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A conformal array on a surface of small curvature can be approximated 
by a number of planar arrays, several of which may be excited simultaneously 
so as to achieve a performance similar to that of a conformal array. Since the 
main beam of a planar array can be steered to any direction in visible space, 
several arrays, each oriented in a different direction, can be steered coopera¬ 
tively to form a single beam in a desired direction. A general formulation of 
the radiated field of such a configuration of arrays is developed with the aid 
of formulas which relate the components into which a vector is resolved in 
one orthogonal coordinate system with those into which the same vector is 
resolved in a second orthogonal coordinate system. This formulation does 
not involve the integration of the current source but is solely dependent upon 
the knowledge of the far-field expressions of elementary radiators. By means 
of this formulation, it can be shown that within each array the conventional 
row and column phase setting can be used; each array, however, requires an 
additional phase shift to compensate for the phase difference caused by its 
position on the curved surface. As examples, the radiation patterns and 
polarizations of multiple arrays of short dipoles are studied with the aid of 
appropriate formulation. A comparison of the multiple planar array with 
the conventional conformal array is also presented. 
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ABSTRACT 

A conformal array on a surface of small curvature can be ap¬ 
proximated by a number of planar arrays, several of which may be 
excited simultaneously so as to achieve a performance similar to that 
of a conformal array. Since the main beam of a plana; array can be 
steered to any direction in visible space, several arrays, each oriented 
in a different direction, can be steered cooperatively to form a single 
beam in a desired direction. A general formulation of the radiated 
field of such a configuration of arrays is developed with the aid of 
formulas which relate the components into which a vector is resolved 
in one orthogonal coordinate system with those into which the same 
vector is resolved in a second orthogonal coordinate system. This 
formulation does not involve the integration of the current source but 
is solely dependent upon the knowledge of the far-field expressions 
of elementary radiators. By means of this formulation, it can be 
shown that within each array the conventional row and column phase 
setting can be used; each array, however, requires an additional phase 
shift to compensate for the phase difference caused by its position on 
the curved surface. As examples, the radiation patterns and polariza¬ 
tions of multiple arrays of short dipoles are studies with the aid of 
appropriate formulation. A comparison of the multiple planar array 
with the conventional conformal array is also presented. 
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PATTERNS AND POLARIZATIONS OF SIMULATED 
CONFORMAL ARRAYS 

INTRODUCTION 

In recent years, considerable interest has been shown in conformal arrays. This type 
of array has a variety of potential uses. For example, on an airplane or a missile, due to 
the limitation of available space, it is often difficult to install a large conventional antenna. 
However, a conformal array can be fitted onto some surface area of the vehicle body in 
such a way that it does not interfere with the operation of the vehicle. Furthermore, be¬ 
cause part of the vehicle body forms the ground plane of the antenna, the electrical inter- 
ferance problem should be minimized. On the other hand, conformal arrays generally 
have several drawbacks. First, the phasing of such arrays is very difficult; except for a 
few particular cases, there is no available approach for phasing such arrays. Second, the 
switching of the beam of such arrays is exceedingly complicated. Moreover, the complex¬ 
ity of the switching network usually introduces very high power losses into the system 
and hence degrades its performance. 

It is conceivable that, on a surface of small curvature, one may approximate this 
conformal array by a number of planar arrays, several of which may be excited simultane¬ 
ously so as to achieve performance similar to that of a conformal array. Since the main 
beam of a planar array can be steered to any direction in real space, several planar arrays, 
each oriented in a different direction, can be steered cooperatively to form a single beam 
in a desired direction. With such an arrangement, the problem of array phasing is greatly 
simplified. Within each array, the conventional row and colum phase setting can be used, 
although each array requires an additional phase shift to compensate for the phase dif¬ 
ference caused by its position on the curved surface. However, this correction is much 
simpler than that required for a conventional conformal array, in which each element re¬ 
quires this compensating phase setting. Furthermore, the switching is greatly simplified, 
as it involves only a few planar arrays, in contrast to the large number of elements among 
which radiating power must be switched in the usual conformal array. 

