poooormemnTe \

|
LGVTDOC {
“ D 211.
9

e NAVA[ SHIP RESEARGH AND DEVELOPMENT GENTER

Bethesda, Md. 20034

A GENERAL PURPOSE DATA GENERATOR
FOR FINITE ELEMENT ANALYSIS

LIBRARY

James M. McKee )

Evangeline T. Marcus

U.S. NAVAL ACADEMY

Approved for public release; distribution unlimited.

Q00701140%§

COMPUTATION AND MATHEMATICS DEPARTMENT
RESEARCH AND DEVELOPMENT REPORT

April 1973 Report 4066

A GENERAL PURPOSE DATA GENERATOR FOR FINITE ELEMENT ANALYSIS




The Naval Ship Research and Development Center is a U. S. Navy center for laboratory
effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center
Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC
COMMANDER
% REPORT ORIGINATOR TECHNICAL DIRECTOR
OFFICER-IN-CHARGE OF FICER-IN-CHARGE
CARDEROCK ANNAPOLIS
SYSTEMS
DEVELOPMENT -
DEPARTMENT
SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS
DEPARTMENT
*
COMPUTATION
STRUCTURES
AND MATHEMATICS
DEPARTMENT
EPAR DEPARTMENT
PROPULSION AND
SB'EPPQE?KEL'TCS AUXILIARY SYSTEMS
DEPARTMENT
MATERIALS CENTRAL
DEPARTMENT INSTRUMENTATION
28 DEPARTMENT

NDW-NSRDC 3960/43b (Rev. 3-72)



DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
Bethesda, Maryland 20034

A GENERAL PURPOSE DATA GENERATOR
FOR FINITE ELEMENT ANALYSIS

by

James M. McKee

Evangeline T. Marcus

Approved for public release; distribution unlimited.

April 1973 Report 4066




ABSTRACT

TABLE OF CONTENTS

ADMINISTRATIVE INFORMATION.................
INTRODUCTION . ... ittt ittt eiie e neaeannns
PROGRAMUSER'SGUIDE .. .....c.cviivennnann
1.1 Methods of Structural Modeling.............
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2 Program Setup....veveeeeneeernnnneonnnens
1.2.1 Card Deck Format .............o....

1.2.2 Execution ControlCards.............

1.

Introduction ......ovvivimnenensnnns
Reference Lines .. ... v vv it v e ennnnns
Structural Modules..................

Modeling Procedures.......coeeuuunn.

------------

oooooooooooo

------------

Special Topologies and Data Equivalencing.........

1.3 Generating Data. ........covvieeeenrennnnns
1.3.1 Data Organization and Identification...

1.3.2 Module Descriptions.........cevvu..
1.3.3 GraphicalOutput....................
1.4 Structural Data Specifications ..............
1.4.1 Bulk Data Card Format..............
1.4.2 Order of Bulk Data Cards ............
1.4.3 Data Card Descriptions...............
PROGRAMMER'S INFORMATION. .......cvu...

2.1 Program Organization...........c.oe.vuennn

2.

2
2
2.
2
2

1.

T = S o G Uy
D O AW N

1

General Structure............. ...,
Program Conventions................
Global Common Storage Areas........
Program Overlay Structure ..........
Program Execution..................

Execution Monitor Program - DATGEN

ii

------------

oooooooooooo

oooooooooooo

------------

------------

............

oooooooooooo

------------

------------

------------

[y
WO O 3 A DN DN et =

e T =T S Gy Y
W W DN DN DN =
W W W R e O



2.2 Data StOraZe. .o v v v rersncnscnseosnssnssasnssncansass 2.16
2.2.1 Storage PoliCy...vvvitinerirnreniiernnennnncnnns 2.16
2.2.2 KEY-CHAIN Data Storage Method................. 2.16
2.2.3 KEY-CHAIN Utility Program Specifications........ 2.18
2.2.4 POOLED Data Storage Method.................... 2.27
2.2.5 POOLED Utility Program Specifications........... 2.27
2.2.6 File Management.......c.oeeeeuineeereennnnnnnnss 2.40

2.3 First Pass and Interlude Processing Programs........... 2.40
2.3.1 Subroutine SETUP (Initialization and Execution

Control Card Processing) «.....ovvveeneennnnns 2.40
2.3.2 Subroutine INSORT (Bulk Data Card Interpreter).... 2.43
2.3.3 Subroutine XTRACT (Global Data Processing)...... 2.45

2.4 Second Pass Processing Programs........cceeevieenennn 2.49
2.4.1 Subroutine CUTUP (Process Shell Data) ........... 2.49
2.4.2 Subroutine READS (Read Shell Data Card).......... 2.51
2.4.3 Subroutine TERP (Linear Interpolation Routine) .... 2,53
2.4.4 Subroutine CONE (CONE Module Processing)....... 2.54
2.4.5 Subroutine QUADS (Frustum of Cone Generation-

vVarying Mesh) . .covviiiiiiienineniencnenonnnes 2.56
2.4.6 Subroutine PROPER (Element Property

Generation—-Quadrilateral Elements)............. 2.63
2.4.7 Subroutine CONEND (CONEND and CONENDR

Modules-Geometry Processing).......c.ccovenusns 2.64
2.4.8 Subroutine TRI (CONEND and CONENDR Modules-

Mesh Generation). ....veeeieeieenneneneeeennenn 2.66
2.4.9 Subroutine CEPROP (Element Property

Generation-Triangular Elements) ........c..c..... 2.69
2.4.10 Subroutine REF (Identification Number

Generation) . ..veeeetiinenneeeeerennecnnesansos 2.70

2.5 NASPL - Graphical Output Processing........ccevvveeenn 2.72

2.6 Utility Programs. .. ..c.vetveeneeecreeaoeosssnonnnnnnnns 2.173
2.6.1 Subroutine ABORT (Data Storage Dump Routine).... 2,74
2.6.2 Subroutine ASSMBL (File Merging Routine) ........ 2.75



2.6.3 Subroutine ERRMSG (Error Message Printer)......

2.6.4 Subroutine GOOGAN (NASTRAN Format
ranslator). . v v irin ittt iieiieiieeneennnn.

2.6.5 Subroutine PRINT (Heading and Page Control
ROULINE) . o v et i ittt ie e it i ieieeenennnenn

2.6.6 Subroutine SWITCH (Character Manipulation
ROULINE). .ottt ittt i ittt et eenennnnnnns

3. PROGRAM MESSAGE S . ittt ittt taetenesesessnsosnsosns
4., SAMPLE PROBLEMS ...ttt ittt ittt svatosensenassnssnsnssses
4.1 Demonstration Cone. .. .cvtvr et eeeeeeneeneonsoonennns

4.2 Point LoadonCylinder.........cooviiiterinnnneenenns.

4.3 Planform Stabilizer....covtii ittt iieenreesneonnnnans

4.4 Axisymmetric Submarine.......... .. i i it

4.5 Test Missile ..

ooooooooooooooooooooooooooooooooooooooo

iv

4.16
4.23
4.26
4.37



LIST OF FIGURES

Figure 1.1 Longitudinal Reference Line Definition...........
Figure 1.2 Azimuthal Reference Line Definition.............
Figure 1.3 Example of Execution Control Deck for
Stand-Alone Data Generator Operation...........
| Figure 1.4 Example of Execution Control Deck for Data
| Generation/NASTRAN Operation «...evevenennns,
‘, Figure 1.5 CONE MOQUIE .« o vvv et ieeinrnernnennenennenss
| Figure 1.6 Grid Point and Element Numbering Scheme
Generated by the CONE Module .................
2 Figure 1.7 CONEND Module ...oivviieiitnrenrerenennnnnens
Figure 1.8 CONENDR Module.....cciviiineniiinnnnnnenns
Figure 1.9 Grid Point and Element Numbering Generated
by the CONENDModule ......ccvviveeinernennn.
Figure 1.10 Grid Point and Element Numbering Generated
by the CONENDR Module......cvoviiieennnnnnan,
Figure 1.11 Geometry of the CONE Module.......... ceieeaan
Figure 1.12 Geometry of the CONEND Module ...............
Figure 1.13 Geometry of the CONENDR Module..............
Figure 2.1 Driver Link Overlay Control Cards..............
Figure 2.2 Data Generation Link Overlay Control Cards .....
Figure 2.3 Structure Plotting Link Overlay Control Cards....
Figure 2.4 Boundary Data Storage Associated with the
Intersection of Two Reference Lines.............
Figure 2.5 KEY-CHAIN Data Storage Organization ......... .
[ Figure 2.6 Order of Cards in Execution Control Deck........
/ Figure 2.7 Cone Module with Varying Mesh along the First
J Azimuthal Reference Line (ARL1)...............
f Figure 2.8 Cone Module with Varying Mesh along the Second
| Azimuthal Reference Line (ARL2)...............
{ Figure 2.9 Cone Module with Varying Mesh along All
Four BoundariesS ....veveeeenvnnceecnneeennsnns
Figure 4.1 Demonstration Cone .....eevveerieereecnacennnns




Table 1.

Table 1.
Table 2.
Table 2.
Table 2.

Table 2.
Table 2.

P

[ BN

LIST OF TABLES

Correspondence between Reference Line
Numbers and the Seventh (Leftmost) Digit

of Grid Point Identification Numbers........ ..
Summary of Bulk Data Cards........ Peececareaas
Primary Processing Subroutines .............. ..
OPTION CoOmmON ATeaS «ceevvescescrosssssesons
OPTION Common Changes Produced by the
SETOPT Card....covvvviennnnns Ceraereesenaens
System Control Cards for Program Execution.....
Data Generator External Files ............c0vut

vi




ABSTRACT

A computer program system has been
developed to automate the preparation of a
finite element model to be analyzed using the
NASTRAN general purpose structural analysis
program. Using engineering conventions and
modular "building block' specifications, the
program minimizes both the manual effort
and the probability of an undetected error in
the preparation of NASTRAN data.

This document is intended to be both a
guide for the user of the program and a
programmer's reference for the modification

and further development of the program.

ADMINISTRATIVE INFORMATION

The work reported herein was performed as part of Task 15326,
Task Area SF 53 532 106 under Work Unit number 1-1844-916 at the

Naval Ship Research and Development Center.




INTRODUCTION

With the availability of large structural analysis programs based on
the finite element method, the structural analyst has at his disposal a
reliable tool which enables him to analyze a truly arbitrary structure
to any desired accuracy. Basic to a finite element analysis is the
point-by-point description of a mesh superimposed on the structure
to be analyzed. As seen on the designer's blueprint, the shapes of man-
made structures seldom, if ever, approach the mathematical
arbitrariness attainable by this method, but instead have a topography'
which can be completely described by a small set of surface equations.
With few exceptions today's finite element programs place the burden
of translation from simple equations to a point-by-point mesh description
directly on the program user. Usually, this is a manual translation
which is tedious, time consuming, and highly susceptible to human errors.

NASTRAN1 is a powerful finite element analysis program which is
close to the state-of-the-art for many types of analysis* and is
particularly well suited for large problems. Although it has many user
convenience and data verification features, NASTRAN does require a
point-by-point topographical description of structures to be analyzed.

The data generation program described in this document automatically
generates a NASTRAN finite element idealization from an engineering
description of the structure. In its present state the program can
generate data for a specific class of structures (viz., those easily

described in a cylindrical coordinate system); however, it is designed

1 ""The NASTRAN User's Manual (Level 15)", edited by C.W. McCormick,
NASA SP-222(01), June 1972.

* The types of analysis available using NASTRAN include static stress
analysis, buckling analysis, natural frequency and normal mode analysis,
and transient and frequency response analysis.



to be easily expanded to idealize almost any type of structure. This
flexibility is achieved through the use of a data network which permits
many independent data generator modules to be linked together to construct
the complete idealization.

This report describes the fundamentals of structural modeling using
the data generator and includes a few basic generation modules as
examples.

Section 1 of the report contains information for the user of the
program, describing the modeling techniques required to generate data,
the facilities available for controlling the various types of data which
can be generated, the conventions adopted for identifying the generated
data, and detailed format specifications for the cards used to describe
a structure to the generation program. Section 2 contains detailed
information for those who wish to add modules or otherwise modify the
program. Descriptions of the program organization, the data manage-
ment philosophy, and the considerations necessary for processing the
structure as a collection of independent modules have been included
in this section along with the specifications for each of the program
components. Section 3 is a listing of the diagnostic messages issued by
the program with some additional information to clarify their meaning, and
Section 4 contains selected sample problems with detailed data descriptions,
samples of the generated data, printed information, and the structural
plots produced by the program. Advanced modules and additional
capabilities are being actively developed and supplemental reports which

describe these additional capabilities will be issued periodically.



1. PROGRAM USER'S GUIDE

1.1 METHODS OF STRUCTURAL MODELING

1.1.1 Introduction

The primary purpose of the data generator is to reduce the effort
required to idealize a physical structure for finite element analysis. In
the process of manual idealization the engineer subdivides the structure
into small, geometrically simple elements. The size of these elements
is governed primarily by the following consideration: whereas the
geometry and the stress distribution associated with a structure can,
in general, be better approximated by smaller elements, the cost of
computation increases rapidly with an increase in the number of elements.
This consideration must be kept in mind when using the data generator
as well.

In order to use the data generator the structure must be subdivided
into regions which can accurately be described using the surface modules
available in the program. As more general surface modules are included
in the data generator's library, it is likely that fewer surface specifica-
tions will be required to idealize a particular structure. The user must
also specify the density of the elements within each surface module so
that the criteria for geometrical approximation, element assumptions,
and overall problem size will be met. Finite element densities will be
propagated throughout the structure into regions where user specifications
have not been made. As a result of this propagation the user is required
to provide only an initial specification of the element density and then to
specify the regions where the density is to change. Although no word
of caution will be necessary to seasoned finite element practitioners,
it should be made clear that, with very few data generator commands, a
finite element model can be generated which, because of its size, cannot

be analyzed on any existing computer. Except for very simple problems



some judicious compromises are usually required in attempting to satisfy

these criteria.

1.1.2 Reference Lines

In subdividing the structure, the boundaries between surface modules
(cuts in the surfaces) will be referred to as reference lines. These
reference lines provide a mechanism for linking the collection of
modules which make up the complete structure and function much like
the grid points (or node points) which link finite elements. The intersections
of reference lines provide reference coordinates for locating modules on
the structure. The reference coordinates are also used to form the
grid point and element identification numbers for the data generated by
adjacent modules. This convention was adopted so that the user can
easily relate the generated data to the data generator specifications which
produced the idealization.

It is necessary to insure that all grid points (all elements, all
materials, etc.) have unique identification numbers within a particular
problem. However, at intersecting surfaces within a structure, two or
more structural modules could use the same reference coordinate to
form data identification numbers, violating the uniqueness requirement.
This problem necessitated the creation of a device which will be referred

to as equivalencing of reference lines. This device permits a reference

line established for geometric and module linking purposes to be treated
as two or more reference lines for data identification purposes. The
device also adds a certain amount of flexibility to the data generator in
that it permits the inclusion of three-sided surface modules within a

rectangular network.

1.1.3 Structural Modules
The data generator idealization of the region of a structure defined by

a single geometric specification will be referred to as a structural module.

1.2



Each structural module is generated by a collection of data generation
programs, referred to as a program module. At present there are
provisions for generating four types of structural modules: surface
modules, solid modules, stiffener modules, and loading condition and

constraint modules.

1.1.3.1. Surface Modules. All subdivisions of a physical structure
which are surfaces to be idealized using plate and shell finite elements
will be referred to as surface modules. Each surface module may have
either three or four edges, the shape of each edge being determined by
the particular module selected. (Each surface module will obtain the
geometry of its edges from adjacent modules if they have been defined in
prior specifications; otherwise this edge description must be included
as part of the module description.) The finite element mesh for a surface
module is determined by the grid point density along its edges; for most
surface modules this density can be different for each edge. Surface
modules may include provisions for requesting that pressure loadings,
stiffeners, and other structural features (which are not mathematical
surfaces) be generated for the idealized surface. Also the user may
specify that the pressure loads, stiffener properties, and the thickness
properties of the finite elements are to vary in some manner over the

surface.

1.1.3.2. Solid Modules. All subdivisions of a physical structure
constituting regions which should be idealized using solid finite elements
will be referred to as solid modules. Each solid module may have four,
five, or six faces. Finite element and grid point densities within each
solid module are determined by the densities specified on the edges
formed by the intersection of the module faces. Certain solid modules
may also be specified as hybrid modules to be used as interfaces between
surface modules and pure solid modules. There are no solid or hybrid

modules in the current data generator library.

1.3



1.1.3.3 Stiffener Modules. Any portions of the structure which the
user desires to idealize as individual members running along a reference
line will be referred to as stiffener modules. These modules are
defined to extend between a starting intersection of reference lines and
an ending intersection and to traverse all intersections along that path.
When the path defined in this manner is not unique, the user must specify
the path to be taken. As with all data generator modules one type of
stiffener module may idealize a particular member using one element
type while a different module may use combinations of different elements
to idealize the same member. There is no restriction on the types of
elements used in stiffener module idealizations as long as they are

applicable to the type of analysis in which they will ultimately be used.

1.1.3.4 Loading Condition and Constraint Modules. Program modules
which generate data cards for static and dynamic loadings applied along
a reference line, and point loads applied at an intersection of reference
lines will be referred to as loading modules. Similarly modules which
generate data cards for constraints applied along a reference line (or at
an intersection point) will be referred to as constraint modules. Loading
condition modules and constraint modules are defined using the same

reference specifications as those used for stiffener definition.

1.1.4 Modeling Procedures
The first capability developed for the data generator makes possible
the idealization of quasi-axisymmetric structures defined in a cylindrical
coordinate system. Because data generator modeling procedures are
not dependent on the coordinate system used for structural definition,
the following discussion is generally applicable to all data generator
modules although it refers to cylindrical coordinates and to terms
associated with structural definition in a cylindrical coordinate system.
Procedures for structural modeling with the data generator fall into

two rather distinct phases: Definition of module boundaries, and

1.4



description of individual modules.

1.1.4.1 Reference Line Definition. In the definition of module
boundaries the user of the program establishes the reference lines which
will be required for module definition. This process is basically one of
deciding how the available modules can be used to describe the structure.
In most cases module boundaries will coincide with boundaries of the
total structure, large stiffening members, or other natural divisions.

One approach to reference line definition is to first divide the
structure transversely into sections which can be treated conveniently.
The lines of division form the first set of required reference lines, called
longitudinal or Z-reference lines. Figure 1.1a illustrates this longitudinal
division with identification numbers assigned to the reference lines.
Where branch points occur in a structure, the definition of multiple
reference lines is often required to produce generated data which will be
uniquely identified (these lines must later be equivalenced). Figure 1.1b
illustrates one method of determining whether a multiple definition is
required for Z-reference lines. With this method the user draws an
arrow from the first boundary to the second boundary of each section
along a profile of the structure (the direction specified by the arrow also
indicates the order in which data will be specified in module definition).
Each terminal along this profile will require the definition of as many
reference lines as there are arrows emanating from that terminal. Thus
the approach used in Figure 1. 1b requires two Z-reference lines at the
circled terminal while the approach used in Figure 1. 1c requires no
multiple definitions. Multiple definitions sometimes simplify input
specification and are permitted for any reference line in the structure,
whether or not such a definition is required for uniqueness.

Once the structure has been divided transversely to define
Z-reference lines, azimuthal or A-reference lines can be established

by dividing the structure azimuthally as shown in Figure 1.2a. The

1.5



Figure 1.1a — Longitudinal Reference Lines

3]

- - -7
Figure 1.1b — Example Requiring Multiple Definition

w
F -3

- - -7

Figure 1.1c — Example Not Requiring Multiple Definition

Figure 1.1 — Longitudinal Reference Line Definition

1.6



procedure is identical to the one used for longitudinal reference lines,
including the establishment of multiple reference lines. Figure 1.2b
illustrates the A-reference line division and numbering of a structure
with two branch points, one of which requires multiple reference line
definition (ci‘rcled terminal) and one which does not (terminal numbered
14). |

1.1.4.2 Description of Structural Modules. Once reference lines have
been established, individual modules can be described. Because each
different type of structural module is a data generator with its own
specifications, there are few generalizations one can make about module
description. In Section 2.1.2 some proposed standard data format
conventions are presented. Although these standards were written as a
guide to those programming data generation modules, they may also be

of some help to the user in preparing data for the program.

1.1.5 Special Topologies and Data Equivalencing

Conventions that have been established in writing the data generation
program, such as using the reference line identification numbers to
produce unique identification numbers for generated data, and storing
boundary information as if the module boundaries formed rectangular
lattices on the structure, often conflict with the topology of the structure
to be modeled. The problem of generated data with duplicate identifica-
tion numbers can be seen in Figure 1.2. If one chooses to associate
the reference line number with the module following it as one proceeds
around the arc in a particular direction, say clockwise, it is not possible
to associate a unique reference line number with every module since
there are 16 modules and only 15 reference lines.

A device, referred to as equivalencing, was introduced to resolve

these conflicts. Equivalencing changes pointers in the data management
system so that a data group can be referenced by more than one identifier.

These changes can be made either globally, for all usage of a reference

1.7



Figure 1.2a — Azimuthal Reference Lines

Figure 1.2b — Example Requiring Multiple Definition

Figure 1.2 — Azimuthal Reference Line Definition

1.8



line number or individually, for data stored at the intersection of two
data lines, or between any two data groups. Generation modules may
also invoke equivalences to enforce their special topology. For example,
the CONEND module invokes equivalences between the intersection data
at two corners of the rectangular lattice, creating a triangular boundary.
The user may employ similar techniques to create box structures from
plate modules.

Global equivalences are invoked by listing pairs of reference line
numbers on ZEQU bulk data cards for Z-reference lines and on AEQU
cards for A-reference lines. Equivalences between particular data
groups can be invoked with IEQU and GEQU bulk data cards. (See

Section 1. 4.3 for a complete description of these cards.)
1.2 PROGRAM SETUP

1.2.1 Card Deck Format

The computer run deck for the data generator consists of two parts:
the Execution Control Deck and Bulk Data Deck. The Execution Control
Deck is used to select the type of data to be generated and to control
the printed and graphical output of the program. The Bulk Data Deck
is used to describe the geometry of the structure to be modeled. The
Execution Control Deck begins with an ID card and is terminated with
a BEGIN BULK card. The Bulk Data Deck follows the Execution Control
Deck and continues through the ENDDATA card.

All cards preceding the ID card, the ID card, the BEGIN BULK card,
and the ENDDATA card are inserted into corresponding positions in
the generated NASTRAN deck file. Other data cards may be passed
from both the Execution Control Deck and the Bulk Data Deck directly
to the generated data file by terminating the data generator cards with
a $END card. Execution Control cards between the $END card and
the BEGIN BULK card will be inserted in the Executive/Case Control
portion of the NASTRAN deck; the data generator Bulk Data cards

1.9




between a $END and the ENDDATA card will be inserted as the first
cards in the Bulk Data portion of the generated NASTRAN deck. All
cards following the ENDDATA card will be ignored by the program.
The delimiting cards used by the program have the following format:
ID Al, A2 Required
Al and A2 are any alphanumeric fields chosen by the user.
These fields are optional to the data generator, but are required
by NASTRAN.
BEGIN BULK Required
The two distinct words must appear on the card.
ENDDATA Required
ENDDATA must be one continuous word beginning in the first

column of the data card.
$END Optional
$END must be one continuous word beginning in the first
column of the data card.
The Execution Control Deck and the Bulk Data Deck are described in

detail in Sections 1.2.2 and 1.4, respectively.

1.2.2 Execution Control Cards

Data cards in the program run deck between the ID card and the first
$END (or BEGIN BULK card if there is no $END card) will be inter-
preted as execution control cards. All execution control cards have
default specifications and thus the only control cards which are mandatory
are the ID card and the BEGIN BULK card. Warning messages will be
issued when cards cannot be recognized and when cards do not conform
to the prescribed syntax. Many of the options governed by control
cards depend on implementation by the writers of the various data
generation modules. The names of cards with module dependent options
are flagged with an asterisk in the following card descriptions, indicating
that the module descriptions (Section 1. 3.2) should be consulted for

information on their applicability.

1.10



All cards read by the program are listed and copied to the generated
data file. All execution control cards, except comment cards, will |
have a dollar sign appended at the left, making them comments to
NASTRAN. All cards preceding the ID card and between the $END
card and the BEGIN BULK cards will be listed and copied to the
generated data file without alteration, thus permitting the user to
transmit NASTRAN control cards directly to the generated data file.

Comment cards are those cards which are either totally blank or
have a dollar sign as the first non-blank character.

Examples of Execution Control Decks are shown in Figures 1.3
and 1. 4. The second example illustrates the type of specifications
which would be required for a combination data generation and NASTRAN
analysis run. The cards following the $END will not be interpreted by
the program even though they may have a format which is similar to
the data generator (e.g., SOL, TITLE, PLOTID cards).

ID MYNAME, CODE 1234
$ EXECUTION CONTROL DECK FOR STAND-ALONE OPERATION

DUMP = NONE
LINES = 38
SOL =3

TITLE = DATA GENERATOR TEST NO. 101
PLOTID = MYNAME, CODE 1234, EXT 51234
BEGIN BULK

Figure 1.3 Example of Execution Control Deck for
Stand-Alone Data Generator Operation

1.11




ID J. SMITH, PROB-1Q4
$ EXECUTION CONTROL DECK FOR DATA GENERATOR/NASTRAN
SOL = 2

PUNCH = YES

TITLE = FRAME 17 MODIFICATION ANALYSIS - DATA GEN.
NASTRAN = YES

$END

APP DISP

SOL 2,0

TIME 100

CHKPNT YES

CEND
TITLE = FRAME 17 MODIFICATION ANALYSIS

PLOTID=J. SMITH, CODE 1555

BEGIN BULK

Figure 1.4 Example of Execution Control Deck for Data
Generation/NASTRAN Operation

1.12



The format of the execution control cards is free-field. In
presenting general formats for each card embodying all options, the
following conventions are used:

(1) Upper-case letters must be punched as shown.

