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Abstract

The initisdigation problem is defined as the problem of
obtaining the initial data that are required in order to solve
a well posed initial-and-boundary-value problem for the equa-
tions of large scale dynamical meteorology. In eour treatment
of this problem complete knowledge at a given instant of the
atmospheric temperature and surface-pressure fields, as well as
of their time derivatives, is assumed to be at our disposal; and
the problem of computing the velocity field at that instant from
this “nowledge is studied.

The methods used are based on the exact mathematical treat-
ment of the differential equations of atmospheric motion, rather
than on perturbation-type or numerical methods. A simple solu-
tion of the initialization problem thus formulated is exhibited
in a particular case. It is shoin, however, that in general the
problem is indeterminate and additional information is required

to uniquely find the velocity field. Four-dimensional data

assimilation is also discussed.




1.

Introduction

Shortly after the development of computers made the numeri-
cal integration of the primitive equationsT over a global grid
feasible, it became apparent that one of the main problems in
such an integration was to provide the initial data needed to
start it. Indeed, the primitive equations, in x,y,z-coordinates,
say, form a totally hyperbolic system, when viscosity and heat
conduction are neglpcted.* A well-posed problem for this system
would be to specify throughout the global atmosphere the velocity
components W vy Wy and the temperature T at a given time t = to,
as well as certain conditions, into the details of which we will
not enter, at the upper and at the lower boundary of the atmo-
sphere. The complete and sufficiently accurate specification of
such initial conditions became known as the initialization
problem.

Thus the problem falls into two parts: (i) the complete-
ness, and (ii) the accurazy of the initial data. In discussing
the different aspects of this problem, we will try to distinguish
between the physical behavior of the atmosphere, the mathematical
(differential) models describing this behavior, and the rmumerical
(difference) models used to approximate the mathematical model.

The behavior of a numerical model is often related directly to

T The Eulerian equations of motion with the vertical momentum
equation replaced by the hydrostatic assumption.

*

Assuming the surface pressure 1is known, the pressure p can be
obtained directly by integrating the hydrostatic equation, which
we exclude from this discussion.




and compared with that of the atmosphere, the intermediate level
of approximation provided by the mathematical model from which
it was derived being omitted from the discussion or the behavior
of the mathematical model being tacitly implied to be the same
as either that of the atmosphere, or as that of the numerical
model. We shall briefly mention first the questions related to

the accuracy problem.

When finite-difference approximations to the primitive
equations started to be used for meteorological research and
weather prediction, it was noted that the numerical models* simu-
lated not only the large-scale motions of the atmosphere, in
which one was interested, but also faster phenomena of smaller
amplitude which were identified as the numerical counterpart of
inertia-gravity waves, and which are adequately represented for
instance by solutions of the linearized shallow-fluid equations
(Charney, 1955). These waves were undesirable and their cause
was traced to the lack of geostrophic adjustment in the initial
data used. However, it was soon realized that initial condi-
tions, satisfying any hitherto used balance equation, would not
prevent the existence and propagation of inertia-gravity waves
in a primitive-equation model (Nitta and Hovermale, 1969, Morel

et al., 1971). The mathematical reason for this is the fact

In this cortext a numerical model of the atmosphere is
essentially a finite-difference approximation to the equations
of motion. It includes in general also some terms which
represent the direct numerical parametrizetion of certain
pPhyeical processes, but we will not dwell upon thie aspect of
the models, considering them as difference schemes for the inte-
gration of the equations of motion; i.e., of the mathematical
model.




that the forms of the balance equation* known from previous
quasi-geostrophic and quasi-nondivergent models do not represent
an instantaneous compatibility condition between wind and pres-
sure field, consistent with €he primitive equations describing
the motion. Actually such a balance equation, in 1ts general
form or in any of its simplified forms, represents only an
approximation to such a condition, obtained by neglecting certain
terms in the equations from which it i{s darived. Indeed, the
atmosphere 1tself *is only approximately in geostrophic balance,

rather than exactly in this state.

1t appeared though that the amplitude of the fast waves in

the numerical model far exceeded that of the inertia-gravity
waves in the atmosphere. These large amplitudes could reasonably
be attributed to an excessive imbalance in the initial conditions,
due to the use of data incorrectly measured or interpolated.
Since this situation could not be remedied by traditional synop-
tic balancing, Nitta and Hovermale (1969) proposed a dynamical
balancing. The procedure consisted essentially in running the
model successively for short periods forward and backward in time
for a number of cyclese. 1t was expected that the model would
simulate geostrophic adjustment, i.€., disperse and dissipate the
fast, short-scale waves. Positive improvement was obtained with

this method.

