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SURFACES UNDER TURBULENT BOUNDARY LAYERS WITH

FAVORABLE AND ADVERSE PRESSURE GRADIENTS

by

Thomas E. Burton

ABSTRACT

Fluctuating wall pressures under turbulent boundary layers
with favorable gradients were measured at both smooth and rough
walls. Wall pressure intensity was found to vary in proportion
to mean wall shear stress between no-gradient and favorable-
gradient flows. The favorable gradient decreased longitudinal
spatial decay rates and increased convection velocities; rough-
ness had the opposite effects.

Adverse gradient boundary layers were also studied over
smooth and rough walls. These flows were not self-preserving,
and results are presented as functions of longitudinal position.
The adverse gradient slowed convection velocities and increased
longitudinal spatial decay rates. Pressure intensities were
concentrated into a comparatively narrow band of frequencies.
Pressure statistics were found to depend on local mean flow
parameters and upstream flow condition:., but not on wall roughness.

S~iCZ



TABLE OF CONTENTS

Page

Ab strac t ... . . . . . . . . . . . . . . . . . . . . .

Nomenclature ......................................... iii

I. Introduction ......................................... 1

(A Backgrimenda ......................................

(B) ExperimentalFacility ........................... 2

(C) Quantities Measured ............................. 5

II. Fxperimental Results and Discussion................ 8

(Zi) Mean Flow Parameters ............................ 9

(B) Broadband Statistics ............................ 16

(C) Narrowband Statistics ......................... 34

III. Conclusions .......................................... 65

Appendix--The Turbulent Momentum Integral Equation 68

References .. ........................................... 72

Preface to the Figures ............................... 74

Figures and Tables ................................... 75

ii



NOMENCLATURE OF COMMONLY-USED SYMBOLS

Cf friction factor: Cf = 2T /(P U 2

H shape factor, H = 6*/0

k wave number

average wave number

W 9mean geometric roughness heightg

p(xt) instantaneous wall pressure fluctuation at
position x and time t

p 2miean square pressure fluctuation

2
q, Q freestream dynamic head, (1/2)p U.

R(rl,r 3 ,T) space-time correlation of wall pressure, normalized
so that R(0,0,0) = 1

Re Reynolds number based upon momentum thickness:
Re 0 = U 0/v

r microphone separation vector, r = (r 1lr 3 )

s hotwire length

U(y) mean velocity

Uc convection velocity

Ug group velocityU

Up Pphase velocity

UT friction velocity

UCO freestream velocity

u, v, w longitudinal, normal, and lateral fluctuating
velocity components

ii, V, • root mean square fluctuating velocity components

x streamwise coordinate

'ýx streamwi-e diýlAcacnt: .. '

y normal coordinate

z lateral (spanwise) coordinate

iii



Az lateral displacement: Az z2-z1

6 boundary-layer thickness

69 U(y=69 9 )/UW = .99

6* displacement thickness

0 momentum thickness

v kinematic viscosity

nondimensional length scale, dx =*xd

p fluid density

T separation in time

T w mean wall shear stress

(D(W) pressure spectral density: f~ +0w-ý dw = p,

~(r~w)pressure cross spectral density: 4(OMw 4i)(W

w radial frequency

iv



CHAPTER I

INTRODUCTION

(A) BACKGROUND

This report is part of an effort to describe the nature of

pressure fluctuations on panels under turbulent boundary layers

so that panel responses may be predicted. P. Leehey (1969) has

comprehensively reviewed this problem. Many experimenters have

studied wall pressure fluctuations over smouLh and rough walls.

A particularly detailed study is that of Blake (1970). The

effects of a freestreart pressure gradient on the pressure statis-

tics have been studied by Schloemer (1966) and Bradshaw (1967),

among others. Schloemer studied both favorable and adverse

gradients, and Bradshaw studied adverse gradients. This report

combines the effects of wall roughness and freestream pressure

gradient.

It is clear that a favorable gradient will reduce the thick-

ness of the boundary layer. Schloemer found that the imposition

of a favorable gradient reduced the displacement thickness by

about a factor of five. Undri these conditions, the effect of

a roughened wall can be expected to be much more important in

the favorable gradient case, as compared with the case with no

gradient. This investigation used a flow with about the same

favorable pressure gradient as that of Schloemer with a smooth

wall. The flow geometry was held constant and roughened walls

were substituted for the smooth ones, and the two sets of re-

sults were compared. The roughness used is identicAl with one

used by Blake (1970) whose experiments were performed in the

same facility as the current work.
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The same roughness was used for both favorable and adverse

gradient studies. Since the ratio of rouqhness size to boundary-

layer thickness was expected to be much smaller with the adverse

pressure gradient, a strong dependence on wall roughness seemed

unlikely. More importantly, the author was not aware of any

comprehensive studies of wall pressure fluctuations in the pres-

ence of very strong adverse gradients, where the flow is near

or tending toward separation. For these reasons, it was decided

to study a flow wiLh adverse giadients ,iuch stronger than those

of Schloemer, even if that caused the extra complication of

flows whose properties depended upon longitudinal position.

Again, both smooth and rough walls were studied and the results

compared.

(R) EXPERIMENTAL FACILITY

All experiments were performed in the subsonic low-noise

wind tunnel in the Acoustics and Vibration Laboratory of the

Massachusetts Institute of Technology. A complete description

of the facility was provided by Hanson (1969). The main compo-

nents are the inlet, the flow straightener and screens, the con-

traction, the test section enclosed in an airtight blockhouse,

the muffler-diffuser, and a variable-speed centrifugal blower.

The blower is acoustically isolated from the test section by the

muffler, and mechanically isolated by an air gap between the

diffuser and the blower. Although the tunnel is of the open-

flow type, the complete circuit is enclosed in a large quiet

room of approximately uniform temperature, ,;o that thermal gra-

dients and resulting density variations and flow rotation are

largely avoided.
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Because of the airtight blockhouse surrounding the test

section, open jets in the test section may be created. Figure I

is a schematic of the test configurations used in this investi-

gation. The closed test section is a rectangular duct, 15 inches

on each side. In order to study the effects of favorable gra-

dients, a two-dimensional baffle, as shown in the figure, was

installed opposite the surface to be studied. The slope of the

baffle in the test region was chosen so as to make pressure gra-

dients approximately equal to those of Schloemer (1966). The

baffle slope on the region of diverging flow was chosen to be

gentle enough to prevent separation of the flow along the baffle.

The tested surface was either rough or smooth. The smooth sur-

face was formica, and rough surface was formed by cementing sand

grains whose size varied randomly over narrow limits on wood

planks in a random pattern. The resulting effect is like that

of very coarse sandpaper. The sand grains had a mean height of

about .09 inches. For a complete description of this roughened

surface, see Blake (1970). In his report, Blake refers to this

surface as D-L, standing for densely-packed large grains. The

condition of the wall, either smooth or rough, was uniform from

the downstream end of the contraction, where the boundary layer

first became turbulent, all the way to the test section. Thus

the boundary layer was in equilibrium just upstream of the

region of converging flow. The flow reequilibrated quickly to

the favorable gradient.

It was desired to study adverse pressure gradients of a

considerably larger magnitude than those of Schloemer (1966),

tn1 it waz julgyd that the baffle arrangement used to generate
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favorable gradieilts would be unsatisfactory for strong adverse

gradients because of possible flow separation from the baffle,

and because of unacceptably high flow noise that might be present

near the baffle. Figure 1 shows the configuration adopted in-

stead. The bottoni surface was fitted with a circular arc to

allow the flov to diverge in the tested region. The radius of

curvature of the arc was greater than 30 inches, large enough

that centripetal acceleration around the arc can be neglected.

The sides of the test section were extended as shown in the

figure. A serniporous , blunt, two-dimensional collector, made of

vermiculite surrounded by fiberglass, redirected the flow back

into the channel. To minimize acoustic contamination from the

collector, it was found advantageous to modify the collector so

that its blunt leading edge was above the mean mass line of the

jet, so that there was a tendency for some of the jet to spill

out under tbe collector. Since the blockhouse containing the

test section was airtight, this couldn't happen, and the pres-

sure caused the mean streamlines in the open jet to curve up-

wards, as shown in thc figure, so that the jet flow was more

nearly aligned with. the surface of the collector when it impinged

upon that surface. It is believed that this curvature in the

streamlines is part ly responsible for the improved performance

of the modified col lector.

As with tJ-e favorable gradient cases, the boundary layer

was self-similar over the smooth or rough wall just upstream of

thu gradient sectiorn. The flow did not become self-similar

after the imposition of the adverse gradient, but rather tended

toward separation. Strong adverse gradients were desired, but
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flow separation at any point on the tested surface was avoided.

It was anticipated that, for a given geometry, the rough-wall

flow would have a greater tendency to separate so the roughened

wall condition was studied first. The geometry was adjusted

to eliminate any flow separation. Then the geometry was adjusted

for the smooth study so that the nondimensional pressure gra.-

dient was about the Same. The smooth-wall study required a

larger angle of flow divergence, and the collector noise was

more obtrusive. Wall pressures on the tested surface were found

to be contaminated below 70 Hz (W6*/U z .2) and had to be elim-

inated. Freestream rms turbulence levels above the tested boun-

dary layer were always below 0.15% of the freestream velocity.

The temperature of the tunnel air was continually recorded.

Its effects on the kinematic viscosity were built into the cal-

culations. The variation of barometric pressure was negligible.

(C) QUANTITIES MEASURED

An attempt was made to 7-...ure all those quantitie- .eces-

sary to describe and explain the second-order wall pressure

statistics. These measurements have been divided in this report

into three major categories: mean parameters, broadband (in

frequency) statistical results;, and narrowband statistical re-

sults. The mean parameters include riondimersional freestream

pressure gradients, mean velocity profiles, wall shear stress

and friction factor, and related quantities. The broadband re-

sults include rms wall pressures, turbulent velocity intensity

profiles, two-point wall-pressure correlations, broadband con-

vection velocities, and pressure time-autocorrelatiors. The

narrowband results include frequency spectra for both wall pros-
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sure and turbulent velocities, narrowband two-point wall-pros-

sure crosscorrelations, and narrowband convection velocities.

Within each of the above-mentioned categories of data, a descrip-

tion of the instrumentation used in collection of tho data, tho

experimental errors involved, and a discussion of the results

are all included with the presentation of the data itself.

The crosscorrelation function is defined as follows:

R(r 1 ,r 3 ,T) -p(x,z,t) p (x+r 1 z+r 3 ,t+T)

(P (x , z) 2 .p(x+r I z+r 3) 2)/

The crosscorrelation function is normalized to be unity when its

arguments are all equal to zero. The normalization accommodates

the possibility that pressure statistics are not homogeneous in

x and z. The adverse gradient flows studied are, in fact, in-

homogeneous in x. All flows are homogeneous in z.

Power cross-spectral density is defined as the tinte-frequen-

cy transform of the crosscorrelation:

2Trl)(rl,r 3 ,w) - (p(x,z)2 p (x+rl'z+r3 ) 2)1/2 f+WR(r'r 3 T)e iWTd'r
Vw) 1 3 -Cc

The cross-spectral density is not normalized on mean square pres-

sure. It is complex quantity, and its phase can be written

as follows:

ýD E 14)Ie r (2)

Equation (2) defines 1. as a function of r and w. This represen-

tation of cross-spectral phase is useful to point up any wave-

like nature of 'ý when it occurs. The Fourier transform relation

of equation (1) can be inverted and combined with equation (2)

to obtain the following equation for the crosscorrelation:



E'qiitation (3) in usoful. in casaamaingj any oanillatory bahtkviQr of

obser~ved c~romscorralation functions.



CHAPTER 11

EXPERIMENTAL REHULTS AND DISCUSSION

The boundary loyers ndjusted to the imposition of the favor-

able gradient and formed self-preaerving layerun in the tested

region. No sugnificant deviations in any mean parameter were

found over a distance exceeding 10 boundary-layer dinplacement

thicknesses. This feature of the favorable gradient flows is

not due to any precise manipulation of the pressure grAdient,

but rather to the fact that the boundary layers were very thin

in relation to the geometry of the wind tunnel and the baffle

which induced the freestream pressure gradient. The self-simii-

larity of the flow is also due to the fact that the changes that

the boundary layer made in response to the imposition of the

gradient were self-limitingi as the layer became thinner, the

wall shear stress increased until the increased wall friction

balanced the freestream pressure gradient. When this happened,

the boundary layer reached a new equilibrium.

The adverse freestream pressure gradient flows were not

self-similar, but tended toward separation with increasing stream-

wise distance. Therefore, all quantities measured were func-

tions of the longitudinal coordinate. The origin x=O was arbi-

trarily chosen to be the zmost upstream position at which data

were taken for either of the adverse gradient flows. x=O corre-

sponds to about 6 inches downstream of the curved portion of the

tested surface for all adverse gradient flows (see Figure 1).

The nondimensional streamwise variable has been defined by

dx = 6*(x)dF, and = 0 when x = 0. This variable defines dif-

ferential position in terms of the local boundary-layer
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tiicknoss. Tho nmooth-wall data aro superior to the rough-wall

data for adverse freestream pressure gradient flows in that r

varies over a much wider range over the smooth wall, since the

boundary layer is thinner.

For brevity, flow. will bo designated as FS (favorable

smooth), FH (favorable rough), AS (adverse smooth), and AR

(advorse rough) throughout the chapter.