(2) Lower -case letters indicate that a substitution is to be made.

(3) Braces {} indicate that a choice of contents is mandatory.
(4) Underlined options or values are the default values.

(5) Physical card consists of information punched in columns 1

through 72 of a card. All data generator control cards are limited to a
single physical card.

(6) Card names with asterisks indicate module dependent options.

1.13



Execution Control Card - CONNECT*

Description: This card controls the generation of connection cards.

Format:

Option
YES

NO

CONNECT = ) YES
NO

Meaning

Connection cards are to be included in the generated
data file.

No connection cards are to be included in the
generated data file.

Execution Control Card - DUMP

Description: This card controls the printing of various program data
storage area dumps.

Format:

Option
NONE
DIAG(n)

NOFORM(n)

FATAL(n)

Remark:

DUMP = NONE
DIAG(n)
NOFORM(n)
FATAL(n)
FATAL(2000)
Meaning

No data storage dumps printed.

All data storage area dumps are printed with a
maximum of n words printed per storage area.
Chained storage areas are interpretively formatted
so that only the stored information is printed (i.e.,
all chain pointers, etc. are excluded).

All data storage area dumps are printed with a
maximum of n words printed per storage area. The
areas are printed as a block with no interpretive
formatting.

A data storage area dump is printed with a maximum
of n words ver storage area following a fatal error.
Dumps will have the same format as those produced
by a DIAG request.

The word count, n, must be greater than zero.

1.14



Execution Control Card - ERRORS

Description: With this card the user may specify the number of level 2
errors which will be permitted in a given phase of processing before
the run is terminated.

Format: n
ERRORS = {5_0}
Option Meaning
n The number of errors permitted ( =0)

Execution Control Card - FATAL

Description: With this card the user may declare which errors detected
by the program will be considered fatal to execution.

Format:
ALL
FATAL = NORMAL
NONE
Option Meaning
ALL Any error detected will cause termination of the
program.
NORMAL Errors will be considered fatal only when continued
execution would clearly result in nonsensical results.
NONE Execution will be permitted to continue following all

errors.

1.15




Execution Control Card - FORCE*
Description: This card controls the generation of NASTRAN FORCE cards.

Format:
FORCE = 3@—51‘
NO

Option Meaning

YES NASTRAN FORCE cards are to be included in the
generated data file.

NO No FORCE cards are to be included in the generated
data file.

Execution Control Card - LINES

Description: This card permits the user to specify the number of lines
to be printed on each page of the generated listing.

Format:
LINES = n %
55
Option Meaning
n The number of lines per printed page ( > 10),

1.16



Execution Control Card - MATI1*

Description: This card controls the generation of NASTRAN MAT1 cards
with default material properties for all materials not explicitly defined.

Format:
MAT = 31&%
NO
Option Meaning
YES NASTRAN MAT1 cards are to be included in the
generated data file.
NO No MAT1 cards are to be included in the generated

data file.

Remark: See module descriptions (Section 1. 3.2) for default values.

Execution Control Card - NASTRAN

Description: This card indicates that a NASTRAN analysis is to
immediately follow this Data Generator application.

Format:
NASTRAN = 3 YES %
NO

Option Meaning

YES NASTRAN analysis follows; only one set of data will
be generated in this run.

NO No analysis run follows; multiple sets of data will
be processed, continuing until all sets have been
completed.

1.17




Execution Control Card - PLOAD*
Description: This card controls the generation of NASTRAN PLOAD cards.

Format:
PLOAD = ;X—Iﬁi
NO

Option Meaning

YES NASTRAN PLOAD cards are to be included in the
generated data file.

NO No PLOAD cards are to be included in the generated
data file.

Execution Control Card - PLOTID

Description: This card permits the user to request that structural plots
be made of the generated model and to identify the plots produced to
the plotter operator.

Format:
PLOTID = {name, CODE code, EXT ext}

Parameter Meaning

name User's name; up to eight characters with no embedded
blanks.

code User's organizational code; up to four characters
with no embedded blanks.

ext. User's telephone extension; up to five characters

with no embedded blanks.

Remarks: (1) If no PLOTID card is present, no structural plots
will be generated.

(2) A tape must be mounted to receive the generated
plotting information (see Section 2. 1. 4).

1.18



Execution Control Card - PRINT*

Description: This card controls the printing of data generation information
messages.

Format:
PRINT = g MAX %
MIN
Option Meaning
MAX All messages generated will be printed.
MIN Messages which do not directly concern the program

user are not printed (these are undocumented messages
which programmers have included to facilitate
program testing).

Execution Control Card - PUNCH

Description: This card controls the punching of the generated data file
at the end of the application.

Format:
PUNCH = ;EO_ %
YES
Option Meaning
NO No generated data will be punched; the data will
be written only on the generated data file.
YES Generated data will be punched on cards as well as

being placed on the generated data file.

1.19



Execution Control Card - SOL*

Description: This card indicates which NASTRAN Rigid Format will
be used to analyze the generated model.

Format:
SOL = ; " z
1
Option Meaning
n NASTRAN Rigid Format number n will be used

to analyze the generated model. (0 <n=<12, n is
an integer).

Execution Control Card - SPC*
Description: This card controls the generation of NASTRAN SPC cards.

Format:
SPC = ;-——-—YES i
NO
Option Meaning
YES NASTRAN SPC cards are to be included in the
generated data file.
NO No SPC cards are to be included in the generated

data file.

Execution Control Card - TITLE

Description: This card permits the user to supply a title to be printed on
each page of the generated listing.

Format: TITLE = any text

Remarks: (1) The text on the TITLE card will be printed at the top of each
page along with the current data and page number.

(2) If no TITLE card is included, only the date and page number
will be printed.

1.20



1.3 GENERATING DATA

1.3.1 Data Organization and Identification

NASTRAN restrictions limit the grid point and element identification
numbers generated by the program to seven digits in length. The
data generator could conveniently construct grid point identification
numbers by associating two digits with each reference line at an
intersection and then allowing two digits for each coordinate direction
to locate the gridpoint within each module. This would permit a
maximum of 100 gridpoints along any edge of a module and permit 99
reference lines in each of the two directions. The range of grid point
numbers generated in this way would be sufficient for most models and
the element identification numbers could be assigned in a similar
manner with a range sufficient for a module of any solvable size.
However, this approach requires eight-digit identification numbers.

The method used is basically a six-digit scheme allowing one digit
for each reference line and two digits for each coordinate direction
within a module. With the available seventh digit used as an overflow
digit to permit an increased number of reference lines, 39 reference
lines in one coordinate direction and 19 in the second direction can be
accommodated. Table 1.1 gives the correspondence between the
seventh digit in the reference line number and the range of Z- and A-
reference line numbers. The grid point identification number 7801602,
for example, lies within a module which has its upper left-hand grid point
at the intersection of Z-reference line 38 and A-reference line 16. The
seventh (leftmost) digit indicates that the Z-reference line is in the
range 30 to 39 and that the A-reference line is in the range 10-19. The
sixth and third digits complete the specification of the Z-reference line
number and the A-reference line number, respectively. Within a
module, excluding its boundary, the first and second digits and the fourth

and fifth digits, each pair taken as an integer, are always non-zero.

1.21



TABLE 1.1 - CORRESPONDENCE BETWEEN REFERENCE
LINE NUMBERS AND THE SEVENTH (LEFTMOST)
DIGIT OF GRID POINT IDENTIFICATION NUMBERS

Seventh
Digit ZRL ARL
blank 1-9 1-9
1 ‘ 10-19 1-9
2 20-29 1-9
3 30-39 1-9
4 1-9 10-19
5 10-19 10-19
6 20-29 10-19
7 30-39 10-19

Along a Z-reference line, away from an intersection, the first and
second digits are zero and the fourth and fifth digits are non-zero.
Along an A-reference line, the fourth and fifth digits are zero and the
first and second digits are non-zero.

Element identification numbers generated by a module also follow
the seven-digit pattern and have the same reference line digits as the
grid point in the upper left corner of the module. Identification
numbers generated within a module vary with the module used and are
discussed in Section 1.3.2. The reference line numbers used in forming
the grid point and element identification numbers are internal numbers
and not necessarily the external number which the user has supplied.
The internal number assigned to a reference line is its position in the
sequence of reference lines in that direction as they are encountered
on module specification cards. The only restrictions on the external
numbers are that they be greater than zero and,thatthe number of
reference lines does not exceed 39 for Z-reference lines and 19 for

A-reference lines.

1.22



This numbering scheme was designed primarily so that the user
can easily identify the module that generated the data. Use of the
gridpoint numbering, as generated, will usually result in structural
matrices with abnormally large bandwidths, and hence, long running
times in the NASTRAN analysis. The BANDIT program, 2 alsQ developed
under this project, provides an efficient gridpoint renumbering, is simple

to use, and is generally available to NASTRAN users.
1.3.2 Module Descriptions

Unless specifically stated otherwise any consistent set of units may
be used to define module geometry and properties. Angles must be
specified in degrees unless otherwise noted. Any location data (r,8, z)
which have been defined in a previous module need not be redeﬁned for
subsequent modules. If the location of a point is specified in two or
more modules, the first specification encountered will take precedence

over all subsequent specifications in the event of a data conflict.

Everstine, Gordon C., "The BANDIT Computer Program for the
Reduction of Matrix Bandwidth for NASTRAN, " Naval Ship Research
and Development Center Report 3827 (March 1972).

1.23



Module Name: CONE
Function: To generate a finite element model of a sector of a

frustum of a general (non-circular) cone using the quadrilateral and/or
triangular elements QUAD2 and TRIAZ2.

Geometric Considerations:

Figure 1.5 — CONE Module

The surface to be modeled with the CONE module is assumed to
be describable by a linear equation in terms of axial position and
azimuthal angle in a cylindrical coordinate system. The edges of the
module at ZRL A and ZRL B as shown in Figure 1.5 are assumed
to lie in a plane perpendicular to the Z-axis. Similarly, the edges
at ARL A and ARL B each lie in a plane of constant azimuthal angle.
If the region to be modeled requires a more complex geometrical

description, either a different generating module should be used or the

1.24



region should be subdivided into smaller regions which can be
approximated by the CONE module.

The thickness of the material and the pressure loading on the module
are both assumed to vary linearly with axial position and azimuthal
angle. Only one type of material is permitted for the entire module;
however, the material may be easily specified as being anisotropic
since each element material reference system has its major axis
oriented so that it always lies in an r,z-plane, being parallel to the
z-axis whenever the element also lies in an r, z-plane. The user's choice
of the NASTRAN material properties card governs whether isotropic

or anisotropic material properties will be used.

Type of Model Generated: The surface of the model is approximated

by a mesh of the planar QUAD2 and TRIA2 elements, with the grid points
of the elements lying on the surface described by the user. The
generated model is thus a polyhedron which always lies on the concave
side of the structure being modeled. The location of grid points along
the boundaries is calculated by linear interpolation between the corner
points. The location of interior points is calculated by averaging the
values obtained by interpolating first between Z-reference line values
and then A-reference line values. The same type of interpolation is
used to calculate element thicknesses and pressure loads for the module.
Because each QUAD2 and TRIA2 element is assumed to have uniform
thickness and a uniform pressure load applied to its surface, the
interpolation is made to the centroid of the elements for these quantities,
rather than to a grid point.

Th2 mesh density for the module is controlled by the number of grid:
points (or divisions) along the edges of the module. A mild restriction
is made on the relationship between the number of divisions on the various
edges of the module (see Section 1.4.3) in order to simplify the mesh
variation within a module and to maintain acceptable element geometry.

QUAD?2 elements will be used for all modeling except in regions where

1.25




mesh variation requires triangular elements and in those regions TRIA2
elements will be used. The modeling method will concentrate triangular
elements in regions of higher mesh density.

For reliable finite element results the generated triangular elements
should be close to equilateral and the quadrilateral elements should be
nearly square. If the height-to-base ratio of any element does not fall
in the range (3,2), the elements should be considered to have "bad"
geometry. The program attempts to generate elements which have
acceptable shapes, but this process is very dependent on the dimensions
of the module to be generated and on the mesh density at its boundary.
The ultimate responsibility for the acceptability of the elements has been
left to the user.

Within the cone module (see Figure 1.5) grid point numbering starts
at the top and proceeds from left to right, then from top to bottom, using
the T-digit numbering convention described in Section 1.3.1. The sixth
digit contains the number of ZRL-A bounding the CONE module on the left
and the fourth and fifth digits contain the count, along an axial line, of
the nodes from ZRL-A. The third digit contains the number of ARL-A
bounding the section at the top and the remaining two digits contain the
count, along an azimuthal line, of the nodes from ARL-A. This
numbering convention applies to CONE modules with rectangular meshes
as well as to those with triangular meshes.

The ID of the grid point at the top left of the element is used as the
element identification of quadrilaterials. The identification of triangular
elements is obtained by starting with the node number of the top left
grid point and numbering the triangles in the Z-direction, incrementing
the fourth digit of each grid point by one. Figure 1.6 illustrates the
grid point and element numbering for this module.

The idealization generated by the CONE module will be constructed
us: .g NASTRAN's CQUAD2, PQUAD2, CTRIA2, PTRIA2, GRID, and
PLOAD bulk data cards. These cards will be sorted by type (connection,

1.26



property and load, and GRID) in the generated data deck. For a given
type the cards will appear in the order generated.

This module does not use any of the optional output control
parameters. As data cards are generated, comment cards are inserted
which identify the module by the external numbers of the reference lines

on its boundéry.

100100 101100 102100 103100 200100
ARL-1=1= = = ’
100100 102100 104100 106100
101100 103100 105100
1 200101
10010 101101 102101
100101 101101 102101
100102 . . L 200102
T 101102 102102
100102 101102 102102
100103 ¢ o —— 4200103
101103 102103
100103 1101103 102103
ARL-2=2~ — —@ L
100200 101200 102100 200200
I !
| !
| |
ZRL-1=1 ZRL-2=2

Figure 1.6 — Grid Point and Element Numbering Generated
by the CONE Module

1.27




Module Name: CONEND and CONENDR

Function: To generate a finite element model of a cone-shaped end

module using the quadrilateral and/or triangular elements QUAD2 and
TRIA2.

Geometric Considerations:

Figure 1.7 — CONEND Module

Figure 1.8 — CONENDR Module

1.28



The surface to be modeled with the CONEND or CONENDR module is
assumed to be describable by a linear equation in terms of axial position
and azimuthal angle in a cylindrical coordinate system. The edges of the
modules at ZRL-A and ZRL-B as shown in Figure 1.7 for the CONEND
and in Figure 1. 8 for the CONENDR are assumed to lie in a plane perpen-
dicular to the Z-axis. Similarly the edges at ARL-A and ARL-B each lie
in a plane of constant azimuthal angle. The only difference between a
CONEND and a CONENDR module is the location of the vertex with
respect to the order in which the various parameters are generated and
numbered. If the region to be modeled requires a more complex geomet-
rical description, a different generating module should be used or the
region should be subdivided into smaller regions which can be approximated
by the CONEND or CONENDR and CONE modules (see Section 1. 3.2).

The thickness of the material and the pressure loading on the module
are both assumed to vary linearly with axial position and azimuthal
angle. Only one type of material is permitted for the entire module;
however, the material may be anisotropic as well as isotropic since
each element material reference system has its major axis oriented so
that it always lies in the first quadrant of an r, z-plane, being parallel

to the z-axis whenever the element also lies in an r, z-plane.

Type of Model Generated: The surface of the model is approximated
by a mesh of the planar TRIA2 and possibly QUADS elements with the

grid points of the elements lying on the surface described by the user.

The generated model is thus a polyhedron which always lies on the
concave side of the structure being modeled. The location of grid points
along the boundaries is calculated by linear interpolation between the
corner grid points. The location of interior points is calculated by
averaging the values obtained by interpolating between the A-reference
line values. The same type of interpolation is used to calculate element
thicknesses and pressure loads for the module, and since each TRIA2

and QUAD2 elements is assumed to have uniform thickness and a uniform

1.29




pressure load applied to its surface, the interpolation is made to the
centroid of the elements for these quantities rather than to the grid points.

The mesh density for the module is controlled by the number of grid
points (or divisions) along the edges of the module. A mild restriction
is made on the relationship between the number of divisions on the
various edges of the module (see Section 1. 4.3) in order to simplify the
mesh variation within a module and to maintain acceptable element
geometry. TRIA2 elements will be used for all modeling except in
regions where mesh variation requires quadrilateral elements and there
QUAD?2 elements will be used. The modeling method will concentrate
quadrilateral elements in regions of lower mesh density.

For reliable results the generated triangular elements should be
close to equilateral, and the quadrilateral elements should be nearly
square. If the height-to-base ratio of any element does not fall in the
range (3,2), the elements should be considered to have "bad" geometry.
The program attempts to generate elements which have "'good' shape;

however, this process is very dependent on the dimensions of the module

to be generated and on the mesh density at the boundary. The ultimate
responsibility for the acceptability of the elements has been left to the
user.

For CONEND and CONENDR modules, the grid points are numbered
starting at the top left of the module and proceeding from top to bottom,
working from left to right. The identification of the triangular elements
is obtained by taking the node number of the top left grid point of each
column of triangular elements and numbering the triangles in the
theta-direction, incrementing the rightmost digit by one. Figures 1.9
and 1. 10 illustrate the grid point and element numbering for the CONEND
and CONENDR modules respectively.

These modules do not use any of the optional output control parameters.
As data cards are generated, comment cards are inserted which
identify the module by the external number of the reference lines on its

boundary.
1.30




101102

102200

1.31

102102

102103

103200

102104

103103
oL
'\0'3’\

Figure 1.9 — Grid Point and Element Numbering Generated
by the CONEND Module

103102

103104

103105

103106

200200
|

l
ZRL2=2

200101

200102

200103




100100

101100

100100

102100

100101 | 101100

100101

103100 I

100102 102100
_ARL2=2
7~
100102 ¢ 100103 Z 200100
 ARL1=1

100104 101103 | 102102

103200 |

100103 100105 | 101104

102200 71.2=2

100106 101200

Figure 1.10 — Grid Point and Element Numbering Generated
by the CONENDR Module

1.32



1.3.3 Graphical Output

The data generator will optionally produce microfilm plots of the
generated structure. If a PLOTID card is included in the execution
control deck, the program will produce four plots, including a perspective
view and three orthogonal views from a position normal to each of the
three basic coordinate planes of the structure. The graphic output will
serve as a check on the geometry of the output data deck generated by
the program. Structural plots for each of the sample problems are

included in Section 4.
1.4 STRUCTURAL DATA SPECIFICATIONS

1.4.1 Bulk Data Card Format

The data card format is variable to the extent that any quantity except
the mnemonic can be punched anywhere within a specified 8-column field.
Fach bulk data card consists of ten 8-column fields as indicated in the

following diagram:

1 2 3 4 5 6 1 8 9 10
Lcon | 1] s [2[6 [e0] ]1125)20.0]+cor

The mnemonic is punched in field 1 beginning in column 1. Fields 2-9
are for data items. The only limitations in data items are that they
must lie completely within the designated field, have no imbedded
blanks, and must be integer or real numbers, or completely blank.
The program will convert all numbers so that they satisfy the type
requirements of the various modules.

On continuation cards, field 10 is used in conjunction with field 1
of the continuation card as an identifier and hence must contain a unique
entry. The continuation card contains the symbol + in column 1
followed by the same characters that appear in columns 74-80 of field 10

of the card that is being continued.

1.33




1.4.2 Order of Bulk Data Cards

Bulk data cards containing structural module specifications must be
arranged in the order in which the various components of the idealization
are to be generated; otherwise, geometric information which is passed
from one module to another, may not be correct. Other types of bulk
data cards may be included in any desired order. Continuation cards
must immediately follow their parents; however, field 10 may be non-
blank even if no continuation card follows. Uniqueness of field 1 on

continuation cards is not required.
1.4.3 Data Card Descriptions

The following pages contain the data format specifications for the
various bulk data cards arranged in alphabetical order by card name.

Table 1.2 contains a summary of the functions of the bulk data cards,

arranged by card type.

1.34



TABLE 1.2

- SUMMARY OF BULK DATA CARDS

The following data input cards are available to the user:

Card Card

Type Name Function Page

Surface

Module CONE To generate a cone-shaped 1.37
module; described as a
sector of a frustum of a
general cone.

Surface

Module CONEND To generate a cone-shaped 1.41

' end module; data generated

from apex to base.

Surface

Module CONENDR To generate a cone-shaped 1.44
end module; data generated
from base to apex.

Equivalence AEQU To specify the equivalence of 1.36
A-reference lines.

Equivalence GEQU To specify the equivalence of 1.47
general data quantities.

Equivalence 1IEQU To specify the equivalence of 1.49
intersections of reference lines.

Equivalence ZEQU To specify the equivalence of ' 1.50
Z-reference lines. :




Input Data Card AEQU A-Reference Line Equivalence

Description: Defines Equivalence between A-reference lines.

Format and example:

1 2 3 4 5 6 7 8 9 10
AEQU | ARLD1 | ARLI1 | ARLD2 | ARLI2 | ARLD3 | ARLIS3 | etc. |
AEQU 4 1 5 2
Field Contents
ARLDi Dependent A-reference line number--one that will be

equivalenced to ARLIi (integer > 0) .
ARLIi Independent A-reference line number--one that will
be used for grid point numbering and is equivalenced

to ARLDi (integer > 0)

Remarks:
1. Maximum number of A-reference lines is 19.
2. See Section 1.1.5 for a discussion of equivalencing.
3. The user must insure that equivalence specifications are not

circular. There are no other restrictions regarding which reference

lines may or may not be equivalenced.

1.36




Input Data Card CONE Cone Shaped Module
Description: Defines a module to generate data for a region which can
be described as a sector of a frustum of a cone (Figure 1. 11).

B_ _ARL1

A/
- '

'
e fpentens
— —D

ZRL 1 ZRL 2

Figure 1.11 — Geometry of the CONE Module

Format and example:

1 2 3 4 5 6 7 8 9 10

CONE | ZRL1 ARL1 ZRL2 ARL2 do | 94 L 0 +IDENT1
CONE 1 2 5 4 105. 10. 45, + C101
1 2 3 4 5 6 7 8 9 10
+IDENT1 Ra THp Pa DIV1 M +IDENT2
+C101 1.0 1.0 1.0 6 1 + €102
1 2 3 4 5 6 7 8 9 10
+IDENT2 | Rg THg | Pg Div2 +IDENT3
+C102 1.0 1.0 4 + C103

1.37




1 2 3 4 5 6 7 8 9 10
+IDENT3 RC THC PC DIV3 +IDENT4
+C103 +C104

1 2 3 4 5 6 7 8 9 10
+IDENT4 Rp THp PD DIV4
+C104 1.5

Field Contents

ZRL1 Z-reference line number bounding the module
on the left (side 1, integer > 0)

ARL1 A-reference line number bounding the module
at the top (side 2, integer > 0)

ZRL2 Z-reference line number bounding the module
on the right (side 3, integer > 0)

ARL2 A-reference line number bounding the module
on the bottom (side 4, integer > 0)

(1)2 Angle between the positive Z-direction and
the normal to the surface along ARL1,
counterclockwise is positive (real, degrees)

(;54 Angle between the positive Z-direction and
the normal to the surface along ARLZ2;
counterclockwise is positive (real, degrees)

L Length of the projection of the module on the
Z-axis (real 20)

0 Angular width of the module (real, degrees)

RA, R RC’ RD Radii at corners A,B,C, and D (real)

TH,,THg, TH,, TH, Thicknesses at corners A,B,C, and D (real)

PA’ Pp, P, Py Pressures at corners A,B,C, and D (real)

DIV1, DIV2, DIV3, DIV4

M

Numbers of division along sides 1,2,3, and
4 (integer =1)

Material identification number (integer 21)

1.38




Remarks:

1. The two Z-reference lines must have different numbers and may not
be reference lines which have been equivalenced.

2. The two A-reference lines must have different numbers and may not
be reference lines which have been equivalenced.

3. If R, has not been defined, default is R

B

If RC has not been defined, default is R

If RD has not been defined, default is R
4. If THB is blank, default is TH

If THC is blank, default is TH

If THD is blank, default is TH
5. If PB is blank, default is P

If PC is blank, default is P

A
B
A
A
B
A
A
B
If PD is blank, default is PA.
6. If DIV1 has not been defined, default is 1.
If DIV2 has not been defined,. default is 1.

If DIV3 is blank, default is DIV1.
If DIV4 is blank, default is DIV2.

7. Parameters Ri’ ¢i,DIVi,L, and 6 which are passed from previously
generated modules will override any values specified for this module.
8. This module may be used to generate cylindrical shapes by

specifying ¢2 = ¢4 = 90°. Annular plates may be generated by specifying
9, = 9, = 07 or 180°,
9. If ¢4 is blank, default is ¢2.

10. The following relationship must hold for the number of divisions on
the edges of the module whenever DIV1 = DIV3:
|DIV2 - DIV4 | < DIV1.
Similarly, the following relationship must hold whenever DIV2 = DIV4:
|DIV1- DIV3 | < DIV2.