For the most general form of the balance equation, as well as
for some of the more special forms 1t takes when certain simpli-
fying assumptions are made, see Haltiner (1971).




The reduction of the exaggerated amplitude of small-scale
motions produced by initial errors was known to be necessary in
order to prevent them from influencing too strongly in too short
a time span the large-scale motions raepresented by the numerical
model. The relationship between the size of initial errors and
the predictability range* has been first investigated systemati-
cally by Charney et al. (1966). For the presently available
accuracy in measurement, the predictability range of the existing
numerical models of the atmosphere is believed to be about two
weeks, assuming that complete information with the given accuracy
were available.

This brings us back to the completeness problems In facet,

there is at present no meteorological data gathering system
capable of supplying u, v, w, T over a uniform grid, like the
ones used by general circulation models (GCMs), at a given time
("synoptically" ). However, it seems reasonable to expect from
the progress of satellite technology at least good date coverage
for temperatures in the near future. Therzfore it has been
suggested by Charney et al. (1969) that the wind field (u,v,w),
speaking vaguely for the moment, could be inferred from the
temperature field T and some of its past history.

The rationale for this proposal was twofold. First, the

experience with barotropic models, i.e., with systems of partial

The predictability range is defined as the time span after
which the errors in the calculated state exceed a certain pre-
assigned threshold, usually related to the difference between
two "randomly chosen" states of the atmosphere.

4




differential equations in which the barotropic approximation was
made, and in which the wind field could be obtained from the
instantaneous geopotential field by solving a time-independent
balance equation. Numerical integrations of these equations were
rather successful, approximating well certain acpects of the be-
havior of the atmosphere. Second, the well-known mathematical
fact that, in a linear hyperbolic system of n first-order partial
differential equations with constant coefficients, (n-1) depend-
ent variables can be eliminated, thereby reducing the system to

a single equation for the n-th variable. Then the initial condi-
tions on the (n-1) eliminated variables lead to conditions for
the time derivi ives up to order (n-1) of the n-th variable
(e.g., Courant and Hilbert, 1962, p. 14 ff.). 1In particular,
this is the cage in linear acoustics, where the veliocity cempo=

nemts can be eéliminated, to yield a single equation for the pres-

sure. The discussion of these considerations will be briefly

taken up in 3ection 4.

The concrete procedure proposed by Charney et al. (1969)
was to start the numerical integration of the equations with the
"correct" temperature data and with velocity data approximated by
some other method, then, at given time intervals, to replace the
calculated values of T by the "correct" ones (i.e., to "update"
T). 1In fact, however, no "correct" measured (satellite) tempera-
ture data were available. Therefore the experiments were made to
t&a't +Ehe peocedure by relyihg on #he concept of & "control Pun",
1«8:, of a numerical integration > the eguations performed for a

certain length of time, the results of which are referred to for




purposes of comparison as the "true history" of the atmosphere
over that time span.

First the control run, with certain initial values of u,
v, W, T, is performed and the values of T corresponding to this
run are taken as "correct". Then another integration is started,
with the same initial temperature data, but different initial

velocity data, and T is "updated" with values taken from the

"correct" temperatures of the control run. The reason for up-
dating the temperature is to redﬁce the errof in the Veloéity,
caused by using inacevrate initial Qelocity data.

It was indeed observed that the root-mean-square errors in
the velocity field decreased to a certain non-zero asymptotic
value. However, in the experiments reported by Charney et al.
(1969), as well as in similar experiments performed later (e.g.
Williamson and Kasahara, 1971) this value was reached only after
a time comparable to the predictability range of the numerical
models used (10 days to 3 weeks) and this asymptotic rms error
was non-negligible, although considerably smaller than the rms
value of the initial error, and a fortiori much smaller than the
rms error in the wind field after a similar périod in a run with-
out updating. These facts seem to limit the value of the up-
dating aprroach to the completeness problem in spite of the
partial success of the method.

More recently (Morel et al., 1971, Mesinger, 1972) the
method of iterative dynamic adjustment, suggested by Nitta and

Hovermale (1969) in dealing with the geostrophic balance problem,

was applied to the data acquisition problem. This was done in




order to circumvent the questions arising from achieving proper

initialization only at the end of the predictability time. Good
results were reported with proper choice of finite-difference
scheme, period of the back-and-forth iteration, etc. There seems
however to be a marked distinction between the results using data
from a control run of the same model and those when using real
data or data from a different model. The results when using
"extraneous" data for iterative updating are much worse and
rather discouraging (Morel et al., 1971, Mesinger, 1972).

