
GVTDOC
D 211.
9:
46 NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20034

A GENERAL PURPOSE DATA GENERATOR

FOR FINITE ELEMENT ANALYSIS

James M. McKee

Evangeline T. Marcus

O Approved for public release; distribution unlimited.

S9s0027 Q1I QQ'

COMPUTATION AND MATHEMATICS DEPARTMENT

0 RESEARCH AND DEVELOPMENT REPORT
Pq

: April 1973 Report 4066

0

The Naval Ship Research and Development Center is a U. S. Navy center for laboratoryeffort directed at achieving improved sea and air vehicles. It was formed in March 1967 bymerging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center

Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC

COMMANDER

'*REPORT ORIGINATOR TECHNICAL DIRECTOR

OFFICER-IN.CHARGE OFFICER-IN-CHARGE
CARDEROCK 05ANNAPOLIS

0

05 04

SYSTEMS
DEVELOPMENT
DEPARTMENT 11

SHIP PERFORMANCE j AVIATION AND
D SURFACE EFFECTS

N 15 DEPARTMENT
____________________16

STRUCTURES COMPUTATION * 1
DEPARTMENT AND MATHEMATICS

17 DEPARTMENT 18

SHIP ACOUSTICS PROPULSION AND
DEPARTMENT AUXILIARY SYSTEMS

19 DEPARTMENT

MATERIALS CENTRAL(RDEPARMENTINSTRUMENTATION
DEARMET 28 DEPARTMENT 2

NDW-NSRDC 3960/ 43b (Rev. 3-72)

DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
Bethesda, Maryland 20034

A GENERAL PURPOSE DATA GENERATOR

FOR FINITE ELEMENT ANALYSIS

by

James M. McKee

Evangeline T. Marcus

Approved for public release; distribution unlimited.

April 1973 Report 4066

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ADMINISTRATIVE INFORMATION 1

INTRODUCTION ... 2

1. PROGRAM USER'S GUIDE 1.1

1. 1 Methods of Structural Modeling 1. 1

1. 1. 1 Introduction 1 .1

1. 1.2 Reference Lines 1.2

1. 1. 3 Structural Modules 1.2

1. 1. 4 Modeling Procedures 1. 4

1. 1. 5 Special Topologies and Data Equivalencing 1.7

1.2 Program Setup .. 1.9

1.2.1 Card Deck Format 1.9

1. 2.2 Execution Control Cards 1.10

1.3 Generating Data 1.21

1. 3. 1 Data Organization and Identification 1.21

1. 3.2 Module Descriptions 1.23

1. 3.3 Graphical Output 1.33

1.4 Structural Data Specifications 1.33

1. 4. 1 Bulk Data Card Format 1.33

1.4.2 Order of Bulk Data Cards 1.34

1.4.3 Data Card Descriptions 1.34

2. PROGRAMMER'S INFORMATION 2.1

2. 1 Program Organization 2.1

2. 1. 1 General Structure 2.1

2.1.2 Program Conventions 2.2

2.1.3 Global Common Storage Areas 2.5

2.1.4 Program Overlay Structure 2.9

2.1.5 Program Execution 2.12

2.1.6 Execution Monitor Program - DATGEN 2.13

ii

Page

2.2 Data Storage .. 2.16

2.2.1 Storage Policy 2.16

2.2.2 KEY-CHAIN Data Storage Method 2.16

2.2.3 KEY-CHAIN Utility Program Specifications 2.18

2.2.4 POOLED Data Storage Method 2.27

2.2.5 POOLED Utility Program Specifications 2.27

2.2.6 File Management 2.40

2.3 First Pass and Interlude Processing Programs 2.40

2.3. 1 Subroutine SETUP (Initialization and Execution
Control Card Processing) 2.40

2.3.2 Subroutine INSORT (Bulk Data Card Interpreter) 2.43

2.3.3 Subroutine XTRACT (Global Data Processing) 2.45

2.4 Second Pass Processing Programs 2.49

2. 4. 1 Subroutine CUTUP (Process Shell Data) 2.49

2. 4.2 Subroutine READS (Read Shell Data Card) 2.51

2.4.3 Subroutine TERP (Linear Interpolation Routine) 2.53

2.4.4 Subroutine CONE (CONE Module Processing) 2.54

2.4.5 Subroutine QUADS (Frustum of Cone Generation-
Varying M esh) 2.56

2.4.6 Subroutine PROPER (Element Property
Generation-Quadrilateral Elements) 2.63

2.4.7 Subroutine CONEND (CONEND and CONENDR
Modules-Geometry Processing) 2.64

2.4.8 Subroutine TRI (CONEND and CONENDR Modules-
Mesh Generation) 2.66

2.4.9 Subroutine CEPROP (Element Property
Generation-Triangular Elements) 2.69

2.4. 10 Subroutine REF (Identification Number
Generation) 2.70

2. 5 NASPL - Graphical Output Processing 2.72

2.6 Utility Program s 2.73

2.6. 1 Subroutine ABORT (Data Storage Dump Routine) 2.74

2.6.2 Subroutine ASSMBL (File Merging Routine) 2.75

iii

Page

2.6.3 Subroutine ERRMSG (Error Message Printer) 2.76

2. 6. 4 Subroutine GOOGAN (NASTRAN Format
Translator) 2.78

2. 6. 5 Subroutine PRINT (Heading and Page Control
Routine) 2.79

2.6.6 Subroutine SWITCH (Character Manipulation
Routine) 2.81

3. PROGRAM MESSAGES 3.1

4. SAMPLE PROBLEMS 4.1

4. 1 Demonstration Cone 4.1

4.2 Point Load on Cylinder 4.16

4.3 Planform Stabilizer 4.23

4. 4 Axisymmetric Submarine 4.26

4. 5 Test M issile ... 4.37

ACKNOWLEDGMENTS 5

iv

LIST OF FIGURES

Page

Figure 1. 1 Longitudinal Reference Line Definition 1. 6

Figure 1. 2 Azimuthal Reference Line Definition 1.8

Figure 1. 3 Example of Execution Control Deck for
Stand-Alone Data Generator Operation 1. 11

Figure 1. 4 Example of Execution Control Deck for Data
Generation/NASTRAN Operation 1.12

Figure 1.5 CONE Module 1.24
Figure 1. 6 Grid Point and Element Numbering Scheme

Generated by the CONE Module 1.27

Figure 1.7 CONEND Module 1.28

Figure 1. 8 CONENDR Module 1.28

Figure 1.9 Grid Point and Element Numbering Generated
by the CONEND Module 1.31

Figure 1. 10 Grid Point and Element Numbering Generated
by the CONENDR Module 1.32

Figure 1.11 Geometry of the CONE Module 1.37

Figure 1. 12 Geometry of the CONEND Module 1.41

Figure 1.13 Geometry of the CONENDR Module 1.44

Figure 2.1 Driver Link Overlay Control Cards 2.9

Figure 2.2 Data Generation Link Overlay Control Cards 2.10

Figure 2.3 Structure Plotting Link Overlay Control Cards 2.11

Figure 2.4 Boundary Data Storage Associated with the
Intersection of Two Reference Lines 2.18

Figure 2. 5 KEY-CHAIN Data Storage Organization 2.19

Figure 2.6 Order of Cards in Execution Control Deck 2.42

Figure 2.7 Cone Module with Varying Mesh along the First
Azimuthal Reference Line (ARLI) 2.58

Figure 2. 8 Cone Module with Varying Mesh along the Second
Azimuthal Reference Line (ARL2) 2.58

Figure 2. 9 Cone Module with Varying Mesh along All
Four Boundaries 2.59

Figure 4. 1 Demonstration Cone 4.2

v

LIST OF TABLES

Page

Table 1. 1 Correspondence between Reference Line
Numbers and the Seventh (Leftmost) Digit
of Grid Point Identification Numbers 1.22

Table 1. 2 Summary of Bulk Data Cards 1.35

Table 2. 1 Primary Processing Subroutines 2.2

Table 2.2 OPTION Common Areas 2.6

Table 2. 3 OPTION Common Changes Produced by the
SETOPT Card 2.8

Table 2.4 System Control Cards for Program Execution 2.12

Table 2.5 Data Generator External Files 2.12

vi

ABSTRACT

A computer program system has been

developed to automate the preparation of a

finite element model to be analyzed using the

NASTRAN general purpose structural analysis

program. Using engineering conventions and

modular "building block" specifications, the

program minimizes both the manual effort

and the probability of an undetected error in

the preparation of NASTRAN data.

This document is intended to be both a

guide for the user of the program and a

programmer's reference for the modification

and further development of the program.

ADMINISTRATIVE INFORMATION

The work reported herein was performed as part of Task 15326,

Task Area SF 53 532 106 under Work Unit number 1-1844-916 at the

Naval Ship Research and Development Center.

INTRODUCTION

With the availability of large structural analysis programs based on

the finite element method, the structural analyst has at his disposal a

reliable tool which enables him to analyze a truly arbitrary structure

to any desired accuracy. Basic to a finite element analysis is the

point-by-point description of a mesh superimposed on the structure

to be analyzed. As seen on the designer's blueprint, the shapes of man-

made structures seldom, if ever, approach the mathematical

arbitrariness attainable by this method, but instead have a topography

which can be completely described by a small set of surface equations.

With few exceptions today's finite element programs place the burden

of translation from simple equations to a point-by-point mesh description

directly on the program user. Usually, this is a manual translation

which is tedious, time consuming, and highly susceptible to human errors.

NASTRAN is a powerful finite element analysis program which is

close to the state-of-the-art for many types of analysis* and is

particularly well suited for large problems. Although it has many user

convenience and data verification features, NASTRAN does require a

point-by-point topographical description of structures to be analyzed.

The data generation program described in this document automatically

generates a NASTRAN finite element idealization from an engineering

description of the structure. In its present state the program can

generate data for a specific class of structures (viz., those easily

described in a cylindrical coordinate system); however, it is designed

"1 "The NASTRAN User's Manual (Level 15)", edited by C.W. McCormick,

NASA SP-222(01), June 1972.

* The types of analysis available using NASTRAN include static stress

analysis, buckling analysis, natural frequency and normal mode analysis,
and transient and frequency response analysis.

2

to be easily expanded to idealize almost any type of structure. This

flexibility is achieved through the use of a data network which permits

many independent data generator modules to be linked together to construct

the complete idealization.

This report describes the fundamentals of structural modeling using

the data generator and includes a few basic generation modules as

examples.

Section 1 of the report contains information for the user of the

program, describing the modeling techniques required to generate data,

the facilities available for controlling the various types of data which

can be generated, the conventions adopted for identifying the generated

data, and detailed format specifications for the cards used to describe

a structure to the generation program. Section 2 contains detailed

information for those who wish to add modules or otherwise modify the

program. Descriptions of the program organization, the data manage-

ment philosophy, and the considerations necessary for processing the

structure as a collection of independent modules have been included

in this section along with the specifications for each of the program

components. Section 3 is a listing of the diagnostic messages issued by

the program with some additional information to clarify their meaning, and

Section 4 contains selected sample problems with detailed data descriptions,

samples of the generated data, printed information, and the structural

plots produced by the program. Advanced modules and additional

capabilities are being actively developed and supplemental reports which

describe these additional capabilities will be issued periodically.

3

1. PROGRAM USER'S GUIDE

1.1 METHODS OF STRUCTURAL MODELING

1.1.1 Introduction

The primary purpose of the data generator is to reduce the effort

required to idealize a physical structure for finite element analysis. In

the process of manual idealization the engineer subdivides the structure

into small, geometrically simple elements. The size of these elements

is governed primarily by the following consideration: whereas the

geometry and the stress distribution associated with a structure can,

in general, be better approximated by smaller elements, the cost of

computation increases rapidly with an increase in the number of elements.

This consideration must be kept in mind when using the data generator

as well.

In order to use the data generator the structure must be subdivided

into regions which can accurately be described using the surface modules

available in the program. As more general surface modules are included

in the data generator's library, it is likely that fewer surface specifica-

tions will be required to idealize a particular structure. The user must

also specify the density of the elements within each surface module so

that the criteria for geometrical approximation, element assumptions,

and overall problem size will be met. Finite element densities will be

propagated throughout the structure into regions where user specifications

have not been made. As a result of this propagation the user is required

to provide only an initial specification of the element density and then to

specify the regions where the density is to change. Although no word

of caution will be necessary to seasoned finite element practitioners,

it should be made clear that, with very few data generator commands, a

finite element model can be generated which, because of its size, cannot

be analyzed on any existing computer. Except for very simple problems

1. 1

some judicious compromises are usually required in attempting to satisfy

these criteria.

1. 1.2 Reference Lines

In subdividing the structure, the boundaries between surface modules

(cuts in the surfaces) will be referred to as reference lines. These

reference lines provide a mechanism for linking the collection of

modules which make up the complete structure and function much like

the grid points (or node points) which link finite elements. The intersections

of reference lines provide reference coordinates for locating modules on

the structure. The reference coordinates are also used to form the

grid point and element identification numbers for the data generated by

adjacent modules. This convention was adopted so that the user can

easily relate the generated data to the data generator specifications which

produced the idealization.

It is necessary to insure that all grid points (all elements, all

materials, etc.) have unique identification numbers within a particular

problem. However, at intersecting surfaces within a structure, two or

more structural modules could use the same reference coordinate to

form data identification numbers, violating the uniqueness requirement.

This problem necessitated the creation of a device which will be referred

to as equivalencing of reference lines. This device permits a reference

line established for geometric and module linking purposes to be treated

as two or more reference lines for data identification purposes. The

device also adds a certain amount of flexibility to the data generator in

that it permits the inclusion of three-sided surface modules within a

rectangular network.

1. 1. 3 Structural Modules

The data generator idealization of the region of a structure defined by

a single geometric specification will be referred to as a structural module.

1.2

Each structural module is generated by a collection of data generation

programs, referred to as a program module. At present there are

provisions for generating four types of structural modules: surface

modules, solid modules, stiffener modules, and loading condition and

constraint modules.

1.1.3.1. Surface Modules. All subdivisions of a physical structure

which are surfaces to be idealized using plate and shell finite elements

will be referred to as surface modules. Each surface module may have

either three or four edges, the shape of each edge being determined by

the particular module selected. (Each surface module will obtain the

geometry of its edges from adjacent modules if they have been defined in

prior specifications; otherwise this edge description must be included

as part of the module description.) The finite element mesh for a surface

module is determined by the grid point density along its edges; for most

surface modules this density can be different for each edge. Surface

modules may include provisions for requesting that pressure loadings,

stiffeners, and other structural features (which are not mathematical

surfaces) be generated for the idealized surface. Also the user may

specify that the pressure loads, stiffener properties, and the thickness

properties of the finite elements are to vary in some manner over the

surface.

1. 1. 3.2. Solid Modules. All subdivisions of a physical structure

constituting regions which should be idealized using solid finite elements

will be referred to as solid modules. Each solid module may have four,

five, or six faces. Finite element and grid point densities within each

solid module are determined by the densities specified on the edges

formed by the intersection of the module faces. Certain solid modules

may also be specified as hybrid modules to be used as interfaces between

surface modules and pure solid modules. There are no solid or hybrid

modules in the current data generator library.

1.3

1.1.3.3 Stiffener Modules. Any portions of the structure which the

user desires to idealize as individual members running along a reference

line will be referred to as stiffener modules. These modules are

defined to extend between a starting intersection of reference lines and

an ending intersection and to traverse all intersections along that path.

When the path defined in this manner is not unique, the user must specify

the path to be taken. As with all data generator modules one type of

stiffener module may idealize a particular member using one element

type while a different module may use combinations of different elements

to idealize the same member. There is no restriction on the types of

elements used in stiffener module idealizations as long as they are

applicable to the type of analysis in which they will ultimately be used.

1. 1.3. 4 Loading Condition and Constraint Modules. Program modules

which generate data cards for static and dynamic loadings applied along

a reference line, and point loads applied at an intersection of reference

lines will be referred to as loading modules. Similarly modules which

generate data cards for constraints applied along a reference line (or at

an intersection point) will be referred to as constraint modules. Loading

condition modules and constraint modules are defined using the same

reference specifications as those used for stiffener definition.

1. 1. 4 Modeling Procedures

The first capability developed for the data generator makes possible

the idealization of quasi-axisymmetric structures defined in a cylindrical

coordinate system. Because data generator modeling procedures are

not dependent on the coordinate system used for structural definition,

the following discussion is generally applicable to all data generator

modules although it refers to cylindrical coordinates and to terms

associated with structural definition in a cylindrical coordinate system.

Procedures for structural modeling with the data generator fall into

two rather distinct phases: Definition of module boundaries, and

1.4

description of individual modules.

1. 1. 4. 1 Reference Line Definition. In the definition of module

boundaries the user of the program establishes the reference lines which

will be required for module definition. This process is basically one of

deciding how the available modules can be used to describe the structure.

In most cases module boundaries will coincide with boundaries of the

total structure, large stiffening members, or other natural divisions.

One approach to reference line definition is to first divide the

structure transversely into sections which can be treated conveniently.

The lines of division form the first set of required reference lines, called

longitudinal or Z-reference lines. Figure 1. la illustrates this longitudinal

division with identification numbers assigned to the reference lines.

Where branch points occur in a structure, the definition of multiple

reference lines is often required to produce generated data which will be

uniquely identified (these lines must later be equivalenced). Figure 1. lb

illustrates one method of determining whether a multiple definition is

required for Z-reference lines. With this method the user draws an

arrow from the first boundary to the second boundary of each section

along a profile of the structure (the direction specified by the arrow also

indicates the order in which data will be specified in module definition).

Each terminal along this profile will require the definition of as many

reference lines as there are arrows emanating from that terminal. Thus

the approach used in Figure 1. lb requires two Z-reference lines at the

circleC terminal while the approach used in Figure 1. 1c requires no

multiple definitions. Multiple definitions sometimes simplify input

specification and are permitted for any reference line in the structure,

whether or not such a definition is required for uniqueness.

Once the structure has been divided transversely to define

Z-reference lines, azimuthal or A-reference lines can be established

by dividing the structure azimuthally as shown in Figure 1. 2a. The

1.5

6

4 \z

Figure 1.1a - Longitudinal Reference Lines

r

5

Figure 1.1b - Example Requiring Multiple Definition

r

Figure 1.1c - Example Not Requiring Multiple Definition

Figure 1.1 - Longitudinal Reference Line Definition

1.6

procedure is identical to the one used for longitudinal reference lines,

including the establishment of multiple reference lines. Figure 1. 2b

illustrates the A-reference line division and numbering of a structure

with two branch points, one of which requires multiple reference line

definition (circled terminal) and one which does not (terminal numbered

14).

1. 1. 4.2 Description of Structural Modules. Once reference lines have

been established, individual modules can be described. Because each

different type of structural module is a data generator with its own

specifications, there are few generalizations one can make about module

description. In Section 2. 1. 2 some proposed standard data format

conventions are presented. Although these standards were written as a

guide to those programming data generation modules, they may also be

of some help to the user in preparing data for the program.

1. 1. 5 Special Topologies and Data Equivalencing

Conventions that have been established in writing the data generation

program, such as using the reference line identification numbers to

produce unique identification numbers for generated data, and storing

boundary information as if the module boundaries formed rectangular

lattices on the structure, often conflict with the topology of the structure

to be modeled. The problem of generated data with duplicate identifica-

tion numbers can be seen in Figure 1.2. If one chooses to associate

the reference line number with the module following it as one proceeds

around the arc in a particular direction, say clockwise, it is not possible

to associate a unique reference line number with every module since

there are 16 modules and only 15 reference lines.

A device, referred to as equivalencing, was introduced to resolve

these conflicts. Equivalencing changes pointers in the data management

system so that a data group can be referenced by more than one identifier.

These changes can be made either globally, for all usage of a reference

1.7

1

Figure 1.2a - Azimuthal Reference Lines

16 2

144 5

1(3 10 6

9

Figure 1.2b - Example Requiring Multiple Definition

Figure 1.2 - Azimuthal Reference Line Definition

1.8

line number or individually, for data stored at the intersection of two

data lines, or between any two data groups. Generation modules may

also invoke equivalences to enforce their special topology. For example,

the CONEND module invokes equivalences between the intersection data

at two corners of the rectangular lattice, creating a triangular boundary.

The user may employ similar techniques to create box structures from

plate modules.

Global equivalences are invoked by listing pairs of reference line

numbers on ZEQU bulk data cards for Z-reference lines and on AEQU

cards for A-reference lines. Equivalences between particular data

groups can be invoked with IEQU and GEQU bulk data cards. (See

Section 1.4.3 for a complete description of these cards.)

1.2 PROGRAM SETUP

1.2. 1 Card Deck Format

The computer run deck for the data generator consists of two parts:

the Execution Control Deck and Bulk Data Deck. The Execution Control

Deck is used to select the type of data to be generated and to control

the printed and graphical output of the program. The Bulk Data Deck

is used to describe the geometry of the structure to be modeled. The

Execution Control Deck begins with an ID card and is terminated with

a BEGIN BULK card. The Bulk Data Deck follows the Execution Control

Deck and continues through the ENDDATA card.

All cards preceding the ID card, the ID card, the BEGIN BULK card,

and the ENDDATA card are inserted into corresponding positions in

the generated NASTRAN deck file. Other data cards may be passed

from both the Execution Control Deck and the Bulk Data Deck directly

to the generated data file by terminating the data generator cards with

a $END card. Execution Control cards between the $END card and

the BEGIN BULK card will be inserted in the Executive/Case Control

portion of the NASTRAN deck; the data generator Bulk Data cards

1.9

between a $END and the ENDDATA card will be inserted as the first

cards in the Bulk Data portion of the generated NASTRAN deck. All

cards following the ENDDATA card will be ignored by the program.

The delimiting cards used by the program have the following format:

ID Al, A2 Required

Al and A2 are any alphantimeric fields chosen by the user.

These fields are optional to the data generator, but are required

by NASTRAN.

BEGIN BULK Required

The two distinct words must appear on the card.

ENDDATA Required

ENDDATA must be one continuous word beginning in the first

column of the data card.

$END Optional

$END must be one continuous word beginning in the first

column of the data card.

The Execution Control Deck and the Bulk Data Deck are described in

detail in Sections 1.2.2 and 1.4, respectively.

1.2.2 Execution Control Cards

Data cards in the program run deck between the ID card and the first

$END (or BEGIN BULK card if there is no $END card) will be inter-

preted as execution control cards. All execution control cards have

default specifications and thus the only control cards which are mandatory

are the ID card and the BEGIN BULK card. Warning messages will be

issued when cards cannot be recognized and when cards do not conform

to the prescribed syntax. Many of the options governed by control

cards depend on implementation by the writers of the various data

generation modules. The names of cards with module dependent options

are flagged with an asterisk in the following card descriptions, indicating

that the module descriptions (Section 1.3.2) should be consulted for

information on their applicability.

1.10

All cards read by the program are listed and copied to the generated

data file. All execution control cards, except comment cards, will

have a dollar sign appended at the left, making them comments to

NASTRAN. All cards preceding the ID card and between the $END

card and the BEGIN BULK cards will be listed and copied to the

generated data file without alteration, thus permitting the user to

transmit NASTRAN control cards directly to the generated data file.

Comment cards are those cards which are either totally blank or

have a dollar sign as the first non-blank character.

Examples of Execution Control Decks are shown in Figures 1. 3

and 1. 4. The second example illustrates the type of specifications

which would be required for a combination data generation and NASTRAN

analysis run. The cards following the $END will not be interpreted by

the program even though they may have a format which is similar to

the data generator (e.g., SOL, TITLE, PLOTID cards).

ID MYNAME, CODE 1234

$ EXECUTION CONTROL DECK FOR STAND-ALONE OPERATION

DUMP = NONE

LINES = 38

SOL = 3

TITLE = DATA GENERATOR TEST NO. 101

PLOTID = MYNAME, CODE 1234, EXT 51234

BEGIN BULK

Figure 1.3 Example of Execution Control Deck for
Stand-Alone Data Generator Operation

1. 11

ID J. SMITH, PROB-1Q4

$ EXECUTION CONTROL DECK FOR DATA GENERATOR/NASTRAN

SOL = 2

PUNCH = YES

TITLE = FRAME 17 MODIFICATION ANALYSIS - DATA GEN.