(A) MEAN FLOW PARAMETERS

Since the favorable gradient flows were self-similar, the

flows needed to be studied only at one lonyitudinal position.

The standard coordinate system is adopted, with x being

the longitudinal (streamwise) coordinate, and y being the normal

coordinate, defined to be zero at the wall and increasing into

the boundary layer.

Mean flow paramneters are displayed in Figures 2 through 8,

and in Table 1. Figure 2 shows the boundary-layer profileL of

the favorable gradient flows in law-of-the-wall form. Two flow

speeds are shown for each of the two wall types. Most of the

data were obtained with a flat-mouth tube with a width of .040

inches. Very near the wall a tube with a .020-inch width was

used. Pressures were measured with a Betz manometer which could

be accurately read to within .02 mm H120. The main errors in

the profile measurement come not from errors in pressure deter-

mination, but rather from errors in probe positioning, which

could have been as much as .01 inches, or about y+=25. The

smocth-wall data fall very nicely on the curve which defines the

well-accepted law of the wall for turbulent boundary layers.

The imposition of the favorable gradient did not have a
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significant effect, except that the wake region of the flow,

which would deviate from the logarithmic law, is apparently

nonexistent. This feature of the profile is also present in the

favorable gradient results of Schloemer (1966). Over the lim-

ited range of Reynolds numbers tested, no Reynolds number depen-

dence was found. As can be seen in Figure 2, it was not pos-

sible to get data below y +-60. Mean profiles were measured with

both total head tubes and hot-wire anemometers. No significant

differences between the two methods were found, and since the

total head tube measurements are more accurate, they are the

ones presented. It is possible that all measurements of posi-
+

tion were biased by as much as 25 in y , but the scattor in the

data is much less than that, as indicated in Figure 2. The

rough-wall data also follow the law of the wall very well. The

roughness caused a velocity defect which resulted in a much lower

curve in Figure 2 than that for the smooth-wall data. These

results are in quantitative agreement with Blake (1970) . Here

the very slight wake of the layer can be seen at about y+=8000.

The wake is less pronounced than that of Blake. The question of

a bias in the positioning of the total head tube does not apply

to the rough-wall measurements, because y +=0 has been defined so

as to make the data in Figure 2 follow a straight line as well

as possible. This results in an apparent surface (y=O) which

is about 1/3 k below the top of the roughness grains. For a

full discussion of this procedure, see Burton (1971).

The favorable gradient profiles are replotted with outer

variable scaling in Figure 3. Here some Reynolds number depen-

dence is evident near the wall. This is expected, since the



wall region is better scaled on inner variables. The shape of

smooth-wall profiles suggest that a viscous sublayer existed

near the wall where the velocity varied rapidly with y, but the

viscous sublayer was too thin to be investigated. Consistent

with the results of other investigations (see, for example,

Blake (1970)), there would appear to be no viscous sublayer over

the roughened wall. Figure 3 shows clearly the difference be-

tween the smooth-wall flow, which is wakeless, and the rough-

wall flow, whose wake region is apparent for y/6* of about 3 or 4.

Velocity profiles for the AS flows are shown in Figure 4,

for three different longitudinal position. Between ý=O and

ý=24.6, there are very significant changes in profile shape, as

indicated by the large change in shape factor. H=1.51 is not

too different from that for most zero-gradient layers, and is

quite similar to Schloemer's (1966) adverse gradient shape fac-

tor. Each of the profiles was logarithmic over a small region

near the wall, but was generally wakelike, so that outer vari-

able scaling is appropriate. Because the boundary layers were

much thicker with the adverse gradient, probe positioning was

not a significant source of error and the profiles are quite

accurate. It is expected that there is a viscous sublayer very

near the smooth wall, but it did not thicken along with the rest

of the layer, and it was too small to investigate. The very

thin viscous sublayer is probably caused by increased turbulent

motion near the wall (see section B of this chapter).

Profiles of flows over the rough wall are shown in Figure 5.

The curves are an average of those obtained at 80 ft/sec and

160 ft/sec. No significant differences between the two speeds



were found. These flows were much different from those over the

smooth wall. Even the most upstream station, x=O, shows a shape

factor which exceeds that of the most downstream point in the

flow over a smooth wall. The shape factor reaches a high of

2.93. H=3 corresponds to'a linear profile, and H greater than

3 implies an inflection or separaI\koN. There were no inflec-

tional profiles in the region of neasurement, although profile

number 3 comes very close.

Table 1 summarizes the mean quantities measured. U. is

evaluated at x=O. Most of the AS flow measurements were made at

100 ft/sec, since this speed gave pressure data over a wider use-

ful frequency range than others. Other combinations of wall type

and gradient type were investigated with at least two flow speeds.

Pressure gradients have been nondimensionalized on both wall

shear stress and freestream dynamic head. Schloemer (1966) used

wall stress scaling, and his nondimensional favorable gradient

was -. 36, midway between the values in this report for smooth

and rough walls. As mentioned in the introduction, it was de-

sired to measure favorable gradients on the same order as those

of Schloemer. If wall stress scaling is also used to compare

adverse gradients, then the gradients here are 5 to 10 times

those of Schloemer. However, wall stress scaling is inappropri-

ate in the case of rapidly growing boundary layers, as can be

seen from the integrated momentum equation:

w+ * 9X = P T. (U 0) (4)

For favorable gradient flow, the two terms in the left ember of

(4) are of equal order, and their ratio is a valid measure of



-13-

the magnitude of the pressure gradient. But in the adverse gra-

dient cases studied here, the wall shear stress is very small

and the pressure gradient term is of the same order as the right

member of the equation. Therefore, it makes more sense to scale

such gradients on freestream head. On the basis of this scaling,

the adverse gradient reported here is 4 to 5 times that of

Schloemer. It should be noted that Tw and q are functions of

x. q0 is evaluated at x=O.

Equation (4) is exact for steady (nonturbulent) two-dimen-

sional mean flows on which three-dimensional turbulence is super-

imposed. Such flows are of interest here. Equation (4) is a

sufficiently good approximation to the exact description of the

favorable gradient flows for two reasons. Firstly, turbulent

velocity magnitudes are much smaller than mean velocity magni-

tudes, so that the errors that turbulent motion cause in equa-

tion (4) are relatively small. Secondly, as was pointed out in

the previous paragraph, Tw and 6*dp/dx are of the same order.

Thus the errors due to unsteady flows are indeed small compared

to *w This reasoning applies only to the FS and FR flows;

neither reason holds in the cases of AS and AR flows. Turbu-

lence magnitudes are much higher in relation to mean flow magni-

tudes, and also Tw is much smaller than the other terms in

equation (4). Under these circumstances, equation (4) is in

serious error. The appendix of this report discusses this prob-

lem and shows how equation (4) was modified in the case of ad-

verse gradient flows to give better estimates of the wall shear

stress. Because the term T w is relatively small in equation (4)

for AS and AR flows, the uncertainty in estimating it is quite
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high. This fact is an additional reason to scale pressurcs on

freestream head rather than wall shear stress, for flows with

adverse pressure gradients.

Re0 values are slightly larger than those of Schloemer,

and comparable to those of Blake.

k is an average roughness height, obtained by averaging ag

large number of random measurements of sand grain diameter.

r/6* gives the ratio of the effective radius of the pressure

transducer to the boundary-layer displacement thickness. This

number is large in the favorable gradient cases, especially for

smooth walls, because the gradient makes the layer so thin. It

is this fact which will prevent study of stronger favorable gra-

dients with the same instrumentation, since even the current

investigation was limited by the experimental difficulties of

small length scales. The transducer size has also been scaled

on inner parameters. Emmerling (1972) and others have concluded

that inner-scaled transducer size is also important in assessing

the debilitating effect of finite transducer size.

Figure 6 shows how 0, 6*, and H vary with x or & for AS

flow. Figure 7 shows how nondimensional pressure gradient de-

pended on x or C. It also gives three estimates of the skin

friction factor. Note that 6* and Q are both functions of x.

The cross-hatched area is the estimate (and estimated error

limits) formed from equation (4), modified as explained in the

appendix. The line labeled LT is from an empirical formula of

Ludwig and Tillman (1950) which estimates the friction factor

from the Reynolds number and the shape factor:
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.12310.678H Re268

0

The AS flow profile had a small logarithmic region near the wall.

If one asserts that this region obeys von Ka-:man's Law of the

Wall with von Karm~n's constant K=.41 (this choice of K agrees

with the equations on Figure 2), then one can infer the friction

velocity and wall shear stress. The estimate of the friction

factor using this method is labeled CP. The methods are not in

agreement. Although the momentum integral method approach is the

most rigorous, none of the three can be considered very reliable.

Figure 8 applies to AR flows. These quantities are an aver-

age of those obtained for the two flow speeds measured. Again,

the cross-hatched region estimates the friction factor from

equation (4). The solid line is the estimate of Ludwig and

Tillman. No estimate from the logarithmic region could be made

for AR flows because it was nonexistent.

In the FS and FR flows the logarithmic region of the layers

extended throughout most of the layer, as can be seen in Figure 2.

The roughness had a tremendous effect on the layer, because the

geometrical size of the sand grains was larger than the displace-

ment thickness of the FS layer. The FR layer was considerably

thickened with respect to the FS layer, and there was a wake

region which the FS layer seemed to lack. This latter differ-

ence accounts for the difference in H between the two cases. It

is almost obvious that roughness will increase pressure inten-

sity; but whether or not intensity will keep pace with the wall

shearing stress is not clear from the foregoing discussion. The

AS and AR flows are functions of x, and the mean parameters vary
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widely, especially in the case of AS flows. However, the propor-

tional changes in any of the mean quantities over one boundary-

layer thickness (AC=l) is never more than about 10%, and it is

possible that the flow may be profitably viewed as locally homo-

geneous in the streamwise direction. As a function of x, the

adverse gradient flows tended toward separation, as the generally

decreasing estimates of friction factor indicate. The upstream

part of the AS flow might be expected to behave similarly to a

no-gradient flow, whereas the downstream portion of this flow,

and most of the AR flow, might behave more like a free wake,

since the effect of the wall should be rather small. In fact,

because of the small shearing stresses, and because the AS and

AR flows have thick layers in comparison to the roughness size,

it is unlikely that the local roughness in the tested region

had much effect. However, the AR boundary layer profile was

retarded ooming into the adverse gradient region. This caused

it to react much more strongly to the adverse gradient, even

though the angle of divergence was less than that for AS flow.

(B) BROADBAND STATISTICS

Wall pressure intenslty--Wall pressure fluctuations were

measured with Briel and Kjaer type 4138 microphones with circular

diaphragms of 1/16-in radius. The microphones were mounted flush

with the surface of the wood board on which the sand was ce-

mented.) The diaphragms were covered with caps with holes

drilled through their centers of 1/30-in diameter. The diameter

of these holes, referred to as d in this report, is the effective

diameter of the transducers. The airspace between the diaphragm

L ... . . . . . .. . . . .. . ... .. . . .. . . .. . . .. . . . . . . . .. .... . . . . . . . . . . . . . . . . . . . .... ... . .. .- - .. . . .. . .. .. . . . .. . . . . . . . . . . . . . . . . . . . .
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and the cap of a microphone resonates with a fundamental frequen-

cy of about 17 kHz. The microphones have a flat (+7%) frequency

response between 20 Hz and 14 kHz with the caps in place, and

they were calibrated at 250 Hz to within 3% with a type 4220

Briel and Kjaer pistonphone. Frequencies below 20 Hz and above

14 kHz were always filtered out of the data. RMS levels were

measured with a Briel and Kjaer type 2416 True RMS Meter, accu-

rate +3%.

Total rms wall pressures are given in Table 1. FS flows

had a higher rms pressure than Blake's (1970) no-gradient flows

when scaled on dynamic head, but lower when scaled on wall shear-

ing stress. As will be seen from the next section, considerable

power is lost in the higher frequencies due to the finite size

of the transducer or the finite high-frequency response of the

transducer. The amount of power lost is greater for thinner

boundary layers and for larger transducers. The FR flows, with

a smaller ratio of r/6*, show a higher rms pressure scaled on

shear stress. Schloemer had larger values of r/S* than those of

the current investigation, and his values of Prms/t w are smaller

than those of this experiment, for both no-gradient and favor-

able gradient flows. It is likely that, if all the energy were

measured, the rms pressure would be a constant multiple of the

wall shear stress for varying favorable gradients, at least up

to the magnitude of the gradients studied by Schloemer and the

author. This constant multiple is probably about 3.5 over the

smooth wall, and 2.9 over the rough wall, using the no-qradient

results of Blake (1970).

Adverse pressure gradients are better scaled on freestream
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head, rather than mean wall shear stress, since the values of

shear stress are inaccurate. Another reason for not using wall

stress scaling is that the AS and AR flows are wakelike and do

not seem to be strongly affected by the wall. Neither Schloemer

nor the author had as much experimental trouble getting broad-

band pressure data with adverse gradient, because the intensi-

ties were confined to a narrower frequency range. However, pres-

sure crosscorrelation determined that the AS wall pressures were

contaminated with acoustic noise below 70 Hz. Frequencies below

70 Hz were eliminated from the data. Removal of these frequen-

cies reduced the total intensity, but never more than 15%. For

the same reason, wall pressure data had to be limited to frequen-

cies above 40 Hz with AR flows. This limitation had a negligible

effect on the measured pressure intensity. The AS flow had

about the same rms pressure level as Schloemer's. The AR flow's

value was significantly higher. This result can be attributed

to higher turbulent intensities over the roughened wall. It is

not an effect of the condition of the wall in the tested region.

