of external loads, applied to the outline of the plate
in its plane, can be found from equation

' . i\
; .”. -+ ,’ .{f[ﬂ\u'( '4 "l‘ﬂ ) 2'\‘,!) "‘ ’I ll!\(!J
A ')l’f [[ Rl XY "\l ’ ';-Oyo ‘,y|+

.\ :,r

2(("v (“_\Il "ul'*' ﬂyll "\I) ]"\(I!’ . 0. ( 3 R u i 6 )
Here integrals are taken along the area of the middle plane;

31 - the potential energy of the bending of the plate; 0x0+’
+

GyO 3 Txyo+ - the system of statically possible initial stresses,
l.e., stresses which satisfy the equation of equilibrium of two-
dimensional problem and conditions on the sections of the boundary
2%0, 3°6,
where external loads are prescribed; 9,1 aug; Oyl = —;;5
secondary stresses in the mlddle plane of the plate, which appear
at the moment of loss of stability and are determined by the
function of stresses ¢l, which satisfies the Karman equation of

orthotropic plate

| d‘(f. vy T ey =(.0-‘w )’ o
Gru

T, ;).‘ls oxoy ' Ey dyb oxoy] ~ dx ayt ;

L

8¢l

and boundary conditions ¢l = e

which is n.

= 0 on the contour, normal to

The effect of transverse shears shows up on the amount of 1
potentlal energy of bending 31. If deflection w of free
rectangular plate 1s predetermined in the form (3.2.9), then
in the case of transversal 1sotropy from formula (3.2.2) taking

into account (3.2.15) it follows that 31 = 3{¢mn’ where i
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# = 20
31 2Dwmn

determined not taking into account transverse shears. In the case
where all external forces, and also the integral terms of
expression (3.4.6) (for example, as in the case of loading by
concentrated forces, examined in [3]) are proportional to one
parameter N, the critical value of the latter 1s determined by
formula NHp = Nup*¢mn’ i.e., the correction from transverse

shears, as in the case of plates evenly loaded 1in the middle plane,

2(Am2 + An2)2 - the potential energy of bending,

is determined by multiplier ¢mn'

3.4.2. Flexural vibrations of rectangular plates. Using
the estimations obtained in the examination of flexural vibrations
of beams (§ 2.6), let us examlne the effect of shears on the natural
vibration frequency of plates without takling into account inertia
in the directlions parallel to the middle plane and the compress-
ibility of normals (ez = 0). Under these assumptlons the system
of equatlons of free vibrations can be obtalned from system
of equations (3.2.5)-(3.2.7), by replacing in it, taking into
account the d'Alembert principle, the transverse load bty inertia

term

o
[/ 2"0 2'.}:‘ f

By representing the dlsplacements 1in tne form of periodic functions
of time

U, g, @) sin (ol +0);

ey, 2) sin (ol +);

w = W(x, p) sin (o +8),

from (3.2.5)-(3.2.7) we willl obtaln the system of equations for
amplitudes of vibrations U, V, W:

-
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= o

E, ’)\U+('\ud'l.j +Gy; ::,U+(Gw" \\UE')%"Oi (3.5.7)

eV R p: o

Eu il + G +Gus 0 + (G v o) oot =0, (3.4.8)
:

oW . FU oY
| 26,0 % 26, /(G o + Gy 5 )dz
= - 2Hpuw W, (3.4.9)

The solution of system of equations (3.4.7), (3.4.8) for the case
of a free plate 1s known. Values of natural frequencies w are
clearly determined by equation (3.4.9). Upon consideration of the
inertia in directions x and y the right sides of eqguations (3.4.7),
(3.4.8) are equal to pw2U and pw2V respectively. Thilis leads

to the need for the solution cf transcendental equations (see

§ 2.6.3), 1.e., to considerable complication of the problem.

For clarity let us glve the estimation of the effect of

shears on an example of a transversilly 1sotroplc plate. Using
results of § 3.2.2, from (3.4.7)=(3.4.9) we find

Wmn1=ll.‘nn¢mn; (3 . u A 10)
w;n - the frequency determined not taking into account transverse 3
shears [123]: ]
w.pz‘lu\""'h.l':’lll :":. (3.“.11)

Approximate replacement (see Table 2.2.1)

‘” ”me ‘thn) |
. a3 l:"'l,,m (3.“.12)

"N’-

turns (3.4.10) into the expression obtained by the postulation
of the parabolic law of distribution f(z) of tangential stresses
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T, and L [6, 14]. Consequently, in this case the error
introduced by postulation f(z) is the same as in the case of

vibration of a rod (§ 2.6).

3.4.3. The stability of a round plate. During the
compression of a round plate by evenly distributed load Nr
(Fig. 3.4.3) the equations of stability with axisymmetric buckling
can be obtalned by substitution of fleticlous transverse load

2
& dw . 1.dw :
i Nr(arg ' dr) Sl

Fu, ) du_ .u, 1 dw -0

b'?TT"a;‘"ll ” dz’ = (3'“'13)
w (IR t u\ ..
@216, - N L5+ ',,)fG f(;’,:,z — gz )ds =0 (3.4.14)

It should be noted that such an approach 1s strict only in the
case of a =1 (Ee = Er)’ when the 1initlal stressed state caused
by compressive stresses Nr is

uniform. In the case o # 1 the

initial stressed state 1s changed
depending on coordinate r -

distance from the center of the =
plate (see (3.3.14)).! For

values of a, close to one,

the stressed state 1s close

to uniform, therefore system Fig. 3.4.3. Diagram of compressed
of equations (3.4.13), round plate.

(3.4.14), at least for the

qualitative evaluation of the magnitude of critical forces, can be

used also with o # 1. The error introduced by the assumption about

IN. A. Alfutov and I. I. BRalabukh proposed the method [3], which
makes 1t posslble to sclve such a problem without determlnaticon of
the subcrltical stressed state. The stabllity of transversally
isotroplc round plate 1s investigated by A. P. Melkonyan,

A. A. Khachatryan [137] and A. Sh. Petoyan [163].
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the homogenelty of the initial stressed state with a # 1 can be
estimated by Fig. 3.4.4, on which solid lines depict curves

NHp = f(a), obtained taking into account the heterogeneity of
stressed state [305, 320] (not taking into account shears), and
broken lines - not taking into account heterogeneity (also

not taking into account shears).

Fig. 3.4.4, The effect of heterogeneity
of subcritical stressed state on the
magnitude of critical force of round
cylindrically orthotropic plates (Vre =

= 0.3): 1 - restrained plate; 2 - free
plate.

Using solution (3.3.7), equation (3.4.13), from (3.4.14) we
ottain

!
A (2..r) Dy Ppche (q.-,. - /}-"D) =-BN, (a4 1) ' Q. (3.4.15)
This equatlon will be fulfilled if B = 0 and
-\': =, .."D‘[m- ( 3 . u o1 6 )

Crltical values of parameter AHp n are determined from condltions
at the edge of the plate r = R, These conditions form a system

of two homogeneous equaticns, the determinant of which 1in the

case of nontrivial solution must be equal to zero (see also § 2.5).
Thus, for free plate AHp i is determined from equation

4 (.R) =0, (3.4.17)
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and in the case of restraint (w = %% = 0 when r = R) - from

equation

1 AR 0, (3.4,18)

When « = 0 N - N*
HP Hp m
determined without taking into account transverse shears [96].

, Wwhere N#* is the critical force
Hp M

The effect of transverse shears on NHp - is determined by
multiplier ¢m’ which 1s the monotonically decreasing functilon of
parameter Kp = Aup mBH. Consequently, the effect of shears is
greater for restrained plates and for materials with large o (in
these cases larger than AHp m). Figure 3.4.5 illustrates this
phenomenon, on which there 1s shown the change of critical
force for free (solid lines) and restrained (dotted lines) plates
at different values of parameter a depending on the parameter
B%. As 1s evident, transverse shears substantially decrease
the critical force. With an increase of parameter B% the effect
of the method of restraint of the plate and parameter a fades
away. Thils indlicates that the stability of plates weakly resisting
shear cannot be radically raised only due to more rigid fixing

of edges and increase of Young's modulus of material. In the

limiting case, when Er or Ee become infinite or % N0 N I

when k ~ 0, as for a rod (& 2.5). NHp > 2HG . Consequently, the

Fig. 3.4.5. The effect of
shears on the critical force
of round plates., --- restrain-
ed plate; — — — free plate.
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compressive stress, which the plate can perceive, not having lost
stability, 1s equal to the shear modulus of the material:

N, |
thp .2..’; °Y 6"- ( 3 . ; . 19 )

3.4.4, The stability of annular plates. During compression
by outslde and internal pressure q and p (Fig. 3.4.6) in a round

annular plate there appear radial and peripheral normal stresses

23]
“r""}.’g—"l' ﬂ.=u(ﬂ.+h.). (3.“.20)
where
’C““"
da(r) = ’|.-‘-uq -y

ha(r) = " "‘ Ligey,

N
L-'-b. --b.

With axlisymmetric buckling the equatlions of stabillity can be

obtained from system of equations (3.3.4), (3.3.5), after placing
in it ficticlous transverse load [75]:

[TeVy | dw

ge0. B8 o L de (3.4.21)

If the 1initial subcritical stressed state can be consldered
uniform (this condition 1s satisfled exactly when o = 1, p = q =
= %H), then the equations of stability have the form (3.4.13),
(3.4.14), Using solution (3.3.6), equation (3.4.13), equation
(3.4.15) can be given the form

An*Bchzm (N = ¢ 220 D) [ALoiA k) = A3Ya(d,r)) + 2BN =0, (3.4,22)

This equation is fulfilled if B = 0 and
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Fig. 3.4.6. Annular plate
loaded by evenly distribut-
ed pressure.

V= -vxp "™ (&’m;-».p wD. ( 3 . 4 2 3 )

Constant ka i 1s determined by the conditions of restraint of
the edges of plate r = a and r = b. These conditions form the
system of homogeneous equations, the equating of the determinant

of which to zero gives the equation for finding X These

Hp m’
equations for a number of versions are given in Table 3.4.1 [189].

It 1s easy to check that when S = 0 they all change to the
appropriate expressions obtalned without taking into account
shears [181].

