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Abstract 

The Initialization problem Is defined as the problem of 

obtaining the initial data that are required in order to solve 

a well posed initial-and-boundary-value problem for the equa- 

tions of large scale dynamical meteorology.  In our treatment 

of this problem complete knowledge at a given instant of the 

atmospheric temperature and surface-pressure fields, as well as 

of their time derivatives, is assumed to be at our disposal; and 

the problem of computing the velocity field at that instant from 

this ' nowledge is studied. 

The methods used are based on the exact mathematical treat- 

ment of the differential equations of atmospheric motion, rather 

than on perturbation-type or numerical methods,  A simple solu- 

tion of the initialization problem thus formulated is exhibited 

in a particular case.  It is sho n, however, that in general the 

problem is indeterminate and additional information is required 

to uniquely find the velocity field.  Four-dimensional data 

assimilation is also discussed. 
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1. Introduction 

Shortly after the development of computers made the numeri- 

cal integration of the primitive equations' over a global grid 

feasible, it became apparent that one of the main problems in 

such an integration was to provide the initial data needed to 

start it.  Indeed, the primitive equations, in x,y, z-coordlnates, 

say, form a totally hyperbolic system, when viscosity and heat 

conduction are negL cted.* A well-posed problem for this system 

would be to specify throughout the global atmosphere the velocity 

components u, v, w, and the temperature T at a given time t = to, 

as well as certain conditions, into the details of which we will 

not enter, at the upper and at the lower boundary of the atmo- 

sphere.  The complete and sufficiently accurate specification of 

such initial conditions became known as the initialization 

problenio 

Thus  the  problem  falls   into  two parts:      (i)   the  complete- 

ness,   and   (11)   the   accura:y  of  the  initial  data.     In discussing 

the  different  aspects   of this  problem,   we  will  try to distinguish 

between the physical behavior of  the  atmosphere,   the mathematical 

(differential) models  describing  this  behavior,   and  the numerical 

(difference) models  used  to  approximate  the  mathematical model. 

The  behavior of  a numerical model  is  often  related directly to 

^  The Eulerian equations  of motion with the  vertical momentum 
equation  replaced by  the  hydrostatic  assumption. 

* Assuming the  surface pressure   is  known,   the  pressure  p  can be 
obtained directly by  integrating the hydrostatic  equation,   which 
we  exclude  from  this  discussion. 
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and  compared with  that  of the atmosphere,   the   intermediate  level 

of approximation  provided by  the mathematical model  from which 

it was  derived being  omitted  from  the  discussion  or the behavior 

of the mathematical model being  tacitly  implied   to be  the  same 

as either  that  of  the   atmosphere,   or  as  that   of  the numerical 

model.     We  shall briefly mention  first  the  questions  related  to 

the  accuracy problem. 

When  finite-difference  approximations   to   the primitive 

equations  started  to be  used for meteorological  research and 

weather prediction,   it was noted that  the  numerical models     simu- 

lated not  only  the   large-scale motions  of  the   atmosphere,   in 

which one was  interested,   but  also  faster phenomena of smaller 

amplitude which were   identified  as  the  numerical counterpart  of 

inertia-gravity waves,   and which  are  adequately  represented  for 

instance by  solutions   of the  linearized  shallow-fluid equations 

(Charney,   1955)»     These  waves were  undesirable   and  their cause 

was  traced  to  the   lack  of geostrophic  adjustment  in the  initial 

data used.     However,   it was  soon  realized  that   initial condi- 

tions,   satisfying  any  hitherto used balance   equation,   would  not 

prevent  the  existence   and propagation of  inertia-gravity waves 

in a primitive-equation model   (Nitta and  Hovermale,   1969,   Morel 

et  al.,   1971)•     The  mathematical reason  for  this   is  the  fact 

* 
In this  cor text   a numerical model  of the  atmosphere  is 

essentially a  finite-difference  approximation  to  the equations 
of motion.     It   includes   in general  also  some   terms which 
represent  the  direct  numerical parametrization  of certain 
physical processes,   but we will not  dwell  upon  this  aspect  of 
the models,   considering them as difference   schemes for the  inte- 
gration  of the  equations  of motion^   i.e.,   of  the mathematical 
model. 
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The reduction of the exaggerated amplitude of small-scale 

motions produced by initial errors was known to be necessary in 

order to prevent them from influencing too strongly in too short 

a time span the large-scale motions represented by the numerical 

model.  The relationship between the size of initial errors and 

the predictability range has been first investigated systemati- 

cally by Charney et al. (1966).  For the presently available 

accuracy in measurement, the predictability range of the existing 

numerical models of the atmosphere is believed to be about two 

weeks, assuming that complete information with the given accuracy 

were available. 