Rather it is an indirect effect: the roughness retarded the

flow ,ipstrea-n of the test section. This affected the mean velo-

city profile of the whole layer in the test section, giving a

much h4her shape factor in the AR flow as compared with the AS

flow. This AR flow developed higher turbulent intensities, as

described below, which are responsible for the higher rms wall

pressures.

Table 1 gives a range of values of rms pressure as a func-

tion of displacement. Note that q is not a function of x.

Considering the large changes with x of the mean parameters,
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it is surprising that the variation of rms pressure is so slight

in the AS and AR flows. Fluctuating pressures measured at sev-

era! stations are listed in Table 2. When rms pressures are

scaled on the variable q(x), they appear to increase with x;

this is an artifact of the decreasing dynamic head. The pres-

sure does not scale on local mean parameters, but tends to be

constant. This surprising fact suggests that what was measured

was actually acoustic contamination. Two-point pressure corre-

lations, reported later in this section, eliminate this possibi-

lity. The data for the AR flows are not so convincing because

the measurement stations do not span as large a range of ,.

Turbulent velocity intensities--Turbulent velocities were

measured with hot-wire x-probes and Disa 55D09 constant-tempera-

ture anemometers with Disa 55D15 linearizers. Longitudinal tur-

bulent velocities were also measured with single-wire probes.

The probe wires are about .03 inches long, and the two wires in

the x-probe are separated by about .02 inches. This size reducer

the sensitivity of the wires to sma 1 -scale disturbances, a

problem in the FS and FR flows, in which the lenqth scales are

quite small. No attempt was made to correct for this deficiency,

but it is further discussed in section C below. The greatest

error in the velocity measurements is apt to be associated with

the standard methods of extracting velocity components with an

x-probe. This method, subtracting and adding siqnals of the

oblique wires to obtain normal and streamwise velocities, relies

on the assumption that turbulent velocities are small compared

to the local mean flow velocicy. The order of the error asso-

ciated with this assumption is 6(y)/U(y).



-20-

The rms velocity, or turbulent intensity, profile: are

shown for the FS flows in Figure 9. The results of Blake (1970),

measured with almost the same equipment, provide a no-gradient

comparison. The curves attributed to Blake have been faired by

the author froma data of Blake. The longitudinal intensities

are reduced by the favorable gradient. The same rceult was

obtained by Schloemer (compare curves 3 and 4, which Schloemer

faired through his own data). However, the normal intensities

are not reduced nearly so much. It would appear that the assump-

tion of local isotropy, which Schloemer had to make for lack of

data, is not justified in the comparison of favorable and no-

gradient data. The turbulent intensities are more isotropic in

the FS case than in the no-gradient case. No spanwise intensi-

ties were measured in the FS and FR cases. For both 0 and Q,

the data show a slight increase in outer wake intensity at the

higher Reynolds number. Turbulent intensities for flows with

no gradient or favorable gradient are consistently lower for

Schloemer than for the author or Blake.

The same quantities are displayed for FR flows in Figure 10.

Again, there is a tendency for more isotropy in the favorable

gradient case. The longitudinal intensity is reduced sharply by

the gradient, but the normal intensity is actually increased

near the wall. Further away from the wall, however, it is sharp-
ly reduced. Again, the higher Reynolds numbers seem to have

brought higher intensities near the outer edge of the boundary

layer.

Turbulent intensities for AS flows are shown in Figure 11.

Intensity is now scaled on freestream velocity rather than shear-



strums volocity, Longitudinal intensitles Are shown for two

extramo valuos of x, At tlhe uputmaIm station, the profilo shape

is not too dift(eront from that of Hliake, uhown in Figure 9.

And at the other end, there has been a considerable redistribu-

tion of energy away from the wall, and the total amount of tur-

bulent enerjy in the profile is higher, Sch]oemer's adverse

gradient intensity is much lower, perhaps in part because his

gradient was not as strong. Also shown for comparison is the

profile of Bradshaw (1966) for a self-preserving flow in an ad-

verse pressure gradient. His result is more like the author's,

except that the curve peaks at a lower value, farther away from

tle wall. A similar comment applies to a comparison of normal

intensities of Bradshaw and the author. It cannot be fairly

stated that these differences are the difforences of a self-

similar flow versus a non-sel.f-similar flow, since Schloemer's

flow was also self-similar, yet his longitudinal intensity pro-

file is more similar in shape to the author's than it is to

B3radshaw's. Note the fact that Bradshaw found the spanwise in-

tensity to be midway between the other two in magnitude. The

author did not measure spenwise intensities for AS flows.

The intensity pri,files for AR flows are shown in Figure 12.

The longitudinal AR intensity at both stations follows the pat-

tern of the AS longitudinal intensity at the downstream station:

the profile peaks about where U(y)/U.=I/2. The longitudinal

profile is more hiighly peaked at the downstream station. Note

that the shape factor H is quite high for both of these measure-

ment stations. All three components of turbulent intensity were

measured at the downstream station. The spanwise intensity is



midway between the longitudinal and normal intonsitios in magni-

tude, the same os in Bradshaw's measurements over smooth walls.

For the mean velouity profiles with shape factore greater than

about 2, all thrue i•tensitioa would seem to have approximately

the same profile shape, although the longitudinal intensity is

always the largest of the three. It may also be noted thau,

for velocities with a large shape factor, the region where

U(y)/Uw is about 1/2 is also a region where the velocity profile

is almost linear. This fact raises the possibility that local

instantaneous inflections may develop in the velocity profile,

resulting in inviscid instabilities and higher intensities.

S2atial crosocorralations--Many two-point space-time corre-

lations of wAll pressure were measured. The correlations have

been normalized by the product of the rms presoures at the two

points p )/(prms(x)prms(x+r))] so that the normalized

correlation is always unity when its arguments are all zero.

Some of the results are shown in Figures 13 through 22. Correla-

tions were performed with two Bridel and Kjaer model 4138 1/8-in

microphones and a Princeton Applied Research (PAR) model 100

correlator, The microphones had the same phase response to

within 100 between 20 Hz and 14 kliz. Power at other frequencies

was removed with a pair of Khron-hite model 330 bandpass filters.

These filters were always adjusted for identical (+30) phase

response before use. This could be done by fine-tuning the

passing frequencies of one of the units until its phase response

matched that of the other unit. Statistical errors associated

with the finite averaging time of the correlator were the domi-

nant errors in measurement. The correlator has an exponential
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averaqer with a time constant of 50 seconds. Assuming the pres-

surp signals to be gauussianly distributed, the 70% confidence

limits of the normalized correlations are +i//7, where T is

50 seconds and B is the approximate bandwidth of the pressure

signal. The favorablo gradient pressures were spread over the

whole frequency range of 20 Hz to 14 kli:, giving an approximate

70% confidence limit spread of !.0013. This result only holds

when the samplinU rate of the correlator, which is variable, was

greater than about 30,000 samples per second. The correlator is

constructed so as to require a lower sampling rate when a longer
time delay between the two correlated signals is desired. At

worst, the sampling rate was depressed to 1000 samples/sec, for

FS and FR flows. To prevent errors due to insufficient sampling,

all frequencies above 500 Hz had to be removed in this worst case.

This gives a worst-case 70% confidence tolerance of approximately

+.004, for these flows. As will be seen in section C, th• AS

and AR wall pressures were more restricted in frequency. The ap-

proximate bandwidth B is about 250 Hz in the worst case, giving

+.007 for the 70% confidence limits. A more reliable estimate

of the statistical error of the correlator is obtained by forming

successive correlations and checking for repeatability. Observed

confidence limits may be established in this manner. Figures 13

through 22 contain no data for which the 70% confidence limits

(either calculated or observed) were larger than about one-third

the observed correlation level. The exception to this rule is

that contours of zero correlation are sometimes included. Such

contours are always flanked by contours of opposite sign and suf-

ficient magnitude to satisfy the criteria laid down above.
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Figures 13 through 16 show lines of constant correlation.

The abscissa and ordinate are separations of one transducer rela-

tive to the other. Spot checks for negative values of the ordi-

nate verified that the contours, as expected, are symmetric

with respect to the Ax axis, so that only one quadrant needed

to be shown. The FS and FR flows are virtually independent of

x, and so their contours are symmetric with respect to the Az

axis as well. Figure 13 compares contours for the FS flow,

at 120 ft/sec, with no-gradient flow, as measured by Blake (1970),

and extended to include oblique separations by the author.

Figure 13a is contours with no time delay, while in Figure 13b

the :onvecting correlation contours are plotted. These contours

are obtained by showing the maximum (positive) correlation ob-

served as a function of time, when observing a space-time corre-

lation between two points on the wall, of fixed positions.

This procedure recognizes the observed fact that fluctuating

disturbances propagate longitudinally, so that two-point corre-

lations between points which are longitudinally separated should

be much higher if one delays the signal from the upstream trans-

ducer to account for the transit time of the convecting distur-

bance. Where the longitudinal separation of the two measurement

points is zero, the convecting correlation is the same as the

purely spatial one. Thus, for example, the contours of Figures

13a and 13b are the same near Ax=0. Figure 13 illustrates an

experimental problem: getting the two microphones close enough

together relative to 6* when the boundary layer is so thin. It

was not possible to get closer than about 36* for the FS flows.

The following observations can be made in comparing the solid

and dashed curves of Figure 13a. The contours are more nearly



-25-

elliptical for the FS flow. That is, the solid contours have

less of a tendency to curve away from the Az axis for large Ax.

Otherwise, the two sets of curves are quite similar, suggesting

that S* is an appropriate scale for comparison. The negative

correlation contours for larger values of Ax suggest disturbances

Qscillating in the x-direction. Consider what this means in

terms of equation (3) in Chapter I. The variable vector x can

be ignored for FS flows because they are homogeneous in the (x,z)

plane. T=O, and the vector r has the components (Ax, Az) in the

notation of Figure 13. D is even in the lateral coordinate.

The vector F is probably aligned with the longitudinal axis for

all frequencies because the correlation is symmetric in the

Ax-axis, but one can't be sure from the broadband data alone.

Oscillation comes from the term exp(k.r), and it is so quickly

damped because F is a strong function of w, and waves of differ-

ent frequency therefore destructively interfere. The oscilla-

tions are more nearly confined to the Ax-axis with no-gradient

flows. If the wave packets were frozen, then the convecting

contours would all be horizontal lines. For small values of x,

this is seen to be a good approximation except for the contours

of very high correlation which are of very small extent due to

viscous dissipation. It appears from Figure 13b that the FS

flow decays a bit more slowly in time than the no-gradient flow.

This suggests that P(r,w) decays more slowly with rl/6*, at

typical values of w. One might also expect that D might decay

with increasing r 2 /6* at about the same rate in both the FS and

no-gradient flows. It is expected that increased viscous dissi-

pation, not accounted for with displacement thickness scaling,
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would cause the convecting contours to be closer to the Az axis

for the smaller separations. This effect could not be measured

because sufficiently small separations could not be obtained.

Figure 14 compares FR flows with no-gradient rough flows.

Figures 13a and 14a show almost exactly the same effects. How-

ever, Figure 14b does not indicate that convecting decay is slow-

er over rough walls with the imposition of a favorable gradient.

In fact, it seems to be slightly faster at the smaller separa-

tions. This differs from the smooth-wall result shown in Figure

13b. This result suggests that the longitudinal cross-spectral

density has about the same dependence on r1/5* for both gradients

over rough walls.

Contours for AS flows are shown in Figure 15. Note the

change in scale from Figures 13 and 14. The boundary layer was

not longitudinally homogeneous, and it cannot be assumed that

the contours shown have mirror images across the Az axis. Here,

6* was evaluated at the local origin Ax=Az=O, and held indepen-

dent of Ax and Az. Two different origins were used: the upstream

(U) and the downstream (D) origins. 6* is different for the two

origins. In both Figures 15a and 15b, one can see that the

correlation at lateral separations is much greater for the AS

flow. This probably reflects higher cross-spectral density mag-

nitudes at lateral separations at typical frequencies. The

contours for the AS flow measured at the upstream origin (dashed

line) are similar to the no-gradient contours (dashed line in

Figure 13a). The downstream measurement of the AS flow (solid

line in Figure 15a) differs from the upstream measurement in two

principal ways. First, the longitudinal correlation decays far

more rapidly, and second, the correlation is far more oscilla-
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tory, as can be seen by the existence of the -. 2 contour line.

Going back to equation (4), the stronger oscillations suggest

that jk(w) does not vary so much over the integral in that equa-

tion, for the flow over the AS downstream measurement point.

This could be due either to 1F being a weak function of w, or

that 4 is significantly different from zero only for a small

range of w, and hence IF. More will be said on this matter in

section C. The AS convecting contours are shown in Figure 15b.