1.39




11. The following relationship must hold for the number of divisions
on the edges of the module whenever both DIV1 # DIV3 and DIV2 # DIV4:
|DIV1 - DIV3| < min (DIV2, DIV4), and

|DIV2 - DIV4| < min (DIV1, DIV3).

12. With this module the user may specify ¢i =0% or ¢>i 2 1800;

however, the above references to the directions to left and right must be

reversed.
13. If M is zero or blank, a default number of 1 will be provided.

14. Modules which close a 360 degree ring (side 4 lies in the

9= 0° = 360° plane) must specify 6, even if it has been previously defined

by another module.

1.40




Input Data Card

CONEND

apex to base (Figure 1. 12).

Cone-Shaped End Module

Description: Defines a cone-shaped end module; data generated from

Figure 1.12 — Geometry of the CONEND Module

Format and example:

1 2 3 4 5 6 7 8 9 10
CONEND | ZRL1 ARL1 ZRL2 ARL2 $2 ¢4 | L 0 +IDENT1
CONEND 7 2 2 4 60.0 10.0 | 45.0 | + CE101

1 2 3 4 b 6 7 9 10
+IDENT1 | Rg [THg [ Pg [ DIV3 [ ™ +IDENT2
+CE101 20110 1.0 6 1 + CE102

1 2 3 4 5 6 7 9 10
+IDENT2 | R [TH¢ | Pe [DIV2]IEQ +IDENT3
+CE102 1.5 1.0 8 1 + CE103

1 2 3 4 5 6 7 9 10
+CE103 15 156

1.41




Field
ZRL1

ARL1
ZRL2

ARL2

L

]

RpsRe

TH,,TH.,,TH

B’"7C’"T7AD

PpsPosPap

DIV2, DIV3

M
IEQ

Remarks:

Contents

Z-reference line number bounding the module at
the apex, on the left (side 1, integer > 0)

A-reference line number bounding the module at
the top side (side 2, integer > 0)

Z-reference line number bounding the module on
the right (side 3, integer > 0)

A-reference line number bounding the module on
the bottom (side 4, integer > 0)

Angle between the negative r-direction and the vector

BA along ARL1; clockwise is positive
(-90° < 9y < 900, degrees)

Angle between the negative r-direction and the
vector CD along ARL2; clockwise is positive
(-900< 94 < 900, degrees)

Length of the projection of the module on the
Z-axis (real 2 0)

Angular width of the module (real, degrees)

Radii at corners B and C (real > 0)

Thicknesses at corners B, C, and the apex AD
(real > 0)

Pressures at corners B,C, and the apex AD (real)

Number of divisions along sides 2 and 3
(integer 2 1)

Material identification number (integer = 0)

Intersection equivalence flag (blank or 1)

1. The two Z-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

2. The two A-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

3. The number of divisions must be the same for sides 2 and 4.

1.42



4. DIV3 cannot be greater than DIV2.
5. This module may be used to model flat surfaces by setting
9, =6, =0°.
6. If M is zero or blank, a default number of 1 will be provided.
7. R, and R, are automatically set to zero. R_, must be defined.

A D B
If R, has not been defined, default is R

C B’
8. If THAD is blank, default is THB. If THC is blank, default is THB.
9. If P AD I8 blank, default is PB’ If PC is blank, default is PB.

10. Parameters Ri’¢i’ L, DIVi and ¢ which are passed from previously
generated modules will override any values specified for this module.

11. If cpi < 00, then the above references to the directions left and right
must be reversed.

12. If ¢4 is blank, default is ¢2.

13. IfIEQ is 1, no intersection equivalences will be invoked for the
apex points. This flag must be set for one module, within a set of
CONEND modules, which form a 360-degree cone. It should not be set
for other applications.

14. Modules which close a 360-degree cone (side 4 lies in the
6= 0° = 360° plane) must specify 8, even if it has been previously defined

by another module.

1.43




Input Data Card CONENDR Cone-Shaped End Module
Description: Defines a cone-shaped end module; data generated from

base to apex (Figure 1.13).

-]
ZRL 2

Figure 1.13 — Geometry of the CONENDR Module

Format and example:

1 2 3 4 5 6 7 8 9 10
CONENDR | ZRL1 | ARL1 | ZRL2 | ARL2 | ¢ | ¢4 |L | 9 | +IDENT1
CONENDR | 2 2 7 4 60.0 45.0 | + CR101

1 2 3 4 5 6 7 8 9 10
HIDENT1| Ry | THp | Po | DIVI|M +IDENT2
+CR101 [ 15 | 1.0 | 1.0] 6 + CR102

1 2 3 4 5 6 7 8 9 10
HDENT2 | Ry THp | Pp | DIV2| IEQ +IDENT3
+CR102 [15 1.0 | 1.0] 8 + CR103

1 2 3 4 5 6 7 8 9 10
+IDENT3 THge | Pge
+CR103 15 | 15

1.44




Field
ZRL1

ARL1
ZRL2

ARL2

L

6

RA’RD

TH,, THp, THp

P ,P

A’ Pp Pre
DIV1, DIV2
M

IEQ

Remarks:

Contents

Z-reference line number bounding the module on the
left (side 1, integer > 0)

A-reference line number bounding the module at the
top (side 2, integer > 0)

Z-reference line number bounding the module at the
apex, on the right (side 3, integer > 0)

A-reference line number bounding the module on the
bottom (side 4, integer > 0)

Angle between the negative r-direction and the vector
AB along ARLI1; counterclockwise is positive

(-900 < 9y < 900, degrees)
Angle between the negative r-direction and the vector
DC along ARL2; counterclockwise is positive
(-90° < 94 < 900, degrees)
Length of the projection of the module on the
Z-axis (real = 0)
Angular width of the module (real, degrees)
Radii at corners A and D (real > 0)

Thicknesses at corners A, D, and the apex BC
(real > 0)

Pressures at corners A, D, and the apex BC (real)

Number of divisions along sides 1 and 2 (integer 21)
Material identification number (integer = 0)

Intersection equivalence flag (blank or 1)

1. The two Z-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

2. The two A-reference lines must have different numbers and may

not be reference lines which have been equivalenced.

3. The number of divisions must be the same for sides 2 and 4.

1.45




4, DIV1 cannot be greater than DIV2.

5. This module may be used to model flat surfaces by setting

0
¢2 = ¢4 =07,
6. If M is zero or blank, a default number of 1 will be provided.
1. RB and RC are automatically set to zero. RA must be defined.
If RD has not been defined, default is RA'
8. If THBC is blank, default is THA' If THD is blank, default is THA.
9. If PBC is blank, default is PA' If PD is blank, default is PA'

10. Parameters Ri,¢i,DIVi, L, and 6 which are passed from previously
generated modules will override any values specified for this module.

11. 1If ¢; < 00, then the above references to the directions left and
right must be reversed.

12. If ¢4 is blank, default is %,

13. If IEQ is 1, no intersection eguivalences will be invoked for the
apex points. This flag must be set for one module, within a set of
CONENDR modules, which form a 360-degree cone. It should not be
set for other applications.

14. Modules which close a 360-degree cone (side 4 lies in the
6=0° = 360° plane) must specify 6, even if it has been previously defined

by another module.

1.46




Input Data Card GEQU General Data Equivalence
Description: Defines equivalences between any data groups stored in
KEY-CHAIN storage.

Format and example:

1 2 3 4 5 6 7 8 9 10
GEQU|ZRLD | ARLD | COMPD | LEVELD | ZRLI| ARLI | COMPI| LEVELI |+IDENT
GEQU| 12 16 2 1 13 16 1 1

Field Contents

ZRLD Z-reference line used to define the dependent reference
point (integer > 0)

ARLD A-reference line used to define the dependent reference
point (integer > 0) |

COMPD Data component at the dependent reference point which
is to be equivalenced (integer 1, 2, or 3)

LEVELD Data level, in KEY-CHAIN storage, of the data to be
equivalenced (integer > 0)

ZRLI Z-reference line used to define the independent
reference point {(integer > 0)

ARLI A-reference line used to define the independent
reference point (integer > 0)

COMPI Data component at the independent data point
(integer 1, 2, or 3)

LEVELI Data level, in KEY-CHAIN storage, of the independent

data component (integer > 0)

Remarks:
1. See Section 1.1.5 for a discussion of equivalencing and Section
2.2.1 for a discussion of the management of KEY-CHAIN storage.
2.  Data component numbers are defined:
1 - data along a Z-reference line
2 - data along an A-reference line

3 - data at an intersection point.

1.47




3. Notice that, once a data group is equivalenced, all higher levels
of data at that point are also equivalenced.

4. Up to five continuation cards are permitted for one logical card
(fields 2 through 9 have the same interpretation as on the first card).
There is no advantage in using continuation cards as opposed to
specifications on separate logical cards.

5. The user must insure that equivalence specifications are not
circular. There are no other restrictions regarding which data groups

may or may not be equivalenced.




Input Data Card

IEQU
Description: Defines equivalence between intersection points of A- and
Z-reference lines.

Format and example:

Intersection Point Equivalence

ZRLDi, ARLDi

ZRLIi, ARLIi

Remarks:

1. See Section

circular.

1 2 3 4 5 6 7 8 9 10
IEQU |ZRLDI |ARLD1|ZRLI1|ARLI1 | ZRLD2 | ARLD2 |ZRLI2 | ARLI2 | +IDENT1
IEQU| 4 2 4 1 4 3 4 1 + C01

1 2 3 4 5 6 7 8 9 10
+IDENT1| ZRLD3 | ARLD3| ZRLI3 | ARLI3| etc.

IEQU 4 4 4 3

Field Contents

Pair of Z- and A-reference line numbers defining a
dependent intersection point--one that will be
equivalenced to point ZRLIi, ARLIi (integer > 0).

Pair of Z- and A-reference line numbers defining an
independent intersection point--one that will be
used for grid point numbering and global reference
(integer > 0).

1.1.5

for a discussion of equivalencing.

1.49

line intersections may or may not be equivalenced.

2. The user must insure that equivalence specifications are not

There are no other restrictions regarding which reference




Input Data Card ZEQU Z-Reference Line Equivalence

Description: Defines equivalence between Z-reference lines.

Format and example:

1 2 3 4 5 6 7 8 9 10
ZEQU | ZRLD1| ZRLI1| ZRLD2 | ZRLI2 | ZRLD3 | ZRLI3 | etc.
ZEQU 5 3 1 2
Field Contents
ZRLDi Dependent Z-reference line number that will be

equivalenced to ZRLIi (integer > 0).

ZRLIi Independent Z-reference line number that will be
used for numbering grid points and is equivalenced
to ZRLDi (integer > 0).

Remarks:

1. Maximum number of Z-reference lines is 39.

2. See Section 1.1.5 for a discussion of equivalencing.

3. The user must insure the equivalence specifications are not
circular. There are no other restrictions regarding which reference

lines may or may not be equivalenced.

1.50




2. PROGRAMMER'S INFORMATION

2.1 PROGRAM ORGANIZATION
2.1.1 General Structure

Using the data generator modules as a set of independent data
generation programs requires that two passes be made through the user's
data. The first pass scans the data to establish the mechanism necessary
for communication between modules. Internal identification tags are
assigned to the user's specifications, and storage areas are reserved
for information to be passed at module boundaries. After the first pass,
an interlude phase is entered which completes preliminary processing by
propagating specifications to undefined areas and assigning default values
to those quantities which are still undefined.

The second pass through the user's data, which is the actual data
generation pass, has two phases. The first phase generates data for
surface modules and the second phase generates all other data (primarily
from frame, boundary condition, and non-uniform load modules).

When the data generation has been completed, various data files are
merged onto one file which can be passed from the program as punched
cards, or as a tape or disk file to be analyzed by the NASTRAN program. -
Computer plots of the model are then generated for user verification.

Table 2.1 lists the subroutines corresponding to major operational
steps of the program and summarizes their primary functions. The
process completion indicator (seventh word in the OPTION common
block) is used by the subroutine ABORT to determine which storage areas
will produce meaningful dumps. With the exception of subroutine INSORT
this indicator is set after control has been returned from the subroutine

listed.

2.1




TABLE 2.1 - PRIMARY PROCESSING SUBROUTINES

Subroutine Process
Name Completion
Indicator Function

BEGIN 0

SETUP 10 Reads and interprets control cards, sets
processing options and page heading.

GOOGAN 20 Transforms NASTRAN format BULK DATA
to a FORTRAN readable format.

INSORT 30 First pass through data. Assigns internal
numbers and boundary storage areas,

40 Interlude processing. Completes storage
assignments, processes reference line
equivalences, assigns default values to
mesh specifications.

CUTUP 50 Begin second pass processing. Generates
data for surface modules.

| FRAMIT 60 Complete second pass processing.
Generates data for frame, boundary
condition, and non-uniform pressure
loading.

ASSMBL 70 Merges generated data onto one file to be
plotted and passed on to subsequent
programs.

NASPLT (STOP) Generates computer plots of idealization.

2.1.2 Program Conventions

A few general programming conventions were adopted at the outset of

the development of the program. As work progressed, it became

evident that adopting other conventions would simplify future modifications

and additions.

Some of the conventions have not been rigidly followed

2.2



but all current development follows these guides and existing code is
being changed to conform.

2.1.2.1 Headings and Pagination of Printed Output. All printed
output should be accounted for by the PRINT subroutine (Section 2. 6. 5).
This will insure proper pagination and will automatically print headings
and subheadings at the top of each page.

2.1.2.2 Error Messages. Each error is assigned a number by the
programmer and listed in the error message table (Section 3). Non-fatal
error messages and information messages are preceded by a blank line
and have the form:

tkkKRRKRKHHXXX1ZZZbb message text ... "
where XXX is the current step number as indicated by the seventh word
of the OPTION common block and ZZ7Z is the error message number.
Fatal error messages have two levels of severity. The most
severe (level 3) fatal errors are those which require that the application
be aborted without any further processing. It is the programmer's
responsibility to print a fatal message and return to the main program
with the value 3 stored in the NSR word of the OPTION common block.
Less severe (level 2) fatal errors are those which continue processing
for data checking purposes, but suppress NASTRAN execution. It is
the programmer's responsibility to print a fatal error message and to
store the value 2 in NSR word of OPTION. It is also the programmer's
responsibility to count all such errors occurring in his module and to
initiate a level 3 error termination if the number of errors exceeds the
error limit (value stored in the fourteenth word of OPTION). Fatal
error messages are preceded by a blank line and have the form
"*FATAL*bbXXXYZZZbb message text ..."

where XXX is the current step number as indicated by the seventh word
of the OPTION common block, Y is the severity level (2 or 3), and ZZ7Z

is the error message number.

2.3




2.1.2.3 Structural Module Specifications. In order to standardize
input formats for the user and to simplify the global access to various
quantities required for mesh propagation, the following conventions
are proposed as standard basic specifications for structural modules:

All Modules

The first data field on the card will contain the module
name (always must be specified).

Surface Modules

The second through the fifth data fields on the first card
will contain the identification numbers of the reference
lines defining the module (always must be specified).

The first four continuation cards will contain information
about the four (three) edges of the structural module.

The fifth field on each of the first four continuation cards
will contain the number of divisions which will be made
along one boundary of the module in establishing a finite
element mesh (optionally specified by automatic mesh
propagation by the program, or by assigned defaults).

Provision should be made for absolute specification of the
coordinates of the intersections of the reference lines
bounding the module (usually obtained by the program as
propagated quantities from adjacent modules).

Solid Modules

No recommendations at this time.

Stiffener, Bdundary Condition, and Loading Condition Modules

The second data field will contain the identification
number of the reference line along which this stiffener is
positioned (always must be specified).

The third and fourth data fields will contain the reference
line identification numbers defining the starting and
ending points of the stiffener (a stiffener will be generated
along the entire length of the reference line, as defined
by surface or solid module specifications, if no starting
and ending points are specified).

2.4




2.1.2.4 Subroutine Conventions. The only conventions established
for the writing of subroutines are:
FORTRAN non-standard returns should not be used,
all references to files should be symbolic, with the
file variables appearing in the subroutine calling arguments.
2.1.2.5 Communication between Modules. The program uses data
files as its primary method of communication. The accession of data
to be processed by each module and the transfer of output generated by
each module are accomplished using files. Necessary parameters and
flags are passed in the OPTION common block (Section 2.1.3). Global
geometric information is passed in the KEYCHN common block and is
accessed using the LOCKS and LOCKIT subroutines.
2.1.2.6 Standard Library Subroutines. A number of standard
library routines (SIN, ATAN, etc.) are used throughout the program.
Since these subroutines should be available as standard software
components on any computer that would accommodate the program, they
have not been listed in the '""Subroutines Called' sections of the subroutine

descriptions.

2.1.3 Global Common Storage Areas

The program has two common areas which apply to all segments of
the program. One area called OPTION contains parameters which
control the execution of the various program parts. Table 2.2 describes
these parameters. The second area called SET is used only to pass
page heading and output titling inforn ation to the subprogram PRINT and
is described with that program in Section 2.6.5.

The OPTION area is initialized in subroutine SETUP from user control
card specifications (Section 2.3.1). An additional execution control card
OPTION(J) =K

permits the user to store the value K in the Jth word of the OPTION

common area. A second execution control card,

2.5




TABLE 2.2 - OPTION COMMON AREAS

Word Acceptable
Index Values Function
1 1 Connection cards to be generated
0 No connection cards to be generated
2 1 PLOAD cards to be generated
0 No PLOAD cards to be generated
3 1 FORCE cards to be generated
0 No FORCE cards to be generated
4 1 SPC cards to be generated
0 No SPC cards to be generated
5 1 MATI1 cards to be generated if missing
0 No MAT1 cards to be generated if missing
6 0 Program decides which errors are fatal
1 All errors considered fatal
-1 No errors considered fatal
7 20 Indicates the current phase of data generation
processing (See Section 2.1.1 for description)
8 1 Generated data to be punched on cards
0 Generated data not to be punched on cards
9 | NASTRAN run to be executed following data
| generation run. Additional data cases will be
: ignored.
0 No NASTRAN run to follow. Multiple data cases
will be processed.
10 Not Used
11 20 Number of shell modules to be processed
12 =10 Number of frame modules to be processed
13 =0 Number of boundary condition modules to be
processed
14 =0 Maximum number of level 2 errors permitted per
processing step
50 Default
15 >10 Number of lines per page (including title and
heading lines)
55 Default

2.6



TABLE 2.2 - (continued)

Word Acceptable )
Index Values Function
16 20 Number of generated connection cards
17 20 Number of generated GRID cards
18 20 Number of loading cards generated
19 0 No data storage areas to be dumped by subroutine
ABORT
1 Data storage areas dumped in edited format by
subroutine ABORT
-1 Data storage areas dumped in unedited format by
subroutine ABORT
2 Data storage areas dumped in edited format by
subroutine ABORT following a fatal (level 3)
error. Default
20 >0 Number of words of a data storage area to be
dumped by subroutine ABORT when an unedited
dump is requested.
2000 Default
21 1 Maximum printing of error and information
- messages
0 Minimum printing of messages
22 >0 NASTRAN rigid format number for data being
generated
23 >0 Maximum number of rigid formats available
12 Default
24 1 Structural plots to be generated for this data case
0 No structural plots to be generated for this data
case
25 225 Number of words in working OPTION common area
50 Default
OPTION(25)
+1 (NSR) 1 No errors detected at this point
2 Level 2 errors (conditionally fatal) detected at
this point
3 Level 3 errors (fatal) detected at this point

2.7




HIGH
SETOPT = LOW

permits the user to issue blanket option requests for debugging assistance.
Table 2.3 indicates OPTION common area changes produced by the
SETOPT card (the OPTION common area will be dumped by all calls to

subroutine ABORT, regardless of the control card specifications in effect).

TABLE 2.3 - OPTION COMMON CHANGES PRODUCED BY
THE SETOPT CARD

SETOPT = HIGH
OPTION

WORD Value
6 -1
14 100
19 1
20 500
21 1

SETOPT = LOW

O\I;géog Value
1 0
2 0
3 0
4 0
5 0
14 1
19 0
21 0

2.8




2.1.4 Program Overlay Structure

The data generator program operates on the CDC 6700 and CDC 6400
computers at NSRDC. The program has been compiled using the
FORTRAN Extended (FTN) compiler and executes from linked overlays
using the NASTRAN LINKEDITOR/LOADER. The program is divided
into two main segments: one for generating data and one for plotting the
generated model. Figures 2.1, 2.2, and 2.3 show the overlay control

cards for the main driving link and the two subordinate links, respectively.

LINKEDIT OUTFILE=DATGEN(S) PARAM(6)15000
LIBRARY LIBA

LINK 0 xPROGRAM DRIVER
INCLUDE LIBA(SCRIBE)
INCLUDE LIBA(PRINT)
INCLUDE LIBA(PLOTDD)
INCLUDE LIBA(FLAGSV)
INCLUDE LIBA(SHFT1V)
INCLUDE LIBA(SHFT2V)
INCLUDE LIBA(ORAV)
ENTRY SCRIBE

END

Figure 2.1 - Driver Link Overlay Control Cards

2.9




. S —

LINK1 *DATA GENERATION LINK
INCLUDE LIBA(DATAGEN)
INCLUDE LIBA(BLKDATA(TYPE))
INCLUDE LIBA(SWITCH)
INCLUDE LIBA(ERRMSG)
INCLUDE LIBA(ABORT)
INCLUDE LIBA(LOCKS)
INCLUDE LIBA(LOCKIT)
INCLUDE LIBA(POOLZZ)
INCLUDE LIBA(POOLIT)
INCLUDE LIBA(POOLPR)
INCLUDE LIBA(POOLDT)
INCLUDE LIBA(POOLPS)
INCLUDE LIBA(POOLDS)
INCLUDE LIBA(FETCH)
INCLUDE LIBA(FETCH1)
INCLUDE LIBA(STOW)
INCLUDE LIBA(STOW1)
INCLUDE LIBA(PURGE)
INCLUDE LIBA(DMPOOL)
OVERLAY A

INCLUDE LIBA(SETUP)
INCLUDE LIBA(MASQ)
INCLUDE LIBA(XRCARD)
INCLUDE LIBA(GOOGAN)
OVERLAY A

INCLUDE LIBA(INSORT)
INCLUDE LIBA(XTRACT)
INCLUDE LIBS(SPACE)
OVERLAY A

INCLUDE LIBA(ASSMBL)
OVERLAY A

INCLUDE LIBA(CUTUP)
INCLUDE LIBA(READS)
INCLUDE LIBA(REF)
INCLUDE LIBA(TERP)
INCLUDE LIBA(CONE)
INCLUDF LIBA(QUADS)
INCLUDE LIBA(PROPER)
INCLUDE LIBA(CONEND)
INCLUDE LIBA(TRI)
INCLUDE LIBA(CEPROP)

ENTRY DATGEN

END

Figure 2.2 - Data Generation Link Overlay Control Cards

2.10




LINK?2
INCLUDE
OVERLAY
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
OVERLAY
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

*STRUCTURE PLOTTING LINK

LIBA(NASPLT)
AA
LIBA(COORD)
LIBA(CORDI12)
LIBA(FINDC)
LIBA(FINDG)
LIBA(SYS)

AA
LIBA(PLOT)
LIBA(GLABEL)
LIBA(XFRAME)
LIBA(MODEL)
LIBA(CENTRE)
LIBA(IDFRMV)
LIBA(APRNTV)
LIBA(BNBCDV)
LIBA(CAMRAV)
LIBA(CHSIZV)
LIBA(CNTCDC)
LIBA(CNTIBM)
LIBA(CTL4V)
LIBA(DOTLNV)
LIBA(ERMRKYV)
LIBA(ERRLNV)
LIBA(ERRNLV)
LIBA(FORMV)
LIBA(FRAMEV)
LIBA(GRID1V)
LIBA(HOLDIV)
LIBA(HOLLV)

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

LIBA(ID4G)
LIBA(INTBCD)
LIBA(LABLV)
LIBA(LINEV)
LIBA(LINRV)
LIBA(NONLNV)
LIBA(NXNYV)
LIBA(NXV)
LIBA(PAGE40)
LIBA(PLOTV)
LIBA(POINTV)
LIBA(PRINTV)
LIBA(RITE2V)
LIBA(RITSTV)
LIBA(SCERRV)
LIBA(SCLSAV)
LIBA(SETCIV)
LIBA(SETMIV)
LIBA(TABLES)
LIBA(TABL1V)
LIBA(TABL2V)
LIBA(TABL3V)
LIBA(VCHARY)
LIBA(VECTRYV)
LIBA(XAXISV)
LIBA(XMODV)
LIBA(XSCALV)
LIBA(INCRYV)

ENTRY NASPLT

END

Figure 2.3 - Structure Plotting Link Overlay Control Cards

2.11




2.1.5 Program Execution

On the CDC computer the program can be executed using standard
procedures or the program can be executed from a LINKEDITOR
random overlay file. The acceptable forms of control cards for program

execution are listed in Table 2. 4.

TABLE 2.4 - SYSTEM CONTROL CARDS FOR PROGRAM EXECUTION

progname.
progname(input, output, punch, genout, pltout)
progname. ATTACH

progname(input, output, punch, genout, pltout) ATTACH

B_OWw DN

Forms 1 and 2 in the table are used when the program is stored on
a standard SCOPE operating system (sequential) file and forms 3 and 4
apply to LINKEDITOR random files. Forms 1 and 3 cause default file
names to be used for the interface with the program while forms 2 and
4 allow the user to override the default names. A description of the

program's external files is given in Table 2.5.