This brings us back to the completeness problem.  In fact, 

there is at present no meteorological data gathering system 

capable of supplying u, v, w, T over a uniform grid, like the 

ones used by general circulation models (GCMs), at a given time 

("synoptically").  However, it seems reasonable to expect from 

the progress of satellite technology at least good date coverage 

for temperatures In the near future.  Therefore it has been 

suggested by Charney et al. (1969) that the wind field (u,v,w), 

speaking vaguely for the moment, could be inferred from the 

temperature field T and some of its past history. 

The rationale for this proposal was twofold.  First, the 

experience with barotropic models, i.e., with systems of partial 

The predictability range is defined as the time span after 
which the errors in the calculated state exceed a certain pre- 
assigned threshold, usually related to the difference between 
two "randomly chosen" states of the atmosphere. 
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differential equations in which the barotropic approximation was 

made, and in which the wind field could be obtained from the 

instantaneous geopotential field by solving a time-independent 

balance equation.  Numerical integrations of these equations were 

rather successful, approximating well certain aspects of the be- 

havior of the atmosphere.  Second, the well-known mathematical 

fact that, in a linear hypjrbolic system of n first-order partial 

differential equations with constant coefficients, (n-1) depend- 

ent variables can be eliminated, thereby reducing the system to 

a single equation for the n-th variable.  Then the initial condi- 

tions on the (n-1) eliminated variables lead to conditions for 

the time deriv; Lves up to order (n-1) of the n-th variable 

(e.g., Courant and Hilbert, 1962, p. l4ff.).  In particular, 

this is the case in linear acoustics, where the velocity compo- 

nents can be eliminated, to yield a single equation for the pres- 

sure.  The discussion of these considerations will be briefly 

taken up in oection k* 

The concrete procedure proposed by Charney et al. (1969) 

was to start the numerical integration of the equations with the 

"correct" temperature data and with velocity data approximated by 

some other method, then, at given time intervals, to replace the 

calculated values of T by the "correct" ones (i.e., to "update" 

T).  In fact, however, no "correct" measured (satellite) tempera- 

ture data were available.  Therefore the experiments were made to 

test the procedure by relying on the concept of a "control run", 

i.e., of a numerical integration af the equations performed for a 

certain length of time, the results of which are referred to for 

)mmmmtmtmammtmmmmmmmmmmi^^^mmam^mM^mmm 
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purposes  of comparison  as   the  "true  history"   of  the  atmosphere 

over  that  time  span. 

First  the  control  run,   with certain initial  values  of u, 

v,   w,   T,   is  performed  and  the values  of T corresponding to  this 

run are  taken as "correct".     Then another integration  is  started, 

with the  same  initial   temperature  data,   but  different  initial 

velocity data,   and T  is  "updated"   with values   taken  from the 

"correct"   temperatures   of  the  control run.     The   reason for up- 

dating the  temperature   is   to reduce  the error  in the velocity, 

caused by using  inaccurate   Initial velocity  data. 

It was  indeed  observed  that  the  root-mean-square  errors  in 

the  velocity field decreased to a certain non-zero  asymptotic 

value.     However,   in the  experiments  reported by  Charney et  al. 

(1969),   as well as  in  similar experiments performed  later   (e.g. 

Williamson and Kasahara,   1971)  this  value was   reached  only  after 

a  time  comparable  to  the  predictability  range   of  the  numerical 

models used   (10 days   to 3   weeks)  and  this  asymptotic   rms  error 

was  non-negligible,   although considerably smaller  than the rms 

value  of  the   initial  error,   and a fortiori much  smaller  than the 

rms  error in the wind  field  aft  r a similar period  in a run with- 

out updating.     These   facts   seem to limit  the value   of  the up- 

dating approach to the   completeness  problem  in  spite  of the 

partial success  of the  method. 

More  recently   (Morel  et  al.,   1971,   Meslnger,   1972)  the 

method  of  Iterative  dynamic  adjustment,   suggested  by Nitta and 

Hovermale   (1969)   in dealing with the  geostrophic  balance problem, 

was   applied  to the  data acquisition problem.     This  was  done  in 

  -- 



order to circumvent the questions arising from achieving proper 

initialization only at the end of the predictability time.  Good 

results were reported with proper choice of finite-difference 

scheme, period of the back-and-forth iteration, etc.  There seems 

however to be a marked distinction between the results using data 

from a control run of the same model and those when using real 

data or data from a different model.  The results when using 

"extraneous" data for iterative updating are much worse and 

rather discouraging (Morel et al., 1971* Mesinger, 1972). 

It may be worthwhile to stress that the forward-updating 

and iterative techniques discussed before were proposed when it 

became clear that traditional objective analysis methods, which 

had been fairly successful for the "filtered" (quasi-geostrophic 

and quadi-nondivergent) models, produced "initialization shocks" 

and large-amplitude short waves in primitive equation models. 

