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Mutual Coherence Function of a Beam 
Propagating in a Turbulent Medium 

I. INTRODUCTION 

The mutual coherence function (MCF) is important since it describes the loss 

of coherence of an initially-coherent beam propagating through turbulence, and can 

be shown1 to determine the signal-to-noise ratio of an optical heterodyne system. 

The MCF for a plane wave is readily calculated for an arbitrary spectrum of the 

index of refraction fluctuations, but for a beam of finite lateral extent, numerical 

results have not been obtained for realistic fluctuation spectra, except over short 

distances. That is, numerical results for the MCF have been obtained using the 

method of smooth perturbations2 but these results are valid3 only over distances 

z, such that Cnko z « 1, where kQ is the signal wavenumber and C2 is the 

index structure constant. Formulations valid over arbitrary distances, z, have 

(Received for Publication 6 September 1973) 

1. Fried, D, (1967) Signal-to-noise ratio in optical heterodyne systems 
Proc, IEEE 55:57-65. 

2. Tatarski, V. (1971) The Effects of the Turbulent Atmosphere on Wave 
Propagation, U.S. Dept, of Commerce, Springfield, Virginia. 

3. Barabanenkov, V., Kravtsov, Y., Rytov, S. and Tatarski, V. (1971) 
Status of the theory of propagation of waves in a randomly inhomogeneous medium 
Soviet Phys. Usp. 13:551-680. 
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recently been developed using the Markov approximation4 transport theory 5*7 

the Huygens-Fresnel principle8 and the first ladder approximation to the Bethe- 

Salpeter equation. It is shown in Section 2 that all these, apparently different, 

formulations lead to identical results for the MCE, and are valid at optical fre¬ 

quencies provided the attenuation over a wavelength is small. Unfortunately. th( 

expression obtained by these methods for the MCF of a finite beam is quite com¬ 

plicated. and is not readily evaluated, except when the spectrum of the index 

fluctuations is assumed to be Gaussian. However, for atmospheric turbulence a 

Gaussian spectrum is not a good assumption, since the spectrum is given more 

nearly by the modified von Karman form. As we shall demonstrate in 

it is possible to obtain a readily evaluated result for the MCF when the 
we shall demonstrate in Section 3, — snau demonstrate in Section 3, 

it is possible to obtain a readily evaluated result for the MCF when the spectrum 

has a modified von Karman form by solving the transport equation in the diffusion 

approximation. Unfortunately, the result is not valid over all lateral distances, 

but does give valid results over nearly all lateral distances of practical interest 
at very large propagation distances. 

2. RELATIONSHIP OK TRANSPORT THEORN AND OTHER METHODS 

It was shown previously5 that the radiative intensity I(x, n> at position x 

propagating in the direction of the unit vector n in a turbulent medium satisfies 

(1) 

where ct^ is the Born-scattering cross section 
of solid angle, t 'l t'1 « is the mear 

-scattering cross section per unit volume, dC is the element 

*t + *a ' *t is mean‘Iree path for photon scatter by the 

Russian) Radiofizika 7:380-391. 0f a ll8h' be*m l" a •“"‘■“i™« Plasma <1„ 

scattered electromagnetic field, J. Appl. Phys. 31,1176-1182. 

YUVcL. H. (1972) Mutual r...._i.i__ «* «. 

.lVedBama-J,TS of a a multiple 
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turbulence, and <a is the mean free path for absorption. For a narrow-angle beam 
propagating along the z-axis, Eq. (1) may be approximated by 

(2) 

where is the component of n transverse to the z-axis, and R is the component 
of X transverse to the z-axis. If we now define the mutual coherence function 

r<z,£i,£2) ' <e(z.p1>e’::(z,p2) > 

where and p2 are position vectors lying in the plane z, it can be shown that I 
and Fare related via 

(3) 

where R = 1/2 (pj + p2> and p = p2 - Pj . Upon using Eq. (2) in Eq. (3), we then 
obtain for F 

