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INTRODUCTION

The quantitative measurement of the absorption coefficient of
atmospheric dust is a problem made difficult by the corplicated nature
of the material. Since dust samples consist of mixtures of finely
powdered, highly scattering materials, conventional transmission
spectroscopy is not directly applicable. The basic problem is to
determine what fraction of the incident light attenuated by a sample of
dust is lost due to scattering, and how much is absorbed by the particles
themselves. The measurement of absorbed energy must then be related
to the bec.ic optical absorption coefficient of the sample. This latter
problem is not trivial since the Bouguer-Lambert law, which normally
solves this problem for nonscattering media, is not directly applicable

[F here.

In spite of the difficulties in making such measurements, several
workers have devised methods for solving the problem, with varying degrees
of success. Fisher [I] has obtained results based on a diffuse transmittance
technique and the assumption that the Bouguer-Lambert law can be used.
Volz [2, 3] has applied variations of the potassium bromide pressed disk
ethod, commonly used for qualitaTive work in the infrared region, to

gain some information dbout the absorption coefficient of dust. Grams
et al. [41 have estimated the imaginary refractive index of airborne fly
ash by inferring the value needed to account for their measured values
of laser radar back~catter cross section and particle size distribution.
Previous work in this laboratory [5] has developed a somewhat complicated
method for app I yi nc the Kubel ka-Mun k theory of di f fuse reflectance
to the problem. Ti is report describes a straightforward method of
obtaining the abso'ption coefficient from a single diffuse reflectance
measurement. The -inal section is a discussion of the results obtained
here in compariso- to those obtained by other workers.

THEORY

In this work we regard a sample of atmospheric dust as a powdered material
of unknown shape, size distribution, refractive index and absorpTion
coefficient. TLE object is to infer the absorption coefficient, or
equivalently, te imaginary part of the complex refractive index of the
material, from viasurement of some optical property of the sample.

The most strai,.htforward measurement that contains information about
the absorptior. coefficient of a powder is a measurement of its diffuse
reflectance, . It is well known that the diffuse refleciance of a
powder is highly dependent on the absorption coefficient. R., is high when
the absorptic r is low, and of course is low for strongly absorbing materials.

Preceding page blank
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For this reason t..e diffuse reflectance of a powdered sample of a solid
material plotted as a function of wavelength has the character of a
transmission specirum cf the material itself. The resemblance is
only qualitative, however.

To obtain quartitative information from a diffuse reflectance niasure-

ment, it is necessary to have some analytical rela'lonshlp between the
diffuse reflectance and the desired optical property of the powder, In
this case the absorption coefficient. Several theories of diffuse reflect-
ance provide such a connection. Some are very satisfactory quantitatively,
but require considerable a priori knowledge about the sample, such as
size or real refractive index. For the work reported here the Kubelka-Munk
theory was used, since it requires no other knowledge about the sample
at all. The price of this convenience is the assumption that the powder
is an isotropically scattering medium, a point" we will come back to later
in this section, and a definition of absorption coefficient slightly
different from that commonly used in the Bouguer--Lambert law.

The Kubelka-Munk theory as it is applied in this work is well known and
will not be discussed In detail here. The reader is referred to two
excellent bt.oks [6, 7] on the subject for details on its origin and
derivation. The equations used here and the notation, as much as possible,
are taken from "The work by Kortum [7]. The nota+ion is summarized in
Table 1.

The Kubelka.-Munk theory treats a powder sample as a continuous, turbid
medium. In a layer of infinitesimal thickness, fractions s and k per
unit path lenigth of the incident light are scattered and absorbed,
respectively. The quantities s and k, in units of cm'l, are called the
Kubelka-14urP scattering and absorption coefficients It is known that
the coefficient k is very closely related to the absorption coefficient
in the fami iar Bouguer-Lambert law. Discussions of this point are
available Hi the references [6, 7, 8]. The object of the work reported
here is to determine the value of k for a sample of atnDspheric dust, and
to infer 1the imaginary refractive index from it.