They show that the convecting turbulence decays faster with ad-

verse gradient. Interestingly, the differences between upstream

and downstream measurement results are not as great in Figure

15b as they are in Figure 15a. Decay is a bit faster at short

distance, but a bit slower at longer distances. This suggests

that the cross-spectral density decays with r 1 /6* at about the

same rate at both ends of the layer, so that outer variable

scaling accounts for most of the difference between upstream and

downstream, as far as Figure 15b goes. In Figure 15a, the solid

and dashed curves would have been more similar if the longitudi-

nal displacement Ax had not been normalized by 6*(x), which is

much larger at the downstream origin. It is possible that there

is some mechanism that has maintained a constant eddy size in

the AS flow.

The AR flow contours are shown in Figure 16. The boundary

layer was so thick, and the scales were therefore so long, that

measurements from just one origin covered all of the longitudi-

nal extent of the test region. Therefore, it made no sense to

try to compare spatial correlations with two different origins.

The correlations for spanwise separations decay even more slowly

than those of the downstream AS flow, but the behavior as a func-
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tion of Ax is quite similar to the upstream AS flow. Clearly,

the behavior of the adverse gradient spatial correlations is

not a simple function of H or the local mean flow conditions,

but rather is a function of both local mean flow conditions and

the upstream flow. The AS flow began upstream (E=O) with a shape

factor and a longitudinal intensity profile which is not too

different from no-gradient flows, and changed fundamentally as

a function of x. The AR flow began as a retarded flow with a

high shape factor and a peaked longitudinal intensity profile,

which changed only qualitatively as a function of x. The higher

lateral correlations seem to be characteristic of the rough-wall

flow, and are probably caused by the condition of the flow at

the onset of the adverse gradient. This conclusion results from

the observation that even as the shape factor increases in the

AS flow the lateral correlations do not broaden; they do not,

in other words, approach the correlations of the AR flow, which

has, among other differences, an even higher shape factor than

at any position in the AS flow. The position of the contours

near the x-axis is not explained on the basis of local mean flow

either. The AR flow, with its high shape factor, behaves like

the upstream AS flow, with its low shape factor. The AS flow

deviates from the no-gradient flows much more than the AR flow.

This is not easy to rationalize. Figure 16L shows that the

longitudinal decay of the correlation, and probably the cross-

spectral density, is very gradual in the AR flow at typical

frequencies.

At this point it should be noted that the cross-spectral

density has been discussed as a function of r/6*. In section C
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below, it is discussed in terms of k1 'r, where k is the longi-

tudinal component of k. The results will be different.

Convection velocities--When Figures 13b, 14b, 15b and 16b

were being prepared, the correlation was maximized in time for

each longitudinal displacement Ax. Let this time be labeled

M (Ax). Then a convection velocity may be defined by Uc=Ax/tm

These velocities may be thought of as group velocities because

they are defined in terms of the rate at which the total wave

packets propagate, that is, the rate at which turbulent pressure

energy propagates. These velocities are plotted as a function

of longitudinal separation in Figures 17 and 18. Figure 17

applies to FS and FR flows, and also shows the no-gradient re-

sults of Blake and Schloemer for comparison. There is little

Reynolds number dependence, as one would expect. For all sepa-

rations, velocities are slightly higher than those for no-gradi-

ent flows. For most separations, agreement with Schloemer is

excellent. As Schloemer has explained, the higher convection

velocities are due to the fact that mean velocities are higher

in the FS and FR flows than in the no-gradient flows throughout

the boundary layer, as evidenced by the lower shape factors.

This conclusion holds for both smooth and rough walls.

Figure 18 shows broadband convection velocities for the

adverse gradient flows. Figures 18a and 18b pertain to the AS

flow, and to Figure 15. Figure 18a corresponds to the dashed

lines in Figure 15, and the upstream origin; Figure 18b goes

with the solid lines and the downstream origin. The results of

Schloemer are shown dashed in Figure 18a. Separations which

.... .......
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were strictly longitudinal are marked with x's. These veloci-

ties are lower than Schloemer's at the upstream measurement

point, and even lower at the downstream point. This is undoubted-

ly due to the fact that the AS flow was more retarded than

Schloemer's, as indicated by the larger shape factors for the AS

flow. Velocities are smaller for smaller separations, as are

Schloemer's. This is probably due to the faster decay of the

smaller disturbances, which are closer to the wall and therefore

travel more slowly. At larger separations, mainly large, faster-

moving disturbances are left. For data marked with circles, the

indicated streamwise separation was accompanied by an equal span-

wise separation. It is important to note that only the longitu-

dinal component of the velocities measured between diagonally-

separated points is shown here, not the magnitude of the convec-

tion velocity, which was larger by a factor of VT. It is the

longitudinal component of these velocities which is larger than

the velocities of strictly longitudinally-separated points, when

separations of equal magnitude in the longitudinal direction are

compared, as they are in Fiqure 18. Not cnly are the velocities

for diagonally-spaced points larger, but, at their largest, they

exceed by a significant amount the large separation limit of the

velocities for strictly longitudinal displacements. There are

two obvious physical explanations for this result. One is that

At large A& the disturbances which are left are not the largest

and the fastest; perhaps the longest lasting are intermediate in

size and speed. The diagonal spacinq would discriminate against

all but the largest eddies because only they would be correlated

over the spanwise component of the separation. This is especially
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true of the large diagonal spacings. If all this were true,

then the large diagonal spacings might have velocities even high-

er than those of the largest, strictly streamwise separations.

The other possible explanation is that there are wave packets

moving obliquely in the (x,z) plane, which move faster than the

mean flow, and which do not correlate well in the direction per-

pendicular to their direction of propagation so that they are

not readily detected by correlating points which are separated

purely streamwise or purely spanwise. This second possibility

is further discussed in section C of this chapter. The AR velo-

cities are shown in Figures 18c and 18d. Results are similar to

Figures 18a and 18b except that velocities are generally lower,

reflecting the lower mean velocities in the rough-wall boundary

layers.

For favorable gradient flows, diagonally-spaced correla-

tions gave the same convection velocities as purely longitudi-

nally-spaced correlations.

Time autocorrelations--The last set of broadband measure-

ments to be reported is the time autocorrelations of wall pr'es-

sure, Figures 19 through 22. Figure 19 compares autocorrela-

tions of FS and no-gradient flows. Except for large times, the

two curves collapse well on outer variable scaling. The symbols

are data transplanted from the solid lines of Figure 13a, using

the convection velocities shown in Figure 17. If the calculated

convection velocities actually give the rate at which distur-

bances propaqate, and if these disturbances are approximately

frozen, that is, if they do not decay appreciably in the time it

takes for them to traverse the distance Ax-iUc, then tho x's

[
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would fall approximately on the solid curve. The comparison in

Figure 19 is not very enlightening because of the lack of data

at small separations.

Figure 20 compares FR flow with no-gradient rough-wall flow.

Again, outer variable scaling accounts well for the differences

between the two flows. The check on convection velocities and

frozen turbulence is slightly more convincing here. Note that

the correlations appear to drop more quickly from 1 in the FR

flow case than in the FS case. This is an artifact, caused by

the more severe high-frequency limitations imposed by the experi-

mental apparatus in the FS flows, due to the extremely thin boun-

dary layers. This artificial difference illustrates why correla-

tion microscales, formed by studying the detailed shape of the

curves near the origin, are often not useful numbers. They

define the limits of the apparatus, rather than some physical

aspect of the flow.

Figure 21 shows the time autocorrelations for the AS flow.

Five curves correspond to different longitudinal measurement

positions. These curves, perhaps more than any others, show

how much the AS flow changes along the streamwise direction.

Curve 1 is similar to those in Figures 19 and 20, while succes-

sive curves in Figure 21 become more oscillatory, suggesting

that more and more power is being concentrated in a comparative-

ly narrow band of frequencies centered near w6"/U.=.3 or so.

This conclusion is quantitatively verified in section C, where

wall pressure spectra are displayed. The circles use the dashed

data from Figure 15a and the convection velocities from Figure

18a. The x's use the solid lines from Figure l5a and the
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convection velocities from Figure 18b. The convection velocities

varied considerably from point to point. Note that the corre-

spondence of circles with curves 1 and 2, which refer to

approximately the same longitudinal location, is decent; but the

x's are a bit too close to the abscissa in comparison to curves

4 and 5 to which they should approximately ccrrespond. This

indicates significant decay of the disturbances over one wave-

length, and is reflected in lower longitudinal cross-spectral

densities when they are plotted against Tir, as they are in

section C.

Figure 22 shows the tinre autocorrelation for the AR flow.

The measurement points were not distributed over enough longitu-

dinal distance to show any changes in the curve. This means

that outer variable scaling is adequate to compensate for the

changes that occurred. Only the curves which correspond to the

minimum and maximum values of ý are presented, and they are vir-

tually identical. The x's come from Figure 16a with convection

velocities from Figure 18c. The lack of fit between the curves

and the x's is similar to the case of Figure 21, and for the

same reason.

The discrete symbols on these graphs are compared with the

curves on the basis of a convection velocity, Uc, which differs

from the acoustic speed by a factor of at least 7 for all data

shown. If the dominant source of wall pressure had been acoustic

waves, then the discrete symbols on Figures 21 and 22 would have

described a virtually straight horizontal line at R=1.

Additionally, significant traveling acoustic wave contribu-

tion to the fluctuating wall pressure power (at least 1% of the
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Lotal) would have resulted in detectable croascorrelation maxima

at the time delays equal to the separation divided by the sound

speed. No such maxima were detected. For these reasons, it is

concluded that acoustic contamination of the adverse gradient

pressure data was not present in significant quantity.

(C) NARROWBAND STATISTICS

All spectra are defined as even functions of frequency.

Thus p O(w)dw. Autospectra were obtained with one of two

machines. The favorable gradient work was done with a Br~el

and Kjaer type 2107 wave analyzer which has a range of 20 to

20,000 Hz, which measured the amount of power in proportional

bands of 6% width as a continuous function of frequency. The

pressure spectra were not limited by the range of the analyzer

since the range of the microphones was less. On the other hand,

the hot-wire anemometers were useful to 35,000 Hz and, although

their finite physical size degraded the signal at the higher

frequencies, it still would have been useful to have the spectral

data to 35 kHz. Between the time that the FS and FR flows were

investigated and the time that the AS and AR flows were done,

a Federal Scientific model UA-15A real-time analyzer and spec-

trum averager was purchased. In addition to being much faster,

this instrument allows analysis to 50,000 Hz. Therefore, turbu-

lent velocity spectra convey a much wider frequency range for

AS and AR flows. The Federal Scientific machine measured power

in each of 500 equal bands between 0 Hz and the upper limit set

by the user. Both the Briel and Kjaer and the Federal Scienti-

fic machines were capable of enough time averaging so that 70%

confidence could be set at 3% of the measured value, which



,xcaead tho ]linaril.y and ro¢poatabil.•ty of tho microphones which

wore used, so that the analy•ers did not contributo significant-

ly to error* in spectrum shape. The xeoption to this Is that

70% confidence limits rome tn +54 when using the iela and Kjaer

unit at tho very lowest frequencies where the rproport.ional band-

widths waer ext ý,maly rn arrow. In this case, broader bandwiAthe

were used and the teaults compared. No discrepancies occurred.

Both analyzers were calibratei in absolute gain with white noise

to within +8% for all measurements. UsuAlly agreement was +4%.

Pressure autoB3oc2tra--Prrosure spectra are shown beginning

with Figure 23. It is important to note that no corrections for

transducer size are made in the data except where the legend on

the page apecifically says that the curve ii corrected. The

"Corcoo correction" referred to in Figuros 23 through 29 is that

proposed by G. M. Corcus (1963) to estimate the attenuation of

measured wall-pressure fluctuations by the finite size of the

transducers. The triangles on the curves indicate where the

Corcos correction would have added three db to the existing

curves.

A comparison of pressure spectra for flows over smooth and

rough walls with no pressure gradients is given in Figure 23.

The curve labeled 1 was obtained by the author at a flow speed

of 100 ft/sec. The curve labeled 2 was obtained by averaging

the data of Blake (1970) over the several flow speeds for which

smooth-wall data were reported. Schloemer's data for no-gradient

flows are shown in curves 3 and 4. The Corcos-corrected curve

is Schloemer's own. With the Corcos correction applied, the

Schloemer data are still below the author's and Blake's data.
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Part of the explanation is that the Coroos correction is prob-

ably not large enough. The rough-wall data which are shown in

curve 5 were obtained at 120 ft/sec. Curve 6, attributed to

Blake, was obtained by averaging the data of Blake over the sev-

eral flow speeds at which data were measured. Figure 23 shows

that the rough-wall spectrum is approximately equal to the

umooth-wall apoctrum near 4,A*/U.l, but is slightly lower at

other frequencies.

Figure 24 shows the same data an does Figure 23, but with

scaling on Tw for the ordinate. Since curves 1, 2, 5 and 6 were

all obtained from the same facility with substantially identical

boundary layers, curves 1 and 2 are in the same relative posi-

tions as they are in Ftgure 23, and so are curves 5 and 6.

Schloemer's data have moved down, and are appreciably below data

of Blake and the author at all frequencies.

Figure 25 shown FS and FR spectra, with ordinate scaling of

Tw* Again, Schloemer's results are much lower than the author's,

at all frequencies. The discrepancy in this figure is about
the same as the one in Figure 24. It appears that differences

between curves 2 and 3 in Figure 25 are due to differences in

instrumentation or facilities between Schloemer and the author,

rather than an effect of the favorable pressure gradient. With

ordinate scaling on Twf the rough-wall results (curves 5 and 6)

are again below the smooth results (curves 1 and 2) except at

the very highest frequencies; curve 1 is probably depressed

slightly above w6*/U, v 1 from viscous dissipation, because the

smooth-wall boundary layers were so thin. The ordinate scaling

on Tw' forms a good collapse between flows of the same wall type

.Mt
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and the two different qradients. Curves I and 2 in Figure 25

have been averaged to form the solid line in Figure 26. The

dashed line in Figure 26 is the same as curve 1 in Figure 24.