FH(p) = 0 (4) 

where 

(5) 
-00 

In obtaining Eq. (4) we have used the relationship between the cross section 
and the two-dimensional spectral density *(k), which is given by 

a g 

Upon recalling the relationship between the two-dimensional spectral density 
*<k) and the function *€(o,k) defined by Tatarski4, it can be seen that Eq. (4) is 
identical with Tatarski's result for the equation satisfied by F, which is based on 
the Markov approximation. Therefore, transport methods and the Markov approxi¬ 
mation led to identical results for the mutual coherence function and the intensity 
distribution. It can be shown2 that the general solution to Eq. (4) is given by 

7 



r<*.S..£> i-tf // d2R. jj j 

(V O Í1 
Ê. \ wn 2 r e T 

R,-T + 2k7j exp +iI-(R-S'' —r- ^ dz'H^z',^4 (z-z')J 

where uQ = E(0,£_) is the initial field distribution in the plane z 0. In the plane 

wave limit, Eq. (6) reduces to 

r(z,£)= |u I exp 
irk ^ Z1 

/ «’• "r\ 
H(z',£) (6a) 

More recently, Lutomirski and Yura1®, apparently unaware of Tatarski's earlier 

work in this area, have developed a method for computing Phased on the Huygens- 

Fresnel principle. We will now demonstrate that the expression obtained by Yura8, 

using this method, is identical with Eq. (5). We first set p = £, R = P and 

£ = £ - fz/ko. Then Eq. (5) becomes 

r(z,p, P) -. * 
m'+y)u0 (R 

X exp 
k 

i—-(£-£)• (P p-(p-r)( 1 (7) 

If we now let z'/z = t and use Eq. (5), we see that Eq. (6) is identical with Eq. (25) 

of Yura. Therefore, transport theory and the Huygens-Fresnel principle are 

equivalent in computing the second moment of the field. Finally, we note that 

Yura ^ has demonstrated that his results are identical with those obtained by 

Brown using the Bethe-Salpeter equation in the ladder approximation. Therefore, 

the Markov approximation, transport theory, the Huygens-Fresnel principle and 

the Bethe-Salpeter equation in the ladder approximation all lead to identical results 

for the mutual coherence function of an optical beam in a turbulent medium. The 

restrictions under which the results obtained by all of these methods a ^ valid 

appear to be identical, and are that the scale of the turbulence is much larger than 

in nn\0nh«LUtOmirSki’ R,..and Yura. H. (1971) Propagation of a finite optical beam 
in ai. inhomogeneous medium, Appl, Optics 10:1652-1658. V 

in = iil. Vura’ jj* (1972) First and second moments of an optical wave propagating 
in a random medium, J. Opt. Soc, Am. 62, 889-892. ^ 8 
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a wavelength, and that the attenuation over a wavelength is small. This requires 
that k0cX>5/3« 1, where Lq = 2irkr0 is the outer scale of the turbulence. 

3. SOLUTION IN THE DIFFUSION APPROXIMATION 

Equation (6) is an exact solution of Eq. (3) for the mutual coherence function. 
However, in many cases the integrations arising in Eq. (6) are quite difficult to 
evaluate, even using numerical methods. For this reason it is sometimes desirable 
to use the approximate solution of Eq. (4), based on solving Eq. (2) in the diffusion 
approximation, and then using Eq. (2) to calculate r . The solution for the radiative 
intensity I(z, R, n^) has been given previously. The result obtained for isotropic 
turbulence is 

AM 

(8) 

where 

(9) 

and 

)exp I i(k* R+J> n^) 

Before proceeding with the calculation of the mutual coherence function, let 
us first consider the initial intensity distribution. For a focussed beam we can 
write 

9 



(10) Vil) = Uo exP 
I 

2S 2F I 

where S is the effective beam area, and F is the radius of curvature of the wave 

front. If F - », Eq. (10) represents a collimated beam; if F < 0, the beam is 

focussed at X = -F; and if F > 0, the beam diverges from the point x = -F. The 

initial distribution of the radiative intensity I(z, R, n^ is given in terms of uo by 

I (z=0, R, nj 
(11) 

Upon substituting Eq, (10) into (11) we obtain for 1(0, R, n^ 

For the case of a collimated beam (F oo ), Eq. (12) reduces to 

(12) 

KO.R.n^ = 
(13) 

from which we see that the initial divergence angle of a collimated beam is 
öu) = (jr/k^S)1/Z . 