The problem was formulated in an earlier report [1] for multiple planar arrays of 
vertical dipoles which might be used to approximate a conformal array of vertical dipoles 
on a cylindrical surface. It was shown that a function giving composite array patterns 
can be defined in such a way that the far field is the product of the functions of the ele¬ 
ment radiation pattern and the composite array pattern. Numerical examples for this 
kind of composite array were also presented, and properties of the far field were discussed. 
The analysis in the earlier report is strictly valid only when the element pattern of each 
planar array in the composite array is similarly polarized. The present report deals with 
the general case where the polarization of the far field of each planar array may be dif¬ 
ferent The radiation pattern and polarization characteristics of arrays of short dipoles 
are studied. 

1 
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SIMULTANEOUSLY EXCITED PLANAR ARRAYS OF ANTENNAS 

When the field of a system of simultaneously excited planar arrays of antennas is 
analyzed, it is convenient to write the field expressions in coordinate variables of different 
coordinate systems. Figures 1 and 2 illustrate these various coordinate systems. Figure 1 

r 

Fig. 1-Geometry of multiple planar arrays of antennas. 

Fig. 2—A planar array of short dipoles. 
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shows the position of '"'.ch planar array relative to the origin of the unprimed coordinate 
system. Figure 2 shows the lattice structure of the Sth planar array and its radiators. 
One primed coordinate system is assigned to each planar array, e.g., (*', y'e, z'B) for the 
ßth planar array. One double-prim«! coordinate system is also assigned to the radiators 
of a planar array, e.g., (x”, y", z") for the radiators of the Cth planar array. The primed 
coordinate systems are useful since the array pattern functions for the planar arrays are 
known in terms of the primed coordinate variables (0'ÿ, ^'). The double-primed coordin¬ 
ate systems are useful since the element pattern of the radiators of the Kth planar array 
may be known in a different coordinate system tnan the primed coordinates (0'c, 

The far field of a system of simultaneously excited planar arrays of antennas may be 
written, omitting the time phase factor as 

(1) 

where 

(2) 

In these expressions, 

L = the number of planar arrays, 

Es 3 the electric field due to the £th planar array, 

êg(0g, <¿>g) 3 the element pattern of the Cth planar array, 

k 3 the free space wavenumber, 

ADm„ = the complex excitation coefficient of the radiating element at the point 

R« + 

R 3 unit 'adiai vector. 

In spherical coordinates, 

(3) R 3 (sin 0 cos <p, sin 0 sin i, cos 0). 

For maximum radiation in a certain direction (0Q, the conventional row and column 
phase setting can be used within each array to steer the beam in that direction. In addi¬ 
tion to aligning the main beams spatially, one must also be sure that each Ee is in time 
phase in the desired direction (0O, <p0). This condition can be met if 

(4) 

where 

R0 m («in 0O cos <fi0, sin 0Q sin *>0, cos 0O), (5) 
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and and tfmn are constants to be specified soon. Substituting (4) in (1 ), 

L 

K-l 

where 

22 ^smnejkn'imn'{R~R°) 
mn 

8 = 1 

Wt* v't) = 22 (.1Srnneik* 'imn'l*~*o)' 

mn 

(6) 

(7) 

Note that fe(0¡¡, is simply the array factor for the Cth planar array phased to have 
maximum radiation in the direction H0. The complex constants öe may be set to certain 

ZT8 w..~ f .T? “y P?«“. of th« field, fi, ta the direc- 
o* For instance, (l8 values may be set in the following way: 

(¾ = (-) phase of |g6(0;', 4Vs(08, ^) in the direction R (8) 

ÍS SÍmíy of 016 excitation coefficient of the element 
form th6 ’ m’ ^ Each eIement Pattern « assumed to be known in the 

(9) 

f!0?1®"?8 rU íave !° E<i- (6) can be used. First, one must decom¬ 
pose each set of unit vectors (08, m terms of the unit vectors 0 and ¿ in order to 