NASTRAN = YES

$END

APP DISP

SOL 2,0

TIME 100

CHKPNT YES

CEND

TITLE = FRAME 17 MODIFICATION ANALYSIS

PLOTID=J. SMITH, CODE 1555

BEGIN BULK

Figure 1. 4 Example of Execution Control Deck for Data
Generation/NASTRAN Operation

1.12

The format of the execution control cards is free-field. In

presenting general formats for each card embodying all options, the

following conventions are used:

(1) Upper-case letters must be punched as shown.

(2) Lower-case letters indicate that a substitution is to be made.

(3) Braces [3 indicate that a choice of contents is mandatory.

(4) Underlined options or values are the default values.

(5) Physical card consists of information punched in columns 1

through 72 of a card. All data generator control cards are limited to a

single physical card.

(6) Card names with asterisks indicate module dependent options.

1.13

Execution Control Card - CONNECT*

Description: This card controls the generation of connection cards.

Format:

CONNECT = YES

Option Meaning

YES Connection cards are to be included in the generated
data file.

NO No connection cards are to be included in the
generated data file.

Execution Control Card - DUMP

Description: This card controls the printing of various program data
storage area dumps.

Format:
DUMP = NONE

DIAG(n)
NOFORM(n)
FATAL(n)
FATAL(2000)

Option Meaning

NONE No data storage dumps printed.

DIAG(n) All data storage area dumps are printed with a
maximum of n words printed per storage area.

Chained storage areas are interpretively formatted
so that only the stored information is printed (i. e.,
all chain pointers, etc. are excluded).

NOFORM(n) All data storage area dumps are printed with a
maximum of n words printed per storage area. The
areas are printed as a block with no interpretive
formatting.

FATAL(n) A data storage area dump is printed with a maximum
of n words Der storage area following a fatal error.
Dumps will have the same format as those produced
by a DIAG request.

Remark: The word count, n, must be greater than zero.

1.14

Execution Control Card - ERRORS

Description: With this card the user may specify the number of level 2
errors which will be permitted in a given phase of processing before
the run is terminated.

Format: En

ERRORS = 50

Option Meaning

n The number of errors permitted (Ž0)

Execution Control Card - FATAL

Description: With this card the user may declare which errors detected
by the program will be considered fatal to execution.

Format:
ALL

FATAL NORMAL

NONE

Option Meaning

ALL Any error detected will cause termination of the
program.

NORMAL Errors will be considered fatal only when continued
execution would clearly result in nonsensical results.

NONE Execution will be permitted to continue following all
errors.

1.15

Execution Control Card - FORCE*

Description: This card controls the generation of NASTRAN FORCE cards.

Format:

FORCE = IYESý
NO

Option Meaning

YES NASTRAN FORCE cards are to be included in the
generated data file.

NO No FORCE cards are to be included in the generated
data file.

Execution Control Card - LINES

Description: This card permits the user to specify the number of lines
to be printed on each page of the generated listing.

Format:

LINES = n55

Option Meaning

n The number of lines per printed page (> 10),

1. 16

Execution Control Card - MATI*

Description: This card controls the generation of NASTRAN MAT1 cards
with default material properties for all materials not explicitly defined.

Format:

MAT = YES

Option Meaning

YES NASTRAN MAT1 cards are to be included in the
generated data file.

NO No MAT1 cards are to be included in the generated
data file.

Remark: See module descriptions (Section 1.3.2) for default values.

Execution Control Card - NASTRAN

Description: This card indicates that a NASTRAN analysis is to
immediately follow this Data Generator application.

Format:

NASTRAN = YESN

Option Meaning

YES NASTRAN analysis follows; only one set of data will
be generated in this run.

NO No analysis run follows; multiple sets of data will
be processed, continuing until all sets have been
completed.

1.17

Execution Control Card - PLOAD*

Description: This card controls the generation of NASTRAN PLOAD cards.

Format:

PLOAD = ýYESý
NO

Option Meaning

YES NASTRAN PLOAD cards are to be included in the
generated data file.

NO No PLOAD cards are to be included in the generated
data file.

Execution Control Card - PLOTID

Description: This card permits the user to request that structural plots
be made of the generated model and to identify the plots produced to
the plotter operator.

Format:

PLOTID = [name, CODE code, EXT extj

Parameter Meaning

name User's name; up to eight characters with no embedded
blanks.

code User's organizational code; up to four characters
with no embedded blanks.

ext. User's telephone extension; up to five characters
with no embedded blanks.

Remarks: (1) If no PLOTID card is present, no structural plots
will be generated.

(2) A tape must be mounted to receive the generated
plotting information (see Section 2. 1.4).

1.18

Execution Control Card - PRINT*

Description: This card controls the printing of data generation information
messages.

Format:

PRINT = JMAXN

Option Meaning

MAX All messages generated will be printed.

MIN Messages which do not directly concern the program
user are not printed (these are undocumented messages
which programmers have included to facilitate
program testing).

Execution Control Card - PUNCH

Description: This card controls the punching of the generated data file
at the end of the application.

Format:

PUNCH = JNO
YES

Option Meaning

NO No generated data will be punched; the data will
be written only on the generated data file.

YES Generated data will be punched on cards as well as
being placed on the generated data file.

1.19

Execution Control Card - SOL*

Description: This card indicates which NASTRAN Rigid Format will
be used to analyze the generated model.

Format:

SOL = n

Option Meaning

n NASTRAN Rigid Format number n will be used
to analyze the generated model. (0 < n • 12, n is
an integer).

Execution Control Card - SPC*

Description: This card controls the generation of NASTRAN SPC cards.

Format:

SPC = {YESI
NO

Option Meaning

YES NASTRAN SPC cards are to be included in the
generated data file.

NO No SPC cards are to be included in the generated
data file.

Execution Control Card - TITLE

Description: This card permits the user to supply a title to be printed on
each page of the generated listing.

Format: TITLE = any text

Remarks: (1) The text on the TITLE card will be printed at the top of each
page along with the current data and page number.

(2) If no TITLE card is included, only the date and page number
will be printed.

1.20

1.3 GENERATING DATA

1.3. 1 Data Organization and Identification

NASTRAN restrictions limit the grid point and element identification

numbers generated by the program to seven digits in length. The

data generator could conveniently construct grid point identification

numbers by associating two digits with each reference line at an

intersection and then allowing two digits for each coordinate direction

to locate the gridpoint within each module. This would permit a

maximum of 100 gridpoints along any edge of a module and permit 99

reference lines in each of the two directions. The range of grid point

numbers generated in this way would be sufficient for most models and

the element identification numbers could be assigned in a similar

manner with a range sufficient for a module of any solvable size.

However, this approach requires eight-digit identification numbers.

The method used is basically a six-digit scheme allowing one digit

for each reference line and two digits for each coordinate direction

within a module. With the available seventh digit used as an overflow

digit to permit an increased number of reference lines, 39 reference

lines in one coordinate direction and 19 in the second direction can be

accommodated. Table 1. 1 gives the correspondence between the

seventh digit in the reference line number and the range of Z- and A-

reference line numbers. The grid point identification number 7801602,

for example, lies within a module which has its upper left-hand grid point

at the intersection of Z-reference line 38 and A-reference line 16. The

seventh (leftmost) digit indicates that the Z-reference line is in the

range 30 to 39 and that the A-reference line is in the range 10-19. The

sixth and third digits complete the specification of the Z-reference line

number and the A-reference line number, respectively. Within a

module, excluding its boundary, the first and second digits and the fourth

and fifth digits, each pair taken as an integer, are always non-zero.

1.21

TABLE 1. 1 - CORRESPONDENCE BETWEEN REFERENCE

LINE NUMBERS AND THE SEVENTH (LEFTMOST)

DIGIT OF GRID POINT IDENTIFICATION NUMBERS

Seventh
Digit ZRL ARL

blank 1-9 1-9

1 10-19 1-9

2 20-29 1-9

3 30-39 1-9

4 1-9 10-19

5 10-19 10-19

6 20-29 10-19

7 30-39 10-19

Along a Z-reference line, away from an intersection, the first and

second digits are zero and the fourth and fifth digits are non-zero.

Along an A-reference line, the fourth and fifth digits are zero and the

first and second digits are non-zero.

Element identification numbers generated by a module also follow

the seven-digit pattern and have the same reference line digits as the

grid point in the upper left corner of the module. Identification

numbers generated within a module vary with the module used and are

discussed in Section 1. 3. 2. The reference line numbers used in forming

the grid point and element identification numbers are internal numbers

and not necessarily the external number which the user has supplied.

The internal number assigned to a reference line is its position in the

sequence of reference lines in that direction as they are encountered

on module specification cards. The only restrictions on the external

numbers are that they be greater than zero and that the number of

reference lines does not exceed 39 for Z-reference lines and 19 for

A-reference lines.

1.22

This numbering scheme was designed primarily so that the user

can easily identify the module that generated the data. Use of the

gridpoint numbering, as generated, will usually result in structural

matrices with abnormally large bandwidths, and hence, long running
2

times in the NASTRAN analysis. The BANDIT program, also developed

under this project, provides an efficient gridpoint renumbering, is simple

to use, and is generally available to NASTRAN users.

1. 3.2 Module Descriptions

Unless specifically stated otherwise any consistent set of units may

be used to define module geometry and properties. Angles must be

specified in degrees unless otherwise noted. Any location data (r, e, z)

which have been defined in a previous module need not be redefined for

subsequent modules. If the location of a point is specified in two or

more modules, the first specification encountered will take precedence

over all subsequent specifications in the event of a data conflict.

2 Everstine, Gordon C., "The BANDIT Computer Program for the

Reduction of Matrix Bandwidth for NASTRAN, " Naval Ship Research
and Development Center Report 3827 (March 1972).

1.23

Module Name: CONE

Function: To generate a finite element model of a sector of a

frustum of a general (non-circular) cone using the quadrilateral and/or

triangular elements QUAD2 and TRIA2.

Geometric Considerations:

m a A Z

Figure 1.5 - CONE Module

The surface to be modeled with the CONE module is assumed to

be describable by a linear equation in terms of axial position and

azimuthal angle in a cylindrical coordinate system. The edges of the

module at ZRL A and ZRL B as shown in Figure 1. 5 are assumed

to lie in a plane perpendicular to the Z-axis. Similarly, the edges

at ARL A and ARL B each lie in a plane of constant azimuthal angle,

If the region to be modeled requires a more complex geometrical

description, either a different generating module should be used or the

1.24

region should be subdivided into smaller regions which can be

approximated by the CONE module.

The thickness of the material and the pressure loading on the module

are both assumed to vary linearly with axial position and azimuthal

angle. Only one type of material is permitted for the entire module;

however, the material may be easily specified as being anisotropic

since each element material reference system has its major axis

oriented so that it always lies in an r, z-plane, being parallel to the

z-axis whenever the element also lies in an r, z-plane. The user's choice

of the NASTRAN material properties card governs whether isotropic

or anisotropic material properties will be used.

Type of Model Generated: The surface of the model is approximated

by a mesh of the planar QUAD2 and TRIA2 elements, with the grid points

of the elements lying on the surface described by the user. The

generated model is thus a polyhedron which always lies on the concave

side of the structure being modeled. The location of grid points along

the boundaries is calculated by linear interpolation between the corner

points. The location of interior points is calculated by averaging the

values obtained by interpolating first between Z-reference line values

and then A-reference line values. The same type of interpolation is

used to calculate element thicknesses and pressure loads for the module.

Because each QUAD2 and TRIA2 element is assumed to have uniform

thickness and a uniform pressure load applied to its surface, the

interpolation is made to the centroid of the elements for these quantities,

rather than to a grid point.

Th'e mesh density for the module is controlled by the number of grid:

points (or divisions) along the edges of the module. A mild restriction

is made on the relationship between the number of divisions on the various

edges of the module (see Section 1. 4.3) in order to simplify the mesh

variation within a module and to maintain acceptable element geometry.

QUAD2 elements will be used for all modeling except in regions where

1.25

mesh variation requires triangular elements and in those regions TRIA2

elements will be used. The modeling method will concentrate triangular

elements in regions of higher mesh density.

For reliable finite element results the generated triangular elements

should be close to equilateral and the quadrilateral elements should be

nearly square. If the height-to-base ratio of any element does not fall

in the range (½, 2), the elements should be considered to have "bad"

geometry. The program attempts to generate elements which have

acceptable shapes, but this process is very dependent on the dimensions

of the module to be generated and on the mesh density at its boundary.

The ultimate responsibility for the acceptability of the elements has been

left to the user.

Within the cone module (see Figure 1. 5) grid point numbering starts

at the top and proceeds from left to right, then from top to bottom, using

the 7-digit numbering convention described in Section 1. 3. 1. The sixth

digit contains the number of ZRL-A bounding the CONE module on the left

and the fourth and fifth digits contain the count, along an axial line, of

the nodes from ZRL-A. The third digit contains the number of ARL-A

bounding the section at the top and the remaining two digits contain the

count, along an azimuthal line, of the nodes from ARL-A. This

numbering convention applies to CONE modules with rectangular meshes

as well as to those with triangular meshes.

The ID of the grid point at the top left of the element is used as the

element identification of quadrilaterials. The identification of triangular

elements is obtained by starting with the node number of the top left

grid point and numbering the triangles in the Z-direction, incrementing

the fourth digit of each grid point by one. Figure 1.6 illustrates the

grid point and element numbering for this module.

The idealization generated by the CONE module will be constructed

usa .g NASTRAN's CQUAD2, PQUAD2, CTRIA2, PTRIA2, GRID, and

PLOAD bulk data cards. These cards will be sorted by type (connection,

1.26

property and load, and GRID) in the generated data deck. For a given

type the cards will appear in the order generated.

This module does not use any of the optional output control

parameters. As data cards are generated, comment cards are inserted

which identify the module by the external numbers of the reference lines

on its boundary.

100100 101100 102100 103100 200100
ARL-1=I- - -

100100 102100 104100 106100

101100 103100 105100

100101 200101
101101 102101

100101 101101 102101

100102 200102
101102 102102

100102 101102 102102

100103 40200103
101103 102103

100103 .101103, 102103

ARL-2=2- - -- 0 10E
100200 101200 102100 200200I I

I I
I I

ZRL-1=1 ZRL-2=2

Figure 1.6 - Grid Point and Element Numbering Generated
by the CONE Module

1.27

Module Name: CONEND and CONENDR

Function: To generate a finite element model of a cone-shaped end

module using the quadrilateral and/or triangular elements QUAD2 and

TRIA2.

Geometric Considerations:

ZRL ARL
BBZZRL

A L AL

A

ARL
B

/

ZRL.• "

A/

Figure 1.7 - CONEND Module

ARL •ZRLA •A

ARL
B

I ZRL
B

Figure 1.8 - CONENDR Module

1.28

The surface to be modeled with the CONEND or CONENDR module is

assumed to be describable by a linear equation in terms of axial position

and azimuthal angle in a cylindrical coordinate system. The edges of the

modules at ZRL-A and ZRL-B as shown in Figure 1. 7 for the CONEND

and in Figure 1. 8 for the CONENDR are assumed to lie in a plane perpen-

dicular to the Z-axis. Similarly the edges at ARL-A and ARL-B each lie

in a plane of constant azimuthal angle. The only difference between a

CONEND and a CONENDR module is the location of the vertex with

respect to the order in which the various parameters are generated and

numbered. If the region to be modeled requires a more complex geomet-

rical description, a different generating module should be used or the

region should be subdivided into smaller regions which can be approximated

by the CONEND or CONENDR and CONE modules (see Section 1.3.2).

The thickness of the material and the pressure loading on the module

are both assumed to vary linearly with axial position and azimuthal

angle. Only one type of material is permitted for the entire module;

however, the material may be anisotropic as well as isotropic since

each element material reference system has its major axis oriented so

that it always lies in the first quadrant of an r, z-plane, being parallel

to the z-axis whenever the element also lies in an r, z-plane.

Type of Model Generated: The surface of the model is approximated

by a mesh of the planar TRIA2 and possibly QUADS elements with the

grid points of the elements lying on the surface described by the user.

The generated model is thus a polyhedron which always lies on the

concave side of the structure being modeled. The location of grid points

along the boundaries is calculated by linear interpolation between the

corner grid points. The location of interior points is calculated by

averaging the values obtained by interpolating between the A-reference

line values. The same type of interpolation is used to calculate element

thicknesses and pressure loads for the module, and since each TRIA2

and QUAD2 elements is assumed to have uniform thickness and a uniform

1.29

pressure load applied to its surface, the interpolation is made to the

centroid of the elements for these quantities rather than to the grid points.

The mesh density for the module is controlled by the number of grid

points (or divisions) along the edges of the module. A mild restriction

is made on the relationship between the number of divisions on the

various edges of the module (see Section 1. 4.3) in order to simplify the

mesh variation within a module and to maintain acceptable element

geometry. TRIA2 elements will be used for all modeling except in

regions where mesh variation requires quadrilateral elements and there

QUAD2 elements will be used. The modeling method will concentrate

quadrilateral elements in regions of lower mesh density.

For reliable results the generated triangular elements should be

close to equilateral, and the quadrilateral elements should be nearly

square. If the height-to-base ratio of any element does not fall in the

range (½,2), the elements should be considered to have "bad" geometry.

The program attempts to generate elements which have "good" shape;

however, this process is very dependent on the dimensions of the module

to be generated and on the mesh density at the boundary. The ultimate

responsibility for the acceptability of the elements has been left to the

user.

For CONEND and CONENDR modules, the grid points are numbered

starting at the top left of the module and proceeding from top to bottom,

working from left to right. The identification of the triangular elements

is obtained by taking the node number of the top left grid point of each

column of triangular elements and numbering the triangles in the

theta-direction, incrementing the rightmost digit by one. Figures 1. 9

and 1. 10 illustrate the grid point and element numbering for the CONEND

and CONENDR modules respectively.

These modules do not use any of the optional output control parameters.

As data cards are generated, comment cards are inserted which

identify the module by the external number of the reference lines on its

boundary.

1.30

I

' 103100

102100 103101 200101

ARL2=2 I
101100 102101 103102

100100 101101 102102 103103 200102

AR11- 1 01102 1013103104
I 101200

102104 103105 200103
R1=1 ,o0oo106

ZRLI=I103200

200200

ZRL2=2

Figure 1.9 - Grid Point and Element Numbering Generated
by the CONEND Module

1.31

100100

1010010010210

1002100

100101i 100101 101100

100102 101101 102100 ARL22

1001024 100103 101102 102101 103100 200100

100103 100105 101104 102200

100106 101200

100200

ZL1=1

Figure 1.10 - Grid Point and Element Numbering Generated
by the CONENDR Module

1.32

1.3.3 Graphical Output

The data generator will optionally produce microfilm plots of the

generated structure. If a PLOTID card is included in the execution

control deck, the program will produce four plots, including a perspective

view and three orthogonal views from a position normal to each of the

three basic coordinate planes of the structure. The graphic output will

serve as a check on the geometry of the output data deck generated by

the program. Structural plots for each of the sample problems are

included in Section 4.

1.4 STRUCTURAL DATA SPECIFICATIONS

1. 4. 1 Bulk Data Card Format

The data card format is variable to the extent that any quantity except

the mnemonic can be punched anywhere within a specified 8-column field.

Each bulk data card consists of ten 8-column fields as indicated in the

following diagram:

1 2 3 4 5 6 7 8 9 10
CONE 1 3 2 6 90 1~0.0f+C1]

The mnemonic is punched in field 1 beginning in column 1. Fields 2-9

are for data items. The only limitations in data items are that they

must lie completely within the designated field, have no imbedded

blanks, and must be integer or real numbers, or completely blank.

The program will convert all numbers so that they satisfy the type

requirements of the various modules.

On continuation cards, field 10 is used in conjunction with field 1

of the continuation card as an identifier and hence must contain a unique

entry. The continuation card contains the symbol + in column 1

followed by the same characters that appear in columns 74-80 of field 10

of the card that is being continued.

1.33

1. 4.2 Order of Bulk Data Cards

Bulk data cards containing structural module specifications must be

arranged in the order in which the various components of the idealization

are to be generated; otherwise, geometric information which is passed

from one module to another, may not be correct. Other types of bulk

data cards may be included in any desired order. Continuation cards

must immediately follow their parents; however, field 10 may be non-

blank even if no continuation card follows. Uniqueness of field 1 on

continuation cards is not required.

1. 4. 3 Data Card Descriptions

The following pages contain the data format specifications for the

various bulk data cards arranged in alphabetical order by card name.

Table 1. 2 contains a summary of the functions of the bulk data cards,

arranged by card type.

1.34

TABLE 1. 2 - SUMMARY OF BULK DATA CARDS

The following data input cards are available to the user:

Card Card
Type Name Function Page

Surface CONE To generate a cone-shaped 1.37
Module

module; described as a

sector of a frustum of a

general cone.

Surface CONEND To generate a cone-shaped 1.41
Module

end module; data generated

from apex to base.

Surface CONENDR To generate a cone-shaped 1.44
Module

end module; data generated

from base to apex.

Equivalence AEQU To specify the equivalence of 1.36

A-reference lines.

Equivalence GEQU To specify the equivalence of 1.47

general data quantities.

Equivalence IEQU To specify the equivalence of 1.49

intersections of reference lines.

Equivalence ZEQU To specify the equivalence of 1.50

Z-reference lines.

1.35

Input Data Card AEQU A-Reference Line Equivalence

Description: Defines Equivalence between A-reference lines.

Format and example:

1 2 3 4 5 6 7 8 9 10

AEQU ARLD1I ARLI1 ARLD2 ARLI2 ARLD3 ARLI3 etc.

AEQU 4 1 5 2

Field Contents

ARLDi Dependent A-reference line number--one that will be

equivalenced to ARLIi (integer> 0)

ARLIi Independent A-reference line number--one that will

be used for grid point numbering and is equivalenced

to ARLDi (integer > 0)

Remarks:

1. Maximum number of A-reference lines is 19.

2. See Section 1. 1.5 for a discussion of equivalencing.

3. The user must insure that equivalence specifications are not

circular. There are no other restrictions regarding which reference

lines may or may not be equivalenced.

1.36

Input Data Card CONE Cone Shaped Module

Description: Defines a module to generate data for a region which can

be described as a sector of a frustum of a cone (Figure 1. 11).

B _. -- ARL 1 1%
A .A% SIDE 2 ,,B .. 1.cAARL,

I- -Z

R- RA SD 1 S
0- I -0 /ZRL 2

ZRL 1 ZRL 2

Figure 1.11 - Geometry of the CONE Module

Format and example:

1 2 3 4 5 6 7 8 9 10

CONE ZRL1 ARL1 ZRL2 ARL2 02 L L 0 +IDENT1

CONE 1 2 5 4 105. 10. 45. + C101

1 2 3 4 5 6 7 8 9 10

+IDENT1 RA THA PA DIV1 M +IDENT2

+C101 1.0 1.0 1.0 6 1 + C102

1 2 3 4 5 6 7 8 9 10

+IDENT2 RB THB PB DIV2 7 +IDENT3

+C102 1.0 1.0 4 + C103

1.37

1 2 3 4 5 6 7 8 9 10
+IDENT3 Rc THc PC DIV3 +IDENT4

+C103 +C104

1 2 3 4 5 6 7 8 9 10
+IDENT4 RD THD PD DIV4

+C104 1.5

Field Contents

ZRL1 Z-reference line number bounding the module
on the left (side 1, integer > 0)

ARL1 A-reference line number bounding the module
at the top (side 2, integer > 0)

ZRL2 Z-reference line number bounding the module
on the right (side 3, integer > 0)

ARL2 A-reference line number bounding the module
on the bottom (side 4, integer > 0)

0 2 Angle between the positive Z-direction and
the normal to the surface along ARLI;
counterclockwise is positive (real, degrees)

04 Angle between the positive Z-direction and
the normal to the surface along ARL2;
counterclockwise is positive (real, degrees)

L Length of the projection of the module on the
Z-axis (real Ž0)

0 Angular width of the module (real, degrees)

RA' RB, RC) RD Radii at corners A,B,C, and D (real)

THA, THB, THcTHD Thicknesses at corners A, B, C, and D (real)

PA' PB' PC' PD Pressures at corners A, B,C, and D (real)

DIV1, DIV2, DIV3, DIV4 Numbers of division along sides 1, 2, 3, and
4 (integer a 1)

M Material identification number (integer a 1)

1.38

Remarks:

1. The two Z-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

2. The two A-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

3. If RB has not been defined, default is RA.
If RC has not been defined, default is RB.

If RD has not been defined, default is RB.