However, the consensus seems to be that up to now these asynchro- 

nous techniques are much more computer-time consuming and do not 

seem to have performed convincingly better than the more sophis- 

ticated ones among the objective-analysis methods (including 

least-squares and weighted-average fits of observed data, varia- 

tional techniques, weighted consideration of prognostic computed 

data, permanence and climatology data, as well as use of geo- 

strophic and balanced data).  Therefore it is still the synchro- 

nous objective analysis methods which are operational in daily 

forecasting (Haitiner, 1971) and it is one of the purposes of 

the search for better initialization methods to develop tools 

for improved and extended operational forecasts. 
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In view of the difficulties encountered by the non-synoptic 

techniques, as well as by the traditional synoptic techniques, 

we shall try to pursue a diffcx-ent avenue of attack on the 

initialization problem.  As we saw, the two aspects of the prob- 

lem, completeness and accuracy, are strongly interrelated and 

any solution has to take care of both«  This brings us back Lo 

the discussion of well-posed problems for the system of equations 

dealt with, viz., the primitive equations (where we assume the 

surface pressure to be known and hence ignore the hydrostatic 

equation), i.e., to the question of the Bid« condltioni under 

which the existence of a unique solution of thlc system, con- 

tinuouslv depending on the data, is guaranteed. 

Given the hyperbolic character of the equations and their 

non-linearity it i^eems mathematically very implausible that any 

other problcu, but the proper initial- and boundary-value problem 

which one would wish to solve, would be well posed.  In particu- 

lar, if in any sense the temperature field determines the wind 

field and if a state of quasi-geostrophic equilibrium, meaning a 

state of minimum amplitude gravity-inertia waves, exists, these 

two facts ought to reflect an instantaneous property of the 

primitive equations, rather thin an integral property involving 

a finite time span.  This point will be further discussed in 

Section 4.  Such an instantaneous property would have to be 

expressed matrematically as one or more equations involving the 

velocity components and their space derivatives, but not their 

time derivatives, and some variables of state (such as tempera- 
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ture and pressure), which are assumed to be known together with 

any number of their space aiui time derivatives. 

The presence of as many of the time derivatives of state 

variables as necessary would generalize the usual forms of the 

balance equation, which are completely free of time derivatives, 

and these derivatives would be all that is needed to express the 

thermodynamic history of the system.  These time derivatives 

could be computed from sufficiently many discrete measurements 

by using adequate numerical techniques, which probably would have 

to include certain space-averaging procedures. 

It' the number of independent equations thus obtained from 

the primitive equations by differentiation ana elimination, to- 

gether with proper side conditions, suffices to determine the 

wind field at a given instant, then we will have solved the 

completeness-of-data problem, assuming adequate knowledge of the 

thermodynamic history.  If not, the equation or equations 

obtained will still express a compatibility condition, equiva- 

lent in the general baroclinic case to the balance equation. 

Thj s condition will then be the only limitation imposed by the 

equations themselves on the initial data and thus the only 

"dynamic" check on the accuracy of these data. 

It is hoped that the following analysis will clarify this 

point of view and indicate some of its possibilities and I Imita- 

tions. 

■MBM 



2. Compatibility conditions for the shallow-flu id equations 

At: an example of the ideas involved in the approach we 

want to discuss, we consider the shallow-fluid equations for a 

rotating Cartesian x,y-coordinate system 

(la) u,  + uu    + vu   + 4   - fy ■ 0 , 
L. A y A 

(lb ) Vt + UVx   ;' VVv + ^v * fu  =   0   » 

(1c) ^t+ i4x +v(t)y+ (f)(ux +vy)   =  0  , 

^ - gh . 

Here u, v are the velocity components in the x,y directions 

respectively, h is the height of the free surface, g the 

acceleration of gravity and f the Coriolls parameter.  For the 

sake of simplicity we assume f to be a constant. 

First we will study the linearization of this system 

around a state of rest.  With an obvious change of notation we 

then have 

(2a) ut + (t)x- fv = 0 , 

( 2b ) vt + (|)y + f u = 0 , 

(2c) ^ +ct>(ux+vy) = 0 , 

(2d) « ■ const. 

Here $ is the equilibrium "value of the geopotential gh of the 

free surface, anu | stands now for gh-^, the deviation of the 

geopotential from C. 

10 
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Differentiating   (2c)  with  respect  to  t,   (2a)  and   (2b)  with 

respect  to x and y,   we  obtain 

(3b) vty+^y+fuy = 0' 

(3c) ♦tt**(uXt+vyt) = 0 

Substituting u , and v  from (3a), (3b) into (5c) yields 
xt    y t 

(4) ♦f(vx-uy)-*(*xx+*yy,+*tt = 0 ' 

Using our standing  assumptions  that  ^ and  as many  of  its 

derivatives  as  necessary  are  known,   we  obtain  from   (4)   and   (2c) 

the   following system  of  two  first-order partial  differential 

equations  for u,   v 

ux+vy  = "V*  ' 
(5) 

u   - vx =   {$tt-<$>&$)/<t>f  , 

where A   is  the   two-dimensional  Laplacian  operator, 

^x      yy 

Thus we see that in this very slnple case it is possible to 

eliminate the time derivatives u+i V^ and obtain the instantane- 

ous compatibility conditions (5). 