One o the most important accomplishments of the Kubelka-Mink theory
is an equation relating the diffuse reflectance of a powder to the
scatterir.: and absorption coefficients:

(I- R) 2  k
4(I,
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TABLE I

DEFINITIONS OF SYMBOLS

c Concentration, in moles per liter, of a pure powder sample

c* Concentration, In moles per liter, of sample in a mixture of sample
and diluting agent

d Thickness, In cm, of a sample layer

-1k Kubelka-Munk absorption ooefficient in cm

k* Kubelka-Munk absorption coefficient in cm for a mixture of sample
and diluting agent

n' The imaginary part of the complex refractive index of atmospheric dust

R Diffuse reflectance of a layer of powder of thickness d

Rg Diffuse reflectance of the flat black paint used to coat the bottom
of a sha;low aluminum sample dish

R Diffuse reflectance of a layer of powder with a thickness large
enough that no light passes through

R* Diffuse reflectance Rm measured for a mixture of sample and diluting
agent

-I
s Kubelka-Munk scattering coefficient in cm

s* Kubelka-Munk scattering coefficient in cm for a mixture of sample

and di lut!ng agent

W The weight o1 pure atmospheric dust sample required to completely
fill the volime of the sample dish

W* The actual weight of atmospheric dust in the sample dish when R* is
measured



rw,
This expression is known as the Kubelka-Munk remission function. This
provides a determination of the ratio k/s from one measurement of reflEc--
ance, R . In order to arrive at values of k and s separately, more
InformaTion is required.

The reflectance R , by definition, is the diffuse reflectance of
an "infinitely thTck" layer of the powder; this means a layer so thick
that no detectable light is transmitted through the sample. In
practice this turns out to be a thickness of a few millimeters, derend;,
on the value of k and s for the material. Suppose that we measure R
on a suitably thick layer of sample, and then also measure R, the
diffuse reflectance of a much thinner layer of thickness d. This
c-in be done by placing the powder- in a shallow dish of dep+h d. Suppose
also that we have made the bottom of the dish nearly black, and haveI.previously measured its diffuse reflectance Rg. Kortum [7, 9] has shr,
from the Kubelka-Munk theory that s, R., R, Rg, and d are related by
the expression

(R- i/R)(Rg - R) s
In 2sd(I/R - RO), (2)

(Rg - I/R0)(R - R4)

and that s can be determined satisfactorily from measurement of these
qvantities, Having obtained s in this manner, one can then solve for
k in Eq. (1). This provides a means of obtaining the absorption coefficiert
of a powder from three reflectance measurements and one thickness measure-: ment.

The methcd described above has been used successfully to obtain k
L and s for very weakly absorbing (nearly white) powders. But it is not

a satisfactory solution to the problem of interest here for three reason;.
One is that for a sample of atmospheric dust, the absorption coefficient
is relatively high, and therefore even a thin layer appears "infinitely
thick," making it difficult to determine R, R , and d to a satisfactory
degree of accuracy. Second, it is nor easy to collect a sufficiently
massive sample of atmospheric dust to carry out these kinds of measurements.
The third problem arises from the assumption in the Kubelka-Munk theory
that the sample powder scatters light isotropically. Experiment shows
that weakly absorbing powders are isotropic scatterers to a very good
degree of approximation. But this is not necessarily true for strong
absorbers like atmospheric dust.

The difficulties mentioned above arise from the fact that atmospheric
dust is a relatively strong absorber of light. Therefore, they can be
avoided by diluting the dust sample with some other powder which has a

6
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trivially low absorption coefficient. One can then apply Eqs. (I) and
(2) to the diluted sample, and obtain an absorption coefficient for the
mixture. The remaining problem is to infer the absorption coefficient
of the pure dust sample from that of the mixture and knowledge of the
dilution ratio.

First we look at the problem of obtaining the absorption coefficient
of a mixture of atmospheric dust and some other powder with low absorption
coefficient used as a diluting agent. We can then write Eq. (I) in
the form

I - IRW) k*
- P(3)

2R s

where the asterisk Indicates that we are deal ing with the properties
of the diluted sample. Kortum has shown that If the sample Is highly
diluted, the scattering coefficient s of the mixture is not affected by
the presence of 'ie sample, so for a value of s* we can use the scattering
coefficient for the pure dilutant. This quantity can easily be determined
by measuring R , Ro, Rg, and d, then applying Eqs. (I) and (2) as
discussed above, since the diluting agent is not a strong absorber like
the pure dust sample. We can measure R= directly for the diluted dust
sample, and determine k* from Eq. (3).