It may be worthwhile to stress that the forward-updating
and iterative techniques discussed before were proposed when it
became clear that traditional objective analysis methods, which
had been fairly successful for the "filtered" (quasi-geostrophic
and quadi-nondivergent) models, produced "initialization shocks"
and large-amplitude short waves in primitive equation models.
However, the consensus seems to be that up to now these asynchro-
nous techniques are much more computer-time consuming and do not
seel to have performed convincingly bettey than the more sophis-
ticated ones among the objective-analysis methods (including
least-squares and weighted-average fits of observed data, varia-
tional techniques, weighted consideration of prognostic comnuted
data, permanence and climatology data, aé well as use of geo-
strophic and balanced data). Therefore it is still the synchro-
nous objective analysis methods which are operational in daily
forecasting (Haltiner, 1971) and it is one of the purposes of

the search for better initialization methods to develop tools

for improved and extended operational forecasts.




In view of the difficulties encountered by the non-synoptic
techniques, as well as by the traditional synoptic techniques,
we shall try to pursue a different avenue of attack on the
initialization problem. As we saw, the two aspects of the prob-
lem, completeness and accuracy, are strongly interrelated and
any solution has to take care of boths This brings us back Lo
the discussion of well-posed problems for the system of equations
dealt with, viz., the primitive equations (where we assume the
surface pressure to be known and hence ignore the hydrostatic
equation), i.e., to the question of the side conditions under
whiich the eXistence of a umigue solution of thi: system, con=
tinuously depending on the data, is guaranteed.

Given the hyperbolic character of the equations and their
non-linearity it seems mathematically very implausible that any
other problem, but the proper initial- and boundary-value problem
which one would wish to solve, would be well posed. 1In particu-
lar, if in any sense the temperature field determines the wind
field and if a state of quasi-geostrophic equilibrium, meuning a
state of minimum amplitude gravity-inertia waves, exists, these
two facts ought to reflect an instantaneous property of the
primitive equations, rather than an integral property involving
a finite time span. This point will be further discussed in
Section 4, Such an instantaneous property would have to be
expressed mathematically as one or more equations involving the
velocity components and their space derivatives, but not their

time derivatives, and some variables of state (such as tempera-

Denia i e e e T




ture and pressure), which are assumed to be known together with
any number of their space and time derivatives.

The presence of &s many of the time derivatives of state
variables as necessary would generalize the usual forms of the

balance equation, which are completely free of time derivatives,

and these derivatives would be all that is needed to express the

thermodynamic history of the system. These time derivatives
could be computed from sufficiently many discrete measurements
by using adequate numerical techniques, which probably would have
to include certain space-averaging procedures.

If the number of independent equations thus obtained from
the primitive equations by differentiation and elimination, to-
gether with proper side conditions, suffices to determine the
wind field at a given instant, then we will have solved the
completeness-of-data problem, assuming adequate knowledge of the
thermodynamic history. If not, the equation or equations
obtained will still express a compatibility condition, efguivas
lent in the general baroclinic case to the balance equation.
This condition will then be the only limitation imposed by the
equations themselves on the initial data and thus the only
"dynamic" check on the accuracy of these data.

It is hoped that the following analysis will clarify this
point of view and indicate some of its possibilities and limita-

tions.




2. Compatibility conditions for the shallow-fluid equations

As an example of the ideas involved in the approach we
want to discuss, we consider the shallow-fluid equations for a

rotating Cartesian x,y-coordinate system

(la) ut+m&4ﬂmy+¢x-fv= ®

(1b) VL4<qur+vvy-+¢y wfn & 0

(1c) ¢t-+u¢x-+v¢y-+¢(ux4~vy) =@
$ = ¢gh .

Here u, v are the velocity components in the x,y directions
respectively, h is the height of the free surface, g the
acceleration of gravity and f the Coriolis parameter. For the
sake of simplicity we assume f to be a constant.

First we will study the linearization of this system

around a state of rest. With an obvious change of notation we

then have

(2a) ut+-¢x- f =0

(2b) vt~+¢y #Fa = 0

(2c) ¢t-+¢(ux+-vy) =0,
(2d) ¢ = const.

Here ¢ is the equilibrium value of the geopotential gh of the
free surface, and ¢ stands now for gh-¢, the deviation of the

geopotential from ¢.

10




Differentiating (2c) with respect to t, (2a) and (2b) with

respect to x and y, we obtain

(3a) Ut -fv, =0,
(3b) WW+¢&y+f%r=O’
(Ze) ¢tt+¢(uxt+vyt) =0 .

Substituting u . and Vot from (3a), (3b) into (3c) yields

(4) (bf(vx-%,) —o (bt y) tdp = 0.

