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Recursive Data Structures 

C. A. R. Hoare 

Abstract.  The power and convenience of a programming language may- 

be enhanced for certain applications by permitting data structures to 

be defined by recursion. This paper suggests a pleasing notation by 

which such structures can be declared and processed; it gives the 

axioms which specify their properties, and suggests an efficient 

implementation method. It shows how a recursive data structure may be 

used to represent another data type, for example, a set. It then 

discusser two ways in which significant gains in efficiency can be made 

by selective updating of structures, and gives the relevant proof rules 

and hints for implementation. It is shown by examples that a certain 

range of applications can be efficiently programed, without introducing 

the low-level concept of a reference into a high-xevel programming 

language. 

The work on this paper was supported in part by National Science 
Foundation under grant number GJ 56U73X and ARPA Research Contract 
DAilC 1W3-C-0J^. 



1.  Introduction 

In a language euch as ALGOL 68 [1] or PL/l [2], a central role is 

played by the concept of a reference or POINTER. In ALGOL 68, the 

reference underlies the treatment of ordinary variables, result parameters, 

data structuring, dynamic storage allocation, indirect addressing, etc., 

and iu PL/l they are also used for value parameters, and even for 

input/output. However there are many reasons to believe that the 

introduction of references into a high-level language is a seriously 

retrograde step: 

(1) It reintroduces the ssune unpleasant confusion between addresses 

and their contents which afflicts machine code programmers. 

(2) In ALGOL 66, corfusion is doubly confounded by complex coercion 

and balancing rules. 

(5)  In PL/l the explicit allocation and deallocation of storage 

affords unbounded scope for complexity and error. 

{h)    The variables subject to change by a program statement are no 

longer manifest from the form of the statement. For example, if x and 

y are reference variables 

x : = yj 

obviously changes x , but a statement in ALGOL 68 like 

x : = y+l; 

may change a , or b , or any other variable of appropriate type: one 

variable it can't possibly change is x '. 

(5) It is possible to retain a reference value to an area of local 

workspace which has been deallocated. In PL/l this can cause disaster 

without warning; in .ALGOL 68 certain rather complex rules ensure that 

the danger can sometimes (but not always) be averted by a compile-time 

check. This is known as the problem of the "dangling reference". 

(6) In distinction from values of all normal types (integers, reals, 

arrays, strings, files,...) the value of a reference can never be input 

to a program, nor output from it  (except possibly in a total post mortem 

dump). 

(7) The use of references reduces the efficiency of execution on 

machines with instruction lookahead, data prefetch, pipelines, slave 

stores or paging systems, counteracting all these laudable attempts by 

hardware to make a machine seem faster or larger than it really is. 
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(8) When data is to be held permanently or temporarily on backing 

store (e.g.  files on tape or disk), the use of references can create 

insupei^able difficulties to implementor, user, or both. 

(9) Proof methods for dealing with a language which permits 

general pointers are significantly more complicated, whether the pointers 

are used or not. 

There appears to be a close analogy between references in data and 

jumps in a program. A jump is a very powerful murtipurpose tool, present 

in the object code produced by compilers for almost every machine. But 

it is also an undisciplined feature, which can be used to create wide 

interfaces between parts of a program which appear to be disjoint. That 

is why a high level programming language like ALGOL 60 has introduced a 

range of program structures such as compound statements, conditional 

statements, while statements^ procedure statements, and recursion to 

replace many of the uses of the machine code jump. Indeed perhaps the 

only remaining purpose of the jump is to indicate irreparable breakdown 

in the structure of the program. Similarly, if references have any role 

in data structuring it may be a purely destructive one. It would there- 

fore seem highly desirable to attempt to classify all those special 

purposes to which reference;.- may be put, and to replace them in a high 

level language by more structured principles and notations. In this 

task, it is encouraging that ALGOL 60 [?] has already isolated two such 

uses, namely the procedure parameter and the variable length array, and 

has dealt with them without introducing the reference concept. Further- 

more ALGOL W [k]  and PASCAL [5] have introduced references as represen- 

tations of many-one relationships in a relational network, and have done 

so in a manner which mitigates many of the disadvantages mentioned 

above (as compared with (say) ALGOL 68 or PL/l) . 
1 

One of the main reasons for using stored machine addresses is that 

the amount of storage that will be required by an item of data is not 

known to the compiler. In this paper we will consider a class of data 

structures for which the amount of storage required can actually vary 

during the lifetime of the data; and wc will show that it can be 

satisfactorily accommodated in a high level language using solely high 

level problem-oriented concepts, and without the introduction of references. 
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2.      Concepts and Notations 

The method of specifying the set  of valuer, of a data space by 

recursion has  long been familiar to modern logicians.    For example,   the 

propositions  treated In conventional proposltional calculus may be 

defined by the  following four rules: 

1. All proposition letters are propositions. 

2. If    p    is a proposition then so Is    -i p • 

5.       If    p    and    q    are propositions,   then  so are 

(p & q)       and      (p V q) 

k.       All propositions can be obtained from proposition letters by 

a finite number of applications of the above rules. 

When the  set of propositions as defined above is treated as an object 

of mathematical study,   it is known as a "generalized arithmetic";  and 

an additional axiom is postulated: 

5-       Two propositions are equal only if they have been obtained 

by the same   rule from equal components . 

Exactly the same idea is familiar to programmers in the use of the 

BNF notation for the definition of programming language grammars.     For 

example,   propositions could be defined: 

(proposition)   ::= (proposition letter)] 

-i (proposition) I 

((proposition) &  (proposition))! 