4. If THB is blank, default is THdAu

If THC is blank, default is THBD

If THD is blank, default is THA.

5. If PB is blank, default is PA*

if PC is blank, default is PTB

If PD is blank, default is PA"

6. If DIVP has not been defined, default is 1.

If DIV2 has not been defined, default is 1.

If DIV3 is blank, default is DIVP .

If DIV4 is blank, default is DIV2.

7. Parameters Ri, Vi,DIVi,L, and 0 which are passed from previously

generated modules will override any values specified for this module.

8. This module may be used to generate cylindrical shapes by

specifying 02 = 04 = 900. Annular plates may be generated by specifying

02 = 04 = 00 or 1800.

9. If 04 is blank, default is 02 "

10. The following relationship must hold for the number of divisions on

the edges of the module whenever DIV1 = DIV3:

I DIV2 - DIV4 1 DIVI.

Similarly, the following relationship must hold whenever DIV2 = DIV4:

DIlVI- DIV3I -J DIV2.

1.39

11. The following relationship must hold for the number of divisions

on the edges of the module whenever both DIV1 / DIV3 and DIV2 / DIV4:

I DIV1 - DIV31 < min (DIV2, DIV4), and

IDIV2 - DIV41 < min (DIVI, DIV3).

12. With this module the user may specify , 4. 00 or i, - 1800;

however, the above references to the directions to left and right must be

reversed.

13. If M is zero or blank, a default number of 1 will be provided.

14. Modules which close a 360 degree ring (side 4 lies in the

O = 00 = 3600 plane) must specify e, even if it has been previously defined

by another module.

1.40

Input Data Card CONEND Cone-Shaped End Module

Description: Defines a cone-shaped end module; data generated from

apex to base (Figure 1. 12).

B

C B

ADA I

z ZRL 1 ZRL 2
ZRL 1 ZRL 2

Figure 1.12 - Geometry of the CONEND Module

Format and example:

1 2 3 4 5 6 7 8 9 10

CONEND ZRL1 ARL1 ZRL2 ARL2 ¢2 ¢4j L 0 +IDENT1

ICONENDI 7 j2 j2 4 j60.0J 10.0 45.0+CE0

1 2 3 4 5 6 7 8 9 10
+IDENT1 RB DTHB PB DIV3 M 3

+CE101 2.0 1.0 1.0 [6 1+CE0

1 2 3 4 5 6 7 8 9 10
+IDENT2 JRC THc] PC RI2EQ+IN

+CE102 1.5_ 1.0 8jjj 1 +jjCE103

1 2 3 4 5 6 7 8 9 10
+ADENT3 THADIPAD

+CE103 1.5 1.5

1.41

Field Contents

ZRL1 Z-reference line number bounding the module at
the apex, on the left (side 1, integer > 0)

ARLI A-reference line number bounding the module at
the top side (side 2, integer > 0)

ZRL2 Z-reference line number bounding the module on
the right (side 3, integer > 0)

ARL2 A-reference line number bounding the module on
the bottom (side 4, integer > 0)

02 Angle between the negative r-direction and the vector
BA along ARL1; clockwise is positive

(-90g < 02 < 90 , degrees)

04 Angle between the negative r-direction and the
vector CD along ARL2; clockwise is positive

(-900 < 04 < 900, degrees)

L Length of the projection of the module on the

Z-axis (real - 0)

e Angular width of the module (real, degrees)

RB' RC Radii at corners B and C (real > 0)

THBP THc THAD Thicknesses at corners B, C, and the apex AD
(real > 0)

PB' PC' PAD Pressures at corners B, C, and the apex AD (real)

DIV2, DIV3 Number of divisions along sides 2 and 3
(integer a 1)

M Material identification number (integer z 0)

IEQ Intersection equivalence flag (blank or 1)

Remarks:

1. The two Z-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

2. The two A-reference lines must have different numbers and may not

be reference lines which have been equivalenced.

3. The number of divisions must be the same for sides 2 and 4.

1.42

4. DIV3 cannot be greater than DIV2.

5. This module may be used to model flat surfaces by setting

02 =00.

6. If M is zero or blank, a default number of 1 will be provided.

7. RA and RD are automatically set to zero. RB must be defined.

If RC has not been defined, default is RB.

8. If THAD is blank, default is TH . If THC is blank, default is THB'

9. If PAD is blank, default is PB" If PC is blank, default is PB"

10. Parameters RiiOi, L, DIVi and e which are passed from previously

generated modules will override any values specified for this module.

11. If 0, < 00, then the above references to the directions left and right

must be reversed.

12. If 0 4 is blank, default is 02"

13. If IEQ is 1, no intersection equivalences will be invoked for the

apex points. This flag must be set for one module, within a set of

CONEND modules, which form a 360-degree cone. It should not be set

for other applications.

14. Modules which close a 360-degree cone (side 4 lies in the

O= 00 = 3600 plane) must specify 8, even if it has been previously defined

by another module.

1.43

Input Data Card CONENDR Cone-Shaped End Module

Description: Defines a cone-shaped end module; data generated from

base to apex (Figure 1.13).

ARL I
"D SIDE 2 BC

SI ',RA SIDE 34SSIDE 1 ---- "--- Z
S• •V." • (NULL)

RD22-& D -SIDE4

ARL•2

BCI _ [z
o -L L

ZRL 1 ZRL 2

Figure 1.13 - Geometry of the CONENDR Module

Format and example:

1 2 3 4 5 6 7 8 9 10

CONENDR ZRL1 ARL1I ZRL2 ARL2 02 04 L 9 +IDENT1

CONENDR 2 2 7 4 60.0 45.0 + CR101

1 2 3 4 5 6 7 8 9 10

+IDENT1 RA THA PA DIV1 M +IDENT2

+CR101 1.5 1.0 1.01 6 + CR102

1 2 3 4 5 6 7 8 9 10

+IDENT2 RD THD PD DIV2[IEQ I I +IDENT3

+CR102 1.5 1.0 1.0 8 j + CR103

1 2 3 4 5 6 7 8 9 10

+IDENT3 THBC PBC

+CR103 1.5 1.5

1.44

Field Contents

ZRL1 Z-reference line number bounding the module on the
left (side 1, integer > 0)

ARLI A-reference line number bounding the module at the
top (side 2, integer > 0)

ZRL2 Z-reference line number bounding the module at the
apex, on the right (side 3, integer > 0)

ARL2 A-reference line number bounding the module on the
bottom (side 4, integer > 0)

02 Angle between the negative r-direction and the vector
AB along ARL1; counterclockwise is positive

(-900 < 02 < 90', degrees)

0)4 Angle between the negative r-direction and the vector
DC along ARL2; counterclockwise is positive

(-900 < 04 < 900, degrees)

L Length of the projection of the module on the

Z-axis (real ; 0)

6 Angular width of the module (real, degrees)

RA, RD Radii at corners A and D (real > 0)
THA) THD, TH Thicknesses at corners A, D, and the apex BC

(real,> 0)

PA' PD' PBC Pressures at corners A, D, and the apex BC (real)

DIV 1, DIV2 Number of divisions along sides 1 and 2 (integer a 1)

M Material identification number (integer z 0)

IEQ Intersection equivalence flag (blank or 1)

Remarks:

1. The two Z-reference lines must have different numbers and may not

be reference lin s which have been equivalenced.

2. The two A-reference lines must have different numbers and may

not be reference lines which have been equivalenced.

3. The number of divisions must be the same for sides 2 and 4.

1.45

4. DIVI cannot be greater than DIV2.

5. This module may be used to model flat surfaces by setting

)2 = 04=0°"

6. If M is zero or blank, a default number of 1 will be provided.

7. RB and RC are automatically set to zero. RA must be defined.

If RD has not been defined, default is RA.

8. If TH is blank, default is TH If THD is blank, default is THA*

9. If PBC is blank, default is PA If PD is blank, default is PA'

10. Parameters Ri.oi,DIVi, L, and e which are passed from previously

generated modules will override any values specified for this module.

11. If 0,i < 00, then the above references to the directions left and

right must be reversed.

12. If 04 is blank, default is 02

13. If IEQ is 1, no intersection equivalences will be invoked for the

apex points. This flag must be set for one module, within a set of

CONENDR modules, which form a 360-degree cone. It should not be

set for other applications.

14. Modules which close a 360-degree cone (side 4 lies in the

e = 0 = 3600 plane) must specify a, even if it has been previously defined

by another module.

1.46

Input Data Card GEQU General Data Equivalence

Description: Defines equivalences between any data groups stored in

KEY-CHAIN storage.

Format and example:

1 2 3 4 5 6 7 8 9 10

GEQU ZRLD ARLD COMPD LEVELD ZRLI ARLI COMPI LEVELI +IDENT

GEQU 12 16 2 1 13 16 1 1

Field Contents

ZRLD Z-reference line used to define the dependent reference
point (integer > 0)

ARLD A-reference line used to define the dependent reference
point (integer > 0)

COMPD Data component at the dependent reference point which

is to be equivalenced (integer 1, 2, or 3)

LEVELD Data level, in KEY-CHAIN storage, of the data to be
equivalenced (integer > 0)

ZRLI Z-reference line used to define the independent
reference point (integer > 0)

ARLI A-reference line used to define the independent
reference point (integer > 0)

COMPI Data component at the independent data point
(integer 1, 2, or 3)

LEVELI Data level, in KEY-CHAIN storage, of the independent
data component (integer > 0)

Remarks:

1. See Section 1. 1. 5 for a discussion of equivalencing and Section

2.2.1 for a discussion of the management of KEY-CHAIN storage.

2. Data component numbers are defined:

1 - data along a Z-reference line

2 - data along an A-reference line

3 - data at an intersection point.

1.47

3. Notice that, once a data group is equivalenced, all higher levels

of data at that point are also equivalenced.

4. Up to five continuation cards are permitted for one logical card

(fields 2 through 9 have the same interpretation as on the first card).

There is no advantage in using continuation cards as opposed to

specifications on separate logical cards.

5. The user must insure that equivalence specifications are not

circular. There are no other restrictions regarding which data groups

may or may not be equivalenced.

1.48

Input Data Card IEQU Intersection Point Equivalence

Description: Defines equivalence between intersection points of A- and

Z-reference lines.

Format and example:

1 2 3 4 5 6 7 8 9 10

IEQU ZRLDI ARLD1 ZRLI1 ARLI1 ZRLD21ARLD2 ZRLI2 ARLI2 +IDENT1

IEQU 4 2 4 1 4 3 4 1 +Co1

1 2 3 4 5 6 7 8 9 10
+IDENT1 ZRLD3 ARLD3 ZRLI3 ARLI3 etc. I I
IEQU 4 4 4 3

Field Contents

ZRLDi, ARLDi Pair of Z- and A-reference line numbers defining a
dependent intersection point--one that will be
equivalenced to point ZRLIi, ARLIi (integer > 0).

ZRLIi, ARLIi Pair of Z- and A-reference line numbers defining an
independent intersection point--one that will be
used for grid point numbering and global reference
(integer > 0).

Remarks:

1. See Section 1. 1. 5 for a discussion of equivalencing.

2. The user must insure that equivalence specifications are not

circular. There are no other restrictions regarding which reference

line intersections may or may not be equivalenced.

1.49

Input Data Card ZEQU Z-Reference Line Equivalence

Description: Defines equivalence between Z-reference lines.

Format and example:

1 2 3 4 5 6 7 8 9 10
ZEQU ZRLD1 ZRLI1 ZRLD2 ZRLI2 ZRLD3 ZRLI3 etc.I
ZEQU 5 3 1 2

Field Contents

ZRLDi Dependent Z-reference line number that will be
equivalenced to ZRLIi (integer > 0).

ZRLIi Independent Z-reference line number that will be
used for numbering grid points and is equivalenced
to ZRLDi (integer > 0).

Remarks:

1. Maximum number of Z-reference lines is 39.

2. See Section 1. 1. 5 for a discussion of equivalencing.

3. The user must insure the equivalence specifications are not

circular. There are no other restrictions regarding which reference

lines may or may not be equivalenced.

1.50

2. PROGRAMMER'S INFORMATION

2.1 PROGRAM ORGANIZATION

2. 1. 1 General Structure

Using the data generator modules as a set of independent data

generation programs requires that two passes be made through the user's

data. The first pass scans the data to establish the mechanism necessary

for communication between modules. Internal identification tags are

assigned to the user's specifications, and storage areas are reserved

for information to be passed at module boundaries. After the first pass,

an interlude phase is entered which completes preliminary processing by

propagating specifications to undefined areas and assigning default values

to those quantities which are still undefined.

The second pass through the user's data, which is the actual data

generation pass, has two phases. The first phase generates data for

surface modules and the second phase generates all other data (primarily

from frame, boundary condition, and non-uniform load modules).

When the data generation has been completed, various data files are

merged onto one file which can be passed from the program as punched

cards, or as a tape or disk file to be analyzed by the NASTRAN program.

Computer plots of the model are then generated for user verification.

Table 2. 1 lists the subroutines corresponding to major operational

steps of the program and summarizes their primary functions. The

process completion indicator (seventh word in the OPTION common

block) is used by the subroutine ABORT to determine which storage areas

will produce meaningful dumps. With the exception of subroutine INSORT

this indicator is set after control has been returned from the subroutine

listed.

2.1

TABLE 2.1 - PRIMARY PROCESSING SUBROUTINES

Subroutine Process
Name Completion

Indicator Function

BEGIN 0

SETUP 10 Reads and interprets control cards, sets
processing options and page heading.

GOOGAN 20 Transforms NASTRAN format BULK DATA
to a FORTRAN readable format.

INSORT 30 First pass through data. Assigns internal
numbers and boundary storage areas.

40 Interlude processing. Completes storage
assignments, processes reference line
equivalences, assigns default values to
mesh specifications.

CUTUP 50 Begin second pass processing. Generates
data for surface modules.

FRAMIT 60 Complete second pass processing.
Generates data for frame, boundary
condition, and non-uniform pressure
loading.

ASSMBL 70 Merges generated data onto one file to be
plotted and passed on to subsequent
programs.

NASPLT (STOP) Generates computer plots of idealization.

2.1.2 Program Conventions

A few general programming conventions were adopted at the outset of

the development of the program. As work progressed, it became

evident that adopting other conventions would simplify future modifications

and additions. Some of the conventions have not been rigidly followed

2.2

but all current development follows these guides and existing code is

being changed to conform.

2. 1.2. 1 Headings and Pagination of Printed Output. All printed

output should be accounted for by the PRINT subroutine (Section 2.6.5).

This will insure proper pagination and will automatically print headings

and subheadings at the top of each page.

2.1.2.2 Error Messages. Each error is assigned a number by the

programmer and listed in the error message table (Section 3). Non-fatal

error messages and information messages are preceded by a blank line

and have the form:

"*******bbXXX1ZZZbb message text ... "

where XXX is the current step number as indicated by the seventh word

of the OPTION common block and ZZZ is the error message number.

Fatal error messages have two levels of severity. The most

severe (level 3) fatal errors are those which require that the application

be aborted without any further processing. It is the programmer's

responsibility to print a fatal message and return to the main program

with the value 3 stored in the NSR word of the OPTION common block.

Less severe (level 2) fatal errors are those which continue processing

for data checking purposes, but suppress NASTRAN execution. It is

the programmer's responsibility to print a fatal error message and to

store the value 2 in NSR word of OPTION. It is also the programmer's

responsibility to count all such errors occurring in his module and to

initiate a level 3 error termination if the number of errors exceeds the

error limit (value stored in the fourteenth word of OPTION). Fatal

error messages are preceded by a blank line and have the form

"*FATAL*bbXXXYZZZbb message text ... "

where XXX is the current step number as indicated by the seventh word

of the OPTION common block, Y is the severity level (2 or 3), and ZZZ

is the error message number.

2.3

2. 1.2.3 Structural Module Specifications. In order to standardize

input formats for the user and to simplify the global access to various

quantities required for mesh propagation, the following conventions

are proposed as standard basic specifications for structural modules:

All Modules

The first data field on the card will contain the module
name (always must be specified).

Surface Modules

• The second through the fifth data fields on the first card
will contain the identification numbers of the reference
lines defining the module (always must be specified).

The first four continuation cards will contain information
about the four (three) edges of the structural module.
The fifth field on each of the first four continuation cards

will contain the number of divisions which will be made
along one boundary of the module in establishing a finite
element mesh (optionally specified by automatic mesh
propagation by the program, or by assigned defaults).

* Provision should be made for absolute specification of the
coordinates of the intersections of the reference lines
bounding the module (usually obtained by the program as
propagated quantities from adjacent modules).

Solid Modules

* No recommendations at this time.

Stiffener, Boundary Condition, and Loading Condition Modules

The second data field will contain the identification

number of the reference line along which this stiffener is
positioned (always must be specified).
The third and fourth data fields will contain the reference

line identification numbers defining the starting and
ending points of the stiffener (a stiffener will be generated
along the entire length of the reference line, as defined
by surface or solid module specifications, if no starting
and ending points are specified).

2.4

2. 1. 2. 4 Subroutine Conventions. The only conventions established

for the writing of subroutines are:

FORTRAN non-standard returns should not be used;

all references to files should be symbolic, with the

f il e variables appearing in the subroutine calling arguments.

2. 1.2. 5 Communication between Modules. The program uses data

files as its primary method of communication. The accession of data

to be processed by each module and the transfer of output generated by

each module are accomplished using files. Necessary parameters and

flags are passed in the OPTION common block (Section 2.1.3). Global

geometric information is passed in the KEYCHN common block and is

accessed using the LOCKS and LOCKIT subroutines.

2. 1.2. 6 Standard Library Subroutines. A number of standard

library routines (SIN, ATAN, etc.) are used throughout the program.

Since these subroutines should be available as standard software

components on any computer that would accommodate the program, they

have not been listed in the "Subroutines Called" sections of the subroutine

descriptions.

2.1.3 Global Common Storage Areas

The program has two common areas which apply to all segments of

the program. One area called OPTION contains parameters which

control the execution of the various program parts. Table 2.2 describes

these parameters. The second area called SET is used only to pass

page heading and output titling inforn ition to the subprogram PRINT and

is described with that program in Section 2.6.5.

The OPTION area is initialized in subroutine SETUP from user control

card specifications (Section 2.3.1). An additional execution control card

OPTION(J) = K

permits the user to store the value K in the jth word of the OPTION

common area. A second execution control card,

2.5

TABLE 2.2 - OPTION COMMON AREAS

Word Acceptable
Index Values Function

1 1 Connection cards to be generated
0 No connection cards to be generated

2 1 PLOAD cards to be generated
0 No PLOAD cards to be generated

3 1 FORCE cards to be generated
0 No FORCE cards to be generated

4 1 SPC cards to be generated
0 No SPC cards to be generated

5 1 MAT1 cards to be generated if missing
0 No MATI cards to be generated if missing

6 0 Program decides which errors are fatal
1 All errors considered fatal

-1 No errors considered fatal

7 a0 Indicates the current phase of data generation
processing (See Section 2.1.1 for description)

8 1 Generated data to be punched on cards
0 Generated data not to be punched on cards

9 1 iNASTRAN run to be executed following data
generation run. Additional data cases will be
ignored.

0 No NASTRAN run to follow. Multiple data cases
will be processed.

10 Not Used

11 Ž0 Number of shell modules to be processed

12 0 Number of frame modules to be processed

13 20 Number of boundary condition modules to be
processed

14 L0 Maximum number of level 2 errors permitted per
processing step

50 Default

15 >10 Number of lines per page (including title and
heading lines)

55 Default

2.6

TABLE 2.2 - (continued)

Word Acceptable
Index Values Function

16 Ž0 Number of generated connection cards

17 a0 Number of generated GRID cards

18 a0 Number of loading cards generated

19 0 No data storage areas to be dumped by subroutine
ABORT

1 Data storage areas dumped in edited format by
subroutine ABORT

-1 Data storage areas dumped in unedited format by
subroutine ABORT

2 Data storage areas dumped in edited format by
subroutine ABORT following a fatal (level 3)
error. Default

20 >0 Number of words of a data storage area to be
dumped by subroutine ABORT when an unedited
dump is requested.

2000 Default

21 1 Maximum printing of error and information
messages

0 Minimum printing of messages

22 >0 NASTRAN rigid format number for data being
generated

23 >0 Maximum number of rigid formats available

12 Default

24 1 Structural plots to bE generated for this data case

0 No structural plots to be generated for this data
case

25 a25 Number of words in working OPTION common area
50 Default

OPTION(25)
+1 (NSR) 1 No errors detected at this point

2 Level 2 errors (conditionally fatal) detected at
this point

3 Level 3 errors (fatal) detected at this point

2.7

HIGH

SETOPT = LOW

permits the user to issue blanket option requests for debugging assistance.

Table 2.3 indicates OPTION common area changes produced by the

SETOPT card (the OPTION common area will be dumped by all calls to

subroutine ABORT, regardless of the control card specifications in effect).

TABLE 2.3 - OPTION COMMON CHANGES PRODUCED BY
THE SETOPT CARD

SETOPT = HIGH

OPTION Value
WORD

6 -1

14 100

19 1

20 500

21 1

SETOPT = LOW

OPTION
WORD ValueWORD

1 0

2 0

3 0

4 0

5 0

14 1

19 0

21 0

2. 8

2.1. 4 Program Overlay Structure

The data generator program operates on the CDC 6700 and CDC 6400

computers at NSRDC. The program has been compiled using the

FORTRAN Extended (FTN) compiler and executes from linked overlays

using the NASTRAN LINKEDITOR/LOADER. The program is divided

into two main segments: one for generating data and one for plotting the

generated model. Figures 2. 1, 2. 2, and 2.3 show the overlay control

cards for the main driving link and the two subordinate links, respectively.

