
Best
Available

Copy

" lUMt.^U'' ■■"i1-. '>•■-IJ-BLIM,!.. 11.^- \\fmm ILIII,W',PPPIJ^^,JIIIPIIII|II ■ » ■■"'■l "^^^

AD-772 509

RECURSIVE DATA STRUCTURES

C. A. R. Hoare

Stanford University

.y

Prepared for:

Advanced Research Projects Agency
National Science Foundation

October 1973

D'STRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

mmmmb. "——' —■—. .■■■

»fWH-^t-uji»! ii "inHinppnPi

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMOAIM-223

STAN-CS-73-400

O
in

iN
Q

RECURSIVE DATA STRUCTURES

BY

C. A. R. HOARE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494

PROJECT CODE 3D30

OCTOBER 73

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

'"NATIONAL TECHN1CAI
INTORMATION SERVICE
US lepa ent of i ■''"

Springfield VA 2 I

mmu^mmttmmmm

5w

iifa-trifiiiifcitfiflfiii ! inlf i^i^ ^^rlMf-" ri -

■ IP inuiHW «I-.1..-WU..—J. .-...»• ^,-..-.....-.111.1 im »m . . . ii. j, mümj«..,,,.^..-.-...,. "' ,..I|,.I.I^. > ipu > i u i in. n mm • ail i ■>, i ■■ .u i J Ji ill «MI Hilling

Recursive Data Structures

C. A. R. Hoare

Abstract. The power and convenience of a programming language may-

be enhanced for certain applications by permitting data structures to

be defined by recursion. This paper suggests a pleasing notation by

which such structures can be declared and processed; it gives the

axioms which specify their properties, and suggests an efficient

implementation method. It shows how a recursive data structure may be

used to represent another data type, for example, a set. It then

discusser two ways in which significant gains in efficiency can be made

by selective updating of structures, and gives the relevant proof rules

and hints for implementation. It is shown by examples that a certain

range of applications can be efficiently programed, without introducing

the low-level concept of a reference into a high-xevel programming

language.

The work on this paper was supported in part by National Science
Foundation under grant number GJ 56U73X and ARPA Research Contract
DAilC 1W3-C-0J^.

1. Introduction

In a language euch as ALGOL 68 [1] or PL/l [2], a central role is

played by the concept of a reference or POINTER. In ALGOL 68, the

reference underlies the treatment of ordinary variables, result parameters,

data structuring, dynamic storage allocation, indirect addressing, etc.,

and iu PL/l they are also used for value parameters, and even for

input/output. However there are many reasons to believe that the

introduction of references into a high-level language is a seriously

retrograde step:

(1) It reintroduces the ssune unpleasant confusion between addresses

and their contents which afflicts machine code programmers.

(2) In ALGOL 66, corfusion is doubly confounded by complex coercion

and balancing rules.

(5) In PL/l the explicit allocation and deallocation of storage

affords unbounded scope for complexity and error.

{h) The variables subject to change by a program statement are no

longer manifest from the form of the statement. For example, if x and

y are reference variables

x : = yj

obviously changes x , but a statement in ALGOL 68 like

x : = y+l;

may change a , or b , or any other variable of appropriate type: one

variable it can't possibly change is x '.

(5) It is possible to retain a reference value to an area of local

workspace which has been deallocated. In PL/l this can cause disaster

without warning; in .ALGOL 68 certain rather complex rules ensure that

the danger can sometimes (but not always) be averted by a compile-time

check. This is known as the problem of the "dangling reference".

(6) In distinction from values of all normal types (integers, reals,

arrays, strings, files,...) the value of a reference can never be input

to a program, nor output from it (except possibly in a total post mortem

dump).

(7) The use of references reduces the efficiency of execution on

machines with instruction lookahead, data prefetch, pipelines, slave

stores or paging systems, counteracting all these laudable attempts by

hardware to make a machine seem faster or larger than it really is.

■MMMMM 1 ""■" ■""^'■riVfiiniiMiniiiii*

•«■viiiijj ui.ni■Mi-i.i i inmmwümjvm^lfv •'••p*-«*^?'r-v*-~m»niwM» Lwtmm.v*uiv)^v'**'»w*''™!^iu 'ii**v'm'^mK^mp*m^m

(8) When data is to be held permanently or temporarily on backing

store (e.g. files on tape or disk), the use of references can create

insupei^able difficulties to implementor, user, or both.

(9) Proof methods for dealing with a language which permits

general pointers are significantly more complicated, whether the pointers

are used or not.

There appears to be a close analogy between references in data and

jumps in a program. A jump is a very powerful murtipurpose tool, present

in the object code produced by compilers for almost every machine. But

it is also an undisciplined feature, which can be used to create wide

interfaces between parts of a program which appear to be disjoint. That

is why a high level programming language like ALGOL 60 has introduced a

range of program structures such as compound statements, conditional

statements, while statements^ procedure statements, and recursion to

replace many of the uses of the machine code jump. Indeed perhaps the

only remaining purpose of the jump is to indicate irreparable breakdown

in the structure of the program. Similarly, if references have any role

in data structuring it may be a purely destructive one. It would there-

fore seem highly desirable to attempt to classify all those special

purposes to which reference;.- may be put, and to replace them in a high

level language by more structured principles and notations. In this

task, it is encouraging that ALGOL 60 [?] has already isolated two such

uses, namely the procedure parameter and the variable length array, and

has dealt with them without introducing the reference concept. Further-

more ALGOL W [k] and PASCAL [5] have introduced references as represen-

tations of many-one relationships in a relational network, and have done

so in a manner which mitigates many of the disadvantages mentioned

above (as compared with (say) ALGOL 68 or PL/l) .
1

One of the main reasons for using stored machine addresses is that

the amount of storage that will be required by an item of data is not

known to the compiler. In this paper we will consider a class of data

structures for which the amount of storage required can actually vary

during the lifetime of the data; and wc will show that it can be

satisfactorily accommodated in a high level language using solely high

level problem-oriented concepts, and without the introduction of references.