((proposition) V  (proposition)) 

(proposition letter)   ::= (letter) 

Both these methods of defining data not  only specify the abstract; 

structure of the data,   they also state how any value can be represented 

as a linear stream of characters,   for example: 

(P & (-1 P V Q))     • 

However,  we wish to abstract from the external appearance of the 

data,   and concentrate on its  structural properties.    This abstraction 

is familiar to an algebraist,  who calls the resulting data space a word 

algebra on a given finite set of generators.    A generator is a function 

which maps  its parameter(s)   onto the larger structure of whi^h they are 

ii*l*mim**mm*tt*mmämtMM~~*i*^mm*~*^*,.. -        iilwinMi       1   UM«—Ml« 1 1 , 
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immediate components.    A generator with no parameterc is known as a 

constant.     In the case of propositions,   four (-enerators are required: 

(1) prop:     letter - proposition; 

which converts  any letter into a proposition letter  (logicians often 

use a different  type font  for this) . 

(2) neg:     proposition - proposition; 

whjch constructs the negation of its argument. 

(3) con.j,   disj:    proposition x proposition - proposition; 

which takes two arguments and whose result  is their conjunction  or 

dir iunction respectively. 

In symbolic manipulation programs,   it  is  common to deal with 

variables,   parametersj  and functions whose values range over data 

spaces  such as  logical propositions.     In a language like PASCAL, 

which permits  and encourages the programmer to define and use his own 

data types,   it   seems reasonable to penrät him to use recursive definitions 

when necessary.     A possible notation for such a type definition was 

suggested by Knuth [6]; it is a mixture of BNF  (the    |     symbol)  and the 

PASCAL definition of a type by enumeration: 

type proposition = (prop (letter) | neg (proposition) | 

conj,  disj   (proposition,  proposition)); 

It is assumed that the  type "letter" has  been predefined,   for example as 

a subrange of characters 

type letter = 'A'  .. 'Z' 

The effect  of this type definition is threefold: 

(J)     it  Introduces  the name of the type; 

(2) it  Introduces the names of its generators; 

(3) it gives  the number and types of the argument(s)  of the 

generators  (if any). 

Type definitions  of this sort were suggested by McCarthy in  [7]. 

The type is.  intended to be used to declare variables,   parameters 

(ana  functions)   ranging ever the type,   e.g.: 

Fl, P2:   proposition; 

mmmm — 
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PI = prop (.pi ); 

P2 = neg (PI) 5 

P2 = dis,' (P2, prop 

P2 - conj (P1,P2)5 

would leave a; ; the value if    P2 

written: 

(P 4 (^ P VQ)) . 

and the generators can be used to define valueij of the type, e.g., the 

sequence of instructions: 

•Q')); 

a proposition which would normally he 

In most languages with references, the use of recursive type 

definitions is permitted only if the recursive components of each 

structure are declared as references. This seems to be a rather low 

level machine oriented restriction; after all, we do not insist that. 

recursive calls of a procedure should be signalled by such special 

notations. It is true that a recursive data structure which is held in 

a conventionally addressed main store will usually be represented by 

references, but it seems a good idea that the programmer should be 

encouraged to ignore the machine-oriented details of the representation 

(just as he ignores details of the implementation of recursive procedures), 

and should concentrate on the more pleasant abstract properties of the 

structure. The implementor should also have the freedom to use a 

different representation, for example, when the data is held on a backing 

store. Thus the programmer may, if he wishes, imagine a machine which 

allocates a fixed amount of space to hold the current value of a 

variable of recursive type; and if it is called upon to fit in a larger 

value, it adopts the same expedient that we do — it merely writes 

smaller'. 

In defining operations on a data structure, it is usually necessary 

to enquire which of the various forms the structure takes, and what are 

its components.  For this, T suggest an elegant notation which has been 

implemented by Fred McBride in his pattern-matching LISP [8]. Consider 

for example a ±\mcLion intended to count the number of &s contained in 

a "proposition.  Like many functions operating on recursively defined 

data, it will be recursive: 

       —■■ 



(1) 

(2) 

C) 

(5) 

(6) 

function andcount  (p: proposition):  integer; 

andc ounl.  : -- casci.: p oi 

(prop(c) -  )j 

neg(q)  - andcount(q)j 

conj(q,r)  -• andcount(q) + andcount(r)+lj 

disj(q,r)  -• andcount(q) + andcount(r)); 

I • 

Line (l) declares andcount to bo an integer-valued function of one 

proposition, known as p in the body of the function. 

Line (2) states that the result of andcount is assigned, by computing 

the following expression. This is a "case expression" whose 

effect will depend on the value of p . 

Line (5) states that if the value of p is a proposition letter c , 

the result is zero. 

Line (h)   states that if the value of p is a negation, let q be the 

negated proposition and the result is found by computing the 

andcount of q . 

Line (5) states that if the value of p is a conjunction, let q and 

r be the names of its components, and the result is one more 

than the sun of the ancounts for q and r . 

Note that the identifiers c , q , r are like formal parameters: they 

are declared by appearing in the parameter list to the it ft of the 

arrow, and their scope is confined to the right hand side of the arrow, 

only as Par as the vertical bar. Their types are determined by the 

types given in the declaration of the corresponding generator, e.g., 

c is a letter, and q and r are propositions. We shall insist, for 

the time being, that the programmer shall not make assignments to these 

variables. 