Ste^iablesT'^'^i?^" °tthe SeCOnd’ 016 double-primed and primed coordi- 
mte variables VmdJ*’ *’ ’ 6 expre88ed 88 function8 of ^ unprimed coordi- 

TRANSFORMATIONS OF COORDINATE SYSTEMS 

in th J^£r«¡¡iblem °J- c°ordina¡e1 transformation is to express a vector function V known 
the pnmed coordinate variables and unit vectors in terms of the unprimed coordinate 

variables and unit vectors. That is, V is known in the form ^ 

V= v9.(0V)0' +v,(0',*v, 

where Ve, and V^. denote two functions of 0' and *p'. 

(10) 
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We are interested in finding V in the form 

V- Ve(0,*)0 +V(0,*V, (11) 

where Va and denote two functions of 0 and *p. Note that we have confined our¬ 
selves to the discussion of radiation fields. Thus, the vector has no radial component and 
is independent of the radius variable R. 

In the following paragraphs, we will be dealing with a class of matrices known as real 
orthogonal matrices. These matrices transform a vector from one orthogonal coordinate 
system to a second orthogonal coordinate system in the three-dimensional Euclidean space. 
Hiat is, if (a, ß, y) and (o', ß', 7') are the two sets of unit vectors of two orthogonal 
coordinate systems, then the cr/mponents of a vector V in the two coordinate systems are 
related by an orthogonal matrix |D|: 

|V| = |D| • I V* I, (12) 

where |V| and IV'I are the column matrix representations of the vector V in the two 
coordinate systems, 

IVI = 

IV'I 

(13) 

(14) 

Real orthogonal matrices have two useful properties: first, the inverse LDI"1 of a real 
orthogonal matrix |D| is the transpose IDI7, of |D|, or 

IDI“1 “ \D\T\ (15) 

second, the product of real orthogonal matrices is a real orthogonal matrix. These proper¬ 
ties will be utilized in later discussions. 

Coordinate transformations involve either a linear translation or a change of orienta¬ 
tion of the coordinate system (Fig. 1). The only translations involved in the present 
problem are in moving the origins of the primed coordinate systems back to the common 
reference point, the origin of the unprimed coordinates. For the far field, the only effect 
of this translation is to introduce the phase factor which appears in Eq. (6). 
The functional dependence of a field vector V on the coordinate variables and unit vec¬ 
tors is not altered by coordinate translations. This fact is illustrated in Fig. 3, where, for 
clarity, the translation Rj between the two coordinate systems is assumed to be in the xy 
plane. Let P be the field observation point; then it can be seen that if the field point P 
is truly at infinity, one would have 
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and 

ä'=ä-r; -ä 

0' =0 

R'=R 

0' - ö 

(16) 

(17) 

n7C\ ^elMmCt^r- V “î/?™8 of 0’ ^ can be obtained by substitution of Eqs. (16) and 
F mi 10)- .,Slnce V 18 bidependent of R', it is obvious that the functions VH and V in 
Sid «"h í6!!1C? í the í1“1^0"8 Ye' “d in (10). For example, the radiation 
field of a short dipole lying along the z axis and at the origin of the primed coordinate 
system in Fig. 3 is given by 

E = E0(t, R') sin 0'0' 

F it p'i- ÄJ/SeMHÄ'/C)] b0(t, R ) --- 
4ffeC2Ä' 

where I is the current and S is the length of the dipole. 

(18) 

(19) 

R' 
Substituting Eqs. (16), and (17) in (18) 

= R for the denominator of (19), 
and (19) and using the far-field approximatioi 
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E = E (t, R) sin 60 ,jkR*R 
(20) 

Note that the factor inside the bracket of Eq. (20) has a form identical to that of (18). 

Firom the above discussion, we conclude that, with the inclusion of the exponential 
factor the translation R8 has no other effect on Eq. (6); this factor will be 
ignored in later discussions. 