^***~*~-~*-*~'~-~**~-~~''-~^-~~-~ - mHlfi 111

»*W>WW"W!"™pr»WJW»»l«I'!r*W!TOMW'I'"W'"^^

2. Concepts and Notations

The method of specifying the set of valuer, of a data space by

recursion has long been familiar to modern logicians. For example, the

propositions treated In conventional proposltional calculus may be

defined by the following four rules:

1. All proposition letters are propositions.

2. If p is a proposition then so Is -i p •

5. If p and q are propositions, then so are

(p & q) and (p V q)

k. All propositions can be obtained from proposition letters by

a finite number of applications of the above rules.

When the set of propositions as defined above is treated as an object

of mathematical study, it is known as a "generalized arithmetic"; and

an additional axiom is postulated:

5- Two propositions are equal only if they have been obtained

by the same rule from equal components .

Exactly the same idea is familiar to programmers in the use of the

BNF notation for the definition of programming language grammars. For

example, propositions could be defined:

(proposition) ::= (proposition letter)]

-i (proposition) I

((proposition) & (proposition))!

((proposition) V (proposition))

(proposition letter) ::= (letter)

Both these methods of defining data not only specify the abstract;

structure of the data, they also state how any value can be represented

as a linear stream of characters, for example:

(P & (-1 P V Q)) •

However, we wish to abstract from the external appearance of the

data, and concentrate on its structural properties. This abstraction

is familiar to an algebraist, who calls the resulting data space a word

algebra on a given finite set of generators. A generator is a function

which maps its parameter(s) onto the larger structure of whi^h they are

ii*l*mim**mm*tt*mmämtMM~~*i*^mm*~*^*,.. - iilwinMi 1 UM«—Ml« 1 1 ,

wmum'VMi ■ l iliU ■ ij JJ.I Ji^)Haii«^|L ^ ' ■■'«•"■" '■ ' "■ I i I i i.wi.iiuimiii j i.iii.niL •. i>aliia .>.■■.'.

immediate components. A generator with no parameterc is known as a

constant. In the case of propositions, four (-enerators are required:

(1) prop: letter - proposition;

which converts any letter into a proposition letter (logicians often

use a different type font for this) .

(2) neg: proposition - proposition;

whjch constructs the negation of its argument.

(3) con.j, disj: proposition x proposition - proposition;

which takes two arguments and whose result is their conjunction or

dir iunction respectively.

In symbolic manipulation programs, it is common to deal with

variables, parametersj and functions whose values range over data

spaces such as logical propositions. In a language like PASCAL,

which permits and encourages the programmer to define and use his own

data types, it seems reasonable to penrät him to use recursive definitions

when necessary. A possible notation for such a type definition was

suggested by Knuth [6]; it is a mixture of BNF (the | symbol) and the

PASCAL definition of a type by enumeration:

type proposition = (prop (letter) | neg (proposition) |

conj, disj (proposition, proposition));

It is assumed that the type "letter" has been predefined, for example as

a subrange of characters

type letter = 'A' .. 'Z'

The effect of this type definition is threefold:

(J) it Introduces the name of the type;

(2) it Introduces the names of its generators;

(3) it gives the number and types of the argument(s) of the

generators (if any).

Type definitions of this sort were suggested by McCarthy in [7].

The type is. intended to be used to declare variables, parameters

(ana functions) ranging ever the type, e.g.:

Fl, P2: proposition;

mmmm —

i«WiilU«WtiBilPlWWl ■ i ■-■mwiiK ■ ii IHIMH"»»!

PI = prop (.pi);

P2 = neg (PI) 5

P2 = dis,' (P2, prop

P2 - conj (P1,P2)5

would leave a; ; the value if P2

written:

(P 4 (^ P VQ)) .

and the generators can be used to define valueij of the type, e.g., the

sequence of instructions:

•Q'));

a proposition which would normally he

In most languages with references, the use of recursive type

definitions is permitted only if the recursive components of each

structure are declared as references. This seems to be a rather low

level machine oriented restriction; after all, we do not insist that.

recursive calls of a procedure should be signalled by such special

notations. It is true that a recursive data structure which is held in

a conventionally addressed main store will usually be represented by

references, but it seems a good idea that the programmer should be

encouraged to ignore the machine-oriented details of the representation

(just as he ignores details of the implementation of recursive procedures),

and should concentrate on the more pleasant abstract properties of the

structure. The implementor should also have the freedom to use a

different representation, for example, when the data is held on a backing

store. Thus the programmer may, if he wishes, imagine a machine which

allocates a fixed amount of space to hold the current value of a

variable of recursive type; and if it is called upon to fit in a larger

value, it adopts the same expedient that we do — it merely writes

smaller'.

In defining operations on a data structure, it is usually necessary

to enquire which of the various forms the structure takes, and what are

its components. For this, T suggest an elegant notation which has been

implemented by Fred McBride in his pattern-matching LISP [8]. Consider

for example a ±\mcLion intended to count the number of &s contained in

a "proposition. Like many functions operating on recursively defined

data, it will be recursive:

 —■■

(1)

(2)

C)

(5)

(6)

function andcount (p: proposition): integer;

andc ounl. : -- casci.: p oi

(prop(c) -)j

neg(q) - andcount(q)j

conj(q,r) -• andcount(q) + andcount(r)+lj

disj(q,r) -• andcount(q) + andcount(r));

I •

Line (l) declares andcount to bo an integer-valued function of one

proposition, known as p in the body of the function.

Line (2) states that the result of andcount is assigned, by computing

the following expression. This is a "case expression" whose

effect will depend on the value of p .

Line (5) states that if the value of p is a proposition letter c ,

the result is zero.

Line (h) states that if the value of p is a negation, let q be the

negated proposition and the result is found by computing the

andcount of q .

Line (5) states that if the value of p is a conjunction, let q and

r be the names of its components, and the result is one more

than the sun of the ancounts for q and r .

Note that the identifiers c , q , r are like formal parameters: they

are declared by appearing in the parameter list to the it ft of the

arrow, and their scope is confined to the right hand side of the arrow,

only as Par as the vertical bar. Their types are determined by the

types given in the declaration of the corresponding generator, e.g.,

c is a letter, and q and r are propositions. We shall insist, for

the time being, that the programmer shall not make assignments to these

variables.