The agreement is very good, and the effect of viscous dissipa-

tion at the higher frequencies in the FS flow is evident. The

collapse between the FR flown and the no-gradient rough-wall

flow. is slightly better because viscous dissipation does not

depress the spectrum of the FR flows. The spectra of both FS

and FR flows is severely curtailed by the high-frequency limit

of the microphone used. This unfortunately makes the compari-

son of favorable gradient flows with those with no gradient less

satisfying. However, it seems clear from the data presented

here that outer abscissa scaling and inner ordinate scaling

collapses data for both smooth and rough walls within 2 db or so.

It is also clear that a large amount of pressure power has been

lost at the higher frequencies in both FS and FR flows. The

problem is much more severe than with flow with no gradient, and

the FS flow measurements have lost the most high-freq'-ency power.

These differences in experimental inadequacy make the comparison

of broadband pressure power more difficult, as noted by Schloemer

(1966).

The pressure spectra for AS flows are shown in Figure 27

with outer variable scaling for both axes. The adverse gradient

flows have wall law regions which extend a small fraction of the

boundary-layer thickness away from the wall. Therefore, outer

scales make more physical sense. But outer scaling does not col-

lapse curves 1 through 5. These curves all describe the same

AS flow at several measurement stations. As was predicted in
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section B frow, the correlations, more and more power is concen-

trated at a nondimensional frequency of .3 or so, at progressive-

ly downstream stations. Each curve corresponds to an entry in

Table 2. In Figure 27, q is a function oi x. The lower frequen-

cy limits indicated in Figure 27 were electronically imposed to

remove frequenci at which the pressure signal was contaminated

by acoustic noise from the wind tunnel; these same limits were

used in measuring the rms values in Table 2. A negligible amount

of power could be lost from the high-frequency limits indicated

in Figure 27, because the figure shows that very little power

was present above a nondimensional frequency of 10. Therefore,

the area tnder the curves in Figure 27 should equal the numbers

given in Table 2. Curves 1 and 5 were checked against the table

by hand calculation and found to agree within +12%. Vhe numbers

in Table 2 are more accurate since they were obtained with an

rms meter accurate to +3%, while the frequency analyzer had been

calibrated only to within 8% in absolute gain. Between measure-

ment points 1 and 5, the total power in the wall-pressure signal

remains about the same, while redistributing itself to lower

frequencies. One obvious explanation for this would be that the

turbulent intensities and wavenumber spectra remained about the

same between the two points, while the progressively retarded

mean flow converted the wavenumber spectra into wall-pressure

frequency spectra with progressively more power in the lower

frequencies. This idea makes sense only if the pressure depends

linearly on the turbulent velocities, because only then can one

begin to imply the pressure spectra from the velocity in a simple

way. This linearity assumption is equivalent to assuming that
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the dominant pressure sources in the boundary layer are the mean

shear-turbulence interaction terms, rather than the turbulence-

turbulence terms. For an explanation of this concept, and par-

tial experimental verification, see Willmarth and Wooldridge

(1963) for smooth-wall flows and Burton (1971) for rough-wall

flows. This idea turns out to have some merit, and is revived

below, where the velocity spectra are discussed.

Schloemer's adverse gradient results are given in Figure

27 for comparison. There is qualitative agreement. The Corcos-

corrected curve almost coincides with curve number 3. This is

a coincidence. The shape factors of the two flows are signifi-

cantly different. But it does verify the results in Table 1

which show that, scaled on outer parameters, the rms pressures

for adverse gradient flows are about the same for Schloemer and

the author.

The two extreme curves from Figure 27 are replotted in Fig-

ure 28. Schloemer's data (uncorrected) are shown again, and

Bradshaw's are added. Bradshaw's flow was self-similar with a

rather strong adverse gradient. Bradshaw's spectrum is similar

to Schloemer's, but much higher in level. This difference can

be explained in terms of the higher turbulent intensities in

Bradshaw's flow, as displayed in Figure 11. Figure 11 also

shows that the AS flow of the author has generally higher inten-

sities than those of either Schloemer or Bradshaw. However,

sources were closer to the wall, and should be expected to pro-

duce higher wall pressures. The fact that total rms wall pres-

sures were about the same for Schloemer and the author is prob-

ably a combination of two opposing effects: (1) the author's
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thicker boundary layer, and (2) Schloemer's lower turbulent

intensities.

When scaled on outer parameters, the wall-pressure spectra

of AS flows did not collapse with the no-gradient spectra.

Neither did the different spectra (curves 1-5 in Figure 27) col-

lapse among themselves. On the theory that nondimensionalizing

frequency on U.0 does not take into account the flow retardation

near the wall in adverse gradient flows, inner frequency scaling

was tried in Figure 29. There is qualitative collapse between

the AS and no-gradient flows except at the highest nondimension-

al frequencies, where viscous dissipation causes the no-gradient

spectrum to drop sharply. The inner variable scaling cannot be

expected to collapse the high-frequency data in this case, be-

cause the wall-shearing stress is not a reliable measure of the

boundary-layer profile in the AS flow, the way it is in flows

with a large logarithmic region. Still, the reduced shearing

stress is a crude measure of the more retarded flows, and, in

fact, for most frequencies the inner frequency scaling does a

better job than the outer frequency scaling of Figure 27 in col-

lapsing curves I through 5. Of course, the low-frequency peaking

of curves 4 and 5 cannot be collapsed because it represents

qualitatively different behavior. Mixed abscissa scaling,

W6*/U T, gives similar results.

Figure 30 shows the spectra for the AR flows with outer vari-

able scaling. As expected, there is very little Reynolds number

dependence. Three different measurement points were used. The

only significant difference between the curves of the three mea-

surements is that the high-frequency power is somewhat higher
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for the upstream (x=6") measurement point. This same difference

shows up between curves 4 and 5 in Figure 27, which describes AS

flow. These curves are very similar to the AR curves, except

that they are about 5 db below the AR curves at all frequencies.

This difference is reflected in Table 2, where the rms values

are about 70% higher for the AR flows. The higher pressure in-

tensity is due in part to the higher turbulent velocities of the

AR flows, as can be seen in Figures 11 and 12. All power below

40 Hz was removed from both the spectra in Figure 30 and in

Table 2. This frequency is lower than the 70 Hz cutoff for the

AS flow, and so there is more low-frequency information in Fig-

ure 30 than there is in Figure 27.

As in sections A and B of this chapter, it is seen that the

character of the AS flow changes markedly between measurement

points, whereas the AR flow changes only slightly, behaving like

the downstream part of the AS flow.

Turbulent velocity spectra--Turbulent velocity spectra for

the FS and FR flows are shown in Figures 31 and 32. Hot-wire

probes were used, as explained in section B of this chapter, and

spectral analysis was performed by the same Briel and Kjaer type

2107 wave analyzer that was used for the FS and FR pressure

spectra. The method of abscissa scaling is based upon the fact

that the turbulence convecting past a hot-wire probe may be con-

sidered as approximately frozen. In analogy with equation (3),

Chapter I, the turbulent velocity can be approximately repre-

sented by a traveling wave with frequency w and wavenumber W.

If 101 is weakly varying in r1 (nearly frozen turbulence), then

the range of wavenumbers belonging to each frequency will be
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narrow. The group velocity of such packets has been experimen-

tally shown by Willmarth and Wooldridge (1963) to be approxi-

mately equal to the local mean velocity U(y). Since this experi-

mental result is independent of frequency, one may conclude that

the group and phase velocities are equal, and that therefore

w/'W = U(y). Thus the abscissa in Figures 31 through 37 may be

interpreted as iF6*, where now the graphs are viewed as longitu-

dinal wavenumber spectra. Without the assumption of frozen tur-

bulence, the view is still valid, but t must be remembered that

the abscissa is an average wavenumber, as defined in connection

with equation (2).

The hot-wires have linear response well beyond the 20 kHz

limit of the analyzer, but the finite size of the wires can cause

attenuation of high wavenumber turbulence. A characteristic

length for the probe is s-.03 in., the length of one sensing

wire. For the FS flows, s/6* is about .5, so that significant

loss can be expected for wavenumbers such that J6* is above

2w/.5 a 10.* In the FR flows, loss can be expected for F6*

above about 40. Examination of the data in Figure 31 shows that

no measurements were taken at high enough average wavenumber for

the probe size to be a significant limitation. The overriding

limitation in Figures 31 and 32 is the upper-frequency response

limit of the analyzer. The velocity spectra are normalized to

unity by dividing by the mean square intensity. The areas under

the curves (when doubled, since all spectra are two-sided) are

less than I because the intensities were measured with a band-

width of 2 Hz to 40,000 Hz. Even though probe size attenuated

*It is assumed here that k1 o k3 .
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the higher frequencies as described above, the intensity measure-

ments contain on the order of 15% more power for the FR flows,

due to frequency limitations imposed by the range of the analyzer.

Figure 31 shows longitudinal turbulent velocity spectra for

FS and FR flows. Blake's data for flows without gradient is pro-

vided for comparison, and agreement is good. Little Reynolds

number dependence can be found. There is some tendency, at the

highest wavenumbers, for the spectra measured closest to the

wall to have slightly lower spectral levels. Slightly lower

levels, at wavenumbers on the order of 1, for the FS flow as com-

pared with Blake's smooth-wall data, can be attributed to vis-

cous dissipation in the FS flow. The effect is not present in

the rough-wall data. As with Blake, wavenumber scaling collapses

the longitudinal spectra very well.

Normal velocity spectra are shown in Figure 32. The rough-

wall data behaves very much like the longitudinal rough-wall

data. Tho smooth-wall spectral data are somewhat different.

The collapse between the FS data and Blake's data is not as good,

and the tendency for the spectral levels to be lower near the

wall in the vicinity of W6*-l is much more pronounced in both

the FS and the no-gradieA'- flow. The presence of the wall is

more important for the no' -.a'ý velocAties, for they are required

to vanish at the wall. As was seeii in connection with Figures 9

and 10, the rough wa,'l does not have this effect.

The spectral analysis for the AS and AR flows was performed

with the Federal Scientific analyzer, which operated to 50 kHz.

The dynamic range of the analyzer, 55 db, limited the useful

frequency range. s/l* was about .03 for the AS and AR flows,
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so that probe-size attenuation is significant for wavenumbers

higher than about k6* = 2w/.03 = 400. Using the argument similar

to Corcos' (1963) for wall-pressure measurements, one may argue

that below k6*=200 attenuation from finite probe size is less

than about 50%, and below R6*=i00, less than about 20%. The

hot-wire and anemometers are linear to within +15% in the fre-

quency range used. The error associated with extracting u and v

components from an x-probe is on the order of 6(y)/U(y), as

discussed in section B. Unfortunately, the turbulent intensi-

ties are more than 10% of the mean flow speed over much of the

AS and AR layers. The errors incurred in the intensity profiles

are not severe, but errors in the spectra are difficult to esti-

mate, and may be considerable.

Figure 33 shows longitudinal turbulent intensity spectra

for the AS flow. Three longitudinal measurement points are sam-

pled, each approximately the same distance away from the wall.

Except for the much higher level of curve 1 at low frequencies,

the curves collapse within experimental error. Without more

data to confirm or deny the low-frequency rise of curve 1, which

appears anomalous, the validity of this data must remain in

doubt. Other differences between the curves are minor. Curves

1, 2 and 3 correspond respectively in longitudinal position to

curves 1, 3 and 5 in Figure 27. It is iimnediately apparent that

the vast differences between the pressure spectra are not due to

differences in the wavenumber spectra of the longitudinal velo-

cities shown here. Of course, it is possible that the normal

intensity spectra are much different, and measurements of v and

w are not available to directly dispute this possibility; however,
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spectra of all three components of velocity are available for

AR flow, and spectral shapes are not markedly different at any

flow position although the intensities are different, as shown

in Figure 12. It is therefore suggested that the wavenumber

spectra remain almost constant along streamlines in the AS flow.

The differences in pressure spectra are caused by the changes in

mean velocity profiles.