The second transformation is one in which the orientation of the coordinate system 
is changed. In classical mechanics problems the transformation formula has been set up 
using matrices. Three independent parameters are needed to specify the orientation of a 
rigid body. These are known as Eulerian angles. The transformation is described by the 
three angles, as explained in the following paragraphs. 

Hie change of the orientation of the coordinate system is accomplished by three suc¬ 
cessive rotations about the three coordinate axes. These rotations are shown in Fig. 4. 
The first rotation is for an angle about the y axis. The orthogonal matrix between the 
primed and the unprimed coordinate systems for this rotation is 

Ml = 

cos zy 0 sin 

0 10 

-sin 0 cos 

(21) 

The second rotation is for an angle ^ about the «-axis. The orthogonal matrix for this 
rotation is 

\B\ m 

cos -sin 0 

sin cos ^ 0 

0 0 1 

(22) 

Hie third rotation is for an angle £x about the x-axis: 

ICI 0 cos -sin £x 

0 sin cos £x 

(23) 

In all three rotations the angle of rotation is positive when the rotation is counterclock¬ 
wise with respect to the axis of rotation. The overall transformation may be written as 

ID!-ICI IB| Ml. (24) 

One should note here that the order of matrix multiplication is not commutative; 
thus, the sequence of these transformations is not interchangeable. 
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(e) 

Fig. 4—Rotation! of coordinate ayitems. 
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Note that matrices \A\, \B\, |C|, \D\ are real orthogonal. Thus, 

IDI-1 = \D\t. (25) 

Multiplying Eq. (12) by IDI-1, one obtains 

IV'I = 101-1 in (26) 

By the use of IDI and |D|r, a vector decomposed in one rectangular coordinate system 
may be decomposed again in a different rectangular coordinate system. To treat radiation 
fields, however, one would also have to deal with components in spherical coordinates. 
The spherical coordinate components and the rectangular coordinate components of a 
vector are also related by real orthogonal matrices, as follows: 

where 

(27) 

(28) 

10^1 = 

sin 6 cos cos 9 cos -sin 

sin d sin cos 0 sin ^ coa^p 

cos 0 -sin 0 0 

(29) 

and 

(30) 

Substituting Eq. (27) and (28) in (12), and if V is the radiation field, also in (10), we 
obtain 

U>RP\ * M * Kr\* 

0 

v9.(e',¿) (31) 

where \D'pR \ is given by Eq. (29), with (0', \p') replacing (0, p). It is used since the first 
transformation is from the primed polar coordinates to the primed rectangular coordinates. 
Equations (6) and (7) can now be rewritten in the matrix form with the aid of (31) and 
(12), respectively: 
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£ö(0, *) 

£ (ö, V?) 

= 2 tf/'fcRi'(Ä‘Ä°Vs(0;,^)i/iÄpi-u32ei-u);Äi- ¿ZiKO 
K*(Q>D 

(32) 

and 

/j(Ö8,*>e)= J] ffmne^('Dl8'*'R*mn')-(Ä-Ä0)f 
(33) 

fiïnlf 18 th® .'"í“ °/ ,f s»,/. “) (*8* y«» 2c) coordinates. The matrix Z)26 is the 
teansformauon mate« from (*" ^ f;') to (*, y, z), and Du is the transformat^n matrix 

. ?v/c] to Í’ ;v’ Equatlons (32) 80(1 (33) give the formal solution of the 
radiation field of multiple planar mays, on the assumption that the double-primed and 
primed coordinate variables 0S, <f>v 6 ,<p etc., are functions of the unprimed polar 
coordinate variables 0 and H 

Next, we consider relations between coordinate variables under coordinate trans¬ 
formations. The relations between rectangular coordinate variables are obtained by sub¬ 
stituting the position vector R for the vector V in (26): 

lie'! = Lor1 lie I, (34) 

where 

|Ä'I = (35) 

and 

IÄI = (36) 

The relations between polar coordinate variables are found by substituting 

sin 0 cos <p 

sin 0 sin ^ 

cos 0 

(37) 

and 
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X 

! 