The language feature described above is evidently capable of

expressing all the functional aspects of LISP, and many of the

procedural aspects as well. For example, the list structure of LISP

can be defined:

type list = (unit (identifier) j con:; (list, list))

where the type identifier is assumed to be predefined. The function

mäm ■CHMtfMI
^—IMItiWI*

mam *»__ .

-^ m^VL.mwniiWMII.II^'J » .»'i' 11, ,PIV IHM JWIWI^U I |I|U ll,.|.|«M(p«imilfi t.imia(l"l*L«I.I^IJIW>"JIJ"l!IM«<. »■»«■»T*BL"'iJ«^«WWHfM

\

cons is defined as part of this declaration. The other LISP basic

functions can be programmed:

function car (i: list): list;

car := cases i of (atom (id) - error|

cons (left, right) -left);

function cdr (i: list): list; ... similar ...

function atom (£: list): Boolean;

atom := cases t of (unit (any) - true I cons (x,y) - false);

function equals (£1,^2): Boolean;

equals := car;es il of

(unit (idl) - cases i2 of (unit (id2) - idl = id2J

cons (x,y) - false)|

cons (xl,yl) - cases 12 of (unit (id2) -• false|

cons (x2,y2) ->

equals (xl,yl) & equals (x2,y2)));

In practice, the cases notation will often be found more convenient, clear,

and less prone to error than the functions car , cdr , and atom . For

example, the familiar append function may be written:

function append(il,£2: list): list;

append := cases il of

(unit lid) - if id = NIL then £2 else error|

cons (first, rest) --cons (first, append (rest, 12)));

Just as LISP can be embedded in any language which permits recursive

data structures, i'o can all recursive data structures be represented as

LISP lists, and processed by LISP functions. For example

con.i ('PSdisJtnegCP'),%>,'))

can be represented (in S-expression form):

f'CONJ 'P CDr;.T ('MEG 'P) 'Q))

An andcount function for propositions represented in this way would be:

m^g^mimmmmgm —- -^ * ^^^^^■^rhjil.,l,-rfr,rt-.i|Li,»afr-1,|" "H ■ ^

— '■ ..-......- >.... nim^mmm^mmmm—mmi

andcovint := (atom(£) -0,

car(f) = 'NEG - andcount(cadr(£)),

car(j) - 'CONJ - andcount(cadr(i)) + andcount(caddr(£)) * 1,

car(f) = 'DISJ - andcount(cadr(i)) + andcount^caddr('e))) i

Note the arrows in this program are LISP conditionals. This example

illustrates some of the advantages of the type declaration for recursive

data structures:

(1) The check against the error of applying the function to a structure

which is not a proposition can be made more rigorous, and can occur

at compile time rather than run time.

(2) It is easier to check that all cases have been dealt with.

(5) The formal parameters seem to be more readable and perspicuous

than the abbreviations car , cadr , caddr , etc.

In the next section it will be shown how a compiler can sometimes

take advantage of the extra information supplied by a type declaration

to secure more compact representations and more efficient code than is

usually achieved in LISP.
To summarize the notational conventions introduced in this section,

here are the syntax specifications of recursive type declarations and

case expressions:

(type declaration) ::= type (type identifier) - ((generator list))

(generator list) ::= (generator) j (generator)(or symbol)(generator list)

(or symbol) ::= | (i.e., vertical stroke)

(generator) ::= (generator identifier)! (generator identifier)((type list))

(type list) ::= (type)) (type), (type list)

(case expression) ::= cases (expression) of ((case list))

(case list) ::= (case clause) | (case clause)(or symbol><case list)

(case clause) ::= (pattern) - (expression)

(pattern) ::= (generator identifier)((formal parameter list))|

(generator identifier)

(formal parameter list) ::= (formal parameter)|
(formal parameter), (formal parameter list)

(formal parameter) ::= (identifier)

■" •• ""• ■"' •'" •w^mmmmmmmmmmmm 'rwmmimmmm*^*m mm wmmmmmimmmmm~*mmmm

3- Iiripleinentalion

The normal method of representing a recursive data structure for

processing in the main store of a computer is as a tree using machine

addresses to link the nodes, and a small integer, called a tag, in each

node (or with the address) to indicate which of the generators was used

to define this node. Each node, contains as components the values of

the arguments of the generator, which may be themselves addresses of

other nodes, or many be just simple values.

For example, in the case of a proposition, the name of the generator

is represented by an integer between 0 and 3 • If the node is a

proposition letter (tag 0), this will be followed immediately by a

representation of the letter. If it is a negation, the tag 1 is

followed by the address of the negated proposition. In the remaining

two cases, the code :j or 5 is followed by a pair of locations,

pointing to the components of the conjunction or disjunction. Thus the

value

(P & h P V Q,))

would be represented as:

P2:

1

Of course, this example is imtypically simple. A picture of a more

realistic proposition would explain why the programmer may prefer not

to think in terms of references.

On many machines it will be possible to pack the tag in with one of

the components of the node, or pack two addresses in a single word,

thereby saving a word of storage on that node. It can be seen that when

10

MMHMM MMteM MMMMM .^.MMMMMMMMM

nodes have more than two conponents it is possible to use less space

than tue standard LISP representation for the same information.

The call of a (non-constant) generator involves the dynamic

acquisition of a few words of c -ntiguous main storage, and planting

in them the values of its simple parameters, and the addresses of its

recursive parameters. The value returned by the generator is the

address of the new node. There is no need to make a fresh copy of the

recursive components, since it is quite permissible for two separate

variables to "share'' the same components, thus:

PI:

P2:

P3:

I V 2
1 f

fc,,—-.
1

' 1 }

- f

p m
._: it 1 «. 0 7 1 —9

.pi *""

0 * <—'

•Q'

In this picture PI has value Q & (- P v Q) and P2 and Pj) have the

same value P & (-i P V Q,) . However, this shared use of storage is

entirely invisible to the programmer, who has no means of finding out

whether it has occurred or not. This is because the prohibition on the

selective updating of components of a structure prevents the programmer

from changing a node on one tree, and testing to see whether the change

lias affected the other. The same restriction also prevents the

establishment of cyclic structures, like:

'

11

MHM •M^^MiMti nil Iiili1*iii ■ ^- -■ L

*»
*■" ' 7

1 *
A

"

i
o '

' ; ' '0,'

Such a structure would appear to have the "infinite" value:

(P & (P & (P & ••• V 0,)) v Q) ,

and this would, fail to satisfy the axiom of finite generation. Thus the

prohibition on selective updating seems to be a vital means of preserving

the integrity of recursive data structures, as well as permitting a more

economic "shared" representations.