Longitudinal spectra at two positions in the AR flow are

shown in Figure 34. The collapse is excellent. Figure 35 com-

pares u spectra at one x-position for several values of y. Note

the changes in scale. 6* has been replaced by L, which is equal

to 6* except very near the wall. L has been set equal to 6* for

the curve numbered 1 which corresponds to y/6*=1.74, the largest

value of y for which data are shown. The purpose of L is to

show that turbulent length scaleb are measurably smaller near the

wall. For curves 2, 3 and 4, representing measurement3 made

successively closer to the wall, L has been determined so as to

produce the best possible fit with curve 1. Turbulent velocities

measured at a position of y/6*=1.74 are presumed to have turbu-

lent length scales that are not affected by the wall. Then the

fact that L/6* is less than unity for curves 3 and 4 indicates

that the proximity of the wall reduced turbulent velocity length

scales. Collapse is excellent, weil within experimental error

except at the very highest frequencies. It is clear that the

wavenumber spectra shift to higher wavenumbers when y/6* is

below about 1. This fact comes as no surprise, and the idea

that wavenumbers are inversely proportional to distance from

the wall has widespread support (see, for example, Morrison and
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Kronaure (1969)). Similar graphs for normal and spanwise turbu-

lent velocities are shown in Figures 36 and 37. Collapse is

again excellent and within experimental error. With the x-probes

required to measure v and w, it was not possible to get close

enough to the wall to obtain data for y/ 6 *=0.11. Therefore, it

is not possible to see that the wavenumbers near the wall are

indeed higher for these turbulent velocities. (For the same

reason, such an effect could not be measured, if indeed it is

present, in the favorable gradient flows for which the displace-

ment thicknesses were much smaller.) But it is clear that all

three types of wavenumber spectra are independent of position in

the flow except possibly very near the wall. Comparing Figures

35, 36 and 37, the three types of spectra have exactly the same

shapes. The w spectra are shifted up about 30% in wavenumber

relative to the u spectra, and the v spectra are shifted up an-

other 35% in wavenumber relative to the w spectra. Although

these differences are slight, there is enough data to be sure

of them.

The longitudinal velocity wavenumber spectra are uniform

throughout all flows measured. The normal spectra are uniform

throughout the adverse gradient flows, but not the FS flows.

The anisotropy of the favorable gradient turbulence is due to

the presence of the smooth wall. In light of the low wall stress

in the adverse gradient flows, and the low influence of the

wall in terms of the mean profiles, it is expected that adverse

gradient anisotropy would L, less.

Assuming, again, that the mean-shear turbulence interaction

pressure sources are responsible for most of the fluctuating
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wall pressure, then the wall pressure depends linearly on the

turbulent velocities. Equation (7) from Burton (1971) is repro-

duced here:

47rp(o,t) = dU v d (5)
Sv dY2 7Y I

where the volume V is the entire boundary layer, and pressure is

measured at the origin. This equation expresses the pressure as

a spatial integral of mean shear-turbulence sources, after

Lilley and Hodgson (1960). It allows qualitative explanation of

the observed pressure spectra. In the FS and no-gradient smooth-

wall flows, with shape factors below H=1.4, mean velocities are

close to U. except in the viscous sublayer where the turbulent

intensities are low. If the turbulent intensity is contained in

higher wavenumbers ne. :er the wall, and lower wavenumbers far-

ther away from the wall, then the convection of these waves at

local mean speed will create fluctuating wall pressures over a

wide range of frequencies. The rough wall retards flow near the

wall, and increases shape factors to about H=1.6. With the con-

vection speeds lower for the wave packets of highest wavenumber,

the amount of fluctuating pressure energy that is generated at

the higher frequencies will be less in rough-wall flows. This

conclusion holds for both no-gradient and favorable gradient

flows, and is borne out in Figures 23, 24 and 25. The AS flow

for i greater than about 15 and all the AR flow had an approxi-

mately linear profile over much of the boundary layer, that is,

U(y) • Uy/6. In this case, a shift to higher wavenumbers of

the turbulent velocity at points closer to the wall is countered

by a drop in local convection velocity which leaves the frequen-

cy spectrum that is generated at a fixed point by the convecting
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turbulence unshifted. This idea explains the concentration of

power into a narrower range of frequoncios that is apparent in

curves 4 and 5 of Figure 27, and all the curves of Figure 30.

It should be emphasized that the value of the shape factor alone

is not sufficient to predict the approximate bandwidth of pros-

sure spectra. Bradshaw (1967) measured a shape factor of 1.54,

which is '.;sa than the shape factor of any of thi A8 and AR

flows. Nevertheless, Figure 28 shews that tha upstream pressure

measurement of AS flow showed p(.wur spread ovor a wider ranoe of

frequencies than tho power spectral density measurerients of

Bradshaw, also shown in the figure. Alo, the AS and AR data

suggest that increases of H above 2 for disequilibrium flows in

adverse gradients have little effect on the shape of the wall

pressure spectrum.
Cross-spectral-densities--Cross-spectral densities were com-

puted by passing the two pressure signals through a pair of

tracking filter, Spectral Dynamics rmodel 101A. and then corre-

lating the resulting narrowband signals. The filter bandwidth

was either 5 Hz or 50 Hz. The correlation was performed one of

two ways. With one method, signals were correlated using the

Princeton Applied Research model 100 correlator. The form of

the resulting correlogram is obtained from a modification of

equation (3), Chapter I, where it. is assumed that the filters

used are unity gain over a bandwidth A(,) centered at w•0 , rid zero

gain outside that band:

(x r =

0 W J0 o '



Following Blake (1970), 1I1 and R can be expanded in a Taylor

series around wswo, and then the integration can be performed.

The result to third order in Aw is

(Aw) '•" ,( 0 " *i(R'r'w÷+) + O( )4 (6)

where
OEi

and

Q 62 ( 0 + 0 ý
o

Primes denote differentiation by w, and the sero subscript moans
evaluation •&t w'w. The angle 0 in of the order (Aw)2. Estima

tion even of its sign requires considerable knowledge of the

function C. Tho form of I$I shows the well-known conclusion

t hat the wave envelope of narrowband correlations has i'-s maxi-

mUm whore *-•,.r, where (R)-1 can be thought of as the group
0

v30locity Ug at frequency w0o This velocity need not be equal

to thok ohase velocity U.OW/R•. Neglecting 0, equation (60

shown that the real part of R is a maximum when Tn (F'.r+2wn)/wo,

where it is at, integez, and IF.r-tnI in as small as possible.

At worst, this latter quantity is w/wo, so that this maximum

correlation value, at worst, is less than I$I by the factor

(l-(Aw 2 /(24w•o)). Even when third octave filters are used,

this factor is very nuarly unity, so that the maximum correla-

tiob level givv.s an excellent estimate of It(xr,w)I. The other

method of correlation was to compute Rfx,r,O)=Co, and

R(x,r, n/(2wO))-Quad, using a Spectral Dynamiom model 109A

Co-Quad analyzer. Ths the square root of the sum of the squares

of those quantities was used as the estimate of I 4i. Equation
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(6) shows this watimate to be approximately equal to 14J evalu-

ated at '-0, and it is les than the true magnitude I1* by the

factor (l-(Aw-r/(241')) 2 ). For small separations, the Co-Quad

method is as good as the space-time correlationu but# for large

separations, the error can be larger. For the filters used#

this error was always quite small.

It is not possible to find the convection time Ta from a

neasurement of R at a single frequency and separation. R in real

and positive for an infinity of values of T because the phase is

defined modulo 2w. Some experimenters suggest that the convec-

tion time is that rm for which R in its maximum value, but this

method is reliable only if the phase and group velocities are

equal. If not, one obtains some combination of the phase and

group velocities by forming U. 0 r/tm. The method used here to

find the phase velocity w/F is to observe that 0 is a smooth

function of war. Arg $ I- met equal to zero at w.rwO, which

uniquely defines the phase. Then the convection velocity is

just U-W o/F •wr/Arg $-wr/tan- (Quad/Co) to first order in Aw.

Uo is defined to be in the direction of the displacement

vector r. When r 3 0 0, the longitudinal component of Uc is taken

as the convection velocity in the data that follow. When El-0,

UC is not defined.

All narrowband filters were calibrated with white noise,

and it was found that the nominally 50 Hz filters had a noise

bandwidth of about 43 Hz, while the nominally 5 Hz filters had

a noise bandwidth of about 4.1 HR. The two filters being used

were always phase-matched to within 30 (50 Hz filters) or 70

(5 Hz filters) at the common center frequency of the two filters
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at all frequencies at all times, while the two 5 Ila filters were

a maximum of about 15. out of phas&. This maximum error occurred

at the half-power points of the filter curves, and was due to

the slightly different center frequencies 6f the two filters.

To assess the effect of these errors, cross-spectral density ma-

surements were repeated with the filters interchanged with no

apparent difference resulting. More significant errors come from

statistical inaccuracy. When the PAR correlator was used for

correlation, the true averaging time was a fixed 100 seconds.

With 50 Hz filters, one statistical standard deviation in the

normalised cross-spectral density is then l//7Ef-.011. 50 Hz

filters were used when wr/U was large, and allowed normalized

correlations as low as .03 to be measured with confidence. This

method was used to spot-check the results obtained by the other

method. With this other method, the Co and Quad parts of the

correlation, defined above, were obtained as a continuous func-

tion of frequency for a fixed displacement r. (Thus Arg t was

obtained as a continuous function of wr.) This method was faster

than the point-by-point method using the correlator at fixed

frequencies, and was therefore used to obtain more of the data.

With either method, the nominally 5 Hz filters were used for

lower frequencies so that Aw/w was never more than .2. The

Co-Quad avorager was modified to obtain true averaging times

continuously variable up to 200 secondw. At the maximum aver-

aging time, l/vI2BT was .008 with the 50 • filters. Each PAR

correlogram supplied the amplitude and phase of 4 for a single

value of each of its arguments. Each correlogram was statisti-

cally independent. When the Co-Quad method was employed,
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frequency was swept at a rate not exceeding Aw/(3VT) Hz/sec,

where T is the true averaging time, equal to twice the exponen-

tial s ,eraging time constant. Thus, data separated in frequency

by at least Aw could be considered statistically independent.
Therefore, the scatter in the raw data was a good measure of the

statistical errors. The scatter in the data presented in this

report is not only from statistical errors, as is explained

below.

In addition to statistical errors, the normalized cross-

spectral data is biased by errors in normalization of up to 8%.

An additional bias error of approximately .012 in the normalized

cross-spectral density is due to a drifting bias error in the

Co-Quad analyzer.

Cross-spectral magnitudes--Cross-spectral density magnitudes

are plotted in Figures 38 through 44. In the notation of these

figures, $I$ is a function of two components of microphone separa-

tion and angular frequency: 10(rlr 2 ,w)I. In all figures the

displacement r is either purely longitudinal or purely lateral.

Spot checks of cross-spectral densities with equal displacements

in the longitudinal and lateral directions (rl=r2 =d) were made,

and the following relation was found to hold within experimental

error:

i(0,0,w).0(d,d,w) = 0(d,O,w).-(0,d,w)ei 0  (7)

It should be noted, however, that for some adverse gradient flows,

the errors, chiefly excessive scatter, prevent this coniclusion

from being convincingly shown. This relation includes both phase

and magnitude. 0=0 in all favorable gradient flows. 0#0 for

adverse gradient flows with diagonal separations. The phase of
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lateral cross-spectral densities was always found to be real,

which means that convection velocities are either indefinite or

irrelevant. They are taken to be irrelevant. For experimental

evidence that equation (7) holds and a discussion of its implica-

tion with respect to Corcos' pressure model, see Bakewell (1968).

The cross-spectral densities depend roughly exponentially

on their arguments. For this reason, Figures 38 to 44 are

plotted with logarithmically-spaced ordinate scales. This has

the advantage that the curves are almost straight lines over

much of their graphs. Semilog plots of cross-spectral magnitudes

are not common; some experimenters complain that they accentuate

the relative errors for small values of the ordinate, while com-

pressing the most accurate part of the graph, that part with large

values of the ordinate. This complaint, while valid, is not

serious, considering the 8% normalization error discussed above.

This error makes any detailed consideration of the shapes of the

curves for small values of the abscissa very speculative anyway.

Following the usual convention, we define 10(rl,O,W)I/

0(0,0,w)EA(rlw) and •(0,r 3 ,w)/0(0,0,w)EB(r 3 'w). In terms of

these definitions, equation (7) may be rewritten

(d (,, w) = A(dw)B(dw)exp(iwd/Uc) (7a)

where Uc(rl,r 2 ,w) is the phase velocity defined by this relation.

The two magnitudes in the right-hand member of equation (7a)

will be referred to as the A-function and the B-function for

brevity. The anglc 0 is built into the definition of U c

The nondimensionalization of the abscissa in all these illus-

trations implies a wavenumber scaling. Since Uc is defined in

connection with equation (4), Chapter I, as w/k, the abscissa
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may be renamed r.E. Thus, when wr/u is 2n, then r equals one
C

wavelength at frequency w. Therefore, good collapse of the data

with this abscissa scaling means that all waves have the same

spatial decay function when distance is scaled on the wavelength

of the waves.

The A-function for FS and FR flows is shown in Figure 38.

The scatter in the data is partly due to statistical errors.

Estimates of the size of such errors were given earlier. The

scatter is also partly due to the imperfection of the wavenumber

scaling law imposed on the data by combining r and w into a single

argument. The abscissa scaling collapses all the data very well.

No significant Reynolds number dependence is found. This is

true for all the cross-spectral data.

Figure 39 corpares A-functions for several conditions.

Curves 3 and 6 were obtained by fairing lines through the middle

of the data points of Figure 38. Curve 2 was obtained by fitting

a curve to Schloemer's data. Curve 5 is a curve that Schloemer

faired through his own data. Curves 1 and 4 worp obtained by

fairing curves through the middle of Blake's data. The differ-

ences between curves I and 2, which both apply to smooth-wall

no-gradient flow, are barely within experimental error. Curves

3 and 5, which both describe FS flows, are in excellent agree-

ment. The effect of the favorable gradient with the smooth wall

is slight, but quite distinct, since the collapse of the data is

so good. By comparison, the degrading effect >f roughness is

overwhelming. The addition of the favorable gradient decreases

this degradation, as expected.