The language feature described above is evidently capable of 

expressing all the functional aspects of LISP, and many of the 

procedural aspects as well. For example, the list structure of LISP 

can be defined: 

type list = (unit (identifier) j con:; (list, list)) 

where the type identifier is assumed to be predefined. The function 

mäm ■CHMtfMI 
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cons    is defined as part of this declaration.     The other LISP basic 

functions can be programmed: 

function car (i: list): list; 

car   := cases  i  of (atom  (id)   - error| 

cons  (left,   right)   -left); 

function cdr (i:  list):  list;   ...  similar  ... 

function atom  (£:  list):  Boolean; 

atom  := cases  t of (unit  (any)  - true I cons  (x,y)  - false); 

function equals  (£1,^2): Boolean; 

equals   := car;es il of 

(unit  (idl)   - cases  i2 of (unit  (id2)  - idl = id2J 

cons  (x,y)  - false)| 

cons  (xl,yl)  - cases  12 of (unit  (id2)  -• false| 

cons  (x2,y2)  -> 

equals   (xl,yl)  & equals  (x2,y2))); 

In practice,  the cases notation will often be  found more convenient,   clear, 

and less prone to error than the functions    car  ,   cdr ,  and    atom  .    For 

example,  the familiar append function may be written: 

function append(il,£2:  list):  list; 

append  := cases  il of 

(unit   lid)  - if id = NIL then £2 else error| 

cons  (first,   rest)  --cons   (first,   append (rest,   12))); 

Just as LISP can be embedded in any language which permits recursive 

data structures,   i'o can all recursive data structures be represented as 

LISP lists,   and processed by LISP functions.     For  example 

con.i   ('PSdisJtnegCP'),%>,')) 

can be represented (in S-expression form): 

f'CONJ   'P  CDr;.T  ('MEG  'P)   'Q)) 

An    andcount function  for propositions represented in this way would be: 

m^g^mimmmmgm —- -^ * ^^^^^■^rhjil.,l,-rfr,rt-.i|Li,»afr-1,|" "H ■ ^ 
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andcovint  :=  (atom(£)   -0, 

car(f)   =  'NEG - andcount(cadr(£)), 

car(j)   - 'CONJ - andcount(cadr(i)) + andcount(caddr(£)) * 1, 

car(f)   =  'DISJ - andcount(cadr(i)) + andcount^caddr('e))) i 

Note the arrows in this program are LISP conditionals.     This example 

illustrates some of the advantages of the type declaration for recursive 

data structures: 

(1) The check against the error of applying the function to a structure 

which is not a proposition can be made more rigorous, and can occur 

at compile time rather than run time. 

(2) It is easier to check that all cases have been dealt with. 

(5)    The formal parameters  seem to be more readable and perspicuous 

than the abbreviations    car ,   cadr ,   caddr ,   etc. 

In the next section it will be shown how a compiler can sometimes 

take advantage of the extra information supplied by a type declaration 

to secure more compact representations and more efficient code than is 

usually achieved in LISP. 
To summarize the notational conventions introduced in this section, 

here are the syntax specifications of recursive type declarations and 

case expressions: 

(type declaration)   ::= type  (type identifier)   -  ((generator list)) 

(generator list)   ::=   (generator) j (generator)(or symbol)(generator list) 

(or symbol)   ::= | (i.e.,  vertical stroke) 

(generator)  ::=  (generator identifier)! (generator identifier)( (type list)) 

(type list)  ::= (type)) (type), (type list) 

(case expression)   ::= cases   (expression) of ((case list)) 

(case list)   ::=  (case clause) | (case clause)(or symbol><case list) 

(case clause)   ::=  (pattern) - (expression) 

(pattern)   ::= (generator identifier)((formal parameter list))| 

(generator identifier) 

(formal parameter list)   ::=  (formal parameter)| 
(formal parameter), (formal parameter list) 

(formal parameter)   ::=  (identifier) 
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3-  Iiripleinentalion 

The normal method of representing a recursive data structure for 

processing in the main store of a computer is as a tree using machine 

addresses to link the nodes, and a small integer, called a tag, in each 

node (or with the address) to indicate which of the generators was used 

to define this node. Each node, contains as components the values of 

the arguments of the generator, which may be themselves addresses of 

other nodes, or many be just simple values. 

For example, in the case of a proposition, the name of the generator 

is represented by an integer between 0 and 3 • If the node is a 

proposition letter (tag 0), this will be followed immediately by a 

representation of the letter. If it is a negation, the tag 1 is 

followed by the address of the negated proposition.  In the remaining 

two cases, the code :j    or 5 is followed by a pair of locations, 

pointing to the components of the conjunction or disjunction. Thus the 

value 

(P & h P V Q,)) 

would be represented as: 

P2: 

1 

Of course, this example is imtypically simple. A picture of a more 

realistic proposition would explain why the programmer may prefer not 

to think in terms of references. 

On many machines it will be possible to pack the tag in with one of 

the components of the node, or pack two addresses in a single word, 

thereby saving a word of storage on that node. It can be seen that when 

10 
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nodes have more than two conponents it is possible to use less space 

than tue standard LISP representation for the same information. 