TABLE 2.5 - DATA GENERATOR EXTERNAL FILES

Symbol Default

(Table 2. 4) Name Contents

progname No default File containing program

input INPUT Data cards read by program

output ouTPUT Printed listing from program

punch PUNCH Punched cards generated by program (a
copy of GENOUT)

genout GENOUT Generated NASTRAN card deck

pltout PLTOUT Plot file for SC 4020 plotter (tape file only,
written at 556 BPI density in S format)

2.12



The examples given below illustrate some typical applications
when the program is stored on the file CUTUP.
LABEL, PLTOUT, L=MYPLOTTAPE, D=HI, F=S,R.
REQUEST, GENOUT, *xPF.

(1) CUTUP.
CATALOG, GENOUT, MYFILENAME, ID=1234567890.

LABEL, TAPE, L=-MYTAPE, R, D=HY.
(2) CUTUP(,, TAPE)ATTACH
NASTRAN(GENOUT)ATTACH

(3) CUTUP(,NULL)
NASTRAN(GENOUT)ATTACH
In (1) the program is stored on a sequential file and the generated
data cards are to be stored on a permanent file called "MYFILENAME. "
Plot information will be generated on the tape PLTOUT for SC 4020
plotting. In (2) the program is stored in random format, a copy of the
generated data (the normal punch copy) is to be stored on tape, and the
generation run will be followed by a NASTRAN run. In (3) the program
is stored on a sequential file, the printed listing is to be deleted, and a
NASTRAN run will follow.

2.1.6 Execution Monitor Program - DATGEN
Function: To control the sequence of operations during a data
generation program run.

Common Blocks:

OPTION See Section 2.1.3
KEYCHN See Section 2.2.2
TYPE Word Type Contents
1 integer Number of words in processing

control alphabet - 40

2-41 alphanumeric Processing control alphabet:
8,9,0, *,+, blank,

2.13




Word
42

43-53

54

55-76

71

78-83

84-87
88

89-92

93-98
99

100-109
110

111-112
113-120
121

122-127

Type
integer

alphanumeric

integer

alphanumeric

integer
alphanumeric

alphanumeric

integer
alphanumeric

alphanumeric

integer

alphanumeric

integer

alphanumeric
alphanumeric

integer

alphanumeric

Entry Point: DATGEN

Calling Sequence: Main Program

2.14

Contents
Number of words in Bulk Read
Dictionary - 11

Bulk Read Dictionary; MATI1,
blank, MAT?2, blank, MAT3, blank,
BEGI, NbBu, LKbb, ENDD, ATAb

Number of words in Bulk Write
Dictionary - 22

Bulk Write Dictionary: CBAR, blank,
PBAR, blank, CQUA, D2bb, PQUA,
D2bb, CTR1, A2bb, PTR1, A2bb,
PLOA, Dbbb, GRID, blank, SPCb,
blank, CORD,2Cbb, PLOT, ELbb

Number of words in *'S"'
Dictionary - 6

"S'" Dictionary: CONE, blank, CONE,
NDbb, CONE, NDRb

Four words of "$ $ $ $"

Number of words in "F"
Dictionary - 4

"F'" Dictionary: FRAM, Tbbb,
RING, Tbbb

Six words of "$ $ $ $"

Number of words in '""B"'
Dictionary - 2

Tenwords of "$ $ $ $"

Number of words in "O"
Dictionary - 2

"O" Dictionary: $END, blank
Eight words of ""$§ § $ $"

Number of words in '"Q"
Dictionary - 6

"Q" Dictionary: ZEQU, blank,
AEQU, blank, IEQU, blank



Subroutines Called: ABORT, ASSMBL, CUTUP, FRAMIT, GOOGAN,
INSORT, NASPLT, PLASSM, POOLIT, PRINT, SETUP
Files Defined:

File Number File Name Function
1 TAPE1 Scratch, transfer of data to NASPLT
5 INPUT User data to program
6 OouTPUT Printed listing and message file
7 PUNCH Punched card file
8 TAPES Scratch
9 TAPE9 Scratch
10 TAPE10 Scratch
11 TAPE11 Scratch
12 TAPE12 Scratch
13 TAPE13 Scratch
14 TAPE14 Scratch
15 TAPE15 Scratch
16 GENOUT Generated card image file
48 PLTOUT Structural plot file

Program Messages:

Number Level Text
40 1 END OF APPLICATION
41 3 EXECUTION OF NASTRAN SUPPRESSED

DUE TO ABOVE ERRORS
Method: DATGEN is a driver program which calls the various
functional subroutines which make up the data generator. The value of the
NSR word of the OPTION common block is checked to determine whether
processing should continue after each functional step. The NSR word
is also checked at the completion of processing for each data case to
determine whether it is permissible to begin a structural analysis.

Multiple data cases will be processed unless the ninth word of the OPTION

2.15




common block indicates that an analysis step follows this data case.

Remarks:
1. When the program was subdivided into several overlay levels,

a dummy driver program (SCRIBE) was added to call the DATGEN and
NASPLT overlays; however, DATGEN retains the sequence control as

described.
2.2 DATA STORAGE

2.2.1 Storage Policy

In the development of the program an attempt has been made to store
all generated data on external files as it is produced and to retain in
core storage only the key information required for communication
between modules. Other efforts have been made to conserve core storage
and to manage variable length tables used by the program. Two core
data management systems have been developed: the KEY-CHAIN data
management technique for intermodule communication, and the POOLIT
technique for managing tables and lists. Although POOLIT is an in-core
storage scheme, it has been coded so that a paged table technique (using
random disc storage) could be substituted to further reduce storage

requirements without extensive program changes.

2.2.2 KEY-CHAIN Data Storage Method

KEY-CHAIN data storage is used to pass information among modules
within a structure. It is also an integral component of the automatic
mesh propagation feature of the program. This data storage method is
constructed around a tree data structure with a directory to the data
which is indexed by pairs of identification numbers of intersecting
reference lines.

During the first pass through the user's data a basic amount of
storage in the CHAIN array is allocated to store the coordinates of each

grid point along the edges). The corner grid points are assigned space

2.16



independently to resolve the problems which arise because they belong
to two edges. Edges which are common between two or more modules
receive only one allocation. At the first reading of a user's data
record the number of grid points along the edge of a module will not

be defined if the user is expecting the mesh density to be propagated

by the program. In this event a zero length allocation is made in the
CHAIN array (pointer only) and the final assignment will be made during
interlude processing after the first pass through the data.

In the course of data generation additional space may be required
by modules which pass other information in addition to the coordinates
of boundary grid points. The original allocation is referred to as the
first level of storage and each subsequent allocation receives a level
number which is one greater than the previous allocation. After the
allocation is made, all information is stored and retrieved using this
level number.

The index is a rectangular array (KEY) of three word blocks. The
(i, j)th block in this array refers to data associated with the intersection
of the jth z-reference line and the jth A-reference line. The first word
in each block points to the level 1 storage region in the CHAIN array for
the edge along a Z-reference line, the second to a storage region for
an edge along an A-reference line, and the third to a storage region for
the intersection of two reference lines. Figures 2.4 and 2.5 illustrate
this method. Notice that there are multiple levels of data both along
ZRL No. 1 and at the intersection and that allocation has been deferred
along ARL No. 1.

Subroutines available to assist in the management of data stored
using this method include XINIT, SPACE, LOCKIT, LOCKS, and
DMKYCH. XINIT is an entry point in subroutine XTRACT which
initializes KEY-CHAIN storage. Subroutine SPACE performs level 1
assignments of CHAIN storage space. Subroutine LOCKIT is used to

2.17




ZRL 1 ZRL 2
)/ //// r.l”‘
ARL 1 —+ + +—
A7 ril
rTA
(N
/ STRUCTURAL | |
/ MODULE b
-I,I | |
| l
ARL2~F 13 =< Lla
ek ~—_ T rty
T ‘“~_\‘\F+ i
-~ - Lq-J\

Figure 2.4 — Boundary Data Storage Associated with
the Intersection of Two Reference Lines

locate a data block in the CHAIN array by referencing a pair of
reference line indices and level numbers. Subroutine LOCKS is a
specialized version of LOCKIT for referencing level 1 data only. Dumps
of the KEY-CHAIN storage area can be produced by calling DMKYCH
entry point in subroutine DMPOOL. All KEY-CHAIN arrays and

parameters are located in the KEYCHN common block.

2.2.3 KEY-CHAIN Utility Program Specifications
Common Block:
COMMON/KEYCHN/KEY(3, 40, 19), CHAIN(3, 1500), LCHAIN,
KCHAIN, KZ,KA,KZMAX, KAMAX,IEXTZ(2, 40), IEXTA(2, 19), KQZ, KQA,
IEQZ(2, 40),IEQA(2, 19), THETA(19)

2.18



ARL INDICES (INTERNAL SET)

ZRL INDICES (INTERNAL SET)

3 4 5
22 36 51 66
28 a4 60 69
34 49 64 73 KEY
INDEX
. ) ARRAY
/ ___a-)

POINTER TO CHAIN FOR DATA AT INTERSECTION OF
ZRL\NO. 2 AND ARL NO. 1.

POINTER TO CHAIN FOR DATA ALONG ARL NO. 1 FROM ZRL NO. 2.
POINTER TO CHAIN FOR DATA ALONG ZRL NO. 2 FROM ARL NO. 1.

A2F, 3 TES ‘
yi x ’ Q‘
IKEYb 4 )1 | data data data -1 data\
1
1 | CHAIN
ICHNb -1 I data data data -1 1 data} ARRAY
STOR Jf(k)!| data | data | data @ 0 dat:i
g DATA BLOCK HEADER
POINTER TO LEVEL 2 STORAGE (0 VALUE INDICATES NO HIGHER
LEVEL EXISTS)
STATUS INDICATOR — NOT USED BY KEY-CHAIN MANAGEMENT
LENGTH OF THIS BLOCK PLUS HEADER (—1-» DEFERRED ALLOC.)
KEYCHN HEADER
k k+1 m m+1 n

; 2 data ] f 6 data datf) y 3
\ -1 data LT -1 data |data =1

ST o [ (o Lo o )

POINTER TO LEVEL 3

~N

/
POINTER TO LEVEL 4

Figure 2.5 — KEY-CHAIN Data Storage Organization

2.19




Subroutines:

Name
DMKYCH
LOCKIT

LOCKS
SPACE

XINIT

CHAIN

KEY
IEXTZ

IEXTA

IEQZ

IEQA

THETA
LCHAIN

KCHAIN

KZMAX

KAMAX

KZ

KA

KQZ
KQA

Function
Dumps KEY-CHAIN storage areas

Basic routine which assigns KEY- CHAIN storage
space and locates stored data

Specialized form of LOCKIT for level 1 data

Assigns level 1 storage space and stores pointers
for mesh propagation with zero-length requests

Initializes KEY-CHAIN storage areas

Tables and Storage Areas:

Chained storage area
First level index to chained storage area

Internal-external correspondence table for Z-
reference lines

Internal-external correspondence table for A-
reference lines

Equivalence correspondence table for Z-reference
lines

Equivalence correspondence table for A-reference
lines

Not used

Maximum number of three-word blocks available
in the CHAIN area

Current number of three-word blocks being used in
the CHAIN area

Maximum number of Z-reference lines permitted
per application

Maximum number of A-reference lines permitted
per application

Current number of Z-reference lines defined in this
application

Current number of A-reference lines defined in this
application

Number of entries in IEQZ

Number of entries in IEQA

2.20



Miscellaneous Information:

Format of Data Lists in Chain Storage

Block
Number

word 1 word 2 word 3

n

IDIV ICOORD LEVPTR

n+1

DATA1 DATA2 DATA3

n+IDIV-1

DATAI1 DAT A2 DATAS3

Symbol

IDIV

ICOORD

LEVPTR

DATAI

Definition

Beginning block number of this list

Number of blocks in this data list. IDIV=-1 during
first pass if no storage has been allocated for this
list (because its length is not known). If
IDIV < -1 after first pass, the absolute value of
IDIV points to the block number of a new area
where this list now resides; however, the KEY
index should reflect such a change and this pointer
should not be required once all storage has been
resolved. (For level 1 lists this will be the number
of divisions along the segment of the reference line
for which data is being stored in this list.)

Status indicator for data in this list. (If ICOORD=-1,
the list is empty. For level 1 lists this will be the
coordinate system identification for the grid point
coordinates stored in this list.)

Pointer containing the block number of the data list
at the next level in this chain. LEVPTR=0 indicates
that this is the last data list in the chain.

Data item (for level 1 lists this is the i-th coordinate
locating the grid point being stored).

Format of KEY Index:

See Figure 2.5.

2.21




Subroutine DMKYCH (Entry point in Subroutine DMPOOL)
Function: Dumps core storage areas associated with the KEY-CHAIN
data management method.
Common Blocks: OPTION, SET, KEYCHN
Entry Point: DMKYCH
Calling Sequence: CALL DMKYCH(IFORM)
IFORM Dump format flag.

If IFORM > 0, dump will be restricted to regions
in use as defined by the KEYCHN parameters.
CHAIN array will be dumped with one 3-word block
per printed line in the order defined by the KEY
index. Thus KEY-CHAIN storage may be viewed
as a three-dimensional array of variable length
data groups. In the dump a data group which is n
blocks long is printed as n lines, each preceded
by the triple (component, ZRL, ARL). Only level 1
storage is dumped with this format.

If IFORM = 0, full sequential dumps of all parameters
and arrays associated with KEY-CHAIN data
storage will be printed.

If IFORM < 0, full sequential dumps of all parameters
and arrays associated with KEY-CHAIN data storage
will be printed except that the CHAIN array will
be limited to ~-IFORM printed lines.

Subroutine Called: PAGE
Error Messages: None

Remarks:
1. With IFORM = 0 data group dumps are limited to 100 words

per block to guard against runaway printing in the event that block

lengths have been destroyed.

2.22



Subroutine LOCKIT
Function: Performs general data management tasks for data in
KEY-CHAIN storage. Assigns CHAIN storage space for all

levels of data. Locates data referenced by reference line
coordinates component number and level number.
Common Blocks: OPTION, KEYCHN, POOLTB
Entry Point: LOCKIT (Applicable for all levels of data.)
Calling Sequence: CALL LOCKIT(IZRL,IARL,IZA, LEVEL,IDIV,
LOC,IEZ,IEA)

IZRL,IARL Reference line coordinates of requested data group
(internal numbers, integer > 0)

1ZA Data component indicator; integer;
if 1, data along ZRL
if 2, data along ARL
if 3, data at intersection of ZRL and ARL

LEVEL Data group level number (integer > 0)

IDIV The number of 3-word blocks in this data group
including one header block (integer). If -1,
only header will be (has been) allocated. A
call with IDIV=0 indicates a data location request.

LOC Pointer to first word of header for data group
defined by IZRL, IARL, IZA, and LEVEL
(integer = 0). A return with LOC=0 indicates
that no space has been assigned for the data
group.

IEZ,IEA Identification numbers to which IZRL and IARL
have been equivalenced. These values will be
set only after interlude processing is complete
(when the seventh word of OPTION is = 40).

Entry Point: LOCKS (Applicable to level 1 data only.)

2.23




Calling Sequence: CALL LOCKS(IZRL,IARL,IZA,IDIV, LOC,IEZ,IEA)
Arguments have same definition as for LOCKIT.
Subroutines Called: ABORT,FETCH, POOLPS, PRINT

Error Messages:
1. A level 3 error message number 50 will be issued and the

program will terminate if CHAIN storage is exceeded. Either the length
of the CHAIN array must be increased or the problem size reduced. An
estimate of the total CHAIN space required for the job can be made from
the reference line coordinates of the requested data group.
Remarks:

1. On CDC 6700 entry point LOCKS is a separate subroutine
which calls LOCKIT with LEVEL=1.

2. POOL storage is used to store equivalences for intersection
point data. This data group is located by the pointer in NDIREC(3) and

is required throughout the processing of one job.

2.24



Subroutine SPACE
Function: To manage the assignment of level 1 data storage in the
CHAIN array.
Common Blocks: OPTION, KEYCHN
Entry Point: SPACE
Calling Sequence: CALL SPACE(IZRL,IARL,IDIV,IZA, MZRL, MARL)

IZRL,IARL Reference line coordinates of requested boundary
region (internal numbers)

IDIV Number of 3-word blocks requested, including one
header block. If less than 1, indicates that
assignment is to be deferred until interlude
processing phase. In this case one 3-word
header block is assigned and a length of -1 is
entered in header block.

I1ZA Component indicator; if 1, boundary along ZRL
if 2, boundary along ARL
if 3, intersection point

MZRL,MARL Reference line coordinates of the boundary of the
module which is opposite the requested region.
Used only if nonzero and IDIV=-1. These
coordinates facilitate mesh propagation during
interlude processing. Applicable only to
components 1 and 2.

Subroutines Called: ABORT, LOCKS
Error Messages:

1. A level 2 error message number 51 will be issued if, in
processing a request for space, the length of the requested data group
does not match the length in an earlier request.

Remarks:
1. If more than one request for space is made for a particular

data group and the specifications are consistent, a return is made to the
calling program with no action taken.

2.25




Subroutine XINIT (Entry point in Subroutine XTRACT)
Function: To initialize the KEY-CHAIN storage area
Common Blocks: KEYCHN

Entry Point: XINIT
Calling Sequence: CALL XINIT

Remarks:
See Section 2.2.3 for a description of the KEYCHN common block.

2.26



2.2.4 POOLED Data Storage Method

POOLED data storage is used to store tables and lists whose lengths
vary widely with different program applications. This method is
particularly convenient for tables which exist for just one phase of the
data generation processing since the space which they occupy can be
purged and later reassigned.

The POOL storage area is divided into constant length blocks, called
records. A list is kept of the records which are currently empty in the
pool and available for use. The first two words of each pool record are
pointers used in the management of the POOL. The first pointer indicates
the status of the record; either unused, in use as the first record in
a data group, or in use indicating the address of the last previous record
in the group. The second word points either to the next available word
in the record, if the record is partially filled with data, or to the next
succeeding record, if this record is full.

Utility routines are provided as entry points to subroutine POOLIT
which permit the user to store data items, to store data pairs, to
search lists of data items and data pairs, to retrieve items serially,
to replace items in a list, and to purge all data groups or individual data
groups. Dumps of the POOL storage area can be obtained in either an
unsorted format or sorted serially by data group using subroutine
DMPOOL.

2.2.5 POOLED Utility Program Specifications
Common Blocks: COMMON/POOLTB/IPDEX(50), IPOOL(1100),
IDEEP,ILENP,IMAX, IPOINT, NDIREC(10), LDIREC

IPDEX List of available records in the pool

IPOOL Data storage array

IDEEP Maximum number of records in the pool

ILENP Length of a pool record (including two preceeding
pointers)

2.27



IMAX Length of the IPOOL array

IPOINT Pointer to next available record in IPDEX

NDIREC Directory array of pooled data groups

LDIREC Length of NDIREC array

COMMON/OPTION/ Refer to Section 2.1.3
Subroutines:

Name Function

DMPOOL Dumps POOLED storage areas

FETCH Retrieves data stored in POOLED storage

FETCHI Streamlined version of FETCH

PLDATA Sequentially stores one data word in POOLED
storage

PLPAIR Sequentially stores a pair of data words in
POOLED storage

POOLDT Specialized version of PLDATA

POOLDS Searches for a data word in POOLED storage

POOLIT Initializes POOLED data storage parameters

POOLPR Specialized version of PLPAIR

POOLPS Searches for a pair of data words in POOLED
storage

PURGE Purges a data group from POOLED storage

STOW Replaces a word stored in POOLED storage

STOW1 Streamlined version of STOW

2.28



Subroutine DMPOOL
Function: Dumps core storage areas associated with the POOLED
data management method.
Common Blocks: OPTION, SET, POOLTB
Entry Point: DMPOOL
Calling Sequence: CALL DMPOOL(IFORM)

IFORM Dump format flag.
If IFORM > O, edited dumps will be produced
listing each data group as defined in the NDIREC
array in sequential order. All auxiliary parameters
and arrays will be dumped in full with identifying
annotation.
If IFORM = 0, full sequential dumps of all
parameters and arrays associated with POOLED
data storage will be printed.
If IFORM < 0, full sequential dumps of all
parameters and arrays associated with POOLED
data storage will be printed except that the pool
array will be limited to -IFORM printed lines.

Entry Point: DMKYCH (Described in Section 2.2.3.)
Subroutines Called: FETCH, PAGE

Error Messages: None.

2.29




Subroutine FETCH (Entry point to Subroutine POOLIT)
Function: Retrieves data words stored in POOLED storage.
Common Blocks: POOLTB, OPTION
Entry Point: FETCH
Calling Sequence: CALL FETCH(IA,IDENT, LOCSET, LOCP)

IA Data word retrieved by FETCH
IDENT  Pointer to the particular data group to be referenced; set
by first call to PLDATA, PLPAIR, POOLDT, or
POOLPR (if IDENT = 0, program will return with no
processing)
LOCSET Pointer, within the data group, to the data word to be
retrieved
LOCP POOL index of the data word retrieved (if no data is

stored for the requested data item, LOCP is set to zero)

Entry Point: FETCHI1
Calling Sequence: CALL FETCHI(IA, LOCP)

IA Data word to be retrieved by FETCH1
LOCP POOL index of the data word to be retrieved

Subroutines Called: None.
Error Message:
Number 105 The word IDENT does not point to a legal data group
in POOL storage.

Remarks:

1. Entry point FETCH is called to retrieve data by its sequential
position in the data group (as specified by LOCSET).

2. Entry point FETCHI1 is called to retrieve data using the POOL
index of the data word (as specified by LOCP). The index value must
have been obtained from a previous call to FETCH, STOW, PLDATA,
PLPAIR, POOLDS, or POOLPS. This method of data retrieval is faster
than using the FETCH code and should be used when applicable.

2.30



Subroutine PLDATA (Entry point in Subroutine POOLIT)
Function: Stores data sequentially in POOLED storage, one word per
call.
Common Blocks: OPTION, POOLTB
Entry Point: PLDATA
Calling Sequence: CALL PLDATA(IA,IDENT, LOCSET, IPLOC)

IA Data word to be stored

IDENT Pointer to a particular data group; set by program on
first call; referenced by program on all subsequent
POOLED calls

LOCSET Data group index of word stored

IPLOC Storage mode indicator; a zero value indicates a
normal mode request (the last PLDATA, PLPAIR,
POOLDT, or POOLPR operation was not necessarily
a call to store data in this group; IPLOC will be
set to the location of the next available row in
POOL storage by the program for subsequent
accelerated mode requests); a non-zero value
indicates an accelerated mode request (the last
PLDATA, PLPAIR, POOLDT, or POOLPR
operation stored data in this group and thus
IPLOC has been set to the location of the next
available row in POOL storage)

Entry Point: POOLDT
Calling Sequence: CALL POOLDT(IA,IDENT, IPLOC)
Subroutine Called: ABORT
Error Messages:
Number 100 POOL storage space exceeded
Number 108 Illegal IDENT in call

2.31



Remarks:
1. The first call to this subroutine will initialize the POOLED

storage area if not already initialized.
2. Unless the word IDENT is located in the array NDIREC of
common block POOLTB, the data group will not be dumped by calls

to DMPOOL with IFORM > 0.
3. Entry point POOLDT is used whenever the data group index

is not required as the data is being stored.

2.32



Subroutine PLPAIR (Entry point in Subroutine POOLIT)
Function: Stores pairs of data words sequentially in POOLED
storage, one pair per call.
Common Blocks: OPTION, POOLTB
Entry Point: PLPAIR
Calling Sequence: CALL PLPAIR(IA,IB,IDENT, LOCSET,IPLOC)

IA,IB Pair of words to be stored

IDENT Pointer to a particular data group; set by program on
first call; referenced by program on all subsequent
POOLED calls.

LOCSET Data group index of the first word of the pair stored

IPLOC Storage mode indicator; a zero value indicates a
normal mode request (the last PLDATA, PLPAIR,
POOLDT, or POOLPR operation was not
necessarily a call to store data in this group;
IPLOC will be set to the location of the next
available row in POOL storage by the program for
subsequent accelerated mode requests); a non-zero
value indicates an accelerated mode request (the
last PLDATA, PLPAIR, POOLDT, or POOLPR
operation stored data in this group and thus
IPLOC has been set to the location of the next

available row in POOL storage)

Entry Point: POOLPR
Calling Sequence: CALL POOLPR(IA,IB,IDENT,IPLOC)
Subroutine Called: ABORT
Error Messages:
Number 100 POOL storage space exceeded
Number 108 Illegal IDENT in call

2.33




Remarks:

1. The first call to this subroutine will initialize the POOLED
storage area if not already initialized.

2. Data stored in a data group using PLPAIR or POOLPR
should not be intermixed with data stored using PLDATA or POOLDT
unless precautions are taken to insure that there are an even number
of items in the group before using POOLPS to retrieve data.

3. Unless the word IDENT is in the array, NDIREC, of
common block POOLTB, the data group will not be dumped by calls
to DMPOOL with IFORM > 0.

4. Entry point POOLPR is used whenever the data group index

is not required as the data are stored.

2.34



Subroutine POOLDS (Entry point in Subroutine POOLIT)
Function: Searches for a data word stored in POOLED storage.
Common Blocks: OPTION, POOLTB
Entry Point: POOLDS
Calling Sequence: CALL POOLDS(IA,IDENT, LOCSET, LOCP)

IA Data word to be located
IDENT Pointer to a particular data group; set by program when
PLDATA, PLPAIR, POOLDT, or POOLPR first called
LOCSET Location returned by program (if = 0, no match
has been found for the word in the specified data
group; if > 0, LOCSET is the data group index
of the word)
LOoCP POOLED index of the data word (set only if match

is found)

Subroutine Called: ABORT
Error Messages:
Number 101 IDENT out of range in POOL search
Number 102 IDENT specified does not point to the beginning
of a data group
Number 103 Improper identifier in second word of a pool
record header.
Remarks:
1. If called with IDENT = 0, indicating a null data group, program
returns with no action.
2. LOCP can be used with subroutines FETCH1 and STOW1 for
rapid access to the POOLED data.