y 

sin 0' cos 

sin 0' sin^' 

in Eq. (34) and solving for 0' and ^. 

by the use of the three Eulerian 

cos 0' 

angles, the following can be shown: 

0' = cos_1£'(0, i¿>), 

<4> - tan-1 m d 
x'ïëïp) ' 

Ar'(0, V?) = sin 0 cos $ cos £v cos ^ + sin 0 sin 0 sin + cos 0 sin Ç cos 

1^(0> 0) “ - sin 0 cos (cos sin cos (x + sin sin ) 

+ sin 0 sin ^ cos ^ cos ^ - cos 0 (sin £y sin ^ cos ^ 

- co« t, sjn ¿x ), 

(38) 

(39) 

(40) 

(41) 

(42) 

Z'(0, ^ sin 0 cos 0 (cos ¿y sin ^ sin ^ - sin £y cos {x) 

- sin 0 sin 0 cos ^ sin + cos 0 (sin £y sin sin 

+ cos ¿y cos ^ ). (43) 

The ambiguity in the value of the arc tangent function in Eq. (40) is resolved by apply¬ 
ing the same set of rules that one uses to determine the value of tan-1 (y/x), where * and 
y are the rectangular coordinate variables. 

THE RADIATION FIELD OF A HORIZONTAL SHORT DIPOLE 

In Fig. 5a, let z be the elevation axis; then the dipole lying along the x axis may be 
referred to as a horizontal dipole. The far field of a dipole is commonly expressed in the 
coordinate system shown in Fig. 5b and is given by Eqs. (18) and (19). The far field of 
the horizontal dipole may be obtained from Eq. (18) by the use of coordinate transforma¬ 
tion formulas. The primed rectangular coordinate system in Fig. 5b is obtained from the 
unprimed rectangular coordinate system in Fig. 5a by a simple rotation of -90 degrees 
about the y axis. From Eq. (21), use of the Eulerian parameter £ - 90 degrees, gives 

0 0 1 

LDI - |A| = 0 10 (44) 

-10 0 
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S 

(b) 

F'fr 6~A short dipole in two coordinate systems. 

Hie relations between the rectangular coordinate variables are from Eq. (34) 

y'-y, 

1 X. 

(45) 
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The relation, between the polar coordinate variable, am be obtained from Eq. (45): 

cos 0 - = — = sin 0 cos V? 

sin Ö ~ \/l - sin2 0 cos^ ^ 

COS \fi = 

sin = 

- cos 0 
R' sin 0' /T . O a o 

V 1 “ 0 cos2 (£ 

sin 0 sin ^ 
fi'sin0' Á .2 a 2 V-1 ~ 0 cos2 ^ 

The matrix form for E in the primed polar coordinates is 

(46) 

Ee- 

t E , i 

0 

E0(t) sin 0' 

0 

(47) 

SSwi, we ÏÎ '"““‘P«“«“" ta Eq- (31) by mean, of (29), (30), (44), 

- sin 0 cos sin 0' + sin 0 sin cos 0r sin / - cos 0 cos 0' cos / 

- cos 0 cos * sin 0' + cos 0 sin * cos 0' sin *>' + sin 0 cos 0' cos / 

sin sin 0' + cos \p cos 0' sin 

• (48) 

SÄTwÄS' ^ <46) i” ““ *b0,e elpre“i0n to «e* rid of the primed coordinrte 

0 

"£o(0 cos 0 cos 

£0(f)sin^ 

(49) 

or 

^ = W (” co® & cos *p0 + sin w)' (50) 

PLANAR ARRAYS OF SHORT DIPOLES 

.. ritown in Pi* 1. Tb, elonenU oftliithmr.y ^uTST 



14 J. K. HSIAO AND A. G. CHA 

reference point ds. -Die elements are short dipoles oriented in the direction either of the 
Snf- H0r/iîf Zv 8X18 s*10"?1 in Fi«- 2- Use the element pattern functions in Eqs 
It andij18 Shj WS ^ the douhle-primed coordinates are obviously the same! and are 
the pruned coordmates for both these cases. The Eulerian parameters between the 
rf’c y’ -f coordlnates and the (jcc, >>g, Zg) coordinates are £ = 0, £ =0t = 
[(f- l)(2n/L) + (7T/2)]. Thus, 'xli 