Solutlons of equations (Table 3.4.1), obtained on BESM=2

[189], make it possible to investigate the effect of shears (with
respect to parameter B%;) and the relationship of radii ¢ = % on
the magnitude of critical force. Results for the plate, supported

when r = a, r = b, are given on Figs. 3.4.7, 3.4.8 (for Vg 080

As computations showed, the effect of change of Poisson

ratio v within from 0 to 0.5 can be disregarded. As can be

ré
seen from Fig. 3.4.7, the effect of shears on the amount of

critical forces is decreased with decrease of the inside radius
of the plate a, l.e., relationship ¢ = %. In the case of both

restrained edges (Table 3.4.1) parameter AH does nct depend

p m
on shears. In other cases (see, for example, Fig. 3.4.8) the

effect of shears on r:raumeter A ls cmall, consequently, {he

itpom
bacle correction from Lhem 15 contalned ln parameter ¢m (see

exression (3.4.23)). Thls makes 1t poscible to use the values
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only for parameter ¢m.

Table 3.4.1.
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Fig. 3.4.7. The effect
of shears on critical
force for annular
plates with different
relationship of outsilade
and inside diameters.
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With increase of relatlionship ¢ = % the conditions in which

the annular plate is located approach conditions of elongated

rectangular plate with distance between the long sides I = b - a.

The critical load for such a plate

Now T D, (3.4.24)
where gm rm ,'h/‘ 7m = Aoy ml
Parameter XHp , 1s determined by formula:
(%%« = Eulerlan values of the critical parameter of longitudinally

compressed rod with the appropriate boundary conditions).

Fig. 3.4.8. The effect of A.,,8 . s !

shears on the magnitude of ol " T e -..___~}
critical parameter A : ' :

m KD L i !

' '

for free annular plate :
(when r = a, rr = b). !
Designations are the same i . ' :
as on Fig. 3.4.7. ) : i

1
!
e e e e
| | - | |
) . ', 1
L R
L et - _2 i
os D - Zﬂ
S T By l_,, ﬂl.]
0 '] w 50 8

The comparison of the critical loads, calculated by
formula (3.4.23) and simplified formula (3.4.24), showed [189]
that even with relatlvely small ¢ the approxlmate replacement of
i was permissible. This gets rid of the need for the

Il v
Hpod wp 1
solution of the transcendental equations given in Table s5.4.1.
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FOURTH CHAPTER

RINGS OF TRANSVERSALLY WEAK MATERIALS

§ 4,1, THE TECHNICAL THEORY OF WINDING

4.1.1. The anisotropy of material in the state of treatme.t.
Winding with filament or fabric 1is one of the most rational methods
of the manufacture of parts, which have the shape of solids of
revolution, from materials reinforced by fibers. The possibility
of change of the winding angle makes 1t possible to easily control

the anisotropy of the strength and deformation properties of the

part being made. For this very reason winding is the baslc method
of treatment cof glass fiber-reinforced plastlcs, reinforced by
continuoug fllaments. The treatment by the winding method is
developed faster than other methods of forming articles from ;
composite materials. According to Rosato [312], in the USA in
1966 by this method 45,000 t of parts were produced from glass
fiber-reinforced plastics.

The most investigated is the geometric side of winding -
optimization in terms of the angle of winding (see, for example,
[113, 262, 311]. A survey of the works of sclentlsts of thLe
USA on the geometric cptimization of winding is given in [2891]).
In the works dedicated to the investigation of the winding of

glass fiber-reinforced plastics, the nonuniformity of the distri-
bution of tension in the turns of wound articles 1s at best only
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mentioned (for example [295, 316]). 1In works on the calculation
of constructions made by this method [258, 272, 285], the power
side of the process of winding and the effects determined by it
Z are not examined at all. However, thils questlon has great
practical interest during the development of the mechanics of
winding parts from materials reinforced by filbers (as a result
of the strong anlsotropy of the latter in the state of treatment).

The anisotropy of materlals when winding can be characterized
by the relationship of Young's modulus in the direction of winding
Ee and 1in transversal (radial) direction Er' It i3 natural that
the examination of the mechanics of winding in an elastic setting
is only the flrst approximation, however, such an approach makes
It possible to determine and investigate the baslc features of
thls process. The materlals in question, esr2clally reinforced
plastics, in the state of treatment comblne comparatively high
rigidity in the direction of winding with large pliability in
perpendicular direction. This 1s explained by the fact that 1n

the direction of winding the deformating properties are virtually
completely determined by the reinforcing fibers, and in trans-
versal - oy pliable matrix (for example, by polymer binder).

The propertles of materlal in transversal direction are
absolutely insufficlently studied. However the experimental
data appearing recently [167, 296 ] make it possible, at least
qualitatively, on an example of glass fiber-reinforced plastics

to evaluate relation ai = Ee/Er.1

In the practlcally used

range of compacting pressure 50 dependence E,= f(ﬁo) for glass
fiber-reinforced plastics, reinforced by rove and fabric, is
represented on Figs. 4.1.1. and 4,1.2. These uata are obtained

with compression of a pile, collected from layers of rove or

'Subsequently for the sake of simplicity of recording index H

wlil , i1 dropped o I rmulasy 1t 15 retatned on the graphs.
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cloth pre-impregnated with polymer binder by uniform pressure 50
in a closed mold. As 1s evident, dependence Er = f(ﬁo) is
virtually linear both for unidirectional glass fiber-reinforced
plastics and for glass lamlnates, however, the rigidity of the
latter 1s considerably higher, which 1is explained by the presence
of cross-=1inks.

Fig. 4.1.1. The dependence of
transversal modulus Er of uni-

directional glass fiber-reinforced
plastics in the state of treatment
on the compacting pressure 50

during compression of a plle or
n layers [60]. LoB=F;
-——- AG-hS.

Designation: HFQ/CMa = kef/on

Fig., 4.1.2. The effect of compacting
pressure p, on transversal modulus Er

on woven glass f{'lber-reinforced plastics

in the state of treatment [167]: 1 - rein-
foreing fabric of satin weave, Impregnated
with polyester bonding agent; 2 - reinforecing
fabric of linen weave, impregnated with
polyester bonding agent.

The glven experimental data make 1t possible tc evaluate
the boundaries cf change of the parameter of the anisotropy of
material in the state of treatment a = V@Z;E;. For criented
glass flber-reinforced plastics EP can be changed within from
20 to 800 kgf/cm2, and the elastic modulus in the direction of
fibers E, - within (0.25-0.80)-106
Ee In the state of treatment can differ by three orders. Frecisely

kgf/cm2. Consequently, Er and

this forces us to turn the most serious attention to the force
optimization of the process of winding.
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Pressure between layers when winding depends on the force of
winding,the geometric dimensions of the part being wound and the
propertles of material. The enumerated parameters can be changed
within rather wide limits, which leads to change of value Er

(Figs. 4.1.1, 4.1.2) and, consequently, the parameter of anisotropy

a. Therefore all the numerlcal results are given for a rather
wide range of values of a(30 <a =< 70), which encompasses the
majority of practically real cases. When winding one particular
part the pressure between turns (regardless of thelr arrangement)
1s comparatively constant. This makes 1t possible to disregard

the change of parameter a over the height of the part being wound.

4.1.2. The force features of winding. High pliability in
the transverse direction of materials reinforced with fibers
leads to the fact that under the action of tensioning force each
subsequent turn strongly deforms the layers lying below in
radial directioq. In spite of the iInsignificance of radial

il
stresses (cP " 1% Og where HO and R - the thickness and radlus

of the part being wound), they can cause large deformations:

Hy E,
“”’R'E%P°' (4.1.1.)

For isotroplc materials Er = E consequently, €n << gge This

s
makes 1t posslble to use the hgpothesis of noncompressible
standards, accepting in the practlical calculations of thin-walled
rings Er = o, During the calculatlion of isotropic rings for

the action of external or internal pressure these parts are
calculated as thin-walled to the ratio of radii equal to 1.4
[247]. For rings of materials reinforced by fibers as a result
of large values of parameter o in the state of treatment 1t is
necessary to consider the compressibility of standards even for

very thin rings (with ratio of radii less than 1.01).

The most wisual $1lustration of the differences between the

winding of isotrople and anlsotroplc materlals can be pressure
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on the part being wound. Figure 4.1.3 shows change of pressure

p on the force-measuring mandrel depending on number of turns n
during winding of isotropic (nickel strip, curve 1) and essentially
anisotropic (strip of glass fiber-reinforced plastic, curve 2)
materials. When winding isotroplc materials the drop of initlal
tenscioning force in turns, assigned by the winding device,
virtually does not occur, therefore the pressure on the mandrel
increases in proportion to the number of layers. When winding
materials reinforced by fibers, dependence p = f(n) becomes
nonlinear already at small n. For these materials 1t 1s necessary
to get rid of the hypothesis about the incompressibility of the
standard even with comparatively small thicknesses of the parts
belng wound.

Fig. 4.1.3. Pressure change on
mandrel p with winding of strip:
1 - isotropic material (nickel
strip); 2 - essentially aniso-
tropic material (glass fiber-
reinforced plastic LSB=F).

p'n'%w)

w}

PO—
20F L

4.1.3. Calculated dependences.'

The small thickness of the strip being wound makes it
possible to disregard the spiral arrangement of turns and to
represent the process of winding in the form of the successive

'The problem, simlilar to the examined, appears during the
determination of pressure on a drum with multi-layer winding of
rope [105, 111]. However, the proposed method of solution 1s
simpler than that given in the indicated works.
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application of thin annular anisotropic layers on each other with
thickness h = h' + h" (Fig. 4.1.4). The original tensioning
in each layer TO 1s created by the wlnaing device and 1t can be
changed according to a certain law. With the application of 1-th

layer on radius ry pressure appears on the layers lying below
1‘[1
X
i qQ = ;g. If the mandrel 1is absolutely rigid it is possible to
i
consider that the layers lying below form a uniform anisotropic
ring with inside radius Ra and outside radius Ty then application
] of the next layer, which creates pressure Qg = To/ri, causes

radial displacement at radius r [123]:

.\"(’.) T __-L-.(SD":-':.U..:L_ N ( L‘ . 1 . 2 )
. E ( I U
\-va, MR
where

|.'="-—‘-’ n—L
¢ e ( R,

The 1mportance of anisotropy makes 1t possible to disregard the
Polsson effect if a change of tensioning in turns occurs only
because of the settling of underlayers. This assumption is
equipollent to the dlsregarding of Vg & in comparison with a,
since Vo p << a. Consequently, expression (4.1.2) assumes the
form

Voo Tut(e®=079)
Mu(r)) Fo (0,2~ 0,9) * (4,1.3)

The total radial displacement u(r) in the ring being wound
on radius r is equal to the settling from the a;plication of all |
the subsequent rings from ry =r to ry = RH (r 1s the fixed
radius, on which the displacements are determined; RH is the out-
side radius of the prepared ring): ‘ 1

w(r) =3u(r) 4 Ma(rith) ...+ Mi(Ra ). (hol4h
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ness of elementary layer h with a
joning force TO the sum of

ntegral

As a result of the thin
sufficiently smooth change of tens
(4,1.4) can be approximately replaced by i
'l
u=-L [ Su(rodrs. (4.1.5)

[ 4
a replacement gives considerable
ts near the inside surface
£ osum (4.1.4)

One ought to consider that such

error when determining the displacemen

of the ring being wound, where the number of terms O

is small.