The tree representation using addresses is not the only possible

representation of recursive data structures. If the structure is to be

held on backing store, it should bo converted to a linear stream,

replacing every address by the stream representing the tree to which it

points. In this representation, the example P & (- 1' V Q) would appear:

■ > 0 .pi 1 o .p. 0 •Q-

Thi.;, of course, will require'copies to be taken of all shared branches,

thereby usually occupying more space; but in general the elimination of

addresses will compensate for this. Of course, on reinput of the

structure, it would be advisable to reestablish as much sharing as

possible; before acquiring a new node to accommodate given values, if a node

already containing these values is already present in store, it should

be used instead. Indeed, the reuse of existing storage in this way may

be adopted as general policy, which can be effective in certain kinds of

application -- for example, it makes test of equality very cheap; in any

case, it is entirely invisible as far as the logic of the program is

concerned. In a conventional non-associative store a hashing technique

12

.

waif MUH i ■ mmm '**^""-i— ■ , , . .

is recommended for finding a node with given contents; hence in LISP

it is known as "the hashing cons" [9|.

If sharing is ujed, it is no longer possible to reclaim all the

storage allocated to a variable on exit from the block in which the

variable was declared, since its components may also be components

of the vt'lue of some variable global to that block. In order to reclaim

storage when it runs out (and it soon will) it is necessary to use a

scan-mark garbage collector invented by McCarthy for this purpose [10].

This will be more complicated than the standard LISP garbage collector,

since it will have bo deal in blocks of different size, and it will have

to know the type of each node and the relative position of each address

within it. In many applications^ the size of the nodes do not vary too

wildly; so the problem of fragmentation should not be significant. The

cost per node of garbage collection should be no greater than in LISP,

and if nodes are larger than two words, some saving in time may be

possible.

The case expression can be compiled into highly efficient code. The

value being, considered may be loaded into an index register. The tag is

then used to do cm indexed Jump leading to the portion of object code

dealing with that particular case. There is no need to check the range

of the index; it is logically impossible for it to be wrong". If there

are more than two alternatives this could be more compact and efficient

than a sequence of tests . The left hand side of the arrow generates no

code at all. In compiling the right hand side, the formal parameters of

this case can be accessed by means of a single reverse indexed instruction

(Rose [11]) requiring a single store access. In accessing the third or

subsequent component of a node this will be more compact and efficient

than the LISP use of cadr , caddr , etc.

With reasonable cooperation from the programmer, this implementation

would seem to offer a significant improvement on the efficiency of

compiled LISP, perhaps even a factor of two in space x cost for -.uitable

applications. But even more significant may be the fact that normal

operations on numbers, characters, bits, etc., can be carried out with

direct machine code instructions, without the preliminary run time type check

which can be so cumbersome in compiled implementations of LISP. Thus the

overall improvement might sometimes approach an order of magnitude.

].•■

— —__„_ i,,,

The axioms for a recursive data type are Losely modelled on the

corresponding informal definition of the type as given in the

beginning of Section 2. Note that the fourth axiom is expresved quite

informally, in its normal formalization it appears as a principle of

"structural induction". Consider any predicate p(q) , which we wish to

prove true of all propositions q , i.e., we wish to prove

Vq: proposition.p(q)

The principle if structural induction states that this can be established

by proving the theorem for all the ways in which a proposition q can

be generatedj and furthermore in these proofs p may be assumed true of

all propositional components of q . This may be expressed in the proof

rule:

Vc: .letter. P(prop(c))

Vp: proposition. p(p) => 9(neg(p))

Vp,q: proposition. P(p)&P(q) =» P(con,1(p,q)) 4P(disj(p,q))

Vq: proposition. P(q)

The first three lines of this rule are the antecedents, and the last line

is the conclusion of the deduction.

The fifth axiom, dealing with equality, is most easily formalized

by giving axioms defininii; the meaninc of the cases expression.

"or propositions the axiom takes the form:

5. cases prop(d) of (.. .|prop(c) - e| . . .) = ed

St cases neg(p) of (... |neg(q) - e| ...) = e^

& ca"es conJ(p,q) of (...|con,i(r,s) - ej ...) = e '

& cases disj(p,q) of (... |dis,j(r,s) -ej...) = e '

where e'' means the expression formed from e by replacing all free
y

occurrences of the variable x by the expression y (with appropriate

modifications of bound variables when necessary).

Ik

mm
HMM^MMM^aa^MMHHHM^MMUMMftMIMaMM i i ,

The question now arises, are these axioms sufficiently powerful to

prove everything we need to know about recursive data structures? Of

course, this question is not precise enough to permit a definitive

answer; but our confidence in the power of the axioms can he established

by showing their close analogy with the Peano axioms for natural numbers,

which have been found adequate for all practical purposes of arithmetic.

For they too can be defined as recursive data structures:

type M = (zero, succ(NN));

and the cascc notation permits the traditional method of defining

recursive functions, for example:

function plus (ra,n: M): NW;

plus : - cases n of (zero -• m|succ(p) - sueo(plus(m,p)))5

The axioms for natural numbers defined as a recursive data structure

are

(1) zero is an NW

(2) if n is an M , so is succ(n)

(3) p(zero)

Vn: NDJ.p(n) g p(Eucc(n))
Vn: M. o(n)

(h) cases zero of (^ero -> e I succ(n) - f) = e

3c cases Eucc(m) of (zero -• e | succ(n) - f) = f" m

Axioms (1) and (2) are the same as Peano's. Axiom (3) is the principle

of mathematical induction. From Axiom (h) we can readily prove the

remaining two Peano axioms:

1. succ(n) / zero

Proof by contradiction: assume succ(n) = zero

cases succ(n) of (zero - true | succ(n) - false)

= cases zero of (zero -« true | succ(n) -• false)

false = true by axiom h.