Let us now use the results of Eqs. (7) through (12) in Eq. (3) to calculate the 

mutual coherence function F(z, R, ^). For convenience we consider a finite beam 

centered about the z-axis and choose pj = 0, so that p = p2 and R = p/2. Therefore 

we will obtain an expression for the coherence at position p relative, to the center’ 
of the beam. The result is 

r(z, p) = J7 u -ez >-qp 
■+ (2ffk r 

o 

hA; -S4P‘ 
G(p,r,) (14) 

where 

G(p, rj) = r KdK Jo(Vp) exP ("s5k2) ♦(k) . 

The details of the derivation of Eq. (14) are contained in Appendix A. The 

quantities Sj, s4. s5 and s6 appearing in Eq. (14) are functions of z and rj, and 
are given by 
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P U 

Sj = 0^+022 +032+0-^- 

s4 = koS+0n> +íí¡[í • lk0(2o22+03+^2)]á 

o S1 

s6 = 1 ijr [i ■ lko(2a2Z +03 + ^11^] 

'1 1 TF 

and 

~ - >r , S 
°2 T~ +-! 

¿ 4k‘S 4 jrF^ ''s "TiF 

2 f* 3 */ ir J K «(k 
*0 

)dK 

2 T* ko * ik (2o9z+o,) 
■ k“o„+-2-°-£--o—f_3_ o 2 

f* i +o2 22 +®3Z J 

(15) 

Equation (14) is the solution for the mutual coherence function in the diffusion 

approximation for an arbitrary spectrum *(k). Because higher order terms are 

neglected when the right-hand side of Eq, (2) is expanded in Taylor series to 

yield a diffusion term, we note that Eq. (14) is not valid for all values of p but 
only for values such that 

1,2 2 1 kp 4 

-TT-1 (16) 

When ag<l -n{ I ) is sharply peaked about n^ = 
Eq. (2) in Taylor series about n^ = We obtain 

n^, we can expand I (n'^) in 

00 

// d2nl<7g<n'i-ni)I(ni> =1 Kni) ogM ndn + ^°° n3ag(n)dnj 1 

+ [37 jT n5^g(n)dnj Va I + ... . 

Therefore if we keep only the first two terms, as is done in the diffusion approxi¬ 
mation, we must require that the last term above be much less than the preceding 
term. This leads to the requirement stated in Eq. (16). 

11 



mmm 

where 

.4 ^k^í(k) d« 

-t-5~ 
^ 2 ® 3 

0 f K-i 4 (K)d« 

1. SIMPLIFICATION OF Ey. (14) FOR A (»AUSSIAN SPECTRUM 

Equation (14) is quite readily evaluated when 4.(k) is Gaussian For example, 
let us choose 

* (k) --T"-2 4 exp Í ' ~1T~‘ 
2".T ko 

(17) 

where 

41.»^ f°í(k) dK - 4 t.ß . 

If Eq. (17) is substituted into the expression obtained previously for G(p, rj), 
obtain 

we 

G(p» l)-B-^—K—X-exp 
(2ff)¿(t(l+k‘72s5) 

(Srp)‘ 

(35 * #). 

Upon using this result in Eq. (14), we obtain 

-qp- . z . .flP 
® + -i- T dr? e e 

'° sjl+kjyh'.) 
(18) 

where 

3 = s4 + 

fWI' 
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As a check on the validity of Eq. (18), let us consider the plane wave limit. 
Letting S -» oq F -* oo gives 

(19) 

which is identical with the plane wave result, as seen from Appendix B, for values 
P such that 

as required by Eq. (16), for the validity of the diffusion approximation. 