Fig. 4.1.4. Model of winding.
KEY: (1) glass (h');
(2) polymer (" DY

The computation of integral (4.1.5), as @ rule, is cumbersome.

e of constant tensioning force of the strip TO for the

In the cas
uctions, which have 1.02 <

practical calculations of the constr
R
< ﬁi < 1.10 and 10 < o < 80, 1t is possible to recommend the
B
approximation formula

() , 260)

e (e ) are g (1)t are ATk
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The difference between the results calculated by formula
(4.1.5) (on BESM=-2) and by approximation formula (4.1.6) does
R

R
g~ < 1.05 and 10% - with £ < 1.1.
B B

not exceed 5% with

If we consider the pliability of the mandrel, then the radlal
dlsplacement

) Tue(wie'~g%)
\u(r) = Eo (o Tor) " (4.1.7)
where
L
" a—Yun

The mandrel and ringshave identical width.! The outside radius
of the mandrel Rl = Rs, inside radius R2. It 1s made of i1sotroplc
material with Young's modulus EOn and Polsson ratio e

. =.E_o RE+RY )
\i¥n on Rl""R3 -
- the parameter which characterizes the rigidity of ti~ . - 21,

When the mandrel 1s absolutely rigild, Yon = 0 and formula LS o Th)
changes into (4.1.3).

Table 4.1.1 depicts the value of parameter Yon? which charac-
terizes the pliability of steel mandrels in the form ol rings with
different thickness during winding of glass fiber-reinforced
plastics on them (1t is accepted that Vi 0.3, E = 2,1-10

6 an
kgf/cm » Eg = 0. 4.10 kgf/cm ).

6

!Change of the tensioning force as a result of bending of
generatrix, when the wldth of the mandrel is greater than the
wldth of the wound strip of noncompressible materlal, is examined
by V. L. Biderman [28].




Table 4.1.1. The radial pliability of
thin-walled steel pgpdrelg;

C erimt o am e mm mrie e e m—

Rk 1ol 102 103 101 108 1 107 16s 1 L0

e amem it e ——e—— e
- o) ——————— b e v —

Voo | 190 96 w3 4w 30 33 28 28 21 19

§ 4,2, FORCE EFFECTS WHEN WINDING
WITH CONSTANT TENSIONING FORCE

4.,2.1. A drop in original tensioning. As a result of
the high pliability of the material being wound in radial direction
there appear large radial displacements (settling) u of the turns
of the strip. As can be seen from Fig. 4.2.1, the amount of
these displacements rapldly grows with increase of the parameter
of anisotropy a (initlal section of curves is marked by dotted
line, since (4.1.6) gives too rough an approximation in the arex
of small thicknesses, when the thickness of the ring is commensur-
able with the amount of displacements).

As a result of the large settling of turns the original

tensioning T, created 1in them by the force of winding conslderably

0
decreases. Lowering of tensioning T~ is directly proportional

to settling u:

T-=Eot. (4.2.1)
consequently, residual tensloning

T=T-T- (4.2.2)

The total drop of tensioning in all turns, l.e., drop of tensioning
along the section of the rings,

.l
ST-=ky [ Lar. (a2 )
BT
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In this case the total residual tensioning

ST=23T—-2T-. (4.2.4)

In the case of thin-walled rings, when 1t 1s possible to disregard
the change of radius along 1ts thickness,

:r=&[ua. (4,2.5)

With accuracy to 5% in the range of change of parameters
R

1.01 < g% < 1.1; 10 < a < 80 integrand (4.1.6) of integral (4.2.5)
can be rgplaced by expression

which leads to

Flg.

in

Lhe

h,2.1.

Lurs

20 T

0z —

:rm—np+%(
1]

The effect of the
degree of anisotropy on the
amount of radlal displacements

+
7

Iy

Il 1T

17

.-‘,“L_.:- shv(aretygem —aretgen), (4.2.6)

3

3 2aon‘lgc'"u)]. (4,2.7)
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Fig., 4.2.2. The effect of the
degree of anlsotropy on the
total drop of tensioning force,
h =N, - thizskress of the rings.
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In formula (4.2.7) parameter K, = a%— characterizes the anisotropy

B
of the deformating properties of the material being wound and the
relationship of the geometric dimensions of the turn of material

and the l1lnvestigated construction.

As can be seen from Fig. 4.2.2, the total drop of tensioning
grows faster with an increase in the number of turns, the larger
the parameter of anisotropy wo. During winding of radially incom-
pressible turns on absolutely rigid mandrel the total tensioning
LT increases 1in proportion to the number of turns:

ST =nT, UL 208D

As can be seen from Fig. 4.2.3, dependence IT = f(n) for isotr: -~
materials is also virtually linear. However, for the materials
reinforced by fibers, for which in the state of winding o > 30
(see § 4,1.1), the nonlinearity of dependence IT = f(n) is
manlfested with n < 10, which attests to intense lcwering of
initlially created tensioning TO.

-
‘]

o:30 a:80

0 i 2 0
Fig., 4.2.3. The effect of the degree
of anisotropy on the value of total

tensioning force in the sectlon of
rings.
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4.2.2. Pressure on absolutely rigid mandrel. For a series
of' problems, especially during the manufacture of different types
of constructions with guaranteed tightness,' the total pressure p,
transmitted to the working mandrel or the part being wound,is of
the greatest interest. It is determined by the preserved tension-
ing in turns &T.

T
p=J dr (4.2.9)

Rl
If the ring 1s thin-walled and i1t 1s possible to disregard the
change of radlus along its thickness, then p 1s directly
proporticnal to the total preserved tensioning IT. Consequently,
the growth of pressure on the mandrel with an increase in the
number of turns n can be judged by Fig. U4.2.3. The character of
the calculated curves (Fig., 4.2.3) for isotropic material (o % 1)
and glass fiber-reinforced plastic (a % 50) agrees well with

experimental curves Fig. 4.1.3.

When winding thin-walled rings with mean radius R from
radially incompressible turns (Er = ©) to absolutely rigid mandrel

the pressure transmitted by 1t is equal to

I"m-“",:'!- (4.2.10)

With the winding of radially compressible turns

To

P2 .:/.-uR .':rc.l;,' sh . (CUN T2 N

p
Ratio —5% depending on the thickness of the article being
M
wound and anisotropy 1is shown on Fig. 4.2.4, The given data

visually illustrate the need for not using the hypothesis of

'For example the shrouds of electric motors [62, 265], high
pressure cylinders and others.
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Incompressible standards for the predominant majority of practical
problems about winding of materials reinforced by fibers.

Fig. 4.,2.4, The effect of the
degree of anisotropy and thickness
of the article belng wound on the
rressure transmitted to absolutely
rigid mandrel.

W=

an

LR

4.2.3. Limiting number of turns when winding on absolutely
rigid mandrel. The consideration of the compressibillity of
materials when winding makes it possible to establish the existence
of limiting number of turns an, above whlch pressure on the
mandrel or the part being wound virtually ceases to grow. This
fact was established experimentally when winding on mandrels,
which 1t is possible to consider absolutely rigid (see, for example,
Fig. 4.1.3). The same conclusion follows from the glven theory.
Actually, from expression (4.2.4) caking into account (4.2.7) 1t
is evlident that the total residual tensi naing in turns, which
determines the pressure created by the wound rings on the mandrel,
1s limited value - when rp+«>xr—.311. Limiting value limXIT

n-—+ X

is determined by the tensioning Egrce and by parameter K.,
characterizing anisotropy and geometry. It is obvious that such
increase in the number of turns for obtaining maximum pressure
Prhax OB the part being wound 1s senseless. Therefore,for
obtaining the calculated dependence 1t 1s advantageous to pause
on a certaln part of the maximum force, created by finite
number of turns. The number of turns nnp, which corresponds to

prescribed fraction o = (1 - —2—) of maximally possible pressure
max
on the mandrel, 1is determined from the following expression:

LT

oy pr ol sl




arcly ¢ an =-_i;- - 5’5-'-'-\') . (4.2.12)

If we examine the area of pressures P,

close to Prax? then the
Hmiting number or turns can be determined by formula
n ]
In (I~-~-—)-—
[ Pinax "] (“.2.13)
Myp== —~ - 33

Zn

The dependences of limiting number nnpof turns on the

anisotropy of material with assigned magnitude w ar

e given on
Fig., 4,

2.5, which 11llustrates the effect of the degree of anisotropy
and the reguired pressure on the mandrel with fixed ratio of the
thickness of Strip to the radius of the ring being wound.

Figure 4.2.6 shows the connection between

the parameters of
g3 i
winding K,s asslgned by ratio p/pmax

and limiting number of turns.

Ly

B i ke s

i

Flg. 4.2.5. Limiting number or Filg. 4.2.6.
turns with fixed ratio of the
thickness of the strip being
wound to radius, w = 1 - p/pmax'

Limiting number of
turns with prescribed ratio
p/pmax'
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As can be seen from the presented data, as a result of the
transversal weakness of wound materlals the pressure on rigid
mandrel rapidly ceaces to rise. For oriented glass fiber-reinforced
plastlcs (30 > a > 70) this 1ls already observed with number of
turns 25-50, which, specifically, indicates the uselessness of
the tendency to attain a substantial increase of pressure on the
part being wound by means of a further increase of the number

of wound turns.

4.2.4. The account of pliability of the mandrel. The
winding of the investigated materials is performed on the working
mandrels, which reproduce the configuration of the article being
made. During the manufacture of biconstructions or when using
reinforced materlials for banding parts being wound serve
as the mandrel. Depending o1 the relatlonships of the pliablliities
of the wound constructions and wound parts the rigid and pliable
mandrels can be separated. When winding thin-walled constructions
of large diameter made of glass flber-reinforced plastics to
thick-walled metal mandrels of high rigidity the pliability of
the mandrel can naturally be dlsregarded. Durlng the manufacture
of a number of other articles (winding on investment patterns
[290], the winding of thin-walled metal shells [184, 301], the
winding of englne block on solld-propellant grain, the winding
of thick-walled constructions of glass fiber-reinforced plastic to
thin-walled metal mandrels [310] and others) the pliability of
the wound article in radial direction can be commensurable with
the pliabllity of the working mandrel or the wound construction.
In this case the account of deformation of the mandrel is

necessary.