2.35




Subroutine POOLIT
Function: Initializes POOLED data storage parameters, purging
all previously stored data.
Common Blocks: POOLTB, OPTION
Entry Point: POOLIT
Calling Sequence: CALL POOLIT
Subroutines Called: None.
Error Messages: None.
Remark:
POOLED data storage is self-initializing if it is first used by
entry point PLDATA, PLPAIR, POOLDT, or POOLPR. POOLIT

restores the system to this initial state.

2.36



Subroutine POOLPS (Entry point in Subroutine POOLIT)
Function: Searches for a data pair stored in POOLED storage.
Common Blocks: OPTION, POOLTB
Entry Point: POOLPS
Calling Sequence: CALL POOLPS(IA,IB,IDENT, LOCSET, LOCP)

IA,IB Pair of data words to be located

IDENT Pointer to a particular data group; set by program
when PLDATA, PLPAIR, POOLDT, or POOLPR
first called

LOCSET Location returned by program (if = 0, no match has
been found for the pair in the specified data group;
if > 0, LOCSET is data group index of the first
word of the pair)

LOCP POOLED index of the first word of the pair (set

only if match is found)

Subroutine Called: ABORT
Error Messages:
Number 101 IDENT out of range in POOL search
Number 102 IDENT specified does not point to the beginning of
a data group
Number 103 Improper identifier in second word of a POOL
record header
Number 104 Search for pair attempted on a data group with

an odd number of entries

Remarks:
1. Data group must have an even number of entries to use this
program.
2. 1If called with IDENT = 0, indicating a null data group, program
returns with no action.
3. LOCP can be used with subroutines FETCH1 and STOW1 for

rapid access to the POOLED data.

2.3




Subroutine PURGE (Entry point to Subroutine POOLIT)

Function: Purges a data group from POOLED storage and releases
the space for future assignment.

Common Blocks: POOLTB, OPTION

Entry Point: PURGE

Calling Sequence: CALL PURGE(IDENT)

Subroutines Called: None.

Error Messages:
Number 107 The word IDENT does not point to a legal data

group in POOL storage.

2.38



Subroutine STOW (Entry point to Subroutine POOLIT)

Function: Replaces data words stored in POOLED storage.
Common Blocks: POOLTB, OPTION

Entry Point: STOW

Calling Sequence: CALL STOW(IA,IDENT, LOCSET, LOCP)

IA Data word to be stored by STOW
IDENT Pointer to particular data group to be referenced
LOCSET Pointer, within data group, to data word to be stored
LOCP POOL index of the data word stored (LOCP is set

by the program; if no data were previously defined

for the location requested, LOCP is set to zero)

Entry Point: STOW1
Calling Sequence: CALL STOWI1(IA, LOCP)

IA Data word to be stored by STOW1
LOCP POOL index of the data word to be stored

Subroutines Called: None.

Error Messages:
Number 106 The word IDENT does not point to a legal data

group in POOL storage.

Remarks:

1. A data word must first be established using PLDATA, PLPAIR
POOLDT, or POOLPR before data can be replaced with STOW or STOW1,

2. Entry point STOW is called to store data by its sequential

H

position in the data group (as specified by LOCSET).

3. Entry point STOW1 is called to store data using the POOL
index of the data word (as specified by LOCP). The index value must
have been obtained from a previous call to FETCH, STOW, PLDATA,
PLPAIR, POOLDS, or POOLPS. This method of data retrieval is faster
than using the STOW code and should be used when applicable.

2.39



2.2.6 File Management

FORTRAN defined files are used exclusively throughout the data
generator program. For flexibility all logical unit assighments are
made in the main program (with the exception of the plotting routines).
As mentioned above, all generated data card images are stored on
external files as generated. These card images are distributed over
several files to obtain a deck in a roughly sorted order. A utility
subroutine, ASSMBL, can be used to merge any number of these files

onto one output file (see Section 2. 6. 2).

2.3 FIRST PASS AND INTERLUDE PROCESSING PROGRAMS

2.3.1 Subroutine SETUP (Initialization and Execution Control Card

Processing)

Function: Permits the user to select the desired functions of the

Data Generator using a freely-formatted control language. This

module interprets the user's statements and sets appropriate

flags in the control common block, OPTION, permitting the user

to select various execution options.

Entry Point: SETUP
Calling Sequence: CALL SETUP(INPT,IPRT,IOUT)

INPT FORTRAN logical unit number of the card reader
IPRT FORTRAN logical unit number of the line printer
I0UT FORTRAN logical unit number of the device on which
the generated output is written
Common Blocks:
SET Described in Section 2. 6.5
OPTION Described in Section 2.1.3

Subroutines Called: ERRMSG, PRINT, SWITCH, XRCARD
Error Messages:

Number Level Text
001 2 UNRECOGNIZABLE CARD

2.40



Number Level Text

002 2 SYNTAX ERROR ON TITLE CARD
003 2 SYNTAX ERROR ON CONTROL CARD
004 2 INVALID OPTION SPECIFIED ON CONTROL
CARD
005 2 NUMBER OUT OF RANGE ON CONTROL CARD
006 3 END-OF-FILE ENCOUNTERED
Remarks:

1. Figure 2.6 shows the order of the cards processed by SETUP.
All Class I cards are reproduced exactly as they appear with copies
sent to both the generated output file and the printer. All Class II
cards, with the exception of comment cards, are interpreted and
reproduced with "$" appended at the left on the generated output file and
the printer. Comment cards, which begin with a ""$"", are treated in
the same manner as Class I cards. All cards from the input file will be
listed with a running card count printed on the left.

2. Parameters not explicitly specified by Execution Control
Cards are assigned the default values described in Section 2.1.3.

3. Unformatted style data cards are read with the aid of
subroutine XRCARD, a NASTRAN subroutine which is described in the
NASTRAN Programmer's Ma.nual,3 Section 3.4.19. Subroutine MASQ
is library routine MASK which has been renamed to avoid name
conflicts in subroutine XRCARD.

3 "The NASTRAN Programmer's Manual, " edited by Frank J. Douglas,
NASA SP-223, September 1970.

2.41




First Card
Class I cards (not interpreted)

"ID" card

Control Commands,
e.g., "TITLE" card
. Class II cards (interpreted by data
generator)

"$END" card
: Class I cards (not interpreted)

"BEGIN BULK" card

Figure 2.6 - Order of Cards in Execution Control Deck

2.42



2.3.2 Subroutine INSORT (Bulk Data Card Interpreter)
Function: Controls all first pass and interlude processing of the
bulk data. First pass functions performed by this subroutine
include:

Calling subroutine XINIT to initialize KEY-CHAIN storage

Reading all bulk data cards (from card following
BEGIN BULK card through ENDDATA card)

Calling subroutine XTRACT for first pass processing of
shell geometry cards

Calling subroutine EQV to process equivalence cards

Writing Phase I data on file NOUT2 with numeric key to
data type and input card number appended (XTRACT has
replaced the reference line ID's with an internal ID
number on Phase I cards)

Writing Phase II data on file NOUT3 with numeric key to
data type and input card number appended (no 'change
has been made to the reference line ID's on Phase II cards)

Writing all bulk data cards following $END (to but not
including the ENDDATA card) to file NSOUT

Interlude processing is initiated by calling subroutine XTREND.

For program development purposes the file NOUT2 is rewound
and a call to subroutine RECON is made for each logical card on
NOUT2. RECON reconstructs the finite element mesh density
specifications from KEY-CHAIN storage reflecting assignments
and changes made during the interlude. These cards are

reconstructed and printed for programmer information only.

Entry Point: INSORT

Calling Sequence: CALL INSORT(INUNIT,NOUT1,NOUT2,NOUT3,
NSOUT)

2.43




INUNIT FORTRAN file number of input file containing
bulk data (with right-adjusted numeric fields) -
DO NOT REWIND

NOUT1 FORTRAN file number of output file on which "MAT"
cards will be written

NOUT2 FORTRAN f{ile number of output file on which
processed Phase I bulk data will be written

NOUT3 FORTRAN file number of output file on which
processed Phase II bulk data will be written

NSOUT FORTRAN file number of output file for card images
which are to be passed to the generated data file

without processing

Common Blocks:
OPTION Execution control parameters
RECORD Shared storage for reading and writing bulk data
SET Titling information for subroutine PAGE
TYPE INDEX of card names for input and output

Subroutines Called: ABORT, EQV, ERRMSG, PRINT, RECON,
SWITCH, XINIT, XTRACT, XTREND

Error Messages:

Number Level Text
011 2 REJECTED DATA (invalid card in BULK
DATA deck)
012 3 I/0 ERROR IN SUBROUTINE INSORT

WHILE READING BULK DATA CARD
XXX (XXX is the card number counting
from the first BULK DATA card)

013 3 PROGRAM TERMINATED DUE TO ERROR
COUNT IN SUBROUTINE INSORT

2.44



2.3.3 Subroutine XTRACT (Global Data Processing)
Function: Performs all first pass and interlude functions of the
data generator and is called only by subroutine INSORT.
KEY-CHAIN storage is initialized in the program area associated
with entry point XINIT.

In the program area associated with the entry point
XTRACT the first scan of a shell data card is made. Here the
assignment of sequential internal identification numbers to the
reference line ID's is made along with the assignment of storage
space for eight boundary areas of the module being processed
(four corners and four sides). A call to subroutine SPACE
reserves the region of CHAIN storage required for one boundary
area.

The program area associated with entry point EQV
processes cards indicating the equivalence of reference line
identification numbers. As these cards are encountered, the
equivalence information is retained (in terms of external
reference line ID's) for processing at the interlude between
passes by subroutine XTREND. Processing terminates whenever
a zero field is encountered or when the fifieth field has been
processed.

Associated with the entry point XTREND are most of the
tasks which must be completed during the interlude after the
first pass through the data. This region probably contains the
most tedious logic to be found in the program. The primary
functions performed at this point are:

Updating the correspondence tables between internal
and external reference ID's to reflect equivalences

Updating the KEY area to reflect equivalences

Assigning storage space to those boundaries for which
the user indicates some default value is to be used.

This results in the propagation of the grid point

2.45




mesh to unspecified areas of the model.

The program area associated with entry point RECON
has been added to facilitate development of the interlude
processing by XTREND. After the interlude RECON operates
on logical input cards, reconstructing the finite element mesh
requests from KEYCHAIN storage for manual comparison

with the cards as input by the user.

Common Blocks: KEYCHN, SET, OPTION, RECORD

Entry Point: EQV

Calling Sequence: CALL EQV

Entry Point: RECON

Calling Sequence: CALL RECON

Entry Point: XINIT

Calling Sequence: CALL XINIT

Entry Point: XTRACT

Calling Sequence: CALL XTRACT

Entry Point: XTREND

Calling Sequence: CALL XTREND

Subroutines Called: ERRMSG, FETCH, LOCKS, POOLPR, PRINT,
PURGE, SPACE, STOW, STOW1

Error Messages:
Number Level Entry Point Text
020 2 XTRACT RL IS ZERO OR NEGATIVE OR
EXCEEDS MAXIMUM NUMBER
PERMITTED ON BULK DATA
CARD XXX. XXX is sequence

number printed with the listing

of the data cards.

2.46




Error Messages (cont'd):

Number Level Entry Point

021

022

023

024

2

2

2

1

XTREND

XTREND

XTREND

XTREND

Text
AN EQUIVALENCE REFERENCES
THE NON-EXISTENT XXX YRL.
REFERENCES IGNORED. XXX is

the reference line number and Y is

either Z or A indicating the

orientation of the line.

EQUIVALENCE CONFLICT AT YRL
XXX AND YRL XXX. FIRST
SPECIFICATION USED. XXX is a
reference line number and Y is
either Z or A indicating the

orientation of the line.

NON-EXISTENT RL REFERENCED
IN THE XXX-TH PAIR OF INTER-
SECTION EQUIVALENCES. XXX is
sequence number of the inter-

section equivalences as encountered.

THE NUMBER OF DIVISIONS HAS
NOT BEEN SPECIFIED FOR SIDE
277 AAA ALONG THE YRL.
DEFAULT IS ONE DIVISION. ZZZ
and AAA define an intersection of
a ZRL and an ARL and Y is either
Z or A indicating the orientation of

the line.




Error Messages (cont'd):

Number Level Entry Point

025

026

3

XTREND

EQV

2.48

Text
MORE ITERATIONS ARE REQUIRED
TO UPDATE CHAIN STORAGE
THAN THE XXX PERMITTED.
XXX is the computed theoretical

maximum number of iterations
which could be required to update
CHAIN storage.

INTERSECTION EQUIVALENCE
STORAGE EXCEEDED.



2.4 SECOND PASS PROCESSING PROGRAMS

2.4.1 Subroutine CUTUP (Process Shell Data)
Function: To generate shell data one section at a time.

Common Blocks:
KEYCHN Storage area for module boundary data

OPTION Contains execution control options

SET Contains title information

REFPT Contains the reference line numbers of the present
module

TICK Contains thicknesses and pressures on the boundary

ROD Contains the boundary radii

PROPCE Property identification storage for CONEND and
CONENDR modules
PROPS Property idencification storage for CONE modules

Entry Point: CUTUP
Calling Sequence: CALL CUTUP
CUTUP is called only once for each set of bulk data after the
data have been read in and processed.
Subroutines Called: CONE, CONEND, LOCKS, READS, REF

Method:

Subroutine READS is called to retrieve pertinent data from the
input file. Subroutine REF is called nine times to transform the various
combinations of the reference line numbers into usable form. Subroutine
LOCKS is called four times to obtain the external reference line numbers
and number of divisions for the four sides of the section and is called
again four times to obtain the external reference line numbers for the
corner points. The required element generation subroutine (CONE,
CONEND, or CONENDR) is then called.

An appropriate CORD2C (coordinate system definition) card is
generated in subroutine CUTUP along with the grid and element cards

for graphic output.

2.49




Design Requirements:
Whenever new element generation modules are to be added,

calls to these subroutines should be from subroutine CUTUDP.

Error Messages:
Number Level Entry Point Text
501 2 CUTUP Two reference lines specified

for this module have the same

number---must be distinct

502 2 CUTUP No CHAIN storage space was

assigned for a module boundary

503 2 CUTUP Illegal data (may indicate that
the number of divisions along a
Z-reference line exceeds the
number of divisions along an
A-reference line for CONEND
or CONENDR modules)

504 2 CUTUP Number of errors exceeds

maximum permitted

Remark:

Any of the above error conditions will cause the generation of
data for this module to be abandoned and processing to proceed to the

next module.

2.50



2.4.2 Subroutine READS (Read Shell Data Card)
Function: To read in shell data from file INCARD for one section.

Common Blocks:

OPTION Contains execution control options

ROD Contains the boundary radii

PHIA Contains input data

REFPT Contains the reference line numbers of the present
module

TICK Contains thicknesses é.nd pressures on the boundary

PROPS Property identification storage for CONE modules

PROPCE Property identification storage for CONEND and
CONENDR modules

Entry Point: READS
Calling Sequence: CALL READS(ISHELL, ZL1,ISTART, ILAST,
INCARD)

ISHELL Indicates the module type
If 1, CONE section
If 3, CONEND section
If 5, CONENDR section

ZL1 Length of the section
ISTART Sequence number of the current section
ILAST Read indicator. 0 indicates continue

reading records from file INCARD; 1
indicates last record to be read from file
INCARD

Subroutines Called: PRINT
Method:
Read shell data from file INCARD including module type,

reference line numbers, slopes of the azimuthal lines, length, angular

2.51




width of section, and radius and thickness at each corner. Slopes
of the azimuthal lines are converted to radians. If the last record is
being read, then ILAST is set to 1.

Error Messages: None.

2.52



2.4.3 Subroutine TERP (Linear Interpolation Routine)
Function: To perform an averaged two-dimensional linear
interpolation within a structural module.
Common Blocks: None.
Entry Point: TERP
Calling Sequence: X = TERP(A,B,C,D,T1,T, Z1,2Z)

X Interpolated result
A Property at point A
B Property at point B
C Property at point C
D Property at point D

T1 Angular spacing or the difference in the azimuthal
coordinates of two adjacent grid points

T Azimuthal coordinate of the interpolated point

z1 Axial spacing or the difference of the axial
coordinates of two adjacent grid points

Z Axial coordinate of the interpolated point
Method:

TERP = .5(P +(P, Pl)—+P +(P,-P

Z 3 3)T)

where P1=A+(D-A):r—1

P =B+(C-B)-T,-r1

2

P =A+(B- A)Zl

P4=D+(C,-L‘)—Z—1

Error Messages: None.
Remark: TERP is used to find the radius at an internal grid point,
i.e., a grid point not on the boundary, and is also used to find the thickness

and the pressure loading of individual elements of a module.

2.53




2.4.4 Subroutine CONE (CONE Module Processing)
Function: To set up the physical dimensions of the CONE module.

Common Blocks:
KEYCHN Storage area for module boundary data

OPTION Contains execution control options
PHIA Contains input parameters
REFPT Contains the reference line numbers of the

present module

ROD Contains the boundary radii

Entry Point: CONE
Calling Sequence: CALL CONE(ZL1,DIVZ,DIVA, DIVZ2, DIVA2)

ZL1 Length of the projection of the module on
the Z-axis

DIVZ Number of divisons along side 1

DIVA Number of divisions along side 2

DIVZ2 Number of divisions along side 3

DIVA2 Number of divisions along side 4

Subroutines Called: LOCKS, QUADS, TRI

Method:
Subroutine LOCKS is called to check whether the coordinates of

the corner points have been calculated. Coordinates already calculated

will override the input specifications.
The radius at B, i will be calculated using either

Equation (1) or Equation (2).

— _7T ——7T i =
r =Tt ZL1 tan((pi— 2) for qbi > 5 1 2or 4 (1)
- _ T T . .
r ST ZL1 tam(—2 q)i) for ¢i <5z,i=2o0r4 (2)

where Tois length Z1.1, and ¢i are specified as input. By rewriting

Equations (1) or (2), the length ZL1 of the section may be calculated

2.54




only if ¢i, r,; are given as input or if Toi and r,i are known from

previous calculations. When ¢; = 0° or ¢>i = 180°, the user must specify

the radii, r; and i’ and then the length ZL1 will be set to zero.

Error Messages:
Number Level Entry Point Text
520 2 CONE Calculated length ZL1 and ZL2 do

not agree; value of ZL1 will be used

521 2 CONE |DIVZ-DIVZ2| £ min(DIVA, DIVA2);

will continue to next module

522 2 CONE |DIVZ-DIVA2| £ min(DIVZ, DIVZ2);

will continue to next module

523 2 CONE Another radius must be given as

input, Rai or R because

¢; = 0° or 0; =b11800; will continue
to next module
Remarks:
1. If DIVZ # DIVZ2 and DIVA # DIVA2, then the relations
|DIVZ-DIVZ2|< min(DIVA, DIVA2) and |DIVA-DIVA2| < min(DIVZ, DIVZ2)
must be satisfied.

2. Geometry of the CONE module is shown in Figure 1.11,

2.55




2.4.5 Subroutine QUADS (Frustum of Cone Generation - Varying
Mesh)

Function: To generate a finite element mesh for CONE modules
bounded by four reference lines.

Common Blocks:
GRIDPT Grid point numbering storage for present module

KEYCHN Storage area for module boundary data

OPTION Contains execution control options

REFID Contains internal reference line number information

REFPT Contains the reference line numbers of the present
module

BREFID Contains external and corner line number information

TICK Contains thicknesses and pressures on the boundary

PROPS Property identification storage for CONE modules

TYPE Index of card names for input and output

PROP Constant data for GRID and connection cards

ROD Constant boundary radii

SET Contains title information

PROPCE Property identification storage for CONEND and
CONENDR modules

PHIA Contains input parameters

Entry Point: QUADS
Calling Sequence: CALL QUADS(R1,T1,Z1,THETA1l,ZL,IDIVA,
IDIVZ, TTHETA, ZL1,IDIVA2,IDIVZ2,1Q,
TT,18,112,114)
R1,T1,Z1 Coordinates, in a cylindrical coordinate system,

locating the grid point at A of this cone module

THETA1 AQ, angular increment along the longitudinal reference

lines

2.56




ZL
IDIVA
IDIVZ
TTHETA
ZL1
IDIVA2
IDIVZ2

AZ, increment along the azimuthal reference lines
Number of divisions along side 2

Number of divisions along side 1

Azimuthal width

Length of the cone module projected on the Z-axis
Number of divisions along side 4

Number of divisions along side 3

(Figure 1.11 shows the relationships of the sides of the cone module.)

IQ

Option flag;

If 0, cone module is composed of all quadrilateral
elements

If 1, cone module is composed of triangular
elements on the upper part and
gquadrilateral elements on the lower
part (Figure 2.7)

If 2, cone module is composed of quadrilateral
elements on the upper part and
triangular elements on the lower part
(Figure 2. 8)

If 3, cone module is composed of only triangular
elements on the upper part and both
quadrilateral and triangular elements
on the lower part (Figure 2.9 a & b)

If 4, cone module is composed of both triangular
and quadrilateral elements on the
upper part (generated by subroutine
TRI) and only triangular elements on
the lower part (QUADS will generate
these elements) (Figure 2.9 ¢ & d)

2.57




ARL-1— A 2
!
Q=1
ARL-2 |
ZRL-1 ZRL-2
Figure 2.7 — CONE Module with Varying Mesh along
the First Azimuthal Reference Line (ARL 1)
ARL-1—
Q=2
'
ARL-Z"’I & '
ZRL-1 ZRL-2

Figure 2.8 — CONE Module with Varying Mesh along
the Second Azimuthal Reference Line (ARL 2)

2.58



soTaepunog ianog IV Buole ysep Buldiep YIFm STNPOW INOD - 6°Z 9anStd

Z14z 11 3svD ‘g 114z Z14z 13SVa 'V 1142
, . l_
( _ z-14dv ( z-14v
y b
€ =0l
£=01 gL < f
141 aNiLnodans
INILNOYENS A9 031VH3INID {
A9 A31VHINID
r 4 \r.
ﬁ € =0l .
€=01 _ -savno
~savno ANILNOHENS
INiLnoyans A8 @31VH3NID
an3
A9 A3LVHINIO f LY ﬁ S

v %y

2.59



¢4z

v =0l

savno
aNILNoYans
A8 Q31vH3INID

¢ =0l

gl
INILNOYHENS
A8 d31vd3anN3go

9

<

soTaepunog Inoj TTV SuoTe ysol Suriiep YIfm STNPoW ANOD - 6°Z =2anSijg

Al 3SVD 'a

L-1dz

214V
v =0l
sSavno

ANILNOYENS )
A8 d31vHd3InNIo

¢ =2l

1y )
aNILNOYENS
A8 Q3LVH3IN3D

_lav

I 3SvJ "0

“Z14v

2.60



TT T1 value of the coordinates (R1,T1, Z1) of the
gridpoint at A of the cone module. This variable
is used only if IQ=4 and the subroutine is called
from subroutine TRI or if IQ=3; otherwise it is

set to zero (0)

I8 File containing grid cards
112 File containing connection cards
I14 File containing pressure loading cards and property

identification cards

Subroutines Called: CEPROP, LOCKS, PRINT, PROPER, TERP, TRI
Method:

This subroutine divides a CONE module bounded by four reference
lines into quadrilateral elements when a uniform mesh is required or into
a combination of triangular and quadrilateral elements when a change in
the mesh density is needed. The value of the variable IQ indicates which
type of mesh will be generated.

FEach grid point is numbered starting at the top of the CONE
module, going from left to right, then from top to bottom according to
the 7-digit numbering convention described in Section 1.3.1.

The coordinates of each grid point are calculated as the grid
point is numbered. Coordinates of grid points on the boundary of the
CONE module are stored for future reference by calling subroutine LOCKS.
Then GRID cards are printed and stored on file I8. After all the grid
points are numbered for the section, the elements are defined by calling
subroutine PRCPER or CEPROP to obtain property ID's and thicknesses
and CQUARD?2 or CTRIA2 cards are printed and stored on file I12.
Pressure loading cards (PLOAD) for each element are printed and stored
on file I14.

The ID of the grid point at the top left of the element is used as

the element identification of quadrilaterals. The identification of

2.61



triangular elements is obtained by starting with the node number of the
top left grid point and numbering the triangles in the Z-direction,
incrementing each (fourth digit) by one. An example of the element and

grid point numbering generated by QUADS is shown in Figure 1.86.

Error Messages: None.

2.62



2.4.6 Subroutine PROPER (Element Property Generation -
Quadrilateral Elements)

Function: To set up property identification cards for homogeneous
guadrilateral elements.

Common Blocks:

TYPE Index of card names for input and output
PROPS Property identification storage for CONE modules
SET Contains title information

Entry Point: PROPER
Calling Sequence: CALL PROPER(LELE, THKM, I14)

LELE Number of quadrilateral elements in the section
THKM Array containing the thickness of each quadrilateral
114 File containing property identification cards

Subroutine Called: PRINT
Method:

A sequential property identification number (PID) is assigned to
each unique thickness associated with quadrilateral elements. Thicknesses
for elements in this section are stored in column 2 of the array PIDT
and the corresponding PID's are stored in column 1. PQUAD2 cards are
printed and stored on file 114 whenever a new PID is encountered. The
array IPID, in common block PROPS, will contain the PID of each element
in the order in which the thicknesses are given in array THKM.

Error Messages: None.