Figure 40 shows B-functions for FS and FR flows. Again,
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the data collapse very well. In Figure 41, curves 3 and 6 were

obtained by fairing lines through the data in Figure 40. Within

experimental error it is not clear whether the addition of rough-

ness has any effect on the B-function. Evidently, if there is

an effect, it is to slightly increase the rate of decay. Curves

1 and 4 were obtained by fairing lines through Blake's data.

Curve 2 was obtained by fairing a line through Schloemer's data,

while curve 5 is Schloemer's own. Blake and the author show

that roughness has little effect on the B-function, in both no-

gradient and favorable gradient situations. Curves for the FS

and FR flows are somewhat below Schloemer's favorable gradient

flow. Blake's no-gradient curve is lower. Schloemer is in sub-

stantial agreement with both Willmarth (1962) and Bakewell (1968).

His B-function is only slightly higher than that of Bull (1967).

Thus it is probable that Blake's curves are just a bit too low.

The imposition of a favorable gradient reduces the decay of the

B-function slightly, whether the wall be smooth or rough. Dif-

ferences among the B-functions are much less than among the cor-

responding A-functions.

Data for AS flows are shown in Figure 42. The dashed line

was obtained by fairing through Schloemer's data. The data scat-

ter for the AS flow is somewhat worse than for favorable gradi-

ent flows. The cause is not increased statistical errors in 101,

but rather the irregular dependence of U on w and r, which will

be shown below. Replacing Uc with U, in the abscissa in Figure

42 reduced scatter significantly, but the data for different

separations did not collapse with this scaling. Data points

labeled A, B, and E agree within the scdtter. The valte of
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given in the legend for Figure 42 is that corresponding to the

midpoint between the two measurement points. Data points A, B,

and E all correspond to about the same value of F. A and E differ

only in the bandwidth of the filter used. Data points C and D

also agree within the scatter. Therefore, the combination of w

and r used for the abscissa is appropriate at least within the

scatter of the data. The data for the two values of E are

markedly different. The A-function of the AS flow deteriorates

very rapidly at the downstream measurement area.

Figure 43 gives the A-function for AR flows. Only one value

of t was used in this flow. The boundary layer was so thick in

comparison to the area available to measure the statistics that

an insufficient range of & was available to make presentation of

the two sets of data worthwhile. Data for two separations are

presented. The differences in the line of circles and the line

of x's is difficult to interpret. it lower values of the :-

scissa, the AR A-function is slightly higher than that for the

AS flow (M-11), while at larger values of the abscissa the AR

A-function in slightly lower. However, the AS A-function for

&=23 is much lower than either of the others. A similar effect

was observed in section B in connection with broadband correla-

tions: the longitudinal correlation dropped most rapidly with

distance with the downstream section of the AS flow.

The adverse gradient B-functions are presented in Figure

44. The dashed line was obtained by fairing through the data of

Schloemer. No dependence on separation was found. Points A,

B and C agree within the scatter. Comparing Figures 41 and 44,

it can be seen that the adverse gradients caused some reduction
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of the B-functions, but he effect is not very great. Schloemer's

B-function is somewhat lower.

Cross-spectral phases--The FS phase velocities used to

scale the abscissa of Figure 38 are shown in Figure 45. Little

Reynolds number dependence is found. This result is true for

all convection velocities measured. There is very little scat-

ter in the favorable gradient data. Above w6*/U.=l, there is

no dependence on separation. This result is in agreement with

3lake (1970), but in disagreement with Schloener's favorable

gradient results. At lower frequencies, there is a slight

separation dependence, with smaller separations showing slightly

lower phase velocities. The peak in velocity for wd*/UO = which

appears in Blake's no-gradient results is absent in the FS re-

sults. The tendency to lower phase velocities at very low fre-

quencies, first reported by Blake, is even more pronounced here

since 6* was smaller in the FS case, which allowed smaller values

of the abscissa in Figure 45 to be reached. The low-frequency

behavior of the data is much different than that obtained by

Schloemer and many other experimenters (see Blake (1970) for a

discussion of this discrepancy).

Figure 46 shows phase velocities for the FR flows. The peak

around w6*/U, -l which Blake's smooth- and rough-wall data show

is present here, although the effect in the FR flow is not as

pronounced. Of the four flow types, formed by using smooth and

rough walls with zero and favorable gradients, only one flow

fails to show this peak in the phase velocity. It is the same

flow which Figure 2 shows to contain no wake region in the mean

velocity profile. This suggests that the faster wake portion of
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the boundary layer is responsible for the increase in phase velo-

cities. At the smallest separations, the high-frequency asymp-

tote is slightly lower for rough walls than for smooth walls.

This difference is in agreement with Blake. The data aren't

available to show how this asymptote varies with separation dis-

tance in the PS flow, or in either the smooth- or rough-wall

flows of Blake. However, the FR data show that this high-frequen-

cy limit is slightly higher at larger separations. Figure 46c

shows a limit of Uc/U00.63, exactly bqual to the limit for FS

flows. So it appears that the rough wall, which causes a

retarded logarithmic region in the velocity profile, reduces the

convection velocity only at small separations.

AS phase velocities are presented in Figure 47. The beha-

vior of the adverse gradient phase velocities is much different

from those of the favorable gradient flows. At all separations,

the downstream measurements show slower velocities than the up-

stream measurements do. This is expected because the adverse

gradient slowed the mean velocity throughout the whole boundary

layer between the two measurement points. There is considerable

separation dependence, with smaller separations consistently

showing slower velocities, at all frequencies. Measurements of

phase velocity with oblique separations were made for PS, FR

and AS flows. Only the AS flows showed any dependence of the

phase on the lateral component of separation. This difference

shows up in Figure 47 as higher phase velocities for oblique

separations.* Compare this with the conclusion in section B

*Only the longitudinal component of each velocity is considered.
Thus, if, for example, it is stated here that a 45* oblique con-
vection velocity was 3.414 times as high as the corresponding
purely longitudinal one, then the total magnitude of the oblique
ve)ocity is actually twice that of the longitudinal one.
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of this chapter that broadband convection velocity, which is

defined in Chapter I, is similar to the group velocity U definedg
in connection with equation (6) above. Of course, comparison

is clouded by the fact that the expression in Chapter I is an

integration over a much larger band. Intuitively it is clear,

however, that the broadband convection velocity, as defined in

Chapter I, is the rate at which energy is convected; and this

rate is a weighted average of the various groups of a broadband

wave packet. This means that a disturbance which is larger,

and therefore of mainly lower frequency, should be observed to

move faster. In this sense, the two possible explanations for

the observance of high oblique velocities in AS and AR flow,

put forth in section B, are really the same explanation. Each

says that the large lateral component of the separation selects

only the packets of largest spatial extent. These, of course,

will on the average have their energies distributed over the

lowest frequencies. They are observod to move faster than other

packets. Physically, this means that they are positioned fur-

ther away from the wall where the mean flow is faster. They

can therefore be expected to convect faster. This convection

velocity is a group velocity, so the physical explanation is

consistent with Blake's prediction of high group velocities at

lower frequencies. That this effect was not observed in FS and

FR flows means that most pressure is generated from regions in

the flow where the convection velocities are approximately the

same.

Figure 48 shows phase velocities for Lhe AR flow. There is

considerable dependence on separation. Data for the smaller
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separation show a peak near w6*/U =3. This is difficult to

interpret. The frequency dependence for lower frequencies, al-

though superficially similar to the low-frequency drop in the

favorable and no-gradient flows, is probably not from the same

physical cause. The favorable gradient data peaked around

w6*/U=l, not 3.

Phase velocities depend upon frequency differently for AS

and AR flows than they do for the other flows. But their most

obvious characteristic is the increased data scatter. This

reflects the experimental difficulty that was encountered in re-

peatably measuring the croor-spectral phases in the adverse gra-

dient flows in spite of the long averaging times that were used.

It is this problem which generated most of the scatter in the

magnitude data of Figures 42, 43 and 44. The scatter is signi-

ficantly more than what was estimated earlier, using formulas

which assume that gaussian random signals were being multiplied

and averaged. The explanation for this increased scatter is not

known. Perhaps the wall-pressure fluctuations in strong adverse

gradients cannot be treated as a gaussian random process. It was

observed in section B that several fluctuating velocity sources

at several elevations (and mean velocities) contributed to the

measured fluctuating wall pressure. Since it is established

that the group velocities of the fluctuating velocity packets

are equal to the local mean convection velocities, then it is

clear that near w6*/U ml, where most of the AS and AR fluctua-

ting pressure power is, there are several group velocities con-

tributing to the pressure, at a single frequency. Perhaps this

makes experimental measurement of the phase velocity more diffi-
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cult in some way.

Adverse gradient velocities are compared in Figure 49.

Curves 2, 3 and 4 were obtained by fairing the data from Figures

47 and 48. Curves 5 and 6 are curves that Schloemer drew through

his own data. Bradshaw (1967) transformed the measured cross-

spectral density to get 0(k,w), the wavenumber-frequency spec-

trum. (Only purely longitudinal separations were used.) He

then defined a phase velocity by Uc(,k,w)=w/k. Curve 7 was ob-

tained by the author by graphically computing the follcwing

weighted average convection velocity:

Uc () = f Uc(kw) 4 (k,w)dk/ I 4(k,w)dk

The data corresponds to Bradshaw's strongest adverse pressure

gradient. This technique does not measure any spatial dependence

of the convection velocity. Schloemer's adverse gradient data,

like his favorable gradient data, show a low-frequency dependence

which differs sharply from the data of Blake and the author. It

is possible that curves 3, 4 and 7 actually measure the same

thing, where Bradshaw's curve is dominated by longer separations

at lower frequencies (where it resembles curve 4) and shorter

separations at the higher frequencies (where it resembles curve

3). The much lower convection velocities in the AR flow are due

to the very retarded profile which results from the combination

of the gradient and the rough wall upstream of the gradient.

Curves 1 and 2 correspond to the upstream measurement point of

the AS flow, and therefore can be expected to behave much differ-

ently than curves 3 and 4. Only Schloemer's data shows an in-

crease of velocities below w6*/U.=i. The data in Figure 49 are

in poor agreement, and detailed explanations of the differences
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The crosm-spectral density experimental results can be sum-

marized as follows: Eqvatioi (7a) is verified for all flown.

(Additionally, 1I1 depends only upon the similarity group waril

for favorable gradient flows.) The B-functions are not signifi-

cantly affected by roughness, and only moderately affected by

pressure gradient. Favorable pressure gradients moderately in-

crease the A-functions. The A-function is moderately decreased

in the AR flow, and in the upstream AS flow, and considerably

decreased in the downstream AS flow.

In section B of this chapter, the following predictions

were made about the spatial dependence of the longitudinal and

lateral cross-spectral density magnitudes. These predictions

were based upon scaling separation distance on displacement

thickness, and they applied to typical frequencies of each flow.

Longitudinal magnitudes were expected to increase with the impo-

sition of the favorable gradient, while lateral magnitudes were

expected to remain about the sime. This conclusion holds for

smooth walls. With rough walls, no significant change in either

cross-spectral magnitude was expected. The lateral magnitudes

were expected to increase with the imposition of adverse gradient,

for both smooth and rough walls. The longitudinal magnitude was

projected to be slightly larger foi AR flows and slightly smaller

for AS flows.

The imposition of the favorable pressi're gradient does not

alter the nondimensionalized frequency content of the pressure

autospectrum, when the frequency is scaled on outer variables.

Very crudely, then, "typical" frequencies should be about the



Oa•, Phase velocities are slightly increased with the favarAble

gradient, so that the implied wavovotoor spectrum in slit0htly

shifted to lower vwluos of F-.*, and therefore typical wavenwn-

ber# are slightly lower, Thum the experimental fact that the

A-function docroases more slowly as a function of W.d with the

imposition of the favorable gradient implies that longitudinal

magnitude also decreases more slowly an a function of r±/6*,

This qualitatively agrees with the prediction made in section B

for the smooth wall, but not for the rough wall. By the same

reasoning, one concludes th4t the lateral cross-spectral magni-

tude should decrease more slowly with r 3i/* with the application

of favorable gradients. This was not predicted in section B from

the broadband data. The adverse gradient situation is quite

different. In 11 cases the phase velocities were lowered. in

the upstream case, Figure 28 shown that the pressure frequency

spectrum is only slightly altered from the no-gradient case.

Since A(iF.r ) decreases somewhat more rapidly in this came rela-

tive to the no-gradient case, and with the typical wavenumber

somewhat higher, Itj can be expected to decrease more rapidly

with r,/6* at typical frequencies, as predicted in section B.

In the AR case, A(W.r 1 ) and B(W.r 3) again decrease somewhat fast-

er than for no-gradient flows. But typical trequencies, and

therefore typical wavenumbers, are much lower because O(N) is

concentrated in a low-frequency peak. Thus 0(r 1 ,r 2 ,w) should

decrease more slowly in r1/6* and r 2 /6* at typical frequencies

in AR flow, as compared with no-gradient flow. This effect is

verified by the broadband data in section B. By the same logic,

(ri,r 2,w) should also decrease more slowly at typical frequen-



cies in the downstream AS caua. This result wos prodiated for

lateral displa'sments, but not for longitudinal displacements.