The effect of the pliabllity of the mandrel on a change of
the tensioning force 1s investigated in [310]. Typical results
are given on Fig. 4.2.7, on which there is shown change of pressure
trancmitted to thin-walled metal mandrel with winding of compara-
tlvely thick-walled shells of glass fiber-reinforced plastics with
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ratlo of outside and inside radius up to 1.5. When winding on
steel mandrels the pliability of the mandrel can be disregarded,
whereas for aluminum mandrels of the same thickness a pressure
drop can reach 50%. The glven results are obtained on the
assumption that the properties of the wound material are close to
isotropic. With such an approach the basic reason for change of
the tension along the section of the wound part 1s missed - the
compressibility of material 1n radlal directlon. This feature
can be taken into account on the basis of the theory given in

§ 4.1 and 4.2. On the bacsis of (4.2.9), (4.2.2), (4.2.3), (4.1.5)
and (4.1.7) the pressure transmitted to the mandrel (for the case
where Yon € &3 see Table h,1.1),

2P

= —

T _z[urclg n(1+x4)3—arctg y). (4.2.10)
N} "= Yon

When the rigidity of the mandrel becomes infinite e 0, the
obtained expression changes intoc dependence (4.2.11), which deter-
mines the pressure on absolutely rigld mandrel.

Fig. 4.2.7. The effect of pliabil-
1ty of the mandrel and thickness of
rings HO on the pressure transmitted

to the mandrel (diameter of mandrel
152 cm) [310]: 1 = winding on
absolutely rigid mandrel; 2 -
winding on steel mandrel; 3 - wind-
ing on aluminum mandrel; 4 - wind-
ing on gypsum mandrel (P/’l‘0 - the

contact pressure on the mandrel,

pertaining to tensioning force when 4
winding). ;
KEY: (1) Glass fiber-reinforced

plastic; (2) Mandrel.
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The effect of the pliabliity of the mandrel on the value
of contact pressure 1s characterized by Fig. 4.2.8., From the
presented data it 1s evident that the pliabillity of the mandrel
substantlally affects the drop of contact pressure; however,
wlith an increase in the degree of anisotropy of the wound strip
the effect of the pliabllity of mandrel on the value of the
pressure transmitted to it weakens. Thus, neglecting the com-
pressibillity of material when winding (as this 1s done in [310])
when evaluating the pliability of mandrel can lead to 1lncorrect
results, where the error grows with an increase of the thickness

of the part being wound.

bidee e i b gl et el

O

Fig. 4.2.8. The effect of pliabil-
1ty of the mandrel on the magnitude
of contact pressure,

4.2.5. Experimental data. Pressure on the mandrel in the
process of winding and limiting number of turns are most easlly
amenable to experimental check. The measurement of these values
has independent lnterest, especially for calculating so-called
constructions with guaranteed negative allowance. The typical
experimental data, obtalned when winding unidirectional glass
fiber-reinforced plastic, are given on Flg. 4.2.9. 1In this
flgure the pressure is shown at the end of winding p on a force-
measurlng mandrel depending on the number of turns with different
tensioning torces T, = coust (solld lioe wmarks the mean value of

0]
the value being determined; broken line shows the boundaries of
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confidence intervals with the confidence probabillity equal to
0.8). Relative pressure on the mandrel at the end of the stage
of winding p/p: is presented on Fig. 4.2.10.

Detalled description of the experiment, carried out on an
arrangement, the general view of which is shown on Fig. 1.2.6,
is glven in [60]. As a mandrel thin-walled steel rings are used.

£ The thickness of the rings 1s selected by dependence (4.2.14) so

' that the pllability of the mandrel would not have a substantial
effect on the magnlitude of the pressure acting on i1t. Thus,
although the mandrel was the force-measuring part, 1t was possible
to consider 1t absolutely rigld in comparlson wilith the ring belng
wound and to dissemlinate the conclusions obtained as a result

of experiments to absolutely rigid mandrels. Pressure on the

1 mandrel 1s changed after the process of 1mposition of turns on

the remaining stages of winding. The dlagrams of pressure durlng

the entire technoclogical cycle when winding glass flber-reinforced
plastics are glven in [59, 60]. The analysis of these diagrams
falls outside the scope of this work.

. Fig. 4.2.9. Pressure on force-
measuring mandrel at the end of
winding [60]. The outside dlameter
of the mandrel 295 mm, thickness
4 mm, width 100 mm (mandrel 1s
shown on Fig. 1.2.7). The material
is LSB-F (a = 70, width of strip
16 mm, thickness 0.2 mm, strength
in the state of winding 125 kgf).

e it
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Fig. 4.2.10. Relative drop of the
tensioning force when winding on
rigid mandrel. Materlal LSB-F,
curves are constructed wilth T0 =

= const for different relatlons

- 0.45; 4 - 0.32; 5 - 0.20.

The comparison of the experimental data on determining the
value of p/p:, given on Fig. 4.2.10, with theoretical (Fig. 4.2.4)
reveals good qualitative colncidence. The data presented in
Fig. 4.2.9 attest to the existence of limiting number of turns.
During the solution of the problem in linear elastic statement
the relative drop of the tensioning force IT - and limiting
number of turns do not depend on the tensioning force TO. The

dependence of n,, on T. (Fig. 4.2.9) revealed 1n experiments

can be glven simgle quglitative explanation, 1f one considers
that the degree of anlsotropy of the materlial being wound o is
connected with 50 (see § 4.,1). The growth of tensioning force
caused seemingly ruggedizing of the material in radlal direction,
therefore nnp i1s increased with increase of o. Thus, the results
obtained during the solutlon of the problem of winding of elastic
anisotropic strip, at least qualitatlvely, describe the avallable
experimental data. Thils opens the possibilit; of utilization of
the obtained dependences during the development of the mechanics

of the winding of the materials reinforced by fibers.

§ 4.3. THE OPTIMIZATION OF THE LAW
OF CHANGE OF THE FORCE OF WINDING

4.3.1. Tnhe possibility of bending of the reinforcing layers.
As a result of severe drop of tenslionling durlng winding there
appears the danger of local bending of reinforcing filbers.
Tensioning torce T, which 1s retained in the turns of the reinforced
plastics after winding, can be insufficlent in order to avold
the danger of bending of the reinforcing flbers in the polymeriza-
tlon process of the bonding agent. When winding woven materials,
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whose fibers are already initially bent, the danger of 1ncrease
in the bending appears. (For the negatlive consequences, caused
by the bending of fibers, see Chap. I.) For elimination of the
danger of the bending of flbers the minimum tenslioning force Tmin
before polymerization in any turn along the helght of the part
must be more than a certaln value of THp. Critical tensloning
THp depends on the material used and forming conditions. For
example, f{or material AG=-4S 1t must be more than (0.1-0.2) ﬂM
725 N21s] (HM - the strength of material in the state of treat-
ment)., For the materials, the bonding agents of which possess
large shrinkage (for example, polyester glass fiber-reinforced
plastics), THp is considerably higher [293].

The greatest radial displacements when winding with constant
force TO are obtained by the mlddle turns (see Fig. 4.2.1), there-
fore the drop of tensioning in them is the greatest. The rein-
forcing fibers precisely in these turns are most prone to bending
during polymerization (Fig. 4.3.1). The residual tensioning T is
determined by the formulas given in § 4.1 and 4.2. As can be
seen from Fig. 4.3.2, 1t decreases with an increase of the parameter
of anisotropy a. With an 1lncrease of relative thickness RH/RB
a decrease of the minimum tenslonling force virtually does not occur,
but the number of turns, encompassed by 1it, 1s conslderably
increased. The physlcal sense of this phenomenon becomes clear,
1f one considers that there 1s 3 limiting number of turns nnp
(see § 4.2), upon reaching which the pressure virtually ceases
to grow. Obviously, with an lncrease in the number of turns
above nnp there appears a zone of turns in which interlayer pressure
barely changes. This leads to the invarlability of tensioning

force in thls zone.
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Fig. 4.3.2. The diagrams of
retalned tenslons T after

wirding with TO = const to an

absolutely rigid mandrel.

Kp'

b)

Fig., 4.3.1. The diagram of cutout (a) and
macrosection of part of a ring (b), wound
from woven fiberglass strip with tension-

In order to evaluate the
possibilities of the bendlng of
reinforcing fibers, it 1s neces-
sary to know the minimum value
of Tmin’ to which the tensioning
force drops 1n turns with real
parameters of winding (30 < a <
<705 1.0l < R/R_<1.2). Depen-
dence Tmin/TO = f(RH/RB), calcu-
lated on BESM-2, with different
degree of anlsotropy of the wound
strip- a is shown on Fig. 4.3.3.
The curves presented 1in the flgure
attest to the fact that Tmin
asymptotlically approaches zero.
The noted effect follows from
simple formula

IIFPTlll:c—o.&u.. (u,3,1)
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which 1s obtained taking into account that values Tmin approximately
correspond to coordinate x = 0.5 X, l.e., are found 1n the middle
of the helght of thin-walled rings. It 1s natural that the force

of winding TO < HM, and since Tmin > 0.1 HM. for the materials 1in
question, which have 30 < a < 70, the danger of the bending of
fibers appears already during the winding of thin-walled rings

with R /R < 1.2 (see Fig. 4.3.3).

Fig. 4.3.3. Minimum tensioning
Tmin in the sectlon of the ring,

wound with TO = const on abso-
lutely rigid mandrel.

4.3.2. The programming of winding. For the elimination of
the danger of the bending of fibers it is necessary to perform
winding 1n such a way that a certain minimum, preassigned tension-
ing force Tmin > THp would be retained after finishing winding in
all turns. The program, according to which the tensioning force
of fibers must be changed in the tightener To(r), in order to
obtain the assigned dlagram of tensioning T(r) in the wound ring,’®
1s determined by expression (4.2.2) (diagram of residual forces
can be any). The simplest program consists of providing constant
tensloning force T = const in all turns after the completion of
winding. It 1s natural that this minimum force must be greater
than THp. Subsequently by programmed winding there 1s meant

wli.ding with TO # const in all turns, then winding should be
conducted according to the program

e amaman = e . §Se e oon am——— 1

""he program Investigated further does not consider the change
ol the parameter ol' anlsotropy in the polymerlization process of ﬂ
the bonding agent., This effect when winding relnforced plastics ;
can be taken into account with the ald of the method proposed by ;
V. L. Biderman [31]. A
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r.,(r)=r[|+a(o-'—|)9——“-—

o +n?” (Ll.3.2)

In the range of relative thicknesses 1.05 < R /R, < 1.10 when
winding on absolutely rigid mandrel expression (4.3.2) can be
simplified:

.7}.(.\')==T(l-f-u':"_-;—";).. (4.3.3)

Fig. 4.3.4, Programs of change Fig. 4.3.5. Programs of the

of the force of winding To(r) change of the tensioning force
for the creation of constant TO(P) for creation of T = const
tension T = const in all turns in all turns when winding on
(mandrel is absolutely rigid). pliable mandrel (Yon = 10).