LINKEDIT OUTFILE=DATGEN(S) PARAM(6) 15000

LIBRARY LIBA

LINK 0 *PROGRAM DRIVER
INCLUDE LIBA(SCRIBE)
INCLUDE LIBA(PRINT)
INCLUDE LIBA(PLOTDD)
INCLUDE LIBA(FLAGSV)
INCLUDE LIBA(SHFTIV)
INCLUDE LIBA(SHFT2V)
INCLUDE LIBA(ORAV)
ENTRY SCRIBE
END

Figure 2. 1 - Driver Link Overlay Control Cards

2.9

LINKI *DATA GENERATION LINK
INCLUDE LIBA(DATAGEN)
INCLUDE LIBA(BLKDATA(TYPE))
INCLUDE LIBA(SWITCH)
INCLUDE LIBA(ERRMSG)
INCLUDE LIBA(ABORT)
INCLUDE LIBA(LOCKS)
INCLUDE LIBA(LOCKIT)
INCLUDE LIBA(POOLZ Z)
INCLUDE LIBA(POOLIT)
INCLUDE LIBA(POOLPR)
INCLUDE LIBA(POOLDT)
INCLUDE LIBA(POOLPS)
INCLUDE LIBA(POOLDS)
INCLUDE LIBA(FETCH)
INCLUDE LIBA(FETCH1)
INCLUDE LIBA(STOW)
INCLUDE LIBA(STOW1)
INCLUDE LIBA(PURGE)
INCLUDE LIBA(DMPOOL)
OVERLAY A
INCLUDE LIBA(SETUP)
INCLUDE LIBA(MASQ)
INCLUDE LIBA(XRCARD)
INCLUDE LIBA(GOOGAN)
OVERLAY A
INC LUDE LIBA (INSORT)
INCLUDE LIBA(XTRACT)
INCLUDE LIBS(SPACE)
OVERLAY A
INCLUDE LIBA(ASSMBL)
OVERLAY A
INCLUDE LIBA(CUTUP)
INCLUDE LIBA(READS)
INCLUDE LIBA(REF)
INCLUDE LIBA(TERP)
INCLUDE LIBA(CONE)
INCLUDF LIBA(QUADS)
INCLUDE LIBA(PROPER)
INCLUDE LIBA(CONEND)
INCLUDE LIBA(TRI)
INCLUDE LIBA(CEPROP)
ENTRY DATGEN
END

Figure 2.2 - Data Generation Link Overlay Control Cards

2.10

LINK2 *STRUCTURE PLOTTING LINK
INCLUDE LIBA(NASPLT)
OVERLAY AA
INCLUDE LIBA(COORD)
INCLUDE LIBA(CORD12)
INCLUDE LIBA(FINDC)
INCLUDE LIBA(FINDG)
INCLUDE LIBA(SYS)
OVERLAY AA
INCLUDE LIBA(PLOT)
INCLUDE LIBA(GLABEL)
INCLUDE LIBA(XFRAME)
INCLUDE LIBA(MODEL)
INCLUDE LIBA(CENTRE) INCLUDE LIBA(ID4G)
INCLUDE LIBA(IDFRMV) INCLUDE LIBA(INTBCD)
INCLUDE LIBA(APRNTV) INCLUDE LIBA(LABLV)
INCLUDE LIBA(BNBCDV) INCLUDE LIBA(LINEV)
INCLUDE LIBA(CAMRAV) INCLUDE LIBA(LINRV)
INCLUDE LIBA(CHSIZV) INCLUDE LIBA(NONLNV)
INCLUDE LIBA(CNTCDC) INCLUDE LIBA(NXNYV)
INCLUDE LIBA(CNTIBM) INCLUDE LIBA(NXV)
INCLUDE LIBA(CTL4V) INCLUDE LIBA(PAGE40)
INCLUDE LIBA(DOTLNV) INCLUDE LIBA(PLOTV)
INCLUDE LIBA(ERMRKV) INCLUDE LIBA(POINTV)
INCLUDE LIBA(ERRLNV) INCLUDE LIBA(PRINTV)
INCLUDE LIBA(ERRNLV) INCLUDE LIBA(RITE2V)
INCLUDE LIBA(FORMV) INCLUDE LIBA(RITSTV)
INCLUDE LIBA(FRAMEV) INCLUDE LIBA(SCERRV)
INCLUDE LIBA(GRID1V) INCLUDE LIBA(SCLSAV)
INCLUDE LIBA(HOLDIV) INCLUDE LIBA(SETCIV)
INCLUDE LIBA(HOLLV) INCLUDE LIBA(SETMIV)

INCLUDE LIBA(TABLES)
INCLUDE LIBA(TABLIV)
INCLUDE LIBA(TABL2V)
INCLUDE LIBA(TABL3V)
INCLUDE LIBA(VCHARV)
INCLUDE LIBA(VECTRV)
INC LUDE LIBA(XAXISV)
INCLUDE LIBA(XMODV)
INCLUDE LIBA(XSCALV)
INCLUDE LIBA(INCRV)
ENTRY NASPLT
END

Figure 2.3 - Structure Plotting Link Overlay Control Cards

2.11

2. 1. 5 Program Execution

On the CDC computer the program can be executed using standard

procedures or the program can be executed from a LINKEDITOR

random overlay file. The acceptable forms of control cards for program

execution are listed in Table 2. 4.

TABLE 2.4 - SYSTEM CONTROL CARDS FOR PROGRAM EXECUTION

1. progname.

2. progname(input, output, punch, genout, pltout)

3. progname. ATTACH

4. progname(input, output, punch, genout, pltout)ATTACH

Forms 1 and 2 in the table are used when the program is stored on

a standard SCOPE operating system (sequential) file and forms 3 and 4

apply to LINKEDITOR random files. Forms 1 and 3 cause default file

names to be used for the interface with the program while forms 2 and

4 allow the user to override the default names. A description of the

program's external files is given in Table 2. 5.

TABLE 2.5 - DATA GENERATOR EXTERNAL FILES

Symbol Default

(Table 2. 4) Name Contents

progname No default File containing program

input INPUT Data cards read by program

output OUTPUT Printed listing from program

punch PUNCH Punched cards generated by program (a
copy of GENOUT)

genout GENOUT Generated NASTRAN card deck

pltout PLTOUT Plot file for SC 4020 plotter (tape file only,
written at 556 BPI density in S format)

2.12

The examples given below illustrate some typical applications

when the program is stored on the file CUTUP.

LABEL, PLTOUT, L=MYPLOTTAPE, D=HI, F=S, R.
(1) REQUEST, GENOUT, *PF.

CUTUP.
CATALOG, GENOUT, MYFILENAME, ID=1234567890.

LABEL, TAPE, L=MYTAPE,R, D=HY.
(2) CUTUP(,, TAPE)ATTACH

NASTRAN(GENOUT)ATTACH

(3) CUTUP(, NULL)
NASTRAN(GENOUT)ATTACH

In (1) the program is stored on a sequential file and the generated

data cards are to be stored on a permanent file called "MYFILENAME."

Plot information will be generated on the tape PLTOUT for SC 4020

plotting. In (2) the program is stored in random format, a copy of the

generated data (the normal punch copy) is to be stored on tape, and the

generation run will be followed by a NASTRAN run. In (3) the program

is stored on a sequential file, the printed listing is to be deleted, and a

NASTRAN run will follow.

2.1. 6 Execution Monitor Program - DATGEN

Function: To control the sequence of operations during a data

generation program run.

Common Blocks:

OPTION See Section 2. 1.3

KEYCHN See Section 2.2.2

TYPE Word Type Contents

1 integer Number of words in processing
control alphabet - 40

2-41 alphanumeric Processing control alphabet:
1,2,3, 4,5, 6, 7, 8, 9, 0, *,+, blank,
$, A,B,C, D, E, F, G, H,I,J,K, L,
M, N, O, P, Q, R, S, T, U, V,W, X,
Y,Z

2.13

Word Type Contents

42 integer Number of words in Bulk Read
Dictionary - 11

43-53 alphanumeric Bulk Read Dictionary; MAT1,
blank, MAT2, blank, MAT3, blank,
BE GI, NbBu, LKbb, ENDD, ATAb

54 integer Number of words in Bulk Write
Dictionary - 22

55-76 alphanumeric Bulk Write Dictionary: CBAR, blank,
PBAR, blank, CQUA, D2bb, PQUA,
D2bb, CTR1, A2bb, PTR1, A2bb,
PLOA, Dbbb, GRID, blank, SPCb,
blank, CORD,2Cbb, PLOT, ELbb

77 integer Number of words in "S"
Dictionary - 6

78-83 alphanumeric "S" Dictionary: CONE, blank, CONE,
NDbb, CONE, NDRb

84-87 alphanumeric Four words of "$ $ $ $"

88 integer Number of words in "F"
Dictionary - 4

89-92 alphanumeric "F" Dictionary: FRAM, Tbbb,
RING, Tbbb

93-98 alphanumeric Six words of "$ $ $ $"

99 integer Number of words in "B"
Dictionary - 2

100-109 alphanumeric Ten words of "$ $ $ $"

110 integer Number of words in "0"
Dictionary - 2

111-112 alphanumeric "0" Dictionary: $END, blank

113-120 alphanumeric Eight words of "$ $ $ $"

121 integer Number of words in "Q"
Dictionary - 6

122-127 alphanumeric "Q" Dictionary: ZEQU, blank,
AEQU, blank, IEQU, blank

Entry Point: DATGEN

Calling Sequence: Main Program

2.14

Subroutines Called: ABORT, ASSMBL, CUTUP, FRAMIT, GOOGAN,

INSORT, NASPLT, PLASSM, POOLIT, PRINT, SETUP

Files Defined:

File Number File Name Function

1 TAPE1 Scratch, transfer of data to NASPLT

5 INPUT User data to program

6 OUTPUT Printed listing and message file

7 PUNCH Punched card file

8 TAPE8 Scratch

9 TAPE9 Scratch

10 TAPE10 Scratch

11 TAPE11 Scratch

12 TAPE12 Scratch

13 TAPE13 Scratch

14 TAPE14 Scratch

15 TAPE15 Scratch

16 GENOUT Generated card image file

48 PLTOUT Structural plot file

Program Messages:

Number Level Text

40 1 END OF APPLICATION

41 3 EXECUTION OF NASTRAN SUPPRESSED
DUE TO ABOVE ERRORS

Method: DATGEN is a driver program which calls the various

functional subroutines which make up the data generator. The value of the

NSR word of the OPTION common block is checked to determine whether

processing should continue after each functional step. The NSR word

is also checked at the completion of processing for each data case to

determine whether it is permissible to begin a structural analysis.

Multiple data cases will be processed unless the ninth word of the OPTION

2.15

common block indicates that an analysis step follows this data case.

Remarks:

1. When the program was subdivided into several overlay levels,

a dummy driver program (SCRIBE) was added to call the DATGEN and

NASPLT overlays; however, DATGEN retains the sequence control as

described.

2.2 DATA STORAGE

2.2.1 Storage Policy

In the development of the program an attempt has been made to store

all generated data on external files as it is produced and to retain in

core storage only the key information required for communication

between modules. Other efforts have been made to conserve core storage

and to manage variable length tables used by the program. Two core

data management systems have been developed: the KEY-CHAIN data

management technique for intermodule communication, and the POOLIT

technique for managing tables and lists. Although POOLIT is an in-core

storage scheme, it has been coded so that a paged table technique (using

random disc storage) could be substituted to further reduce storage

requirements without extensive program changes.

2.2.2 KEY-CHAIN Data Storage Method

KEY-CHAIN data storage is used to pass information among modules

within a structure. It is also an integral component of the automatic

mesh propagation feature of the program. This data storage method is

constructed around a tree data structure with a directory to the data

which is indexed by pairs of identification numbers of intersecting

reference lines.

During the first pass through the user's data a basic amount of

storage in the CHAIN array is allocated to store the coordinates of each

grid point along the edges). The corner grid points are assigned space

2.16

independently to resolve the problems which arise because they belong

to two edges. Edges which are common between two or more modules

receive only one allocation. At the first reading of a user's data

record the number of grid points along the edge of a module will not

be defined if the user is expecting the mesh density to be propagated

by the program. In this event a zero length allocation is made in the

CHAIN array (pointer only) and the final assignment will be made during

interlude processing after the first pass through the data.

In the course of data generation additional space may be required

by modules which pass other information in addition to the coordinates

of boundary grid points. The original allocation is referred to as the

first level of storage and each subsequent allocation receives a level

number which is one greater than the previous allocation. After the

allocation is made, all information is stored and retrieved using this

level number.

The index is a rectangular array (KEY) of three word blocks. The

(i, j)th block in this array refers to data associated with the intersection

of the ith z-reference line and the jth A-reference line. The first word

in each block points to the level 1 storage region in the CHAIN array for

the edge along a Z-reference line, the second to a storage region for

an edge along an A-reference line, and the third to a storage region for

the intersection of two reference lines. Figures 2.4 and 2. 5 illustrate

this method. Notice that there are multiple levels of data both along

ZRL No. 1 and at the intersection and that allocation has been deferred

along ARL No. 1.

Subroutines available to assist in the management of data stored

using this method include XINIT, SPACE, LOCKIT, LOCKS, and

DMKYCH. XINIT is an entry point in subroutine XTRACT which

initializes KEY-CHAIN storage. Subroutine SPACE performs level 1

assignments of CHAIN storage space. Subroutine LOCKIT is used to

2.17

ZRL 1 ZRL 2

I'////r4 "tI
ARL 1 -I-7 = + -0

STRUCTURAL I
MODULE III

I -

-- j* .. -" 1 r" -1

Figure 2.4 - Boundary Data Storage Associated with
the Intersection of Two Reference Lines

locate a data block in the CHAIN array by referencing a pair of

reference line indices and level numbers. Subroutine LOCKS is a

specialized version of LOCKIT for referencing level 1 data only. Dumps

of the KEY-CHAIN storage area can be produced by calling DMKYCH

entry point in subroutine DMPOOL. All KEY-CHAIN arrays and

parameters are located in the KEYCHN common block.

2.2.3 KEY-CHAIN Utility Program Specifications

Common Block:

COMMON/KEYCHN/KEY(3, 40, 19), CHAIN(3, 1500), LCHAIN,

KCHAIN, KZ, KA, KZMAX, KAMAX, IEXTZ(2, 40), IEXTA(2, 19), KQZ, KQA,

IEQZ(2, 40), IEQA(2, 19), THETA(19)

2.18

ZRL INDICES (INTERNAL SET)

1 2 3 4 5 ...
2 9 22 36 51 66

Z 1 6 1 28 44 60 69

w(r7 20 34 49 64 73 KEY
-- - - INDEX

102 ... ARRAY2 1o1 2\l,
12

POINTER TO CHAIN FOR DATA AT INTERSECTION OF
ZRL NO. 2 AND ARL NO. 1.
POINTER TO CHAIN FOR DATA ALONG ARL NO. 1 FROM ZRL NO. 2.
POINTER TO CHAIN FOR DATA ALONG ZRL NO. 2 FROM ARL NO. 1.

IKEYb 41 data data data -1 2 datan
1 1 CHAIN

ICHNb rIl data data data -1 1 data ARA

ISTOF, k I data data data m 0 data

* DATA BLOCK HEADER

k _ k+l m m+l n

2 data 6 data Idata 3

-- 1 data
-1 data data1

@ data 0 data data L pE4 •

POINTER TO LEVEL 3 SPOINATER TO LEIE S N I

Figure 2.5 - KEY-CHAIN Data Storage Organization

2.19

Subroutines:
Name Function

DMKYCH Dumps KEY-CHAIN storage areas

LOCKIT Basic routine which assigns KEY-CHAIN storage
space and locates stored data

LOCKS Specialized form of LOCKIT for level 1 data

SPACE Assigns level 1 storage space and stores pointers
for mesh propagation with zero-length requests

XINIT Initializes KEY-CHAIN storage areas

Tables and Storage Areas:

CHAIN Chained storage area

KEY First level index to chained storage area

IEXTZ Internal-external correspondence table for Z-
reference lines

IEXTA Internal-external correspondence table for A-
reference lines

IEQZ Equivalence correspondence table for Z-reference
lines

IEQA Equivalence correspondence table for A-reference
lines

THETA Not used

LCHAIN Maximum number of three-word blocks available
in the CHAIN area

KCHAIN Current number of three-word blocks being used in
the CHAIN area

KZMAX Maximum number of Z-reference lines permitted
per application

KAMAX Maximum number of A-reference lines permitted
per application

KZ Current number of Z-reference lines defined in this
application

KA Current number of A-reference lines defined in this
application

KQZ Number of entries in IEQZ

KQA Number of entries in IEQA

2.20

Miscellaneous Information:

Format of Data Lists in Chain Storage

Block

Number word 1 word 2 word 3

n IDIV ICOORD LEVPTR

n+1 DATA1 DATA2 DATA3

n+IDIV- 1 DATA1 DATA2 DATA3

Symbol Definition

n Beginning block number of this list

IDIV Number of blocks in this data list. IDIV=-1 during
first pass if no storage has been allocated for this
list (because its length is not known). If
IDIV < -1 after first pass, the absolute value of
IDIV points to the block number of a new area
where this list now resides; however, the KEY
index should reflect such a change and this pointer
should not be required once all storage has been
resolved. (For level 1 lists this will be the number
of divisions along the segment of the reference line
for which data is being stored in this list.)

ICOORD Status indicator for data in this list. (If ICOORD=-l,
the list is empty. For level 1 lists this will be the
coordinate system identification for the grid point
coordinates stored in this list.)

LEVPTR Pointer containing the block number of the data list
at the next level in this chain. LEVPTR=O indicates
that this is the last data list in the chain.

DATAi Data item (for level 1 lists this is the i-th coordinate
locating the grid point being stored).

Format of KEY Index:

See Figure 2. 5.

2.21

Subroutine DMKYCH (Entry point in Subroutine DMPOOL)

Function: Dumps core storage areas associated with the KEY-CHAIN

data management method.

Common Blocks: OPTION, SET, KEYCHN

Entry Point: DMKYCH

Calling Sequence: CALL DMKYCH(IFORM)

IFORM Dump format flag.

If IFORM > 0, dump will be restricted to regions

in use as defined by the KEYCHN parameters.

CHAIN array will be dumped with one 3-word block

per printed line in the order defined by the KEY

index. Thus KEY-CHAIN storage may be viewed

as a three-dimensional array of variable length

data groups. In the dump a data group which is n

blocks long is printed as n lines, each preceded

by the triple (component, ZRL, ARL). Only level 1

storage is dumped with this format.

If IFORM = 0, full sequential dumps of all parameters

and arrays associated with KEY-CHAIN data

storage will be printed.

If IFORM < 0, full sequential dumps of all parameters

and arrays associated with KEY-CHAIN data storage

will be printed except that the CHAIN array will

be limited to -IFORM printed lines.

Subroutine Called: PAGE

Error Messages: None

Remarks:

1. With IFORM 0 data group dumps are limited to 100 words

per block to guard against runaway printing in the event that block

lengths have been destroyed.

2.22

Subroutine LOCKIT

Function: Performs general data management tasks for data in

KEY-CHAIN storage. Assigns CHAIN storage space for all

levels of data. Locates data referenced by reference line

coordinates component number and level number.

Common Blocks: OPTION, KEYCHN, POOLTB

Entry Point: LOCKIT (Applicable for all levels of data.)

Calling Sequence: CALL LOCKIT(IZRL, IARL, IZA, LEVEL, IDIV,

LOC, IE Z, IEA)

IZRL, IARL Reference line coordinates of requested data group

(internal numbers, integer > 0)

IZA Data component indicator; integer;

if 1, data along ZRL

if 2, data along ARL

if 3, data at intersection of ZRL and ARL

LEVEL Data group level number (integer > 0)

IDIV The number of 3-word blocks in this data group

including one header block (integer). If -1,

only header will be (has been) allocated. A

call with IDIV=0 indicates a data location request.

LOC Pointer to first word of header for data group

defined by IZRL, IARL, IZA, and LEVEL

(integer - 0). A return with LOC=0 indicates

that no space has been assigned for the data

group.

IEZ, IEA Identification numbers to which IZRL and IARL

have been equivalenced. These values will be

set only after interlude processing is complete

(when the seventh word of OPTION is Ž40).

Entry Point: LOCKS (Applicable to level 1 data only.)

2.23

Calling Sequence: CALL LOCKS(IZRL, IARL, IZA, IDIV, LOC, IEZ, IEA)

Arguments have same definition as for LOCKIT.

Subroutines Called: ABORT, FETCH, POOLPS, PRINT

Error Messages:

1. A level 3 error message number 50 will be issued and the

program will terminate if CHAIN storage is exceeded. Either the length

of the CHAIN array must be increased or the problem size reduced. An

estimate of the total CHAIN space required for the job can be made from

the reference line coordinates of the requested data group.

Remarks:

1. On CDC 6700 entry point LOCKS is a separate subroutine

which calls LOCKIT with LEVEL=1.

2. POOL storage is used to store equivalences for intersection

point data. This data group is located by the pointer in NDIREC(3) and

is required throughout the processing of one job.

2.24

Subroutine SPACE

Function: To manage the assignment of level 1 data storage in the

CHAIN array.

Common Blocks: OPTION, KEYCHN

Entry Point: SPACE

Calling Sequence: CALL SPACE(IZRL, IARL, IDIV, IZA, MZRL, MARL)

IZRL, IARL Reference line coordinates of requested boundary

region (internal numbers)

IDIV Number of 3-word blocks requested, including one

header block. If less than 1, indicates that

assignment is to be deferred until interlude

processing phase. In this case one 3-word

header block is assigned and a length of -1 is

entered in header block.

IZA Component indicator; if 1, boundary along ZRL

if 2, boundary along ARL

if 3, intersection point

MZRL, MARL Reference line coordinates of the boundary of the

module which is opposite the requested region.

Used only if nonzero and IDIV=-I. These

coordinates facilitate mesh propagation during

interlude processing. Applicable only to

components 1 and 2.

Subroutines Called: ABORT, LOCKS

Error Messages:

1. A level 2 error message number 51 will be issued if, in

processing a request for space, the length of the requested data group

does not match the length in an earlier request.

Remarks:

1. If more than one request for space is made for a particular

data group and the specifications are consistent, a return is made to the
calling program with no action taken.

2.25

Subroutine XINIT (Entry point in Subroutine XTRACT)

Function: To initialize the KEY-CHAIN storage area

Common Blocks: KEYCHN

Entry Point: XINIT

Calling Sequence: CALL XINIT

Remarks:

See Section 2.2.3 for a description of the KEYCHN common block.

2.26

2.2.4 POOLED Data Storage Method

POOLED data storage is used to store tables and lists whose lengths

vary widely with different program applications. This method is

particularly convenient for tables which exist for just one phase of the

data generation processing since the space which they occupy can be

purged and later reassigned.

The POOL storage area is divided into constant length blocks, called

records. A list is kept of the records which are currently empty in the

pool and available for use. The first two words of each pool record are

pointers used in the management of the POOL. The first pointer indicates

the status of the record; either unused, in use as the first record in

a data group, or in use indicating the address of the last previous record

in the group. The second word points either to the next available word

in the record, if the record is partially filled with data, or to the next

succeeding record, if this record is full.

Utility routines are provided as entry points to subroutine POOLIT

which permit the user to store data items, to store data pairs, to

search lists of data items and data pairs, to retrieve items serially,

to replace items in a list, and to purge all data groups or individual data

groups. Dumps of the POOL storage area can be obtained in either an

unsorted format or sorted serially by data group using subroutine

DMPOOL.

2.2. 5 POOLED Utility Program Specifications

Common Blocks: COMMON/POOLTB/IPDEX(50),IPOOL(1100),

IDEEP, ILENP, IMAX, IPOINT, NDIREC(10), LDIREC

IPDEX List of available records in the pool

IPOOL Data storage array

IDEEP Maximum number of records in the pool

ILENP Length of a pool record (including two preceeding

pointers)

2.27

IMAX Length of the IPOOL array

IPOINT Pointer to next available record in IPDEX

NDIREC Directory array of pooled data groups

LDIREC Length of NDIREC array

COMMON/OPTION/ Refer to Section 2. 1. 3

Subroutines:

Name Function

DMPOOL Dumps POOLED storage areas

FETCH Retrieves data stored in POOLED storage

FETCH1 Streamlined version of FETCH

PLDATA Sequentially stores one data word in POOLED

storage

PLPAIR Sequentially stores a pair of data words in

POOLED storage

POOLDT Specialized version of PLDATA

POOLDS Searches for a data word in POOLED storage

POOLIT Initializes POOLED data storage parameters

POOLPR Specialized version of PLPAIR

POOLPS Searches for a pair of data words in POOLED

storage

PURGE Purges a data group from POOLED storage

STOW Replaces a word stored in POOLED storage

STOW1 Streamlined version of STOW

2.28

Subroutine DMPOOL

Function: Dumps core storage areas associated with the POOLED

data management method.

Common Blocks: OPTION, SET, POOLTB

Entry Point: DMPOOL

Calling Sequence: CALL DMPOOL(IFORM)

IFORM Dump format flag.

If IFORM > 0, edited dumps will be produced

listing each data group as defined in the NDIREC

array in sequential order. All auxiliary parameters

and arrays will be dumped in full with identifying

annotation.

If IFORM = 0, full sequential dumps of all

parameters and arrays associated with POOLED

data storage will be printed.