2.63




2.4.7 Subroutine CONEND (CONEND and CONENDR Modules -
Geometry Processing)

Function: To set up the physical dimensions of the element types,
CONEND and CONENDR.

Common Blocks:
KEYCHN Storage area for module boundary data

PHIA Contains input parameters

ROD Contains boundary radii

REFPT Contains the reference line numbers of the present
module

Entry Point: CONEND

Calling Sequence: CALL CONEND(ZL1,DIVZ,DIVA, DIVZ2, DIVA2,

ICONED)
ZL1 Length of the element type
DIVZ Number of divisions along side 1
DIVA Number of divisions along side 2
DIVZ?2 Number of divisions along side 3
DIV A2 Number of divisions along side 4

ICONED Option flag; 0 indicates a CONEND section
1 indicates a CONENDR section

Subroutines Called: LOCKS, TRI

Method:
The cone-shaped end module is bounded by four reference lines,

one side being a null side. The geometrys of the CONEND and CONENDR
modules are shown in Figures 1.12 and 1.13. Notice that the apex is
associated with side 1 or side 3 depending on the selection of CONEND
or CONENDR.

Subroutine LOCKS is called to determine whether the coordinates
of the corner points, A, B, and D have been calculated. Those coordinates

that have been calculated will override the input specifications.

2.64



The length L will be calculated using Equation (3)
L=Rtan¢ (3)
where R and ¢ are specified input. Note that R = Ra for CONENDR

modules and R = Rb for CONEND modules. The radius R will be

calculated from Equation (3) if L and ¢ are specified and ¢ # 0°.

Error Messages:

Number Level Entry Point Text
530 2 CONEND Calculated lengths for CONEND
do not agree; value of ZLl1 is
used.
531 2 CONEND Calculated radius does not equal

radius already punched; value

of punched radius is used.

2.65




2.4.8 Subroutine

TRI (CONEND and CONENDR Modules -

Mesh Generation)

Function: To generate a finite element mesh for CONEND or CONENDR

modules and for CONE modules with varying mesh density.

Common Blocks:

GRIDPT
KEYCHN
OPTION
REFID
REFPT

BREFID

TICK
TYPE
PROPCE

PROPS
PROP
PHIA
ROD
SET

R1,T1,Z1

IDIVA
IDIVZ

Gridpoint numbering storage for present module

Storage area for module boundary data

Contains execution control options

Contains internal reference line number information

Contains the reference line numbers of the present
module

Contains external and corner reference line number
information

Contains thicknesses and pressures on the boundary

Index of card names for input and output

Property identification storage for CONEND and
CONENDR modules

Property identification storage for CONE modules

Constant data for GRID and connection cards

Contains input parameters

Contains boundary radii

Contains title information

Entry Point: TRI
Calling Sequence: CALL TRI(R1,T1,IDIVA,IDIVZ,DTHETA,ZL1,

IDIVZ2,IDIVA2,1C,TT,18,112,114)
Coordinates, in a cylindrical coordinate system,
of the grid point at A of the cone end module that
is to be subdivided into regions of quadrilateral
and triangular elements
Number of divisions along size 2

Number of divisions along side 1

2.66




DTHETA
ZL1
IDIVZ2
IDIV A2
IC

TT

18
I12
114

Azimuthal width
Length of cone end module projected on the Z-axis
Number of divisions along side 4
Number of divisions alohg side 3
Option flag;
If 0, indicates a CONEND module
If 1, indicates a CONENDR module
If 2, a cone module is composed of both triangular
and quadrilateral elements on the upper part
and only triangular elements on the lower part;
Figure 2.9c & d

If 3, cone end type subdivision of a cone module
composed of only triangular elements on the
upper part (subroutine QUADS will be used
to generate these elements) and both triangular
and quadrilateral elements on the lower part
(subroutine TRI will be used to generate these

elements); Figure2.9a &b

T1 value of the coordinate (R1,T1, Z1) of the grid
point at A of the cone module; this variable is
used only if IC=3 and this subroutine is called
from subroutine QUADS; otherwise it is set to zero _

File containing grid cards

File containing connection cards

File containing pressure loading and property ID

cards

Subroutines Called: CEPROP, LOCKS, PRINT, PROPER, QUADS,

TERP

2.67




Method:
This subroutine is used to generate an idealization for CONEND,

CONENDR, and CONE modules. For CONEND and CONENDR modules
which are bounded by three reference lines, the idealization may consist
of either all triangular elements or a combination of triangular and
quadrilateral elements, depending on the grid point density along the
reference lines. This subroutine may also be used to generate
idealizations for CONE modules which are bounded by four reference lines,
requiring both triangular and quadrilateral elements to achieve the correct
mesh density. The value of the variable IC indicates which type of mesh
configuration is required.

The grid point and element identification numbers follow the

T-digit convention described in Section 1.3.1.

Error Messages: None.

2.68




2.4.9 Subroutine CEPROP (Element Property Generation -
Triangular Elements)

Function: To set up property identification for homogeneous
triangular elements.
Common Blocks:
TYPE Index of card names for input and output
PROPCE Property identification storage for CONEND and
CONENDR modules

SET Contains title information
Entry Point: CEPROP

Calling Sequence: CALL CEPROP(LK, THKM, I14)
LK Number of triangular elements in the section
THKM Array containing the thickness of each triangular
element in the section
114 File containing pressure loading cards and property

identification cards
Subroutine Called: PRINT

Method:

A sequential property identification number (PID) is assigned to
each unique thickness associated with triangular elements. These
thicknesses are stored in column 2 of the array PID and the corresponding
PID's are stored in column 1. PTRIA2 cards are printed and stored
on file 114 whenever a new PID is encountered. The array, JPID in common

block PROPCE, will contain the PID of each element in the order in which
the thicknesses appear in the array THKM.

Error Messages: None.

2.69




2.4.10 Subroutine REF (Identification Number Generation)
Function: To build a unique 7-digit identification number from two
or four reference line numbers.
Common Blocks:
REFID Contains internal reference line number information
BREFID Contains external and corner line number information
KEYCHN Storage area for module boundary data
Entry Point: REF
Calling Sequence: CALL REF(IRID,IA1,1Z1,1A2,1Z2)
IRID nth call to REF (where n =1 to 9)
If 1, indicates internal numbering
If 2, indicates boundary numbering for side 1 (see
Figure 1. 11 for relationship of sides)
If 3, indicates boundary numbering for side 2
If 4, indicates boundary numbering for side 3
If 5, indicates boundary numbering for side 4
If 6, indicates numbering for corner A (see Figure 1.11)
If 7, indicates numbering for corner B
If 8, indicates numbering for corner C

If 9, indicates numbering for corner D

1A1 First A-reference line number
1Z1 First Z-reference line number
IA2 Second A-reference line number
172 Second Z-reference line number
Subroutine Called: PRINT
Method:

Subroutine REF prepares the reference line numbers for the
7-digit numbering scheme for the corner grid points and for the boundaries
as described in Section 1.3.1. The seventh digit (leftmost) is found for

each corner point and for the boundaries, and the values are stored in

2.70




the COMMON BLOCK BREFID. The reference line numbers and the
corresponding seventh digit for internal numbering scheme are stored
in the COMMON BLOCK REFID.

Error Messages: None.

Remark:
Parameters IA2 and IZ2 are used only when IRID=1. For other

calls they must be dummy variables or constants.

2.71




2.5 NASPL - GRAPHICAL OUTPUT PROCESSING

The program NASPL™ was inserted as part of the data generator to
provide graphics output. The main program of NASPL became the main
program of the second primary level in the overlay structure. The
subroutine GOOGAN was omitted since the generated data are already
right adjusted.

Options for NASPL are selected by setting the parameters in the
common block PLOT1. The following values are currently specified for

plots of generated data:

ITYPE =1 Generates both perspective and orthogonal
plots
12D =2 Plots two-dimensional elements only for

orthogonal plots

IXYZ = 4 Generates orthogonal plots in all three
viewing planes, xy, yz, and xz

I3D =2 Plots two-dimensional elements only for

perspective plots

IPRINT = 0 No grid points or coordinate information to be
printed

JPRINT =0 No element information to be printed

TH1 =0.0 First angle of rotation for calculation of point

of view for perspective plotting
TH2 = 0.0 Second angle of rotation for calculation of

point of view for perspective plotting

With the current implementation only the generated data will be

plotted and any manually prepared data will be ignored by NASPL.

*
NASPL is an in-house plotting program used .or NASTRAN data checking

at the Naval Ship Research and Development Center.

2.72



Subroutine PLASSM is used to merge the data onto the plot data file and
to delete any comment cards inserted by the generator. The exclusion
of manually prepared data and comment cards is necessary for correct

operation of this abbreviated version of NASPL.

2.6 UTILITY PROGRAMS

The following collection of subroutines is available to the
programmer for general housekeeping tasks and may be used as required

throughout the program.
Subroutine Function Page

2.6.1 ABORT Produces dumps of crucial 2.74

program areas

2.6.2 ASSMBL Merges several files into one 2.75
file

2.6.3 ERRMSG Prints numbered error message 2.76

2.6.4 GOOGAN Converts NASTRAN data format 2.78

to FORTRAN data format

2.6.5 PRINT Controls pagination, printing of 2.79
headings, and output titling

2.6.6 SWITCH Manipulates alphabetic 2.81
characters within a machine

word

2.73




2.6.1 Subroutine ABORT (Data Storage Dump Routine)

Function: Dumps selected common storage areas for debugging

purposes.

Common Blocks: OPTION: See Section 2.1.3
Entry Point: ABORT

Calling Sequence: CALL ABORT

Subroutines Called: SECOND, PRINT, DMKYCH, DMPOOL

Error Messages: None.

Remarks:
1. Programmers may add dumps of regions of interest either

directly or through subroutine calls.
2. The current processing step in the program is determined
from the seventh word of the OPTION common block and only those areas

which are meaningful at that stage will be dumped.
3. Current CPU time for the job and the CPU time since the

last call to ABORT will be printed with each call.

2.74



2.6.2 Subroutine ASSMBL (File Merging Routine)
Function: Merges several files containing card images onto one file

and writes an "ENDDATA" card at the end of the merged file.
Entry Point: ASSMBL

Calling Sequence: CALL ASSMBL(NSOUT, NFILES, MFILES)
NOUT FORTRAN logical file number for the merged file
NFILES Number of files to be merged
MFILES Array containing the FORTRAN logical file numbers
of the files to be merged, in the order that they are

to appear on the merged file
Entry Point: PLASSM
Calling Sequence: CALL PLASSM(NSOUT,NFILES, MFILES)
Subroutines Called: None.
Error Messages: None.

Remarks:
1. All files except the merged file (NSOUT) are rewound both
before and after ASSMBL processing.
2. PLASSM deletes all cards beginning with a dollar sign
(NASTRAN COMMENT cards) as the file is assembled.

2.75




2.6.3 Subroutine ERRMSG (Error Message Printer)
Function: Writes a message header on the printed output file.
Common Blocks: OPTION
Entry Point: ERRMSG

Calling Sequence: CALL ERRMSG(IFATAL,NUM)
IFATAL Level of severity of error
If 1, non-fatal
If 2, fatal; will not continue into the analysis phase
after generation
If 3, fatal; will stop at once

NUM Message number
Subroutine Called: PRINT
Error Messages: None.

Remarks:
1. If error level is 1, the following message will be printed after

one line is skipped:
Fkkxk*kXHHXXXYZZZb

where XXX is the current step number as indicated by the seventh word
of the OPTION common block, Y is the value of IFATAL, and ZZ7Z is
the error number. For error levels of 2 or 3, the following message will
be printed after one line is skipped:

*FATAL*bbXXXYZZZb

where XXX, Y, and ZZ7Z are defined as above.
2. ERRMSG will set the NSR word of the OPTION common block

to the value of IFATAL if this value is g. eater than the current NSR value.
3. ERRMSG calls subroutine PRINT to properly update page and
line count information. For messages which are longer than one line,
subroutine PRINT should be called to reflect additional lines printed.
4. To issue an error message, call ERRMSG and then write

a one-line message, preceding the message text with a plus sign and

2.76




seventeen blank spaces, e.g.,

CALL ERRMSG(1, 99)
WRITE(6, 990) KOUNT
990 FORMAT(1H+, 17X, *message text*,I5).

2.7



2.6.4 Subroutine GOOGAN (NASTRAN Format Translator)
Function: To convert data card images from NASTRAN bulk data
format to FORTRAN acceptable format.
Common Blocks: SET: See Section 2.6.5
Entry Point: GOOGAN
Calling Sequence: CALL GOOGAN(KQ, KB, NIN, NOUT)

KQ = -1 For data generator applications (processes bulk

data cards only)
KB =2 Data field lengths to be left unchanged after conversion
NIN FORTRAN logical file number for the file from

which the original deck is read
NOUT FORTRAN logical file number for the file on which

the converted deck is written

Subroutines Called: PRINT
Error Messages: None.
Remarks:

1. NASTRAN BULK DATA cards are subdivided into ten
8-column fields. On each card fields 2 through 9 may contain numeric
information placed anywhere within the field as long as there are no
imbedded blanks (except before exponents) and no decimal points included
in integer numbers, and as long as decimal points are included with real
numbers. This program right adjusts the number within a field so that
it may be read as a real number using E8.0 or F8.0 FORTRAN format
specifications.

2. This program lists each card after processing along with a

sequence number corresponding to its position in the deck.

2.18



2.6.5 Subroutine PRINT (Heading and Page Control Routine)

Function: To control the pagination of printed output including the
printing of a banner page; the printing of page headings with the
problem title, date, and page number; and the printing of titles
for output quantities.

Common Blocks:
OPTION: See Section 2.1.3
SET: Length 54 words

Words Description
1-8 Problem title, set by SETUP, 10 characters
per word
9-20 Unused on CDC 6700
21 Current date
22-23 Unused on CDC 6700
24 Page count
25-54 Data title, set by calling program - 4 characters

left justified in each word

Calling Sequence: CALL PRINT(LINES)

If LINES =0 Prints banner page and resets page count to
zZero
>0 If LINES printed lines will fit on the current

page, then the line count is incremented by

LINES and control is returned to the

calling program. If LINES printed lines

will not fit on the current page, then the

program skips to a new page, increments the

page count by one, prints the heading and

data title, and sets the line count to LINES+5.
<0 The program skips to a new page, increments

the page count by one, prints the heading and

data title, and sets the line count to 4-LINES.

2.79




Error Messages: None.

Remarks:
1. LINES is the number of lines of output which will be printed

following this call, if LINES is positive. When LINES is negative,

-(LINES-1) lines will be printed.
2. The use of a negative value for LINES forces the beginning

of a new page. If the first character of the data title is non-blank, that
character is changed to a blank and that title will be used on all pages
until PAGE is again called with a negative argument. If the first character
is blank, the complete data title is changed to blanks.

3. The number of lines to be printed on each page is stored in

the fifteenth word in common block OPTION.

2.80




2.6.6 Function Subprogram SWITCH (Character Manipulation Routine)

Function: To construct a word by substituting the first (leftmost)
character of one word into a specified character position of another

word.

Entry Point: SWITCH
Calling Sequence: D = SWITCH(A,I, B)

D Constructed word

A Pattern word

I Position of the character to be changed in pattern word
(integer, 1 s I < 10)

B Replacement character (only leftmost six bits used)
Subroutines Called: ABORT, ERRMSG

Error Messages:
Number Level Entry Point Text
30 2 SWITCH SUBSTITUTION CHARACTER OUT OF
RANGE IN "SWITCH' FUNCTION

Remarks:
1. This routine is for CDC 6000 series computers only.
2. Characters are six bits long. The first character is
defined to be the leftmost six bits of a word.

3. A, B, and D may all refer to the same word in memory.

2.81




3. PROGRAM MESSAGES

Program messages will be preceded by seven asterisks for non-fatal
errors, or by "*FATAL*" for fatal errors, and a message code. The
message code has the form XXXYZZ7ZZ, where XXX is the current
processing step, Y is the severity level of the highest severity encountered
thus far, and ZZ?Z is the message number (leading zeros will not be

printed with this number).

Subroutine
Number Level (Entry Point) Remarks
001 2 SETUP Unrecognizable card
002 2 SETUP Syntax error on title card
003 2 SETUP Syntax error on control card
004 2 SETUP Invalid option specified on a
control card
005 2 SETUP Number out of range on a control
card
006 3~ SETUP End-of-file encountered while
reading card input
011 2 INSORT Invalid card in BULK DATA deck
012 3 INSORT 1/0 error occurred while reading
BULK DATA card
013 3 INSORT Program terminated due to
error count
020 2 XTRACT Zero or negative reference line
number specified or maximum
number of reference lines has
been exceeded
021 2 XTRACT Equivalence specifies a non-
(XTREND) existent reference line ---
equivalence ignored
022 2 XTRACT Listed equivalence conflicts with
(XTREND) earlier specification ---

equivalence ignored

3.1




Subroutine
Number Level (Entry Point)
023 2 XTRACT
(XTREND)
024 1 XTRACT
(XTREND)
025 3 XTRACT
(XTREND)
026 3 XTRACT
(EQV)
030 2 SWITCH
040 1 DATGEN
041 3 DATGEN
050 2 LOCKIT
(LOCKIT)
(LOCKS)

3.2

Remarks

Intersection equivalence specifies
a non-existent reference line ---
equivalence ignored

The number of divisions has not
been specified along the edge of
a module --- default assignment
will be used

Interlude processing requires more
iterations to propagate mesh
specifications than the theoretical
maximum --- program error

Intersection equivalence storage
exceeded. Reduce the number
intersection equivalence or
increase POOL storage

A request has been made to
substitute a character which
cannot be processed. A
maximum of ten characters will
be considered as word for
SWITCH processing.

Generation and plotting complete
for one data case

This job has been terminated due
to the occurrence of a Level 3
error (or a Level 2 error when
"NASTRAN=YES" has been
specified)

CHAIN storage has been exceeded.
This usually results from
attempting to generate models
with too many gridpoints on
module boundaries. It may also
result from use of too many
modules which employ higher
level (levels greater than 1)
storage for parameter communi-
cation. In the first case the
problem size probably should be



Number

Level

Subroutine
(Entry Point)

051

100

101

102

103

104

105

106

107

108

501

SPACE
(SPACE)

POOLIT
(POOLPR)
(POOLDT)

POOLIT
(POOLPS)
(POOLDS)

POOLIT
(POOLPS)
(POOLDS)

POOLIT
(POOLPS)
(POOLDS)

POOLIT
(POOLPS)

POOLIT
(FETCH)
(FETCH1)

POOLIT
(STOW)
(STOW1)

POOLIT
(PURGE)

POOLIT
(POOLPR)
(POOLDT)

CuTuP

3.3

Remarks

reduced. In the second case the
problem could be split into two
or modre segments.

Two adjacent modules define a
different number of gridpoints
for a common boundary. The
first specification will be used.

POOL storage exceeded during
data insertion operations

Illegal identification in POOL
search

IDENT specified does not point to
a set

Illegal second identifier in

POOL record

A set of pairs has an odd number
of entries

Same as 101 or 102

Same as 101 or 102

Same as 101 or 102

Illegal IDENT in POOL storage
operation

Two parallel reference lines have
the same ID in the specifications
for this module. Program
continues to process next section.




Subroutine
Number Level (Entry Point)

502 2 cuTuP

QUADS
503 2 CUTUP
504 3 cuTuUP
520 2 CONE
521 2 CONE
522 2 CONE
523 2 CONE
530 2 CONEND
531 2 CONEND

3.4

Remarks

No storage space has been assigned
for an edge of this module.
Program continues to process
the next section.

Number of divisions along Z~
reference line is greater than
the number of divisions along
the A-reference line. Error in
input data for CONEND or
CONENDR module. Program
continues to process the next
section.

The number of errors encountered
during one processing step has
exceeded the maximum permitted.
(This limit is specified in the
14th word of the OPTION
COMMON block. )

Calculated lengths ZL1 and ZL2
do not agree. Value of ZL1 will
be used.

|DIVZ-DIVZ2| is not less than
min(DIVA, DIVA2). Program
continues to the next section.

| DIVA-DIVA2]| is not less than
min(DIVZ,DIVZ2). Program
continues to the next section.

Another radius must be specified
for this module, either Rai or

Ry, since ¢>i =0° or ¢, = 180°.

Program continues to the next
section.

Calculated lengths for CONEND
or CONENDR do not agree. The
value of ZL1 is used. Program
continues to generate data.

Calculated radius does not agree
with radius already punched.
Value of radius punched is used.




4. SAMPLE PROBLEMS

4.1 DEMONSTRATION CONE

The structure shown in Figure 4.1 was idealized as 15 data generator
modules. The three modules at the closed end of the structure (1, 2, and
3 in Figure 4.1) are the CONEND type; all others are CONE type modules.
For reference, a listing of the user supplied data, selected pages of
program messages and generated data, and three structural plots from
this run have been included. The following remarks apply to the circled

numbers throughout the sample pages.

Remarks:

1. Default specifications have been chosen for all options except
page titling and structure plotting. Note that the dollar signs preceding the
TITLE and PLOTID cards have been added by the program.

2. Execution control cards have been included which are to be passed
directly to NASTRAN.

3. Note Z-equivalence specification for the intersection of cylinder
and cone portions of the structure.

4. All input quantities have been right-justified within each field.

5. Examples of geometric specifications which will be propagated
among the modules as the idealization is generated.

6. Example of data generated by a CONEND module.

7. Only quantities appearing explicitly on data cards will be listed
in this section.

8. The relationship between the user's reference line numbers and
generated data is indicated in this section.

9. The radii used by the module are listed, whether they appear
explicitly on the data card or not.

10. Generated data cards are listed as produced. Because some

modules are internally divided into subregions (as this one is), headings

4.1




Figure 4.1 — Demonstration Cone

4.2




indicating type of card may not always be appropriately placed.

11. Example of data generated by the CONE module.

12. Only one property card is generated for each combination of
thickness, material identification number, and element type encountered
during the run.

13. The structure plotter plots (and thus counts) only generated
elements and grid points.

14. Axes appearing in the plots are in NASTRAN's basic rectangular
coordinate system and not in the generated coordinate system.

15. Grid point numbers are printed on the structural plots if there
is sufficient clear area for the numbers to be legible among the element
plots.

16. The scale is calculated for each view so that the structure will

always fill the plotting frame.