Flgure 4.3.0 gilves the programs, according to ohich Lhe
tenslonlng foree should be changed during the winding of rings
of three dit'ferent thicknesses on a rigid mandrel (with e = 0),
on Fig. 4.3.5 - when winding on pliable mandrel (yon = 10, which
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corresponds to the winding of fiberglass strip with E6 = O.ll-lO6
kgf‘/cm2 to a steel ring with ratio of radll 1.02). The presented
data attest to the fact that to provide for uniform tensicning
Tmin = const on the entire helght of the ring the winding of the
middle turns must be accomplished with tensioning force TOmax’
considerably exceeding Tmin' Taking into account that maxlimum

value TOmax 1s reached when x ¥ 0.5 X from (4.3.3) follows
the slmple formula:

Ty ey -} rmlu( |+ 0-5'1-\'ll)o ( 4 . 3 . 4 )

Relation T /T

Omax depending on the thickness of the wound ring

min

and the degree of anisotropy for case Yon = 0 1s presented on
Fig. 4.3.6. As is evident, in certaln cases with large a and
RH/RB it 1s 1mpossible to wind the ring in order to create

T > THp in all turns. Thils pertains to materials for which TH
composes a significant portion of the strength of material HM.

In this case TOmax > HM, which, of course, 1s unattainable.

Fig. 4.3.6. Change of the
maximum force with programmed _
winding TOmax with increase b

of the thickness of the wound
ring.

4.3.3. Experimental data. Experimental determination of

the dliagram of residual tenslions T along the helght of the ring

1s very difficult., The total residual tensloning with different
programs of winding (investigated programs are shown on Fig. 4.3.7)
can be experimentally evaluated by the pressure on force-measuring
mandrel. During winding depending on the predetermined program
there 1s changed the pressure, transmitted to the mandrel. This
change 1s characterized by the coefficient of transmission of
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pressure kH = p/pm (p - pressure on mandrel when winding according
to the predetermined program, p; - pressure when winding with
constant tensioning force, equal to maximum with programmed
winding) on the assumption that the turns of material are
noncompressible.

oS -
5 N ) Fig. 4.3.7. Programs of the
_’“‘”f"'*§§§>\ . . change of tensioning force in
S o9 the process of winding.
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The programmed winding is completely insufficiently studied.
In [60] an attempt 1s made at the estimation of pressure on the
mandrel during the preparation of rings according to different
programs; four programs are experimentally realized (Fig. 4.3.7).
They are selected 1n such a way that 1t would be possible to
compare the programmed winding, optimized according to the
assligned tensloning force along the height of the ring (program 3),
and program close to it (program 4), which is technically more
easlly realized when winding with constant tensioning force:
maximum T0 (program 1) and given - To (program 2). Program 3 is
constructed according to expression (4.3.3) when Tmax(r) = TO.
For program 2 TO is calculated from the condition of equality of
the total forces when winding according to programs 2 and 3, 1
ZTi(r) = nﬁo, l.e., in such a way that the areas limited by
Hnes & and 3 would be equal., When winding according to program 4
th2 forece in the tightener 1s changed along the broken line. A
Ite thls case the total forees (according t: progroms 3 ana 1 9
virtually equal to each other.
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In the process of winding according to the indicated programs
on the devlce described earlier the pressure was measured on a
force-measuring mandrel at the end of the winding stage. By each
program not less than five rings are wound (material LSB=F,number
of turns n = 50). The obtalned experimental data (Fig. 4.3.8)
were used to evaluate the pressure transmission factor and ratio
of the total pressure on the mandrel, measured with programmed
winding AHp, to pressure on the mandrel when winding wlth constant
tensioning force A% along the helght. 1In thls case the total
force, applied in the process of programmed winding ZTi(ri), is
equal to total force nTO for the case where tensioning in all

turns 1is 1ldentical and is equal to TO = const.

Fig. 4.3.8. Pressure on the
mandrel p* (kgf/cm?) in the
process of winding with increase
of number of turns. Every

point in the figure 1is con-
structed according to the
results of tests of five samples
on the average: @ - program 1;
A - program 2; O - program 3;

X = program U4,

Experiments confirmed that a drop of pressure, transmitted
to the mandrel, 1s conslderably less wlth programmed winding,
providing the retaining of T = const in all turns, than when

winding according to the law TO = const. The transmission factor
A B 3 TR BY o) “H dhen windlng aceording to these procams proves
e ~e Ml her than vhen windinge for case TO = cont, Winding

a:ceraing Lo the optimal program provides considerably better
utilization of the total force applied in the process of winding.
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Under experimental conditions it turned out that for programs 2

and 3 relations A3/AT and AN/AT comprise ®¥1.20. The realization

0 0
of programs 3 and 4 gives approximately the same contact pressure

on the mandrel (points which correspond to n = 50 on Fig. 4.3.8)

as program 2, providing in this case a more uniform diagram of

the initial stresses along the section of the ring. It 1s espe-
clally important that with programmed winding there 1s no overstress
of outer layers, which, as wilill be shown further, provides reduc-
tion of the danger of "unwinding" under pressure.

The glven data characterize only the process of winding
itself. It 1s necessary to note that for constructions of
reinforced plastics the diagram of residual stresses 1s changed
in the prccess of heating, polymerization, coolingJand removal
from the mandrel. For these materlals the proposed program
provides only the ellimination of the danger of the bending of
fibers 1n the process of wlnding. Creation of the assigned dlagram
of residual stresses 1n artlcles ol glass fiber-relnforced
plastics requires the consideration of a change of the asslgned
stress force at all remalning stages of the productlon process.

§ 4,4, THE LIMITING THICKNESS OF RINGS
WHICH WORK UNDER PRESSURE

4.4.1. Thick walls. It 1s necessary to conslder the
anisotropy of the properties of materials reinforced by fibers
not only during the development of themechanics of winding (as is
shown in § 4.1-4.3), but also when designing the winding articles.
In a2 number of cases it limits the useful thickness of these
constructions,

The accumulated experience of calculation, construction and
Lthe testling of articles made of reinforced plastics, in particular
glass [lber-reinforced plastics, by the method of winding 1s
obtalned on comparatively thin-walled constructions - with the
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ratio of thickness HO to radius R equal to 1/50 and less.

Recently in a number of branches there was outlined the transition
{ to comparatively large relative thicknesses, there are developed
the constructions of shells which work under external or internal
pressure with HO/R = 0.1, there are tested rings with HO/R = 0.5
[310]. The growth of the relative thickness of articles which 5
work under pressure does not only lead to the need for the account f
of the features of the mechanlcs of winding noted in the preceding
paragraphs, the effect ¢f which sharply rises wlth increase of f
| HO/R. It 1s established that the fallure of rings made of the ;
’ investigated materials occurs earller than the strength 1s 3
t exhausted in the direction of filbers. The supporting power of ?
isotropic rings (in the range of thicknesses in question) increases
virtually in proportion to thickness.

The macrostructure and the weak compressive strength deter-
mined by it when loading perpendicular to the fibers place a
limitatlon on the useful thickness of rings of materials reinforced ?
by fibers (Fig. 4.4.1). The graph presented in the figure describes
the dependence of the value of the destructive internal pressure P, )
on the structure and the relative thickness of the tested ring
HO/R. In this flgure is glven the loading diagram; tests were
conducted with the ald of a rubber ring and on half-disks.! ;
Data presented in the flgure are obtalned when testing rings of !
materlials which have fibrous structure (LSB-F, %%sﬁ.%%i‘vl2) and |
laminated (reinforced by glass cloth of satin weave - VPS-7, i
%%z&%%;zBL These materlals are close in elastlc properties, but !

sharply differ in compressive strength perpendicular to the fibers.

‘Comparison of She curves given on Fig. W.U,1 +ttests to the |
Inadequacy of halt-dlsks (NOL-ring method) for testlng tLhick-
walled rings of wveoinforce=d plastics., With an inecrease of the s
thickness of the tested rings the effect of the bending stresses ]
at the jJoint places of half-disks 1s intensified N148]. The ‘
consideration of these stresses during the examinatlion of the 4
results of tests presents considerable difficulty.
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Fig. 4.4.1. The dependence of bursting
pressure on the relative thickness of
the rings and structure of material.
Unidirectional material: X - rings

126 mm in diameter, material LSB-F;

A - rings 200 mm in diameter, materilal
LSB-F; ® - rings 300 mm 1n dlameter,
material LSB-F, Laminated material:

o0 = rings 200 mm i1 diameter, material
VPS=-17.

a

Fig. 4.4.2. The types of fallure of rings
wilth internal pressure: a) thin-walled
rings HO/R = 0.05, material VPS=7; b) thick-

walled rings HO/R = 0.15, material LSB-F,

The presented data attest to the fact that the supporting
power of rings made of unidirectional materlials rapldly ceases to
increase with an increase in the number of turns. This phenomenon
is accompanied also by a change in the character of the fracture.
Wlth the small thickness of the sample the character of fracture
is analogous to that observed with the stretching of thin flat
samples (Fig. 4.4.2a). The failure of thick samples occurs 1in
the direction of the actlon of the maximum tangential stresses
(Fig. 4.4.2b).! When testing rings of woven materials in the
investigated ranmse ol thicknes:ses no llmltatlon ol cupport ine
poewer 1s observed, although the dependence of bursting pressure

cn the number of turns becomes more rent Iy s plag.

'Detailed data on this question are presented in [61].
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The macrostructure of articles made by winding 1s such
that the reinforcing fibers in the plane perpendicular to the axls
of the article are placed on a spiral wlth very small spacing.
The weak shear strength of polymer bonding agent combined with
the spiral arrangement of fibers leads to the danger of a speclal
type of failure of the winding constructions, which work under
pressure, by means of "unwinding" [166]. Overstresses at places
of attachment of fibers and tangentlal stresses, which appear
under the action of internal or external pressure near cracks
on the surfaces of the article, can serve as the reason for
spontaneous structural failure. The appearing fracture will be
continuously propagated along the spiral, formed by the rein-
fereing fibers. Failure by "unwinding" can also limit the useful
thickness of articles of reinforced plastics and prevent the
complete utilization of potentlal possibilities of the material

in the direction of fibers.