System (5) for the functions u and v is elliptic, i.e., it 

has no real characteristic. In fact it is Just a set of inhomo- 

geneous Cauchy-Riemann equations for the functions v, u, and by 

11 
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cross-differentiation these equations lead to a Poisson equation 

for either u or v.  A well-posed problem for (5) would be the 

Dlrlchlet problem.  This „ould mean prescribing u say on a 

closed contour äD and v at some point on the contour or in its 

Interior, D. 

It is well known (Morel et al., 1971, Williamson and 

Dickinson, 1972) that the system (2) has three independent plane- 

wave solutions, one corresponding to slow Rossby waves, the 

other two to inertia-gravity waves propagating in opposite direc- 

tions.  In the case at hand, where the unperturbed velocity is 

zero, the Rossby mode Is stationary and the inertia-gravity waves 

have phase-velocity 

= ±(k2t+f2)l/2/k ,   k2 = k2+k2 , 

k = (kwkg) being the wave vector.  Any solution of (2) can be 

represented by a series expansion in these plane waves. 

Let a quantity X be decomposed as 

X = X + X 

where   (—)   is  a time  average  and hence X,   being  stationary,   is 

representable  in terms  of  the  Rossby mode,   whereas  X1   stands  for 

the   inertia-gravity-mode  part  of  the  representation.     Then 

(2' ) fü = - i     ,        f v = I Ty rx 

is a geostrophically balanced stationary solution, satisfying 

eqs. (2) as well as system (3) with d/dt ■ 0. 

12 
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The most  general  stationary  solution of  (?)  will  satisfy 

(6a) 

(6b) 

u   + v     =  0  , 
x     y 

X        y *   ' 

where  %  =  \>/f.     The  solution of   (6a)   is 

(7) U   =   -Tpy    , V   =   ^x    ' 

with Tp  an arbitrary, twice continuously differentiable function. 

By  (6b) Tp  has to satisfy the equation 

(8) A(^-x) = 0 . 

Hence if 

then 

f m  x    on ÖD , 

?// = X    in D , 

where D is some domain and ^D its boundary.  Similarly, if 

where 

h ip =  h y       on ÖD , n^   n^        ' 

*n  ■ n*V 

and  n  is   the  unit normal  to  ÖD,   V  the  gradient,   then 

(*) ip = X +const.       in D   . 

But we  have  from   (7)   that 

**   =   n.(v,-u)     . 

13 
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Therefore the boundary condition 

(9) 

and in particular 

n.(v,-u) - ^nx  on äD , 

(10) u = -Xx >       v  = Xy       on ÖD , 

implies, by (*), that 

y 

u = -xY , in D . 

Hence we can conclude by a continuity argument that the only 

case in which (9) can hold is that (10) be satisfied.  An 

obvious special instance of the Neumain problem above is that in 

which the boundary ÖD is a level line of the height field, 

ÖD:  x = const.,   h = const.. 

in which case 

U - -Xy i   v = Xx  in D , 

provided ftD is also a streamline of the velocity field (u,v) and 

u2 +v2 = (öv)2  on ÖD . n 

Generally speaking we can state that the time-averaged 

solutions (ü,v,(|)) of (2) will be geostrophic, i.e., satisfy (2'), 

in a domain D if and only if tney are "geostrophic" on ÖD. 

Moreover, because of the maximum principle for the Laplace equa- 

tion, deviations e from geostrophicity in the domain D, 

14 
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e = max ( | f u + <|)y |, | f v - ^x | ] , 

will be bounded by the values of e" on ^D. 

Thus we see that in the simple flow described by (2) we 

can solve the completeness problem in initialization by deter- 

mining u, v from the compatibility conditiors or "generalized 

balance equations" (5), given $,   L   and ^ , . 

Moreover, a nearly geostrophic wind field can be obtained 

from a time-dependent geopotential ^ in the foilowing manner. 

First expand the measured ^ into plane waves, as indicated 

before.  Then suppress the inertia-gravity waves, i.e., set their 

coefficients to zero, and call the new function thus obtained ^,. 

Clearly ^ ■ 0, ^*. - 0, so that instead of (5) we will have for 

u, v a system of the form (6), with x ■ ^'A*  On the boundary, 

however, the departure e from geostrophicity, 

e = max [ | f u + ^ |, | f v - ^ | ] , 

will in general not be zero.  But we have shown that for system 

(6) the error e in the interior of D will be bounded by the value 

of e on the boundary äD.  Hence it suffices to adequately modify 

u, v on öD and/or I' on äD (and near ^D, to preserve continuity) 

in order to keep e throughout D within prescribed limits.  This 

procedure is in a sense comparable to that used in the anajysis 

of Williamson and Dickinson (1972). 