The call of a (non-constant) generator involves the dynamic 

acquisition of a few words of c -ntiguous main storage, and planting 

in them the values of its simple parameters, and the addresses of its 

recursive parameters. The value returned by the generator is the 

address of the new node. There is no need to make a fresh copy of the 

recursive components, since it is quite permissible for two separate 

variables to "share'' the same components, thus: 

PI: 

P2: 

P3: 

I V 2 
1             f 

fc,,—-. 
1 

' 1 } 

- f 

p m 
._: it 1 «. 0 7 1 —9 

.pi *"" 

0  * <—' 

•Q' 

In this picture PI has value Q & (- P v Q) and P2 and Pj) have the 

same value P & (-i P V Q,) . However, this shared use of storage is 

entirely invisible to the programmer, who has no means of finding out 

whether it has occurred or not. This is because the prohibition on the 

selective updating of components of a structure prevents the programmer 

from changing a node on one tree, and testing to see whether the change 

lias affected the other. The same restriction also prevents the 

establishment of cyclic structures, like: 

' 

11 
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1 * 
A 

" 

i 
o ' 

' ; ' '0,' 

Such a structure would appear to have the "infinite" value: 

(P & (P & (P & ••• V 0,)) v Q) , 

and this would, fail to satisfy the axiom of finite generation. Thus the 

prohibition on selective updating seems to be a vital means of preserving 

the integrity of recursive data structures, as well as permitting a more 

economic "shared" representations. 

The tree representation using addresses is not the only possible 

representation of recursive data structures.  If the structure is to be 

held on backing store, it should bo converted to a linear stream, 

replacing every address by the stream representing the tree to which it 

points. In this representation, the example  P & (- 1' V Q)  would appear: 

■ > 0 .pi 1 o .p. 0 •Q- 

Thi.;, of course, will require'copies to be taken of all shared branches, 

thereby usually occupying more space; but in general the elimination of 

addresses will compensate for this. Of course, on reinput of the 

structure, it would be advisable to reestablish as much sharing as 

possible; before acquiring a new node to accommodate given values, if a node 

already containing these values is already present in store, it should 

be used instead.  Indeed, the reuse of existing storage in this way may 

be adopted as general policy, which can be effective in certain kinds of 

application -- for example, it makes test of equality very cheap; in any 

case, it is entirely invisible as far as the logic of the program is 

concerned. In a conventional non-associative store a hashing technique 

12 
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is recommended for finding a node with given contents; hence in LISP 

it is known as "the hashing cons" [9|. 

If sharing is ujed, it is no longer possible to reclaim all the 

storage allocated to a variable on exit from the block in which the 

variable was declared, since its components may also be components 

of the vt'lue of some variable global to that block.  In order to reclaim 

storage when it runs out (and it soon will) it is necessary to use a 

scan-mark garbage collector invented by McCarthy for this purpose [10]. 

This will be more complicated than the standard LISP garbage collector, 

since it will have bo deal in blocks of different size, and it will have 

to know the type of each node and the relative position of each address 

within it. In many applications^ the size of the nodes do not vary too 

wildly; so the problem of fragmentation should not be significant. The 

cost per node of garbage collection should be no greater than in LISP, 

and if nodes are larger than two words, some saving in time may be 

possible. 

The case expression can be compiled into highly efficient code. The 

value being, considered may be loaded into an index register. The tag is 

then used to do cm indexed Jump leading to the portion of object code 

dealing with that particular case. There is no need to check the range 

of the index; it is logically impossible for it to be wrong". If there 

are more than two alternatives this could be more compact and efficient 

than a sequence of tests . The left hand side of the arrow generates no 

code at all. In compiling the right hand side, the formal parameters of 

this case can be accessed by means of a single reverse indexed instruction 

(Rose [11]) requiring a single store access. In accessing the third or 

subsequent component of a node this will be more compact and efficient 

than the LISP use of cadr , caddr , etc. 

With reasonable cooperation from the programmer, this implementation 

would seem to offer a significant improvement on the efficiency of 

compiled LISP, perhaps even a factor of two in space x cost for -.uitable 

applications. But even more significant may be the fact that normal 

operations on numbers, characters, bits, etc., can be carried out with 

direct machine code instructions, without the preliminary run time type check 

which can be so cumbersome in compiled implementations of LISP. Thus the 

overall improvement might sometimes approach an order of magnitude. 

].•■ 
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The axioms  for a recursive data type are     Losely modelled on the 

corresponding informal definition of the type as given in the 

beginning of Section 2.    Note that the fourth axiom is  expresved quite 

informally,  in its normal formalization it appears as a principle of 

"structural induction".    Consider any predicate    p(q)   ,   which we wish to 

prove true of all propositions    q  ,   i.e.,   we wish to prove 

Vq: proposition.p(q) 

The  principle   if structural induction states  that this can be established 

by proving  the theorem  for all the ways in which a proposition    q    can 

be generatedj and furthermore in these proofs    p   may be assumed true of 

all propositional components of    q   .    This may be expressed in  the proof 

rule: 

Vc:  .letter.  P(prop(c)) 

Vp: proposition. p(p) => 9(neg(p)) 

Vp,q: proposition. P(p)&P(q) =» P(con,1(p,q)) 4P(disj(p,q)) 

Vq: proposition. P(q) 

The first three lines of this rule are the antecedents, and the last line 

is the conclusion of the deduction. 

The fifth axiom, dealing with equality, is most easily formalized 

by giving axioms defininii; the meaninc of the cases expression. 

"or propositions the axiom takes the form: 

5.      cases prop(d) of (.. .|prop(c) - e| . . .) = ed 

St  cases neg(p) of (... |neg(q) - e| ...) = e^ 

& ca"es conJ(p,q) of (...|con,i(r,s) - ej ...) = e ' 

& cases disj(p,q) of (... |dis,j(r,s) -ej...) = e ' 

where e'' means the expression formed from e by replacing all free 
y 

occurrences of the variable x by the expression y (with appropriate 

modifications of bound variables when necessary). 