4.3



¥

39vd

gL/722/20

A8 NI938
0T=(HINNDIdSIQ

3N I1 NVALSYN=3UIL
czwolA””v
ON3$

£649T21X3 *H9%973003 “3DOK = 01.101d
***3INCIT NOIlvdlSNDNW3CO = UL
3ANOY OR3G 33X 4I

NJI30 1T031INOI NOILNDIJIIXI

=0,

ANNOJ

"M TN OMNO

aavd

4.4



ViVGGQN3 2%

£ 4204 Th
220+ gcu+ 04
920+ L 4 4 i a20+ 6¢
§20+ L] 1T £ 8 3N0J 33
2 h20+ 1€
"20+ £20+ 9¢
€20+ ¥ 4 4 k & 220+ af
220+ £ 1 2 1 3NOD he
2 120+ £€
120+ A} g 620+ 2¢
020+ h 4 L 4 1 5 6T0+ 1€
670+ s°L 2 T T 8 3NOJ og
T " b 4 ) 54 10+ 62
810+ " [ [ 4 3NOD 82
T L] b 4 1 54 LT0+ L2
470+ £ 6 2 4 3NOD g2
4 910+ s
910+ } 4 L b ¢ T ST0+ he
ST0+ 3] *06 2 6 T 3 3N0D £2
k 4 L ¢ A 5 w10+ 22
930+ y 2 £ S 3N0D 12
1 3 b 4 A 5 £T0+ 82
£70+ £ 2 4 S 3NOD 61
] 210+ 8T
210+ ¥ 3 T 110+ Fa s
T10+ *9 *0e6 4 4 T ] 3NOD 97
T b 4 I 3 010+ ST
030+ L] S £ £ 3N0D LA ¢
T i § | 5 600+ £7
600+ £ s 2l £ 3NOD 21
£ °s 800+ 1T
800+ 3 b 4 i 3 200+ ot
400+ *62% 2 [ T £ 3NOD 6
T 4 ¢ 3 s00+ '}
500+°0¢ L) £ £ ) 4 GN3NOD 2
T 2 b L & £00+ 9
£00+°0¢ £ £ e T ON3NOD s
L] 200+ L]
200+ D\ 1 2 4 1° e 3 160+ £
700+ °0¢ S *sf r4 £ T 3 ON3NCID 4
=/ 4 ] :awNI@ T

X030 viva L1 NdNI1I ANNCJO Q¥VYI

2 39vd £2/£7/¢20 ***3INOD NOIlvadlSNOKWI3G

4.5




£

39vd

£4/722/20

000°90

0oz2o0e
0ot00T
003002
007007

SI
SI
SI
SI

=03

(2
2
t
o3

00°¢ =33 00°¢ =83 00°0

‘€ )2v*2Z 40 NOILO3SY3IINI 3HL LIV ¥3I8WNN LNIOd QI¥9 ELYY
‘T 12V*FZ 40 NOILO3SHILINI 3IHL LV F3IGNON UNIOd OI¥9 3Iny
‘€ )TV42Z 40 NOILO3SUIANI 3HL LV H3IOWNN UNIOd 0I¥9 3HL

‘T ITYTZ 40 NOILIOISAIINI 3IHL LV ¥3GWAN INIOd 0139 3HL

9340

=VY °CCHINMOD HOV3I LV SNIAVY 3HL

:

4.6

000°0- =(ZIHd) 27V J40 3407IS
000 °sg =(TIHd) T3V 40 3407S
0000°0€ =(W13HL) 379NV IVHINWIZY

0000°0- =(71) NOILD3S 40 HION3T
¥3SN A8 03NI430

L3 NOILD3S

5 &

indineo 401 VvVay3INI9 vivoe

***3NODI NOILVAELSNOHKWSIGQ



o°o oovcot 10%£0T 103207 007207 T 00t207T 20vndo

H1 49 £9 29 19 gld a13 20vYnol
SGUVD OQVNDaanarn
00000°0 0000%° L4 1 3 20¥ndd
NSN 1 QINW ald 2avnod
SQYIVJ QVNDdseawns
[} ¥ 3012 000°0¢ 600°¢ 4 002002 [(he. L]
['] L 4 T0t1°2 000°sy 000°g T 10T002 a1y9
0 T 10T goo*¢c goo°g 1 00T002 0Id9 |
0 ¥ sls°t ooo0*o0g 0s2*e ¥ 002£0T Q139
0 4 645°T 000°sT 0ge*e T T0T£0T aI1y49
0 ¥ 9l8°T goo°0 gse*e ¥ 00T£0Y QI¥9
g02tot j0T20%T 002207 g3 L3 avod
103207 gozioy goTToT 0°3 T avold
003107 goreor 101201 01 T avod
007007 00TI0T 002707 0t 1 avold
0°0 002Tot 101207 002207 T £0TTO0T SNI¥LD
0°0 103120% gociot 003107 1 20TT0T 2ulald
0°C 001107 00tT20T 10720% 4 107707 evIdld
0°0 003007t 00TTOT 0027107 ¥ 007007 r4 2 e-The
Hi £9 29 19 0ld aI3 A )¢ ]
SOUV) CVIdLiaanan -
00000°0 ©0000%° T 1 2NIsLd ™
WSN i OIN ald evidld
SOYVI 2VI¥Ld sanwa
0 ¥ 0s0°t 000°0¢g 0051t T 00220°T 1h¢- 1]
0 ¥ 050°% 008°sT 00s°% ¥ 101201 0I¥9
0 ¥ 0s0°%T 0go0*0 00s°T ) 4 00720t aId9
0 1 52s° 000°0s  0sZ° T 002103 Q189
0 1 626° 0go°*0 0se” ) 2 00TT0T aI349
0 ¥ 000°0 0006°0 000°0 ¥ 00T00T 0139
Sd 0o £X 2X 128 dd ax 1y ¢-1]
SOAVI GI¥9%anewn
2 1 Sdi¥ ONY £ T =Sad3Z A9 G3ANNO8 NOILJ3S

030 10NdlN0C HO0LVYHNINIO qhqole

A 39vd £42/722/720 ***3NOD NOILlLVILSNOKSIG®




s

39vd

£4/22/20

[~ - X ]

T0T00¢ g0co0e 0ocgoT 10107
007002 107002 101807 00tTE0Y
101207 002207 00220t 701207
00107 107£0T 30720°% 00%T20t
10002 ooceec 002¢£07 10707
001002 I9t1802 T0T£0T 00107
T07£07 002£0°% 00220t 101207

X330 1ndlno 301

***3INOD

i vt ot -
Ll a R I ]

T0T1£0T
007£07
T07207%

V33INI9 viva

0vold
avoid
Qvod
avold
2Qvnoo
20vynbo
2avnod

NOIlVRAILSNONKWSIGC

4.8



000°s

002004
gozooe
007004
gorooe

9t 39vd g£L/22/720

SI
SI
sI
SI

=0y

te
(e
(1
(5 1

gu°s =34 08°s =84 00°G =V¥ °°°dINDOOD HOV3 1V SNIOGVY 3HL

¢4 )2V*2Z 30 NOILOJIASUILINI 3HLI LV ¥3IGWNN LN1Od 0GI¥9 3HIL
¢S )2V*TZ 40 NOILO3ISYIUINI 3HL 1V YIGWNN UNIOJ C0I¥9 3ML
42 )TV*2Z 30 NOILO3SYIAINI 3IHL LV ¥3AWNAN UNIOd OI¥9 3ML

4.9

¢S )TVETIZ J0O NOILO3SYIANI 3HL LV U3GHWAN INIOd 0I¥9 3HL

900°0- ={2IHd) 27¥V 40 3401S
000°06 ={TIHd) TId¥V 40 3Id0IS
0000°0~- =dvi3HL) 3TINV WHINHIZY

0000°9 £€1) NOILJ3S 40 HI9NGD
d3ASN A8 03NI330

L NOILD3S |@

A33a 10dlno 401 VIINI9 viveg

***3NO0D NOILlVadLSNONKSZIGC




0°0 T0tT£08 T0T%0¢ 201408 3 c0te0g SVIdLD

0o T0TH0¢ 10Tg0g 00T£0¢ L 4 Tor£0E 2YIvL)

0°¢C 00T£0g 00TH0¢ T0T+%0¢ 1 4 007£0¢s t4 8- %]

HL £9 29 19 aid ar3 2VIdLD
SOAVI SVIdlnanan

0 456°07 0p0°0¢ 000°*s T 00200n aly9

0 T 266°0F 00s°22 000°*s ¥ £0300% aI¥9

[} ) 4 156°07 008°st 0po°s 1 20700 aIy9

0 T 156°07 00s°L 0008°s S 10T00% a1y9

0 T 156°07 000°0 000°s T 00T 00% alyssg

[} T 4546 0o00°0g 000°s T 0gzn0e QId9

6 3 1846 68002 000°s 1 20THhos G149

0 1 451°6 000°0t [ 1] Y T T0T408 a139

0 b3 152°6 go0°0 000°s ¥ 00Th0e a1y9
103808 og2goe g0220¢ 101208 0°7T T avold

007¢0¢ 101208 T0720¢ ootcos g°t T avold

T0t20¢ 00220¢ g02toe T0TT0¢E 0°1 1 avold

00%v20¢ T0T20¢ 11121} goétvos (R 4 T avod

T07T0¢ 002370¢ 00200¢% 107008 et T avold

(X ALK 10108 10%00¢ 801008 0°% ¥ avold

00 T0lg08 002g£0¢g 00220¢ 10t20¢ 1 4 107208 2avnug
00 007£0¢ J0T£08 101208 00%20¢ T 003208 caynuo
g0 103208 goz22o0g goectoe T0TT0E T 10T10¢g 2Qvno9
0°0 007208 107208 T0T108 003108 3 007108 2avnod
a0 101108 00230¢ gocoog T0100s 4 107008 2avnol
00 007108 103308 103608 00T008 a.|IAHHV 00T00¢ 2avnd g
Hi 99 £9 e9 19 ald 013 cavnol
SGAY] OVNDanans

0 ) 4 498°8 goo0° o0t 000°s 1 oo2gog aIyds

g T L95°8 060°sT 000°s T To1g08 Q149

0 T 196°8 0000 000°s T 00F7£0€ gIy9

0 3 L258°4 0006°0¢ 000°s T ggeceoe a139

0 T LSE%L g00°stT 006°s T 101208 alas

0 1 iss8°f 000°0 000°s L 4 007208 G139

] T 251°8 ggd°0¢g 000°s ¥ goectos als9

0 4 4919 000°sT [ 1T A8 T T01T0E glyg

2 L 4 257°9 000°0 000°s 4 007708 01¥9

Sd ad £X X X 49 ax aI¥9
SGAVY QIdSeannn

2 14 SdiV OGNV ¢ S #SddZ ‘A8 Q30NNO08 NOILJ3S

3340 1nding 4041 V¥3INZIS vivag

it 39vd £4/22/720 ***3NOYI NOILlLVALSNONKWSIGQG

4.10




4.11

00240¢ £0700% 002004 0°1 1 avold |
£0T700% 002%08 c0TH0g 0t L3 avoid |
c0Tn0g c0100% £0T00% 0°7 L3 avold
c0T00% c0Tn0g T0TH0E g3 ¥ avold
T0T90¢ T0T 009 207004 o't 1 Qvoid
107004 10¥I%0¢ 003408 0°1 13 Qvold
001808 007004 T0T00y 0°7 L 3 avod
L] F34 1+ 20T408 00ch0g o't 13 avoid
r143 1 1+ go2gos 101808 e°? ¥ avod
T0T£ 08 T0TH0E 20Tn0¢ 0°y ¥ avold
T0TN08 101808 [ 1R 2314 0°7T 1 Qvoid
gotcos 00T%0¢ T0T40¢ 0% L avold
0°0 002n0¢ £0700% 60200y 13 907908 2vidLd
8°0 £0T00% 002%0¢ 20908 L3 S0In0E 2Vidld
0o 20¥%0¢ 207004 £0T00% ¥ 40Th0¢ SV1did
0°0 20T00"% c0Tn0¢e T0TY90¢ 3 £0T90¢ 2vidld
0°0 T0TH0E 301004 201009 1 201408 SvIdll
0°0 107004 T0T%0¢E 00350¢ L3 107408 eVvIdid
0°0 007408 00T 00 107004 L3 00TH0E Z¥Idid
0°0 002s0¢ 20T 0E 002908 1 401208 2vidld
0°0 2008 602s0s 103808 k4 £0T£0E SVIY¥LD
X034 indino 041 VIINII viva
T 39vd £2/22/20 ***"3INOI NOIILVYNLSNOKSIOQ




saaskas NOILVD

% s

€ = ZAXI 2- = Q£ 2 = Q2I T = 3dALl HIIM 101d 3NO °107d

£ = ZAXI 2-

O£ 2 =021 T = 3dAlI HIIM 101d 3INO *101d

% = ZAXI 2- Gel 2 aer v

3dALL HLIIM 101d 3NO *107d

*SNVIQVY 0Owsel* ONV 0Ohs8e* 4¥ INIL107d 3AIL034SH3d  *I1300W

*SLINIOJ GI¥9 972 GNV SIN3W313 822 *10d

4311017d 33AL09NYVYLS HOHL S 3

hh 39vd £4/22v20 ¢ **3 N0

Iddv 40 GN3 040702 ARRAR AR

INVad 40 ON  °*ONILIOW 0 ON3

aNIinodens
aNILnod8Ns
aN1lnodans

3aN1lnoasns

NILno¥BNS l@

9VSS 3N

NOILVALSNOKWIOG

4. 12



DEMONSTRATION CONE...

FERSFECTIVE FLOT

A‘ \.* A
SRR
AN \‘\Iz\\v’;

N ~Q 4

<2
\

Two CIMENSIUNAL ELEMENTS

4.13

MCKEE Uesedsio o




DEMONSTRATION

CONE.

MCKEE L2s20/143 5

01
1.,322x10

B> N

.
—
1T ~
-
~—t]
e
]
] ‘
=
01
843x10 X AXls

00
-3.226X10 gg

4.14

0.000x10 —




DEMONSTRATION CONE...

oo
.000x10
z
A
X
1
S

79,

76

-07
ARxP oo
.000x10

MCKEE Vesetsied

O —

o101
G3160
b6 101
00
#o0
L/ 1 01
1
3
100
01
1
00
100
01
(111]
3 2 : 100
101
2 1 00
60,
60, g
2 20801 101
40| 1 GU
2
1 1
2
60
60 20| 14 ¥]
20
20
4 3 10
603400 6U2400 aaLean ASUlalL 202490 4 x ] §O1400 200406 luaduy —08
s e + s.es2na

4.15



4.2 POINT LOAD ON CYLINDER

The purpose of this data generator application was to generate an
idealization of a ring-stiffened cylinder which could be analyzed with a
concentrated load applied at a point on one stiffener. The symmetry of
the structure and the load required only half of the cylinder to be modelled.

A listing of the bulk data deck and three structural plots have been included.



b4

39vd

60T+

80T+
40T+

90T+
S0T+

0T+
£0T+

207+
T0T+

00%T+9
€203+
2c 03+

1200+
0200+

6103+
8100+
LT00+
9309+ °06
9100+
%100+

£100+
ct00+

TT00+°sL

0700+
6000+

8003+
L2000+

3000+
S003+

4003+
£003+
2000+
T003+°S7

£4722/20

s$°e

s*e

ot

$5°02

95° 02

§85°ST

06

*06

*g6

T
*06

[V,

-“sr M3 L 4 MmMON MNONN MmN

waumMmsSNNITMMOM MMM OEFON

NOWOWMBN

230

14

£T

%1

2T

viva

21s8°

2ls*

21s°

2is*
97
235

21s5°

2148

cla®
21s°

215°

21s°*

21s*

cis*

21s*

21s*

21s8°

1

1 NdNI1

¥4 3ANI

st

%%
hi*ey

12
hhitgh

9

st

9
hhicgs
A
whic*gs
£

hhlcgs
2

nnicEs
1
wni'gs
n
whivgs
£

hnlcgs
e
hhlgs
T

A 7% %]
4

hhicgs
£

hhicgs
e

hhlcgs
T

T4A0

N

0

3NOJ
801+
L0T+
3NOD
90T+
S0T+
3NOD
90T+
£0T+
3N0D
20T+
TO0T+
3NO9
00T+
no3z
£200+
3NGO
2200+
3N0D
1200+
0200+
3NOD
63700+
8100+
4100+
9103+
3N0J
S100+
3N0D
%300+
3N0OD
£T03+
2T03+
3N0J
7100+
3NOQ
0700+
6000+
3NOD
8000+
L0004+
3N0D
9000+
5002+
3NO0J
9000+
£009+
2000+
1603+
3N0D

"M ITOONOO

ANNOD QAVD

Ggvon

1 NIOAM

4.17




39vd

Bh1+
6ET+
8ET+
8T+
9£T+
aET+
4ET+
££T+
2ET+
TET+
0E£T+
8ci+
LCT+
92T+
Het+
£2T+
12T+

0271+
6T1+

817+
LT+

91T+
STI+

LA 2%
£T¥T+

2T+
TTT+

0TT+

£L/22/20

g°%2

s°2

8°¢e

g2

52

s°2

‘g6

06~

s > 2

”m N

NN

[\ R V]

NN

NN

#0340

a3
87
9t
£T
%%
t44
123
1
e
4
i1
L4
97
€T
%%
a4
133

T4

eé

g2

’as

8%

viva

£
2is*
€
215°*
£
2ts°
£
215"
£
2is*
£
2ts°*
£
21s°
2
21s°
4
YA 1"
2
21s°
2
%N
4
2ls*
<
AN
14
rASN
4
45N
4
21s°
2

AN
¥

2is”
L3

A 1%
T

2ls*
1 2

21s°
T

21s*

1 NdNTI

4 3ANI

83

ST

"7

13

22
0T
6%

LAY

st

L2 ¢

12

ce
KA VAL ]
(i3

6%

87
hhiceh

140

N

0

3NO0D 00t
6ET+ 66
3NOJ 86
8ET+ L6
3NOJ 96
LETH s6
3NOD L1
9eT+ £6
3N0D 26
SET+ 16
3NO2 86
HET+ 68
3NOO ge
£ET4 L8
3NOD 98
cET+ 98
3NQD Yg
T£T+ £8
3N0D 28
0ET+ 15°]
3NOD oe
BT+ 64
3NGD 84
LCT+ Le
3NOD 9.
92T+ Sl
3NOD he
heT+ £4
3nNCJ 2L
€21+ 1 ¥
3NO0D 0.
121+ 69
3NOD 89
02T+ L9
61T+ 99
3NCD $9
g7+ ]
LTT+ £9
3NO3J 29
97T+ 19
STT+ 09
3NOD 65
h1T+ 8s
£T1T+ LS
3NOD 99
ST+ 1T
T1T+ s
3NOD £s
6T+ 2s
60T+ s
INNOD Q¥vVd
Ggvo?n INIOAJ

4.18



L)

39vd

£9T+
29T+
THT+

£L/22/20

5°2

20340

Te
ae
0e

viva

21s5°
£
r430
£
21s°
£
21s°

1 0dN1

*d430NITAD

ce
C3
61

N

ViVOON3 807
£91+ 407
3NOD 90%
423 S0V
3NOD %03
Thl+ €07V
3NOD 2ot
09T+ 0t
ANNOJ G¥uVI
0 aQvao LNIOGd

4.19



POINT LOAD ON CYLINDER. ..

PERSPECTIVE PLOT

.i-‘\‘ .- ¥ ;
‘{&. :". 4 ’
N

H
\
»
i
\\::;‘-‘.' ‘:5 %

~
SO

4.20




POINT LOAD ON CYLINDER,., ..

SSSSSSSS

G N

""""""""
OOOOOOOOOOOOOOOOOOO

4.21




]
8.407X30

POINT

LOAD ON CYLINDER...
in q
g
Z
[ /
V%
: UL
13 T 1T e i
1T T T T 1

4,22

o1
5.374X19

Vx> N

LR
~3.374X10 o

~2.341X10



4.3 PLANFORM STABILIZER

This is an example of the use of the data generator to idealize
planer structures. A listing of the user supplied data and a structural
plot have been included. Please note that the model has been generated
in the r-z-plane and that it was generated from right to left as seen

in the plot.

4.23




V1VOON3 0e
02 ST+ 6%
ST+ < g6 h1+ ST
h1+ slL* £T+ i1
£T+ g2 /2% £ ge c 3NCD 91
0°g <t st
2T+ £ se* To0* T+ %1
1330 sL° 0T+ £t
0%+ e ‘7 se° (24 43
6+ ['A] 2 0g 1 3NOD 13
oy 8+ 0t
o+ I3 62 L4 6
i+ sl 9+ g
S+ e 4 s¢° S+ 4
S+ og e 0e L 3NOJ 9
0°*s he -]
he 9 sd” 0°6 £+ K
£+ 03 s° °st 2+ £
ct r4 °T se* 0°+9 T+ 4
T+ 0°8t ge e 0t ¥ 3NOD L
230 Yyiva i1 NdN1] ANNOJ O¥VD
2 39vd £L/%0/50

43ZI1118V1S H303INVII

ATINE NI93E S
S3A = HINNG$ L]
£69TLUX3 “9%9T13000 *33ININ = 0110748 £
¥321118v1s HY0 4NV Id = 31148 4
83217118viS *33INON 01 1
330 T031NOI NOI LD J3x3 ANNOJ auvo

T 39vd £4/T70/€0

4.24




PLANFORM STABILIZER

o1
1.790X10

1091

|1
0s X AxX =2.498010
L, 000X10 . 18 9.000X10

4,25




4.4 AXISYMMETRIC SUBMARINE

This example illustrates the data setup required to follow the data
generation run with a pass through the BANDIT program for bandwidth
reduction and then with a frequency response analysis using NASTRAN.
A listing of the user-supplied data, structural plots, and a listing of

the generated data have been included.

4.26




¥

39vd

g£2/722720

(93¢0

(9 3a

]

SS3NMJIHL T
*22) ANT¥VYHNEBNS J TV 13IHHKAS
coo

£69TL1X3 “99933003 ¢3
*ec ) INTAIVHENS QI ¥ LIKHHKHAS

ANINVHE
0930 T0¥31NOID NOILNOIAXS

Ang NI93a
XVYH LNI¥d$
3NON HINNdS
S3A 3IN3NB3S$
°0 = 3114808
I X Vv =3Ull
T = AJN3ND3Y4
00F = QY010
3NON = OHJ3
¥ = 3dS
GN3J
£ 9vIO
6 3NWIL
0¢s 10S
dS10 ddv
GN3$
S3A = HINNG$
oW = 011048
I X ¥ =31I118
S3A = NVILISUNS
NS ¢3IDION aI

INNOJ GAVD

4.27



2

39vd

2iT+
TLT+

29T+
19T+

2st+
16T+

ehl+
T4+

28T+
IE€T+

eCT+
12T+

[A3%4
TTT+

20T+
T0F+

260+
160+

280+
T80+

240+
140+

290+
198+

250+
760+

2h0+
Thie

280+
T£0+

220+
120+

cl0+
Ti0es5°%22

£4/22/20

18

69T

s2°T

FAd

£°F

og*

2n°

s9°

L Y30

99°%1

40°s

Y¥6°¢

8°7

§°2

s$°7

- N o~ oy i N o - N

- o

iy

NN NN o

NN-N - m N NN SN o N

90340

{9340

st

L)

0T

it

97

ST

1

£3

[43

124

2

viva

]

*2e)

10°
’ 2z
9.0°%
T0°
) 0%
84
10°
3 ]
8L°
T0°
1 12
10°
T "
10°
3 £2
sg°
30°
T 91
nTHe
30°
] St
129°
T0°
1 13
soe*
T0°
3 £1
S00°7
10°
3 31
940°1
T0°
% 13
9.0°%
10°
T 9
S0°7
T0°
1 s
%%
T0°
1 £
w.
T0°
)’ ]
L2
T0° Te
! 3
10dNTI

INT VY HRENS

TiTe 0s
3NOD 6%
c9T+ 84
19T+ i
3N0D 94
25T+ S
15T+ LA
3N0D £4
chTe Al
13223 T
3NCJ 0%
2ET+ 6¢
€T+ 8¢
3NOD ig
22T+ 9g
12T+ 13
3N09D g
4523 ££
12313 2f
3NOJ 133
20%+ 0g
10T+ 62
3N0J 82
260+ L2
760+ 92
3NO) [T
280+ "e
T80+ £2
3NO0D 22
ci0+ 12
140+ g2
3NOJ 61
290+ ST
190+ LT
3NOJ 9t
2s0+ 33
150+ LA
3NQD £1
2o+ a4
Tho+ 1T
3aNOD 1R
2£0+ 6

1£0+ [}

3N0J 3

220+ 9

120+ s

3N0D 4

210+ €

110+ 2

3N0D b g

MNNOJ Quvd

DI X L1L3IMHHASIXY

4.28




ViVOON3 e

LON3 8°3 0°000T oO°% g0 0Tl (']

0Tl ['31 1a37evL 64

[} T (1124 2av0oy ‘73

0020072 0020002 002206T 002T06T 942 L4 13ds y¥1

0020067 0020047 0020097 002T0%T 00200%T 0020027 9%2 k4 10dS 9L

00200TT 0020007 002006 00208 002008 002302 9%2 L3 13dS Sl
002004 002509 002909 002£09 002209 002309 942 ¥ 13dS L 73 %
002009 002£05 002205 002705 002005 002TO0% 9492 T 1948 £4 .
gococ» 002208 002T0£ 002008 0082002 002003 942 ) 3 10dS 2l <

COTT8L 9%e 1 3 194dS T

0070072 00T0002 00T206T 9% 1 13dS 02

00TT06T 0O0T006T OOTYODLT 00T009T 0OTTO0%F 00T00%T 942 T T3dS 69

0030027 0O0¥00TT O0O0TO00O0T 00T006 0OTTF08 00008 942 3 13dS 89

00708, 00TS89 00T%09 OO0TE09 O80T289 O8TT09 942 ) 4 13dS 49

007809 Q0TLES 001265 OOTTOS OO0TO0S OBOTTEN 942 ) J 104S 99

08T00% O0O8T285 O00ITOE O00T00L 00T882 00TOBT 942 ) 4 13dS 99

) L 1d0K0330 Wyavd %9

0°t [ 43°¢ T [F8 1] £9

9 0°05 g°0 goot 10334 29

£LLEEL ¢ 002002T ¥ v3dvag 19

£LEEEL” £ TO0T002T ££2888° ¢ 0030027 3 ¥3yvao 09

. aN3$ 6s

) g2 23 t44 9 i no3az 8s

L 4 LAt A F{:323 is

261+ 10° T6T+ 9s

161+ ye° 4 T4 ) J 6% 3aN0J 13

£ 9s* 28T+ L 1]

28T+ ) 10° 18T+ £

14 227 §6°2 2 6T L 4 8T 3NO0D 2s

¥ s9° 24T+ 13

X903a vyivao 1 0dN1 ANNOJ -0AYD

£ 39vd £L/22v20 t93a s *22) AINTEVHEBAS T 313HHWHASIXY




AXISYMMETRIC SUBMARINE (22.95 DEG)

o1
.008X10 o0
1,000X10

P>

} i 1
—x ¢ 1

&3—dA—}F

X 01
1.975%10

4.30

[}
Y OAXIS $.669X10




AXISYMMETRIC SUBMARI

NE (22.5 DEG)

01
1.043X10

o1 X AX1S
975X10

4.31

V> N

ao
~9.313X10 0
0.000X10




AXISYMMETRIC SUBMARINE ((22.5 O0DEG)

0
1.078X10

W >

-0z
4.019X10_ Y AXIS
o 201X30 O 3.090%10

4.32




ID MCKEE, SUBMARINE
$ NASTRAN = YES

s TITLEz= AX ISYMMETRIC

] PLOTID = MCKEE, CODE1844, EXT71433

] PUNCH = YES
$END

APP DISP

SOL 840

TIME 9

DIAG 13

CEND

SPC = 1

ECHO = NONE
DLOAD = 100
FREQUE'NCY = 1000

TITLE= AXISYMMETRTIC

SUBTITLE = 0.1 THICK
$SEQUENCE YES
$PUNCH NONE

NESS

$SPRINT MAX

BEGIN BULK

DAREA 1 1200100
DAREA 1 1206200
FREQ1 1000 0.0
MATL R 3.E7
PARAM  DECOMOPT .
SPC1 1 246
SPCL 1 246
SPCt 1 246
SPC1 1 246
SPC1 1 246
SPC1 1 246
SPC1 1 246
sPC1 1 246
SPC1 1 246
SPC1 1 246
SPC1 1 246
SPC1 1 246
SPC1 1 246
RLOAD2 100 1
TABLEDL 10

+T10 0.0 1.