&

Using our standing assumptions that $ and as many of its
derivatives as necessary are known, we obtain from (4) and (2c)
the following system of two first-order partial differential

equations for u, v

N, P, -¢>t/¢ g
(5)
s Ve | = (¢tt-¢A¢)/¢f ’

where A is the two-dimensional Laplacian operator,

+XX yy

Thus we see that in this very sinple case it is possible to
eliminate the time derivatives Ups Vi and obtain the instantane-
ous compatibility conditions (5).

System (5) for the functions u and v is elliptic, i.e., it
has no real characteristic. 1In fact it is just a set of inhomo-

geneous Cauchy-Riemann equations for the functions v, u, and by

1d




cross-differentiation these equations lead to a Poisson equation
for either u or v. A well-posed problem for (5) would be the
Dirichlet problem. This would mean prescribing u say on a
closed contour 3D and v at some point on the contour or in its
interior; D,

It is well known (Morel et al., 1971, Williamson and
Dickinson, 1972) that the system (2) has three independent plane-
wave solutions, one corresponding to slow Rossby waves, the
other two to inertia-gravity waves propagating in opposite direc-
tions. 1In the case at hand, where the unperturbed velocity is
zero, the Rossby mode is stationary and the inertia-gravity'waves
have phase-velocity

¢ =t (kP +12)Y2 | 2. ks FkS

k = (kl’kz) being the wave vector. Any solution of (2) can be

represented by a series expansion in these plane waves.

Let. a quantity X be decomposed as
X=X+X',

where (7) is a time average and hence X, being stationary, is
representable in terms of the Rossby mode, whereas X' stands for

the inertia-gravity-mode part of the representation. Then

(2') fﬁ=_@,, f7=$x

1s a geostrophically balanced stationary solution, satisfying

eqs. (2) as well as system (5) with 3/3t = O.

I E——



The most general stationary solution of (2) will satisfy
(6a) u +v.,_ = 0,

(6b) Vo -u, = Ay
where y = $/f. The solution of (6a) is
(7) Uy ey

with ¢ an arbitrary, twice continuously differentiable function.

By (6b) y has to satisfy the equation

(8) Ay -x) =0 .
Hence if

Y=y on aD ,
then

Y =) ol e DN

where D is some domain and 3D its boundary. Similarly, if

anzp anx on @b ,

where

and n is the unit normal to aD, V the gradient, then

But we have from (7) that

an w e, =) s

)




Therefore the boundary condition
(9) n-(v,-u) =3 xy onaD,

and in particular

(10) e By, o8 oD ,
implies, by (*), that
W= ager 3 A Xy im D s

Hence we can conclude by a continuity argument that the only

case in which (9) can hold is that (10) be satisfied. An

obvious special instance of the Neumenn problem above is that in

which the boundary 9D is a level line of the height field,

e ¥ = cofiles h = const.,

in which case

U.=-Xy, V=XX in D,

provided oD is also a streamline of the velocity field (u,v) and

u® #ve = (anx)2 on dD .

Generally speaking we can state that the time-averaged

solutions (ﬁ,v,g) of (2) will be geostrophic, i.e., satisfy (2!'),

in a domain D if and only if they are "geostrophic" on dD.

Moreover, because of the maximum principle for the Laplace equa-

tion, deviations e from geostrophicity in the domain D,




€ = max (|fa+d |, 117-4.1) ,

will be bounded by the values of € on aD.

Thus we see that in the simple flow described by (2) we
can solve the completeness problem in initialization by deter-
mining u, v from the compatibility conditions or "generalized
balance equations" (5), given ¢, ¢t and ¢tt'

Moreover, a nearly geostrophic wind field can be obtained
from a time-dependent geopotential $ in the following manner.
First expand the measured ¢ into plane waves, as indicated
before. Then suppress the inertia-gravity waves, i.e., set their
coefficients to zero, and call the new function thus obtained ¢'.
Clearly ¢% = 0, ¢Lt = 0, so that instead of (5) we will have for
u, v a system of the form (6), with y = ¢'/f. On the boundary,

however, the departure e from geostrophicity,
1
e =max (|fu+dgl,[tv-dr1},

will in general not be zero. But we have shown that for system
(6) the error e in the interior of D will be bounded by the value
of e on the boundary dD. Hence it suffices to adequately modify
u, v on 3D and/or ¢' on 3D (and near dD, to preserve continuity)
in order to keep e throughout D within prescribed limits. This
procedure is in a sense comparable to that used in the analysis
of Williamson and Dickinson (1972).
We are now in a position to return to the more general
case (1) and ask whether the complete analysis performed for (2)

generalizes. Unfortunately the answer seems to be that it does

not.