Thus, when evaluating the supporting power of the construce
tions made by the method of winding 1t 1s necessary to estimate
the effect of the anisotropy of properties a2 = Ee/Er (one ocught
to emphasize that 1t 1s substantially less than In the state
of winding: see Table 1.1.1), the weak compressive strensth when

loading perpendicular to fibers ?Ff

. and the danger of "unwinding"
on the limiting thickness of ringé of the investlgated materials,
which work under pressure. Let us note that during the testing
of thin rings (NOL-ring type) further effects in question simply
could nct be revealed, since they are developed only with an

increase of the thilckness of articles.

4.4.2. Anisotropy of deformating properties. It i1s known
[123, 315] that the anisotropy of elastic properties along and
across the fibers leads to an lncrease in the nonuniformity of
the distribution of clrcumferentlial stresses Ty along the
thickness of the rings. With an increase of parameter a part of
the load received by layers near the surface, on which the pressure

acts, is increased. For isotroplc thick-walled rings (see,
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for example [247]) with the ratio of outside and inside radiil
R,/Ry 2 4 further increase of the outside radius virtually does
not decrease the value of the maximum clrcumferential stresses
Comax N€ar the internal surface of the ring, whlch works under
pressure. Substantial elastlc anisotropy o can transfer the noted

effect Into the area of much less thicknesses.

The effect of relation Ee/Er on the value of the maximum

stresses o and consequently also on the limiting thickness

fmax?
of the ring can be evaluated with the ald of the expression

given in S. G. Lekhnltskiy's book [123]:

1o (2 )

(L RRY S 1 71 R" -

'I(’.. st
' Ie.i)

where Py 1s internal pressure.

Flg. 4.4.3, The effect of the
degree c¢f anisotropy on the
limiting thickness of ring.
1s decrease of ¢

Bmax oL

result of the growth of thickness
of ring 5%; =+.=«=.= 1s decrease

of Oemax 10%. Pointers show

limlting thicknesses with
assigned anisotropy.

The effect of the degree of anlsotropy on the limiting

relative thickness of rings (RH/RB)Hp is shown on Fig. 4.4.3;

curves are constructed when a further increase of the thickness

¢f rings virtually does not lead to decrease of O T when Py =
= conct, T the area cf weuak anlsotropy, L.c,., wlth a2 < 5,
which 1o chraracterlstic for the waj.rlity oSt th o« xloting e L=

forced plastics after polymerization, the limiting thickness lies
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within (RH/RB)Hp = 1.4=1,8., However the growth of parameter a
for new materials with increased elastic modulus in the directlon
of fibers EO’ made on the same bondlng agents, can lead to
further decrease of the 1limiting thickness of ring.

4.4.3. Low strength during compression perpendicular to
fibers. Condition of strength. The weak compressive strength
when loading perpendicular to the reinforcing fibers for materlals
with fibrous structure leads to the fact that with an increase
of the relative thickness of the rings, loaded by internal pressure,
in the interior layers the compressive strength 1s exhausted
earller than the ultimate strength iIn the direction of.the grain.
For these materials My' and N, sharply differ, ?rf,wn (see
diagram 1 and Fig. 1.1.3), this relation increases wiéh an lncrease
of strength and the percentage of fibers [280]. The weak compres-
sive strengch 1s the reason which limlts the supporting power of
rings made of materials wlth fibrous structure. The fact that
the bursting pressure 1s identical when testing sufficiently thick
rings with 1dentical relatlve thickness HO/R, but different
dlameter (Flg. 4,4.1), attests to this. In this case the

mazimum compressive stresses o are equal to each other, and

fmax
the maximum clircumferential stresses are inversely proportional
to the radiuc of rings. VUnder conditions of the experiment

% amax differed 1.6 times, and the value of bursting pressure was

virtually identical.

For the problem in questicn, taking into account the
importance of the anisotropy of strength propertles, it 1s
rnatural to assume that the stresses which act 1n the direction
of reinforcement do not affect the strength in perpendicular
directlon. V. L. Biderman [29] came to such a conclusion as a
result of the processing of the data of tenslle tests of samples
cut out at different angles from material reinforced by braided
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glass cloth. In this case the condition of strength! 1is written
in the following form:

gn nas <lle*, a, SE ) | Pl

For the establishment of the boundary of transition from one
type of fallure to another it 1s possible to use the method applied
during the study of the bending strength (see § 2.4)., For this
the obtalned experimental data are presented in coordinates
Y omax and S— In these axes the course of loading 1s described
by a ray proceeding from the origin of coordinates, the 1nclina-
tion of the ray depends on relatlon HO/R and parameter a., On
Fig. 4.4.4 the rays are constructed for HO/R = 1/740-1/5, investi-

gated experimentally, and two values of parameter a: a2 =1

(isotropic material) and 0l = 5 (the extreme value of the par~meter
of anisotropy for LSB-F). In the area of the investigated rela-
tions HO/R in the case a2 < 5 the parameter of anisotropy o
virtually dces not affect the transition from one type of fallure
to another. For these relative tnicknesses the rays for a =1

and a2 = 5 virtually flow 1nto one line.

The plotting of limiting straight lines et and ll,-, obtained
during independent tensile and compression tests along and across
the reinforcling flbers, makes 1t possible to judge the expected
character of fracture. The presented data attest to the fact that
the transversal weakness of the materials reinforced by fibers
considerably "lowers" the boundary of the fallure of unidirectional
materials from compresslon under the action of 1nternal pressure

!Survey of the existing strength criterion for anisotropic
materials is glven in bock [23] and in the review papers of
I. I. Goldenblat and V. A. Kopnov [85] and A. K. Malmeyster [131].
The use ol the existling strength condltions to evaluate the
supporting power of parts from glass flber-reinforced plastics is
glven in boolr [227]. Let us note that the experimental evaluation
o these eriterion 1¢ reallzed en thin plpen of glussc fiber-
reinlorced plastics, i.e., under conditions when radlal stliessce
could be disregarded.

197




in the area of comparatively small thicknesses (for isotropic
materials the boundary of failure 1is moved far upward along the

axls o ).
rmax

*y

oV

Fig. 4.4.4, The character of frac-
ture of rings of different thick-
ness under the action of internal
pressure. x is dlameter 200 mm;

O is diameter 126 mm (material
LSB=-F).

For the class of materials 1n question the limitation of the
relative thickness of rings, which work under pressure, can be
cbtained when the bursting pressure must not exceed the strength
of materlal during compression perpendicular to the reinforcing
fibers. Hence HO/R = ﬂg/ﬂ;. For the 1nvestigated materlals this
is approximately 0.08-0.10. If one considers that an increase of
the strength reinforcing fibers and their percentage barely affects
the transversal properties of the reinforced plastics (see, for
example, Fig. 1.1.3), since the properties of polymer matrix
remain without changes, the creatlon on the basls of exlsting
bonding agents of unidirectional fibrous material with increasingly
higher tensile strength willl be connected with decrease of the
maximum possible thlcknesses of winding articles, which work
under preasure. In a number of cases an increase in ﬂ to the
detriment of ﬂe, l1.e., the use in thick-walled constructions of
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less strong woven materials in the direction of the grain, for
which strength ﬂr 1s greater.

4.4.4. Failure by "unwinding." The low pitch of the
splral, formed by fibers during winding, makes 1t possible to
replace the turns with concentrically arranged rings. The large
number of rings and their insignificant relative thickness make
it possible to complete the limiting change to quasi-homogeneous
medium. Such an approach, valid when determining the appearing
stresses and deformations, 1is not exhausting, since it eliminates
from examination the possibility of the special type of fallure -
"unwinding." The feature of the problem consists of the fact
that the limiting transition must not be propagated to the boundary
(internal or outside) layer of the ring.

To evaluate the danger of "unwinding" under pressure it is
necessary to investigate the stressed state in the area which
includes the end of the strip, which forms the ring (or shell).
Analogous stressed state appears at places of breaks of fibers
or notches on the surface of the article. The calculation
diagram is shown on Fig. 4.4.5. The end of the reinforcement strip
1s a long strip with thickness h' (elastic modulus E'), fixed
by a layer of polymer wilth thickness h". The elastlic modulus of
composite material in clrcumferential direction is Ee. The
pliable matrix is considered ideally elastoplastic (Fig. 4.4.6),
For the problem in questlon the overall height of the ring
considerably exceeds the thickness of the strip being wound, i.e.,
HO >> h' + h"., Therefore it 1s possible to conslder that the
norimal stresses 1n the glued reinforcing layer o! and the

8
tangential stresses in the interlayer of polymer Tgr are constant
along the thickness of the layers. The equation of equilibrium
for the reinforcing layer, attached to the ring, with outside

radius R 1s written in the following form (Fig. 4.4.5):

' RUO  Hulo'e 0. (h.4,1)
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Fig. 4.4.5., The calculation Fig. 4.4.6. The accepted dlagram
dlagram. of deformation of bonding agent.

Both stresses can be expressed by displacement of the layer of
reinforcement In circumferential v and radlial u directions:

’” v ”, ’ »—-f.e- SLU_ uo
A ¢ ”v‘_=hTG » g g r d(*+“)' (Ll. 2)

Having substituted (4.4.2) in (4.4.1), we obtain the equation of
equilibrium in displacements:

-“jg;-fu:o; (4.4.3)

I
K= Wh"Ee °

Boundary conditions of equation (4.4.3):

1 {dv
when 6=0 =20, — (== =
og =:0; r(di+“) 0

when 8=0;, tg,=0; v=0. (4,4,4)

With sufficlent distance from the end of the strip the normal
stresses in 1t are equal to the stresses in the ring Ogs since
according to conditions ot the problem Hy >> h' + h". The
solution of equation (4.4.3) in boundary conditions (4.4.4)
has the form

My h"‘lﬁE_"
":"E.']/" G (18 ch x8 -shy8). (4, bU,5)
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Since x is great, th xeo X 1 and the expression for tangential
stresses 1in polymer interlayer 1s equal to:

WEG?
‘_,7:_”1/. R e, (4.4.6)

As can be seen from (4.4.6), as a result of large value of ¥ the

tangential stresses are rapidly damped in proportion to the
distance from the end of the strip.