Now we have a valid measurement of k*, the absorption coefficient
of the diluted dust sample. What we really war.t, however, Is the absorp-
tion coefficient of the pure dust sample, undiluted by air spaces or
other white dilutin3 agents. Previous work '7, 9] has shown that for
strongly diluted samples, the absorption coefficient k* is directly
proportional to the sample concentration, In moles per liter, over several
orders of magnitude of concentration. This is analogous to Beer's law
In conventional transmission spectroscopy of solutions. For the case
of powdered materials, derivations from linearity occur when the sample
is not sufficiently diluted, and the assumption that the scattering co-
efficient of the mixture Is that of the pure diluting agent is not valid.
Nonlinearities also occur for extremely weak dilutions because the
absorption coefficient of the mixture Is so small that the intrinaic
absorption coefficient of the diluting agent can no longer be coridered
trivial. In practice for the kinds of materials dealt with here, the
linear region extends typically over a dilution rang_ of one part .arple
In 105 parts diluting agent to one part sample In I05 parts d!iutlng
agent.

7



We now assume that we have measured R* for a diluted sample of
concentration which falls In the linear region, and have calculated the
corresponding value of k*. Then we can obtain the absorption coefficient
k for a pure sample, free from dilution by any agent, from the expression

k =k* C (4)

where c* is the concentration in moles per liter of sample In one dilution,
and c is the concentration, In moles per liter, the sample would have
if It were free of air spaces or other diluting agents. Since concentration
in moles per liter is directly proportional to the weight per unit
volume of sample, we can replace the ratio c/c* in Eq. (4) with the
ratio W/W*, where W* Is the weight of atmospheric dust In our sample
volume, and W is the weight of dust that would be required to fill the
sample volume completely with the dust. Making this change in Eq. (4)
and suLstituting for k* from Eq. (3), we have

s*(l - R*)2 W

k= (5)
2R* W*

This expression gives the Kubelka-Munk absorption coefficient for
the pure atmospheric dust sample as a function of ona reflectance
measurement, a weight measurement, and a predetermined scattering coefficient
for the diluting agent.

MEASUREMENTS

All of the diffuse reflectance measurements were made with a Cary 14
spectrophotometer equipped with the manufacturer's 25 cm integrating
sphere, as described by Hedelman and Mitchell [I0]. In such an instrument
the quantity measured is the relative reflectance, that Is, the reflectance
of the sample divided by the ref!ectance of some material used as a reference
standard. Thus, all measurements must be corrected by multiplying the
measured reflectance by the absolute reflectance of the reference material
to determine the absolute reflectance of the sample. In the work done
here, highly refined BaSO4 [II was used as a reference standard, and the
absolute reflectance of this material was obtained from the work of Grum
and Luckey [i23.

L 8



As a diluting agent, the same BaSO4 used as a reference standard was
chosen. A shallow aluminum dish a fracTion of a millimeter deep, painted
with flat black enamel, was used to measure R, the reflectance of a thin
layer of the white powder. Rg, the reflectance of the black dish, was
also measured. The scattering coefficient was determined from Eqs. (I)
and (2) anid used as the value of s*, the scattering coefficient of the
diluted samples.

The dust s3mples used here were collected on the surface of a 0.45 Jim
pore size membrane filter at the input of a laboratory vacuum pump. Each
sample was collected over a period of ten days, from a location 3 meters
above the ground In a desert basin in southern New Mexico. The dust
collected on the filter was gently scraped off, and an appropriate quantity
was mixed with 34 grams of the BaSO 4 diluting agent [13J. Mixing of the
BaSO4 and dust was done in a polystyrene vial in a vibrator mixer for a

period of 5 minutes. The mixture was Then pressed into a I cm deep by
5 cm diameter lucite dish using a clean glass plate. The reflectance, R*,
was measured directly, and the weight, W*, of dust in the lucite dish
was recorded. The quantity W, the weight of dust that would completely
fill the dish, was calculated from the Known volume of the dish and the
assumption that the average specific gravity of atmospheric dust materials
is 2.4, as reported by other workers L14].