Ik 
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The question now arises,   are these axioms  sufficiently powerful to 

prove everything we need to  know about recursive data structures?    Of 

course,  this question is not precise enough to permit a definitive 

answer; but our confidence in the power of the axioms can he established 

by showing their close analogy with the Peano axioms  for natural numbers, 

which have been found adequate  for all practical purposes of arithmetic. 

For they too can be defined as recursive data structures: 

type M =  (zero,   succ(NN)); 

and the cascc notation permits the traditional method of defining 

recursive functions, for example: 

function plus (ra,n: M): NW; 

plus : - cases n of (zero -• m|succ(p) - sueo(plus(m,p)))5 

The axioms for natural numbers defined as a recursive data structure 

are 

(1) zero is an NW 

(2) if n is an M , so is succ(n) 

(3) p(zero) 

Vn: NDJ.p(n) g p(Eucc(n)) 
Vn: M. o(n) 

(h)    cases zero of (^ero -> e I succ(n) - f) = e 

3c  cases Eucc(m) of (zero -• e | succ(n) - f) = f" m 

Axioms  (1)  and (2)   are the same as Peano's.    Axiom  (3)   is the principle 

of mathematical induction.    From Axiom  (h)  we can readily prove the 

remaining two Peano axioms: 

1.       succ(n)  / zero 

Proof by contradiction:  assume succ(n) = zero 

cases succ(n) of (zero - true | succ(n) - false) 

= cases zero of (zero -« true | succ(n) -• false) 

false  = true by axiom h. 
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2.  succ(m) = succ(n) => m -- n 

Proof: assume the antecedent. 

hence  cases succ(m) of (zero - zero | succ(in) - m) 

= cases succ(n) of (zero - zero | succ(ra) - m) 

m  m 
mm '''": mn  '  ^^'e *' m " n • 

It is worthy of note that when none of the generators have parameters, 

the recursive data structure reduces to a PASCAL type definition by 

enumeration, and the axioms still remain valid. For example, the Boolean 

type may be defined: 

type Boolean = (true | false); 

and the axioms are: 

(1) true and false are Booleans, 

(2) P(true) 

p(false) 

Tb: Boolean. p(b) 

(••)     cases true of (true - e | false - f) .= 6 

cases false of (true - e | false - f) = f 

If desired, the notation " if B then e else f " may be regarded a^ an 

abbreviation for " cases B of (true -> e | false - f) ". 
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5 •      Classes 

Many interesting algebras are not word algebras  -- for example, 

finite sets    and finite mappings  (sparse arrays).    However,  they can 

be represented as subsets of a word algebra,   consisting of elanents 

satisfying some additional property'known as an invariant for that type. 

A type which is a subset of a word algebra will bo called a class.    In 

order to ensure that each newly generated value of the type will actually 

satisfy the invariant,   the programmer must have the ability to specify 

(1) The initial value  of any declared variable of the class. 

(2) The function(s)   which are to be used to   generate all other values 
of the class. 

A programming language should ensure that the actual generators for the 

recursive class  are never used outside the bodies  of the  function(s).     In 

this way,  by proving that  these functions preserve the invariant  (whenever 

their parameters  satisfy it),   it  is possible to guarantee that all values 

ever generated will be within the desired subset.    This  idea was  expounded 
in  [12]. 

As an example,   consider the representation of a set of integers.     For 

this purpose we shall use a single-chained list of integers, which 

possesses the additional invariant property  of being sorted.    The 

operations required for a set are  (say)   insertion of a possibly new 

element,   deletion of a possibly present element,   and a test of membership 

of a possible element.    A suggested form for the class declaration may be 

17 

^MMMi Uta ^IMMflin  Kn i  i 



(1) dass int set =  (empty [ list (int set,   integer)) 

(2) begin  Punctiun insertion!r:  intset,  i:*lnteger):  intsetj 

insertion  :-  caseij  G  of 

(empty - list(empty,i)| 

list (rest, j) -> if i = J then s 

else if i > j then list(insertion(rest;i), j) 

jlse list(s,i)); 

function deletion(s;   intset,   i:  integer):  intset; 

deletion  := gases  s of 

(empty - empty] 

list(rest,j)  -• if i = j then rest 

el£ if i > j then list(deletion(rest,i), j) 

else s); 

function has(s:  intset,   i:  integer):  intset; 

hat 

(5) intset 

end intset; 

;= cases s of 

(empty -• false] 

list (rest,,]) - if i = j then true 

else if i > j then has(rest,i) 

else false) ; 

;= empty 

I 

Notes 

(1) Introduces the class name intset , and declares that it will be a 

subset of the recursive type with generators empty and list. The 

scope of these generator names is confined to this class declaration. 

(2) The boiy of the class declaration, as in [12], has the form of a 

block, in which are declared those procedures and functions which are 

to be used by the programmer on values of the class, namely the 

functions insertion and deletion and has . 

(3) The body of the block specifies the initial value of all declared 

variables of the class. The name of the class itself is used for 

this purpose. 

18 
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It is the intention that a class can be used in the saine way ac a 

type,   for example; 

declaration 

(including'; initialization to empty):      R,S:  intset; 

assignment; R  :- inEertion(S,57) 

S  ;= R; R  ;= deletion(R,56); 

test; if has(R,57)  then   ... 

As  suggested in  [12],  the criterion of correctness  of a class can 

be expressed in terms of an invariant and an abstraction function. 