We are now in a position to return to the more general 

case (1) and ask whether the complete analysis performed for (2) 

generalizes.  Unfortunately the answer seems to be that it does 

not. 
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To  obtain  compatibility  conditions  similar  to   (3)   for  the 

system   (l)  we would have  a^ain   to eliminate  ut<   y.   from  it  by 

differentiating   (lc)  with  respect  to  t.     Before  doing  this   let 

us   simplify   (lc)  by  introducing 

9    =    log    (|)    . 

Then cp and its derivatives will be known, since | and its dori 

tives are known by our standing assumption. Dividing now (lc) 

by ^ > 0, it becomes 

va- 

(11) WV^V^t = 0 . 

where ^   cpy, (pt are known.  Differentiating (11) with respect 

to t, (la) and (lb) with respect to x and y, we obtain 

(12a) 

(12b) 

(12c) 

utx f uuxx + vuvv + uv + u.rvv - fv + i  - 0 . UA   xx   xy  x  y x   x Txx    * 

Vty + uvxy + vvyy + V* + 4 + ^y + ^yy = 0 ' 

V + Vyt + ^xUt + ^yvt + ^xtU + ^ytV + ^tt - 0 

Now we can substitute ut, vt into (12c) from (la), (lb) 

and Uxt' vyt from (12^'   (12b) to get a new equation for u, v 

containing no time derivatives of u, v: 

(13) 2   ,   mi UUxx+VUxy+^xy^vyy+uJ + 2uyVx+v^f(uy-vx) 

+ cpx(uux + vuy + 4x - fv) +cp   (uvx + VV   + A   + fu) 

- ^xtU - ^ytV + ix + *yy " ^tt   =  0   ' 
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Together with (11) this would thc-n yield a set of compatibility 

conditions similar to (r3).  We have however to verify whether 

(11) and (13) are Indeed independent equations.  Since (13) is a 

second-order equation, the standard procedure to test for inde- 

pendence is to introduce new dependent variables in order to 

convert (11) and (13) into a first-order system. 

Letting 

"y - q ,  v
x = ^ 

one such equivalent system for the six unknowns u, v, p, q, r, s 

would be 

ux = P , 

V  = s , 
y 

(14) 
Px + Sx + V + V + V + ^xyv = ^tx ' 

P -Q = 0 , ^y  ^x 

s - r = 0 , x  y 

2 2 
up   +vp   +us   + vs    +p    + 2qr + r   +f(q-r) 

^x      ^y        x        y 

+ q)x(up +vq - fv) +cp   (ur + vs +fu) - cpxtu - 9ytv 

■ ^tt " *xx - *yy " ^x^x " ^y^y  ' 

where we differentiated (11) with respect to x to obtain the 

third equation. 

A curve is called characteristic for the system (14) if 

a linear combination of the equations of (14) contains only 

17 
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interior differential operators for that curve, i.e., directional 

derivatives along that curve.  De±ine 

to be the components of the normal to a characteristic 

Tp{*,y)  ■ const. 

curve 

of the system (14), and let 

T = U^ 4- VT] . 

Then the characteristics of the system (14) will be given by 

/. 

det 

e 

« e 
n -« 

T 

-1 e 
T 

= 0 

/ 

(e.g., Courant and Hilbert, 1962).  Developing this determinant 

yields 

(15) i niiv*-^T) - 0 . 

Therefore, every curve is a characteristic curve.  Hence the 

matrix differential operator on the vector (u,v,p,q,r,s) defined 

by (14) is an interior operator on every possible curve of the 

x,y-plane, in other words the equations in system (14), and 

therefore equations (11) and (13) cannot be independent. 

18 
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Comparinc the manipulations which led to equation (13) to 

those which led to equation  (4), we could have anticipated this 

result.  Indeed, in (12c) we had to use both (la), (lb) in order 

to eliminate u,, v and (12a), (12b) in order to eliminate u ., 

v ,.  But (12a), (12b) were derived from (la), (lb) by differen- 

tiation and thus we can say that we had to use (la), (lb) twice 

in order to obtain (13).  On the other hand only one use of (2a), 

(2b) was necessary to obtain (4).  The obvious analogy with a 

similar situation in handling linear algebraic systems is the 

intuitive content of our result (15). 