It is interesting to examine the result of Eq. (18) when z » l . If we 

also assume that 0z » a2, ßz2 » »3, and 0z3 » we obtain’1' 

From Eq. (20) we see that, for large z, the coherence length pfa is given by 

(21) 

Upon recalling that the plane wave coherence length p is 

2 

(22) 

we see that the asymptotic coherence length of a finite beam is twice the coherence 

length for a plane wave. This result is quite reasonable physically, since at large 

distances the beam has spherical wave properties. At large distance, z, the 

coherence length of a spherical wave is approximately twice that of a plane wave.12 

that Eq* (20> is valid even if the initial field distribution 

61:482-487. 
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3. NUMERIC AL RESULTS FOR A (j AUSSI AN SPECTRUM 

Equation (18) has been programmed and evaluated numerically for numerous 

cases. Before discussing these results let us define 

C 
s 

3S 

t 

T -- z/!t 

.. . ,-2.1/2 
R kQ(y ) ' p . 

We recall that Eq. (18) is valid only when ko y p «4 or for R«r<2. To illustrate 

tins point, let us define R = k p (y^)*^ as the normalized radial distance at 

which |r(r, R)/r(T, 0)| is equal to e . W'e first consider the plane wave limit, 

and compare in Figure 1 the exact results for Rc with those computed using 

Eq. (18). W'e note that for R^ < 1.5 the exact and approximate results a^ree quite 

well, but for large values of Rc the results are radically different. Therefore, in 

this report when we study the MCF of finite laser beams we will generally not 

present any cases for which Rc > 1. 5, since Eq. (18) is not generally valid for 

these cases. 

Figures 2, 3, and 4 show the normalized mutual coherence function for a 

finite width laser beam as a function of R, for various values of distance T = z/i 

into the turbulent medium. From these results, and from a further study of Eq. 18, 

it can be seen that 

r(T. R) 
rírló) (23) 

Plots of Rc as a function of r for various appropriate values of Cs, Cp and \ are 

shown in Figures 5 through 7. For example, a 10. 6-pm collimated laser beam 

of initial area tt/IG cm propagating in medium strength turbulence would have 

parameters - 79, Cp = - <*>, and A = tt X 10 On Figure 5 we have also shown 

Rc for a plane wave and for a spherical wave. We note that for moderate values 

of t. Rc (for the beam) generally lies between the plane wave and spherical wave 

values, while for large t, Rc approaches the spherical wave value. 

14 



Figure 1. e 1 Coherence Length for a Plane Wave 

Figure 2. Normalized Mutual Coherence 
Function for a Beam With Cs = 10, 
Cp = , X - 0,001 

Figure 3. Normalized Mutual Coherence 
Function for a Beam With Cs 100 
Cp = -oo, X = 0.001 
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Figure 4. ^Normalized Mutual Coherence Function for a lleam With Cs = 100, 

Figure 5. Coherence Length R„ for > = 0.001 Cr. = -*> 
C » jT 
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Figure 6. Coherence Length R for \ = 0.01 -oo 
c * K 

Figure 7. Coherence Length R for \ - 0.1 C^ = - 
c * F 
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It is also possible to study the effect of the focal length F on the normalized 

MCF. From Eq. (18) it is clear that for z > F the MCF will be strongly dependent 

on F if 

That is, the MCF is affected by changes in F if the beam focus lies in the Fresnel 

zone of an aperture of area S. This point has been verified numerically, but the 

results are omitted here. Of course for z sufficiently large, the MCF is again 

independent of F, as is expected from Eq. (20). 