To obtain compatibility conditions similar to (5) for the

system (1) we would have again to eliminate ugs v, from it by
differentiating (1lc) with respect to t. Before doing this let

us simplify (lc) by introducing

¢ = log ¢ .

Then ¢ and its derivatives will be known, since ¢ and its deriva-

tives are known by our standing assumption. Dividing now (1lc)

by ¢ > 0, it becomes
(11) | ux-kvy-kwxu-+¢yv-+¢t = O,

where Pys @ ¢, are known., Differentiating (11) with respect

y-’
to t, (la) and (1b) with respect to x and y, we obtain

2
(12a) u, +uu__ +vu -Fux-kuyvx-fvx-+¢xx %9

tx XX Xy

i
O
-

2
12b +uv.  +vv +u v. +v-+fu +
ey v yVx TVy tTu b

(12¢) uxy+vyt+q>xut+<p vito ute

yt

Now we can substitute ugs Vv, into (12¢) from (la), (1b)

and Uyt s vyt from (12a), (12b) to get a new equation for u, v

containing no time derivatives of u, v

2 2
(13) uuxx-+vuxy-+uvxy-kvvyy-Fux-kzuyvx-kvy-kf(uy 'Vx)

-F@x(uux-kvuy-k¢x-fv)~+¢y(uvx-+vvy-+¢y-+fu)

'thu"wytv'k¢xx’+¢yy -¢tt =

16




Together with (11) this would then yield a set of compatibility
conditions similar to (5). We have however to verify whether
(11) and (13) are indeed independent equations. Since (13) is a
second-order equation, the standard procedure to test for inde-
pendence is to introduce new dependent variables in order to
convert (11) and (13) into a first-order system.

Letting

=g , v r,
Sy X

one such equivalent system for the six unknowns u, v, p, q, I, S

would be

uX =N DL Iy

vy =55

Py ™ By D +q>yr +q>xxu+q>xyv 3Py
(14)

py‘qx =0 ’

2 2
upx-kvpy-+usx-kvsy-kp +2qr +r° +f(q-r)

+<px(up +vq - fv) +q>y(ur +vs +fu) - Pyt = OytV

== (ptt = ¢XX = ¢)yy = (pX(bX = ¢y¢y )

where we differentiated (11) with respect to x to obtain the
third equation.
A curve is called characteristic for the system (14) if

a linear combination of the equations of (14) contains only

oy

T N T .



interior differential operators for that curve, i.e., directional

derivatives along that curve. Desine

to be the components of the normal to a characteristic curve
¥(X,y) = const.
of the system (14), and let
v = Uk + vy .

Then the characteristics of the system (14) will be given by

/é !
n
g €
det 3 _t =0
-n £
) T T)

(e.g., Courant and Hilbert, 1962). Developing this determinant

yields
(15) !‘;en(en'f-&n'r) =0 ,

Therefore, every curve is a characteristic curve. Hence the
matrix differential operator on the vector (u,v,p,q,r,s) defined
by (14) is an interior operator on every possible curve of the
X,y-plane, in other words the equations in system (14), and

therefore equations (11) and (13) cannot be independent.

18




Comparing the manipulations which led to equation (13) to
those which led to equation (4), we could have anticipated this
result. Indeed, in (12c) we had to use both (1la), {1b) in order
and (l2a), (12b) in order to eliminate u

to eliminate u v

i &
Vgt But (12a), (12b) were derived from (1l2), (lb) by differen-
tiation and thus we can say that we had to use (la), (1lb) twice
in order to obtain (13). On the other hand only one use of (2a),
(2b) was necessary to obtain (4). The obvious analogy with a
similar situation in handling linear algebraic systems is the
intuitive content of our result (15).

To understand the deeper reason for the failure of the

procedure which was successful in the case of system (2) we will

have to consider the general case of the primitive equations.

19




3. Compatibility conditions. for the primitive éguations

For the sske of simplicity we Shall discugs the primitive
equations in x,y,p-coordinates, but the same results can easily
be shown to hold in x,y,z- and X,y,o-coordinates, as they

obviously should. We take the equations in the form

(16a) ux-+vy-+wp = -1y
(16b) g +uuy Ve tou, - £V = -b
(16¢) Ve b uvy F VvtV +fu = —¢y ;
(164) 0, +ub, + VO +wb = 0 ,

where ¢ is the geopotential of an isobaric surface, 6 is poten-
tial temperature and w = dp/dt is the vertical velocity in this
coordinate system.