15

ÜMMIf Ml^aMlM" ' .,■-,■. .1 ..a,..,,.^^i

2. succ(m) = succ(n) => m -- n

Proof: assume the antecedent.

hence cases succ(m) of (zero - zero | succ(in) - m)

= cases succ(n) of (zero - zero | succ(ra) - m)

m m
mm '''": mn ' ^^'e *' m " n •

It is worthy of note that when none of the generators have parameters,

the recursive data structure reduces to a PASCAL type definition by

enumeration, and the axioms still remain valid. For example, the Boolean

type may be defined:

type Boolean = (true | false);

and the axioms are:

(1) true and false are Booleans,

(2) P(true)

p(false)

Tb: Boolean. p(b)

(••) cases true of (true - e | false - f) .= 6

cases false of (true - e | false - f) = f

If desired, the notation " if B then e else f " may be regarded a^ an

abbreviation for " cases B of (true -> e | false - f) ".

16

|||gt1i|||^iM|MBM|gM||rtM^M ■illMHiÜIIII II iiMfiMMiliMl-lli I
-■■'■"" i ■

5 • Classes

Many interesting algebras are not word algebras -- for example,

finite sets and finite mappings (sparse arrays). However, they can

be represented as subsets of a word algebra, consisting of elanents

satisfying some additional property'known as an invariant for that type.

A type which is a subset of a word algebra will bo called a class. In

order to ensure that each newly generated value of the type will actually

satisfy the invariant, the programmer must have the ability to specify

(1) The initial value of any declared variable of the class.

(2) The function(s) which are to be used to generate all other values
of the class.

A programming language should ensure that the actual generators for the

recursive class are never used outside the bodies of the function(s). In

this way, by proving that these functions preserve the invariant (whenever

their parameters satisfy it), it is possible to guarantee that all values

ever generated will be within the desired subset. This idea was expounded
in [12].

As an example, consider the representation of a set of integers. For

this purpose we shall use a single-chained list of integers, which

possesses the additional invariant property of being sorted. The

operations required for a set are (say) insertion of a possibly new

element, deletion of a possibly present element, and a test of membership

of a possible element. A suggested form for the class declaration may be

17

^MMMi Uta ^IMMflin Kn i i

(1) dass int set = (empty [list (int set, integer))

(2) begin Punctiun insertion!r: intset, i:*lnteger): intsetj

insertion :- caseij G of

(empty - list(empty,i)|

list (rest, j) -> if i = J then s

else if i > j then list(insertion(rest;i), j)

jlse list(s,i));

function deletion(s; intset, i: integer): intset;

deletion := gases s of

(empty - empty]

list(rest,j) -• if i = j then rest

el£ if i > j then list(deletion(rest,i), j)

else s);

function has(s: intset, i: integer): intset;

hat

(5) intset

end intset;

;= cases s of

(empty -• false]

list (rest,,]) - if i = j then true

else if i > j then has(rest,i)

else false) ;

;= empty

I

Notes

(1) Introduces the class name intset , and declares that it will be a

subset of the recursive type with generators empty and list. The

scope of these generator names is confined to this class declaration.

(2) The boiy of the class declaration, as in [12], has the form of a

block, in which are declared those procedures and functions which are

to be used by the programmer on values of the class, namely the

functions insertion and deletion and has .

(3) The body of the block specifies the initial value of all declared

variables of the class. The name of the class itself is used for

this purpose.

18

-■■' " "■'"~J;,^**"''iimMiii ■ i niMlih*it«iMiiii

It is the intention that a class can be used in the saine way ac a

type, for example;

declaration

(including'; initialization to empty): R,S: intset;

assignment; R :- inEertion(S,57)

S ;= R; R ;= deletion(R,56);

test; if has(R,57) then ...

As suggested in [12], the criterion of correctness of a class can

be expressed in terms of an invariant and an abstraction function.

The abstraction function which maps each list onto the set which it

represents c&n be defined by recursion

tfil: intset) =,„ cases i of
ai —

(empty - null set I

list(^l,i) - [i] U a[n.));

and the invariant can be expressed

sorted(£; intset) = cases I of

(empty - truej

list(£l,i) - i - min(c7(0))'

The correctness of the insertion function can now be formally

expressed.

sorted(s)[body of insertion] sorted(insertion) i ^(insertion) = [i] U(^(s)

Since insertion is a recursive function, the proof of this will require

assumption of the correctness of the recursive call, namely:

" insertion(rest,i) ". This hypothesis may be expressed:

[sorted(rest) =»] sorted(insertion(rest,i)) &

& <7(inEertion(reGt,i)) = [i} Unrest) ...hypothesis

in which the antecedent is true for all intsets, and may be omitted.

Using the rule of assignment, and distributing function application

through the cases, we obtain the following lemma:

19

. ^^..^±.±.1**..:. 11 li'taMÜlMtiMflili'liliKi 1 1 1 nmi'lllilMMiliiiiiUliiliifiii Mini - _

•

sorted(s) => cases s of

(empty - sorted(list (empty, i)) &<7(list (empty, i)) = [i} " ${ s) (l)

list(rest,j) - if i - ,i thK\ sorted(B) i^s) = [i}Utf(s) (2)

else if i > j then Eorted(Idst(insert!on(rect,i),,j)) (5)

&i7(list(insertion(rest,i),j)) - [ij'J^c) (M

else sorted(list(s,i)) (5)

S!<7(list(s,i)) = Ci}U^(s) (6)

5ach case can be readily proved from the definition of (2 and sorted ;

no further inductions are required.

20

IMM HMUfcUt..^

6. Memo Funcv.jons

In this section, we shall explore a particular case of selective

updating of components of a recursive data structure, which enables the

programmer to secure the advantages of the memo function advocated by Michie [13

Consider the old example of differentiation of symbolic expressions.