To understand the deeper reason for the failure of the 

procedure which was successful in the case of system (2) we will 

have to consider the general case of the primitive equations. 
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3*   Compatibility COTldltlong for the primitive cquations 

For the sake of simplicity we shall discuss the primitive 

equations in x,y,p-coordinates, but the same results can easily 

be shown to hold in x,y,z-  and x,y, a-coordinates, as they 

obviously should.  We take the equations in the form 

(16a) ux +vy +cDp = 0 , 

(16b) ut + uux + vuy + cüup - fv - -4X J 

(16c) vt + uvx + vv   + CJDV   + ru = -i    , 

(i6d) e  +ue  +ve   +a)e -   o   , t x        y p 

where $ is the geopotentlal of an isobaric surface, 6 is poten- 

tial temperature and co ■ dp/dt is the vertical velocity in this 

coordinate system. 

Note that whereas this system is totally hyperbolic, i.e., 

it has four families of characteristics (three of which coincide, 

v. discussion of characteristics and their determination infra) 

the three-dimensional hyperplane t=0 in the four-space (x,y,p,t) 

is not free.   The plane t=0 is however free for the primitive 

equations in x,y,z- and x,y,a-coordinates (where a time deriva- 

tive appears also in the continuity equation).  Hence a Goursat 

problem (John, 1971, p. 191) with part of the data prescribed on 

The Cauchy problem for a first-order hyperbolic system consists 
in finding a solution of the system with values of the unknown 
variables prescribed on some hypersurface, A surface is then 
called free if the Cauchy problem with data on it has a solution 
"in the small" (i.e., at least in some neighborhood of the 
surface), characteristic otherwise (John, 1971, P« 5^ ff.)»  In 

particular a Cauchy problem with data on t = 0 is called a pure 
initial-value problem. 
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t = 0, part on p = 0 is adequate for our system, rather than a 

pure Initial-value problem. 

Again we assume that sj) le known, together with all its 

necessary derivatives, from the hydrostatic equation 

ip - -RT/p , 

where i; is the gas constant.  We note in passing that this 

discussion will be valid no matter what known right-hand sides 

equations (16) might have. 

We want to find a set: of equations in u, v, oo, fy,   0  con- 

taining no time derivatives of u, v, m« or, as we said before, 

a sjt of compatibility conditions the wind field has to satisfy 

instantaneously.  Since no equation for to* exists in our system, 

it is natural to use (l6d) to eliminate to, 

(17) »- -r- (0xu +V + Cv) ' t 

Differentiating  this with respect to p  and  substituting into 

(l6a) we  obtain 

(18) u »e^u +v +^
2)v fe^)u + 0(4)v..e(5) t 

p    y 

where 

»(D = .e /e   , e(2) = 
x'   p  ' y/ p 

e^^ = o e   /o2 - e   /e   ,       o 
x pp7   p xp^   p ' 

6^5) = Q Q    /e
2 _ e   /e 

t pp/ p tp'  p 

W) m e v   /e2 - e /e   , y pp/   p        r   P * 

are known according to our standing assumption, since T and p are, 
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To eliminate  the  time  derivatives   of u,   v between   (18)   and 

(16b),   (16c),   we  differentiate   (18)  with  respect  to t,   and   (l6b), 

(16c)  with  respect  to p and with respect  to x,   f,   to yield 

(19a) U
Xt   +UUVV   + VUVV  +a)Uvr.   +U?   +U,rV       +U(J0-fV        =    -i XL xx        xy        xp      x      y x      p x        x        Txx  ' 

(19b)       U«*+UUV_.+VU_.+<»l Ä+u U    -+uv+ua)-fv=-i P* XP yP PP       x  p       y  p       p^p p ^xp   ' 

(19c)      v      + uv      + vv     + CDV     + \xy   + v2 + v co   + fu    = -i, yt xy yy yp       y  x       y       p y y ^yy   • 

(I9d) V
nt-   +UVvn  + VV,rn  +ü)V

T.r.   +U^V
V   + V    V      +V(JU+fU       =    - i) P1^ xp yp PP       P  x       y  p       p  p p ^yp 

Substituting  uxt,   upt,   v .,   v t from   (19)   and ut,   vt  from   (l6b), 

(l6c)  into   (18')  we  obtain 

(20)       uu      + vu      + ÜDU     + uv      +vv      +a)V xx xy xp        xy        yy yp 

+   6[ [ ' {IUI      + VU       + OJU      ) + 0^    M uv      + vv      + mv      ) xp yp pp- ^U'xp      VVyp     ^pp^ 

2 ? 
+  u   + u v   + u a)   + u v    + v   + v a) x       yx       px       yx       y       py 

+  &       (uvu   + u v   + urn   )+e^(uv   +vv   fvcu   ) 
xp      yp       PP vpx      yp       pp 

+  e(5MuuY + vu   +u)u^) + e^^(uv   +vv   -I-CDV   ) x        y p x     x        y p' 

♦ f(uv-vx)+f(e(2)un-ö(1)vj-e^^u  -oi2K yx p ptptp 

♦ ftoWu-e^M-ep'u-e^v 

--♦«-♦W■•<1)♦xp■•(^,♦yp-•(')♦x-•<*^♦•i5, • 
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Here  again CJD,   co , OJ ,   a)    ceui be  eliminated with  the. aid  of  (17)* x iy     p 

and only first-order space derivatives of u, v appear in the 

process.  Thus we can view (20) as a second-order equation In 

u, v. 