The maximum tangentlal stress

I’b GII
T = "b .' ’lll—~. (u.u.?)

which corresponds to the value of 'nternal pressure p]ynp, at
which (in elastic setting) the failure of thin-walled ring of
radlus R begins:

E Tmu"oEa_

Prynp= G
Rl/hf" (4.4,8)

If the thickness of the reinforcing layers and interlayers of
polymer bonding agent is constant on the =ntire height of the é
shell and near the end of the wound strip, then, by accepting

on the basis of the method of summatlon Ee= s —=E' and G, =--W: G,

W h”
expression (4.4.8) can be rewritten in the f>llowing form:

ras
-
}-{-
=
ot

p— e

. (4.4.9) :
Pt ynp=Tmax ~5 1/0,0 :
o ;
The value of %"- 5—'— characterizes the geometry of the part and
re

anlsotropy of its elastic properties. It 1s aralogous to the
criterion used earlier (Second and Third chapters) in the
examination of problems of the calcunlatlion of parts from essentially
anlsotrople materiule.
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For a thick-walled ring the value of internal pressure at
the moment of the beginning of the fallure of polymer Interlayer
will comprise

ol e

T, A 4,10
2aR,a-! l/ h ﬁ”G ( )

The solution of the same problem on the assumption that the

Prynp=

polymer layer behaves as an ideal elastoplastic body with elastic
shear deformations y#* and limiting deformations 1o (Flg. 4.4.6),
makes 1t possible to establish that with the same value of 1

max
the fallure of polymer interlayer willl occur for thin-walled shell

| with Internal pressure Plmn equal to

H H 0Tmax E -8

Prua=—

RV EG” 561/2“"' )] (4.4.11)
R

For thick-walled ring

Tnmee Ry ! [(_Rl)'—‘ﬂ = I]

na= Z o . (uouclz)
Q(IRnﬂ ll/hEG

ll "

The dependence of critical pressure Pipp ON the propertles of

polymer matrix is shown on Fig. 4.4.7. During calculation there

are used typlcal parameters of epoxy glass fiber-reinforced
plastlcs. Numerical values of these parameters are glven in the
caption under the figure.

The fallure of the interlayer, which began in a small section
near the notch cr the end of the strip, will be continuously
propagated along the spiral formed by the strlip. Such a falilure -
"unwinding" - will be continued until the shell willl be destroyed
by normal stresses increasing in view of decrease in i1ts thickness.
As an example Fig. L4.4.,7 shows the fallure of rings of glass
fiber-reinforced plastic VP3-7 by "unwinding" when loading by 4

I
internal pressure. It was observed for a number of rings during 1

& it o e b Akl el i
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Fig. 4.4.7. The dependence of critical pressure on the plasticity6
and shear riglidity of the polymer bonding agent: 1 - G" = 0.01-10

kgf/em®; 2 - G" = 0.02.10° kgf/em?; 3 - " = 0.03-10° kef/em ;
b - Gg" = O.Oll-lo6 kgf/cmz. During calculation there 1s uccepted:
fg/R = 0.1; B! = 0.2-106 kgf/em®, h'/h" = 2, Tt = 500 kef/cn®,
E, = 0.4:10" kgf/em“. In the upper corner is shown the faillure

)
of rings of material VPS-7 by "unwinding ."

thie study of the effect of tensloning on strength (the installation
and the results were examined in § 1.3). The reason for the
failure can also be any discontinuities of reinforcement (for
example, cracks on the outside or internal surface of ring or
shell, parallel to thelr axis, notches, etc.). "Unwinding" can
begin not only on the outside, but also from the inside both with
external and internal pressure. Let us note that the appearance

of a crack on the surface, on which pressure does not act, 1s

more dangerous, since in this case there are no forces which would
press the wound layer to the shell and contribute to the appearance
of frictional forces, preventing unwinding. For reinforced
plastics as a result of the fact that the pliable matrix is a
viscoelastic material, the danger of "unwinding" increases

with an increase in the rate of loading - wlith increase of the
rate (" ls lncreascd. As can be seen from the given formulas,

this leuds Lo deer.age »f Lhe pressure ut which "unwinding" bepins,
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The analysis carried out above makes 1t possible to establlsh
the reasons and to give the explanation of the experimentally
observed cases of "unwinding" of articles, described in [276, 2771,
to indicate the ways which make 1t possible to avoid the fallures
of thils type. These ways 1lnclude, for example, decrease of the
rigldity and increase of the limiting deformation of polymer matrix,
Increase of the thilckness of polymer layer in the last turn, the
creation of favorable dlagram of residual stresses.! The described
type of fallure 1s possible not only in articles of criented glass
fiber-reinforced plastics, but also in wound articles from other
materials reinforced by finers.

Naturally the application of materlials for constructions, i
which work under pressure, that are stronger in the direction of
reinforcing (for example boron plastics) without an increase in
the shear strength of the polymer layer, increases the danger
of the appearance of the described type of failure. "Unwinding"
can be the reason, which prevents the complete utilization of the
pcoctential possibilities of material in the directlion of winding.

L e £ i i

§ 4,5, THE INITIAL STRESSES IN RINGS
OF GLASS FIBLER-REINFORCED PLASTICS,
MANUFACTURED WITH NEGATIVE ALLOWANCE

4.5.1. The reasons for the appearance of initial stresses. h
In the preceding paragraph when evaluating the supporting power
of rings, whlch work under pressure, the 1initial stresses were

not taken 1nto account. The process of manufacture of artilcles

from reinforced plastics by the method of winding 1s accompanied

For shells of glass fiber-reinforced plastics the winding of |
the last layers of strip without tensionlng makes 1t possible
after polywerization of bonding agent and removal from the mandrel
to create compressive stresses in the outer layers. In thls case
in the layer of polymer near the end of the strip there will
appear tangential stresses reverse 1n sign to the internal pressure
appearing with the loading of the shell. This makes it possible
to ralse the supporting power of polymer interlayer.
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by the appearance of initial (they are still called residual)
stresses - clrcumferential og and radlal 02. As an example

Fig. 4.5.1 shows characteristic diagrams cg and 02 acting 1in

the section of thick-walled ring (Fig. 4.5.2). The ring 1s
equipped wilth strain gauges on the end and internal surfaces.

The gauges, stuck on the 1inside radius, are necessary for determin-
ing the diagrams of 1nitlal stresses. Gauges on the butt end

serve to evaluate a change 1n the elastic properties along the
height of the ringl(as a result of a change in the tensioning
force; see § 1.4). The ring is made from glass laminate on bonding
agent EDT-10 with small negative allowance of strip, equal to

1-3 kgf/cm. As can be seen from the given experimental data, the

initial stresses can be very considerable. So, oo comprises

Omax
approximately a third of the tensile strength of materizl in

the direction of base.

Of special danger are radial stresses. The tensile strength
of reinforced plastics perpendicular to the reinforcing fibers
ﬂ; 1s small, therefore the initial stresses cg in spite of their
relative smallness, can be the reason for the fallure., For
example, they are the reason for the appearance of thermal
cracks (Fig. 4.5.8) in the process of heating of the ring, made
with large negative allowance. Such cracks are frequently
encountered 1n the practice of manufacture of shells of glass
fiber-reinfcrced plastics, especlally in thick-walled articles.
In thlis case there 1s manifested transversal weakness of the
materials reinforced by fibers. The danger of residual stresses ’
1ls aggravated by the large scattering of strength ﬂ;, especially ﬁ

for thilck-walled articles. For condltlons in the described

'Under conditions of the described experiment the gauges,
stuck on the butt surface, revealed a change of the elastic
properties through the thickness of rings. Thils required during
the examination of the results of experiments the conslderation
of change Ee along the radius.
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experiment (Figs, 4.5,1 and 4.5.2) 1t turned out that the value

of residual stresses is covered by the scattering of strength
(Table 4.5,1),

7 20 w0 ' o g1

- — 1 H = ———— —
i -' L ] |
| | L]
s .:!.__ i F— | -II. — — -——1:
| i . O ™%ort
-ﬂl [ 00 g 0

Fig. 4.5,1. fThe dlagram of the initial
Stresses in thick-walled ring of glass
fiber-reinforced plastic (RH/RB = 1.5,

R, & 300 mm): 1 - oY oo 40

Fig. 4.5.2. The ring equipped with strain
gauges on 1nside and side surfaces, 2RB =

= 595 mm, 2R = 906 mm, thickness 50 mm. The
removal of layers along the outside diameter,
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Table 4.5.1. The tensile strength of thick-walled ring perpendic-
ular to fibers.

Radius on ﬂ+ + Quantity Coefficlent
. which the r’ r min of samples |[of variation
f middle of kgf/cm2 nt v, %

the sample r max

falls,! cm

1
41.0 178 28.3 12 hi.6

: 262
i 33+5 312 265 10 8.94
' 347
r
g i l

'Samples haa the shape of a blade 80 mm long and 5 mm thick,
were cut from a thick-walled ring (Fig. 4.5.2) with inslde diameter
595 mm and outside 906 mm,

The reasons for the appearance of the initial stresses consist
of the nonuniformity of tensloning force along the height of the
part, the difference of coefficlents of thermal expansion for the
wound material and mandrel, the shrinkage processes, which accompany
the polymerization of bonding agent.! All these reasons are
examined in detail in [168]. One additional reason for the
appearance of initial stresses is the nonhomogeneity of elastic A
and thermophysical properties over the section of thick-walled 1
parts (for example, for articles of reinforced plastics due to
the different conditions of polymerization along the thickness, 1
different content of reinforcement, etc.). As shown in [51],
already the very anisotropy of elastic and thermophysical
properties can be the reascn for the appearance of initial
stresses even during uniform heating or cooling of the article.

i S

The effect of initial stresses much depends on the tensloning
force, relative thickness of part (number of turns) and shop

IShrinkage stresses play a significant role on the boundary
of reinforcement and polymer matrix [114, 283].
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characteristics. For the winding of reinforced plastics the
difficulty of the analytical determlnation of 1inltial stresses
conslsts of the account of processes whlch proceed during the
heating and subsequent hardening of bonding agent. During the
Initial period of heat treatment the bonding agent 1s softened.
This leads to change of Er’ and consequently also the dlagram of
tensioning force in the turns of the ring, preset when winding.
After the solldification of bonding agent the rigldity of the
material in radial directlon sharply rises and with subsequent
cooling (heating) of the artlcle together with the mandrel the
further redistribution of circumferential and radlal stresses
occurs in 1t. As a result the dlagrams of residual forces after
the preparation of the article differ significantly from those
initially predetermined when winding. After removal from the

mandrel the obtalined diagram 1s summarized wlth the stresses

which act due to contact pressure. For comparatively thin-walled
rings 1t 1s possible to consider that these stresses are not

] changed along the height. The process of change of the diagram

A of forces in che sections of the ring for two principally

differing programs of winding is shown schematically on Figs. 4.5.3
and 4.5.4, Let us note that V. L. Biderman [31] proposed the
method of solution of the problem which makes it possible to
consider the change of the elastlc propertles 1n the process

of softening of the bonding agent.