The abstraction function which maps each list onto the set which it 

represents c&n be defined by recursion 

tfil:  intset)   =,„ cases  i  of 
ai        — 

(empty - null set I 

list(^l,i)  - [i]  U a[n.)); 

and the invariant can be expressed 

sorted(£;  intset)   =      cases  I  of 

(empty - truej 

list(£l,i) - i - min(c7(0))' 

The correctness of the insertion function can now be formally 

expressed. 

sorted(s)[body of insertion]  sorted(insertion) i ^(insertion)   =  [i] U(^(s) 

Since insertion is a recursive function,  the proof of this will require 

assumption of the correctness of the recursive call, namely: 

"   insertion(rest,i)  ".    This hypothesis may be expressed: 

[sorted(rest) =»] sorted(insertion(rest,i)) & 

& <7(inEertion(reGt,i))  = [i} Unrest) ...hypothesis 

in which the antecedent is true  for all intsets,  and may be omitted. 

Using the rule of assignment,   and distributing function application 

through the cases,  we obtain the  following lemma: 
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sorted(s) => cases s of 

(empty - sorted( list (empty, i)) &<7(list (empty, i)) = [i} " ${ s) (l) 

list(rest,j) - if i - ,i thK\ sorted(B) i^s) = [i}Utf(s) (2) 

else if i > j then Eorted(Idst(insert!on(rect,i),,j)) (5) 

&i7(list(insertion(rest,i),j)) - [ij'J^c) (M 

else sorted(list(s,i)) (5) 

S!<7(list(s,i)) = Ci}U^(s) (6) 

5ach case can be readily proved from the definition of    (2   and    sorted  ; 

no  further inductions are required. 
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6.  Memo Funcv.jons 

In this section, we shall explore a particular case of selective 

updating of components of a recursive data structure, which enables the 

programmer to secure the advantages of the memo function advocated by Michie [13 

Consider the old example of differentiation of symbolic expressions. 

The simplest implementation is to define expressions as a type: 

type expression = (constant(real) | variable(identifier)| 

minus(expression)| 

sum, product, quotient(expression, expression)); 

and define the derivative as follows: 

function deriv(e: expression, t: identifier): expression; 

deriv := cases e of 

(constant(any) -> constant(0) | 

variable(x) -« if x = t then constant(1) 

else constant(0) j 

minus(u) - minus(deriv(u))| 

si.im(u, v) -> Kum(deriv(u),deriv(v)) | 

proluct(u,v) - svmi(product(u,de?iv(v)),product(v,deriv(u))) I 

quotient(x,;y) -• 

quotient(sum(deriv(u),product(minus(e), deriv(v))),v)); 

Using these declarations we may write: 

position, speed, acceleration: expression; 

position := quotient(constant(3),variable('t')); 

speed := deriv(position,variable('t')); 

acceleration := deriv(speed, variable('t')) 

But this implementation can involve heavy penalties ooth in space 

and time: 

(1) A large amount of space will be wasted in storing expressions 

of the form 

e + 0 ,  e x 1 ,  e x 0 ,  etc. 

This may be mitigated by declaring expressions as a class, in which the 

generation of such redundant expressions is inhibited, by the use of 

programmed functions. 
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(2) If an expreesion Is bo ho differentiated repeatedly with 

respect to the same variable, much lime and apace can bo spent on 

re-evaluating bhe derivatives of the subexpressions; this Lime could be 

saved if the previously computed derivative were stored as a third 

component of each node representing a sura, a product or a quotient. 

The value of this component (known as a memo compoüent) starts off as 

"unknown", but when the derivative of this subexpression is computed, 

it is stored here; and if the derivative is required again, the stored 

value is used instead of being recomputed. 

For the sake of simplicity, in the following program we have 

assumed that all derivatives are taken with respect to the variable 't'; 

also, the functions perform only the most trivial of simplifications. 

In a serious symbolic manipulation program, all these functions would 

be much more complicated. 

class expression  (variable(identifier) lconstant(real) |mi(expression) | 

su,pr, qu( expression, expression, (unknown, knovm(expression)))) 

(1) begin constant ^ei-o = constant(O), one = constant(l); 

function sum(left,right; expression): expression; 

sum :~ if left = 2;ero then right else if right = zero  then left 

else su(left,right,unknown) ; 

function minus(e: expression): expression; 

minus := cases e of (constant(x) -. constant(-x)] 

(2) rai(f) - f | else mi(e)); 

function product (left»right: expression): expression; 

product := if left = zero  v right - one then left 

else if right = zero V left = one then right 

else pr(left,right,unknown); 

function quotient(left,right: expression): expression; 

quotient := if left = aero v right = one then left 

else qu(left,right,unknown) j 
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functünn dbydt(e:   expression)  -• expression; 

cases e of 

(variable(id)  - dbydt   := if id = 't'  then one else zeroj 

constant (any)  -• dbydt   := zero] 

mi(u)  -^ dbydt  := minus( dbydt(u)) | 

su(u, v,deriv)  -* cases deriv of 

(known(f)  - f| 

unlmown   -»   [dbydt   : = sum (dbydt (u), dbydt (v)) ; 

deriv := known(dbydt)}) | 

pr(u,v,deriv)  - case^- deriv of 

(known(f)  - f| 

unknown - [dbydt : = sum(product (u, dbydt (v)), 

product(v,dbydt(u))); 

known(dbydt)}) I 

qu(u,v,deriv) 

deriv 

cases deriv of 

(known(f) - fj 

unknown - [dbydt ! quot i ent (sum (dbydt (u),, 

minus (produ c t (e, dbydt (v)))), v) 

deriv  : - known (dbydt) })) j 

expression  := 

end expression; 

;ero 

Notes 

(1) The PASCAL constant declaration can here be used to save ;pace and 

time and trouble. 