If IFORM < 0, full sequential dumps of all

parameters and arrays associated with POOLED

data storage will be printed except that the pool

array will be limited to -IFORM printed lines.

Entry Point: DMKYCH (Described in Section 2.2.3.)

Subroutines Called: FETCH, PAGE

Error Messages: None.

2.29

Subroutine FETCH (Entry point to Subroutine POOLIT)

Function: Retrieves data words stored in POOLED storage.

Common Blocks: POOLTB, OPTION

Entry Point: FETCH

Calling Sequence: CALL FETCH(IA, IDENT, LOCSET, LOCP)

IA Data word retrieved by FETCH

IDENT Pointer to the particular data group to be referenced; set

by first call to PLDATA, PLPAIR, POOLDT, or

POOLPR (if IDENT :5 0, program will return with no

processing)

LOCSET Pointer, within the data group, to the data word to be

retrieved

LOCP POOL index of the data word retrieved (if no data is

stored for the requested data item, LOCP is set to zero)

Entry Point: FETCHI

Calling Sequence: CALL FETCH1(IA, LOCP)

IA Data word to be retrieved by FETCHI

LOCP POOL index of the data word to be retrieved

Subroutines Called: None.

Error Message:

Number 105 The word IDENT does not point to a legal data group

in POOL storage.

Remarks:

1. Entry point FETCH is called to retrieve data by its sequential

position in the data group (as specified by LOCSET).

2. Entry point FETCH1 is called to retrieve data using the POOL

index of the data word (as specified by LOCP). The index value must

have been obtained from a previous call to FETCH, STOW, PLDATA,

PLPAIR, POOLDS, or POOLPS. This method of data retrieval is faster

than using the FETCH code and should be used when applicable.

2.30

Subroutine PLDATA (Entry point in Subroutine POOLIT)

Function: Stores data sequentially in POOLED storage, one word per

call.

Common Blocks: OPTION, POOLTB

Entry Point: PLDATA

Calling Sequence: CALL PLDATA(IA,IDENT, LOCSET, IPLOC)

IA Data word to be stored

IDENT Pointer to a particular data group; set by program on

first call; referenced by program on all subsequent

POOLED calls

LOCSET Data group index of word stored

IPLOC Storage mode indicator; a zero value indicates a

normal mode request (the last PLDATA, PLPAIR,

POOLDT, or POOLPR operation was not necessarily

a call to store data in this group; IPLOC will be

set to the location of the next available row in

POOL storage by the program for subsequent

accelerated mode requests); a non-zero value

indicates an accelerated mode request (the last

PLDATA, PLPAIR, POOLDT, or POOLPR

operation stored data in this group and thus

IPLOC has been set to the location of the next

available row in POOL storage)

Entry Point: POOLDT

Calling Sequence: CALL POOLDT(IA,IDENT,IPLOC)

Subroutine Called: ABORT

Error Messages:

Number 100 POOL storage space exceeded

Number 108 Illegal IDENT in call

2.31

Remarks:

1. The first call to this subroutine will initialize the POOLED

storage area if not already initialized.

2. Unless the word IDENT is located in the array NDIREC of

common block POOLTB, the data group will not be dumped by calls

to DMPOOL with IFORM > 0.

3. Entry point POOLDT is used whenever the data group index

is not required as the data is being stored.

2.32

Subroutine PLPAIR (Entry point in Subroutine POOLIT)

Function: Stores pairs of data words sequentially in POOLED

storage, one pair per call.

Common Blocks: OPTION, POOLTB

Entry Point: PLPAIR

Calling Sequence: CALL PLPAIR(IA, IB, IDENT, LOCSET, IPLOC)

IA, IB Pair of words to be stored

IDENT Pointer to a particular data group; set by program on

first call; referenced by program on all subsequent

POOLED calls.

LOCSET Data group index of the first word of the pair stored

IPLOC Storage mode indicator; a zero value indicates a

normal mode request (the last PLDATA, PLPAIR,

POOLDT, or POOLPR operation was not

necessarily a call to store data in this group;

IPLOC will be set to the location of the next

available row in POOL storage by the program for

subsequent accelerated mode requests); a non-zero

value indicates an accelerated mode request (the

last PLDATA, PLPAIR, POOLDT, or POOLPR

operation stored data in this group and thus

IPLOC has been set to the location of the next

available row in POOL storage)

Entry Point: POOLPR

Calling Sequence: CALL POOLPR(IA,IBIDENT,IPLOC)

Subroutine Called: ABORT

Error Messages:

Number 100 POOL storage space exceeded

Number 108 Illegal IDENT in call

2.33

Remarks:

1. The first call to this subroutine will initialize the POOLED

storage area if not already initialized.

2. Data stored in a data group using PLPAIR or POOLPR

should not be intermixed with data stored using PLDATA or POOLDT

unless precautions are taken to insure that there are an even number

of items in the group before using POOLPS to retrieve data.

3. Unless the word IDENT is in the array, NDIREC, of

common block POOLTB, the data group will not be dumped by calls

to DMPOOL with IFORM > 0.

4. Entry point POOLPR is used whenever the data group index

is not required as the data are stored.

2.34

Subroutine POOLDS (Entry point in Subroutine POOLIT)

Function: Searches for a data word stored in POOLED storage.

Common Blocks: OPTION, POOLTB

Entry Point: POOLDS

Calling Sequence: CALL POOLDS(IA, IDENT, LOCSET, LOCP)

IA Data word to be located

IDENT Pointer to a particular data group; set by program when

PLDATA, PLPAIR, POOLDT, or PQOLPR first called
LOCSET Location returned by program (if = 0, no match

has been found for the word in the specified data

group; if > 0, LOCSET is the data group index

of the word)

LOCP POOLED index of the data word (set only if match

is found)

Subroutine Called: ABORT

Error Messages:

Number 101 IDENT out of range in POOL search

Number 102 IDENT specified does not point to the beginning

of a data group

Number 103 Improper identifier in second word of a pool

record header.

Remarks:

1. If called with IDENT = 0, indicating a null data group, program

returns with no action.

2. LOCP can be used with subroutines FETCHI and STOW1 for

rapid access to the POOLED data.

2.35

Subroutine POOLIT

Function: Initializes POOLED data storage parameters, purging

all previously stored data.

Common Blocks: POOLTB, OPTION

Entry Point: POOLIT

Calling Sequence: CALL POOLIT

Subroutines Called: None.

Error Messages: None.

Remark:

POOLED data storage is self-initializing if it is first used by

entry point PLDATA, PLPAIR, POOLDT, or POOLPR. POOLIT

restores the system to this initial state.

2.36

Subroutine POOLPS (Entry point in Subroutine POOLIT)

Function: Searches for a data pair stored in POOLED storage.

Common Blocks: OPTION, POOLTB

Entry Point: POOLPS

Calling Sequence: CALL POOLPS(IA,IB,IDENT, LOCSET, LOCP)

IA,IB Pair of data words to be located

IDENT Pointer to a particular data group; set by program

when PLDATA, PLPAIR, POOLDT, or POOLPR

first called

LOCSET Location returned by program (if = 0, no match has

been found for the pair in the specified data group;

if > 0, LOCSET is data group index of the first

word of the pair)

LOCP POOLED index of the first word of the pair (set

only if match is found)

Subroutine Called: ABORT

Error Messages:

Number 101 IDENT out of range in POOL search

Number 102 IDENT specified does not point to the beginning of

a data group

Number 103 Improper identifier in second word of a POOL

record header

Number 104 Search for pair attempted on a data group with

an odd number of entries

Remarks:

1. Data group must have an even number of entries to use this

program.

2. If called with IDENT = 0, indicating a null data group, program

returns with no action.

3. LOCP can be used with subroutines FETCH1 and STOW1 for

rapid access to the POOLED data.

2.37

Subroutine PURGE (Entry point to Subroutine POOLIT)

Function: Purges a data group from POOLED storage and releases

the space for future assignment.

Common Blocks: POOLTB, OPTION

Entry Point: PURGE

Calling Sequence: CALL PURGE(IDENT)

Subroutines Called: None.

Error Messages:

Number 107 The word IDENT does not point to a legal data

group in POOL storage.

2.38

Subroutine STOW (Entry point to Subroutine POOLIT)

Function: Replaces data words stored in POOLED storage.

Common Blocks: POOLTB, OPTION

Entry Point: STOW

Calling Sequence: CALL STOW(IA,IDENT, LOCSET, LOCP)

IA Data word to be stored by STOW

IDENT Pointer to particular data group to be referenced

LOCSET Pointer, within data group, to data word to be stored

LOCP POOL index of the data word stored (LOCP is set

by the program; if no data were previously defined

for the location requested, LOCP is set to zero)

Entry Point: STOW1

Calling Sequence: CALL STOW1(IA, LOCP)

IA Data word to be stored by STOW1

LOCP POOL index of the data word to be stored

Subroutines Called: None.

Error Messages:

Number 106 The word IDENT does not point to a legal data

group in POOL storage.

Remarks:

1. A data word must first be established using PLDATA, PLPAIR,

POOLDT, or POOLPR before data can be replaced with STOW or STOW1.

2. Entry point STOW is called to store data by its sequential

position in the data group (as specified by LOCSET).

3. Entry point STOW1 is called to store data using the POOL

index of the data word (as specified by LOCP). The index value must

have been obtained from a previous call to FETCH, STOW, PLDATA,

PLPAIR, POOLDS, or POOLPS. This method of data retrieval is faster

than using the STOW code and should be used when applicable.

2.39

2.2.6 File Management

FORTRAN defined files are used exclusively throughout the data

generator program. For flexibility all logical unit assignments are

made in the main program (with the exception of the plotting routines).

As mentioned above, all generated data card images are stored on

external files as generated. These card images are distributed over

several files to obtain a deck in a roughly sorted order. A utility

subroutine, ASSMBL, can be used to merge any number of these files

onto one output file (see Section 2.6.2).

2.3 FIRST PASS AND INTERLUDE PROCESSING PROGRAMS

2. 3. 1 Subroutine SETUP (Initialization and Execution Control Card
Processing)

Function: Permits the user to select the desired functions of the

Data Generator using a freely-formatted control language. This

module interprets the user's statements and sets appropriate

flags in the control common block, OPTION, permitting the user

to select various execution options.

Entry Point: SETUP

Calling Sequence: CALL SETUP(INPT,IPRT, IOUT)

INPT FORTRAN logical unit number of the card reader

IPRT FORTRAN logical unit number of the line printer

IOUT FORTRAN logical unit number of the device on which

the generated output is written

Common Blocks:

SET Described in Section 2.6.5

OPTION Described in Section 2.1.3

Subroutines Called: ERRMSG, PRINT, SWITCH, XRCARD

Error Messages:

Number Level Text

001 2 UNRECOGNIZABLE CARD

2.40

Number Level Text

002 2 SYNTAX ERROR ON TITLE CARD

003 2 SYNTAX ERROR ON CONTROL CARD

004 2 INVALID OPTION SPECIFIED ON CONTROL
CARD

005 2 NUMBER OUT OF RANGE ON CONTROL CARD

006 3 END-OF-FILE ENCOUNTERED

Remarks:

1. Figure 2. 6 shows the order of the cards processed by SETUP.

All Class I cards are reproduced exactly as they appear with copies

sent to both the generated output file and the printer. All Class II

cards, with the exception of comment cards, are interpreted and

reproduced with "?$?" appended at the left on the generated output file and

the printer. Comment cards, which begin with a "$", are treated in

the same manner as Class I cards. All cards from the input file will be

listed with a running card count printed on the left.

2. Parameters not explicitly specified by Execution Control

Cards are assigned the default values described in Section 2.1.3.

3. Unformatted style data cards are read with the aid of

subroutine XRCARD, a NASTRAN subroutine which is described in the

NASTRAN Programmer's Manual, Section 3. 4. 19. Subroutine MASQ

is library routine MASK which has been renamed to avoid name

conflicts in subroutine XRCARD.

"The NASTRAN Programmer's Manual, " edited by Frank J. Douglas,

NASA SP-223, September 1970.

2.41

First Card

Class I cards (not interpreted)

"ID" card

Control Commands,
e.g., "TITLE" card

•Class II cards (interpreted by data
.' generator)

"SEND" card

* Class I cards (not interpreted)

"BEGIN BULK" card

Figure 2. 6 - Order of Cards in Execution Control Deck

2.42

2.3.2 Subroutine INSORT (Bulk Data Card Interpreter)

Function: Controls all first pass and interlude processing of the

bulk data. First pass functions performed by this subroutine

include:

* Calling subroutine XINIT to initialize KEY-CHAIN storage

Reading all bulk data cards (from card following

BEGIN BULK card through ENDDATA card)

* Calling subroutine XTRACT for first pass processing of

shell geometry cards

* Calling subroutine EQV to process equivalence cards

"* Writing Phase I data on file NOUT2 with numeric key to

data type and input card number appended (XTRACT has

replaced the reference line ID's with an internal ID

number on Phase I cards)

"* Writing Phase II data on file NOUT3 with numeric key to

data type and input card number appended (no change

has been made to the reference line ID's on Phase II cards)

"* Writing all bulk data cards following $END (to but not

including the ENDDATA card) to file NSOUT

Interlude processing is initiated by calling subroutine XTREND.

For program development purposes the file NOUT2 is rewound

and a call to subroutine RECON is made for each logical card on

NOUT2. RECON reconstructs the finite element mesh density

specifications from KEY-CHAIN storage reflecting assignments

and changes made during the interlude. These cards are

reconstructed and printed for programmer information only.

Entry Point: INSORT

Calling Sequence: CALL INSORT(INUNIT, NOUTI, NOUT2, NOUT3,
NSOUT)

2.43

INUNIT FORTRAN file number of input file containing

bulk data (with right-adjusted numeric fields) -

DO NOT REWIND

NOUTI FORTRAN file number of output file on which "MAT"

cards will be written

NOUT2 FORTRAN file number of output file on which

processed Phase I bulk data will be written

NOUT3 FORTRAN file number of output file on which

processed Phase II bulk data will be written

NSOUT FORTRAN. file number of output file for card images

which are to be passed to the generated data file

without processing

Common Blocks:

OPTION Execution control parameters

RECORD Shared storage for reading and writing bulk data

SET Titling information for subroutine PAGE

TYPE INDEX of card names for input and output

Subroutines Called: ABORT, EQV, ERRMSG, PRINT, RECON,

SWITCH, XINIT, XTRACT, XTREND

Error Messages:

Number Level Text

011 2 REJECTED DATA (invalid card in BULK

DATA deck)

012 3 I/O ERROR IN SUBROUTINE INSORT

WHILE READING BULK DATA CARD

XXX (XXX is the card number counting

from the first BULK DATA card)

013 3 PROGRAM TERMINATED DUE TO ERROR

COUNT IN SUBROUTINE INSORT

2.44

2. 3. 3 Subroutine XTRACT (Global Data Processing)

Function: Performs all first pass and interlude functions of the

data generator and is called only by subroutine INSORT.

KEY-CHAIN storage is initialized in the program area associated

with entry point XINIT.

In the program area associated with the entry point

XTRACT the first scan of a shell data card is made. Here the

assignment of sequential internal identification numbers to the

reference line ID's is made along with the assignment of storage

space for eight boundary areas of the module being processed

(four corners and four sides). A call to subroutine SPACE

reserves the region of CHAIN storage required for one boundary

area.

The program area associated with entry point EQV

processes cards indicating the equivalence of reference line

identification numbers. As these cards are encountered, the

equivalence information is retained (in terms of external

reference line ID's) for processing at the interlude between

passes by subroutine XTREND. Processing terminates whenever

a zero field is encountered or when the fifieth field has been

processed.

Associated with the entry point XTREND are most of the

tasks which must be completed during the interlude after the

first pass through the data. This region probably contains the

most tedious logic to be found in the program. The primary

functions performed at this point are:

Updating the correspondence tables between internal

and external reference ID's to reflect equivalences
Updating the KEY area to reflect equivalences

Assigning storage space to those boundaries for which

the user indicates some default value is to be used.

This results in the propagation of the grid point

2.45

mesh to unspecified areas of the model.

The program area associated with entry point RECON

has been added to facilitate development of the interlude

processing by XTREND. After the interlude RECON operates

on logical input cards, reconstructing the finite element mesh

requests from KEYCHAIN storage for manual comparison

with the cards as input by the user.

Common Blocks: KEYCHN, SET, OPTION, RECORD

Entry Point: EQV

Calling Sequence: CALL EQV

Entry Point: RECON

Calling Sequence: CALL RECON

Entry Point: XINIT

Calling Sequence: CALL XINIT

Entry Point: XTRACT

Calling Sequence: CALL XTRACT

Entry Point: XTREND

Calling Sequence: CALL XTREND

Subroutines Called: ERRMSG, FETCH, LOCKS, POOLPR, PRINT,

PURGE, SPACE, STOW, STOW1

Error Messages:

Number Level Entry Point Text

020 2 XTRACT RL IS ZERO OR NEGATIVE OR

EXCEEDS MAXIMUM NUMBER

PERMITTED ON BULK DATA

CARD XXX. XXX is sequence

number printed with the listing

of the data cards.

2.46

Error Messages (cont'd):

Number Level Entry Point Text

021 2 XTREND AN EQUIVALENCE REFERENCES

THE NON-EXISTENT XXX YRL.

REFERENCES IGNORED. XXX is

the reference line number and Y is

either Z or A indicating the

orientation of the line.

022 2 XTREND EQUIVALENCE CONFLICT AT YRL

XXX AND YRL XXX. FIRST

SPECIFICATION USED. XXX is a

reference line number and Y is

either Z or A indicating the

orientation of the line.

023 2 XTREND NON-EXISTENT RL REFERENCED

IN THE XXX-TH PAIR OF INTER-

SECTION EQUIVALENCES. XXX is

sequence number of the inter-

section equivalences as encountered.

024 1 XTREND THE NUMBER OF DIVISIONS HAS

NOT BEEN SPECIFIED FOR SIDE

ZZZ AAA ALONG THE YRL.

DEFAULT IS ONE DIVISION. ZZZ

and AAA define an intersection of

a ZRL and an ARL and Y is either

Z or A indicating the orientation of

the line.

2.47

Error Messages (cont'd):

Number Level Entry Point Text

025 3 XTREND MORE ITERATIONS ARE REQUIRED

TO UPDATE CHAIN STORAGE

THAN THE XXX PERMITTED.

XXX is the computed theoretical

maximum number of iterations

which could be required to update

CHAIN storage.

026 3 EQV INTERSECTION EQUIVALENCE

STORAGE EXCEEDED.

2.48

2.4 SECOND PASS PROCESSING PROGRAMS

2. 4. 1 Subroutine CUTUP (Process Shell Data)

Function: To generate shell data one section at a time.

Common Blocks:

KEYCHN Storage area for module boundary data

OPTION Contains execution control options

SET Contains title information

REFPT Contains the reference line numbers of the present

module

TICK Contains thicknesses and pressures on the boundary

ROD Contains the boundary radii

PROPCE Property identification storage for CONEND and

CONENDR modules

PROPS Property ideniification storage for CONE modules

Entry Point: CUTUP

Calling Sequence: CALL CUTUP

CUTUP is called only once for each set of bulk data after the

data have been read in and processed.

Subroutines Called: CONE, CONEND, LOCKS, READS, REF

Method:

Subroutine READS is called to retrieve pertinent data from the

input file. Subroutine REF is called nine times to transform the various

combinations of the reference line numbers into usable form. Subroutine

LOCKS is called four times to obtain the external reference line numbers

and number of divisions for the four sides of the section and is called

again four times to obtain the external reference line numbers for the

corner points. The required element generation subroutine (CONE,

CONEND, or CONENDR) is then called.

An appropriate CORD2C (coordinate system definition) card is

generated in subroutine CUTUP along with the grid and element cards

for graphic output.

2.49

Design Requirements:

Whenever new element generation modules are to be added,

calls to these subroutines should be from subroutine CUTUP.

Error Messages:

Number Level Entry Point Text

501 2 CUTUP Two reference lines specified

for this module have the same

number--- must be distinct

502 2 CUTUP No CHAIN storage space was

assigned for a module boundary

503 2 CUTUP Illegal data (may indicate that

the number of divisions along a

Z-reference line exceeds the

number of divisions along an

A-reference line for CONEND

or CONENDR modules)

504 2 CUTUP Number of errors exceeds

maximum permitted

Remark:

Any of the above error conditions will cause the generation of

data for this module to be abandoned and processing to proceed to the

next module.

2.50

2. 4.2 Subroutine READS (Read Shell Data Card)

Function: To read in shell data from file INCARD for one section.

Common Blocks:

OPTION Contains execution control options

ROD Contains the boundary radii

PHIA Contains input data

REFPT Contains the reference line numbers of the present

module

TICK Contains thicknesses and pressures on the boundary

PROPS Property identification storage for CONE modules

PROPCE Property identification storage for CONEND and

CONENDR modules

Entry Point: READS

Calling Sequence: CALL READS(ISHELL, ZL1,ISTART,ILAST,

INCARD)

ISHELL Indicates the module type

If 1, CONE section

If 3, CONEND section

If 5, CONENDR section

ZL1 Length of the section

ISTART Sequence number of the current section

ILAST Read indicator. 0 indicates continue

reading records from file INCARD; 1

indicates last record to be read from file

INCARD

Subroutines Called: PRINT

Method:

Read shell data from file INCARD including module type,

reference line numbers, slopes of the azimuthal lines, length, angular

2.51

width of section, and radius and thickness at each corner. Slopes

of the azimuthal lines are converted to radians. If the last record is

being read, then ILAST is set to 1.

Error Messages: None.

2.52

2. 4.3 Subroutine TERP (Linear Interpolation Routine)

Function: To perform an averaged two-dimensional linear

interpolation within a structural module.

Common Blocks: None.

Entry Point: TERP

Calling Sequence: X = TERP(A,B,C,D,T1,T, Z1,Z)

X Interpolated result

A Property at point A

B Property at point B

C Property at point C

D Property at point D

T1 Angular spacing or the difference in the azimuthal

coordinates of two adjacent grid points

T Azimuthal coordinate of the interpolated point

Zi Axial spacing or the difference of the axial

coordinates of two adjacent grid points

Z Axial coordinate of the interpolated point

Method:

TERP= .5(P 1 +(P 2-P 1) Z+p 3 + (P 4 -P 3) TI

Ti
where P A + (D - A) T-

Ti
P 2 =B+ (C -B)T1

Zl
P3 =A+ (B- A) Z

Z
P4 =D(-D- 2

Error Messages: None.

Remark: TERP is used to find the radius at an internal grid point,

i. e., a grid point not on the boundary, and is also used to find the thickness

and the pressure loading of individual elements of a module.

2.53

2. 4.4 Subroutine CONE (CONE Module Processing)

Function: To set up the physical dimensions of the CONE module.

Common Blocks:

KEYCHN Storage area for module boundary data

OPTION Contains execution control options

PHIA Contains input parameters

REFPT Contains the reference line numbers of the

present module

ROD Contains the boundary radii

Entry Point: CONE

Calling Sequence: CALL CONE(ZL1, DIVZ, DIVA, DIVZ2, DIVA2)

ZL1 Length of the projection of the module on

the Z-axis

DIVZ Number of divisons along side 1

DIVA Number of divisions along side 2

DIVZ2 Number of divisions along side 3

DIVA2 Number of divisions along side 4

Subroutines Called: LOCKS, QUADS, TRI

Method:

Subroutine LOCKS is called to check whether the coordinates of

the corner points have been calculated. Coordinates already calculated

will override the input specifications.

The radius at B, rbi, will be calculated using either

Equation (1) or Equation (2).
7T 7

rb. = rai + ZL1 tan(o. -) for .i > 7 , i = 2 or 4 (1)12 a1 2

rb r. - ZL1 tan(2-T) for P < 2T i,= 2 or 4 (2)rbi a

where rai, length ZL1, and 0, are specified as input. By rewriting

Equations (1) or (2), the length ZL1 of the section may be calculated

2.54

only if 0,, rai are given as input or if rai and rbi are known from

previous calculations. When Oi = 00 or 0, = 1800, the user must specify

the radii, r ai and r bi, and then the length ZL1 will be set to zero.