To test the independence of (18) and (20) it is convenient 

to introduce 

v ■ n •   v = t , x    '   p    ' 

and differentiate   (18)  with  respect  to  p.     Then we  obtain the 

following first-order  system 

ux  =   q   , 

v     =   s   , 
y 

(21) 

n.x - qy  =  0  , 

n    - s     =  0  , 
y     x » 

q    - r     =  0  , ^p       x ' 

s    - t     = C  , 
p     y 

uqx + vq^ + (a) + 0(1)u)qp +0(1)(vry +a>rpJ 

+ us    +vs    + {n + e^2K)s    -i-e'2Mut    +a)t   ) + . x y     ^ ' p x     x p' .. = 0  , 

x + G^1^r   +t   +ü^t   + • • . - 0 , 
P      y P 

where  the  dots   stand  for  terms which  contain only  the  unknowns 
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U ■ (u, v,m, n, q,r,s,t) in non-differentiated form or not at all. 

Thus system (21) can be written as 

1 x  2 y ^ p       ' 

where A,, A?, A, are matrices depending on U, but not on its 

derivatives and B is a column vector with the samo property. 

Let a surface In x,y,p-space be given by an equation 

and denote bv 

^(x#y»P) = const. 

t - ♦x i  n = ^y ^  ^ = ^p 

the components of its normal.  Consider the matrix 

A = A^ +k2r]+A^  = 

n 

-n 

c 
-« 

-e 
T+((Jo+e^1\i)C   e'1^(vfi4<DC)   T+(CU+O(?^V)C   e^2^(u|-KDC) 

^+G(i)^ 

C 

n+eC2)c 

-i j 
where we  used  a  sligh1   reordering  of  the  equations  of   (21)   (the 

equation which was  considered  the  fifth  one   in the  first writing 

being now last)   and where  x ■ u{ +vr). 
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By the theory of characteristics the quasi-linear system 

(21) is elliptic at a point (x,y,p) for a certain solution 

U = U(x,y,p) If the equation 

(22) let A(x,y,p;U;fJ,r|,0 = 0 

has no  real  solution  (?3,i],0   there  and  is   totally hyperbolic   if 

eight  distinct  real  solutions   {£,,r],r,),,   1  =  1,2, ...,8,   exist. 

Any  such "solution"   of   (22)   is  a first-order partial differential 

equation  for a  function ip.     The  solution  of this  PDE yields  a 

family of characteristic  surfaces 

^(x#y#p)  = const. 

of the system (21).  The equations of (21) cannot be independent 

of ea^h other if (22) is identically satisfied. Irrespective of 

the values of the variables on which A depends, as was already 

explained for the shallow-fluid equations.  Indeed, for (22) to 

be identically satisfied, it is necessary that the matrix 

different, al operator 

C - JUd/dx + A?ä/öy + AjV^P 

be an inter or operator at any point of any surface in space for 

any solution U of (21). In other words, a solution U of some of 

the equations in system (21) must satisfy the whole system 

C(U)U + P(U) = 0 . 

Developing  the  determinant  in   (22)  by minors yields 
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det A =  rTi?[c[-ö(1)c(vT1+u)C)(T1+e
(2)c) +^[T + (ü)+e(2)vK]U+o(1)o 

+ o(2)c(ue+a)C)(e+t(1)c)i - eft -f (»f«(1)u)c](V«(2,c)cl 

ö^^U^+VT! + (üo+e^^ujrj^c) ■ o . 

Thus the equations of system (21) are not independent.  Hence 

the same holds for equations (18) and (20), to which system (21) 

is equivalent, given suitable side conditions. 

We remark moreover that neither is a full se ; of compati- 

bility conditions possible for the complete Euler equations, in 

which the equation for the vertical velocity cannot be reduced 

to the hydrostatic equation.  Indeed, let us assume that somehow 

all variables of state, i.e., T, p, 0  are known together with 

the necessary derivatives.  Even then, differentiating the energy 

equation equivalent in x,y,z-coordinates to (l6d) with respect to 

t and substituting ut, v*, w^. from the three momentum equations 

into the equation so obtained will lead to one compatibility 

condition.  The continuity equation will then give just one addi- 

tional condition, and it is verified by inspection that no other 

independent equation in which time derivatives of (u,v,w) do not 

appear can be derived.  Thus we have again an underdetermined set 

of two equations for the instantaneous determination of the three 

unknowns u, v, w. 
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In this context it is worthwhile to note that in Mesinger's 

(1972) iterative updating experiments ehe use of the first time 

derivative of the state variable brought a significant improve- 

ment in the adjustment of the wind field.  The use of the second 

time derivative however did not.  This reflects the fact, which 

should be clear in the light of our discussion, that no addi- 

tional independent compatibility conditions can be obtained by 

further differentiation with respect to time of the energy or 

continuity equations. 