Note that whereas this system is totally hyperbolic, i.e.,
it has four families of characteristics (three of which coincide,
V. discussion of characteristics and their determination iﬂfﬁﬁ)
the three-dimensional hyperplane t =0 in the four-space (X,y,Dp,t)
is hot free.* The plane t =0 is however free for the primitive
equations in x,y,z- and Xx,y,o-coordinates (where a time deriva-
tive appears also in the continuity equation). Hence a Goursat

problem (John, 1971, p. 191) with part of the data prescribed on

o The Cauchy problem for a first-order hyperbolic system consists
in finding a solution of the system with values of the unknown
variables prescribed on some hypersurface. A surface is then
called free if the Cauchy problem with data on it has a solution
"in the small" (i.e., at least in some neighborhood of the
surface), characteristic otherwise (John, 1971, p. 54 ff.). 1In
particular a Cauchy problem with data on t = O is called a pure
initial-value problem.




t = 0, part on p = 0 is adequate for our system, rather than a
pure initial-value protlem.

Again we assume that ¢ is known, together with all its

necessary derivatives, from the hydrostatic equation

d’p £5 'RT/p s

where .. is the gas constant. We note in passing that this
discussion will be valid no matter what known right-hand sldes

equations (16) might have.

We want to find a seb of equations in u, v, w, ¢, 6 con-
taining no time derivatives of u, v, w, or, as we said before,
- a s2t of compatibility conditions the wind field has to satisfy
instantaneously. Since no equation for Wy exists in our system,

; it is natural to use (16d) to eliminate w,

(17) w = - g; (O u+6v+0,)

Differentiating this with respect to p and substituting into
(16a) we obtain

(18) u ot ww. wel®l ¢ o p Xl 2 e )
X P y P

where

(2)
-6,/ 6 -6,/ 5

2 g
B.b SOk < B8
v pp/ p y/ P

I

¥ = 2 (4)
6'2) < 0.0 /00 - 8,./0, 0

D
(&)
S
|

2
= 6,6 /B =6_/6
t%pp”%p tp/ p

are known according to our standing assumption, since T and p are.

21




To eliminate the time derivatives of u, v between (18) and

(16b), (16c), we differentiate (18) with respect to t, and (16b),

(16c) with respect to p and with respect to x, y, to yield

(8" ) uxt+9(l)upt+vyt+9(2)vpt+9(3)ut+e(u)vt
+0£1)up-F9£2)vp-f9£3)u-+9£4)v - -0{5), |

(19a) W WL +VuXy +wuxp +u)2( +uyvx +upcuX - fVX = 'd)xx -

(19b) Ut +uuXp +vuyp tou +uxup +uyvp tu - I‘vp = 'd’xp i

(19¢c) Vot +uvXy +VVyy +<1)Vyp+uyvX +V§ +Vpa)y + fuy = -‘byy > ‘

(194) pe T g " Vipp Yy WV TV Vel 4 00, w b o

v, fear (16b),

Substituting Ut U gs Vyt’ Vot from (19) and Ups Vo

(16c) into (18') we obtain
(20) uu,  tvu o tou, tuv o +vv o+ v

(1) (2)
6 + + +06 + +
+ (uuXp Vuyp wup ) (uvXp W POV )

2 2
+ u_+tuv_ tuw +tuv. +vo+v
X y X p X y X y PYy

(1) (2)
+ 6 (uxup + uyvp + upcup) +6 (upvX + Y% + vpa)p)

b)

'3 ) (uu_ +vu + + ol Fyv_ +
+ (qu Vuy wup) (uvX T va)

+ f(uy-vx)+f(9(2)up-9(1)Vp) ’Q‘El)up’e'(f)"p
+ f(e(a)u-G(B)v) -9£3)u-9£4)v
- _cbxx-(by'y- (l)¢)xp_9(2)¢)yp_9(3)¢X_9(}4)¢)y+9£5) .

2e




Here again w, w,, wy, wp can be eliminated with the, aid of (17),
and only first-order space derivatives of u, v appear in the
process. Thus we can view (20) as a second-order equation in

0 s

To test the independence of (18) and (20) it is convenient

to introduce

and differentiate (18) with respect to p. Then we obtain the

following first-order system

=
»
1
47
]
(@]

(21)

(1),

+6(l)(vr +wr_)

+ +(w+6
G 8 V& p y T

q
B ne et @) . g
+—usx~+vsy-+(w-+6 v)sp4 ] (utx-kwtp)-F... =0 ,

(1) (2) -
r 0 e bt 400t 4l =0,

where the dots stand for terms which contain only the unknowns
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U= (uv,mn,q,r,s,t) in non-differentiated form or not at all.

Thus system (21) can be written as
AlUx-FAQUy-+A3Up-FB =0,

where Al, A?, A3 are matrices depending on U, but not on its
derivatives and B is a column vector with the samc property.