The simplest implementation is to define expressions as a type:

type expression = (constant(real) | variable(identifier)|

minus(expression)|

sum, product, quotient(expression, expression));

and define the derivative as follows:

function deriv(e: expression, t: identifier): expression;

deriv := cases e of

(constant(any) -> constant(0) |

variable(x) -« if x = t then constant(1)

else constant(0) j

minus(u) - minus(deriv(u))|

si.im(u, v) -> Kum(deriv(u),deriv(v)) |

proluct(u,v) - svmi(product(u,de?iv(v)),product(v,deriv(u))) I

quotient(x,;y) -•

quotient(sum(deriv(u),product(minus(e), deriv(v))),v));

Using these declarations we may write:

position, speed, acceleration: expression;

position := quotient(constant(3),variable('t'));

speed := deriv(position,variable('t'));

acceleration := deriv(speed, variable('t'))

But this implementation can involve heavy penalties ooth in space

and time:

(1) A large amount of space will be wasted in storing expressions

of the form

e + 0 , e x 1 , e x 0 , etc.

This may be mitigated by declaring expressions as a class, in which the

generation of such redundant expressions is inhibited, by the use of

programmed functions.

21

—■IMlllll II I IM—II IMMI—f

(2) If an expreesion Is bo ho differentiated repeatedly with

respect to the same variable, much lime and apace can bo spent on

re-evaluating bhe derivatives of the subexpressions; this Lime could be

saved if the previously computed derivative were stored as a third

component of each node representing a sura, a product or a quotient.

The value of this component (known as a memo compoüent) starts off as

"unknown", but when the derivative of this subexpression is computed,

it is stored here; and if the derivative is required again, the stored

value is used instead of being recomputed.

For the sake of simplicity, in the following program we have

assumed that all derivatives are taken with respect to the variable 't';

also, the functions perform only the most trivial of simplifications.

In a serious symbolic manipulation program, all these functions would

be much more complicated.

class expression (variable(identifier) lconstant(real) |mi(expression) |

su,pr, qu(expression, expression, (unknown, knovm(expression))))

(1) begin constant ^ei-o = constant(O), one = constant(l);

function sum(left,right; expression): expression;

sum :~ if left = 2;ero then right else if right = zero then left

else su(left,right,unknown) ;

function minus(e: expression): expression;

minus := cases e of (constant(x) -. constant(-x)]

(2) rai(f) - f | else mi(e));

function product (left»right: expression): expression;

product := if left = zero v right - one then left

else if right = zero V left = one then right

else pr(left,right,unknown);

function quotient(left,right: expression): expression;

quotient := if left = aero v right = one then left

else qu(left,right,unknown) j

22

aiiiiiiiiiiiiiiiii riiiiimiiiiiiiiiiiiiiiiiiiiMiiiiiiiiir" miiiwlitiMiii

OKM

functünn dbydt(e: expression) -• expression;

cases e of

(variable(id) - dbydt := if id = 't' then one else zeroj

constant (any) -• dbydt := zero]

mi(u) -^ dbydt := minus(dbydt(u)) |

su(u, v,deriv) -* cases deriv of

(known(f) - f|

unlmown -» [dbydt : = sum (dbydt (u), dbydt (v)) ;

deriv := known(dbydt)}) |

pr(u,v,deriv) - case^- deriv of

(known(f) - f|

unknown - [dbydt : = sum(product (u, dbydt (v)),

product(v,dbydt(u)));

known(dbydt)}) I

qu(u,v,deriv)

deriv

cases deriv of

(known(f) - fj

unknown - [dbydt ! quot i ent (sum (dbydt (u),,

minus (produ c t (e, dbydt (v)))), v)

deriv : - known (dbydt) })) j

expression :=

end expression;

;ero

Notes

(1) The PASCAL constant declaration can here be used to save ;pace and

time and trouble.

(2) It seems a convenience to write else to stand for all the cases not

explicitly mentioned.

(5) It is also convenient to use the name of a function as a variable

inside its body (except^ of course, when it has actual parameters).

(U) [} are used for begin end.

The correctness of this class obviously depends on the preservation

of the invariant that if e has the form su , pr , or qu , then its

memo component either contains the value unknown or known(dbydt (e)) ;

or, more formally:

Ve,u,v,d: expression, e = su(u, v,known(d)) ve = pr(u, v, known (d))

ve = qu(u,v,known(d)) =J a := dbydt(e))

25

■ -■- ■ i »—nmnini

Furthermore the abstraction function for the class must not mention

the memo component. It is bhis that makes the existence of the third

component logically invisible t) the user of the class, although one

hopes that he notices the tjain in efficiency.

It is noteworthy that the use of selective updating immediately

permits establishment of cyclic structures, but because of its logical

invisibility, this does not seem to 'matter. For example, after a series

of assignments like those shown on page 21,

position, speed, acceleration: expression;

position : = quotient (constant(:>), variable(' t')) ;

speed :- dbydt(position);

acceleration := dbydt(speed) ;

A diagram of the stored structures will be;

position:

speed:

acceleration:

>r

■1-i constant

«

variable « '

> f
p> •t'

^ qu

• mi

»

i i

*

L.
*

qu

su . mi

unknown

_ unknown mi

(Note; position :/t

speed - position/1 - 3/t

acceleration

2

(- speod) -i- (- speed)
t t3

•)

24

-■ ii I in ilillMMilM

lip.!UI*l!,IMI M J M •|lil.liilll»Mlll l •nmi^mimmtmvmmwimimim —•«■••wwi^nB^ '"' IWI^ *mmm^m^mmm~-^^*riw^w^^^^mi

The use of mono components does not invalidate the sharing of

subtrees, again because of the invisibility of the updating. Indeed,

its main benefits are directly due to the preservation of charing, and

can be increased by increasing the a/nount of sharing. If the memo function

method is widely used, it becomes very attractive to choose the "hashing"

technique of storage allocation. However, in the use of this technique,

it would be desirable to ignore the contents of the memo component, so

that if a newly generated expression was identical to one in which the

memo component was already known, they would still be correctly identified,

and the derivative of the newly generated expression would be available

"for free". For this reason, it would seem to be a good idea for a

programming language to insist that a prograinmer single out a memo

component by a special form of declaration, say by prefixing it by the

word memo . A similar method has been used successfully in some large

theorem proving systems [lM .