6. SOME RESI LTS EUR \ MOIIIKIEI) VON KARMAN SPECTRI M 

When the spectrum of the fluctuations is von Karman, the diffusion approxima¬ 

tion user! in this report gives accurate results only for p of order of the inner scale 

of the turbulence. To see this consider Eq. (10), for the modified von Karman 

spectrum 

(24) 

2 
where Cn is the index structure constant, tQ 2^-*^ is the inner scale of the tur¬ 

bulence, and Lq 2;rfco is the outer scale. For this spectrum Eq. (16) leads to 

the requirement that, for 4- « -fc , 
o 

2 

(25) 

so that the diffusion approximation is valid for p of orderbut not for p of order 

of the outer scale -LT^. This means that the diffusion approximation does not yield 

accurate results for the coherence length when z is small (since for small z the 

coherence length is of order -fco) but does yield useful results for very large z, 

where the coherence length is of order This situation is acceptable since, 

for small z, the commonly used method of smooth perturbations is valid anyway, 

and there is no need to employ the more exact theory which led to Eq. (6). 

18 



If we now use Eq, (24) in Eq. (14), we obtain (assuming i -»a) 
a 

r (T, R) = Cg |U0l2e‘T 
-KR T y-s.R2 

where 

R =^(72)^2. T=z/ft, ^ko/t72 and 

Q = T + yJ 

T =Cs + 

C \ ip 
9 

» C, CF 

s \ 2 

t)t 

*o =W+^[(1/2 -iV)] 

1/2)e'Px Æ /dye!!!! ; dxJo(36»xl/^ 

o Q o (1 +ß X)11/« 
o 

(26) 

W = M +-*£- 

4xCs 12 CF 

V =g+|-y2 

g = 2X Mr + 
12Ct 

, 3y* 
°o + ^r 

an = k‘ <-„2-2 o o o y 

3 = k2t2 y2 o o c ' 

K = M + 

(1/2)- iv] 

and (see Appendix C) for a von Karman spectrum 
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JL= 0.78 0¾ (fc )5/3 
n o o 

- 2 
y 

2ff2r(0.033C?) 

l;r.“ [5.58 -7.2(VV173]- 

(27) 

(28) 

As stated before, Eq. (26) is stricly valid only for p < 4-f- . For fc /-t 1000 
_2 2 r o o' o 

we have y = 40. 5 / . Therefore, the dimensionless quantity R, which we 

use as a measure of transverse distance, can be rwritten as 

R ko(72)1/2p = 6.35 -jß- -- 0.00635 ^ 
O “o o 

In terms of R, the requirement that p < 4 can be written as R < 0. 025. Therefore, 

except for large T, where the correlation length is of order Eq. (26) does not 

yield useful results (except for the axial intensity). 

It is possible to develop a simple closed form result for F (T, R) when r » 1. 

The result is 

C U 
r (t » 1, R)^f 8 °,¿ exp [-0o(y r)R2]. 

To + r 
(29) 

The derivation of this result is given in Appendix D. V'e can note from Eq. (28) 

that if T»cs1/3, t » 9/A2Cs + Ca/C2, , and t» (2Cs/Cf)1/2 

Eq. (29) can be approximated by the simpler form 

,2 
C |U 

r (t^>1,R)^—- 3° 
tR‘ ~rr 

then 

(30) 

If we now use Eq. (28) inr y2, assuming *0/4-0 = lO-13, Eq. (30) becomes .-3 

caiuor 
r(z-v 00, R) = -ä- 3°—exp 

0.197 k2p2C2z 
_o n 

TJT (31) 

from which we see that, for sufficiently large z, the rate at which the coherence 

decays is independent of the outer scale of the turbulence and depends only on the 
Inner scale. 

As a further check on the validity of Eq. (26) for R « 1, we have studied it in 

detail in Appendix E for the case when p - 0 and k ^/6C2 z1^6 < 1. There it is 

20 



Figure 8. Axial Intensity for 
a Laser Beam Propagating in 
Turbulence Having a von Karman 
Spectrum, Assuming k 6280 cm-1 
and F -oo ° 

shown that it reduces to the previous result of Ishimaru13 in this limit. Some 

results computed from Eq. (26) for the axial intensity are shown in Figure 8. 

Finally, we comment that it is also possible to develop an asymptotic (T>> 1) 

expression for the intensity I(T, R). The result is 

Kt. R> 
V' 

exp 3R 

V2<To + T3) 
(32) 

The proof proceeds in the same fashion as in Appendix D. 