Error Messages:

Number Level Entry Point Text

520 2 CONE Calculated length ZL1 and ZL2 do

not agree; value of ZL1 will be used

521 2 CONE IDIVZ-DIVZ21I• min(DIVA, DIVA2);

will continue to next module

522 2 CONE IDIVZ-DIVA21 4 min(DIVZ,DIVZ2);

will continue to next module

523 2 CONE Another radius must be given as

input, Rai or R bi, because

0i = 00 or 0, = 1800; will continue

to next module

Remarks:

1. If DIVZ ý DIVZ2 and DIVA / DIVA2, then the relations

IDIVZ-DIVZ2I< min(DIVA, DIVA2) and IDIVA-DIVA2I < min(DIVZ,DIVZ2)

must be satisfied.

2. Geometry of the CONE module is shown in Figure 1.11.

2.55

2. 4. 5 Subroutine QUADS (Frustum of Cone Generation - Varying

Mesh)

Function: To generate a finite element mesh for CONE modules

bounded by four reference lines.

Common Blocks:

GRIDPT Grid point numbering storage for present module

KEYCHN Storage area for module boundary data

OPTION Contains execution control options

REFID Contains internal reference line number information

REFPT Contains the reference line numbers of the present

module

BREFID Contains external and corner line number information

TICK Contains thicknesses and pressures on the boundary

PROPS Property identification storage for CONE modules

TYPE Index of card names for input and output

PROP Constant data for GRID and connection cards

ROD Constant boundary radii

SET Contains title information

PROPCE Property identification storage for CONEND and

CONENDR modules

PHIA Contains input parameters

Entry Point: QUADS

Calling Sequence: CALL QUADS(R1,TI,Z1,THETA1,ZL, IDIVA,

IDIVZ, TTHETA, ZL1, IDIVA2,IDIVZ2,IQ,

TT, 18,I12,I14)

R1,T1, Z1 Coordinates, in a cylindrical coordinate system,

locating the grid point at A of this cone module

THETA1 6e, angular increment along the longitudinal reference

lines

2.56

ZL &Z, increment along the azimuthal reference lines

IDIVA Number of divisions along side 2

IDIVZ Number of divisions along side 1

TTHETA Azimuthal width

ZL1 Length of the cone module projected on the Z-axis

IDIVA2 Number of divisions along side 4

IDIVZ2 Number of divisions along side 3

(Figure 1. 11 shows the relationships of the sides of the cone module.)

IQ Option flag;

If 0, cone module is composed of all quadrilateral

elements

If 1, cone module is composed of triangular

elements on the upper part and

quadrilateral elements on the lower

part (Figure 2.7)

If 2, cone module is composed of quadrilateral

elements on the upper part and

triangular elements on the lower part

(Figure 2.8)

If 3, cone module is composed of only triangular

elements on the upper part and both

quadrilateral and triangular elements

on the lower part (Figure 2.9 a & b)

If 4, cone module is composed of both triangular

and quadrilateral elements on the

upper part (generated by subroutine

TRI) and only triangular elements on

the lower part (QUADS will generate

these elements) (Figure 2. 9 c & d)

2.57

ARL-1-

IQ0= 1

ARL-2
ZRL-1 ZRL-2

Figure 2.7 - CONE Module with Varying Mesh along
the First Azimuthal Reference Line (ARL 1)

ARL-1-

IQ=2

ARL-2-- -- I .

ZRL-1 ZRL-2

Figure 2.8 - CONE Module with Varying Mesh along
the Second Azimuthal Reference Line (ARL 2)

2.58

a:0 Z0 I a

a~0 W- Z

LU Ca -LC

-H

0

0 0

0

o 0o

cr->-00
co w c LU c
0 1 a z0
LLJ CO C,)

0~ < 0

cc cc cr i

W M w -
z N

00

2.59

_ _ _ _.1_ _ _ _ _ C1NL

IN

> 10

0

0

-J-

-. 1

wcjc

C) Z)

LLI CN

F- Di

< 0 if < C

CC CCF- c CC

LU CO 2.60

TT T1 value of the coordinates (R1,T1, ZI) of the

gridpoint at A of the cone module. This variable

is used only if IQ=4 and the subroutine is called

from subroutine TRI or if IQ=3; otherwise it is

set to zero (0)

18 File containing grid cards

112 File containing connection cards

114 File containing pressure loading cards and property

identification cards

Subroutines Called: CEPROP, LOCKS, PRINT, PROPER, TERP, TRI

Method:

This subroutine divides a CONE module bounded by four reference

lines into quadrilateral elements when a uniform mesh is required or into

a combination of triangular and quadrilateral elements when a change in

the mesh density is needed. The value of the variable IQ indicates which

type of mesh will be generated.

Each grid point is numbered starting at the top of the CONE

module, going from left to right, then from top to bottom according to

the 7-digit numbering convention described in Section 1. 3. 1.

The coordinates of each grid point are calculated as the grid

point is numbered. Coordinates of grid points on the boundary of the

CONE module are stored for future reference by calling subroutine LOCKS.

Then GRID cards are printed and stored on file 18. After all the grid

points are numbered for the section, the elements are defined by calling

subroutine PROPER or CEPROP to obtain property ID's and thicknesses

and CQUARD2 or CTRIA2 cards are printed and stored on file 112.

Pressure loading cards (PLOAD) for each element are printed and stored

on file 114.

The ID of the grid point at the top left of the element is used as

the element identification of quadrilaterals. The identification of

2.61

triangular elements is obtained by starting with the node number of the

top left grid point and numbering the triangles in the Z-direction,

incrementing each (fourth digit) by one. An example of the element and

grid point numbering generated by QUADS is shown in Figure 1. 6.

Error Messages: None.

2.62

2. 4. 6 Subroutine PROPER (Element Property Generation -

Quadrilateral Elements)

Function: To set up property identification cards for homogeneous

quadrilateral elements.

Common Blocks:

TYPE Index of card names for input and output

PROPS Property identification storage for CONE modules

SET Contains title information

Entry Point: PROPER

Calling Sequence: CALL PROPER(LELE, THKM, I14)

LELE Number of quadrilateral elements in the section

THKM Array containing the thickness of each quadrilateral

114 File containing property identification cards

Subroutine Called: PRINT

Method:

A sequential property identification number (PID) is assigned to

each unique thickness associated with quadrilateral elements. Thicknesses

for elements in this section are stored in column 2 of the array PIDT

and the corresponding PID's are stored in column 1. PQUAD2 cards are

printed and stored on file 114 whenever a new PID is encountered. The

array IPID, in common block PROPS, will contain the PID of each element

in the order in which the thicknesses are given in array THKM.

Error Messages: None.

2.63

2.4.7 Subroutine CONEND (CONEND and CONENDR Modules -
Geometry Processing)

Function: To set up the physical dimensions of the element types,

CONEND and CONENDR.

Common Blocks:

KEYCHN Storage area for module boundary data

PHIA Contains input parameters

ROD Contains boundary radii

REFPT Contains the reference line numbers of the present

module

Entry Point: CONEND

Calling Sequence: CALL CONEND(ZL1, DIVZ, DIVA, DIVZ2, DIVA2,

ICONED)

ZL1 Length of the element type

DIVZ Number of divisions along side 1

DIVA Number of divisions along side 2

DIVZ2 Number of divisions along side 3

DIVA2 Number of divisions along side 4

ICONED Option flag; 0 indicates a CONEND section

1 indicates a CONENDR section

Subroutines Called: LOCKS, TRI

Method:

The cone-shaped end module is bounded by four reference lines,

one side being a null side. The geometrys of the CONEND and CONENDR

modules are shown in Figures 1. 12 and 1. 13. Notice that the apex is

associated with side 1 or side 3 depending on the selection of CONEND

or CONENDR.

Subroutine LOCKS is called to determine whether the coordinates

of the corner points, A, B, and D have been calculated. Those coordinates

that have been calculated will override the input specifications.

2.64

The length L will be calculated using Equation (3)

L = R tan 0 (3)

where R and 4 are specified input. Note that R = Ra for CONENDR

modules and R = Rb for CONEND modules. The radius R will be
calculated from Equation (3) if L and 0 are specified and 4 1 00.

Error Messages:

Number Level Entry Point Text

530 2 CONEND Calculated lengths for CONEND

do not agree; value of ZLI is

used.

531 2 CONEND Calculated radius does not equal

radius already punched; value

of punched radius is used.

2.65

2.4.8 Subroutine TRI (CONEND and CONENDR Modules -
Mesh Generation)

Function: To generate a finite element mesh for CONEND or CONENDR

modules and for CONE modules with varying mesh density.

Common Blocks:

GRIDPT Gridpoint numbering storage for present module

KEYCHN Storage area for module boundary data

OPTION Contains execution control options

REFID Contains internal reference line number information

REFPT Contains the reference line numbers of the present

module

BREFID Contains external and corner reference line number

information

TICK Contains thicknesses and pressures on the boundary

TYPE Index of card names for input and output

PROPCE Property identification storage for CONEND and

CONENDR modules

PROPS Property identification storage for CONE modules

PROP Constant data for GRID and connection cards

PHIA Contains input parameters

ROD Contains boundary radii

SET Contains title information

Entry Point: TRI

Calling Sequence: CALL TRI(R1, Ti, IDIVA, IDIVZ, DTHETA, ZL1,

IDIVZ2, IDIVA2, IC, TT, I8,I12,I14)

R1, Ti, ZI Coordinates, in a cylindrical coordinate system,

of the grid point at A of the cone end module that

is to be subdivided into regions of quadrilateral

and triangular elements

IDIVA Number of divisions along size 2

IDIVZ Number of divisions along side 1

2.66

DTHETA Azimuthal width

ZL1 Length of cone end module projected on the Z-axis

IDIVZ2 Number of divisions along side 4

IDIVA2 Number of divisions along side 3

IC Option flag;

If 0, indicates a CONEND module

If 1, indicates a CONENDR module

If 2, a cone module is composed of both triangular

and quadrilateral elements on the upper part

and only triangular elements on the lower part;

Figure 2.9 c & d

If 3, cone end type subdivision of a cone module

composed of only triangular elements on the

upper part (subroutine QUADS will be used

to generate these elements) and both triangular

and quadrilateral elements on the lower part

(subroutine TRI will be used to generate these

elements); Figure 2.9 a & b

TT T1 value of the coordinate (RI, T1, Zi) of the grid

point at A of the cone module; this variable is

used only if IC=3 and this subroutine is called

from subroutine QUADS; otherwise it is set to zero

18 File containing grid cards

112 File containing connection cards

114 File containing pressure loading and property ID

cards

Subroutines Called: CEPROP, LOCKS, PRINT, PROPER, QUADS,

TERP

2.67

Method:

This subroutine is used to generate an idealization for CONEND,

CONENDR, and CONE modules. For CONEND and CONENDR modules

which are bounded by three reference lines, the idealization may consist

of either all triangular elements or a combination of triangular and

quadrilateral elements, depending on the grid point density along the

reference lines. This subroutine may also be used to generate

idealizations for CONE modules which are bounded by four reference lines,

requiring both triangular and quadrilateral elements to achieve the correct

mesh density. The value of the variable IC indicates which type of mesh

configuration is required.

The grid point and element identification numbers follow the

7-digit convention described in Section 1.3. 1.

Error Messages: None.

2.68

2. 4. 9 Subroutine CEPROP (Element Property Generation -

Triangular Elements)

Function: To set up property identification for homogeneous

triangular elements.

Common Blocks:

TYPE Index of card names for input and output

PROPCE Property identification storage for CONEND and

CONENDR modules

SET Contains title information

Entry Point: CEPROP

Calling Sequence: CALL CEPROP(LK, THKM, I14)

LK Number of triangular elements in the section

THKM Array containing the thickness of each triangular

element in the section

114 File containing pressure loading cards and property

identification cards

Subroutine Called: PRINT

Method:

A sequential property identification number (PID) is assigned to

each unique thickness associated with triangular elements. These

thicknesses are stored in column 2 of the array PID and the corresponding

PID's are stored in column 1. PTRIA2 cards are printed and stored

on file 114 whenever a new PID is encountered. The array, JPID in common

block PROPCE, will contain the PIDof each element in the order in which

the thicknesses appear in the array THKM.

Error Messages: None.

2.69

2. 4. 10 Subroutine REF (Identification Number Generation)

Function: To build a unique 7-digit identification number from two

or four reference line numbers.

Common Blocks:

REFID Contains internal reference line number information

BREFID Contains external and corner line number information

KEYCHN Storage area for module boundary data

Entry Point: REF

Calling Sequence: CALL REF(IRID,IA1,IZ1,IA2,IZ2)

IRID nth call to REF (where n = 1 to 9)

If 1, indicates internal numbering

If 2, indicates boundary numbering for side 1 (see

Figure 1. 11 for relationship of sides)

If 3, indicates boundary numbering for side 2

If 4, indicates boundary numbering for side 3

If 5, indicates boundary numbering for side 4

If 6, indicates numbering for corner A (see Figure 1. 11)

If 7, indicates numbering for corner B

If 8, indicates numbering for corner C

If 9, indicates numbering for corner D

IA1 First A-reference line number

IZI First Z-reference line number

IA2 Second A-reference line number

IZ2 Second Z-reference line number

Subroutine Called: PRINT

Method:

Subroutine REF prepares the reference line numbers for the

7-digit numbering scheme for the corner grid points and for the boundaries

as described in Section 1.3. 1. The seventh digit (leftmost) is found for

each corner point and for the boundaries, and the values are stored in

2.70

the COMMON BLOCK BREFID. The reference line numbers and the

corresponding seventh digit for internal numbering scheme are stored

in the COMMON BLOCK REFID.

Error Messages: None.

Remark:

Parameters IA2 and IZ2 are used only when IRID=I. For other

calls they must be dummy variables or constants.

2.71

2.5 NASPL - GRAPHICAL OUTPUT PROCESSING

The program NASPL * was inserted as part of the data generator to

provide graphics output. The main program of NASPL became the main

program of the second primary level in the overlay structure. The

subroutine GOOGAN was omitted since the generated data are already

right adjusted.

Options for NASPL are selected by setting the parameters in the

common block PLOT1. The following values are currently specified for

plots of generated data:

ITYPE = 1 Generates both perspective and orthogonal

plots

12D = 2 Plots two-dimensional elements only for

orthogonal plots

IXYZ = 4 Generates orthogonal plots in all three

viewing planes, xy, yz, and xz

D3D = 2 Plots two-dimensional elements only for

perspective plots

IPRINT = 0 No grid points or coordinate information to be

printed

JPRINT = 0 No element information to be printed

TH1 = 0.0 First angle of rotation for calculation of point

of view for perspective plotting

TH2 = 0. 0 Second angle of rotation for calculation of

point of view for perspective plotting

With the current implementation only the generated data will be

plotted and any manually prepared data will be ignored by NASPL.

,
NASPL is an in-house plotting program used .ir NASTRAN data checking

at the Naval Ship Research and Development Center.

2.72

Subroutine PLASSM is used to merge the data onto the plot data file and

to delete any comment cards inserted by the generator. The exclusion

of manually prepared data and comment cards is necessary for correct

operation of this abbreviated version of NASPL.

2.6 UTILITY PROGRAMS

The following collection of subroutines is available to the

programmer for general housekeeping tasks and may be used as required

throughout the program.

Subroutine Function Page

2. 6. 1 ABORT Produces dumps of crucial 2.74

program areas

2.6.2 ASSMBL Merges several files into one 2.75

file

2.6.3 ERRMSG Prints numbered error message 2.76

2.6.4 GOOGAN Converts NASTRAN data format 2.78

to FORTRAN data format

2. 6. 5 PRINT Controls pagination, printing of 2.79

headings, and output titling

2.6.6 SWITCH Manipulates alphabetic 2.81

characters within a machine

word

2.73

2. 6. 1 Subroutine ABORT (Data Storage Dump Routine)

Function: Dumps selected common storage areas for debugging

purposes.

Common Blocks: OPTION: See Section 2. 1. 3

Entry Point: ABORT

Calling Sequence: CALL ABORT

Subroutines Called: SECOND, PRINT, DMKYCH, DMPOOL

Error Messages: None.

Remarks:

1. Programmers may add dumps of regions of interest either

directly or through subroutine calls.

2. The current processing step in the program is determined

from the seventh word of the OPTION common block and only those areas

which are meaningful at that stage will be dumped.

3. Current CPU time for the job and the CPU time since the

last call to ABORT will be printed with each call.

2.74

2. 6. 2 Subroutine ASSMBL (File Merging Routine)

Function: Merges several files containing card images onto one file

and writes an "ENDDATA" card at the end of the merged file.

Entry Point: ASSMBL

Calling Sequence: CALL ASSMBL(NSOUT, NFILES, MWILES)

NOUT FORTRAN logical file number for the merged file

NFILES Number of files to be merged

MFILES Array containing the FORTRAN logical file numbers

of the files to be merged, in the order that they are

to appear on the merged file

Entry Point: PLASSM

Calling Sequence: CALL PLASSM(NSOUT, NFILES, MFILES)

Subroutines Called: None.

Error Messages: None.

Remarks:

1. All files except the merged file (NSOUT) are rewound both

before and after ASSMBL processing.

2. PLASSM deletes all cards beginning with a dollar sign

(NASTRAN COMMENT cards) as the file is assembled.

2.75

2. 6. 3 Subroutine ERRMSG (Error Message Printer)

Function: Writes a message header on the printed output file.

Common Blocks: OPTION

Entry Point: ERRMSG

Calling Sequence: CALL ERRMSG(IFATAL, NUM)

IFATAL Level of severity of error

If 1, non-fatal

If 2, fatal; will not continue into the analysis phase

after generation

If 3, fatal; will stop at once

NUM Message number

Subroutine Called: PRINT

Error Messages: None.

Remarks:

1. If error level is 1, the following message will be printed after

one line is skipped:
*******bbXXXYZZZb

where XXX is the current step number as indicated by the seventh word

of the OPTION common block, Y is the value of IFATAL, and ZZZ is

the error number. For error levels of 2 or 3, the following message will

be printed after one line is skipped:

*FATAL*bbXXXYZZZb

where XXX, Y, and ZZZ are defined as above.

2. ERRMSG will set the NSR word of the OPTION common block

to the value of IFATAL if this value is g. eater than the current NSR value.

3. ERRMSG calls subroutine PRINT to properly update page and

line count information. For messages which are longer than one line,

subroutine PRINT should be called to reflect additional lines printed.

4. To issue an error message, call ERRMSG and then write

a one-line message, preceding the message text with a plus sign and

2.76

seventeen blank spaces, e. g.,

CALL ERRMSG(1, 99)

WRITE(6,990) KOUNT

990 FORMAT(1H+, 17X, *message text*, 15).

2.77

2.6. 4 Subroutine GOOGAN (NASTRAN Format Translator)

Function: To convert data card images from NASTRAN bulk data

format to FORTRAN acceptable format.

Common Blocks: SET: See Section 2. 6. 5

Entry Point: GOOGAN

Calling Sequence: CALL GOOGAN(KQ, KB, NIN, NOUT)

KQ = -1 For data generator applications (processes bulk

data cards only)

KB = 2 Data field lengths to be left unchanged after conversion

NIN FORTRAN logical file number for the file from

which the original deck is read

NOUT FORTRAN logical file number for the file on which

the converted deck is written

Subroutines Called: PRINT

Error Messages: None.

Remarks:

1. NASTRAN BULK DATA cards are subdivided into ten

8-column fields. On each card fields 2 through 9 may contain numeric

information placed anywhere within the field as long as there are no

imbedded blanks (except before exponents) and no decimal points included

in integer numbers, and as long as decimal points are included with real

numbers. This program right adjusts the number within a field so that

it may be read as a real number using E8. 0 or F8. 0 FORTRAN format

specifications.

2. This program lists each card after processing along with a

sequence number corresponding to its position in the deck.

2.78

2. 6. 5 Subroutine PRINT (Heading and Page Control Routine)

Function: To control the pagination of printed output including the

printing of a banner page; the printing of page headings with the

problem title, date, and page number; and the printing of titles

for output quantities.

Common Blocks:

OPTION: See Section 2.1.3

SET: Length 54 words

Words Description

1-8 Problem title, set by SETUP, 10 characters

per word

9-20 Unused on CDC 6700

21 Current date

22-23 Unused on CDC 6700

24 Page count

25-54 Data title, set by calling program - 4 characters

left justified in each word

Calling Sequence: CALL PRINT(LINES)

If LINES = 0 Prints banner page and resets page count to

zero

> 0 If LINES printed lines will fit on the current

page, then the line count is incremented by

LINES and control is returned to the

calling program. If LINES printed lines

will not fit on the current page, then the

program skips to a new page, increments the

page count by one, prints the heading and

data title, and sets the line count to LINES+5.

< 0 The program skips to a new page, increments

the page count by one, prints the heading and

data title, and sets the line count to 4-LINES.

2.79

Error Messages: None.

Remarks:

1. LINES is the number of lines of output which will be printed

following this call, if LINES is positive. When LINES is negative,

-(LINES-i) lines will be printed.

2. The use of a negative value for LINES forces the beginning

of a new page. If the first character of the data title is non-blank, that

character is changed to a blank and that title will be used on all pages

until PAGE is again called with a negative argument. If the first character

is blank, the complete data title is changed to blanks.

3. The number of lines to be printed on each page is stored in

the fifteenth word in common block OPTION.

2.80

2. 6. 6 Function Subprogram SWITCH (Character Manipulation Routine)

Function: To construct a word by substituting the first (leftmost)

character of one word into a specified character position of another

word.

Entry Point: SWITCH

Calling Sequence: D = SWITCH(A,I, B)

D Constructed word

A Pattern word

I Position of the character to be changed in pattern word

(integer, 1 e I : 10)

B Replacement character (only leftmost six bits used)

Subroutines Called: ABORT, ERRMSG

Error Messages:

Number Level Entry Point Text

30 2 SWITCH SUBSTITUTION CHARACTER OUT OF

RANGE IN "SWITCH" FUNCTION

Remarks:

1. This routine is for CDC 6000 series computers only.

2. Characters are six bits long. The first character is

defined to be the leftmost six bits of a word.

3. A, B, and D may all refer to the same word in memory.

2.81

3. PROGRAM MESSAGES

Program messages will be preceded by seven asterisks for non-fatal

errors, or by "*FATAL*" for fatal errors, and a message code. The

message code has the form XXXYZZZ, where XXX is the current

processing step, Y is the severity level of the highest severity encountered

thus far, and ZZZ is the message number (leading zeros will not be

printed with this number).

Subroutine
Number Level (Entry Point) Remarks

001 2 SETUP Unrecognizable card

002 2 SETUP Syntax error on title card

003 2 SETUP Syntax error on control card

004 2 SETUP Invalid option specified on a
control card

005 2 SETUP Number out of range on a control
card

006 3 SETUP End-of-file encountered while
reading card input

011 2 INSORT Invalid card in BULK DATA deck

012 3 INSORT I/O error occurred while reading
BULK DATA card

013 3 INSORT Program terminated due to
error count

020 2 XTRACT Zero or negative reference line
number specified or maximum
number of reference lines has
been exceeded

021 2 XTRACT Equivalence specifies a non-
(XTREND) existent reference line ---

equivalence ignored

022 2 XTRACT Listed equivalence conflicts with
(XTREND) earlier specification ---

equivalence ignored

3.1

Subroutine
Number Level (Entry Point) Remarks

023 2 XTRACT Intersection equivalence specifies
(XTREND) a non-existent reference line ---

equivalence ignored

024 1 XTRACT The number of divisions has not
(XTREND) been specified along the edge of

a module --- default assignment
will be used

025 3 XTRACT Interlude processing requires more
(XTREND) iterations to propagate mesh

specifications than the theoretical
maximum --- program error

026 3 XTRACT Intersection equivalence storage
(EQV) exceeded. Reduce the number

intersection equivalence or
increase POOL storage

030 2 SWITCH A request has been made to
substitute a character which
cannot be processed. A
maximum of ten characters will
be considered as word for
SWITCH processing.