(2) It seems a convenience to write else to stand for all the cases not 

explicitly mentioned. 

(5)     It is also convenient to use the name of a function as a variable 

inside its body (except^   of course,  when it has actual parameters). 

(U)     [ }    are used for begin end. 

The correctness of this class obviously depends on the preservation 

of the invariant that   if    e    has the form    su ,  pr ,  or    qu ,   then its 

memo component either contains the value    unknown    or    known(dbydt (e))   ; 

or,  more formally: 

Ve,u,v,d:   expression,   e  = su(u, v,known(d)) ve = pr(u, v, known (d)) 

ve = qu(u,v,known(d))   =J   a := dbydt(e)) 
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Furthermore the abstraction function for the class must not mention 

the memo component.    It is  bhis   that makes the existence of the third 

component logically invisible t )  the user of the class,   although one 

hopes that he notices  the tjain in  efficiency. 

It is noteworthy that the use of selective updating immediately 

permits  establishment of cyclic  structures,  but because of its  logical 

invisibility,   this does not  seem to 'matter.    For example,   after a series 

of assignments  like those shown on page 21, 

position, speed, acceleration:   expression; 

position  : = quotient (constant(:>), variable(' t')) ; 

speed  :- dbydt(position); 

acceleration   := dbydt(speed) ; 

A diagram of the stored structures will be; 

position: 

speed: 

acceleration: 

>r 

■1-i constant 

« 

variable « ' 

> f 
p> •t' 

^ qu 

• mi 

» 

i i 

* 

L. 
* 

qu 

su . mi 

unknown 

_ unknown mi 

(Note;  position  :/t 

speed   - position/1  - 3/t 

acceleration 

2 

( - speod) -i- ( - speed) 
t t3 

•) 

24 

-■ ii   I in       ilillMMilM 



lip.!UI*l!,IMI   M J  M •|lil.liilll»Mlll        l •nmi^mimmtmvmmwimimim —•«■••wwi^nB^  '"' IWI^ *mmm^m^mmm~-^^*riw^w^^^^mi 

The use of mono components  does not  invalidate the sharing of 

subtrees,  again because of the invisibility of the updating.    Indeed, 

its main benefits are directly due to the preservation of charing,  and 

can be increased by increasing the a/nount of sharing.    If the memo function 

method is widely used,   it becomes  very attractive to choose the "hashing" 

technique of storage allocation.    However,   in the use of this technique, 

it  would be desirable to ignore the contents of the memo component,   so 

that  if a newly generated expression was identical to one in which the 

memo component was already known,   they would still be correctly identified, 

and the derivative of the newly generated expression would be available 

"for free".    For this reason,   it would seem to be a good idea for a 

programming language to insist that a prograinmer single out a memo 

component by a special form of declaration,   say by prefixing it by the 

word    memo   .    A similar method has been used successfully in some large 

theorem proving systems   [ lM . 

The language feature defined here places on the prograinmer the 

responsibility for correct maintenance of a memo component;  and it helps 

him in this only by supplying an appropriate proof method.    This has 

the advantage that  the programmer can readily control the nature and 

amount  of information to be memorized.    For example,   if partial derivatives 

are required with respect to exactly three variables,  three memo 

components can be declared.     If the identity of the controlled variable 

is not  known in advance,   it can also be stored In a memo component,   su 

that repeated differentiation with respect to the same variable will 

always be efficient,  although when a different variable is  used,  the 

memory is overwritten.    Or the programmer can maintain a small list of 

such variable/value pairs,   choosing to "forget" certain of them when the 

list gets too long.    Finally,   h^ can choose which nodes will have memo 

components and which will not.    This gives the programmer much better 

control of efficiency in time and storage than the automatic technique 

suggested in [15],  although at a cost  of requiring correct programming. 

Since efficiency is the sole objective of the memo technique,   perhaps 

this  is not too high a price. 

The implementation of this memo technique perhaps constitutes one of 

the better disciplined uses  of the controversial LISP functions  RPLACA and 

RPLACD. 
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In the previous sections we have given examples for which an 

implementation using shared substructures would ^ive significant  savingi: 

in storage space and time.    Ilowevei',  the use of storage sharing has  some 

significant penalties: 

(1) when updating any component  of any node of a structure,   a new copy 

must be made of that node and all nodes through which it war 

accessed; 

(2) storage which goes out of use,   either because of updating or because 

of block exit.,   cannot be immediately reclaimed for other uses; 

(5)    the programmer tends to lose control of the efficiency of use of one 

of his most precious assets,   main storage; 

(U)    the programmer has no control over addressing vagrancy,  which is 

necessary for successful use of paging systems or backing stores; 

(5)     the time spent  in scan-mark garbage collection can be the heaviest 

single cost  in  the execution of an efficiently compiled program. 

These disadvantages will be particularly acute in cases where little 

advantage can be taken of sharing. 

Consider for example a program operating on intsets  (as defined in 

Section  5)  which only ever needs  one such set;  or if it needs  several,   it 

only ever updates the sets by assignments of the form 

51 := insertion(Sl,57); 

52 := deletion(S2,95); 

and never pe: :onr.r a "cross-assignment"  of the form: 

51 := S2; 

52 := insertion(Sl,57). 