In a forthcoming report we will evaluate Eq. (6) directly to calculate the 

mutual coherence function for all values of p when the spectrum is von Karman. 

13. Ishimaru, A. (1969) Fluctuations of a beam wave propagating through a 
locally inhomogeneous medium, Radio Science 4:295-305. 
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Appendix A 

When u0 is given by Eq. (10) and 1(0, R,^) by Eq. (12), 

the function Fq defined in Eq. (9) is 

-(o.k2 
Fo<k,E) = Ae 1 

+ «3k-R> 

where 

Upon using this result along with the relationship between ct 
we obtain 1 

F(k,_p) = A e‘ez e 
-(Sjk“ + *■ 03k*i> 

J(k,_p) 

Preceding page Mink 

it can be shown that 

(Al) 

and *(k) in Eq. (8), 

(A2) 

. .. 



where 

-00 

x e-ß (p2h + n2E-k+ÿk2) 

2 
(3j = ttj + ®2Z + “s2 

ß2 =02 

03 = +«3 

ß ~ F k2 ® (K) . 
Jo 

(A3) 

Next define s1 = ß + ßn3/3, s, = k2 (ß +ßn) and s« = k (ß. + ß„2). Then we can 
rewrite Eq. (A2) as 3 o 3 

F<kf £ = k^) - F°(k, £ = k^) + Fs(k, £ = k^) 

where 

(A4) 

(A 5) 

r8 = 2jrk2Ae ez JJ d2x *(k) e^'ß- dhexp|^ + ik‘1nK;k-(s1k2+s2p2 + s3k;£ ) 

(A6) 

Next, upon using Eq, (7) in Eq. (3) we recall that the mutual coherence function 

r(z, R,£) and F(k, £ = k^) are related via 

F (z,R,£) = (2t)‘ ff d‘kF(k,E = k^) e*1-- ik.R 
(A 7) 

If Eqs, (A4) through (A6) are substituted into Eq, (A7), there results upon per* 

forming the integrations on d2k: 

r(z,R,£) = r0(z,R,£) + r8(z,R,£) (j 
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where 

pO 4t Ae 

r = 8t 
lAkoe' /-i7exp{^"32p2 -4? } 

-00 o 1 ^ t 1 J 

-1 V = R - i s3£ - k o rj k^. 

We next specialize to the case when = 0 so that R = p2/2 = p/2. In this 

we obtain, upon writing d^k kdkdp and performing the 0-integration 

„ o _ 4 t3A . f 2 1 
T ^ ^ exp ^-cz - qp I 

rS = 16T5k3Ae'ez fjn 
Jo S1 

exp 
o ) 00 » g M 

T^~~ a4p I f KdKj0<sgKP)e 5 *M 

where 

q = ß2k‘+ ¢7(1-^0-'Vo) 

s4 s2 + 4SJ ' 2 ' i33)2 

2 ,., 2 
ss = ^ /4k«s b°l 

S6 = 1 ’ 2^3j (2 ' is3) 

(A9) 

(A 10) 

case 

(All) 

(A 12) 
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Appendix B 

The exact MCF fov a plane wave can be demonstrated to be (Tatarski1) 

r(z,p) exp j- ( 2ffk^)z J k$(k) [l - Jo(kp)] dkj. 

For a Gaussian spectrum. 

(Bl) 

i (k) 
1 

9 21,4—2f 2n ko7 it 

.2 -2 
K 7 

O 1 

Eq. (Bl) becomes 

T (z,p) = exp !-[' 1 - exp l- 

2-2. 2 
P 7 

)]}• 
In the limit when k0 7 p « 4, Eq, (B2) can be approximated by 

r(z,p) «exp 

2, 2 —2 
y0 k0y 

(B2 ) 

(B3) 

which is identical with the result of Eq. (19), in the limit when S - » . 