Let a surface in x,y,p-space be given by an equation

¥(X,¥,p) = const.

and denote by

the components of its normal. Consider the matrix

A ="AjE+ALN +ALL

€
N
g =)
M =4
£ =4
T+(w+9(l)u)C 9( )(vn+wc) T+(w+6(2)v)c 6(2)(ug+wc)
01 n+6(2)e
g =

where we used a sligh! reordering of the equations of (21) (the

equation which was considered the fifth one in the first writing

being now last) and where T = uf +vn.




By the theory of characteristics the quasi-linear system
(1) i® elliptic &t & point (z;¥v;p) fc¥ & certain solution

U= U(x,y,p) if the equation

(22) det A(X,y,p;U,'E,T],C) =0

has no real solution (€,n,f) there and is totally hyperbolic "if

eight distinct real solutions (&,7m,¢).

1, i = 1,2, ooo,8, eXiSt.

Any such "eolution" of (22) is a first-order partial differential
equation for & fumctiem ¥+ The solution of this PBE yields @

family of characteristic surfaces

W(X:y:p) = const.

of the system (21). The equations of (21) cannot be independent
of each other if (22) is identically satisfied, irrespective of
the values of the variables on which A depends, as was already
explained for the shallow-fluid eyuations. Indeed, for (22) to
be idemti=ally satisfied, 1t ig necessary that the matrix

differential operator
C = AlB/Bx + AQB/By + ABB/Bp

be an inter.or operator at any point of any surface in space for
any solution U of (21). In other words, a solution U of some of

the equations in system (21) must satisfy the whole system

c(WT +R(T) = o .

Developing the determinant in (22) by minors yields




det A

PP [et-e e st (v F )+ npe + (e @y (gro (Ve

(

+0 @) (uerar ) (g+6 ey - e[r+-(w+e(l)u)51\n+e(2)c)c]

e2n2e0160?) (uePrarcrueDer) - 6(1) (unlramtve(Pne) e

2),_g(1)

+ (00 y_6 My pene + 001 fug svnt (wre 2y e ]nt

-6(2)[uﬁ+vn+ (me(l)u)c]gz;} ® 0 5

Thus the equations of system (21) are not independent. Hence
the same holds for equations (18) and (20), to which system (21)
is equivalent, given suitable éide gonditions.

We remark moreorer that neither is a full se:; of compati-
bility conditions possible for the complete Euler equations, in
which the equation {or the vertical velocity cannot be reduced
to the hydrostatic equation. Indeed, let us assume that somehow
all variables of state, i.e., T, p, 6 are known together with
the necessary derivatives. Even then, differentiating the energy
equation equivalent in X,y,z-coordinates to (16d) with respect to
t and substituting Ups Vi Wy from the three momentum equations
into the equation so obtained will lead to one compatibility
condition. The continuity equation will then give just one addi-
tional condition, and it is verified by inspection that no other
independent equation in which time derivatives of (u,v,w) do not
appear can be derived. ‘'l'hus we have again an underdetermined set
of two equations for the instantaneous determination of the three

unknowns u, Vv, We
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In this context it 1s worthwhile to note that in Mesinger's

(1972) iterative updating experiments the use of the first time
derivative of the state variable brought a significant improve-
ment in the adjustment of the wind field. The use of the second
time depivativé however did nets This reflects thé fact, which
showld be cledr in the light of our discugsion, that no addi-
tional independent compatibility conditions can be obtained by
further differentiation with respeet to time of the energy or
continuity equations.

Obviously, to consider the Navier-Stokes equations, or
other equations with forcing and dissipation depending on the
wind field, would make matters only worse. This seems to exhaust
the possibilities.

We are theréfore forced to conclude that theve 18 no
adequate generalization of exact geostrophic balance to atmo-
spheric phenomena governed by the primitive Euler or Navier-
Stokes equations, at least not in the sense that the wind field
is entirely and instantaneously determined by the thermodynamic
state of the atmosphere and its past history as reflected in the

time derivatives of the state variables.
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4. Discussion and conclusions

The analysis above should make it clear why the mathemati-
cal argument mentioned in the Introduction and used by some
authors to justify the updating approach to the initialization
problem may not be appropriate. Not only are the systems of
PDEs under consideration non-linear, which in general precludes
the elimination of all but one variable; the even more pertinent
difficulty is that such elimination does not lead to a well-
posed problem to determine the wind field from temperature data.

On the other hemd, our #nalysis proves rather conclusively
that for an atmosphere governed by the primitive equations even
a generalized geostrophic balance, in the sense of compatibillity
conditions as previously defined, can be only an approximate,
rather than an exact mathematical property.