Different quantities of dust were used to insure that the concentration
choseti was in the linear range as discussed above, and to determine over
what wavelength range the measurement could be made. It was found that
a suitable linear relationship existed for wavelengths from 0.3 to
1.1 pm. Outside of this range, the Intrinsic absorption coefficiert of
the BaSO4 was too high to be considored negligible. It was found that
quantities of from 3 to 30 mg of dust in the sample dish produced satisfactory
results. From measurements of R* at different wavelengths, and knowledge
of W, W*, and s* as determined earlier, k was calculated as a function
of wavelength from Eq. (5). Typical results are listed in Table II and
discussed in the next section.

A programmable desk calculator was used to perform the calculations
required in this work. By estimating the errors in each of the input
measurements involved and determining the effect of each on the computed
value of k, an estimate of +he experimental error was made. The largest
source of error was found to be in the de :erm.inat ion of s*, because of
the difficulty of preparing a uniform layer of powder a faw tenths of a
millimeter thick. It was estimated that s* might be in error by as
much as 20%. Photometric errors, assumed to be about 2%, were found to
contribute an error of about 5% to the delermination of k. Since s' is
not determined individually for each computation ot k, its uncertainty
affects the absolute accuracy of the measurement, but not the repeatabil ity

9
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TABLE I I

ABSORPTION COEFFICIENT AND IMAGINARY REFRACTIVE

INDEX FOR THREE ATMOSPHERIC DUST SAI'LES

Sample #1 Sample #2 Sample #3

Aum kcm cm- I  n k, cc-m I  n

.35 5805 .016 6312 .018 5803 .016

.40 3298 .011 4239 .013 2837 .009

.45 2275 .008 3230 .012 1814 .007

.50 1843 .007 2432 .010 1478 .006

.55 1485 .007 2243 .010 1300 .006

.60 1328 .006 1892 .009 1047 .005

.65 1119 .006 1659 .009 837 .004

.70 1109 .006 1537 .009 968 .005
.75 1100 .006 1396 .008 725 .004
.80 933 .006 1240 .008 668 .004
.85 919 .006 1202 .008 541 .004

.90 949 .007 1098 .008 494 .004

.95 978 .007 1057 .008 476 .004
1.00 1005 .008 1058 .008 702 .006
1.05 886 .007 1045 .009 852 .007
1.10 793 .007 907 .008 780 .007

I0



from one sample to the next. Therefore, the experimental error in
this determination of the Kubelka-Munk absorption coefficient of atmospheric
dust is estimated to be on the order of 25% on an absolute basis, with
a precision considerably greater. This error could be reduced substantially
by performing many determinations of s* and averaging the results.

DISCUSSION OF RESULTS

The measurements made here give the Kubelka-Munk absorption coefficient
for atmospheric dust, in units of cm- I. In practice this number isfound to be nearly equivalent to the absorption coefficient as defined

by the Bouguer-Lambert law, usually differing from It by a factor
of about two "6, 7, 8]. In order to compare the results of the work
presented here with that of previous workers, we will assume the two
absorption coefficients to be equivalent, so that a corresponding
imaginary refractive index, n', can be computed from the usual expression:

n kX41t

-I
where k Is the absorption coefficient in cm and X Is the wavelength
in cm. In Table 11 the Kubelka-Munk absorotion coefficient and corresponding
imaginary refractive Index are listed for different wavelengths for several
dust samples.

Fisher C1] has obtained a value of 0.01 for the imaginary refractive
index In the visible region for atmospheric dust collected at a location
in West Germany. He also reported a sample-to-sample variation of about
a factor of 3, and noted that there was little dependence on wavelength
in the visible spectrum. Volz [2, 3, 15] has reported 0.007 for the
imaginary refractive index of atmospheric haze particles in the visible
spectrum, and similar values, although with a strong wavelength dependence,
for water soluble rainwater residue.

The method reported here gives results which are consistent with
those of other workers. An exact comparison is of cours3 difficult be-
cause identical samples were not used in all cases, and the measurement
errors involved are not easy to assess. However, It can be concluded
from this work that diffuse reflectance spectroscopy can give a useful
measurement of the imaginary refractive index of atmospheric dust
samples. li,ss method clearly has the advantage of simplicity and
convenience, since it consists of a routine total diffuse reflectance
measurement. Mbst laboratory spectrophotometers are capable of making
such measurements using accessories designed for this purpose.
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