It could be argued that the va'y fast decay of A(R.r1 ) outweighs

the shift toward lower wavunumbers in this case. However,

A(IC-r1 in this ease does not deoroame much more rapidly than

A(•'r 1 ) for the no-gradient rough-wall casme and the large dif-

ference between A-functions of the no-gradient flows with the

two wall types, measured by Blake, are not predicted from the

broadband data.

It is clear from this discussion that casual prediction of

broadband correlations from cross-spectral densities, or vice

versa, is a hit-or-miss propouition. Computation of the broad-

band results from the narrowband results i s possible, but it

must be carried out in detail if the result is to be reliable.

This task was not done for this report, and the narrowband and

broadband results are therefore best viewed as separate and

independent.
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CIIAPTER III

CONCLUSIONS

1. Turbulent boundary layers adjust quickly to the impo-

sition of a favorable pressure gradient, and can be described in

the gradient region as homogeneous in the plane of the wall.

This conclusion holds for both smooth and rough walls.

2. Turbulent boundary layers do not becomo self-similaz

after the imposition of strong adverse gradients, but rather

tend toward separation. They may not be considered homogeneous

in the longitudinal direction. If the region of examination is

confined to those parts of the flow which have noninflectional

mean velocity profiles (as was done in this paper), and if sepa-

ration of the flow is avoided (this was done by terminating the

wall to which the layer adhered and allowing a free surface to

form), then the layer can be considered homogeneous in the lat-

eral dimension, and the mean flow is two-dimensional. That is,

significant three-dimensional effects associated with flow sepa-

ration a-e avoided. This conclusion holds for smooth- and rough-

wall flows.

3. Wall-pressure spectra can be successfully predicted

for favorable gradient flows by scaling amplitude on mean wall-

shear stress and frequencies on freestream speed and displace-

ment thickness. This conclusion holds for both smooth and rough

walli, except with smooth walls at the highest frequencies where

viscous dissipation is important.

4. Adverse gradient wall-pressure spectra are best scaled

on outer variables. Prediction of the spectrum shape requires

detailed consideration of the mean velocity profile. The profile
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shape is a function of pressure gradient and upstream flow con-

ditions. Therefore, adverse pressure gradients which are equal

at some longitudinal measurement position, but unequal upstream,

will give rise to different mean profiles and different pressure

spectra. It is therefore not sufficient to consider only the

value of the local pressure gradient, together with such common

parameters as the local displacement thickness, freestream velo-

city, and mean shearing stress at the wall, to predict the pres-

sure spectrum. This conclusion holds for both smooth and rough

walls.

5. In the presence of strong adverse pressure gradients,

the value of the wall shear stress and the local amount of rough-

ness on the wall are not important in predicting the wall-

pressure statistics. This is because the bcundary layer is thick-

ened from the adverse gradient, so that the roughness is not nor-

mally very large compared to the displacement thickness. This

is also because the wall shear stress is small, and the logarith-

mic portion of the mean profile, which depends upon the value of

the wall shear stress, makes up a small portion of the total

layer. The effect of upstream roughness on the local wall pres-

sure is to retard the mean flow upstream of the adverse gradient

region and therefore affects the pressure statistics. (This con-

clusion cannot hold if the roughness size is so large that par-

ticles project well into the thickened boundary layer.)

6. Broadband spatial coherence of the wall pressure fluc-

tuations is only moderately affected by imposition of the favor-

able gradient, when lengths are scaled on displacement thickness.

Coherence is improved markedly in the adverse gradient flows,
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which are dominated by disturbances which are large compared to

the displacement thickness, and therefore decay more slowly.

Adverse gradient flows are much more oscil3atory; that is, they

have much stronger negative spatial correlations than the other

flow. This is due to a concentration of pow-r into a smaller

range of frequencies and wavenumbers.

7. Broadband convection velocitiez d'e found to be higher

between points with an oblique separation than between points

separated only longitudinally, but only in adverse gradient

flows. The same result was found for narrowband phase velocities.

8. Lateral cross-spectral densities are only moderately

affected by wall roughness or pressure gradient. (Separation

is scaled on computed wavenumbers.)

9. Longitudinal cross-spectral densities are considerably

lower with adverse gradients and slightly higher with favorable

gradients. Favorable gradient magnitudes and no-gradient magni-

tudes are strongly reduced when a rough wall is substituted for

a smooth wall. Adverse gradient magnitudes are not measurably

affected by local wall roughness. (Separation is scaled on com-

puted wavenumbers.)

10. Phase velocities are only moderately affected by rough-

ness and favorable gradients. The effect on phase velocities of

adverse gradients is strong and complex. Detailed behavior can-

not be easily predicted from local mean flow measurements. How-

ever, adverse gradients always lower phase velocities considerably.
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APPENDIX

THE TURBULENT MOMENTUM INTEGRAL EQUATION

In Chapter II, equation (4) was shown not to hold in turbu-

lent flow. Bidwell (1951) derived the following corrected

formula:

+*dx_ - (u2  -fo U2dy -. 1o6fy y'j(4 )dy'dy+6f uY

d T 0 0X_0 0 WX4X,9 x2

(Al)
This eqvation is valid if the mean flow is two-dimensional. T

is evaluated at the wall, and U.0 and p are evaluated in the flow

at an elevation 6 (x). (The exact value of 6 is important only

to the last term in equation (Al).) 6 is large enough that all

turbulent quantities can be neglected for y > 6 (x), allowing

equation (Al) to be rewritten:

T- +6 d ( 20) =d -672d- d2  f-fwU20 _T 16 u-+v dy - f6fy 6vdy'dy-6f 6 9-vdyP dx -T 0 0 -- 0 ox 0 0ood o(A2)

The longitudinal fluctuating velocities also contribute

another kind of error. Impact tubes were used to measure the

time-averaged dynamic pressure in the flow:

pd = --p IUa+U)2 = 1 [U2(y) + u(y)] (A3)

where Ua ii.: the actual mean flow speed.* In this report, the

measured value of the mean velocity is given by the following

*Viscous errors in this formula have been shown by Hurd et alii
(1953) to be less than 0.2% when Ud/v > 250. Here d is the width
of the tube port. This condition was always satisfied, except
very near the wall in adverse gradient flow over the roughened
wall. No attempt was made to apply the correction suggested
by Hurd because their experimental results were for laminar flow
only. However, their estimates of errors are reflected in the
confidence limits shown in Figures 7 and 8 for the friction
factor. This source contributes little to the total error.
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expression:

Um(Y) = (2Pd/p) 1 / 2  (A4)

Comparing equations (A3) and (A4), the measured mean velocity

exceeds the actual mean velocity:

Um - Ua 1 u 2  (M)

U 27a U aUa

This formula was derived by Goldstein (1936), among others.

For the purpose of applying equation (A2), the following

approximations were made for adverse gradient fj o,,s:

u (y) = e1 U(y) (U. - U(y))
(A6)

V (Y) = c2 U(y) (UW - U(y))

where tho s's are independent of y. These approximations are

very good for U, and fair for V-- (see Figures 11 and 12).

Combining equations (A5) and (A6), one can get the following

estimate of the error in mean velocity measurements:

Urm- Ua 1 U0 - U
00 2 El U(A)

If a profile shape

U(y)/U = (y/6 0 ) 1/a (A8)

is assumed, then
60 a~o c4+2

6* = 6 0 0 U6 ( 0l(u2 H = a+ (A9)

From measured values of 6* and 0, the values of a and 60 were

computed using equation (A9). Combining equations (A7) and (A8)

yields the following correction formulas for 6* and 0:

le6o E1 6 (2-ot)6* - 6* = 10 = (Ao0
m a 2771 T m a 2(a+l) (a+2) (AlO)

where terms in c2 have been dropped. Corrections (AlO) were usedwhereterm in 1
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to improve the values of 6* and 0 appearing in the 'eft-hand mem-

ber of equation (A2). Examining equation (A6), one sees that

the first term in the right-hand member of equation (A2) can be

written as

d Hc +C ) 0 U2]

Then, neglecting the terms in Uv, equation (A2) may be rewritten

in the following form:

w + ax - I [U 0(l-C1-- 2)] = 0 (All)
p

This form of the momentum equation is used in the body of this

report to calculate wall shear stress for adverse gradient flows.

A very crude estimate of the magnitude of the neglected

terms in equation (A2) is

6 (A2 -A 1 ) (A12)

(x 2 -x].)

where A1 and A2 are values of f6 Uv_ dy evaluated at two longitudi-
0

nal positions x1 and x 2 . With the aid of Figure 50, one can

write (A12) for the smooth wall flow:

3 in. x(45.8 in. ft/sec2 - 26.3 in. ft /sec 2.25 2

(6 in.) sec

Similarly for the rough wall flow:

4 in. x (189 in. ft 2 /sec - 98 in. ft2,1 ec,) 40 ft

(3 in.) sec

2
The two rightmost terms in equation (All) are both of order U2D.

Relevant values of U 2 are given in Figure 50. It's clear that

the ignored terms are at least three orders of magnitude smaller

than the dominant terms in the smooth-wall case. Thus they are

truly negligible. In the rough-wall case, the ignored terms are
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at least two orders of magnitude smaller, but, given the small

magnitude of the first term in equation (All), the dropped uv

term is not totally negligible in the rough-wall case. The

error estimate in Figure 8 of the friction factor includes an

error which was arbitrarily set at 60 ft 2 /sec 2 , or +1.5 times

the amount derived above.
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PREFACE TO THE FIGURES

The following conventions were followed in the preparation

of these illustrations. Whenever symbols (circles, triangles,

etc.) are placed on a graph, they represent actual data. This

method of data presentation is used in Figure 2. Sometimes

solid lines are faired through the data, as in Figure 2. In

such cases, the symbols, not the line, always represent the data.

This method of data presentation is always used when the data

were obtained point by point unless the points are so close to-

gether in relation to the radius of curvature of the line of

data that there can be no douot whatsoever as to the exact shape

of the continuous curve. In this case, the data are often shown

as a solid line, as in Figure 4. Curves which represent actual

data are always labeled by numerals (1, 2, etc.), never by sym-

bol. Thus the numerals 1, 2 and 3 do not represent data points

in Figure 4. This method of data presentation is also used when

data were obtained as a continuous function of the abscissa.

For example, the wall pressure spectrum in Figure 23 was obtained

with a continuously sweeping wave analyzer, and is shown as a

solid line. Data of other experimenters which are shown for

comparison are always represented by lines. Sometimes these are

that experimenter's own lines. When this author has faired a

line from the other experimenter's data points, this fact is

noted in the text of this report.

The contours of constant correlation in Figures 13 thr~ugh

16 are the exception to these conventions. They were obtained

by interpolating only about 40 data points per figure.
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SIDE VIEWS - ALL DIMENSIONS IN INCHES
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1/6 (rough wall)

1/4.75 (smooth wall)
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Figure 1. Wind Tunnel Test Section Schematic Diagram
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TABLE 2

ADVERSE GRADIENTS

Total rms Pressures as a Function of

Wall Type (p) 1/2/q (p- i/ 2/O

Smooth 0 .0077 .0077

10.7 .0088 .0078

15.3 .0100 .0084

22.0 .0100 .0077

24.6 .0101 .0075

Rough 6.07 .013 .013

8.85 .017 .015

10.62 .018 .015
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Figure 13a. Contours of Constant Spatial Correlations:
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Figure 38. Longitudinal Cross-Spectral Density.
Favorable Gradient. Circles: U = 120 ft/sec;
Triangles: U = 80 ft/sec. Flagged Symbols:
rl= .875 in.; Unflagged Symbols: ri = .375 in.
Filled Symbols: Rough Wall; Unfilled Symbols:
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FIGURE 39 LEGEND

PRESSURE
AUTHOR WALL TYPE GRADIENT

1 Blake (1970). smooth none

2 Schloemer (1966) smooth none

3 Figure 38 smooth favorable

4 Blake (1970) rough none

5 Schloemer (1966) smooth favorable

6 Figure 38 rough favorable
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Figure 39. Longitudinal Cross-Spectral Density.
Favo:-able Gradient and No-Gradient
Comparison. The legend is on the
facing page.
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Figure 40. Lateral Cross-Spectral Density. Favorable
Gradient. Circles: U = 120 ft/sec; Triangles:
U = 80 ft/sec. Flagged Symbols: r 3 = .875 in.; Unflagged
Symbols: r 3 = .375 in. Gilled Symbols: Rough Wall;
Unfilled Symbols: Smooth Wall.
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VI(~URR 4 1J•OUR4

I Blake (1970) smooth none

2 8hloomer (1966) smooth nune

3 Figure 40 smooth favorable

- 4 Blake (1,970) rough none

5 Shchoemer (1966) smooth favorable

6 Figure 40 rough favorable
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Gradient and No-Gradient Comparison. The
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of symbols, see Table 3.
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For an explanation of symbols, see
Table 3.
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Figure 47b. Narrowband Convection Velocities. Adverse
Pressure Gradient and Smooth Wall. &n23.
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Figure 49. Narrowband Convection Velocities. Adverse
Gradient.

(1) smooth wall P,-12, AC=1.2
(2) smooth wall F, 12, At,=4.7
(3) rough wall F,6, Ar=.45
(4) rough wall r-•6, A&=1.6
(5) smooth wall AF,=l.47, Schloemer (1966)
(6) smooth wall AF.=5.6, Schloemer (1966)
(7) smooth wall Bradshaw (1967)
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