The language feature defined here places on the prograinmer the

responsibility for correct maintenance of a memo component; and it helps

him in this only by supplying an appropriate proof method. This has

the advantage that the programmer can readily control the nature and

amount of information to be memorized. For example, if partial derivatives

are required with respect to exactly three variables, three memo

components can be declared. If the identity of the controlled variable

is not known in advance, it can also be stored In a memo component, su

that repeated differentiation with respect to the same variable will

always be efficient, although when a different variable is used, the

memory is overwritten. Or the programmer can maintain a small list of

such variable/value pairs, choosing to "forget" certain of them when the

list gets too long. Finally, h^ can choose which nodes will have memo

components and which will not. This gives the programmer much better

control of efficiency in time and storage than the automatic technique

suggested in [15], although at a cost of requiring correct programming.

Since efficiency is the sole objective of the memo technique, perhaps

this is not too high a price.

The implementation of this memo technique perhaps constitutes one of

the better disciplined uses of the controversial LISP functions RPLACA and

RPLACD.

■MMMMi .-.„„MmMMMM
■-

■ij»wuafw<Hj*jt1iiMM "■IIW.'.M »)».!»'.•-.-■— .,«,mmmftm'.ri jii.v^«jp.iH,«Mnvwi^WUIU«<VU<W!PJ|U '' - -.r. vT^^--^. ..,.,,^.^mpmipvii,ipv.uiijiJJJ «.iw>uii,■ wuNMVWWM-nP9iwnippn^nmfvsiP^ipnp^H<nv^nnHHPi^v">.iniiuipi PMiünpifmiH

7 • Ncn-^hareg RgTOgsentations
1 " ■' • "' ■" ■ ■

In the previous sections we have given examples for which an

implementation using shared substructures would ^ive significant savingi:

in storage space and time. Ilowevei', the use of storage sharing has some

significant penalties:

(1) when updating any component of any node of a structure, a new copy

must be made of that node and all nodes through which it war

accessed;

(2) storage which goes out of use, either because of updating or because

of block exit., cannot be immediately reclaimed for other uses;

(5) the programmer tends to lose control of the efficiency of use of one

of his most precious assets, main storage;

(U) the programmer has no control over addressing vagrancy, which is

necessary for successful use of paging systems or backing stores;

(5) the time spent in scan-mark garbage collection can be the heaviest

single cost in the execution of an efficiently compiled program.

These disadvantages will be particularly acute in cases where little

advantage can be taken of sharing.

Consider for example a program operating on intsets (as defined in

Section 5) which only ever needs one such set; or if it needs several, it

only ever updates the sets by assignments of the form

51 := insertion(Sl,57);

52 := deletion(S2,95);

and never pe: :onr.r a "cross-assignment" of the form:

51 := S2;

52 := insertion(Sl,57).

In such a program, the two sets would never in practice cane to share

any subcomponent. Even if the program did make an occasional cross-

assignment, the sharing patterns would be rapidly dissipated by subsequent

updating of either set. So in this program a non-shared representation

would be much better.

26

Et. .. .__
ÜlMiinifil -- --■ - ■■'-■ '^mmkfcikMHi .._...

IIWII^HJXIII jipliqnppinqippR|^piipin<miiiP.ii»iiiwi,i>iiiiiii,. i .iiipiiijpiinvw*' ,inmiiimmmmmimmimmimmti'i'mmimmmmmmmmmmmmmmmmim

1 i' it is known that, then Ls n sharing^ bhe proßrommer mußt be

encouraged to use selective updating of components of hie structure by

mea .s of procedure:- operating upon the structure, rather than ftxnctions

producing potentially large structured values. As suggested in [12]^

we shall declare procedur', s local to the class:

procedm-e insert(i: integer);

procedure delete!i: integer);

These procedures are regarded as being "components" of every variable of

the class, and can be invoked by naming the variable followed by bhe

procedure call (separated by a dot):

SI.insert(57)j

S2.delete(95);

which are intended to be equivalent to bhe updating assignments

51 :--- insertion(Sl, 57);

52 := deletion(S2,95).

The writer of these procedures sometimes wishes to refer to the yet

unknown variable to which it is being applied. For this purpose, we will

use the name of the class itself. In some circumstances, it is necessary

to define a completely new value of this variable bj means of a generator.

For this purpose, I suggest a facility used in many languages to specify

the result of a function, namely:

result e;

which has the effect of assigning c as the result of the procedure, and

immediately exiting from the procedure. The code for bhe updating version

of intset is shown in Table 1.

When the result of a procedure is given by result , part x" all of

the store used by the value of the variable being updated can often be

immediately reclaimed -- a technique which has been called "compile time

garbage collection" [15]- An example of this is marked (2).

One consequence of a non-shared representation is that whenever a

structure is used as an argument bo a generator, a complete copy of that

structure must be made. .An excepl :i m bo this is in bhe case of a single

occurrence of the class name within an expression which is being used as

Mniidillii——j——

IMMMJMMMMMMMMMBMIliiltMMMMlMMüM —M^l—■!■ rilir-^' , , .

MHmü

class intset = (emptyjlist(intset,integer))

begin procedure inrortfi: integer);

cases intset of (empty - result list.f empty, i) |

list(reEt,j) -• if i > J then rest, insert(i)

else If 1 < j then result list(intset,i)) ; (l)

procedure äelete(i: integer);

cases intset of (empty - do nothing]

list(reEt,j) -» if 1 = j then result rest (2)

else if i > j then rest, delete(i));

function has(i; integer): Boolean;

cases intset of (ertrpty -• result false j

list'rest,,]) -* if 1 = ;j then result true

else if i > j then result rest, has(i));

int s et := empty

end;

Table 1.

28

—"■-'■—■^——'-—- ---■ ■

-'r.i.ii.iiii ip^myiw- ip. , l.jLliim,.! I- IM. lll.<ll)p.<.>li>|j.iuil>l, liniiu^inumpi.lll | imui l] J

a rerun,. in this case, the same address can be used instead of bhe

address of a fresh copy; and of course, the storage occupied would not

be reclaimed. .An example of bhis is marked (l) .