1. Tatarski, V. (1971) The Effects of the Turbulent Atmnanhprp 
Propagation. U. S, Dept, of Commerce, Springfield, Virginia 
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Appendix C 

In this Appendix we 

von Karman spectrum, 

we let K ^ = X, we obtain 

_o 
show the derivation of Eq. (27) for 7 , for the case of a 

If Eq. (17) is substituted into the expression for 7^ and 

(2^)2^ (0>033) j® X dx e x 

0 ix,*;2)11/« • (Cl) 

Now letting u = x + " , we get 

”•2 « 9 / ^ 1 

4- = 2/(0. 033 C“) exp —V 
n V-fc2 1 

/ du e 
, -2 

-*ou 
00 2 

/-*• u 
e du 

. (C2) 

Assuming-#-o/-fco « 1, and recalling the definition of the incomplete gamma function, 

F (a, x), we see that Eq. (C2) can be rewritten as 

-2 2ff2(0.033 C2) 
T _n 

t <v ITT (C3) 
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h iimpim mrmmmmmmrn 

For X « 1, r (a, x) may be expanded as 

r (a, x) = r (a) - Xa £ 

n -0 

Upon using this result in Eq. (C3), we obtain 

We now recall that r (1/6) -- 5. 58 and r (-5/6) = -6. 69. Using these values in 

Eq. (C5), and neglecting higher order terms in ) then gives 

>1/3]. 

When Eq. (26) is substituted for it, we then get the result of Eq. (27) for ÿ2. 

-2 2jt2(0. 033C2) r 

(C4) 

(C5) 

(C6) 
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Appendix D 

In this Appendix we derive an asymptotic expression for the MCF of a beam 

propagating in a turbulent medium having a von Karman spectrum. By studying 

Eq. (26), we can readily see that for T » 1 the first term is negligible in com¬ 

parison with the second. Therefore, if we neglect the first term, substitute Eq. (25) 

for í(k), and then write u - ßQx we obtain 

r<T»i, R)» c e'T r -dye e n 
6 s J t +y3 

r\ J 

»y r 
- j 

du J 

(1 + u) 11/6 

Now 

^ ß_(T+y3) 

JLxl « i 

Therefore since the main contribution to the integral over u comes from u of order 

unity, it is clear that for r » 1 we may approximate exp ( - pu/0^) by unity. Next 

we recognize that since R = o(l) and (ßQ)'1^2 « 1, if we can show that |s6| = o(l), 

then we can also approximate Jo(... ) by unity. Therefore let us w-rite out s6 setting 

C„ = « to simplify our considerations. We have 
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1 - 
\c 

i3y 

3+\rr 
3 

,. 9v_r_ 
¿ ¿ Q 2' . 2„ T \ C + 9t +\ C V 

3 3 
■jy 
"5- 

C‘\2C 

27T (D2) 

Let us first consider the case when Cg « 1. Then the second term is, at most, 

of order (\Cg/3r)« 1. The third and last terms are at most, of order unity. There¬ 

fore, for \Cg « 1, sfi = o(l). For \Cg » 1 we can insure that all the terms in 

Eq. (D2) are less than or of order unity by requiring that r > \ Therefore, 

since I Syl will generally be of order unity for T » 1, it is permissible to 

approximate Jo uj by unity. 

If the above approximations are made,the u integration in Eq. (Dl) can be per¬ 
formed to yield 

: y -*o<y)R 
r(T»l,R)aC e’T J 

T + y' 0 J 
T (D3) 

For large r, it is clear that nearly all the contribution to the integral in Eq. (D3) 

comes from y near T, Therefore, it is permissible to expand the function 

<T0 + y ^ exP ) about y = r (alternately, we may integrate by parts). If 
this is done, we obtain from Eq. (D3) 

,2 -oo(r)R 
C e 0 

r(r » 1. R)Ä —- 
To+r 

g-+ higher order terms. (D4) 