040 1 DATGEN Generation and plotting complete
for one data case

041 3 DATGEN This job has been terminated due
to the occurrence of a Level 3
error (or a Level 2 error when
"NASTRAN=YES" has been
specified)

050 2 LOCKIT CHAIN storage has been exceeded.
(LOCKIT) This usually results from
(LOCKS) attempting to generate models

with too many gridpoints on
module boundaries. It may also
result from use of too many
modules which employ higher
level (levels greater than 1)
storage for parameter communi-
cation. In the first case the
problem size probably should be

3.2

Subroutine
Number Level (Entry Point) Remarks

reduced. In the second case the
problem could be split into two
or more segments.

051 2 SPACE Two adjacent modules define a
(SPACE) different number of gridpoints

for a common boundary. The
first specification will be used.

100 2 POOLIT POOL storage exceeded during
(POOLPR) data insertion operations
(POOLDT)

101 2 POOLIT Illegal identification in POOL
(POOLPS) search
(POOLDS)

102 2 POOLIT IDENT specified does not point to
(POOLPS) a set
(POOLDS)

103 2 POOLIT Illegal second identifier in
(POOLPS) POOL record
(POOLDS)

104 2 POOLIT A set of pairs has an odd number
(POOLPS) of entries

105 2 POOLIT Same as 101 or 102
(FETCH)
(FETCHI)

106 2 POOLIT Same as 101 or 102
(STOW)
(STOW1)

107 2 POOLIT Same as 101 or 102
(PURGE)

108 2 POOLIT Illegal IDENT in POOL storage
(POOLPR) operation
(POOLDT)

501 2 CUTUP Two parallel reference lines have
the same ID in the specifications
for this module. Program
continues to process next section.

3.3

Subroutine
Number Level (Entry Point) Remarks

502 2 CUTUP No storage space has been assigned
QUADS for an edge of this module.

Program continues to process
the next section.

503 2 CUTUP Number of divisions along Z-
reference line is greater than
the number of divisions along
the A-reference line. Error in
input data for CONEND or
CONENDR module. Program
continues to process the next
section.

504 3 CUTUP The number of errors encountered
during one processing step has
exceeded the maximum permitted.
(This limit is specified in the
14th word of the OPTION
COMMON block.)

520 2 CONE Calculated lengths ZL1 and ZL2
do not agree. Value of ZL1 will
be used.

521 2 CONE IDIVZ-DIVZ21 is not less than
min(DIVA, DIVA2). Program
continues to the next section.

522 2 CONE I DIVA-DIVA21 is not less than
min(DIVZ, DIVZ2). Program
continues to the next section.

523 2 CONE Another radius must be specified
for this module, either R ai or

Rbi, since 0, = 00 or 0i = 1800.

Program continues to the next
section.

530 2 CONEND Calculated lengths for CONEND
or CONENDR do not agree. The
value of ZLI is used. Program
continues to generate data.

531 2 CONEND Calculated radius does not agree
with radius already punched.
Value of radius punched is used.

3.4

4. SAMPLE PROBLEMS

4.1 DEMONSTRATION CONE

The structure shown in Figure 4. 1 was idealized as 15 data generator

modules. The three modules at the closed end of the structure (1, 2, and

3 in Figure 4. 1) are the CONEND type; all others are CONE type modules.

For reference, a listing of the user supplied data, selected pages of

program messages and generated data, and three structural plots from

this run have been included. The following remarks apply to the circled

numbers throughout the sample pages.

Remarks:

1. Default specifications have been chosen for all options except

page titling and structure plotting. Note that the dollar signs preceding the

TITLE and PLOTID cards have been added by the program.

2. Execution control cards have been included which are to be passed

directly to NASTRAN.

3. Note Z-equivalence specification for the intersection of cylinder

and cone portions of the structure.

4. All input quantities have been right-justified within each field.

5. Examples of geometric specifications which will be propagated

among the modules as the idealization is generated.

6. Example of data generated by a CONEND module.

7. Only quantities appearing explicitly on data cards will be listed

in this section.

8. The relationship between the user's reference line numbers and

generated data is indicated in this section.

9. The radii used by the module are listed, whether they appear

explicitly on the data card or not.

10. Generated data cards are listed as produced. Because some

modules are internally divided into subregions (as this one is), headings

4.1

Figure 4.1 - Demonstration Cone

4.2

indicating type of card may not always be appropriately placed.

11. Example of data generated by the CONE module.

12. Only one property card is generated for each combination of

thickness, material identification number, and element type encountered

during the run.

13. The structure plotter plots (and thus counts) only generated

elements and grid points.

14. Axes appearing in the plots are in NASTRAN's basic rectangular

coordinate system and not in the generated coordinate system.

15. Grid point numbers are printed on the structural plots if there

is sufficient clear area for the numbers to be legible among the element

plots.

16. The scale is calculated for each view so that the structure will

always fill the plotting frame.

4.3

.4

w

CY

w

z5 z
o
L) C.

I.-
z fl
o x

04.

I.- P.

w w

w :L) P-

w~ z wwow mZ.4

o 0

w 014 3-W

Ia "J H "

INI

4w 0 NB

31&J'-4.4

N

.4N go t% NC 0a ab .4 N .4 .4 .4v 1 4 Dcy N N 0.4 NI~ N ft

a; 4a a a a 4.4 4 ;q4 4 .4 .4; .4 . f 4 .4N N N N

PON N% U NP.4,

N .v4 .4 .4.V) .4 (.4 P).4*.4 4 N.4 .) 4*4 4 .N 4 PI .4 .4 .4 0-)4

CL

w

CYZ mZ=Z:Z==ZC .4 . 4 .4 Z.44 .4 .4 .4 Z4 .f Z4 . .4.44 CV .N.4.4 ~ 71Wrir

TL.
0 LA4. %D P 00 1 C34 N.4 M .44 U 0N0 1ý N 4 CY")4 .4. N 00 O.4.4.4 N)- N. 10N 001C 1

a4.

uJ
VD

i-

F,

NY

.4 .4 .4 ;N

.4 i N 4 N 11

N N- IN Il

U. L. L. a .

.4 P) 4 pn

0.4.

oV0 0 0 on
12 & Ix a2

0o 0 0 0 i

P.) N T N w

W~ NiNNt

of 14 eu z

a a
Of m a a 0.NN a

N -4 00 W fW

oM *j w~ . ~ . p

2- Of.- = .4 N w
o 1.- -x m M

o -N. 0 z " 0

din

N Z 1. 2 00 N N4.N 6

w

V)x

Id D CD 0pC mC D4 a

.t 0 1C3 ca C

I.- , C, C, 14 C .4
0444... C.44... =, C..

C3aa 4 .4. . (jc

IL f) a Uaa . 4.4 ... NA~4.44 p 4
41 ~ C, C,= C',I. , a, D Y . .4 ty 4 N.4 t-- - a C, p)4 D 2 C 2 D N

= 4* C* . .aaa aus)g .44. (1 0
C3cmC maCD C ... * .4.4..... 4.. .4

w .44. .4 - 44.4NN
C, CdC z c C ft,

0.40 0..4040 0 4a.

* ~ ~ ~ ~ ~ C -1 Oa a ,.4.N4.Caaa C, N4
w CD = Cd, . 4. 44... Cd) .

do I,) N 4 Cd Cw , 2 , 4
o; .4 .4C a.a au a)P

O .4 a aaaC .4 N.4 1 4 it 47 4 aa aý .4

w. *L .4.4.44 .4.4 V4. .4 .4ý . 4If.

2 a .4..4 NNPgoI
41

o ,C ,IC 0 0,C IC
z V) 0 1 i i 4 4ti z 0. 0. 4-4 .4 4 14.4aaaa14 0. ". .4

61 4 4/) C) -9 0 .. ý** N
co =0. C.4..44. M. .44444 4.4"I. lo

w. I..

CK CL wN N

I- 0 0 0 00 0 0 " " " 6.4..4 0.4 Wa- X -0.4 1a.42 wIO "WO cooa 0-40-4""H = a
LD, 0 aa aa 0.0 Wfl 044. 0c a CL C 0 &.&Q 4

4 C) .. 4.44N~ N .44. .. 4.4440.7l

tn

C2

Co C! C!

.4 C4 .4.4 .4

Cý C CC C,

C.4 I= 4.a4.4.4CD
92 C C0 =) C C, C

43 @0)00)wca
C, V

P C- .4w CU4W.4 C

14 CCC0-CCC1
.4 N.4 N .4 N

P) CC, , C3 C, C,

A. C,4 9.4 CD.4 CD
ly C2 C) a ,C3C2

C, CCCCCCC

0

-.) .4 .4 404.424.

C, C, C CC

z C
0

w ~ ... 0C
*l N N

Id .4.44.8

%D

.4

I.-

NY
NY

cu

If .4 N4 NY 1
1-a4

I.-A

(f 1) Cd) W U) C

0a 0- C,
w~. " 4 N N4 " 1

1- - - U
ox K 41

SL 1- .4 N 4 I

0o- 0 0 0

z~ F,0O 0 0 I

U.I a 0 1 - 1I-- I

Z m m &

o w ig j

-aa
I-a a a a 0 . -I.-

a

a a a.a

I')

CH

C3, ft mama

a. . .4 .4 . 4ý 4 4C 3

q4 . 4 tw w.4 .4 NNM 4 .4 aI O ?I.4 14. w ma4ý 4 q.
mD ac a a a m CD *2 M.' DC 2==

* .4 C 4 C 4.4.4 .4.4.4.4.4.44 H am
ca a2 a0 a aaa

.4.a4.4.a4 .4)""AM4.4 , ,C, C

.4 .4 . H t 44) V4.N 4 . 4 . N 4 t- f- 4) . 4

I(CALU I .4 = 14 = ..4 4N CD 44)*244)

U) a. 6: C:a.l M "C* :.. 4.C

1-~. M N4 am ma) m Nn . N 4 4 . N I .4N a m a a Nj In4..N
*~~~~w D" o v am mm mm 6.D c~.. N m .4.4 ~ a a a a CD v4

C'am e m C, = = C a = aC' oa mU14Ucc,*m

PZ M44 Flo)) .4M44) CM* =m M=

O4 m .44a..4 1 qma.4m.w . 4

O~ .4 am ma aw .4 W .. 4 4 44444.44 ama aa 4.4 .4.. C 4.N
o 10- am am ma ID ma 4 4Ca. . N aa a a a CD *U4NCD

oC 0 CC , C
-4 14 on.. . ." .ý 2 .CI 11 a." 1Ct 4. 0

13.......... 44.............
H a.%1

V 0 0 C, m 0 C3 0 M 0 -a -aaa t
w 0 0 0 0 0 C C C3CC,- M- 9- 1 -Ca.4a4 -Kam a.1 Nm44) 00 0 0 00m4a-
4 ~ ~ ~ - " ") 1. . 1CJ..N4 .4 ")~ "a44N) " " D 0-.44 N cc4)4)4

Z ~ 0 is 4.44N 4444 OW ma mam** *amm4.10am

I.-

ty
NY

0i

N4ý. 4 14C. w a C.14.14 NNP

v=4..4' 4'v = v. ...4 '* 4l.4v.,C4 C.4.

0. a4 .4.4 ý a. a.q 4l a.4.4N aM

g~~- N..444..4..4.4.4 14 q.4 . 4 .4.4.4N.4
C, C,*m m a ar* '*~~

14m a ma m aaw a m a
C,

b
zN N N N

o .4m 4 -K ~ .4N4.4 N4N
0 ~ ~ ~ ~ ot coommm amaama

4.1

a-

C-

4r

I.-

C- 1- 0

I.- Cu CD

w N

D 0.i

z I- 9 C C L
o a.

P- C a

.4 N- Nm

W i V

zz

N C Ii
Zi j 0. 0.

z D Ef J

a- z -Mz
w W N N

D :5 M.II -

N 3 3
-M In co No c o

cnN N

a- -tr~

w

C3 -

o z)

.~j . 4.12

D E M 0 N S T R A T I 0 N C 0 N E ... CE

IPERSP ECTI V E FLOT

TWý CIMEN$413•, ELEMENTS

4.13

MC E .U212 1.)1 30 ,

al

01I X AXIS -5.92400 w.845X10 0.000110

4.14

0 EMO0N ST R AT 1ION CONE.. MCKEE b4U2/20fA

010

1L01

4.1

4.2 POINT LOAD ON CYLINDER

The purpose of this data generator application was to generate an

idealization of a ring-stiffened cylinder which could be analyzed with a

concentrated load applied at a point on one stiffener. The symmetry of

the structure and the load required only half of the cylinder to be modelled.

A listing of the bulk data deck and three structural plots have been included.

4.16

w

C-

14 N 1) -r 4 P-% to F D olm .4 N P) 0 U% A.P- 0p m4 N)
NmC mam C3 C3 CD 40C .ý 4 .4.4 14 .4 .d 4 4.4.4 N N N N * -4 N W) r UD "Da P

CD mam=a aDdmC ca aoi D 4ma wamm m 3d a2 a2 c CD a ma a2 o W CD mD cm a am a2 C
0000 Q~ UU U u UU L) 0 L)U UU V 0 U uC .4 .4 .4 .4.14 .4.14 .4.14 .4
+,* + * +* +* +. +4 +. +. +4 +. +. ++ + +.4 4.+ + .4 +4 +4++

U% IA i U% I CS% '

; -0 C; .1 IA C 4 .4 10 1 4 .4 vi 1 P

C .4

*.4 ..4 .4 .. 4 .4 .4 .4 .4 14 .4 .4 .40 11 a4 ý 4 1

C' 0A In 0' UN V0'% & f A N U A W U

0-4
r c t. fn* .t 4 V4 N .1 P.I A. 4 It *.U'.at0I)'.t4o % N4 c tf ~0
-r t4 r4 r4 *4 . t r4 .4* r .4 .4 .44 .t4I .4 .4 .4

Ni.4 .N S.4 .N P-NN P. Pift- P-) PfN.~ N4t4 .N P4N f.- N

1 4 .4 .4 4 .4 4 .4 .4 .4 .4 .4 .4 z4 z4 . 4
or IA% U% IA % m' U' U% UN UN U'% L9% U'% -tI' '

24 t Lk . o C D . n - o a l-
z * C mL)4 DLJC DWWw Jw l9 4U 4U #W 44w YWN= 2Ww % rW00Wr

0f if) +) + if if) +f +f 0f +f if3) + f V a

C3 I YM- n0P 0(PC 4NF n% ,0 01 CD IA N' 0) U 4 U' U% U) UW G, CD *4NmtU -G "CD1)4m01

14'J) LAI F-a 0'a4 .4 4NF) NN * N' INaC N.N N M F) M44444
ujaamzm a W.W4 .. W4 .W4...W AW W~ W4 W)W 'D F0

IL 2aa2a2a2aaaa2aa2a 2

0 O UU OU OU OUU UO UO OU UU UOU OU UW404.0.444.17..4

w

N q .4J ,.* U'. - 0 .4 .4 14 14 - .fu N N N N v V, .m WN W) "t PO f) ") " 0

.4 .. 4 .4 4.4 .4.14 144 .4.14 -0 4 .4 .4 .4 .4 .4 . .4 .4 .f .4 4 .4 .q 4 .4 14 4 -0
4 +4 ++ +4 +4 ++ + 4 + + + + + + + + + + + + + + 4. + +

N Nl Ni N NY N N N N N N cu N

be f 00'

* 0

w

NN c N N N N CNN CIJ N N~ W) N W)t. P) m~ m~ m~ " f) n -r 4 * * 4
0

r- N D N .4 .4 N 4 to 0. so P- c 4 . 4 P~.
-H .4 i N Y N Y N q . 4 .4 .4 .4 .4 .4 N 4 It .4 .4 .4 .4 v4

w Y H N .4 4N C 4N .4ci qN .4N N UMtJNC l jN(liNNNW l)Nf)NV
D .4 .4 .4 .4 .4 .4 %4 .4 .4 q4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4

z

q 40q4 14 .4 4 .4 4 4 N q40. . 4 0 .4 . 4 .0 4 0 .4 .4 N 40 4 .4 .4 0 4 .4 .4
+ +)++0+ ++w++L)+u+)+0+040+0+L

0

4 4

4.1

to U

N

* c

in'

0 I

z
P44

4Dw N w N

0

z

z L

64 44

0

zL

o-1

POINT LOA ON CYLINDER. .

PIE R S P E C T I V E P L O T

4.20

POINT LOAD ON CYLINDER. .

01

5.3?4X10

I101o4-8. 06IXIO I llP

4.21

POI N T LOAD 0N C YL IND0ER .. .

_____5.374XIO

X(AXIS -5 3?4110 0
9.0? IO ol ., 41XI0

4.22

4.3 PLANFORM STABILIZER

This is an example of the use of the data generator to idealize

planer structures. A listing of the user supplied data and a structural

plot have been included. Please note that the model has been generated

in the r-z-plane and that it was generated from right to left as seen

in the plot.

4.23

N N

0 C D W 9w4 r- WN

N .N

49

W

I.- CNCD UN .ý 41 a N m ain
so N4 % %

z zj
w N 0

4.4 C3.CMC .4 CDC .4 qC C33

Z M N

CL - j

be 0

m aw\Uu OZ ~ U Ox ILf% %DP U 4 4Z
M L C 0 + 4 Q+ . .+ . 0 u

0 ..40.mrL%ý url %1 -s ,cm N?) U a1 oaly 0 h

WOO Z

hi4N20

P L A NFOR M S T ABI1LI ZE R

101

t.000111

4.25

4.4 AXISYMMETRIC SUBMARINE

This example illustrates the data setup required to follow the data

generation run with a pass through the BANDIT program for bandwidth

reduction and then with a frequency response analysis using NASTRAN.

A listing of the user-supplied data, structural plots, and a listing of

the generated data have been included.

4.26

4.9

11"

0 0

NU

Co CY

o z z

0-4 .

OI-

z

0 0

I.--

0-4

=) VZW.4 .o

Did h If o D * .4 *16j C

S0(W oo 0a H~ I.-WC
0 Z Za -. a I .1w14 m ZxILm

.4N"4U f 0. M- 04 W - f W0 M40
V4 H .4 HZ .4V .4V4J 1

O~WOO O~~J~4.44.27.

Nl

w
0
1-

CL

S.

NY .N .4 N .4 N .4Nc .4NC .4N .4 N .4 N .4 N .4 N .4N .4 N .4N W 4N .N .4 (.4 N

aa a a a ~ *m a a a 44 .4.4 14.4 .4.4 .4.ý4 .4.4 .4.4l .4.4
+4 4 4 4 44 4 +4 + 4+ + +4 +4+ +4 + +4 4

NC

w N1 N . U' Cm .t P.. r 0 .4 %DN N U'iN N P4C l i ý 0 t N4 N Y U N' .4N

U% to *4 .n 0' CD .4 p. 0 N
.4 .4 N4 .4 *4 *4 .4 .4

W N.4 4 N4 .4N ý4 NN .4 4.4 . .0N NN.4 .4 N .4 4N 4 ý oý 4ý .4N .4N NN .4 q q4 4 ý .4N

w : C : C C4 :C! C : C : C ! C
CL

w N4 14 N ' w.0) A A .4 % N UN I^ U'% :r P.- n t% rm Nt 4 0 60 .4 C,
.4 4 w4 CD .f C 4 .4J " .4 .4 C4 .4'oC

C:0

CD Ca T4M0TT0C TCM04C2 T D a 4: 0 CD 0 0 aq V a iV0. a V V 0 V
1--

0 .4P- .0P r U' U. m0. 1 N fl 4' UNU 0. PUwm'f m01,4 N ! M. -WMw4 N0 M a 4 N N
.N *4 0 4 a 9.- 4 1- .4 a4 N N N N N 4 W. a N N N m- m. m. 4 4 0 4 .T UN

. . 0 a 0 .0 4 4.28

w

W..

NY .4 r .4N CYC

-q .4 V4. 4 jf (

.4.4 .4. .4

U . r ,

.4 .4 .4 .4.4 e N ANN4U C
mmic. tmmcM

.44 4.

U% N4 P. m cm cm
C, NN ""t 4...4 NN N

tN 40 .4 .4 94 14 V4 .4 . N N N N N N 4

.4.4..

it ly mm c m m c
0-4~m 44N.c

I 4. .40

c c.4 acc .4ff..4c

N .4NW 4 M ~r I.44.q..4- ý4N .4Ný 4. W C
413

mmN..4c 4.29m

AXISYM METRIC SUBMARINE (22. 5 0E 6
01 y AXIS . 0

° 008xlo .0 6.669XiICl
o.00oxto

ot

I. 7v3X 4 .

4.30

AXISYMMETRIC SUBMARINE C22. 5 DEG

1. 043X10o

z

of X AXIS -1.3131200•'X 1 0 00X 104.0

4.31

AX ISYMtiETRIC SUBMARINE C22. 5 OEB�

00
I * OOOX 10

z

4

-02
4.019X10.ox V AXIS

-p * ZOPX I 0

4.32

IO MCKEE, SUBMARINE
S NASTRAN = YES
S TITLE= A X I S M M M E T R I C S U BM A R I N E 4 22 5 D E G)
S PLOTID = MCKEE, CODE1844, EXT71493
S PUNCH = YES
SEND
APP OISP
SOL 89'0
TIME 9
DIAG 13
CENO '
SPC = I
ECHO = NONE
OLOAD 100
FREQUENCY = 1000
TITLE= A X I S Y M' E T R I C S U B A R I N E (2 2 5 D E G I
SUBTITLE = 0.1 THICKNESS
$SEQUENCE YES
$PUNCH NONE
SPRINT MAX
BEGIN BULK
OAREA £ 1200100 3 .333333 1200101 3 .333333
OAREA I 120•200 3 .333333
FREQ1 1000 0.0 50.0 6
MATI I 3.E7 .3 1.0
PARAM DECOMOPT 4
SPCI 1 246 100100 200100 300100 301100 302100 400100
SPC1 1 246 401100 500100 501100 502100 503100 600100
SPCI 1 246 601100 602100 603100 604100 605100 700100
SPCI 1 246 800100 801100 900100 1000100 1100100 1200100
SPCI 1 246 1400100 1401100 1600100 1700100 1900100 1901100
SPC1 1 246 1932100 200.0100 2100100
SPCI 1 246 701100
SPCI 1 246 100200 200200 300200 301200 302200 400200
SPC1 1 246 4012.00 500200 501200 502200 503200 600200
SPCI 1 246 601200 602200 603200 604200 605200 700200
SPC1 1 246 701200 800200 801200 900200 1000200 1100200
SPCI 1 246 1200200 1400200 1401200 1600200 1700200 1900200
SPCI 1 246 1901200 1902200 2000200 2100200
RLOAD2 100 1 10
TABLEDI 10 *TIO
+TIO 0.0 1.0 1000.0 1.0 ENDT
CQUAD2 100100 1 100100 100101 200101 200100 0.0
CQUAO? 100101 1 100101 100200 200?00 200101 0.0
CQUAD2 200100 1 200100 200101 300101 300100 0.0
CQUAD2 200101 1 200101 200200 300200 300101 0.0
CQUAD2 300100 1 300100 300101 301101 301100 0.0
CQUAD2 301100 1 301100 301101 302101 302100 0.0
CQUAD2 302100 1 302100 302101 400101 400100 0.0
CQUAD2' 300101 1 300101 300200 301200 301101 0.0
CQUAD2 301101 1 301101 301200 302200 302101 0.0
CQUAO2, 302101 1 302101 302200 400200 400101 0.0
CQUAD2 400100 1 400100 400101 401101 401100 0.0
CQUAD2 401100 1 401100 401101 500101 500100 0.0
CQUAD2 400101 1 400101 400200 401200 401101 0.0
CQUAD2, 401101 1 401101 401200 500200 500101 0.0
CQUAD2 500100 1 500100 500101 501101 501100 0.0
CQUAD2 501100 1 501100 501101 5'02101 502100 0.0
CQUAD2 502100 1 502100 502101 503101 503100 0.0
CQUAD2 503100 1 503100 503101 600101 600100 0.0
CQUAD2 500101 1 500101 500200 501200 501101 0.0
CQUAD2, 501101 1 501101 501200 502200 502101 0.0