After those two optimizations have been made, the outstanding

causes of inefficiency are the recursive calls, with their associated

overhead of stack manipulation and parameter passing. Since these will

occur as the last statement of the procedure body, an obvious optimization

would be to replace them by a jump back to the beginning of the- procedure

body, having made appropriate adjustment for the left hand parameter of

the procedure.

After these optimizations have been made, the resulting program may

in certain applications be several orders of magnitude more efficient

than the purely functional class described in Section 5.

It is unfortunate that bhe language feature described here relies

so heavily on optimization to secure highest efficiency. The great

danger of optimization is that a small change to a program (e.g. insertion

of n : = n+l after, instead of before, a recursive call) will give rise to

an unpredictable and unacceptable loss of efficiency. A second danger is

that it can make an implementation, large, slow, unreliable, and late.

Finally, it has the unfortunate effect of removing from the programmer

the feeling of responsibility and control over efficiency, which was the

main reason for introducing selective updating anyway'.

Consequently, it may be desirable to introduce into a language

some special notations for expressing bhe three special cases which are

susceptible to optimization.

•

fcMaiiii 1 -■o.nn ■■■h[>ttril^liitllillltrllr'inlr ■!

^upmji^iipii ■iiijj.im.iH-»««.™*«- . MiHpHunFinpnin^iPMRi'.ivra^^wni-M'.1'■• i' i,jnujuii"pi«pjww^www!P»w^pM»pii»t^^ipwilPPWMii»ppi*iiwpwM«w"wi^wnB»B^n'S»»WW^^

Conclusion

This paper has described a number of old programming techniques

and new notati ns to express them. The objective has been to isolute

a nujiiber of useful and efficient simple case:-- of the use of references,

which are susceptible of relatively simple proof techniques, and give

notations and syntactic conventions which guarantee their validity.

In all cases it has proved possible to achieve this without introducing

the concept of a reference into the algorithms. Of course there must

remain a number of applications, for example when dealing with relational

structures, when the explicit use of references seems unavoidable or

even desirable; and for this purpose, something like the record class

of ALGOL W still seems to be the best solution.

However, it' a general-purpose programming language contains a

record class concept, this can certainly be used to program all the

representations described in this paper. So the question arises, is it

worth while to incorporate these notations and facilities into such a

language? The answer to this probably depends on the intended application

of the language. In a special purpose language for symbol manipulation

it would be interesting to try out some of these ideas; but in a general

language for implementing software (e.g. operating systems), the reliance

on general garbage collection seems quit^ inappiopriate.

Even if these ideas are not embodied, in a programming language, I hope

they will be found to be useful as an aid to reliable program design and

documentation. An algorithm can be designed using the suggested

facilities, and can perhaps even proved using the suggested proof

techniques; the programmer ca.n then manually translate his abstract

program into some lower level language with explicit pointers, using the

suggested implementation techniques. This is, of course, the general

method recommended in structured programming [16].

• i

-'—-—-'■• ma—haflfai 1*111 n i - - - - ~ • > - - --

■.iHiuijj.iiMiiiiiiiwn >■■ -'' ■■! •-' ...--.i«,..— i Mmimm^^^*^m*^mir^^mmmmimiimi~~*~~"**m-,m"*'^*^*mm

References

[1] ed. van Wijngaarden. "Report, on the Algorithmic Language ALGOL 68,"

Num. Math. Ik (I969), 79-218.

[21 "PL/l Language Specifications," IBM Order Number GY55-6005-2.

[3] ed. P. Naur. "Report, on the Algorithmic Language ALGOL 60/'

Num. Math, (i960), 106-156.

[k] N. Wirth cind C. A. R. Hoare. "A Contribution to the Development

of ALGOL," Conm. ACM •', 6 (.june I966) .

[5] N. Wirth. "The Programming Language PASCAL," Acta Informatica 1, 1

(1971), 35-';:.

[6] D.E. Knuth. "A Review of Structured Programming," STAW-CS-73-571

(June 1975).

[7] J. McCarthy. "A Basic for a Mathematical Theory of Computation,"

in Computer Programjning and Formal Systems, (ed. Braffort and

Hirschberg), North Holland (1963).

[8] F. 7. McBride, D. J. T. Morrison, R. M. Pengelly. "A Symbol

Manipulation System," Machine Intelligence 5. Edinburgh University

Press (I970).

[9] LISP folklore.

[10] J. McCarthy. "Recursive Functions of Symbolic Expressions and their

Computation by Machine," Comm. ACM 5, h (April i960), 18)4-195.

[11] D. T. Ross. "A Generalized Technique for Symbol Manipulation and

Numerical Calculation," Comm. ACM (March 1961) .

[12J C. A. R. Hoare. "Proof of Correctness of Data Representations,"

Acta Infonaatica 1 (1072), 271-281.

[13] D. Michie. "Memo Functions: a Language Feature with Rote Learning

Properties," DMIP Memorandum MIP-R-29 (November 1967).

[lh] R. Waldinger and K. N. Levitt. "Reasoning about Programs," Proceedings

of ACM Sigact/Sigplan Symposium on Principles of Programming Language

Design, Boston, 197/.

.!

■MMMMIHM ■

lMgiiMMMMMM|taMMMtaMaai^tf^^^^^itMMMfc^ iM^Mfr—n 1 III^II

M^w^w^ffiJ! ^v*»'..-'"*.''--'*- , iP.iwMiwHiwmi'PWJWiwii-.-'.ii.i" fc'^iin.^wi flijw^iiiii-pw^i.i^r JIM wiiumwiwuHP1^

äk

[15] J- Darlington and R. M. Burstall. "A System which Automatically

Improves Programs," Proceedings of Third International Conference

on Artificial Intelligence, Stanford, 1975«

[l6] E. W. Dijkstra. "Notes on Structured Programming," in Structured

Programming, academic Press (1072) •

52

1 11 mmmi 1 1 niMliäiMlMfl—MiiiM