In the limit when r is sufficiently large that r » C 1//3 

T» 9 +±s 

CF 

r » K' 1//2 , and r » (2Cg/CF)1//2, Eq. (D4) can be 

approximated further by 

C 
r ( r.» oe , R) —f- e 

tR 
16 

(D5) 
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Appendix E 

Ishimaru 1 has previously studied properties of a beam propagating in 

turbulence. Since he has used the Rytov approximation, his results are valid only 
2 7/6 11 'G 1 

f°r CnkQ ’z ' « 1, We will now demonstrate that in this regime our results 

agree with those of Ishimaru. Let us consider Hq. (2(i) for R 0. We get 

r(f, 0) C e 
s II _L , f dy ev r 

T + ß J -r—T J 
y 

+ y 

dx e -px 

o I 1+ß0x 
11/6 (El) 

where To, ßo, etc., are defined in Appendix A, and p oQ + 3y2/(T +y3). To 

compare our results with those of Ishimaru, w'e first consider a collimated beam 

(Cp -* oo ) and assume that r = z//t is small compared with To. In this case 

Eq. (El) becomes 

r (r, 0) / dx e Px 

[ l^x]11^’ 
(E2) 

1. Ishimaru, A. (1969) Fluctuations of a beam wave propagating through a 
locally inhomogeneous medium. Radio Science 4:295-305. 
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The inner integral in Eq. (E2) can be expressed in terms of the incomplete gamma 

function r (a, x), and Eq. (E2) then becomes: 

r(r, 0) <E3) 

We next assume that p/3 « 1. This implies that both a /13 ( f /+: )2 « 1 
2 g ° o ' o o' o 

and 3T /T0(302e (z/kQ+/) (z/koS) « 1. The first condition is clearly satisfied 

since ^ <<+0, while in the Fresnel zone of the eddies the second is also generally 

satisfied. Using these assumptions we may therefore approximate exp (p/(3 )¾ l, 

and 

-5/6 
(E4) 

Upon using Eq. (E4) in Eq. (E3), we obtain 

T 

r (t. o) 
U0|2e- 

'1 + 

It C 

¿ \ 
1 + 4r(‘4) /dyey(i^) + /dy 

O VO/ 0 

S / 

(E5) 

The last integral in Eq. (E5) is readily performed, to yield 

r(r, 0) 
1 + 

9 T 
'*56r (EG) 

Over distances large compared with the inner scale of the turbulence, we may use 

the approximation 

and the integral on the right-hand side of Eq. (BG) can then be approximated to 

give 
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r(T, o) = (E7) 

To compare with Ishimaru's results we next recall that the quantity a, defined 

by Ishimaru is, in our notation, a - . Therefore: 

(rr- 
\ o o 

3_\5/6 t 16/6 / 3 \5/y 1 \5/6 
tí C 
^o s , , 2 2 1 +ry z ■rpfw ixn/e 1Ö/6 

X_\5/6m11/6 toz)5/6 zn/ñ/ 1 \ 5/6 rw 
a 0. 78 k 7/6c2/_l y 

1 1 + o z I 

/6 

(i *lv) 

(.z)5/0zU/l> . 

Using Eq. (E8) in Eq. (E7) then gives 

r(r, 0) = -£-=— 
(l+a^z^) 

1 + 0.24 k 7/6c2z11/6 
o n (l+a2z2) 

r (-5/6) 

(E8) 

(E9) 

Except for a slight difference in the coeffici ent of the second term in Eq. (E9), our 

limiting case is identical with Eq. (13) of Ishimaru. That is, Ishimaru obtains 
2 
(0.033)/8 0.205, while we obtain 0. 24. The difference arises because we 

have approximated the exact transport integral by the diffusion approximation. 

It is interesting to compare Ishimaru's result with the result of Eq. (26). 

This is done in Figure El, for the case when C2 3 X lO'^cm"2/'*, k = 6280 cm" 
2 n o 

S = 0. 196 cm , and F = - ». We note that the two results agree quite well, but 

diverge rapidly when t is sufficiently large that the second term in Eq. (E9) is 

comparable with the first. 
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Figure El. Comparison of Axial Intensity for a 
von Karman Spectrum Assuming ko = 6280 crn-1, 

^ ^ cm S = 0.196 cm“*, and 
F = -oo 
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