In such a program,  the two sets would never in practice cane to share 

any subcomponent.     Even if the program did make an occasional cross- 

assignment,  the sharing patterns would be rapidly dissipated by subsequent 

updating of either set.    So in this program a non-shared representation 

would be much better. 
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1 i' it is known that, then   Ls n    sharing^   bhe proßrommer mußt  be 

encouraged to use selective updating of components of hie structure by 

mea .s of procedure:- operating upon the structure,  rather than   ftxnctions 

producing potentially large structured values.    As  suggested in  [12]^ 

we  shall declare procedur', s local to the class: 

procedm-e insert(i:   integer); 

procedure delete!i:   integer); 

These procedures are regarded as being "components" of every variable of 

the class,   and can be invoked by naming the variable followed by bhe 

procedure call (separated by a dot): 

SI.insert(57)j 

S2.delete(95); 

which are intended to be equivalent to bhe updating assignments 

51 :--- insertion(Sl, 57); 

52 := deletion(S2,95). 

The writer of these procedures  sometimes wishes to refer to the yet 

unknown  variable to which it is being applied.    For this purpose,   we will 

use the name of the class  itself.     In some circumstances,   it  is necessary 

to define a completely new value  of this  variable bj  means  of a generator. 

For this purpose,   I  suggest a  facility used in many languages to  specify 

the result of a  function,  namely: 

result  e; 

which has the effect of assigning    c    as the  result of the procedure,  and 

immediately exiting from the procedure.    The code for bhe updating version 

of intset is  shown in Table 1. 

When the result of a procedure is given by result  ,  part   x" all of 

the store used by  the value of the  variable being updated can often be 

immediately reclaimed -- a technique which has been called "compile time 

garbage collection"  [15]-    An example of this is marked (2). 

One consequence of a non-shared  representation is that whenever a 

structure is used as an argument  bo a generator,  a complete copy of that 

structure must be made.    .An excepl :i m  bo this is in bhe case of a single 

occurrence of the class name within an expression which is being used as 
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class intset = (emptyjlist(intset,integer)) 

begin procedure inrortfi: integer); 

cases intset of (empty - result list.f empty, i) | 

list(reEt,j) -• if i > J then rest, insert(i) 

else If 1 < j then result list(intset,i)) ;  (l) 

procedure äelete(i: integer); 

cases intset of (empty - do nothing] 

list(reEt,j) -» if 1 = j then result rest (2) 

else if i > j then rest, delete(i)); 

function has(i; integer): Boolean; 

cases intset of (ertrpty -• result false j 

list'rest,,]) -* if 1 = ;j then result true 

else if i > j then result rest, has(i)); 

int s et := empty 

end; 

Table 1. 
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a rerun,. in this case, the same address can be used instead of bhe 

address of a fresh copy; and of course, the storage occupied would not 

be reclaimed.    .An example of bhis  is marked (l) . 

After those two optimizations have been made,  the outstanding 

causes of inefficiency are the recursive calls,  with their associated 

overhead of stack manipulation and parameter passing.    Since these will 

occur as the last  statement of the procedure body,   an obvious optimization 

would be to replace them by a jump back to the beginning of the- procedure 

body,   having made appropriate adjustment  for the left hand parameter of 

the procedure. 

After these optimizations have been made,  the resulting program may 

in certain applications be several orders  of magnitude more efficient 

than the purely functional class described in Section 5. 

It  is unfortunate that  bhe language feature described here relies 

so heavily on optimization to secure highest efficiency.    The great 

danger of optimization is that a small change to a program  (e.g.     insertion 

of    n : = n+l    after,   instead of before,   a recursive call) will give rise to 

an unpredictable and unacceptable loss of efficiency.    A second danger is 

that  it can make an implementation,   large,   slow,  unreliable,   and late. 

Finally,   it has the unfortunate effect of removing from the programmer 

the feeling of responsibility and control over efficiency,  which was   the 

main reason  for introducing selective updating anyway'. 

Consequently,   it may be desirable  to introduce into a language 

some special notations  for expressing bhe three special cases which are 

susceptible to optimization. 
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Conclusion 

This paper has described a number of old programming techniques 

and new notati ns  to express them. The objective has been to isolute 

a nujiiber of useful and efficient simple case:-- of the use of references, 

which are susceptible of relatively simple proof techniques, and give 

notations and syntactic conventions which guarantee their validity. 

In all cases it has proved possible to achieve this without introducing 

the concept of a reference into the algorithms. Of course there must 

remain a number of applications, for example when dealing with relational 

structures, when the explicit use of references seems unavoidable or 

even desirable; and for this purpose, something like the record class 

of ALGOL W still seems to be the best solution. 

However, it' a general-purpose programming language contains a 

record class concept, this can certainly be used to program all the 

representations described in this paper.  So the question arises, is it 

worth while to incorporate these notations and facilities into such a 

language? The answer to this probably depends on the intended application 

of the language. In a special purpose language for symbol manipulation 

it would be interesting to try out some of these ideas; but in a general 

language for implementing software (e.g. operating systems), the reliance 

on general garbage collection seems quit^ inappiopriate. 

Even if these ideas are not embodied, in a programming language, I hope 

they will be found to be useful as an aid to reliable program design and 

documentation. An algorithm can be designed using the suggested 

facilities, and can perhaps even proved using the suggested proof 

techniques; the programmer ca.n then manually translate his abstract 

program into some lower level language with explicit pointers, using the 

suggested implementation techniques. This is, of course, the general 

method recommended in structured programming [16]. 
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