We think that this discussion at least partly explains the
difficulties encountered by the updating and four-dimensional
data assimilation approaches to the initialization problem.
Specifically these difficulties are: (i) that the erros in the

initial data cannot be reduced to zero or to negligible values,

(i1) that in forward updating the asymptotic value of the error

is reached after time® comparable to the predictability time, and
(1ii) that use of data extraneous to the numerical model used
ss&ma to léad to catastrophic resulté. The partigl suecese of
these approaches has probably to do with a rather complicated
mechanism, involving the forcing and dissipation in the system

of equations used, which we cannot discuss here and which is

currently under investigation.




Our analysis on the other hand has shown that instanta--
neous compatibility conditions for the velocity field can be
derived, but that their number (one for the non-linear shallow-
fluid equations, two for the primitive equations) is in general
one less than the number required to determine the velocity
field from the thermodynamic fields and their history. This
seans te justify the contention that it is necesgary, in order
to solve the initialization problem, to be able to measure at
least one scalar parameter determining the wind field. This
scalar could be either the (horizontal) wind direction or the
wind speed.

The wind direction could possibly be determined by cloud
tracking techniqueé which are not at present sufficiently accu-
rate in order to determine also the speed. The speed on the
other hand could perhaps be determined with sufficient accuracy
(concerning the present GARP requirements see for instance
Kasahara, 1972) by other methods which are still easier to
implement than those requiring a full and accurate measurement
of two or three velocity components separately.

Our analysis may be extended to study four-dimensional
data assimilation in the following way. Assume that one would
wish to solve a Cauchy problem for a hyperbolic system o. equa-
tions of large-scale dynamic meteorology (the shallow-fluid equa-
tions or the primitive equations) different from the pure
initial-value problem. This would correspond to data being
available on some arbitrary hypersurface S in (x,y,2z,t) four-

space, rather than on the hyperplane t = 0, e.g., on a surface
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spanned by the trajectories of satellites. If the data were
complete and the given surface S were free for the system of
equations used, as well as being a space-like surface (John,
1971, p. 113 ff., Courant and Hilbert, 1962, p. 589 ff.), then
the Cauchy problem with respect to S would be well posed.

If the data, however, are not complete, as is to be
expected, although S is free and space-like, we have again with
respect to S an "initialization problem" or "incomplete Cauchy
problem". This can now be handled either by "updating tech-
nijques", as is currently done in various numerical experiments,
or else by the analytical methods proposed above. Our analysis
of the initial-value problem seems to suggest that a theoretical
investigation of four-dimensional data assimilation in the sense
outlined here might help direct the numerical experiments in
such respects as optimal number, nature and location of data, or
assessment of the completeness and relative value of data avail-
able under present and future data gathering programs.

This subject, as well as the numerical implementation and
practical evaluation of the theoretical methods proposed here
for the initial-value problem, are intended to be covered in

future work by the author.




References

Charney, J. G., 1955: The use of the primitive equations of

motion in numerical prediction, Tellus, VII, 22-26.

Charney, Js G+, Rs Gs Fleagle; V. B« Cally, H. Riehl and
D. O. Wark, 1966: The feasibility of a global observation
and analysis experiment, Publication 1290, Natl. Acad.

Sci./Natl., Res. Council, Washington, D.C.

Charney, J., M. Halem and R. Jastrow, 1969: Use of incomplete

historical data to infer the present state of the atmo-

sphere, J. Atmos. Sci., 26, 1160-1163.

Courant, R. and D. Hilbert, 1962: Methods of Mathematical

Physics, Vol. II, John Wiley and Sons, New York.

Haltiner, G. J., 1971: Numerical Weather Prediction, John Wiley

and Sons, New York.

John, F., 1971: Partial Differential Equations, Springer, New

York.

Kasahara, A., 1972: Simulation experiments for meteorological

observing systems for GARP, Bull, Amer. Meteor. Soc., 554

252-264,

Mesinger, F., 1972: Computation of the wind by forced adjust-

ment, J. Appl. Meteor., 11, 60-71.




Morel, P., G. Lefevre and G. Rabreau, 1971: On initialization

and non-synoptic data assimilation, Tellus, XXIII, 197-206.

Nitta, T. and J. B. Hovermele, 1969: A technique of objective
analysis and initialization for the primitive forecast

equations, Mon. Wea. Rev., 97, 652-658.

Williamson, D. and A. Kasahara, 1971: Adaptation of meteoro-

logical variables forced by updating, J. Atmos. Seiles, gg,

13135=1324,

Williamson, D. L. and R. E. Dickinson, 1972: Periodic updating

of meteorological variables, J. Atmos. SEIG & gg, 190-193.