Obviously, to consider the Navier-Stokes equations, or 

other equations with forcing and dissipation depending on the 

wind field, would make matters only worse.  This seems to exhaust 

the possibilities. 

We are therefore forced to conclude that there is no 

adequate generalization of exact geostrophic balance to atmo- 

spheric phenomena governed by the primitive Euler or Navier- 

Stokes equations, at least not in the sense that the wind field 

is entirely and instantaneously determined by the thermodynamic 

state of the atmosphere and its past history as reflected in the 

time derivatives of the state variables. 
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4. Discussion and conclusions 

The analysis above should make it clear why the mathemati- 

cal argument mentioned in the Introduction and used by some 

authors to justify the updating approach to the initialization 

problem may not be appropriate.  Not only are the systems of 

PDEs under consideration non-linear, which in general precludes 

the elimination of all but one variable; the even more pertinent 

difficulty is that such elimination does not lead to a well- 

posed problem to determine the wind field from temperature data. 

On the other hand, our analysis proves rather conclusively 

that for an atmosphere governed by the primitive equations even 

a generalized geostrophic balance, in the sense of compatibility 

conditions as previously defined, can be only an approximate, 

rather than an exact mathematical property. 

We think that this discussion at least partly explains the 

difficulties encountered by the updating and four-dimensional 

data assimilation approaches to the initialization problem. 

Specifically these difficulties are:  (i) that the erros in the 

initial data cannot be reduced to zero or to negligible values, 

(ii) that in forward updating the asymptotic value of the error 

is reached after times comparable to the predictability time, and 

(iii) that use of data extraneous to the numerical model used 

seems to lead to catastrophic results.  The partial success of 

these approaches has probably to do with a rather complicated 

mechanism, involving the forcing and dissipation in the system 

of equations used, which we cannot discuss here and which is 

currently under investigation. 
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Our analysis on the other hand has shown that instanta- 

neous compatibility conditions for the velocity field can be 

derived, but that their number (one for the non-linear shallow- 

fluid equations, two for the primitive equations) is in general 

one less than the number required to determine the velocity 

field from the thermodynajnic fields and their history.  This 

seems to justify the contention that it is necessary, in order 

to solve the initialization problem, to be able to measure at 

least one scalar parameter determining the wind field.  This 

scalar could be either the (horizontal) wind direction or the 

wind speed. 

The wind direction could possibly be determined by cloud 

tracking techniques which are not at present sufficiently accu- 

rate in order to determine also the speei.  The speed on the 

other hand could perhaps be determined with sufficient accuracy 

(concerning the present GARP requirements see for Instance 

Kasahara, 1972) by other methods which are still easier to 

implement than those requiring a full and accurate measurement 

of two or three velocity components separately. 

Our analysis may be extended to study four-dimensional 

data assimilation in the following way.  Assume that one would 

wish to solve a Cauchy problem for a hyperbolic system 01 equa- 

tions of large-scale dynamic meteorology (the shallow-fluid equa- 

tions or the primitive equations) different from the pure 

initial-value problem.  This would correspond to data being 

available on some arbitrary hypersurface S in (x,y,z,t) four- 

space, rather than on the hyperplane t - 0, e.g., on a surface 
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spanned by  the   trajectories  of satellites.     If   the  data were 

complete  and  the  given  surface  S were  free   for  the  system of 

equations  used,   as  well  as  being a space-like   surface   (John, 

1971,   p.   113   ff.,   Courant  and  Hilbert,   n962,   p.   589 ff. ),   then 

the  Cauchy px-oblem with respect  to  S would  be  well posed. 

If the  data,   however,   are not  complete,   as   is  to be 

expected,   although  S  is  free  and  space-like,   we  have  again with 

respect  to S an "initialization problem"   or "incomplete  Cauchy 

problem".     This  can now be  handled  either by "updating tech- 

niques",   as  is  currently done  in various  numerical experiments, 

or else by  the  analytical methods  proposed  above.     Our analysis 

of the  initial-value  problem seems  to  suggest  that a theoretical 

investigc'.tion of  four-dimensional data assimilation in the  sense 

outlined here might  help direct  the numerical experiments  in 

such respects  as   optimal number,   nature  and  location of data,   or 

assessment  of the   completeness  and  relative  value  of data avail- 

able  under present  and  future data gathering programs. 

This  subject,   as  well as   the  numerical   Implementation and 

practical evaluation  of  the  theoretical methods  proposed here 

for  the   initial-value  problem,   are   intended  to be  covered  in 

future work by  the   author. 
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