CQUAD2 100100
CQuaD2 100101
cQuapz 200100
cQuaD2 200101
CQuAD2 300100
CQuAaD2 301100
CQuap2 302100
CQuAD2 300101
cQuaDp2 301101
CQUAD2 302101
CQuUAD2 400100
cauaD2 401100
cQuap2 400101
CQuUAD2 401101
cQuap2 500100
CQUAD2 501100
cQuap2 502100
cquap2 503100
CQUAD2 500101
cQuaDp2 501101

Amcsiannn m—Aamans

Y o N Y YTy T W v i var o

3
3
50.0

100100
401100
601100
800100
- 1600100
1902100
701100
100200
401200
601200
701200
1200200
1901200

1000.0
100100
100101
200100
200101
300100
301100
302100
300101
301104
302101
400100
401100
400101
401101
500100
501100
502100
503100
500101
501101

ama na

SUBMARINE

SUBMARINE (2

+ 333333
333333
6
o3

200100
500100
602100
801100
1401100
2000100

200200
500200
602200
800200
1400200
1902200

1.0
100101
100200
200101
200200
300101
301101
302101
300200
301200
302200
400101
401101
400200
401200
500101
501101
502101
503101
500200
501200

ransna

4.33

1200101

1.0

300100
501100
603100
9001400
1600100
2100100

300200
501200
603200
801200
1401200
2000200
10

ENDT
200101
200200
300101
300200
301101
302101
600101
301200
302200
400200
401101
500101
401200
500200
501101
502101
503101
600101
501200
502200

~ASAAn

- 301100
502100
604100

1000100

1700100

301200
502200
604200
900200
1600200
2100200

200100
200101
300100
300101
301100
302100
400100
301101
302101
400101
401100
500100
401101
500101
501100
502100
503100
600100
501101
502101

—Awasns

t22.

2«5

« 333333

302100
503100
605100
1100100
1900100

302200
‘503200
605200
1000200
1700200

(E-A-N-N-N-X -N-X-N-N-N-N-N-N-N-N_N-N-¥._ ¥
® 06 0 0 06 06 6-8 06 0 06 0 0 06 0 0 06 0 0
EE-N-X-N-X- X -N-X - N-¥-N-¥_¥ ¥-¥-N- N N ¥_¥-I

5 DE

DEG)

400100
600100
700100
1200100
1901100

400200
600200
700200
1100200
1900200

G )

+T10




|

GQuauz BUZIUY I Yyuziux
CQuUAD2 503101 1 S03101
CQUAD2 600100 1 600100
CQUAD2 601100 1 601100
CQUAD2 602100 1 602100
CQUAD2 603100 1 603100
CQUAD2 604100 1 604100
CQUAD2 605100 1 60%100
CQUADZ 600101 1 600101
CQUAD2 601101 1 601101
CQUAD2 602101 1 602101
CQuap2 603101 1 683101
CQuaD2 604101 1 604101
CQUAD2 605101 1 605101
CQUAD2 700100 1 700100
CQUAD2 701100 1 701100
CQUAD2 700101 1 700104
CQUAD2 701101 1 7011014
CQuAD2 800100 1 800100
CQUAD2 601100 1 801100
CQuAD2 800101 1 ©soQ0101
CQUAD2 801101 1 301101
CQUAD2 900100 1 900100
CQUAD2 900101 1 900101
CQUAD2 1000100 1 1000100
CQUAD2 1000101 1 1000101
CQuAD2 1100100 1 1100100
CQUAD2 1100101 1 1te8101
cQuAaD2: 1300100 1 100100
CQUAD?2 130010t 1 100101
CQUAD2 1400100 1 1400100
CQUAD2 1401100 1 1401100
CQUAD2 - 1400101 1 14001018
CQUAD2 1401101 1 1401101
CQuUAD2 1500100 1 500100
CQUAD2 1500101 1 500101
CQUAD2 1600100 1 1600100
CQuAODZ 1600101 1 1600101
CQUAD2 1700100 1 1700100
cQuapz 1700101 1 1700104
CQUAD2 1800100 1 700100
CQUAD2 1800101 1 700101
CQUAD2 1900100 1 1900108
CQUAD2 1901100 1 1901100
CQUAD2 1902100 1 1902100
CQUAD2Z 1900101 1 1900101
CQuAD2 1901101 1 1901104
CQuAD2 1902101 1 1902101
CQuAb?2 2000100 1 2000100
CQUAD2 2000101 1 2000101
CORD2C i 0.0
+CORD2C1 0.0 0.0 1.0
s SECTION BOUNDED BY ZRLS 1
GRID 100100 1 «100
6RID 200100 1 270
GRID 100101 1 «100
GRID 200101 1 «270
GRID 100200 1 «100
G6RID 200200 1 «270
$ SECTION BOUNDED BY ZRLS 2
GRID 300100 1 «600
GRID 300101 1 «600
GRID 300200 1 +600
$ SECTION BOUNDED BY ZRLS 3
GRID 301100 1 «713
6RID 302100 b » 827

s mnsran

a

WA

s0ecuu
5032040
600101
601101
602101
603101
604101
609101
600200
601200
602200
603200
604200
603200
700101
701101
700200
701200
800101
801101
800200
801200
900101
900200
1000101
1000200
1100101
1100200
100101
100200
14001014
1401101
1400200
1401200
500101
500200
1600101
1600200
1700104
1700200
700101
700200
1900101
1901101
1902101
1900200
1901200
1902200
2000101
2000200
0.0

2UI200U
600200
601101
602101
603101
604101
605101
700101
601200
602200
603200
604200
605200
700200
701101
800101
701200
800200
801101
900101
801200
900200
1000101
1000200
1100101
1100200
1200101
1200200
16400101
1400200
1401104
300104
1401200
300200
1600101
1600200
1700101
1700200
600101
600200
1900101
1900200
1901101
1902101
2000401
1901200
1902200
2000200
2100101
2100200
0.0

2 AND ARLS

0.000
0.000
11.250
117250
22.500
22,500

0.000
0.000
0.000
0.000
0.000
0.000

3 AND ARLS

0,000
11.250
22.500

1.500
1.500
1.500

5 AND ARLS

0.000
0:000

- eame

2.333
3.167

T aaa

4.34

Jus1ul
600101
601100
602100
603100
604100
605100
700100
601101
602101
603101
604101
605101
700101
701100
800100
701101
800101
801100
900100
801104
900101
1000100
1000101
1100100
1100101
1200100
1200104
1600100
1400101
1401100
300100
1401101
300101
1600100
1600101
1700100
1700101
600100
600101
1900100
1900101
1901100
1902100
2000100
1904101
1902101
2000101
2100100
2100101
1.0

1

AR R e e e e e

—N-N-N-R-N-3-N-N- N N-N-N_N-N_N]
e & 8 &6 0 0 0 & & 0 6 8 0 0 0
CN-X-N-N-N-B-K-N-N-N-N-N_ NN ¥

0O 0000000000000 00000000000000000G0

oo

0.0+CORD2C1




LY X Y

2 smmana

LK1V VU100 1
GRID 301101 1
GRID 302101 1
GRID 400101 1
GRID 301200 1
GRID 302200 1
GRID 400200 1
$ SECTION BOUNDED BY ZRLS
GRID 401100 1
GRID 500100 1
GRID 401101 1
GRID 500101 1
GRID 401200 1
GRID 500200 1
$ SECTION BOUNDED BY ZRLS
GRID 501100 1
GRID 502100 1
6RID 503100 1
GRID 600100 1
GRID 501101 1
GRID 502101 1
GRID 503101 1
GRID 600101 1
GRID 501200 1
GRID 502200 1
GRID 503200 1
GRID 600200 1
$ SECTION BOUNDED BY ZRLS
GRID 601100 1
GRID 602100 1
GRID 603100 1
GRID 606100 1
GRID 605100 1
GRID 700100 1
GRID 601101 1
GRID 602101 1
GRID 603101 1
GRID 604101 1
GRID 605101 1
GRID 700101 1
GRID 601200 1
GRID 602200 1
GRID 603200 1
GRID 604200 1
GRID 605200 1
GRID 700200 1
$ SECTION BOUNDED BY ZRLS
GRID 701100 1
6RID 800100 1
GRID 701101 1
_GRID 800101 1
GRID 701200 1
6RID 800200 1
$ SECTION BOUNDED BY ZRLS
GRID 801100 1
GRID 900100 1
GRID 801101 1
GRID 900104 1
GRID 801200 1
GRID 900200 1
$ SECTION BOUNDED BY ZRLS
GRID 1000100 1
GRID 1000101 1
GRID 1000200 1
$ SECTION BOUNDED BY ZRLS
GRID 1100100 1

¢ IR0 TeUUVYU
J713 11.250
«827 11.250
{940 11.250
o713  22.500
$827 224500
<940 22.500
5 6 AND
«995 0,000
1:050 0.000
«995 11,250
1,050 11.250
«995 22,500
1:050 22.500
.6 11 AND
1.056 04000
1.063 0,000
15069 0.000
1.076 0.000
1.056 11.250
1.063 11.250
1.069 11,250
1.076 11.250
1,056 22,500
1,063 22.500
1.069 22.500
1.076 22.500
11 12 AND
1.076 0.000
1.076 04000
1.076 0.000
1.076 0:000
1.076 0,000
1.076 0.000
1.076 11.250
1,076 114250
1.076 11.250
1,076 11.250
1.076 11250
1.076 11250
1.076 22.500
1.076 224500
1.076 22.500
1.076 22.500
1.076 22,500
1.076 22.500
12 13 AND
1.061 0.000
1.005 0.000
1,041 114250
1.005 114250
1.041 22.500
1.005 224500
13 14 AND
2905 0.000
«805 0:000
905 11,250
4805 11,250
«905 22.500
+805 22:500
14 15 AND
«627 0,000
<627 11J2590
4627 22.500
15 16 AND
+4ilk 045000

o« a2 a2 inma

4.35

YUV
2.333
3.167
4.000
2.333
3.167
4.000
ARLS
4.900
5.800
4,900
5.800
4.900
5.600
ARLS
6.785
7.770
8.755
9,740
64785
7.770
8.755
9.740
6.785
7.770
8.755
9.740
ARLS
10.585
11.430
12.275
13.120
13.965
14,810
10.585
11.430
12.275
13.120
13.965
14.810
10.585
11.430
12.275
13.120
13.965
14. 810
ARLS
15.640
16470
15.640
16.470
15.640
16.470
ARLS
17.325
18.180
17.325
18.180
17.325
18.180
ARLS
19.030
19.030
19.030
ARLS
19.450

am o en

SR b AR b b MR b b A A b b b b b b b e b b b b b b e b b b pA e b bR B b A i D D b b b b b b b b b b b b




LK1V 11uUvlul
GRID 1100200

$ SECTION BOUNDED
GRID 1200100
GRID 1200101
GRID 1200200

$ SECTION BOUNDED
GRID 1400100
GRID 1400101
GRID 1400200

$ SE'CTION BOUNDED
GRID 1401100
GRID 1401101
GRID 1401200

3 SECTION BOUNDED
GRID 1600100
GRID 1600101
GRID 1600200

s SECTION BOUNDED
GRID 1700100
GRID 1700101
GRID 1700200

$ SE'CTION BOUNDED
s SECTION BOUNDED
GRID 1900100
GRID 1900101
GRID 1900200

s SECTION BOUNDED
GRID 1901100
GRID 1902100
GRID 2000100
GRID 1901101
GRID 1902101
GRID 2000101
GRID 1901200
GRID 1902200
GRID 2000200

L SECTION BOUNDED
GRID 2100100
GRID 2100101
GRID 2100200
PQUAD2 1
ENDDATA

BY

BY

BY

BY

BY

BY
8Y

BY

BY

eMl&
olplly
16
«050
«050
«050
23
« 200
«200
200
'
<400
« 400
<400
21
«780
«780
« 780
8
«780
+780
«780
10
22
«650
« 650
«650
18
«627
«603
«580
«627
«603
«580
«627

.9%3
« 580
19
«214
«214

o214

« 01000

4.36

11¢%U  1Ye 4>V
22.500 19.450
17 AND ARLS
0.000 19.750
11,250 19.750
22.500 19.7590
& AND ARLS
0.000 1.300
11.250 1.300
22.500 1.300
3 AND ARLS
0.000 1.400
11.250 1.400
22.500 1.400
8 AND ARLS
0.000 7.000
11.250 7.000
22.500 7.000
10 AND ARLS
0.000 8.250
11.250 8.250
22,500 8.250
11 AND ARLS
18 AND ARLS
0.000 15.620
11.250 15.620
22.500 15.620
19 AND ARLS
0.000 16.470
0.000 17.320
0.000 18.170
11.250 16.470
11.250 17.320
11.250 18.170
22.500 16.470
22.500 17.320
22.500 18.170
20 AND ARLS
0.000 18.410
11.250 18.410
22,500 18,410
0.00000

[ | o )
ooc oc

Ll I N T
000 o000 ooo

IS S b b A b R e e s
coocooo0O0O ocoo

[WT TN
[~ N~ N~



4.5 TEST MISSILE

This data generator application illustrates the techniques required
to model a closed 360-degree structure. The fins of this structure are
examples of non-symmetric components which can be generated using
the CONE module. Note that the user was required to break the
circular equivalence specifications generated by the CONEND modules
by setting the flag on bulk data card 12. Note also that an unacceptable
quadrilateral element (a triangle) was generated at the root of each fin
on the leading edge. Only the triangular elements need to be manually
replaced since duplicate gridpoints were avoided by using IEQU

specifications. A listing of the data deck and two plots have been included.

4.37



¥

39vd

£4/740/80

An8 NI93e

3NISSIW 1S31 = 3U1L
ON30

dSIO ddv

0T 3WIL

g¢e oS

UN3$

"NIJ HOV3 40 100¥ 3H1 1v 3TONVINL V A8 Q39V1d3¥ 38 iSnW OVAD 3NO $

22330

S3A = HINNd$

£69TL1X3 *49%8T30D00 33498 = QI107d$

S3A = NVALSUNS

37ISSIN 1§83 1 = 3I1lg
3VISSIK*3INION 01

TO¥LILNOI NOI L1LNDI3IX3ZI

Y AMIINOMDOO

4ANN00 Quvo

4.38



2

39vd

2061+
106T+

T08T+40°027
04T+

2097
T09T+

T0sT+0°027
To0nT+

20ET+
T0£T+

102T+0°027T
TOTT+

00T+
T007+

1060+40°027
T080+

2020+
7020+

109040°02°7
7050+

2040+
1040+

c0g0+
T0£0+°02T

c020+
70204027

2070+
T0T0+°02T

£4/710720

09

0°2%

0°*e

b 4

(L]

§-3°%

09

-l o

-l

-l L] M - ”m N0

-l MmN - M O N0

Mmoo MW

Lol

“winhmaun N

XJ33¢

0s
173
17

0L
09

69

09
0s

gs

£s
0%

0%

(13
13
0g

ot

ae

02

02

(1
0%

vVivg

Yo
sg£0°

s£0°

sg0*
£0°

£0°

£0°
£0°
£0°

£0°
q20°

se0°

-t
s20°
s20°

s20°

e0°

20
eo*

ee*
ey°
T
431
9

2

1 DdNI

sL°t
0%
09

09
0°y

[(°]
0s

0s
0°t

0s
(]

G4
G°7

0%
('}

(3%
G°F

(i}
02

02
0°%

0e

(R4

01

19°
(1A 4

on
'3

2061+
1067+
3N0D
3087+
3NOD
T0L%+
3NOD
2097+
1097+
3N0D
10sT+
3aNO0J
09T+
3NDD
20ET+
T0ET+
3NO2
102T+
3NOJ
T0TT+
3NOJ
c00T+
7007+
3NOD
1060+
3NCO
1080+
3NOJ
260+
7040+
3NGO
1090+
3NOD
T0S0+
3NOD
2040+
10490+
3NCQD
c0g0+
T0£0+
GN3NOJ
2020+
1020+
GN3NOD
2070+
T0T0+
GN3NOJ
TLUNW
no31
nou31

HANMISINONOO

ANNOJ QAVY

3711IS SINH

1§31

4.39




39vd

20%2+
042+

c0gee
1082+

2022+
1022+

2072+
1072+

2002+
1002+

£2/L0/50

0°2

0°2

0°e

MeADIN ORI MMIOMm N M

3340

09

g9

09

0s

0s

vivao

40°
9

%0
4

%0°
e

ho°
9

ho*
Y

1 n0dN1I

02

0s
0°2

0s
0°2

0s
st

on
Si*Y

0%

ViVOGN3 99
20n2+ s9
Tone+ L]

3NOD £9
2082+ 29
102+ 19
3NOD 09
c0ce+ bs
T0c2+ 8s
3NOD 45
2012+ 9s
T0T2+ 39
3N0JD ts
2002+ £g
1002+ 2s
3NO3 TS
UNRCD QaVD

37T ISSIMN

1s 31

4, 40



MISSILE

TEST

PLOT

PERSPECTIVE

4. 41



TEST

01
“1.199X10 4

0.000X10

Lol -

MISSILE

Y AXIS

—

1
S——
S S——

4. 42

HCREE

93/97/73

+  t1.200X10



ACKNOWLEDGMENTS

The authors wish to thank the many people who have contributed to
the development of this program through their comments and suggestions.
In particular, we wish to thank Dr. E.H. Cuthill for many stimulating
conversations and her cheerful encouragement throughout the project.

We wish to express our appreciation for the use of subroutines developed
by Dr. Gordon C. Everstine (GOOGAN), Mrs. Barbara Kelly (NASPLT),
and for consultation and programming assistance from Mr. Richard
Kazden (SETUP) and Mr. Michael Golden. We are also indebted to the
developers of the NASTRAN program for many of the data handling

techniques and user-oriented data formats used in this program.




Copies
2

INITIAL DISTRIBUTION

DIA, Washington, D.C.
1 K. Goering
1 R. Wood

U.S. Army Elec Command
1 A.L. Sigismondi

U.S. Army Mobility Equip R&D
1 J. Marburger

U.S. Army Harry Diamond Labs

1 G.J. Hutchins

1 P.J. Emmerman
1 R. Hamilton

1 C. Anstine, Jr.

U.S. Army Frankford Arsenal
1 D.L. Frederick

1 P.F. Gordon

1 S.H. Eisman

U.S. Army Picatinny Arsenal
1 W. Bolte
1 B. Nagel

U.S. Army Watervliet Arsenal
1 P.C.T. Chen
1 G.P. O'Hara

CNO (OP-98)

CHONR

1 N. Basdekas

1 N. Perrone

1 S. Brodsky

1 R.J. Lundegard

ONR, Chicvago
1 R.N. Buchal

NRL
1 R. Perlut
1 Lib

CHNAVMAT
1 S. Atchison

DNL

Copies

3

I N e T

USNA
1 Dept of Math
1 Aerospace Dept
1 Tech Lib

NAVPGSCOL
NROTC
NAVWARCOL

NAVSHIPSYSCOM
1 Dr. J.H. Huth
1 R.R. Kolesar
1 Tech Lib

NAVAIRSYSCOM
1 G.P. Maggos
1 Tech Lib

NAVFACENGCOM
1 M. Yachnis
1 H.D. Nickerson
1 M.B. Hermann
1 Tech Lib

NAVORDSYSCOM
1 O. Seidman
1 L. Pasiuk
1 Lib

NAVOCEANO
Tech Lib

NAVTRAEQUIPCEN
Tech Lib

NAVAIRDEVCEN
1 A. Somoroff
1 S.L. Huang
1 Lib

NELC
1 E. Nissan
1 Tech Lib



Copies
5

NUC San Diego
1 J.T. Hung
1 L. McCleary
1 D. Barach
1 G. Benthien
1 Lib

NUC Pasadena

1 C.F. Falkenback
1 P.D. Burke

1 Lib

NUC Hawaii
1 A.T. Strickland
1 Lib

NwWC
1 J. Serpanos
1 D.E. Zilmer
1 W.J. Stronge
1 Tech Lib

NCEL
1 J. Crawford
1 Lib

NSSNF
Tech Lib

NOL
1 R.J. Edwards
1 P.C. Huang
1 Tech Lib

NWL
1 C.M. Blackmon
1 J. Schwartz
1 P. Johnson
1 Tech Lib

NUSC NPT

NUSC NLON
1 A. Carlson
1 R. Manstan
1 J.W. Frye
1 R. Dunham

NAVSHIPYD BREM

Copies

DS b=t ek

DD b ek S

b ik fed ek ek

NAVSHIPYD BSN

NAVSHIPYD CHASN
1 J.B. Kruse

NAVSHIPYD MARE ISLAND
1 D. Mitchell
1 R. Munden

NAVSHIPYD NORVA
NAVSHIPYD PEARL
NAVSHIPYD PHILA

NAVSHIPYD PTSMH
1 E.A. Fernald

NAVSEC

N. Griest
R.P. Lavoie
G.J. Snyder
T.N. Hull
R.J. Keltie
Tech Lib

NAVWPNSENGSUPPACT
NAVSPASYSACT
NAVAERORECOVFAC

NAVAVIONICFAC, Indianapolis
1 S. Stephen

PACMISTRAN
NAVAIRTESTCEN
NAVAIRTESTFAC

NAVAIRENGCEN
1 T. Mazella
1 Tech Lib

NAVAIRPROPTESTCEN
NAVWPNEVALFAC
NAVEODFAC
NAVORDTESTU
NAVORDMISTESTFAC

P b ek b ek ek



Copies

12

NAVMISCEN

U.S. Air Force Flight
Dynamics Lab

1 J. Johnson

1 R. Taylor

1 F. Janik

1 Lib

U.S. Air Force Flight
Propulsion Lab
1 LT James MacBain

DDC

COGARD
1 W.A. Cleary
1 R. Johnson
1 LCDR V.F. Kieth
1 LTjg M.C. Grosteck
1 LT J.C. Card

NASA HQS
1 D. Michel

NASA Ames
1 P. Polentz

NASA Flight Res Cen
1 A. Carter

NASA Goddard
1 T. Butler
1 W. Case
1 J. Mason

NASA Kennedy
1 H. Harris

NASA Langley
1 R. Butler
1 R. Fulton
1 J.P. Raney

NASA Lewis
Lib

NASA Manned Spacecraft Ctr
1 W. Renegar

Copies

NASA Marshall
1 R. McComas

Calif Inst of Technology
Jet Propulsion Lab
1 Dr. Roy Levy

Johns Hopkins Univ, APL
1 W. Caywood
1 G. Dailey
1 R.M. Rivello
1 J.S. O'Connor

Penn State, ORL
1 J.C. Conway
1 Lib

Univ of Virginia, Civil
Engineering Dept
1 Dr. Richard Eppink

Mrs. Anne Woehr

Advanced Structural Analysis
(C-6), Bell Aerospace Co,
P.0O. Box 1

Buffalo, New York 14240

Mr. R.B. Smith, Manager
Engineering Design Prog.

Bettis Atomic Power Lab.

Box 79

West Mifflin, Pa.

Dr. R.H. MacNeal
MacNeal-Schwendler Corp.
7442 N. Figueroa Street
Los Angeles, Calif 90041

Mr. Jack Conaway

Sikorsky Aircraft
Structures & Materials R&D
North Main Street
Stratford, Conn.

15122

06497



Copies

1

e i T T S e N e o S O O T T o S Ty o Gy G g g S SOy

CENTER DISTRIBUTION

Code

01
11 (W. M. Ellsworth)

15 (Dr. W.E. Cummins)

16 (Dr. H.R. Chaplin)
17 (Dr. W.W. Murray)
172

1721

1725

1727

173

1731

1735

174

1745

177 (UERD PTSMH)
177B (UERD PTSMH)
1775 (UERD PTSMH)
18 (G. Gleissner)
1805

1808,/1809

183

184

1842

#U.S, GOVERNMENT PRINTING OFFICE: 1973  542-168/169 1-3

Copies

1

e i e e T e T S SO O o S N S G S Gy S S Sy O Y

Code

1853

1854

186

188

19 (P.S. Dell Aria)
194

196

1962

27 (H.V. Nutt)
271

272

2723 (Coblenz, Rajan)
273

2731

274

2741

2742

275

276

28

287

94 (J.L. Decker)
9424 (M. E. Lunchick)



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classitied)

1. ORIGINATING ACTIVITY (Corpora{e aurhor) 2a. REPORT SECURITY CLASSIFICATION
Naval Ship Research and Development Center UNCLASSIFIED
Bethesda, Maryland 20034 2. crouP

3. REPORT TITLE

A General Purpose Data Generator for Finite Element Analysis

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final

S. AUTHORIS) (First name, middle initial, last name)

James M. McKee
Evangeline T. Marcus

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1973 191 3
8a. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBE R{S)
b, PROJECT NO. 4066
SR 535 32 106, Task 15326
c. WOI‘k Ul’lit 1_1844 916 9b. 'ohTHER ROEPORT NO(S) (Any other numbers that may be assigned
- is repor
d.

10. DISTRIBUTION STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

NAVSHIPS (0311)

13. ABSTRACT

A computer program system has been developed to automate
the preparation of a finite element model to be analyzed using the
NASTRAN general purpose structural analysis program. Using
engineering conventions and modular "building block™ specifications,
the program minimizes both the manual effort and the probability of
an undetected error in the preparation of NA:'TRAN data.

This document is intended to be both a guide for the user of the
program and a programmer's reference for the modification and
further development of the program.

[o]
DD o¥..1473 (PaceE 1) UNCLASSIFIED

S/N 0101.807.6801 Security Classification




UNCLASSIFIED
Security Classification
KEY woRes ROLE wT ROLE WT ROLE wT
Finite Element Analysis
Data Generation
NASTRAN
Structural Analysis - Computer Methods
Finite Element Idealization
DD %%..1473 (sacx) UNCLASSIFIED

(PAGE: 2)

Security Classification