\D\ = 

cost “ sin t „ 0 «8 

sin^g cos 0 

0 0 1 

(51) 

Md exp«®.™»:“'"' f°r thii r0taU0n' toUo*ing rcl!,Uo"s »OW ^ any far- 

is;-s 
(52) 

and 

f -, . 'V 

e; = 0 

= ^ 1.^8 
(53) 

tw7f™etheCU3Iï ^ ^ 816 identical to Õ and one can use Eq. (6) in place of Eq (32) for the vector addition process. Thus, mi/*« f*«*^ cq. 

E-Ç «,l«„^)s; + is;,]a/*»«-(»-«ovt(s;,^,. (64) 

The excitation coefficients are assumed to have uniform magnitude of 1. The arrav oat- 
tern function /g(0, *) is obtained from Eq. (34) as OTay ^ 

where 

M N 
£(0,^)= 2] 2 «^(^'"ímnD-tÂ-Âol 

mm-M n--N 
(55) 

m d. 

n d. 

(56) 

By carrying out the matrix multiplication and rearranging terms, it can be shown that 

ft(o> *) = fxt(e, *)4e(0, ^), 

where 
(57) 
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M 

fxa (6, ¢) 1 + 2 V cos mkdx [sin 0 cos (*? - ) - sin 0o cos (<pQ - )] and (58) 
m-I 

4«(0'= 1 + 2 oos nfed (cos 0 - cos 0 ). 
n»l 

(59) 

By substituting Eqs. (18), (52), and (53) in (56), the radiation field for a system of planar 
arrays of vertical short dipoles is shown to be P 

E = Eo(t) sin 0 £ eJk**-(R-R°)fti6s,*s) 0 
«-I 

(60) 

By substituting (50), (52), and (53) in (54), the radiation field of planar arrays of hori¬ 
zontal dipoles is shown to be y 

E = £o(0 

+ *o(0 

cos 0 cos (^- £z8)e;*Rs’(*"*oV (0, 

V sin (¥3 - £ig )eJkR* * («-«o )f9 (0> (61) 

When both (55) and (56) were obtained, the complex constants (¾ in (6) were set equal 

NUMERICAL CALCULATIONS 

ft»,cö 0f ^ O“ * “"-PO-te Wray 

^(0,^)= ¿ ejk*8 * (Ä_Äo )f9 (0g, ^ ). 

s-l 
(62) 

The radiation field is then, from Eq. (60), 

E « [eo(0 sin 0èj j4(0, ^). {63) 

TOs composite array function was calculated for different parameters in an earlier report 

, . of “ultiple planar arrays of horizontal dipoles, the far field can not be 
factored into the product of an array function and an element pattem function m can 

wStfcTdS?; ^ 18 chai^UMc oí planar^rays where the element 
! ^ °ne ^ray ^ r«Hation pattern and the polarization 

of the multiple planar arrays shown in Fig. 1 were calculated for both cases. Each planar 
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array is assumed to be a linear array in the direction of the Jtg axis. In one case, the ele¬ 
ments of the arrays are short dipoles lying parallel to the z axis, and Eq. (62) was used to 
calculait the array pattern function of the composite array. In another case, the elements 
of the aTays are short dipoles lying parallel to the x's axis of each array, and the far field 
components E& and £, were calculated using Eq. (61). Note that if there are more than 
two elements along the z^ axis, the only modification to the present calculation would be 
to multiply the radiation field by the factor fzi(Q, ¢) in Eq. (54). It is obvious that 
/^(0, V?) is simply the array factor of a linear array in the direction of the z axis. 