\ L J A

-

a) k) c) ) c)
Fig. 4.5.3. The diagram of Fig. 4.5.4, The diagram of
clrcumferentlial stresses 1in the circumferential stresses 1n the
sections of ring when winding sectlions of ring when winding
with TO = const: a) after wind- according to the program calcu-

. . lated by (4.3.3): a) after :
i?g, ?g gLuves p?1¥meri§ition, winding; b) after polymerliza- }
¢) —alter removal lrom tn€ man=  ¢4.4. ¢y after removal from

dred . the mandrel.
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4.5.2. The methods of determination of initial stresses.
The initial stresses in rings are determined with the aid of
two most widespread methods: cuts along the radius with measure-
ment of the convergence or divergence of ends (sides of cut)
(236] and the laminar boring or turning of the ring with measure-
ment of deformaticons on the opposite side (Sachse method) [33, 110].
The last method is the most convenlent durlng the study of
initial stiresses 1in rings of materials reinforced by fibers,
especially for laminar structure [167]. 1In this case boring or
turning can be replaced with laminar unwinding of the layers of
strip or cloth with measuring of deformations on the opposlite side
of the ring through a certain quantity of removed turns. This
sharply decreases the labor expense cof the "Sachse method" and
raises the accuracy of determination of the stresses; however,
high accuracy can be obtalined only during the investigation of
sufficlently thick rings.

When using the cut method for determining the absoclute value
of Initial ctresses there 1is necessary the hypothesis about the
character of their distribution over the section of the ring (see,
for example, [236]). Assuming that the stress distribution is
linear, then the initial stresses 1n the rings, whose thickness
1s small in comparlson wlth the radlus, are equal to

de0= 5.’.;[.’.‘3). Ah, (4.5.1)

where R is the mean radius of the ring; Ah - convergence (or
divergence) of the ends of the ring with 1ts cutting. Filgure 4.5.5
for illustration shows the dependence of Ah on tensioning force
(rings of material VPS-7, diameter 200 mm, thickness 5.5 mm, wound
with different tensioning force, but constant along the helght,

are tested. Stralght line is drawn by the least squares method.
0

Recalculation of the shown dlagram into stresses gave Y omax

the order of 1000 kgf/cmg.

on
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Fig. 4.5.5. The dependence of conver-
gence of ends after cutting of ring on
the tensioning force when winding.

¢ R Y 0#) Q)J IJ

The method of laminar unwinding, unfortunately, 1s much
more work consuming; however, it makes 1t possible to determine
rnot only the value,but also the character of distributlon of the
initlal stresses. For thlck-walled rings of materials with
cylindrical orthotropy with the utilization of the idea of “the
Sachse method the expresslons for clrcumferentlal and radial
stresses are obtained in [168].

With unwinding along the outside diameter (i.e., with

it turndng)
n F 'G+Ru'u T q
gg = Z“Reu 1 [‘l(’ ro+1 —)-‘0( ) ‘ R d"od(r') s (M. 5.2)
E R, r%a
o’°=-2‘3..Rﬂ l,q:-l (’)l (4.5.3)

where r 1s the current radlus, at which the removal of the layer
occurs; ee(r) - circumferential deformation on inside radius
during the removal of layers to radius r. With unwinding along
the inside diameter (i.e., with "boring")

Eo l’?":""'.' ’!;)(r) pu:".'"”"'
. iRyt
o e R Rll,”ll‘“(’) (4.5.5)
Ee(r) - circumferential deformation on outside radius during the %

removal of layers to radius r.
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ax N . Y i Fig. Deformation curves
! with "bcring" (RB = 100 mm, n =

= 80 turns: 1 - TO =0; 2 - TO =
«l -

= 30 kgf/cm = const; 3 - To(r)

according to the program shown on
el Fig. 4.5.9a.
2 .
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With laminar "unwindirg" of deformation on the inside or
outside surface the rings are measured with the ald of resistance
straln gauges. From the readings of gauges are constructed the
deformation curves ey = f(r). The typical curves, obtained with
the "unwinding" of thick-walled rings, are shown on Filg. 4.5.6,
They are constructed with "unwinding" from the internal surface
of rings manufactured according to different programs. Deforma-
tions were measured on the outslide surface; along the axis
of abscissas there 1s plotted an increase in the inside diameter
of the ring in the process of removing the layers. The graphic
differentiation of deformation curves makes 1t possible to
determine the derlvatives of corresponding deformation along the
radlus. By knowing ee(r) and ée(r), putting to use dependences
(4.5.2)-(b4.5.5), it 1is possible to construct dilagrams og(r) and
oi(r). The results obtailned by the method of laminar unwinding
are represented on Fig., 4.5.7, on which there are shown the
diagrams of initial stresses oe(r) in the section of thick-walled
rings of glass-reinforced plastics (material VPS=7, inside
diameter 200 mm, number of turns 70 and 90, TO/HM - 0.625). As
1s evident, the character of the diagram differs significantly
from linear, which places in doubt the possibility of applying
the method of cutting for investigation of the 1inltial stresses
in rings made of materilals reinforced with fibers. The assump-
tion about the linear law of distribution of stresses along the
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section turned out to be unjustified, the deviation from linearity
can be very substantial.

NS | . /S, WUS——[—

.ﬂr e & - f*) L

Flg. 4.5.7. The diagram of
initlial stresses in rings of
dlfferent relative thickness.
O, O, x - different samples.

D
Designaticn: HFC/MM2 = kgf/mm”,

4.5.3. The effect of tensioning force. The cutting of
glass flber-reinforced plastics, manufactured with different,
but constant tensloning force, attests to the fact that with an
increase of tensioning force the value of initial stresses
sharply rises. The dependence of initial stresses og and og on
the value ard the law of change of tensioning force when winding
is studied in [168]. The investigation is performed on rings of
material VPS-7, manufactured with T, = const and according to

0
the program shown on Fig. 4.5.9. When winding with constant

tensloning force T” was chanpaed from 0 to 0.62 H“. Diagrams
0 b , iy ; .
S Bl ii, Popr Lhese tonstone ave piecentel on Wiy, o508, They
‘ ) () 0
test b 12 syntematlc growth ¢ de
attest to the syntematle growth of @ pria and O x lepending

on tensioning force when windlng. The values of the maximum
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stresses oemax

Table 4.5.,2. The maximum tensile stresses act on the inside

surfaces, and compressive act on the outside surfaces of the
ring.

as a functlon of tensioning force are given in

amacaad S

?
s

R
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Fig. 4.5.8., The derendence of initial stresses on
tensioning force. Relative tensionling force when 1
winding TO/HM: 1-0;2«0.,1; 3-0.2; 4~ 0.4,

5 = 0.62, In the flgure are visible thermal cracks
(ring of glass fiber-reinforced plastic VPS-7, RH/RB =

= 1,23 TU/HM = 0.62, crack appeared during heating to
12000,

NG = o
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Filg. 4.5.9. Comparison of diagrams of initial stresses when wind-
ing with T, = const and programmed winding. 1 - ‘I‘O/ﬂM = 0.1,

2 - To/ﬂM
given above.

o

0.62; 3 = To(r) 1s changed according to the program

Table 4.5.2. Change of the value of maximum
and minimum initial stresses with a change in
the tensioning force (n = 80)

Initial stresses, kgI:/.cm2
Tensioning| o = Quantity
TO’ kgf/c”l "~ “?"l.n'll "20‘":’-!\ o?mal so;‘mples
o ' o a8 | -3 10 7
10 A ol §00 ~-290 150 5
20 i 0.2 640 315 16,5 5
40 ' 04 713 —3%0 20,7 1
6235 0.6 1260 — 430 310 4

The transition to programmed winding leads to a change of
the dlagram of 1nitial stresses 1in the finlshed product. On
Fig. 4.5.9 there are compared og and 02, obtained in rings when
winding with T0 = const,and the investigated case, where force
in the tightener 1is changed according to linear law (Fig. 4.5.9).
Curves 1 and 2 are obtained with tensioning force equal to 0.1
and 0.62 HM respectlvely; curve 3 - when winding with tensioning
force, which was changed according toc linear law from TOmin =
0.1 HM to Typax = 0.62 My- The presented data attest to the fact
that even wlth transition to such a simple program it is possible
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to considerably decrease the value of the initial stresses in

the sections of the ring. The dependence of the initial stresses
on tensioning force makes it possible to ralse the question
concerning the optvimization of this force when winding with respect
to the diagram of residual stresses. Selection of To(r) can

be realized in such a way that taking into account the process

of polymerization og and 02 would be minimum or subordinate to
preassigned law, providing the optimization of the propertiles of
the articles being wound.

Table 4.5.3. Change of the value of maximum
and minimum initial stresses with an increase1
of number of turns (tensioning TO/HM = 0.62).

Tnitial stresses, kof/cm® .
Number Ry e e R = =y wq:intlty
of turns Ry "2)‘;‘.;1\ "::m!\\ °?m\ ggmp]ns
40 1.09 310 10 123 3
60 1,14 710 29 207 3
&0 1.18 1260 -0 310 )

!Material VPS-7, R, = 100 mm.

The change of diagrams of residual forces depending on the
relative thilckness of ring is insufficlently studied. It is
possible to assume that when winding with TO = const with an
increase of the thickness of ring the 1nitial stresses are increased.
This can be explained by an increase in the nonuniformity of the
tension of the tcp and bottom layers. The experimental data,

presented in Table 4.5.3, attest to growth of oo and 00

omax rmax
with 1ncrease of the relative thlckness of the ring (with constant

TO = const for all rings).

Thus, the tensioning o” flbers 1s one of the basic sources
of initial stresses when winding. Winding with constant tensioning
force increases the Initial stresses. By a change in the tensioning
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force 1t is possible to a considerable degree to regulate the
value and the character of the distribution of these stresses,!

1Progr'am To(r) taking into account a change of the deformative

properties of material in the process of polymerization is given
in the work of Yu. M. Tarnopol'skily, G. G. Portnov "Programmed

winding cof glass fiber-reinforced plastics." - Mechanices of
polymers, 1970, No. 1.
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