4.33

iIUIUi I IIZTuI I 1uI de 0 u -)uaiau ,ualul uu
CQUAD2 503101 1 503101 5"t32-0- 600200 600101 0.0
CQUAD? 600100 1 600100 600101 601101 601100 0.0
CQUAD? 601100 1 M01100 601101 602101 602100 0.0
CQUAD2 602100 1 602100 602101 603101 603100 0.0
CQUAD2 603100 1 603100 603101 604101 604100 0.0
CQUAD2 604100 1 604100 604101 605101 605100 0.0
CQUAD2 605100 1 605100 605101 700101 700100 0.0
CQUAD2 600101 1 600101 600200 601200 601±01 0.0
CQUAD2 601101 1 601101 601200 602200 602101 0.0
CQUAD2 602101 1 602101 602200 603200 603101 0.0
CQUAD2 603101 1 603101 603200 604200 604101 0.0
CQUAD2 604101 1 604101 604200 605200 605101 0.0
CQUAD2 605101 1 605101 609200 700200 700101 0.0
CQUAD2, 700100 1 700100 700101 701101 701100 0.0
CQUAD2 701100 1 701100 701101 800101 800100 0.0
CQUAD2 700101 1 700101 700200 701200 701101 0.0
CQUAD2, 701101 1 701101 701200 800200 800101 0.0
CQUAD2 800100 1 803100 800101 801101 801100 0.0
CQUAD2 801100 1 801100 801101 900101 900100 .00
CQUAD2 800101 1 800101 800200 801200 801101 0.0
CQUAD2 801101 1 801101 801200 900200 900101 0.0
CQUAD2 900100 1 900100 900101 1000101 1000100 0.0
CQUAD2 900101 1 900101 900200 1000200 1000101 0.0
CQUAD2 1000100 1 i0oo2oo 1000101 1100101 1100100 0.0
CQUAD2 1000101 1 1000101 1000200 1100200 1100101 0.0
CQUAD2 1100100 1 1106100 1100101 1200101 1200100 0.0
CQUAD2, 1100101 1 M1U101 1100200 1200200 1200101 0.0
CQUAD2' 1300100 1 100100 100101 1400101 1400100 0.0
CQUAD2' 1300101 1 100101 100200 1400200 1400101 0.0
CQUAD2 1400100 1 1400100 1400101 1401101 1401100 0.0
CQUAD2, 1401100 1 1401100 1401101 300101 300100 0.0
CQUAD2, 1400101 1 1400101 1400200 1401200 1401101 0.0
CQUAD2 1401101 1 1401101 1401200 300200 300101 0.0
CQUAO2 1500100 1 500100 500101 1600101 1600100 0.0
CQUAD2 1500101 1 500101 500200 1600200 1600101 0.0
CQUAD2 1600100 1 1600100 1600101 1700101 1700100 0.0
CQUAO2' 1600101 1 1600101 1600200 1700200 1700101 0.0
CQUAD2 1700100 1 ±760100 1700101 600101 600100 0.0
CQUAD2 1700101 1 1700101 1700200 600200 600101 0.0
CQUAD2 1800100 1 700100 700101 1900101 1900100 0.0
CQUAD2 1800101 1 700101 700200 1900200 1900101 0.o
CQUAD2 1900100 1 1900100 1900101 1901101 1901100 0.0
CQUAD2 1901100 1 1901100 1901101 1902101 1902100 0.0
CQUAO2 1902100 1 1902100 1902101 2000101 2000100 0.0
CQUAD? 1960101 1 1900101 1900200 1901200 1901101 0.0
CQUAD2 1901101 1 1901101 1901200 1902200 1902101 0.0
CQUAD2 1902101 1 1902101 1902200 2000200 2000101 0.0
CQUAD2 2000100 1 2000100 2000101 2100101 2100100 0.0
CQUAD2 2000101 1 2000101 2000200 2100200 2100101 0.0
CORD2C 1 0.0 0.0 0.0 1.0 0.0 0.0+CORD2CI
*CORDClC 0.0 0.0 1.0
S SECTION BOUNDED BY ZRLS 1 2 AND ARLS 1 2
GRID 100100 1 .100 0;000 0.000 1 0
GRID 200100 1 .270 0.000 0.000 1 0
GRID 100101 1 .100 11.250 0.000 1 0
GRID 200101 1 4270 11*1250 0.000 1 0
GRID 100200 1 .100 22.500 0.000 1 0
GRID 200200 1 .270 22M500 0.000 1 0
S SECTION BOUNDED BY ZRLS 2 3 ANO ARLS 1 2
GRID 300100 1 .600 0;000 1.500 1 0
GRID 300101 1 .600 1l.250 1.500 1 0
GRID 300200 1 .600 22.500 1.500 1. 0
S SECTION BOUNDED BY ZRLS 3 5 AND ARLS 1 2
GRID 301100 1 .713 0,000 2.333 1 0
GRID 302100 1 .827 0O000 3.167 1 a

. 4A A

4.34

bKLU 4UU UU I or*JIU v•*UUU '.UUU Q
GRID 301101 1 ;713 11.250 2.333 1 0
GRID 302101 1 .0827 11.250 3.167 1 0
GRID 400101 t 4940 11.250 4.000 1 0
GRID 301200 1 .713 22.500 2.333 1 0
GRID 302200 1 i827 22.j500 3.167 1 0
GRID 400200 1 .940 22.500 4.000 1 0
S SECTION BOUNDED BY ZRLS s 6 AND ARLS 1 2
GRID 401100 1 .995 04000 4.900 1 0
GRID 500100 1 11050 0.000 5.800 1 0
GRID 401101 1 .995 11.250 4.900 1 0
GRID 500101 1 1;050 11.250 5.800 1 0
GRID 401200 1 .995 22.500 4.900 1 0
GRID 500200 1 1.050 22.500 5.800 1 0
S SECTION BOUNDED BY ZRLS 6 11 AND ARLS 1 2
GRID 501100 1 1.056 04000 6.785 1 0
GRID 502100 1 1.063 0.000 7.770 1 0
GRID 503100 1 1;069 0.000 8.755 1 0
GRID 600100 1 1.076 0.000 9.740 1 0
GRID 501101 1 1.056 11.250 6.785 1 0
GRID 502101 1 1.063 119250 7.770 1 0
GRID 503101 1 1,069 11,250 8.755 1 0
GRID 600101 1 1.076 11.250 9.740 1 0
GRID 501200 1 1.056 22.500 6.785 1 0
GRID 502200 1 1.063 22.500 7.770 1 0
GRID 503200 1 1.069 22.500 8.755 1 0
GRID 600200 1 1.076 22.*500 9.740 1 0
S SECTION BOUNDED BY ZRLS 11 12 AND ARLS 1 2
GRID 601100 1 1.076 0.;000 10.585 1 0
GRID 602100 1 1.076 04000 11.430 1 0
GRID 603100 1 1.076 0i000 12.275 1 0
GRID 604100 1 1.*076 04000 13.120 1 0
GRID 605100 1 1.076 0.;00 13.965 1 0
GRID 700100 1 1.076 0.000 14.810 1 0
GRID 601101 t 1.076 11.250 10.585 1 0
GRID 602101 1 1;076 114250 1l.430 1 0
GRID 603101 1 1.076 11;250 12.275 1 0
GRID 604101 1 1.176 11.250 13.120 1 0
GRID 605101 1 1'076 11i'250 13.965 1 0
GRID 700101 1 1.076 11.250 14.810 1 0
GRID 601200 1 1.076 22.500 10.585 1 0
GRID 602200 1 1.076 22.;500 11.430 1 0
GRID 603200 1 1.076 22.500 12.275 1 0
GRID 604200 1 1.076 220500 13.120 1 0
GRID 605200 1 1.076 22.500 13.965 1 0
GRID 700200 1 1.076 22.500 14.810 1 0
S SECTION BOUNDED BY ZRLS 12 13 AND ARLS 1 2
GRID 701100 1 1.'141 0.000 15.640 1 0
GRID 800100 1 1.9005 0;900 169470 1 0
GRID 701101 1 1.041 11;250 15.640 1 0
GRID 800101 1 1.005 11.250 16.470 1 0
GRID 701200 1 1.641 22.500 15.640 1 0
GRID 800200 1 1.005 224500 16.479 1 0
S SECTION BOUNDED BY ZRLS' 13 14 AND ARILS 1 2
GRID 801100 1 .905 0.000 17.325 1 0
GRID 900100 1 .805 0U000 18.180 1 0
GRID 801101 1 .905 11.250 17.325 1 0
GRID 900101 1 .805 11.250 18.180 1 0
GRID 801200 1 *905 22.500 17.325 1 0
GRID 900200 1 .805 22.500 18.180 1 0
S SECTION BOUNDED BY ZRLS 14 15 AND ARLS 1 2
GRID 1000100 1 4627 0.000 19.030 1 0
GRID 1000101 1 4627 114250 19.030 1 0
GRID 1000200 1 .627 22.500 19.030 1 0
S SECTION BOUNDED BY ZRLS 15 16 AND ARLS 1 2
GRID 1100100 1 .414 0030 19.450 1 0

4.35

bKlU LUU10U. 1 .41'• 110. ",>U 1'J.4U 1 U
GRID 1100200 1 .414 22.500 19.450 1 0
S SECTION BOUNDED BY ZRLS 16 17 AND ARLS 1 2
GRID 1200100 1 .050 0.000 19.750 1 0
GRID 1200101 1 .050 11.'250 19.750 1 0
GRID 1200200 1 .050 22.500 19.750 1 0
$ SECTION BOUNDED BY ZRLS 23 4 AND ARLS 1 2
GRID 1400100 1 .200 0.000 1.300 1 0
GRID 1400101 1 .200 11.250 1.300 1 0
GRID 1400200 1 9200 22.500 1.300 1 0
$ SEICTION BOUNDED BY ZRLS 4 3 AND ARLS 1 2
GRID 1401100 1 .400 0.000 1.400 1 0
GRID 1401101 1 .400 11.250 1.400 1 0
GRID 1401200 1 .400 22.500 1.400 1 0
S SE'CTION BOUNDED BY ZRLS 21 8 AND ARLS 1 2
GRID 1600100 1 .780 0.000 7.000 1 0
GRID 1600101 1 .780 11.250 7.000 1 0
GRID 1600200 1 .780 22.500 7.000 1 0
S SE'CTION BOUNDED BY ZRLS 8 10 AND ARLS 1 2
GRID £700100 1 .780 0.000 8.250 1 0
GRID 1700101 1 9780 11.250 8.250 1 0
GRID 1700200 1 .780 22.500 8.250 1 0
S SETCTION BOUNDED BY ZRLS 10 11 AND ARLS 1 2
S SECTION BOUNDED BY ZRLS 22 18 AND ARLS 1 2
GRID 1900100 1 .650 0.000 15.620 1 0
GRID 1900101 1 .650 11.250 15.620 1 0
GRID 1900200 1 .650 22.500 15.620 1 0
S SECTION BOUNDED BY ZRLS 18 19 AND ARLS 1 2
GRID 1901100 1 .627 0.000 16.470 1 0
GRID 1902100 1 .603 0.000 17.320 1 0
GRID 2000100 1 .580 0.000 18.170 1 0
GRID 1901101 1 .627 11.250 16.470 1 0
GRID 1902101 1 .603 11.250 17.320 1 0
GRID 2000101 1 .580 11.250 18.170 1 0
GRID 1901200 1 .627 22.500 16.470 1 0
GRID 1902200 1 .603 22.500 17.320 1 0
GRID 2000200 1 .510 22.500 18.170 1 0
S SECTION BOUNDED BY ZRLS 19 20 AND ARLS 1 2
GRID 2100100 1 .214 0.000 18.410 1 0
GRID 2100101 1 .214 11.250 18.410 1 0
GRID 2100200 1 .214 22.500 18.410 1 0
PQUA02 1 1 .01000 0.00000
ENDDATA

4.36

4.5 TEST MISSILE

This data generator application illustrates the techniques required

to model a closed 360-degree structure. The fins of this structure are

examples of non-symmetric components which can be generated using

the CONE module. Note that the user was required to break the

circular equivalence specifications generated by the CONEND modules

by setting the flag on bulk data card 12. Note also that an unacceptable

quadrilateral element (a triangle) was generated at the root of each fin

on the leading edge. Only the triangular elements need to be manually

replaced since duplicate gridpoints were avoided by using IEQU

specifications. A listing of the data deck and two plots have been included.

4.37

I-9
C-

F.,.

mw

z

z

W 0

CD i

w 0 w

oo9
th 1-

ziLJ 6

hi4 x4 C

z i of z f,- DCDV oC
o i *t hi4

ow ce x W 0
1- (f) 01 2 _ =1

UL 0 1- e m

4.3

w

CI A 1 4 AJ 4 F w 44 4e

on0.

.4 0 N .N 4 .04 C2 .4 14N 4 4 41 14 .4 AN .1 4N

F.)~~1 .aaa

.4 14 .4 N N Nn C C m o n f I- i %W)ý %af 1 " mU N Nq V um 14 WH%

w ~ ~ ~ ~ .P, .4 N4 N .0mI %"0 1 SU 4)L q NV 4L nLMmN

aý C: aý aý Cý a: aa

1- N* .0 Nf C2 N C

4 I

W W
w.4H (j C 4 W v 4ý 4 4 CN 4 4 N v 4 N W "W , zC ' = C 1zCzCz 7CzU ,z' 07CCl

C (L F z z 1 1 " . . - 7 ur

4~ ~~~ 4*4ý4. N N N N. M. N. (J N W. N~ M .M 0 M 0 M 0 P. ~ F

0j

4.-

-1 N ..4N ,CJ ,I 4C2 am a2 am maC D 2 w1

CY cm CYN N l N NjCjC

- 4 %D uh If D .4 m' W) U% W) LIN &AW

C2 UN 11% U D C2 C3 2 C o 3

.f . * f .

*)C N Nv N

a4 .N 0 N N o N o NýN

W N0P D(3 ZaaCy M -t U% %D
Of M UN 0A n M N 0 0 tn 0 N o 0 oN D

4.4

TEST N I SS I LE

Pt R SPECT I VE PLOT

4.41

TEST MISSILE 4C',EE /II?

T1 E SI T AXI S S.IoL E

It

8.4 S i s

4.42

ACKNOWLEDGMENTS

The authors wish to thank the many people who have contributed to

the development of this program through their comments and suggestions.

In particular, we wish to thank Dr. E. H. Cuthill for many stimulating

conversations and her cheerful encouragement throughout the project.

We wish to express our appreciation for the use of subroutines developed

by Dr. Gordon C. Everstine (GOOGAN), Mrs. Barbara Kelly (NASPLT),

and for consultation and programming assistance from Mr. Richard

Kazden (SETUP) and Mr. Michael Golden. We are also indebted to the

developers of the NASTRAN program for many of the data handling

techniques and user-oriented data formats used in this program.

5

INITIAL DISTRIBUTION

Copies Copies

2 DIA, Washington, D.C. 3 USNA
1 K. Goering 1 Dept of Math
1 R. Wood 1 Aerospace Dept

1 U.S. Army Elec Command 1 Tech Lib

1 A. L. Sigismondi 1 NAVPGSCOL

1 U. S. Army Mobility Equip R&D 1 NROTC
1 J. Marburger 1 NAVWARCOL

4 U. S. Army Harry Diamond Labs 3 NAVSHIPSYSCOM
1 G.J. Hutchins 1 Dr. J.H. Huth
1 P.J. Emmerman 1 R.R. Kolesar
1 R. Hamilton 1 Tech Lib
1 C. Anstine, Jr.

2 NAVAIRSYSCOM
3 U.S. Army Frankford Arsenal 1 G.P. Maggos

1 D.L. Frederick 1 Tech Lib

1 P.F. Gordon
1 S.H. Eisman 4 NAVFACENGCOM

2 U. S. Army Picatinny Arsenal 1 M. Yachnis

1 W. Bolte 1 H.D. Nickerson

1 B. Nalge 1 M.B. Hermann
.age 1 Tech Lib

2 U. S. Army Watervliet Arsenal 3 NAVORDSYSCOM
1 P.C.T. Chen 1 O. Seidman
1 G.P. O'Hara 1L. Siuk1 L. Pasiuk

1 CNO (OP-98) 1 Lib

4 CHONR 1 NAVOCEANO
1 N. Basdekas Tech Lib
1 N. Perrone 1 NAVTRAEQUIPCEN
1 S. Brodsky Tech QUib
1 R.J. Lundegard Tech Lib

1 ONR, Chicago 3 NAVAIRDEVCEN

1 R.N. Buchal 1 A. Somoroff
1 S.L. Huang

2 NRL 1 Lib
1 R. Perlut 2 NELC
1 Lib 1 E. Nissan

1 CHNAVMAT 1 Tech Lib
1 S. Atchison

1 DNL

6

Copies Copies

5 NUC San Diego 1 NAVSHIPYD BSN
1 J.T. Hung 2 NAVSHIPYD CHASN
1 L. McCleary PJ. B. Kruse
1 D. Barach
1 G. Benthien 3 NAVSHIPYD MARE ISLAND
1 Lib 1 D. Mitchell

3 NUC Pasadena 1 R. Munden

1 C.F. Falkenback 1 NAVSHIPYD NORVA
P. D. Burke NAVSHIPYD PEARL

1 Lib

2 NUC Hawaii 1 NAVSHIPYD PHILA

1 A. T. Strickland 2 NAVSHIPYD PTSMH
1 Lib 1 E.A. Fernald

4 NWC 6 NAVSEC
1 J. Serpanos 1 N. Griest
1 D.E. Zilmer 1 R.P. Lavoie
1 W.J. Stronge 1 G.J. Snyder
1 Tech Lib 1 T.N. Hull

2 NCEL 1 R.J. Keltie
1 J. Crawford 1 Tech Lib

1 Lib 1 NAVWPNSENGSUPPACT

1 NSSNF 1 NAVSPASYSACT
Tech Lib 1 NAVAERORECOVFAC

3 NOL 1 NAVAVIONICFAC, Indianapolis
1 R.J. Edwards 1 S. Stephen
1 P.C. Huang
1 Tech Lib 1 PACMISTRAN

4 NWL 1 NAVAIRTESTCEN
1 C. M. Blackmon NAVAIRTESTFAC
1 J. Schwartz
1 P. Johnson 2 NAVAIRENGCEN
1 Tech Lib 1 T. Mazella

1 NUSC NPT 1 Tech Lib

4 NUSC NLON 1 NAVAIRPROPTESTCEN

1 A. Carlson 1 NAVVWPNEVALFAC
1 R. Manstan 1 NAVEODFAC
1 J.W•. Frye
1 R. Dunham 1 NAVORDTESTU

1 NAVSHIPYD BREM 1 NAVORDMISTESTFAC

7

Copies Copies

1 NAVMISCEN 1 NASA Marshall

4 U.S. Air Force Flight 1 R. McComas

Dynamics Lab 1 Calif Inst of Technology
1 J. Johnson Jet Propulsion Lab
1 R. Taylor 1 Dr. Roy Levy
1 F. Janik 4 Johns Hopkins Univ, APL
1 Lib 1 W. Caywood

1 U.S. Air Force Flight 1 G. Dailey
Propulsion Lab 1 R.M. Rivello

1 LT James MacBain 1 J.S. O'Connor

12 DDC 2 Penn State, ORL
5 COGARD 1 J.C. Conway

1 W.A. Cleary 1 Lib

1 R. Johnson 1 Univ of Virginia, Civil
1 LCDR V. F. Kieth Engineering Dept
1 LTjg M.C. Grosteck 1 Dr. Richard Eppink
1 LT J.C. Card 1 Mrs. Anne Woehr

1 NASA HQS Advanced Structural Analysis
1 D. Michel (C-6), Bell Aerospace Co,

1 NASA Ames P.O. Box I

1 P. Polentz Buffalo, New York 14240

1 NASA Flight Res Cen 1 Mr. R.B. Smith, Manager

1 A. Carter Engineering Design Prog.
Bettis Atomic Power Lab.

3 NASA Goddard Box 79
1 T. Butler West Mifflin, Pa. 15122
1 W. Case 1 Dr. R.H. MacNeal
I J. Mason MacNeal-Schwendler Corp.

1 NASA Kennedy 7442 N. Figueroa Street
1 H. Harris Los Angeles, Calif 90041

3 NASA Langley 1 Mr. Jack Conaway
1 R. Butler Sikorsky Aircraft
1 R. Fulton Structures & Materials R&D
1 J.P. Raney North Main Street

1 NASA Lewis Stratford, Conn. 06497

Lib

1 NASA Manned Spacecraft Ctr
1 W. Renegar

8

CENTER DISTRIBUTION

Copies Code Copies Code

1 01 1 1853

1 11 (W. M. Ellsworth) 1 1854

1 15 (Dr. W.E. Cummins) 1 186

1 16 (Dr. H.R. Chaplin) 1 188

1 17 (Dr. W.W. Murray) 1 19 (P. S. Dell Aria)

1 172 1 194

1 1721 1 196

1 1725 1 1962

1 1727 1 27 (H.V. Nutt)

1 173 1 271

1 1731 1 272

1 1735 2 2723 (Coblenz, Rajan)

1 174 1 273

1 1745 1 2731

1 177 (UERD PTSMH) 1 274

1 177B (UERD PTSMH) 1 2741

1 1775 (UERD PTSMH) 1 2742

1 18 (G. Gleissner) 1 275

1 1805 1 276

1 1808/1809 1 28

1 183 1 287

1 184 1 94 (J.L. Decker)

1 1842 1 9424 (M.E. Lunchick)

-U.S. GOVERNMENT PRINTING OFFICE: 1973 542-168/169 1-3 9

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract atnd indexing annotation niust be entered when (lie overall report Is classified)

-1 ORIGINATING ACTIVITY (Corporate author) 120. REPORT SECURITY CLASSIFICATION

Naval Ship Research and Development Center[UNCLASSIFIED

Bethesda, Maryland 20034 [2b. GROUP

3. REPORT TITLE

A General Purpose Data Generator for Finite Element Analysis

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final
5. AUTHOR(S) (First name, middle initial, last name)

James M. McKee
Evangeline T. Marcus

6. REPORT DATE 7a. TOTAL NO. OF PAGES 17b. NO. OF REFS

April 1973 191 3
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJECT NO. 4066
SR 535 32 106, Task 15326
WorkUnit 1-1844916 9b. OTHER REPORT NO(St (Any other nu.bers thtt may be assignedWork Unit 1-1844916 this report)

d.

t0. ODSTRIBUTION STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

NAVSHIPS (0311)

13. ABSTRACT

A computer program system has been developed to automate
the preparation of a finite element model to be analyzed using the
NASTRAN general purpose structural analysis program. Using
engineering conventions and modular "building block" specifications,
the program minimizes both the manual effort and the probability of
an undetected error in the preparation of NAK'TRAN data.

This document is intended to be both a guide for the user of the
program and a programmer's reference for the modification and
further development of the program.

DD ,ORM,1473 (PAGE 1) UNCLASSIFIED

S/N 01l1-807-6801 Security Classification

UNCLASSIFIED
Security Classification

14. E OD LINK A LINK 8 LINK CKEY WORDS ,___RO___E

ROLE WT ROLE WT ROLE WT

Finite Element Analysis

Data Generation

NASTRAN

Structural Analysis - Computer Methods

Finite Element Idealization

FORM

DDD Fov.R1473 (BACK) UNCLASSIFIED

(PAGE- 2) Security Classification