Ilie following parameters were used: 

Aperture length along the x't axis = 10X 

Element spacing = 0.4X 

Number of elements of each array = 23 

(0o> *0) = (90°. o°) 

Note that there is no element at either end of each aporture. Figure 6 shows the 
array pattern function vs the angle in the xy plane for multiple arrays of vertical 
dipoles when the planar arrays 1, 2, and 3 in Fig. 1 are excited simultaneously. Figure 
7a shows E vs the angle in the xv plane when only the planar array No. 2 is active. 
Figure 7b shows the same when the three planar arrays 1, 2, and 3 are active. Note the 
improvement in the directivity of the composite array by having three active planar arrays 
as compared with just one active array. The half-power beamwidth is about 6° in Fig. 7a 
and about 2° in Fig. 7b. The more interesting comparison is between Fig. 7b and Fig. 7c, 
which shows £, vs in the xy plane for a conformal array of 76 equally spaced, horizon¬ 
tal, tangential, short dipoles on the arc ABCD (Fig. 1). In both Figs. 7b and 7c, the half¬ 
power beamwidth is 2 degrees and the sidelobe level is 13 dB. Patterns were also calcu¬ 
lated for the conformal array and the multiple planar arrays for scanning angles = 10°, 
20°, and 30° in the xy plane. In all instances, the beamwidth and the sidelobe >“*'**! ®re 
the same as in Figs. 7b and 7a It is, therefore, concluded that the performance of a con¬ 
formal array on a cylindrical surface can be closely matched by a small number of multi¬ 
ple planar arrays having roughly the same total number of elements and occupying roughly 
the same space. 

Fig. 6—Composite array pattern function for the 
multiple arraya of Fig. 1, vertical dipole case. 
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(a) 

(b) 

(c) 

Fig. 7—Far-field patterns of the multiple arrays of Fig. 1, 
horizontal dipole case, (a) Planar array No. 2 is active, 
(b) Planar arrays 1, 2, and 3 are active, (c) A conformal 
array of 76 active elements on the arc ABCD. 
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So far, we have ignored the other component, Ee. The reason is that E0 = 0 in the 
xy plane (0 = 90°), as can be seen from Eq. (61). The far field is thus horizontally 
polarized in the xy plane. The crosspolarized component E becomes more important at 
large elevation angles (smaller 0). It can also be seen from Eq. (61) that E0 is always in 
phase with if fs(0, <fi) is real, or if each planar array is symmetrically excited relative to 
the center element of the array. The exact value of the crosspolarized field E, depends 
on 0, 0O, and for a given composite array and can be calculated from Eq. (61). For 
example, Fig. 8 shows the two components Ee and E on the conical surface 0 = 80° for 
th** multiple planar arrays used in calculating the data shown in Fig. 7b. 

(a) 

Fig. 8—Far-field patterni cn the conical lurface o » 80° 
for the multiple arraya in Fig. 1. Planar arrays 1, 2, and 3 
bre active. (a)£^. (b)Efl. 

CONCLUSIONS 

It has been demonstrated that the radiation characteristics of a conformal array on a 
cylindrical surface can be closely matched by a number of planar arrays approximating the 
cylindrical surface. It is expected that the same technique will be applicable to many 
other types of conformal surfaces. The phase setting and switching problems of the 
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hw Pl ,arrayS considerably simpler than those encountered with the conven- 
tionai conformal array As a result, the multiple planar arrays would have a less comnli- 
cated switching network and lower i>ower losses than a conventional conformal arriv It 
is Aho worth noting that the present formulation, which is based on vector decomposi- 

’ ¡Üiu Plovldts a very efficient numeric algorithm for calculating the far field of many 
compicA radiating structures. By means of this approach, the structures are broken down 
into Pieces and are treated as arrays of elementary radiators. The computation efficiency 

loiiicesPrin thiswrvaCn ^ making ^ °f known Pattern functions of elementiy 
nes. In this way, the time-consummg numerical integrations and differentiations that ‘ 

one normally encounters in far-field calculations are greatly reduced. 
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